
ar
X

iv
:1

20
7.

35
23

v1
  [

cs
.D

S
]  

15
 J

ul
 2

01
2

A unified approach to truthful scheduling on related machines

Leah Epstein∗ Asaf Levin† Rob van Stee‡

Abstract

We present a unified framework for designing deterministic monotone polynomial time approxima-
tion schemes (PTAS’s) for a wide class of scheduling problems on uniformly related machines. This
class includes (among others) minimizing the makespan, maximizing the minimum load, and minimiz-
ing the ℓp norm of the machine loads vector. Previously, this kind of result was only known for the
makespan objective. Monotone algorithms have the propertythat an increase in the speed of a machine
cannot decrease the amount of work assigned to it. Thekey ideaof our novel method is to show that for
goal functions that are sufficiently well-behaved functions of the machine loads, it is possible to compute
in polynomial time a highly structured nearly optimal schedule. An interesting aspect of our approach
is that, in contrast to all known approximation schemes, we avoid rounding any job sizes or speeds
throughout. We can therefore find theexactbest structured schedule using a dynamic programming. The
state space encodes a sufficient amount of information such that no postprocessing is needed, allowing
an elegant and relatively simple analysis. The monotonicity is a consequence of the fact that we find the
bestschedule in a specific collection of schedules.

Monotone approximation schemes have an important role in the emerging area of algorithmic mech-
anism design. In the game-theoretical setting of these scheduling problems there is a social goal, which
is one of the objective functions that we study. Each machineis controlled by a selfish single-parameter
agent, where its private information is its cost of processing a unit sized job, which is also the inverse
of the speed of its machine. Each agent wishes to maximize itsown profit, defined as the payment it
receives from the mechanism minus its cost for processing all jobs assigned to it, and places a bid which
corresponds to its private information. For each one of the problems, we show that we can calculate pay-
ments that guarantee truthfulness in an efficient manner. Thus, there exists a dominant strategy where
agents report their true speeds, and we show the existence ofa truthful mechanism which can be im-
plemented in polynomial time, where the social goal is approximated within a factor of1 + ε for every
ε > 0.
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1 Introduction

A major question in algorithmic game theory is how the presence of selfish agents affects the approximability
of various classic optimization problems [31]. Specifically, the following research agenda was suggested:
“to what extent is incentive compatible efficient computation fundamentally less powerful than ”classic”
efficient computation?”(as formulated in [18]). Of particular interest are scheduling problems, where jobs
are assigned for processing to agents, each controlling onemachine, and who have some private information
regarding their machines [31, 5, 30, 14]. In this paper, we consider the case of single-parameter agents with
scheduling problems on uniformly related machines, which was among the first problems considered in the
area of algorithmic mechanism design [5]. The private information of an agent is the cost of processing
one unit of work, which is also the inverse of the speed of the machine. We provide a negative answer to
the question raised in [31] for scheduling problems on uniformly related machines, by designing(1 + ε)-
approximation mechanisms for these problems.

Non-preemptive scheduling problems onm uniformly related machines are defined as follows. We let
the set of machines be denoted byM = {1, 2, . . . ,m}. We are given a set of jobsJ = {1, 2, . . . , n}, where
each jobj has a positive sizepj . The jobs need to be partitioned intom subsetsS1, . . . , Sm, with Si being
the subset of jobs assigned to machinei. We letsi denote the (actual) speed of machinei, meaning that the
processing of jobj takespjsi time units if j is assigned to machinei. For such a solution (also known as a
schedule), we letLi = (

∑

j∈Si
pj)/si be thecompletion timeor load of machinei. Thework of machinei

isWi =
∑

j∈Si
pj = Li · si, that is, the total size of the jobs which are assigned toi. We consider objective

functions which are functions of the machine loads,L1, L2, . . . , Lm.

We consider a variety of objective functions (social goals). A well-known objective function is the
makespan, which is the maximum load. The optimization problem of finding a schedule which minimizes
the makespan is a basic one [24, 23, 25, 26, 15]. The problem offinding a schedule which maximizes
the minimum load, also known as thecover, is the famousSanta Clausproblem on uniformly related ma-
chines (see e.g. [22, 32, 2, 8, 20, 11, 21]). Both these problems are concerned with the optimization of
the extremum values of the set of machine loads. We will also consider the optimization problem of min-
imizing

∑m
i=1 f(Li) wheref is a well-behaved function. We say that a functionf is well-behavedif f

is a non-negative convex (strictly) monotonically increasing function satisfying the additional property that
if x ≤ (1 + ε)y thenf(x) ≤ (1 + O(1)ε)f(y). With regard to the problem of minimizing

∑m
i=1 f(Li),

we assume that there is an oracle such that given a rational numberx it computesf(x) exactly in constant
time1. The most important example of such a function isf(x) = xp for p > 1 in which case the problem
is equivalent to minimizing theℓp norm of the vector of machines loads. The optimization goal function of
minimizing theℓ2 norm (and the goal of minimizing theℓp norm for p > 1) of the vector of completion
times of the machines has been widely studied (see e.g. [17, 13, 7]). The original motivation was mini-
mization of the average latency in storage allocation applications (rather than worst-case latency), and the
problem has additional applications in algorithmic game theory [12]. Bansal and Pruhs [10] recently stated:
“The standard way to compromise between optimizing for the average and optimizing for the worst case is
to optimize theℓp norm, generally for something likep = 2 or p = 3.”

The setup of mechanism design for single-parameter agents operating uniformly related machines is as
follows. Agents present bids to a mechanism, where the bidbi of an agenti is the claimed cost per unit of

1We can loosen this condition by replacingf with a piecewise-linear continuous convex approximation of f (i.e., the approxi-
mation is well-behaved as well) without affecting the results. We will assume thatf can be computed exactly for simplicity.
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work of its machine (the inverse of its claimed speed). Basedon these bids, the mechanism allocates the
jobs to the machines and also assigns payments to the agents.We assume that each agent is only interested
in maximizing its own profit, which is its payment minus its (actual) cost of processing the jobs allocated
to it. A mechanism is calledtruthful if reporting their true costs per unit of work is a dominant strategy
for the agents. That is, this strategy maximizes the profit for each agent, regardless of the strategies of the
other agents. In the case of single-parameter agents, a well-known necessary and sufficient condition for
truthfulness is that the allocation algorithm ismonotone[5, 4], that is, the allocation algorithm must have
the property that if an agenti increases its claimed speed (i.e., decreases its bid) whileall other bids are
unchanged, the work allocated toi does not decrease. More precisely, in such a case there existsimple
payment functions that can be coupled with the (monotone) allocation algorithm to give a truthful mecha-
nism. If the allocation algorithm runs in polynomial time, and the payments can be computed in polynomial
time as well, then the resulting truthful mechanism can be implemented in polynomial time. Thus, for
single-parameter agents, since the problems are typicallystrongly NP-hard, the primary goal is to design a
monotone (polynomial time) approximation algorithm with the smallest possible approximation ratio, and
to show how the corresponding payments can be computed in polynomial time for its outputs.

An R-approximation algorithm for a minimization problem is a polynomial time algorithm which al-
ways finds a feasible solution of cost at mostR times the cost of an optimal solution. AnR-approximation
algorithm for a maximization problem is a polynomial time algorithm which always finds a feasible solu-
tion of value at least1R times the value of an optimal solution (we use the conventionof approximation
ratios greater than 1 for maximization problems). The infimum value ofR for which an algorithm is an
R-approximation is called the approximation ratio or the performance guarantee of the algorithm. A poly-
nomial time approximation scheme (PTAS) is a family of approximation algorithms such that the family has
a (1 + ε)-approximation algorithm for anyε > 0 (the running time must be polynomial in the input size).
If the running time is polynomial in1ε as well then the PTAS is in fact an FPTAS (fully polynomial time
approximation scheme). On the other hand, if the running time is quasi-polynomial (logarithmic factors
of the input size may appear in the exponent), then the approximation scheme (which is not a PTAS) is a
quasi-polynomial time approximation scheme (QPTAS). Being strongly NP-hard, the scheduling problems
studied here cannot have an FPTAS unless P=NP.

A classic PTAS for these problems generally works by restricting the set of allowable schedules and
approximating over this set, where the details depend on thespecific algorithm and the objective function
considered. Typically, a chief method of restricting allowed schedules is to do grouping and rounding of
jobs, where given subsets of jobs are seen as identical, and to treat jobs which are very small compared to
the work that a machine should receive as arbitrarily divisible (or sand). A number of difficulties arise when
trying to modify such schemes to satisfy the monotonicity requirement (some of which were partially dealt
with in the past, see below). It is no longer possible to treatsimilar jobs as “identical”, and their exact sizes
must be considered. Jobs which are small for the machine which receives them are much more difficult;
such jobs usually do not affect the approximation ratio but which nevertheless need to be assigned very
carefully in order to satisfy the monotonicity requirement, since even a very small reduction in the work
when the machine increases its speed is not allowed. Moreover, it is not known in advance which job is
small on which machine.

Dhangwatnotai et al. [18] used randomization to construct amonotone PTAS for the three main objec-
tive functions listed above (makespan, cover, andℓp norm), which combined with an appropriate payment
function they give, implies a mechanism which is truthful inexpectation. That is, given a choice ofε > 0,
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their algorithm for this value ofε has an approximation ratio of1 + ε for any realization, but the mono-
tonicity is proved for the expected works of machines. In this weaker notion of truthfulness, the agents are
not interested in their actual profits but only in theexpectedones, that is, the agents are risk-neutral. For
example, if an agent earns a profit ofM with probability 1

M then it sees it as a profit of1, while a human
agent would very much be interested in the value ofM , and if it is large, it would see it as earning nothing
at all (rather than earning1 in expectation). Their approach of dealing with the difficulties above is that
when a machine receives a job of a given rounded size, the actual job is chosen uniformly at random from
the set of jobs of this rounded size, so the “sizes” of jobs (the expected sizes) are easier to deal with. For
jobs that are small, a fractional assignment is found (and rounded using randomization). They also derived
deterministic monotone QPTAS’s for minimizing the maximumload and theℓp norm of the loads. A fully
deterministic (and hence universally truthful) monotone PTAS for minimizing the makespan was given by
Christodoulou and Kovács [15]. They assign jobs that have almost the same size (are in the same group)
very carefully in a fixed order (sorted by size) to the machines (where machines are given in a fixed order of
their speeds). Moreover, they begin by rounding speeds to powers of1+ε, and round the job sizes to powers
of 1 + δ for someδ ≪ ε. This ensures that when a speed changes, this change is always relatively large
compared to the job classification, so the rounding errors introduced by small jobs are not large compared
to the required change in the work. The authors give a long andtechnical proof to show that it is possible to
combine these main ideas and give a deterministic monotone assignment. This approach can be used only
for minimizing the makespan, since in the scheme of [15], machines of similar speeds should either receive
almost the same work (implied by the makespan), or no small jobs at all, unless no small jobs remain.
Informally, the small jobs are pushed to the fastest machines. This approach does not seem to work even
for the similar problem of maximizing the cover, but applying the methods of [15] leads to a deterministic
monotone(2 + ε)-approximation for this last objective, given by Christodoulou, Kovács, and van Stee [16]
(the problem was also studied in [21]).

What can be seen from these previous results is that satisfying the monotonicity requirement would
become easier if we could simply avoid the notion of small jobs. Then we could calculate with exact job
sizes (and thus exact loads) throughout. An important contribution of this paper is to show that for any
given schedule, a highly structured schedule exists, wherethe ratio of job sizes assigned to a machine is
unboundedbut the jobs types assigned to this machine are restricted inthe sense that these jobs are grouped
into a sufficiently small number of classes. This overcomes the difficulty that it does not seem to be possible
to actually bound the size ratio of jobs assigned to a machine, but still we would like to use dynamic pro-
grammingwithout introducing a notion of small jobs or inexact calculations.The set of possible outcomes
is independent of the possible speeds, which assists in dealing with speed changes, and finally, the work
of each machine is very close to its work in the given (original) schedule, which keeps the approximation
ratio close to1. This allows us to deal withall of the objective functions mentioned above at once using
a dynamic programming formulation implemented by a layeredgraph, having one layer for each machine.
Unlike previous approximation schemes which use such graphs, a path in the graph corresponds to one spe-
cific schedule (not to a class of schedules, or a schedule for aset of rounded jobs), and the cost of the path
(with respect to a goal function) is precisely the cost of thecorresponding schedule and not its approximated
value. That is, there is no rounding or imprecise calculation with respect to relatively small jobs (or any
other jobs). This makes proving monotonicity much more straightforward, and even simplifies the proof
of the approximation ratio, and the presentation of the algorithm, compared to previous (non-monotone)
PTAS’s. Our construction works in the same way for all inputsand all objectives, and does not require any
special cases. Hence we streamline the monotone PTAS for minimizing the makespan [15]. Moreover, we
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provide the first deterministic monotone PTAS’s for maximizing the minimum load and minimizing theℓp
norm, which are our main contributions.

Other related work. For a fixed (constant) number of machines, scheduling problems typically have an
FPTAS [27, 9, 19], and even a (deterministic) monotone one for makespan minimization and for maximizing
the minimum load [3, 21]. The QPTAS of [18] for minimizing theℓp norm is in particular a PTAS for fixed
values ofm. Prior to the monotone FPTAS of Andelman, Azar, and Sorani [3] for makespan minimization,
Auletta et al. [6] gave the first deterministic monotone algorithm for this problem (where the number of
machines is fixed), with an approximation ratio of4 + ε.

In what follows we discuss the case where the number of machines is part of the input. It was shown
by Hochbaum and Shmoys that the makespan minimization problem has a PTAS for identical (equal speed)
machines [25] and for uniformly related machines [26]. All optimization problems studied here, including
maximizing the minimum load and minimizing theℓp norm, are known to have a PTAS for identical ma-
chines [32, 1, 2], and for uniformly related machines [8, 20]. As for monotone algorithms for the makespan
minimization problem, before the papers [18, 15] mentionedabove, Archer and Tardos [5] gave a random-
ized 3-approximation mechanism for minimizing the makespan which is truthful in expectation only. The
ratio was later improved to 2 [4] (and eventually to1 + ε [18]). A deterministic monotone algorithm of
approximation ratio at most5 was given in [3], and Kovács improved the ratio to 3 and then to 2.8 [28, 29].

Proof overview. Our proof consists of two parts. In the first one, we define several properties which a
structured schedule should have, and show that every schedule has a similar schedule which has such prop-
erties. As stated above, similarity is measured by allowingonly a very small change in the work of every
machine. For the proof we introduce a notion of a fractional schedule, where some (relatively small) jobs
may be split over multiple machines. For any (integral or fractional) schedule, we can define a magnitude
vector with a component for every machine. Unlike previous work, where the magnitude of a machine corre-
sponded directly to its work (or the largest job assigned to it), we use the magnitude component of a machine
as an upper bound for the size of any job which is assigned to it, but if a component of the magnitude vector
is different from the previous one, we require that the valueof this component matches (approximately)
the work of the corresponding machine. There are several ways to define a magnitude vector for a given
schedule. A possible solution to the dynamic programming can be viewed as a process where we create
the magnitude vector component by component (for a list of machines sorted by non-decreasing speed);
increase the magnitude of the current machine (as opposed tokeeping the same magnitude of the previous
machine) only if keeping the same magnitude as for the previous machine would result in a violation of the
upper bound on the maximum size of any job assigned to the current machine. This novel approach allows
additional flexibility in the set of allowed schedules.

For a given integral schedule, where the works of the machines are increasing with the speeds, we show
that a fractional schedule exists where the total size of very small jobs which are (partially) assigned to
machines with high work is small, and the work on each machineis the same as the work in the integral
schedule. We then refine this result by constructing an integral schedule whereno very small jobs are
assigned to machines with high work, the works of the machines are all close to the original works, and an
additional technical property holds. However, despite theworks being close to the original works, they may
no longer be sorted in the resulting schedule (though if the works of two consecutive machines are unsorted,
then the difference between their works is very small). Searching for unsorted schedules causes technical
difficulties for the algorithm which should find a structuredschedule, while a postprocessing step of sorting
may harm monotonicity. We therefore do one extra step to create a final integral schedule in which the works
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are sorted again (but still very close to the original works)and several structural properties hold. We do not
use rounding, but jobs are partitioned into mega-classes and mini-classes according to their size, and we
apply re-assignment of jobs in every class to comply with therequired structure. For a given schedule, some
classes of jobs can turn out to be too large for some machines,while they are very small compared to the
work of other machines. These jobs are combined into chunks called “alternative jobs”. Since this process
can be applied in particular for an optimal schedule (for each one of the studied problems), there exists a
schedule where works are very close to the works in an optimalschedule, and the structured schedule has
an objective value which is close to optimum.

Once we show the existence of such a schedule, we can turn to the design of an algorithm which finds it.
We use a dynamic programming formulation which is based on the structural properties. By the structural
properties and the existence of a magnitude vector, it is only necessary to have a small number of components
of this vector in the state space. A preprocessing step is performed, where all possible types of alternative
jobs are created. While a job will belong to a number of sets ofalternative jobs, every solution will use it at
most once as a part of an alternative job (or possibly it will simply be assigned as a job). Thus, we find an
optimal solution out of a given class using a polynomial timealgorithm, and this optimal schedule is then
guaranteed to be close to an overall optimal schedule, as well as being monotone.

2 Preliminaries

For our results, we letε be a small constant such that0 < ε ≤ 1
32 and 1

ε is an integer power of2 denoted by
r ≥ 5 (i.e.,ε = 1

2r ). Throughout the paper, for a solutionA we denote byA both the solution and the value
of the objective function for this solution. Without loss ofgenerality, we assume that0 < p1 ≤ p2 ≤ · · · ≤
pn.

An integral schedule is a functionS : J → M . We letW S
i =

∑

j∈J :S(j)=i pj (this is the work of
machinei in the integral scheduleS). A fractional schedule is a functionX : J ×M → [0, 1]. The value
X(j, i) is the fraction of jobj assigned to machinei, and the following condition (that every job is assigned
completely) must be satisfied:

(F1) For everyj ∈ J ,
∑

i∈M X(j, i) = 1.

LetWX
i =

∑

j∈J pj ·X(j, i) be the total fractional size of jobs of machinei, and letW̃X
i = 2α

X
i , where

αXi =
⌈

log2W
X
i

⌉

, be its rounded value (ifWX
i = 0 thenαXi = −∞ andW̃X

i = 0). We callWX
i the work

of machinei in X (as for integral schedules) and̃WX
i is the rounded work (also for integral schedules). A

fractional schedule isvalid if it satisfies condition (F2):

(F2) There is a partitionJ = JZ(X) ∪ JR(X) (JZ(X) ∩ JR(X) = ∅), such that ifj ∈ JZ(X) then there is
a unique valuei ∈M such thatX(j, i) > 0 (and thereforeX(j, i) = 1), and ifj ∈ JR(X) andX(j, i) > 0

thenpj ≤ εW̃X
i .

Note that the partition in (F2) is not necessarily uniquely defined. Every integral scheduleS induces
a valid fractional scheduleX with the same jobs assigned to every machine as follows: letX(j, i) = 1 if
S(j) = i, elseX(j, i) = 0. Furthermore, we letJR(X) = {j ∈ J : pj ≤ εW̃ S

S(j)} andJZ(X) = J \JR(X).

Note thatW̃ S
i = W̃X

i for i = 1, . . . ,m. X is called the (valid) fractional schedule induced byS. On the
other hand, every valid fractional scheduleX for which X(j, i) ∈ {0, 1} for all j ∈ J, i ∈ M induces
an integral scheduleS with the same works by settingS(j) = i for the value ofi for whichX(j, i) = 1
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(this value ofi is unique due to (F1)).S is called the integral schedule induced byX. In what follows we

use the termschedulefor an integral schedule. We letLSi =
WS

i

si
be the load of machinei in the schedule

S. The first part of Claim 1 follows from an observation in [20],and it is easy to show the second part
(see Appendix A.1). For all cases, we conclude that if machines are sorted by non-decreasing speed, it is
sufficient to consider optimal schedules where the works arenon-decreasing (as a function of the indices).

Claim 1 Assume thats1 ≤ s2 ≤ · · · ≤ sm. There exists an optimal scheduleS for the problem of minimiz-
ing

∑m
i=1 f(Li) wheref is a well-behaved function, which satisfiesW S

1 ≤ W S
2 ≤ · · · ≤ W S

m. There exists
an optimal scheduleS1 for the makespan minimization problem which satisfiesW S1

1 ≤W S1

2 ≤ · · · ≤W S1
m .

There exists an optimal scheduleS2 for the machine covering problem which satisfiesW S2

1 ≤W S2

2 ≤ · · · ≤

W S2
m .

3 The existence of near-optimal highly structured solutions

We define a partition ofJ into mega-classes. Fork ∈ Z, let Ik = (2k, 2k+1], and let mega-classk be
{j ∈ J : pj ∈ Ik}. We say that an integerk dominatesthe integerk′ if k > k′ + r. Mega-classk dominates
mega-classk′ if k dominatesk′. If j, j′ belong to mega-classesk, k′, respectively, such that mega-classk
dominates mega-classk′, thenpj′ < εpj . This holds becausepj > 2k ≥ 2k

′+r+1 = 1
ε · 2

k′+1 ≥ 1
ε · pj′,

sincek′ + 1 ≤ k − r andε = 2−r. We refine this partition and consider the partition ofJ into mini-
classes as follows. Denote byK ⊆ Z the set of indices of non-empty mega-classes (clearly|K| ≤ n). Let
λ = ⌈log1+ε 2⌉. Fork ∈ K and0 ≤ ℓ ≤ λ − 1, let Ik,ℓ = (2k · (1 + ε)ℓ, 2k · (1 + ε)ℓ+1]. The mini-class
(k, ℓ) is the set of jobs of mega-classk whose size is inIk,ℓ. Note that(1+ε)⌈log1+ε 2⌉ ≥ (1+ε)log1+ε 2 = 2

and thus the partition ofJ into the mini-classes is a refined partition of the partitioninto the mega-classes.

Given a set of consecutive mega-classesk1, . . . , k2 wherek2 ≥ k1, with the job setĴ consisting of all
jobs of J with size in the interval(2k1 , 2k2+1], and letting̺ = 2k2 , we create an alternative set of jobs
that will possibly replacêJ . These alternative jobs have size in the interval(̺, 2̺] (except perhaps for one
alternative job that may be smaller). To create these alternative jobs we partitionĴ into subsets each of
which has total size at most2̺ such that no two subsets can be united keeping this condition. A set of
subsets satisfying this condition has at most one subset whose total size is at most̺. We create these subsets
by picking in each step a maximal prefix of the jobs inĴ (whereĴ is sorted according to the indices of
the jobs, i.e., by non-decreasing size) with total size at most 2̺ and remove the selected jobs from̂J . This
algorithm is equivalent to applying the bin packing algorithm Next-Fit Increasing (NFI) using “bins” of size
2̺; once a subset of total size at most̺ is picked, all further subsets (if any exist) have total sizes above̺ .
The algorithm sometimes decides to replaceĴ with the alternative jobs, and in this case we partition these
alternative jobs into separate mini-classes which we call alternative mini-classes. The alternative mini-class
(k, ℓ) contains all the alternative jobs with size inIk,ℓ, resulting in at mostλ+ 1 alternative mini-classes. If
the algorithm decides to replacêJ with alternative jobs, then in the output of the algorithm each alternative
job is replaced with the original jobs which were combined toform it, and this is done just before returning
the output (the work of each machine is not affected by this change). Since there are at mostn non-empty
mega-classes, there areO(n2) different setsĴ that possibly the algorithm replaces with alternative jobs.
Thus creating all the sets of alternative jobs takesO(n3). Note that one job can be contained in multiple
alternative jobs, but at most one of these alternative jobs will be used.

Definition 2 An integral schedulerespectsthe alternative jobs of mega-classesk1, . . . , k2, wherek2 ≥ k1,
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if every pair of jobsj, j′ with size in the interval(2k1 , 2k2+1] which are within a common subset (that is,
should be combined into one alternative job with possibly other jobs), are scheduled on a common machine.

The motivation for this definition is that these jobs can be easily replaced by the alternative job to which
they belong without affecting the works of the machines.

Definition 3 A vectorā = (a0, a1, . . . , am) (of lengthm + 1) whose components belong toZ ∪ {−∞} is
called amagnitude vectorif a0 = −∞, for i = 0, 1, . . . ,m − 1, ai ≤ ai+1 and if ai 6= ai+1 thenai+1

dominatesai (i.e.,ai+1 ≥ ai + r + 1).

We now define thesignature vector̄b of a magnitude vector̄a. The number of components in̄b is the
number of distinct values among the components ofā excludinga0, denoted byτ(ā). Each component
t = 1, 2, . . . , τ(ā) of b̄ is a pairbt = (ξt, νt) such thatξ1 = 1, and for1 ≤ t ≤ τ(ā) andξt ≤ i ≤ ξt+1 − 1

(whereξτ(ā)+1 = m + 1) we haveai = νt. That is, the valueξt is always the first machine which has a
larger component of̄a than the previous machine and this component isνt. For everyt = 1, 2, . . . , τ(ā)−1,
we letJ t(ā) = {j ∈ J : 2νt+r+1 < pj ≤ 2νt+1−r}.

Observation 4 For every jobj and every magnitude vectorā with its signature vector̄b, there are at most
two values oft ∈ {1, . . . , τ(ā)} for whichpj ∈ (2νt−r, 2νt+r+1], and if there exists at least one such value
of t, thenj /∈ ∪θJ

θ(ā).

Proof. By the definitions above, for everyj there are at most two values oft for which pj ∈ (2νt−r,

2νt+r+1] (sinceνθ+1 ≥ νθ + r + 1 for everyθ). Moreover, ifpj ∈ (2νt−r, 2νt+r+1], then for everyθ < t,
we havej /∈ Jθ(ā) becausepj > 2νt−r ≥ 2νθ+1−r, and thusj is too large to be inJθ(ā). If θ ≥ t, then
pj ≤ 2νt+r+1 ≤ 2νθ+r+1, and thusj is too small to be inJθ(ā).

Definition 5 A valid fractional scheduleX is consistentwith a magnitude vector̄a if 1) for every jobj
and machinei, if X(j, i) > 0 thenpj ≤ 2ai+r+1, that is, machinei does not contain parts of jobs of a
mega-class higher thanai + r, and 2) ifai 6= ai−1 (for i ∈M ) thenai = αXi (=

⌈

log2W
X
i

⌉

).

Observation 6 If a valid fractional scheduleX is consistent with a magnitude vectorā andWX
1 ≤WX

2 ≤

· · · ≤WX
m , then for everyi ∈M , we haveai ≤ αXi .

Definition 7 A pair (X, ā), whereX is a valid fractional schedule, and̄a is a magnitude vector such that
X is consistent with̄a is calledfavorableif for t = 1, 2, . . . , τ(ā)− 3, we have

m
∑

i=ξt+3

∑

j:pj≤2νt−r

pj ·X(j, i) ≤ 2νt+1+r+1 .

This condition ensures in particular that the total size of parts of jobs whose mega-class is dominated by
mega-classνt, assigned to a machine of index at leastξt+3, is relatively small compared to the work of that
machine. This holds since2νt+1+r+1 ≤ 2νt+2 < 2νt+3−r = ε · 2νt+3 = ε · W̃X

ξt+3
.

We define several processes in which a valid fractional schedule is modified into a different valid frac-
tional schedule. These processes are defined algorithmically but they are not a part of the final algorithm,
but only of the proof that a highly structured integral schedule must exist.
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FNFI. For a subset of jobsJ ′ ⊆ J and a set of boundsU1, . . . , Um (for them machines) such that
∑

j∈J ′ pj =
∑m

i=1 Ui, the Fractional Next-Fit Increasing (FNFI) algorithm creates a fractional allocation of
these jobs in the following way. Leti = 1 be the first active machine, and for everyj ∈ J ′ let qj = pj. In
every step,FNFI picks the minimum index jobj ∈ J ′. It allocatesβ = min{qj , Ui} processing time of this
job to machinei. It decreases bothUi andqj by β. If Ui = 0, then it increasesi by 1, and ifqj = 0, then it
removesj from J ′. FNFI repeats this step untili = m+ 1 (andJ ′ = ∅ must hold, these two events happen
simultaneously since

∑

j∈J ′ pj =
∑m

i=1 Ui). FNFI is sometimes used to reassign a subset of jobs in a valid
fractional schedule, so that the total sizes of jobs of this subset assigned to each machine is unchanged (i.e.,
the boundsUi are given by assignment of the jobs of the subset in the original valid fractional schedule).
This is done only in situations where it is ensured that the resulting fractional schedule is valid.

Definition 8 A valid fractional scheduleX is compatible withFNFI if running FNFI on the input job set
JR(X) with the set of boundsU1, . . . , Um such thatUi =

∑

j∈JR(X) pjX(j, i) allocates exactlypj ·X(j, i)

time units of jobj to machinei for everyj ∈ JR(X) and all i ∈ M , that is, keeps the valid fractional
schedule unchanged.

Round-FNFI. On several occasions, given a valid fractional scheduleX, which is compatible withFNFI,
we will apply the following rounding procedure, called Round-FNFI. Assign each jobj ∈ JR(X) completely
to the minimum indexi such thatX(j, i) > 0. Since in the assignment process ofFNFI each machine
receives at most two jobs which are not completely assigned to it, the one of smallest index and the one
of largest index, the resulting fractional schedule induces an integral scheduleS in which each machine
may have additional parts of at most one job (the one of the largest index assigned to this machine by
FNFI), and may have less parts of at most one job (the one of the smallest index assigned to this machine
by FNFI). Since by condition (F2) each fractional jobj ∈ JR(X) on machinei (that is, everyj ∈ JR(X)

such thatX(j, i) > 0) has sizepj ≤ εW̃X
i ≤ 2εWX

i , we conclude that for everyi ∈ M we have
(1 − 2ε)WX

i ≤ W S
i ≤ (1 + 2ε)WX

i . We say that the integral scheduleS is created by applying Round-
FNFI onX.

Lemma 9 Given a scheduleS : J → M such thatW S
1 ≤ W S

2 ≤ · · · ≤ W S
m, there exists a favorable pair

(X, ā) whereWX
i =W S

i for i = 1, 2, . . . ,m, andX is compatible withFNFI.

Proof. First, as described in Section 2,S induces a valid fractional schedule, here denoted byXS , with
the same sequence of works. Fori = 1, 2, . . . ,m, let qi = αSi . SinceW S

1 ≤ W S
2 ≤ · · · ≤ W S

m,
we haveqi ≤ qi+1 for all i = 1, 2, . . . ,m − 1. We define a magnitude vectorāS = (aS0 , a

S
1 , . . . , a

S
m)

as follows. We letaS0 = −∞, for i = 1, 2, . . . ,m, if qi ≤ aSi−1 + r, thenaSi = aSi−1, and otherwise
aSi = qi. The valid fractional scheduleXS is consistent with̄aS since for everyi ∈ M eitheraSi = qi or
qi ≤ aSi−1+ r = aSi + r. In both cases, the size of any job assigned (completely) to machinei cannot exceed

WX
i ≤ W̃X

i = 2qi ≤ 2a
S
i +r.

We next consider the nonempty set of pairs(X ′, ā) such thatX ′ is consistent with̄a, and such that for
i = 1, 2, . . . ,m, WX′

i = W S
i andai ≤ αX

′

i (the set is indeed nonempty by the existence of(XS , ā
S)).

Among all the possible choices forX ′ andā, we consider one such that the vectorā has a signature vector
with the smallest number of components, and (as a secondary objective, i.e., among such solutions which
minimize the number of components in the signature vector)|JR(X

′)| is maximized. Based onX ′ we will
defineX (by applyingFNFI on JR(X ′)), andX will be shown to be a valid fractional schedule satisfying
the lemma.
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We modifyX ′ by reassigning the jobs ofJR(X ′) usingFNFI with the set of boundsU1, . . . , Um such
thatUi =

∑

j∈JR(X′) pjX
′(j, i). We denote the resulting fractional schedule which is compatible with FNFI

by X. We argue thatX satisfies (F2). We defineJR(X) = JR(X
′) and show that ifj ∈ JR(X) and

i ∈ M satisfy thatX(j, i) > 0, thenpj ≤ εW̃X
i . Since the works of the machines are sorted in a non-

decreasing order, it suffices to show that forj ∈ JR(X) andi such thatX(j, i) > 0, there existsj′ ≥ j,
j′ ∈ JR(X

′) andi′ ≤ i such thatX ′(j′, i′) > 0, since in such a casepj ≤ pj′ ≤ εW̃X′

i′ ≤ εW̃X
i . Assume by

contradiction that this claim does not hold forj andi. Then, sinceFNFI assigns jobj (possibly partially) to
machinei,

∑

j′∈JR(X′):j′<j pj′ <
∑i

γ=1 Uγ , however
∑

j′∈JR(X′):j′<j pj′ ≥
∑i

γ=1 Uγ since no other jobs
of JR(X ′) are assigned byX ′ to the firsti machines. ThereforeX is indeed a valid fractional schedule.

We claim thatX is consistent with̄a. It suffices to prove that in every prefix of machines1, 2, . . . , i, the
maximum size of a jobj such thatX(j, γ) > 0 for some1 ≤ γ ≤ i does not increase when we replace
X ′ by X. Let j be a job of maximum size which is assigned inX (possibly fractionally) to a machine
γ ∈ {1, 2, . . . , i}. If j ∈ JZ(X) = JZ(X

′) thenX ′(j, γ) = X(j, γ) = 1, and the claim holds. Otherwise,
j ∈ JR(X). There existsj′ ∈ JR(X

′) andi′ ≤ γ such thatX ′(j′, i′) > 0 andj′ ≥ j as we showed above,
and the claim holds as well.

Last, we prove that(X, ā) is a favorable pair. Lett be such that1 ≤ t ≤ τ(ā) − 3. Let j ∈ J be such
that there isi ∈ [ξt+3,m] with X(j, i) > 0 andpj ≤ 2νt−r. If there is no such job, then we are done.
We havej ∈ JR(X) = JR(X

′) becauseW̃X
i ≥ 2ai ≥ 2νt+3 > 2νt · 23r = 1

ε3
· 2νt ≥ 1

ε3
pj where the

first inequality holds by Observation 6, so ifj /∈ JR(X) thenX(j, i) = 1 and we can addj to JR(X),
contradicting our choice ofX ′. Consider the machinesAt+1 = {ξt+1, . . . , ξt+2 − 1}. If all jobs assigned
(possibly fractionally) byX to these machines have size of at most2νt+r+1, then we can redefineai′ for
i′ ∈ At+1 to beνt, contradicting the minimality of length of the signature vector of ā. Consider a jobj′

such that there isi′ ∈ At+1 for whichX(j′, i′) > 0 andpj′ > 2νt+r+1. By the existence ofj ∈ JR(X)

with size at most2νt−r, such that a part of it is allocated to a machine of higher index, we conclude that
j′ ∈ JZ(X) sinceX is compatible withFNFI. We also havepj′ ≤ 2νt+1+r+1 ≤ 2νt+3−r−1 < ε · W̃X

ξt+3
.

If
∑m

γ=ξt+3

∑

j′′:pj′′≤2νt−r pj′′ ·X(j′′, γ) > 2νt+1+r+1, then
∑m

γ=ξt+3

∑

j′′:pj′′≤2νt−r pj′′ ·X(j′′, γ) > pj′.

In this case, we addj′ to JR(X), and modifyX as follows. We consider a replacement of the position
of j′ with the position of a set of fractions of jobs (where each such job has size at most2νt−r = ε2νt ≤

ε22νt+1−1 ≤ ε2
W̃X

γ

2 < ε2WX
γ for everyγ ∈ At+1, and belongs toJR(X ′)) of total sizepj′ which were

previously assigned to machines with index at leastξt+3. The resulting schedule indeed satisfies (F2) since
the jobs which take the place ofj′ are smaller thanε2WX

γ for everyγ ∈ At+1 while pj′ < ε · W̃X
ξt+3

. Thus,
the resulting valid fractional schedule is consistent withā, contradicting our choice ofX ′ since|JR(X ′)| is
not maximal among valid fractional schedules consistent with ā (and having the required properties).

Definition 10 A scheduleS is almost consistentwith a magnitude vector̄a if for everyi = 1, 2, . . . ,m, the
set of parts of jobs assigned to machinei does not contain any part of a job of a mega-class higher than
ai + r, and ifai 6= ai−1 (for i ∈M ) then|ai − αSi | ≤ 1.

Definition 11 A scheduleS : J →M is good if the following properties hold.

1. There exists a magnitude vectorā such thatS is almost consistent with̄a, and furthermore for every
t = 1, 2, . . . , τ(ā)− 4 there is noj andi ≥ ξt+4 such thatpj ≤ 2νt−r andS(j) = i.

2. For everyt = 1, 2, . . . , τ(ā)− 1 if J t(ā) = {j ∈ J : 2νt+r+1 < pj ≤ 2νt+1−r} 6= ∅, thenX respects
the alternative jobs of mega-classesνt + r + 1, . . . , νt+1 − r − 1.

9



Lemma 12 Given a scheduleS : J →M such thatW S
1 ≤W S

2 ≤ · · · ≤W S
m, there exists a good schedule

S′ : J →M such that fori = 1, 2, . . . ,m, we have

(1− 12ε) ·W S
i ≤W S′

i ≤ (1 + 12ε) ·W S
i . (1)

Proof. By Lemma 9, there exists a favorable pair(X, ā) whereWX
i = W S

i for i = 1, 2, . . . ,m, andX
is compatible withFNFI. First, for everyt = 4, 5, . . . , τ(ā), we reschedule all parts of jobsj such that
pj ≤ 2νt−3−r and for which there existsi > ξt such thatX(j, i) > 0 by moving them to machineξt. We

denote byX̃ the resulting fractional schedule. We next bound the value of W X̃
i in terms ofWX

i for every
i ∈ M . The work ofi may increase (ifi = ξt for somet = 4, 5, . . . , τ(ā)). Since(X, ā) is a favorable
pair, the amount of this increase is at mostε · W̃X

i < 2εWX
i , since2νt−2+r+1 < 2νt−r = εW̃X

i . Next,
we bound the total size of parts of jobs removed from machinei (for 2 ≤ i ≤ m). Let t′ be the maximum
index such thatξt′ < i (which must exist sinceξ1 = 1). Then, for everyt = 4, 5, . . . , t′, we may have
removed a total size of at most2νt−2+r+1 ≤ ε

2 ·2
νt from machinei (and move these parts of jobs to machine

ξt). ThusWX
i − W X̃

i ≤ ε
2 ·

∑t′

t=4 2
νt ≤ ε · 2νt′ ≤ 2ε · WX

i . We conclude that for everyi, we have

(1− 2ε)WX
i ≤W X̃

i ≤ (1 + 2ε)WX
i .

Let JR(X̃) = JR(X). We observe that̃X is a valid fractional schedule which is compatible withFNFI

(similarly to the bounds on such jobs in Lemma 9, it can be shown that if a job moved to machinei, then its
size is belowεW X̃

i , since1 − 2ε > ε). We now apply Round-FNFI on X̃ to create an integral schedulẽS.
Everyj ∈ JR(X̃) such thatX̃(j, i) > 0 has sizepj ≤ εW̃X

i ≤ 2εWX
i , so for everyi ∈M we have

(1− 4ε)WX
i ≤W S̃

i ≤ (1 + 4ε)WX
i . (2)

The maximum size of a job in a prefix of machines inS̃ is the same as iñX, and a job moved from its
position inX to a new position on machineξt in X̃ has size at most2νt−3 < ε2νt = ε2aξt .

Consider the set of jobsJ t(ā). SinceX is consistent with̄a, for everyj ∈ J t(ā) andi < ξt+1, we have
X(j, i) = 0, and since the maximum size of a job in a prefix of machines did not change,̃S(j) > i. Since
W̃X
ξt+1

= 2νt+1, we have for allj ∈ J t(ā) andi ≥ ξt+1 thatpj ≤ 2νt+1−r = ε ·W̃X
ξt+1

≤ ε ·W̃X
i . We remove

the jobs inJ t(ā) from their positions inS̃, and we will schedule the alternative jobs instead (which gives a
schedule of the original jobs which respects the alternative jobs of mega-classesνt+r+1, . . . , νt+1−r−1).
For everyi ∈ M we letUi be the total size of jobs inJ t(ā) which are assigned to machinei by S̃. The set
of machinesi for whichUi 6= 0 is contained in the interval[ξt+1, ξt+4] where if t + 4 > τ(ā), then we let
ξt+4 = m. We applyFNFI to fractionally schedule the alternative jobs, followed byRound-FNFI. This is
done for every value oft for whichJ t(ā) 6= ∅ sequentially. We denote byS′ the resulting integral solution.
Let i ∈ M . There are at most four values oft for which i participated in the process of the rescheduling
of J t(ā). As a result of applying Round-FNFI for the alternative jobs for allt, every machinei can have
at most four additional parts of jobs and less parts of at mostfour jobs, all of which have size of at most
εW̃X

i ≤ 2εWX
i . Thus,W S̃

i − 8εWX
i ≤W S′

i ≤W S̃
i + 8εWX

i . Using (2), we get (1).

The integral scheduleS′ is almost consistent with the magnitude vectorā. To see this claim, first
observe that no job is too large: if the maximum size of a job onmachinei in S′ is not the same as in
S̃, this maximum size jobj ∈ J t(ā) is moved from its position iñS to a new position on machinei, and
thereforepj ≤ 2νt+1−r = ε2νt+1, andai ≥ aξt+1

= νt+1. The claim holds because for everyi, we have
|αXi − αS

′

i | ≤ 1 since1 + 12ε < 2 and 1
1−12ε < 2.
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Definition 13 A scheduleS is quasi-consistentwith a magnitude vector̄a if for everyi = 1, 2, . . . ,m such
that ξt ≤ i < ξt+1, the set of jobs assigned to machinei does not contain any job of a mega-class higher
thanνt+1 + r, and ifai 6= ai−1 (for i ∈M ) then|ai − αSi | ≤ 1.

Definition 14 A scheduleS : J →M is structuredif the following properties hold.

1. There exists a magnitude vectorā such thatS is quasi-consistent with̄a, and furthermore for every
t = 1, 2, . . . , τ(ā)− 5 there is noj andi ≥ ξt+5 such thatpj ≤ 2νt−r andS(j) = i.

2. For everyt = 1, 2, . . . , τ(ā) − 1, if J t(ā) 6= ∅, thenS respects the alternative jobs of mega-classes
νt + r + 1, . . . , νt+1 − r − 1.

3. W S
1 ≤W S

2 ≤ · · · ≤W S
m.

4. For each pair of jobsj, j′ /∈ ∪tJ
t(ā) belonging to a common mini-class, ifj < j′, thenS(j) ≤ S(j′).

5. For each pair of alternative jobsj, j′ resulting from the setJ t(ā) belonging to a common alternative
mini-class such that the size ofj is smaller than the size ofj′, the following holds. IfS schedules the
original jobs inj andj′ on machinesi andi′, respectively, theni ≤ i′.

Theorem 15 Given a scheduleS : J → M such thatW S
1 ≤ W S

2 ≤ · · · ≤ W S
m, there exists a structured

scheduleS∗ : J →M such that fori = 1, 2, . . . ,m, we have

(1− 14ε) ·W S
i ≤W S∗

i ≤ (1 + 14ε) ·W S
i . (3)

Proof. Let S′ be the good schedule that is based onS as established in Lemma 12. We apply a sorting
procedure of the works of the machines similarly to the one of[15]. In this procedure we are given as
an input a partition of the jobs into subsetsJ1, . . . ,Jm, we create a new partition of the jobs as follows.
For i = 1, 2, . . . ,m − 1 we assume that we are given the subsetsJi, . . .Jm and we choose the set of
jobs scheduled on machinei (possibly modifying the remaining subsets). For each mini-class (including
the alternative mini-classes), we temporarily replace thejobs inJi′ (i′ = i, i + 1, . . . ,m) from this mini-
class with the smallest set of jobs of this mini-class which are still available (i.e., they are not scheduled
on machines with indices smaller thani). We pick the set of jobs which have minimum total size as the
setJi, possibly swapping locations of jobs in the same mini-class. Note that due to our use of alternative
mini-classes, the jobs that are inside these alternative jobs mightnot be allocated in order of their size (but
still in a fixed order according to the size of the alternativejobs). Consider a pair of consecutive machines
i, i+1, then the resulting work of machinei is not larger than the resulting work of machinei+1, since the
set of jobs allocated to machinei+ 1 were available for allocation to this subset of jobs when we pickedJi
for machinei (the jobs taken byJi are replaced by other jobs of the same mini-class when we chooseJi+1,
which cannot be smaller).

We apply the sorting procedure on the partition defined byS′. The output of this procedure is an integral
schedule denoted byS∗. Clearly,W S∗

1 ≤ W S∗

2 ≤ · · · ≤ W S∗

m . Moreover, properties 2, 4 and 5 in the
definition of structured schedules are satisfied. We next prove (3) for every machinei. Every machine
i receives a subset of jobs which is based on a subset of jobs allocated to some machinei′ in S′, after
swapping pairs of jobs within a common mini-class. Therefore,

W S′

i′

1 + ε
≤W S∗

i ≤ (1 + ε) ·W S′

i′ . (4)
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Fix a machine indexi. When we choose the setJi for machinei, at least one of the originali subsets
J1, . . .Ji (up to swapping some locations of pairs of jobs within commonmini-classes and alternative
mini-classes) remains available. Leti′′ denote its index. The total size of the jobs in this subset is at most
W S′

i′′ · (1+ ε) ≤W S
i′′ · (1+12ε)(1+ ε) ≤W S

i · (1+12ε)(1+ ε) where the first inequality holds by Lemma
12, and the second inequality holds by the monotonicity of works inS. Therefore, machinei receives inS∗

a total work of at mostW S
i · (1 + 14ε). We next prove the other inequality, that is,(1− 14ε) ·W S

i ≤W S∗

i .
The scheduleS has at mosti − 1 machines which receive work strictly belowW S

i . Therefore, inS′ there
are at mosti−1 machines which receive work strictly belowW S

i · (1−12ε). In S∗ the number of machines

with work strictly smaller thanW
S
i ·(1−12ε)
1+ε cannot exceedi− 1, and due to the monotonicity of the works in

S∗, the claim holds.

Finally, we prove property 1 of structured schedules. The integral scheduleS∗ is quasi-consistent with
the magnitude vector̄a. To see this claim, consider a machinei such thatξt ≤ i < ξt+1 and denote byj
the maximum sized job on machinei according toS∗. We need to prove thatpj ≤ 2νt+1+r+1. The set of
jobsJi which the sorting procedure allocated to machinei was scheduled on a machinei′ in S′ (possibly
swapping pairs of jobs in common mini-classes). A jobj′ of the same mini-class asj was allocated to

machinei′ in S′. Recall that
WS′

i′

1+ε ≤ W S∗

i ≤ (1 + ε) ·W S′

i′ . By Lemma 12,S′ is almost consistent with̄a,
and thereforepj′ ≤ 2ai′+r+1. Sincej andj′ belong to a common mini-class, they also belong to a common
mega-class, and thus we also havepj ≤ 2ai′+r+1. In order to prove thatpj ≤ 2νt+1+r+1 it suffices to show
thati′ < ξt+2. Assume by contradiction thati′ ≥ ξt+2. We haveW S

i′ ≥W S
ξt+2

> 2νt+2−1 which holds since

the works inS are monotonically non-decreasing and2W S
ξt+2

> W̃ S
ξt+2

= 2
αS
ξt+2 = 2νt+2. On the other

hand,W S
i ≤ W S

ξt+1
≤ 2νt+1. By (4) and Lemma 12, we haveW S∗

i ≥
WS′

i′

1+ε ≥
WS

i′
(1−12ε)

1+ε ≥ W S
i′ (1− 14ε).

Therefore, we get

2νt+1 ≥W S
i

≥
W S∗

i

1 + 14ε
by (3)

≥
W S
i′ (1− 14ε)

1 + 14ε

> 2νt+2−1 ·
1− 14ε

1 + 14ε

> 2νt+2−3 ≥ 2νt+1+r−2 , sinceε <
1

32

contradictingr ≥ 5. Therefore,S∗ is quasi-consistent with the magnitude vectorā because for everyi, we
have|αSi − αS

∗

i | ≤ 1 since1 + 14ε < 2 and 1
1−14ε < 2.

Fix a value oft = 1, 2, . . . , τ(ā) − 5, it remains to prove that there is noj and i ≥ ξt+5 such that
pj ≤ 2νt−r andS∗ schedules jobj to machinei.

Consider a machinei such thatξt+5 ≤ i < ξt+6. The set of jobsJi which the sorting procedure
allocated to machinei, was scheduled on a machinei′ in S′ (possibly swapping pairs of jobs in common
mini-classes). Letj be a job such thatS∗(j) = i. In order to prove thatpj > 2νt−r it suffices to show that
i′ ≥ ξt+4. Assume by contradiction thati′ < ξt+4. We haveW S

i′ ≤ W S
ξt+4

≤ 2νt+4 which holds since the

works inS are monotonically non-decreasing andW S
ξt+4

≤ W̃ S
ξt+4

= 2
αS
ξt+4 = 2νt+4 . On the other hand,

W S
i ≥W S

ξt+5
> 2νt+5−1. By (4) and Lemma 12, we haveW S∗

i ≤W S′

i′ · (1 + ε) ≤W S
i′ (1 + 12ε)(1 + ε) ≤
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W S
i′ (1 + 14ε). Therefore, using (3) we get

2νt+5 ≤ 2W S
i

≤
2W S∗

i

1− 14ε
by (3)

≤
2W S

i′ (1 + 14ε)

1− 14ε

≤ 2νt+4+1 ·
1 + 14ε

1− 14ε

< 2νt+4+3 ≤ 2νt+5−r+2 , sinceε <
1

32

contradictingr ≥ 5.

4 A dynamic programming for computing the best highly structured solu-
tion

In this section we show how to compute the optimal structuredscheduleS∗. Our algorithm will use a
dynamic programming procedure which is based on a shortest path (or an optimal bottleneck path) in a
directed layered graphG = (V,E) with weights on its vertices.

We will define a layered graph, in which the algorithm computes a path corresponding to an optimal
solution with respect to a given goal function. Each layer ofan index1, 2, . . . ,m corresponds to a machine,
and each vertex in one of these layers encodes a set of jobs which were scheduled prior to the current
machine, and a set of jobs which were scheduled up to and including the current machine. The difference
between these sets easily reveals the work of the current machine, and allows us to restrict the paths in the
graph to schedules in which the works are monotonically non-decreasing. Given the workWi of the current
machinei, the weight of the vertex is the load of this machineLi, or f(Li) for a well-behaved functionf .
The edges between layers correspond to compatibility conditions which in particular enforce the condition
that the works of machines are monotonically non-decreasing. The order of the layers is according to the
speeds of the machines, that is, machines with higher speedshave a higher index of their layers, and subsets
of machines with a common speed are ordered according to a fixed ordering of the machines. The graph
which we will use allows us to find any structured schedule andmaybe additional schedules. The schedule
which will be found will be at least as good as the structured schedule whose existence we proved in the
previous section. To distinguish between several optimal solutions, and to prioritize the possible outputs,
we number all vertices of each layer with distinct integers,and we always search for paths whose reverse
sequence of numbers along the path (that is, the sequence of vertices given from the end of the path towards
the beginning of the path) is minimal (lexicographically) out of paths which have an optimal cost with
respect to our goal function. This property allows us to assume that there exists a total order over the paths
in the graph, and the algorithm always outputs the minimal path (according to this order) which is optimal
in the current scenario.

The graphG will encode in each layer all possible short histories of themagnitude vectors (which we
call short magnitude vectors). There will be a starting vertex s, also seen as the layer of vertices of index
0, and an end vertext, also seen as the layer of vertices of indexm + 1, and we always look for a path
in G from s to t. Thus,V consists ofm regular layers denoted as1, 2, . . . ,m (one for each machine) and
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two additional layers0 andm + 1. For every possible structured schedule, there will be ans − t path
corresponding to it (and possibly additionals− t paths corresponding to other feasible schedules).

A short magnitude vectorψ = (ψ0, ψ1, ψ2, . . . , ψ6) for machinei is a vector consisting of seven con-
secutive distinct values in a magnitude vectorā (that is, there exists1 ≤ t ≤ τ(ā) such thatψη = νt+η−5

for η = 0, 1, 2, . . . , 6). If this vector is associated with machinei, thenai = ψ5. If ai = νt+5 for some
value oft, thenψ = (νt, νt+1, . . . , νt+6). If the magnitudeψ5 is the largest magnitude in̄a, we will let ψ6

be the fictitious value∞. Similarly, if ψ5 is one of the smallest five values in̄a, we add−∞ as the first
components ofψ. We say that a short magnitude vectorψ is quasi-consistent with a scheduleS isψ consists
of six consecutive distinct values of a magnitude vectorā such thatS is quasi-consistent with̄a.

Other than the entries which are−∞ or ∞, a short magnitude vector must be such that it can be a part
of a magnitude vector. Thus,ψη+1 ≥ ψη + r + 1 for η = 0, . . . , 5. In addition, we define a list of allowed
finite components.

Lemma 16 For j ∈ J let p̃j = ⌈log2 pj⌉. Then, for every possible subsetJ ′ ⊆ J of jobs whose total size is
W , we have

⌈log2W ⌉ ∈
⋃

j∈J

⌈log2 n⌉
⋃

k=0

{p̃j + k} .

Proof. Let j ∈ J ′ be a maximum indexed job inJ ′. Then,W ≥ pj andW ≤ j · pj ≤ n · pj . Therefore,
p̃j ≤ ⌈log2W ⌉ ≤ ⌈log2(n · pj)⌉ = ⌈log2 n+ log2 pj⌉ ≤ ⌈log2 n⌉+ p̃j and the claim holds.

Corollary 17 The number of possibilities of short magnitude vectors isO(n8).

Proof. The set of different values for each component in a short magnitude vector is

⋃

j∈J

⌈log2 n⌉+1
⋃

k=−1

{p̃j + k} ∪ {−∞,∞}

since we are only interested in magnitude vectors which are quasi-consistent with some schedule. Therefore,
there are at most(n · (log2 n+ 4) + 2)7 = O(n8) different short magnitude vectors.

Next, we define the setA(ψ) of active mega-classes for a short magnitude vectorψ. A mega-class
k belongs toA(ψ) if there exists a value ofη = 0, 1, . . . , 6 such that|k − ψη | ≤ r, and an alternative
mega-classψη+1−r−1 (and perhaps a smaller alternative mega-class consisting of a single alternative job)
belongs toA(ψ) if it is an alternative mega-class consisting of alternative jobs of mega-classesψη + r +

1, . . . , ψη+1 − r − 1 for values ofη = 0, 1, . . . , 5 for whichψη+1 − ψη ≥ 2r + 2.

The motivation for this definition ofA(ψ) is that if machinei has a short magnitude vectorψ, then all
jobs of size at most2ψ0−r are scheduled on machines with magnitude at mostψ4 in any structured schedule
that is quasi-consistent withψ, i.e., strictly before machinei (sinceai = ψ5). Moreover, all jobs of size
more than2ψ6+r+1 are scheduled on machines with magnitude at leastψ6 in any structured schedule that is
quasi-consistent withψ, i.e., after machinei. Thus the only relevant (alternative) mega-classes for machine
i are the ones described above. These properties will be enforced by the structure of the graph. Moreover,
given a set of consecutive mega-classes it can be decided to convert the jobs of these mega-classes into
alternative jobs, and this can only happen if no jobs of thesemega-classes were already scheduled. Once it
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is decided, this decision is irrevocable and future sets of consecutive mega-classes which are converted into
alternative jobs will be disjoint.

A status vectorof a short magnitude vectorψ consists of a component for each mini-class which belongs
to a mega-class inA(ψ). This component represents the number of jobs (or alternative jobs if this is an
alternative mini-class) which were already scheduled (recall that in a structured schedule we always schedule
these jobs sorted by their sizes (with a fixed tie-breaking policy), and therefore the number of jobs which
were scheduled uniquely identifies which jobs these are).

Lemma 18 The number of status vectors for one specific short magnitudevectorψ is O(n(7(2r+1)+12)λ).
Therefore, overall there areO(n((14r+19)λ+8)) status vectors.

Proof. The claim holds since every component in the status vector isan integer in[0, n], the number of
mini-classes in a mega-class is⌈log1+ε 2⌉ = λ, and there are at most12 alternative mega-classes inA(ψ).

Consider a pair of ordered pairs(ψ, u) and(ψ′, u′) whereu andu′ are status vectors of the short mag-
nitude vectorsψ andψ′, respectively. We say that such a pair is compatible if one ofthe following cases
hold.

1. If ψ = ψ′ and every component inu is at most its corresponding component inu′.

2. If for all η = 1, 2, . . . , 6,ψη = (ψ′)η−1, and every component inu corresponding to a mini-class(k, ℓ)
(such that mega-classk is in A(ψ′)) is at most its corresponding component inu′. Moreover, every
component inu′ which corresponds to a mini-class(k, ℓ) such thatk /∈ A(ψ) is zero. Informally, jobs
of such zero components inu′ are too large forψ.

If (ψ, u) and(ψ′, u′) are compatible, then their difference defines a set of jobs which can be scheduled
on a machine. This set of jobsJ((ψ, u), (ψ′ , u′)) is defined as follows. The setJ((ψ, u), (ψ′ , u′)) will
contain all remaining jobs of mini-classes which have corresponding components inu but not inu′ (these
are the last jobs of each mini-class which are not scheduled yet, according to the information encoded inu).
Informally, such jobs are too small forψ′ and must be assigned immediately. For every mini-class which has
components in bothu andu′, the number of jobs of this mini-class inJ((ψ, u), (ψ′, u′)) is the difference
between these components (these are the next jobs in each mini-class). We denote byW ((ψ, u), (ψ′, u′))

the total size of jobs inJ((ψ, u), (ψ′ , u′)).

The set of vertices of layeri (for i = 1, 2, . . . ,m) is the set of compatible pairs(ψ, u) and (ψ′, u′).
Thus such a vertex corresponds to((ψ, u), (ψ′ , u′)). The meaning of such a pair is to assign the jobs of their
difference to machinei (and thus the work ofi would be exactlyW ((ψ, u), (ψ′, u′))), whereψ is the short
magnitude vector of machinei, andψ′ is the short magnitude vector of machinei+ 1.

The weight of such a vertex in layeri is defined asW ((ψ,u),(ψ′,u′))
si

if we are solving the minimum
makespan problem or the problem of maximizing the minimum load. If we are interested in the problem of
minimizing

∑m
i=1 f(Li) for a well-behaved functionf , then the weight of the vertex isf(W ((ψ,u),(ψ′,u′))

si
).

The verticess, t do not have weights.

A vertex in layeri (for 1 ≤ i ≤ m − 1) corresponding to((ψ, u), (ψ′, u′)) is adjacent to a vertex in
layeri+ 1 corresponding to((ψ′, u′), (ψ′′, u′′)) if and only ifW ((ψ, u), (ψ′, u′)) ≤W ((ψ′, u′), (ψ′′, u′′)).
There are no other edges between these layers, that is, therecan be no edge from((ψ1, u1), (ψ′1, u′1)) to
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((ψ2, u2), (ψ′2, u′2)) in consecutive layers if(ψ′1, u′1) 6= (ψ2, u2). The vertexs of layer0 is adjacent to all
vertices in layer1 corresponding to((ψ, u), (ψ′ , u′)) such that all components of the status vectoru are zero,
andψ0 = −∞. The vertices of layermwhich are adjacent tot (of layerm+1) are the ones corresponding to
((ψ, u), (ψ′ , u′)) such thatψ′6 = ∞, and for every mini-class whose mega-class is inA(ψ′) the component
in u′ is exactly the number of jobs in this mini-class (also for an alternative mini-class). The topology of the
graphG depends only on the set of jobs and their sizes, and on the number of machines (and not on their
speeds). Only the weights depend on the exact problem and on the speeds of the machines.

We observe that ans−t path in the graph gives immediately a schedule, since each vertex((ψ, u), (ψ′ , u′))

in the graph defines a specific set of jobs allocated to the machine with index equal to the index of its layer,
whose total size is exactlyW ((ψ, u), (ψ′, u′)). Moreover, everys− t path defines a partition of the job set,
and every such solution satisfies that the works of the machines are monotonically non-decreasing in the
index of the machine. We also observe that every structured solution corresponds to (at least) ones− t path
in the graphG.

Using this graph, we compute a label for each vertex. This label is equal to the cost (or value) of the
partial solution defined by the best path froms to this vertex. Moreover, we compute a pointerπ to the
previous vertex on this best path froms. If there are several possibilities for best paths (ending at the same
vertex)π is defined to be the minimum index of the vertex satisfying these conditions according to the
numbering of vertices in each layer. We next define the notionof a best path for each of the objectives
considered in this paper. For the problem of minimizing the makespan, a best path is one that minimizes the
maximum weight of a vertex along the path. For the problem of maximizing the minimum load, a best path
is one that maximizes the minimum weight of a vertex along thepath. Finally for the problem of minimizing
∑m

i=1 f(Li) wheref is a well-behaved function, a best path is a path of minimum total weight of its vertices.

5 Monotonicity proof

Our monotonicity proofs are based on analysis of a scenario where machineγ changes its speed. We will
assume that every machineγ′ 6= γ has a fixed speed ofsγ′ while machineγ has two possible speedssγ
ands′γ . We sometimes consider additional speeds betweensγ ands′γ . In the next two lemmass1, . . . , sm
denotes a sorted list of machines speeds.

Lemma 19 Consider two executions of the algorithm, both with respectto minimizing
∑m

i=1 f(Li) where
f is a well-behaved function (with a common functionf ), where the sorted order of machines is1, 2, . . . ,m,
each with its own set of speeds, resulting in the two schedulesS1 andS2 found by the pathsP1 andP2. The
two sets of speeds are defined as follows. For everyi′ 6= i the speed ofi′ is si′ in both sets, and the speed
of i is σ1 andσ2, respectively, such thatsi−1 ≤ σ1 < σ2 ≤ si+1 (wheres0 = 0 andsm+1 = ∞). Then,
W S1

i ≤W S2

i .

Proof. For a scheduleS denote byCOSTS , COST′S the costs of scheduleS using the speedsσ1 andσ2
for machinei, respectively. Recall that the graphG remains the same in the two executions. Since the
pathP1 could have been found by the algorithm when it computesP2 and vice versa,COST′S1

≥ COST′S2
,

andCOSTS2
≥ COSTS1

, which givesCOST′S1
− COSTS1

≥ COST′S2
− COSTS2

. Assume by contradiction

W S2

i < W S1

i .
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Sinceσ2 > σ1 andW S2

i < W S1

i , we findW S1

i ( 1
σ1

− 1
σ2
) > W S2

i ( 1
σ1

− 1
σ2
). Rearranging the last

inequality givesW
S1
i

σ1
+

W
S2
i

σ2
−

W
S1
i

σ2
>

W
S2
i

σ1
. Sincei does not change its position in the sorted order of

machines, we haveCOST′S1
− COSTS1

= f(
W

S1
i

σ2
)− f(

W
S1
i

σ1
) andCOST′S2

− COSTS2
= f(

W
S2
i

σ2
)− f(

W
S2
i

σ1
),

and so we find usingCOST′S1
−COSTS1

≥ COST′S2
−COSTS2

thatf(W
S1
i

σ2
)−f(

W
S1
i

σ1
) ≥ f(

W
S2
i

σ2
)−f(

W
S2
i

σ1
).

Usingσ1 < σ2 andW S2

i < W S1

i we haveW
S2
i

σ2
<

W
S1
i

σ2
<

W
S1
i

σ1
. By convexity, we findf(W

S1
i

σ1
)+f(

W
S2
i

σ2
) ≥

f(
W

S1
i

σ2
) + f(

W
S1
i

σ1
+

W
S2
i

σ2
−

W
S1
i

σ2
). Using strict monotonicity off , f(W

S1
i

σ1
+

W
S2
i

σ2
−

W
S1
i

σ2
) > f(

W
S2
i

σ1
),

which is a contradiction.

The next lemma is used in the case that the speed of a machine changes. We will split the process of
changing the speed into steps, and one type of step will be swapping the positions with another machine of
the same speed. Therefore, we note the following.

Lemma 20 Consider two executions of the algorithm, both with respectto the same objective function, each
with the same set of speedss1, s2, . . . , sm wheresi = si+1, where the sorted order of machines is given by
increasing indices in the first execution and the order obtained by swapping the positions of machinesi, i+1

in the second execution, resulting in the two schedulesS1 andS2. Denote byω1 the work of machinei in
the scheduleS1 (that is,ω1 = W S1

i ), and byω2 the work of the same machine inS2 (that is,ω2 = W S2

i+1).
Then,ω1 ≤ ω2.

Proof. Since the set of optimal solutions for the two inputs is exactly the same, so is the set of optimal
paths in the graph. Since our algorithm always outputs lexicographic minimal optimal path, we conclude
thatS1 = S2. The claim holds because the solutions obtained as paths in the graph have monotonically
non-decreasing works of machines.

Theorem 21 The approximation scheme for minimizing
∑m

i=1 f(Li) wheref is a well-behaved function is
a monotone PTAS. The approximation scheme for minimizing the ℓp norm of the vector of machine loads
(obtained by running the algorithm withf(x) = xp) is a monotone PTAS even ifp is a part of the input.

Proof. LetS be an optimal solution, then by Theorem 15, there is a structured solutionS∗ such that for every
iwe haveW S∗

i ≤ (1+14ε)·W S
i , and thusLS

∗

i ≤ LSi ·(1+14ε), and therefore the cost ofS∗ as a solution to
our problem is at most

∑m
i=1 f(L

S∗

i ) ≤
∑m

i=1 f(L
S
i · (1+14ε)) ≤ (1+O(1)ε)

∑m
i=1 f(L

S
i ) where the first

inequality holds by monotonicity off , and the second inequality by the property off that if x ≤ (1 + ε)y

thenf(x) ≤ (1 +O(1)ε)f(y). The schedule given by the algorithm as output has a cost which is no larger
than the cost ofS∗. Note that the approximation ratio ofS∗ for the problem of minimizing theℓp norm of

the vector of machine loads is at most1 + 14ε since
(
∑m

i=1

(

LS
∗

i

)p)1/p
≤ (1 + 14ε) ·

(
∑m

i=1

(

LSi
)p)1/p

.

To prove the monotonicity, consider a machinei which increases its speed fromsi to s′i. We split the
process of increasing the speed of a given machine into two types of events. The first type are time intervals
in which the position of this machine in the sorted order of the machines does not change. The second
type are points in time when the speed is fixed, but the machineswaps its location with the next machine
in the list of machines sorted by speed. There can be multiplesuch time intervals and points in time, and
it is sufficient to consider one event of each type, thus we consider two cases. The case where machinei

increases its speed,s′i ≤ si+1, and machinei does not change its position in the sorted list of machines, and
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the casesi = si+1, where the only change is that these two machines swap their relative order. For the first
case, the claim follows by Lemma 19. For the second case, the claim follows by Lemma 20.

Theorem 22 The approximation scheme for maximizingmini∈M Li is a monotone PTAS.

Proof. Let S be an optimal solution, then by Theorem 15, there is a structured solutionS∗ such that for
everyi we haveW S∗

i ≥ (1 − 14ε) ·W S
i , and thusLS

∗

i ≥ LSi · (1 − 14ε), and therefore the value ofS∗ is
at least1− 14ε times the value ofS. The schedule given by the algorithm as output has a value which is no
smaller than the value ofS∗.

To prove the monotonicity, consider a machinei which increases its speed fromsi to s′i. Consider the
solutionS1 obtained by the algorithm for the case where the speed ofi is si. Let C1 be the value ofS1
(computed for the set of speeds where the speed ofi is si). We split the process of increasing the speed of
a given machine into two periods where the first period is split further into two types of events. In the first
period, the speed ofi is at mostσ, whereσ is the maximum speed for which the value of the solutionS1 is
exactlyC1 (possibly swapping the contents of machines if machinei changes its position in the sorted list of
machines according to the sorting done by the algorithm). Note thatσ is well-defined, that is, the maximum
exists. Ifσ = si, we say that this period is empty. Ifσ > s′i, we setσ = s′i. Therefore, during the first
period the speed ofi is in (si, σ]. If σ = s′i, then the second period is empty, and otherwise the speed ofi is
in (σ, s′i] in this period. For the first period, the first type of events are time intervals in which the position of
this machine in the sorted order of the machines does not change. The second type are points in time when
the speed is fixed, but the machine swaps its location with thenext machine in the list of machines sorted by
speed.

We prove that for every speed in[si, σ], the solutionS1 is returned by the algorithm. First, we show
that the value of an optimal solution remainsC1. The value of an optimal solution cannot increase wheni

increases its speed, so by definitionS1 remains an optimal solution. Moreover, wheni increases its speed
in the first period, the set of optimal solutions is a subset ofthe set of optimal solutions when the speed of
i is si (even if locations of machines are swapped). Therefore, thealgorithm outputsS1 for every speed in
the first period. Thus, for time intervals in which the position of i in the sorted list of machines is fixed, the
work of i is exactly the same, and in events in which machinei swaps its position with another machine, the
work of i cannot decrease by Lemma 20. In the caseσ = s′i we are done. Otherwise, we assume that there
are no further machines of speedσ which appear later thani in the ordering of the machines (possibly by
adding events of the second type for the first period).

Next consider the case whereσ < s′i. Denote byW the work ofi in the solutionS1 where the speed
of i is σ. Recall that for this speed ofi, the value of the optimal solution (i.e., ofS1) is exactlyC1. We
prove thatWσ = C1. Assume by contradiction that the claim does not hold (that is we assume thatWσ > C1,
as otherwise the value ofS1 in this case is strictly smaller thanC1 contradicting the definition ofσ). Let
σ1 > σ be such thatσ1 ≤ W

C1
andσ1 is smaller than the speed of the next machine afteri in the sorted list

of machines, if such a machine exists. Then, the value ofS1 for the speedσ1 of i remainsC1 contradicting
the maximality ofσ. LetC2 be the value of an optimal solutionS2 found by the algorithm where the speed
of i is s′i. Then,C2 ≥ C1 ·

σ
s′i

since otherwiseS1 is a strictly better solution for speeds′i of i, because even

if machines swap locations the machine in every position is faster by no more thans
′
i

σ . Denote byW ′ the
work of i in S2. We haveW ′ ≥ C2 · s

′
i ≥ C1 · σ =W , and the claim follows.

The proof of the next theorem is similar to the proof of Theorem 22, and it is given in Appendix A.2.
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Theorem 23 The approximation scheme for minimizingmaxi∈M Li is a monotone PTAS.

6 Computing the payments

Archer and Tardos [5] defined a payment scheme which can be applied for any monotone scheduling algo-
rithm to create a truthful mechanism. Denote the payment to agenti by Pi. We briefly repeat the definition
of Pi. Let b−i denote the vector of bids, not including agenti. We writeb (the complete bid vector) also as
(b−i, bi). Then the payment function for agenti is defined as

Pi(b−i, bi) = hi(b−i) + biwi(b−i, bi)−

∫ bi

0
wi(b−i, u)du, (5)

wherewi(b−i, bi) is the work (total size of jobs) allocated to machinei given the bid vectorb and thehi are
arbitrary functions (Theorem 4.2 in [5]).

In order to compute the payments, we need to calculate the integral in (5). Recall that the bid of an agent
represents its claimed cost for processing one unit of work,which can be seen as the inverse of the speed
of its machine. For a given set of bids(b1, . . . , bm), calculating the integral for agenti requires us to know
what its work would be for every possible bidb of this agent, i.e., for the bids(b−i, b) for b ∈ (0,∞). First,
we partition the possible bids into intervals in which the position in the ordered set of machines (that is, its
layer in the graph) of machinei remains constant. Consider the set{0,∞} ∪ {bj}

m
j=1\{bi} and denote its

elements by0 = c1 < · · · < cm′ = ∞ (m′ ≤ m + 1), then the intervals to consider are(cj , cj+1) for
j = 1, . . . ,m′ − 1.

For each vertexv in layer i, we compute a functionFv(b) which is the objective function value of the
best path which traversesthis vertex, as a function of the bid of machinei. Recall that the algorithm outputs
the minimum or maximum (over all vertices of the layer) of these functions depending on the objective
function.

Claim 24 For each vertexv and every bid interval(cj , cj+1), Fv(b) is a piecewise linear continuous func-
tion with a polynomial number of pieces.

Proof. In layeri, the weight of vertexv which represents the compatible pair((ψ, u), (ψ′ , u′)) is the constant
W ((ψ, u), (ψ′, u′)) divided bysi, wheresi = 1/bi. Note that the pair represented byv also specifies the set
of jobs assigned to machines before machinei, and the set assigned afteri. Due to the tie breaking done in
the dynamic program, and the fact that only the speed of machine i changes, this means that the identity of
the best path which passes throughv does not depend onb (only its objective value does).

For the makespan and the maximizing the minimum load problems, the objective value of a path is the
maximum (minimum, respectively) weight of a vertex along the path. Hence, asbi increases fromcj to
cj+1, the only change that can happen is that the weight of vertexv starts having the maximum weight
along the fixed best path (for the makespan objective) or stops having the minimum weight (for the covering
objective). Therefore,Fv(b) has at most two pieces, where for one piece machinei is abottleneckmachine
(that is, a machine whose load equals the objective functionvalue of the solution) and for the other it is not.
If i is the bottleneck,Fv(b) = b ·W ((ψ, u), (ψ′, u′)), elseFv(b) is constant.

For the minimization of
∑m

i=1 f(Li) for a well-behaved functionf , the objective value of a path is the
total weight of its vertices. Here,Fv(b) is a constant plusf(b ·W ((ψ, u), (ψ′, u′)) (where the constant is the
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total weight of the other vertices along the best path which traversesv). Hence by using the approximated
piecewise-linear convex monotonically increasing function off instead off itself the claim follows since it
is sufficient to consider such an approximated function withpieces ending at integer powers of(1 + ε) (and
thus with polynomially many such pieces).

Claim 24 implies that the number of intersection points between any pair of functions(Fv(b), Fu(b)) is
also polynomial. Thus we can compute all of these points in polynomial time, and determine which points
lie inside the interval(cj , cj+1). Moreover, we can also determine whichscheduleour mechanism uses for
each intersection point by running the PTAS for each point, includingcj (if cj > 0) andcj+1 (if cj+1 <∞).
After removing duplicates, this gives us a list of intersection points with associated schedules and works.

Remark 25 The replacement off with the convex monotonically increasing piecewise-linear approxima-
tion off is crucial. Without it, computing the value ofbi in which one solution becomes better than another
solution involves computation of an exact solution of equations involving convex functions (this cannot be
done even for the case wheref(x) = x5). However, for piecewise-linear functions this can be doneeffi-
ciently.

It is now straightforward to determine the schedule used forany possible bidb, and from that the work
for any bid, as follows. Note that the schedule chosen does not change between any pair of consecutive
intersection points by construction. Thus the work remainsconstant between any such pair. If the schedule
used is the same at both endpoints, the work in between is given by this schedule. If two different schedules
are used, then in the entire open interval between the pair, the schedule is used which gives the best value
for the objective function. This can be determined by running the PTAS for one point inside this interval.
Thus we can find the exact value of the integral in (5) (withoutrounding the speeds of the machines).

A Omitted proofs

A.1 Proof of the second part of Claim 1

Consider a scheduleS with makespanM and coverC. Call a pair of machinesi, j reversedif 1 ≤ i < j ≤
m andW S

i > W S
j . We show that removing a consecutive reversed pair (that is,j = i + 1) by swapping

the sets of jobs assigned to them from any scheduleS does not increase the makespan or decrease the cover,
which implies the claim (since after a finite number of such steps there will no longer be reversed pairs).
LetS′ be the schedule resulting from swapping the two job sets of machinesi,j. In S′, machinej gets more
work, but the load remains at mostM : we haveW S′

j /sj = W S
i /sj ≤ W S

i /si ≤ M. Machinei gets less

work, but the cover remains at leastC: we haveW S′

i /si =W S
j /si ≥W S

j /sj ≥ C.

A.2 Proof of Theorem 23

Let S be an optimal solution, then by Theorem 15, there is a structured solutionS∗ such that for everyi we
haveW S∗

i ≤ (1 + 14ε) ·W S
i , and thusLS

∗

i ≤ LSi · (1 + 14ε), and therefore the makespan ofS∗ is at most
1 + 14ε times the makespan ofS. The schedule given by the algorithm as output has a makespanwhich is
no larger than the makespan ofS∗.

To prove the monotonicity, consider a machinei which decreases its speed fromsi to s′i. Consider the
solutionS1 obtained by the algorithm for the case where the speed ofi is si. LetC1 be the makespan ofS1
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(computed for the set of speeds where the speed ofi is si). We split the process of decreasing the speed of
a given machine into two periods where the first period is split further into two types of events. In the first
period, the speed ofi is at leastσ, whereσ is the minimum speed for which the makespan of the solution
S1 is exactlyC1 (possibly swapping the contents of machines if machinei changes its position in the sorted
list of machines according to the sorting done by the algorithm). Note thatσ is well-defined, that is, the
minimum exists. Ifσ = si, we say that this period is empty. Ifσ ≤ s′i, we setσ = s′i. Therefore, during the
first period the speed ofi is in [σ, si). If σ = s′i, the second period is empty, otherwise the speed ofi is in
[s′i, σ). For the first period, the first type of events are time intervals in which the position of this machine
in the sorted order of the machines does not change. The second type are points in time when the speed is
fixed, but the machine swaps its location with the previous machine in the list of machines sorted by speed.

We prove that for every speed in[σ, si], the solutionS1 is returned by the algorithm. First, we show
that the makespan of an optimal solution remainsC1. The makespan of an optimal solution cannot decrease
wheni decreases its speed, and by definitionS1 remains an optimal solution. Moreover, wheni decreases
its speed in the first period, the set of optimal solutions is asubset of the set of optimal solutions when the
speed ofi is si (even if locations of machines are swapped). Therefore, thealgorithm outputsS1 for every
speed in the first period. Thus, for time intervals in which the position ofi in the sorted list of machines
is fixed, the work ofi is exactly the same, and in events in which machinei swaps its position with the
previous machine, the work ofi cannot increase by Lemma 20. In the caseσ = s′i we are done. Otherwise,
we assume that there are no further machines of speedσ which appear earlier thani in the ordering of the
machines (possibly by adding events of the second type for the first period).

Next consider the case whereσ > s′i. Denote byW the work ofi in the solutionS1 where the speed of
i is σ. Recall that for this speed ofi, the makespan of the optimal solution (i.e., ofS1) is exactlyC1. We
prove thatWσ = C1. Assume by contradiction that the claim does not hold (that is we assume thatWσ < C1,
as otherwise the makespan ofS1 in this case is strictly larger thanC1 contradicting the definition ofσ).
Let σ1 < σ be such thatσ1 ≥ W

C1
andσ1 is larger than the speed of the previous machine beforei in the

sorted list of machines, if such a machine exists. Then, the makespan ofS1 for the speedσ1 of i remainsC1

contradicting the minimality ofσ. LetC2 be the makespan of an optimal solutionS2 found by the algorithm
where the speed ofi is s′i. Then,C2 ≤ C1 ·

σ
s′i

since otherwiseS1 is a strictly better solution for speeds′i
of i, because even if machines swap locations the machine in every position is slower by no more thanσs′i

.

Denote byW ′ the work ofi in S2. We haveW ′ ≤ C2 · s
′
i ≤ C1 · σ =W , and the claim follows.
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