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Abstract

We present a unified framework for designing deterministimotone polynomial time approxima-
tion schemes (PTAS'’s) for a wide class of scheduling problem uniformly related machines. This
class includes (among others) minimizing the makespanimzixg the minimum load, and minimiz-
ing the ¢, norm of the machine loads vector. Previously, this kind sutewas only known for the
makespan objective. Monotone algorithms have the propleatyan increase in the speed of a machine
cannot decrease the amount of work assigned to it.KEgegdeaof our novel method is to show that for
goal functions that are sufficiently well-behaved functiofithe machine loads, it is possible to compute
in polynomial time a highly structured nearly optimal schled An interesting aspect of our approach
is that, in contrast to all known approximation schemes, w@darounding any job sizes or speeds
throughout. We can therefore find teeactbest structured schedule using a dynamic programming. The
state space encodes a sufficient amount of information siathnb postprocessing is needed, allowing
an elegant and relatively simple analysis. The monotgnigid consequence of the fact that we find the
bestschedule in a specific collection of schedules.

Monotone approximation schemes have an important rolesietherging area of algorithmic mech-
anism design. In the game-theoretical setting of thesedsdimg problems there is a social goal, which
is one of the objective functions that we study. Each macisigentrolled by a selfish single-parameter
agent, where its private information is its cost of proaggs unit sized job, which is also the inverse
of the speed of its machine. Each agent wishes to maximizitsprofit, defined as the payment it
receives from the mechanism minus its cost for processlingtal assigned to it, and places a bid which
corresponds to its private information. For each one of tblems, we show that we can calculate pay-
ments that guarantee truthfulness in an efficient manneus,Tihere exists a dominant strategy where
agents report their true speeds, and we show the existere¢rathful mechanism which can be im-
plemented in polynomial time, where the social goal is aginated within a factor o + ¢ for every
e > 0.
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1 Introduction

A major question in algorithmic game theory is how the presasf selfish agents affects the approximability
of various classic optimization problems [31]. Specifigalhe following research agenda was suggested:
“to what extent is incentive compatible efficient compuatatiundamentally less powerful than "classic”
efficient computation?{as formulated in[18]). Of particular interest are schaduproblems, where jobs
are assigned for processing to agents, each controllingnaickine, and who have some private information
regarding their machines [31,(5,/30] 14]. In this paper, wesitter the case of single-parameter agents with
scheduling problems on uniformly related machines, whiels among the first problems considered in the
area of algorithmic mechanism desidgn [5]. The private imfation of an agent is the cost of processing
one unit of work, which is also the inverse of the speed of tlaehine. We provide a negative answer to
the question raised in [31] for scheduling problems on unifg related machines, by designirg + ¢)-
approximation mechanisms for these problems.

Non-preemptive scheduling problems wenuniformly related machines are defined as follows. We let
the set of machines be denotedy= {1,2,...,m}. We are given a set of jobg = {1,2,...,n}, where
each jobj has a positive sizg;. The jobs need to be partitioned into subsetsSy, . .., .S,,, with S; being
the subset of jobs assigned to machin/e lets; denote the (actual) speed of machineeaning that the
processing of joby takes% time units if j is assigned to machine For such a solution (also known as a
schedule), we leL; = (Z;‘esi p;)/si be thecompletion timeor load of machinei. Thework of machine:
isW,; = Zjesi pj = L; - s;, that is, the total size of the jobs which are assigned We consider objective
functions which are functions of the machine loalls, Lo, . . ., Ly,.

We consider a variety of objective functions (social goal8) well-known objective function is the
makespanwhich is the maximum load. The optimization problem of fimgla schedule which minimizes
the makespan is a basic onel[24]| 23| 25,26, 15]. The problefimdihg a schedule which maximizes
the minimum load, also known as teever, is the famousSanta Claugproblem on uniformly related ma-
chines (see e.gl_[22, B2],[2,[8,120]) 11| 21]). Both these pmublkere concerned with the optimization of
the extremum values of the set of machine loads. We will atstider the optimization problem of min-
imizing >, f(L;) where f is a well-behaved function. We say that a functipris well-behavedf f
is a non-negative convex (strictly) monotonically inciagsunction satisfying the additional property that
if 2 < (1+e)ythenf(z) < (14 O(1)e)f(y). With regard to the problem of minimiziny_." ; f(L;),
we assume that there is an oracle such that given a rationgbens it computesf (z) exactly in constant
timél. The most important example of such a functiorfis) = «P for p > 1 in which case the problem
is equivalent to minimizing thé, norm of the vector of machines loads. The optimization goatfion of
minimizing the/, norm (and the goal of minimizing thg, norm forp > 1) of the vector of completion
times of the machines has been widely studied (seele.g. BL7JL The original motivation was mini-
mization of the average latency in storage allocation appbins (rather than worst-case latency), and the
problem has additional applications in algorithmic ganeotly [12]. Bansal and Pruhs [10] recently stated:
“The standard way to compromise between optimizing for the¥age and optimizing for the worst case is
to optimize the/,, norm, generally for something like= 2 orp = 3.”

The setup of mechanism design for single-parameter agpetating uniformly related machines is as
follows. Agents present bids to a mechanism, where théid an agent is the claimed cost per unit of

We can loosen this condition by replacirigvith a piecewise-linear continuous convex approximatioif @.e., the approxi-
mation is well-behaved as well) without affecting the résuiVe will assume thaf can be computed exactly for simplicity.



work of its machine (the inverse of its claimed speed). Basethese bids, the mechanism allocates the
jobs to the machines and also assigns payments to the agémtssume that each agent is only interested
in maximizing its own profit, which is its payment minus it<i@al) cost of processing the jobs allocated
to it. A mechanism is callettuthful if reporting their true costs per unit of work is a dominamastgy

for the agents. That is, this strategy maximizes the profietch agent, regardless of the strategies of the
other agents. In the case of single-parameter agents, &km@ilin necessary and sufficient condition for
truthfulness is that the allocation algorithmnsnotondB, [4], that is, the allocation algorithm must have
the property that if an agentincreases its claimed speed (i.e., decreases its bid) wathiher bids are
unchanged, the work allocated taloes not decrease. More precisely, in such a case theresenisie
payment functions that can be coupled with the (monotoregation algorithm to give a truthful mecha-
nism. If the allocation algorithm runs in polynomial timedethe payments can be computed in polynomial
time as well, then the resulting truthful mechanism can bplémented in polynomial time. Thus, for
single-parameter agents, since the problems are typisatipngly NP-hard, the primary goal is to design a
monotone (polynomial time) approximation algorithm willetsmallest possible approximation ratio, and
to show how the corresponding payments can be computedyngial time for its outputs.

An R-approximation algorithm for a minimization problem is dywmial time algorithm which al-
ways finds a feasible solution of cost at m@&stimes the cost of an optimal solution. AR-approximation
algorithm for a maximization problem is a polynomial timgailithm which always finds a feasible solu-
tion of value at Ieast%2 times the value of an optimal solution (we use the conventibapproximation
ratios greater than 1 for maximization problems). The infimealue of R for which an algorithm is an
‘R-approximation is called the approximation ratio or thef@enance guarantee of the algorithm. A poly-
nomial time approximation scheme (PTAS) is a family of appration algorithms such that the family has
a (1 + e)-approximation algorithm for any > 0 (the running time must be polynomial in the input size).
If the running time is polynomial ir% as well then the PTAS is in fact an FPTAS (fully polynomial &m
approximation scheme). On the other hand, if the running tisnquasi-polynomial (logarithmic factors
of the input size may appear in the exponent), then the appation scheme (which is not a PTAS) is a
guasi-polynomial time approximation scheme (QPTAS). Beittongly NP-hard, the scheduling problems
studied here cannot have an FPTAS unless P=NP.

A classic PTAS for these problems generally works by rdstgcthe set of allowable schedules and
approximating over this set, where the details depend ospkeific algorithm and the objective function
considered. Typically, a chief method of restricting albalvschedules is to do grouping and rounding of
jobs, where given subsets of jobs are seen as identical,oangat jobs which are very small compared to
the work that a machine should receive as arbitrarily diNés{or sand). A number of difficulties arise when
trying to modify such schemes to satisfy the monotonicigureement (some of which were partially dealt
with in the past, see below). It is no longer possible to tsaflar jobs as “identical”, and their exact sizes
must be considered. Jobs which are small for the machinehwbiteives them are much more difficult;
such jobs usually do not affect the approximation ratio bhtclw nevertheless need to be assigned very
carefully in order to satisfy the monotonicity requiremesince even a very small reduction in the work
when the machine increases its speed is not allowed. Mareibve not known in advance which job is
small on which machine.

Dhangwatnotai et all [18] used randomization to construnbaotone PTAS for the three main objec-
tive functions listed above (makespan, cover, 4ndorm), which combined with an appropriate payment
function they give, implies a mechanism which is truthfukexpectation. That is, given a choicef> 0,



their algorithm for this value of has an approximation ratio df+ ¢ for any realization, but the mono-
tonicity is proved for the expected works of machines. Is theaker notion of truthfulness, the agents are
not interested in their actual profits but only in teepectecones, that is, the agents are risk-neutral. For
example, if an agent earns a profit f with probability % then it sees it as a profit df while a human
agent would very much be interested in the valuédffand if it is large, it would see it as earning nothing
at all (rather than earningy in expectation). Their approach of dealing with the diffied above is that
when a machine receives a job of a given rounded size, thalgotuis chosen uniformly at random from
the set of jobs of this rounded size, so the “sizes” of jobe @Rpected sizes) are easier to deal with. For
jobs that are small, a fractional assignment is found (andded using randomization). They also derived
deterministic monotone QPTAS's for minimizing the maximioad and the/,, norm of the loads. A fully
deterministic (and hence universally truthful) monotof&B8 for minimizing the makespan was given by
Christodoulou and Kovacs [15]. They assign jobs that hdwmst the same size (are in the same group)
very carefully in a fixed order (sorted by size) to the machifvehere machines are given in a fixed order of
their speeds). Moreover, they begin by rounding speedsweisoofl + ¢, and round the job sizes to powers
of 1 + ¢ for somed < e. This ensures that when a speed changes, this change issa@latively large
compared to the job classification, so the rounding errdreduced by small jobs are not large compared
to the required change in the work. The authors give a longextthical proof to show that it is possible to
combine these main ideas and give a deterministic monotssigranent. This approach can be used only
for minimizing the makespan, since in the scheme of [15],hiraes of similar speeds should either receive
almost the same work (implied by the makespan), or no smb# @t all, unless no small jobs remain.
Informally, the small jobs are pushed to the fastest mashifidis approach does not seem to work even
for the similar problem of maximizing the cover, but applyithe methods of [15] leads to a deterministic
monotone(2 + ¢)-approximation for this last objective, given by Christatiu, Kovacs, and van Stee [16]
(the problem was also studied in[21]).

What can be seen from these previous results is that satisfiie monotonicity requirement would
become easier if we could simply avoid the notion of smalkjobhen we could calculate with exact job
sizes (and thus exact loads) throughout. An important dmriton of this paper is to show that for any
given schedule, a highly structured schedule exists, withergatio of job sizes assigned to a machine is
unboundedut the jobs types assigned to this machine are restrictdgtisense that these jobs are grouped
into a sufficiently small number of classes. This overcorhedifficulty that it does not seem to be possible
to actually bound the size ratio of jobs assigned to a maglhimestill we would like to use dynamic pro-
grammingwithoutintroducing a notion of small jobs or inexact calculatiofifie set of possible outcomes
is independent of the possible speeds, which assists iimdealth speed changes, and finally, the work
of each machine is very close to its work in the given (oriisahedule, which keeps the approximation
ratio close tol. This allows us to deal witlll of the objective functions mentioned above at once using
a dynamic programming formulation implemented by a layepegbh, having one layer for each machine.
Unlike previous approximation schemes which use such grappath in the graph corresponds to one spe-
cific schedule (not to a class of schedules, or a scheduledert af rounded jobs), and the cost of the path
(with respect to a goal function) is precisely the cost ofdbesponding schedule and not its approximated
value. That is, there is no rounding or imprecise calcutatigth respect to relatively small jobs (or any
other jobs). This makes proving monotonicity much moreigtitforward, and even simplifies the proof
of the approximation ratio, and the presentation of theritlym, compared to previous (non-monotone)
PTAS’s. Our construction works in the same way for all inpantsl all objectives, and does not require any
special cases. Hence we streamline the monotone PTAS famiming the makespan [15]. Moreover, we



provide the first deterministic monotone PTAS’s for maximgzthe minimum load and minimizing thg
norm, which are our main contributions.

Other related work. For a fixed (constant) number of machines, scheduling pnebliypically have an
FPTAS [27] 9] 19], and even a (deterministic) monotone onefikespan minimization and for maximizing
the minimum load([3, 21]. The QPTAS aof [18] for minimizing thgnorm is in particular a PTAS for fixed
values ofm. Prior to the monotone FPTAS of Andelman, Azar, and Sofgrididmakespan minimization,
Auletta et al. [[6] gave the first deterministic monotone altpon for this problem (where the number of
machines is fixed), with an approximation ratiodof- <.

In what follows we discuss the case where the number of mastigpart of the input. It was shown
by Hochbaum and Shmoys that the makespan minimizationgmohhs a PTAS for identical (equal speed)
machines[[25] and for uniformly related machines! [26]. Adtimization problems studied here, including
maximizing the minimum load and minimizing tifg norm, are known to have a PTAS for identical ma-
chines|[[32] 1], 2], and for uniformly related machines [8,. 20§ for monotone algorithms for the makespan
minimization problem, before the papers|[18] 15] mentioakdve, Archer and Tardas|[5] gave a random-
ized 3-approximation mechanism for minimizing the makespaich is truthful in expectation only. The
ratio was later improved to 2[4] (and eventually ite+ ¢ [18]). A deterministic monotone algorithm of
approximation ratio at mostwas given in[[3], and Kovacs improved the ratio to 3 and tleeR.8 [28]29].

Proof overview. Our proof consists of two parts. In the first one, we define mdywoperties which a
structured schedule should have, and show that every dehledsia similar schedule which has such prop-
erties. As stated above, similarity is measured by allovanlty a very small change in the work of every
machine. For the proof we introduce a notion of a fractiomaleslule, where some (relatively small) jobs
may be split over multiple machines. For any (integral octicmal) schedule, we can define a magnitude
vector with a component for every machine. Unlike previoaskywhere the magnitude of a machine corre-
sponded directly to its work (or the largest job assignet) fovie use the magnitude component of a machine
as an upper bound for the size of any job which is assignedhatiif a component of the magnitude vector
is different from the previous one, we require that the vaitighis component matches (approximately)
the work of the corresponding machine. There are severas Wwayefine a magnitude vector for a given
schedule. A possible solution to the dynamic programming & viewed as a process where we create
the magnitude vector component by component (for a list ofhimes sorted by non-decreasing speed);
increase the magnitude of the current machine (as oppodezbfing the same magnitude of the previous
machine) only if keeping the same magnitude as for the pusvivachine would result in a violation of the
upper bound on the maximum size of any job assigned to themumachine. This novel approach allows
additional flexibility in the set of allowed schedules.

For a given integral schedule, where the works of the mashane increasing with the speeds, we show
that a fractional schedule exists where the total size of gemall jobs which are (partially) assigned to
machines with high work is small, and the work on each maclinbe same as the work in the integral
schedule. We then refine this result by constructing an iategchedule wher@o very small jobs are
assigned to machines with high work, the works of the mashare all close to the original works, and an
additional technical property holds. However, despitevibeks being close to the original works, they may
no longer be sorted in the resulting schedule (though if thikksvof two consecutive machines are unsorted,
then the difference between their works is very small). &gag for unsorted schedules causes technical
difficulties for the algorithm which should find a structurechedule, while a postprocessing step of sorting
may harm monotonicity. We therefore do one extra step tderefinal integral schedule in which the works



are sorted again (but still very close to the original woksyl several structural properties hold. We do not
use rounding, but jobs are partitioned into mega-classdsrani-classes according to their size, and we
apply re-assignment of jobs in every class to comply withréftgiired structure. For a given schedule, some
classes of jobs can turn out to be too large for some machiviake they are very small compared to the
work of other machines. These jobs are combined into chualksdc‘alternative jobs”. Since this process
can be applied in particular for an optimal schedule (foeae of the studied problems), there exists a
schedule where works are very close to the works in an optictaddule, and the structured schedule has
an objective value which is close to optimum.

Once we show the existence of such a schedule, we can tura tiefiign of an algorithm which finds it.
We use a dynamic programming formulation which is based ersthuctural properties. By the structural
properties and the existence of a magnitude vector, it isrmetessary to have a small number of components
of this vector in the state space. A preprocessing step fempeed, where all possible types of alternative
jobs are created. While a job will belong to a number of setdtefnative jobs, every solution will use it at
most once as a part of an alternative job (or possibly it viifiidy be assigned as a job). Thus, we find an
optimal solution out of a given class using a polynomial tiatgorithm, and this optimal schedule is then
guaranteed to be close to an overall optimal schedule, daw/bking monotone.

2 Preliminaries

For our results, we let be a small constant such thak ¢ < 3—12 and% is an integer power df denoted by
r>5(.e.,e= 2%). Throughout the paper, for a solutiohwe denote by4 both the solution and the value
of the objective function for this solution. Without lossgénerality, we assume thait< p; < ps < --- <
Pn-

An integral schedule is a functiofi : J — M. We letW = 2 je:s(j)=i p; (this is the work of
machinei in the integral schedul§). A fractional schedule is a functiol : J x M — [0, 1]. The value
X (7,1) is the fraction of johj assigned to maching and the following condition (that every job is assigned
completely) must be satisfied:

(F1)Foreveryj € J,> ;e X(J,1) = 1.

LetWX = >_jes i+ X(j,) be the total fractional size of jobs of machinend letWX = 207 where
a;* = [log, W71, be its rounded value (if;¥ = 0 thena;¥ = —oco andiW;* = 0). We callW;* the work
of machinei in X (as for integral schedules) amlX is the rounded work (also for integral schedules). A
fractional schedule igalid if it satisfies condition (F2):

(F2) There is a partition/ = Jz(X) U Jr(X) (Jz(X) N Jr(X) = 0), such that ifj € Jz(X) then there is
a unique value € M such thatX (j,4) > 0 (and thereforeX(j,i) = 1), and if j € Jr(X) and X (j,4) > 0
thenp; < EWiX.

Note that the partition in (F2) is not necessarily uniquedjimed. Every integral schedule induces
a valid fractional schedul& with the same jobs assigned to every machine as followsX (gti) = 1 if
S(j) =1, elseX(j,17) = 0. Furthermore, we lefr (X) = {j € J : p; < ng(j)} andJz(X) = J\ Jr(X).
Note thatW® = WX fori = 1,...,m. X is called the (valid) fractional schedule induced $yOn the
other hand, every valid fractional schedutefor which X (j,7) € {0,1} for all j € J,i € M induces
an integral schedul§ with the same works by settin§j(j) = i for the value ofi for which X (j,i) = 1



(this value ofi is unique due to (F1))S is called the integral schedule induced Ky In what follows we

use the ternscheduleor an integral schedule. We It = "? be the load of machingin the schedule

S. The first part of ClainiIl follows from an observation |n [Zahd it is easy to show the second part
(see Appendix’/All). For all cases, we conclude that if mashare sorted by non-decreasing speed, it is
sufficient to consider optimal schedules where the worksiaredecreasing (as a function of the indices).

Claim 1 Assume that; < s9 < --- < s,,. There exists an optimal schedufifor the problem of minimiz-
ing >, f(L;) wheref is a well-behaved function, which satisfié§® < Wy < --- < W,3. There exists
an optimal schedulé; for the makespan minimization problem which satlslﬂél@ < WS1 < < WAL
There exists an optimal schedufle for the machine covering problem which saﬂsﬂi’é@g < WZS2 <. e <
W2,

3 The existence of near-optimal highly structured solutios

We define a partition off into mega-classes. Fér € Z, let Z, = (2F,2%+1], and let mega-clask be
{j € J:p; € I} }. We say that an integérdominateghe integett’ if k£ > k' 4 r. Mega-class dominates
mega-clasg’ if k¥ dominatest’. If j, ;' belong to mega-classésk’, respectively, such that mega-cldss
dominates mega-clags, thenp;, < ep;. This holds becausg; > 28 > 2F+7+1 = 1. gk'+1 > 1.
sincek’ +1 < k — r ande = 27". We refine this partition and consider the partitionJofnto mini-
classes as follows. Denote By C Z the set of indices of non-empty mega-classes (cld#fly< n). Let
A = [log,,.2]. Fork € Kand0 < ¢ < X\ —1,letl;, = (2F - (1 + )%, 2% - (1 4+ ¢)**1]. The mini-class
(k, €) is the set of jobs of mega-claksvhose size is i}, ». Note that(1 4 ¢) 1081+ 21 > (1 4 ¢)lo81+:2 = 2
and thus the partition of into the mini-classes is a refined partition of the partitioto the mega-classes.
Given a set of consecutive mega-claskes . . , ko wherek, > k;, with the job set/ consisting of all
jobs of J with size in the interval2*1, 2¥2+1] and lettinge = 2*2, we create an alternative set of jobs
that will possibly replace/. These alternative jobs have size in the intefyalo] (except perhaps for one
alternative job that may be smaller). To create these altisenjobs we partition/ into subsets each of
which has total size at mog&b such that no two subsets can be united keeping this condittoset of
subsets satisfying this condition has at most one subsetentiotal size is at mogt We create these subsets
by picking in each step a maximal prefix of the jobsJji(where.J is sorted according to the indices of
the jobs, i.e., by non-decreasing size) with total size atr@and remove the selected jobs from This
algorithm is equivalent to applying the bin packing aldumitNext-Fit IncreasingNFI1) using “bins” of size
20; once a subset of total size at meds picked, all further subsets (if any exist) have total siabovep.
The algorithm sometimes decides to repldcwith the alternative jobs, and in this case we partition ¢hes
alternative jobs into separate mini-classes which we tglirsative mini-classes. The alternative mini-class
(k, ¢) contains all the alternative jobs with sizelip,, resulting in at mosA + 1 alternative mini-classes. If
the algorithm decides to repladewith alternative jobs, then in the output of the algorithnefealternative
job is replaced with the original jobs which were combinedoimn it, and this is done just before returning
the output (the work of each machine is not affected by thisgk). Since there are at mashon-empty
mega-classes, there af¥n?) different sets/ that possibly the algorithm replaces with alternative jobs
Thus creating all the sets of alternative jobs takis?). Note that one job can be contained in multiple
alternative jobs, but at most one of these alternative jabderused.

Definition 2 An integral scheduleespectghe alternative jobs of mega-classes. . ., ko, Whereky > k1,

6



if every pair of jobsj, ;' with size in the interva(2*!, 2¥2+1] which are within a common subset (that is,
should be combined into one alternative job with possibhepjobs), are scheduled on a common machine.

The motivation for this definition is that these jobs can bsilgaeplaced by the alternative job to which
they belong without affecting the works of the machines.

Definition 3 A vectora = (ag, a1, - .., ay) (of lengthm + 1) whose components belongZoJ {—oc} is
called amagnitude vectoif ag = —oo, fori = 0,1,...,m — 1, a; < a;41 and ifa; # a;41 thena; 1
dominates:; (i.e.,a;11 > a; + 7+ 1).

We now define thesignature vectob of a magnitude vectati. The number of components inis the
number of distinct values among the componentg efcludingag, denoted byr(a). Each component
t=1,2,...,7(a) of bis a pairb; = (&, 1) suchthatt; = 1,and forl <t < 7(a) and&; <i < &4q — 1
(whereg, )41 = m + 1) we havea; = 1. Thatis, the valug; is always the first machine which has a
larger component af than the previous machine and this component.isor everyt = 1,2,...,7(a) — 1,
weletJi(a) = {j € J: 2Tl < p; < 2vem1mT

Observation 4 For every jobj and every magnitude vectarwith its signature vectob, there are at most
two values of € {1,...,7(a)} for whichp; € (2v+=", 2"+ 1] and if there exists at least one such value
of ¢, thenj ¢ UgJ%(a).

Proof. By the definitions above, for every there are at most two values offor which p; € (277,
2vttr 1 (sincevp1 > vy + r + 1 for everyd). Moreover, ifp; € (2477, 2" 1] then for every < ¢,
we havej ¢ J%(a@) because; > 2"t~ > 2ve+177 and thusj is too large to be in/?(a). If § > ¢, then
pj < 2vetr+l < ovetrHl and thusj is too small to be in/?(a). m

Definition 5 A valid fractional scheduleX is consistentwith a magnitude vecto& if 1) for every jobj
and machine, if X(j,i) > 0 thenp; < 2%77F1 that is, machine does not contain parts of jobs of a
mega-class higher tham; + r, and 2) ifa; # a;—1 (for i € M) thena; = o;* (= [logy W;¥]).

Observation 6 If a valid fractional scheduleX is consistent with a magnitude vectoand WIX < WQX <
- < WX, then for every € M, we haver; < of.

Definition 7 A pair (X, a), whereX is a valid fractional schedule, anglis a magnitude vector such that
X is consistent witlu is calledfavorableif for t = 1,2,...,7(a) — 3, we have

m
SoY peX(Ga) St

i=Et+3 jip <2Vt

This condition ensures in particular that the total size artg of jobs whose mega-class is dominated by
mega-class;, assigned to a machine of index at le@sts, is relatively small compared to the work of that
machine. This holds sinc+1 7+ < 272 < 215" — g 9748 — 2 WX

We define several processes in which a valid fractional sdeed modified into a different valid frac-
tional schedule. These processes are defined algorithyninat! they are not a part of the final algorithm,
but only of the proof that a highly structured integral sallednust exist.
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FNFI. For a subset of jobg’ C J and a set of bound#,...,U,, (for the m machines) such that
Zjej, p; = .0, U;, the Fractional Next-Fit IncreasingNFi) algorithm creates a fractional allocation of
these jobs in the following way. Lét= 1 be the first active machine, and for everg J' letg; = p;. In
every stepFNFI picks the minimum index job € J'. It allocates8 = min{q;, U;} processing time of this
job to machine. It decreases botti; andg; by 3. If U; = 0, then it increasesby 1, and ifg; = 0, then it
removes; from J’. FNFI repeats this step until= m + 1 (and.J’ = () must hold, these two events happen
simultaneously sincgjjej, p; = > .=, U;). FNFI is sometimes used to reassign a subset of jobs in a valid
fractional schedule, so that the total sizes of jobs of thizsset assigned to each machine is unchanged (i.e.,
the bounddJ; are given by assignment of the jobs of the subset in the atligialid fractional schedule).
This is done only in situations where it is ensured that tseltig fractional schedule is valid.

Definition 8 A valid fractional scheduleX is compatible withFNFI if running FNFI on the input job set
Jr(X) with the set of boundsy, ..., Uy, suchthatl; = > . ;. vy p; X (j,4) allocates exactly; - X (j, 1)
time units of jobj to machinei for every; € Jr(X) and alli € M, that is, keeps the valid fractional
schedule unchanged.

Round-FNFI. On several occasions, given a valid fractional schediilevhich is compatible witlENFI,
we will apply the following rounding procedure, called RodNFI. Assign each job € Jg(X) completely

to the minimum index such thatX (j,7) > 0. Since in the assignment processrofri each machine
receives at most two jobs which are not completely assigodt the one of smallest index and the one
of largest index, the resulting fractional schedule induae integral schedul8 in which each machine
may have additional parts of at most one job (the one of thge#drindex assigned to this machine by
FNFI), and may have less parts of at most one job (the one of thdeshidex assigned to this machine
by FNFI). Since by condition (F2) each fractional jgbc Jr(X) on machine (that is, everyj € Jr(X)
such thatX (j,i) > 0) has sizep; < eW;X < 2:W;X, we conclude that for every € M we have
(1 —20)WX < WP < (1+ 2)WX. We say that the integral schedids created by applying Round-
FNFIon X.

Lemma 9 Given a schedul& : J — M such thatiV < Wy’ < ... < W5, there exists a favorable pair
(X,a) whereWX = W fori =1,2,...,m, and X is compatible wittFNFI.

Proof. First, as described in Sectidh 2,induces a valid fractional schedule, here denotedXky with

the same sequence of works. Foe= 1,2,...,m, letg = of. SinceW{ < Wg < ... < W3,
we haveq; < giq foralli = 1,2,...,m — 1. We define a magnitude vectaf = (aj,a?,...,as))
as follows. We letaj = —oo, fori = 1,2,...,m, if ¢; < af | + r, thena? = a7 |, and otherwise

a? = ¢;. The valid fractional schedul&s is consistent witta® since for everyi € M eithera? = g; or
¢ < a? | +r = a? +r. Inboth cases, the size of any job assigned (completely)ithinei cannot exceed
VVZ-X < WiX =20 < 2ais+r.

We next consider the nonempty set of pdik§’, a) such thatX’ is consistent withi, and such that for
i=1,2,...,m, WX = W5 anda; < ;X (the set is indeed nonempty by the existencé g, a*)).
Among all the possible choices f6f’ anda, we consider one such that the vectdnas a signature vector
with the smallest number of components, and (as a secontigytive, i.e., among such solutions which
minimize the number of components in the signature vecthr)X')| is maximized. Based o’ we will
define X (by applyingrFNFI on Jg(X")), and X will be shown to be a valid fractional schedule satisfying
the lemma.



We modify X’ by reassigning the jobs ofg (X’) using FNFI with the set of bound$/y, ..., U,, such

thatU; = ZjEJR(X,) p;X'(j,1). We denote the resulting fractional schedule which is cdibigawith FNFI
by X. We argue thatX satisfies (F2). We defindr(X) = Jr(X’) and show that ifj € Jr(X) and
i € M satisfy thatX (j,7) > 0, thenp; < z—:VT/Z-X. Since the works of the machines are sorted in a non-
decreasing order, it suffices to show that foe Jr(X) andi such thatX (j,i) > 0, there existg’ > j,
j' € Jr(X')andi’ < isuchthatX’(j’,i') > 0, since insuch acagg < p; < WX < cWX. Assume by
contradiction that this claim does not hold fpandi. Then, since=NFI assigns joly (possibly partially) to
machinei, Zj,GJR.(X,):j,q pjr < ny_:1 Us, hov.veverzj,GJR(X,):j,g pjr > Z’Fl U, sipce no other jobs
of Jr(X') are assigned by’ to the firsti machines. Therefor& is indeed a valid fractional schedule.

We claim thatX is consistent witlz. It suffices to prove that in every prefix of machireg, .. . i, the
maximum size of a joly such thatX (j,v) > 0 for somel < v < i does not increase when we replace
X' by X. Letj be a job of maximum size which is assignedXn(possibly fractionally) to a machine
ve{1,2,...,i}. If j € Jz(X) = Jz(X') thenX'(j,v) = X(j,v) = 1, and the claim holds. Otherwise,
J € Jr(X). There existg’ € Jr(X') andi’ < v such thatX’(;’,i") > 0 andj’ > j as we showed above,
and the claim holds as well.

Last, we prove thatX, a) is a favorable pair. Let be such that <t < r(a) — 3. Letj € J be such
that there isi € [{43,m] with X (j,4) > 0 andp; < 2**~". If there is no such job, then we are done.
We havej € Jr(X) = Jr(X') becauseVX > 2% > 2v+s > ov . 237 = L. 9n > Ly, where the
first inequality holds by Observatidd 6, sojif¢ Jr(X) then X (j,4) = 1 and we can adg to Jg(X),
contradicting our choice aK’. Consider the machine4;,; = {&+1,...,&+2 — 1}. If all jobs assigned
(possibly fractionally) byX to these machines have size of at m@ist™+!, then we can redefine; for
i’ € A;rq to bey, contradicting the minimality of length of the signaturect@ of a. Consider a joby’
such that there i € A4 for which X (5,7') > 0 andp;, > 2"++"*+1. By the existence of € Jr(X)
with size at mosR*~", such that a part of it is allocated to a machine of higherxnae conclude that
j € Jz(X) sinceX is compatible withFNFI. We also havey;, < 2v+1Fr L < gves—r=1 o Wéﬂg.

I3 e s X anr Py - X (7, 7) > 20 thend Tl e 5%, <onr Dy - X(3757) > pjrs
In this case, we add' to Jg(X), and modify X as follows. We consider a replacement of the position
of 5" with the position of a set of fractions of jobs (where eachhgiob has size at mogt*™" = £2"* <

g2ve1—l < sZWT”X < 2W;* for everyy € Ay, and belongs to/r (X)) of total sizep;, which were
previously assigned to machines with index at l&€as§. The resulting schedule indeed satisfies (F2) since
the jobs which take the place gfare smaller thae2W,$< for everyy € A;q whilepy < e - Wéﬂg. Thus,

the resulting valid fractional schedule is consistent witkkontradicting our choice oX’ since|Jg(X')| is

not maximal among valid fractional schedules consistetit a{and having the required properties.

Definition 10 A scheduleS is almost consistenwith a magnitude vectai if for every: = 1,2, ... ,m, the
set of parts of jobs assigned to machindoes not contain any part of a job of a mega-class higher than
a; +r,and ifa; # a;—1 (fori € M) then|a; — ais| <1.

Definition 11 A scheduleS : J — M is good if the following properties hold.

1. There exists a magnitude vectosuch thatS is almost consistent with, and furthermore for every
t=1,2,...,7(a) — 4 there is noj andi > &4 such thatp; < 2"*~" and S(j) = 1.

2. Foreveryt =1,2,...,7(a) — 1if Ji(a) = {j € J : 2#T7 T < p; < 2n+177} £ (), thenX respects
the alternative jobs of mega-classast+ » + 1,..., 0441 —r — 1.
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Lemma 12 Given a schedul§ : J — M such thatW; < W5 < -.. < W5, there exists a good schedule
S’ :J — M such that fori = 1,2,...,m, we have

(1—12) - WS <W® < (1+12) - W7, (1)

Proof. By Lemmal9, there exists a favorable palk,a) whereWiX = Wis fori =1,2,...,m, and X

is compatible withFNFI. First, for everyt = 4,5,...,7(a), we reschedule all parts of jolyssuch that
p; < 2¥-37" and for which there exists > &, such thatX (j,7) > 0 by moving them to maching. We
denote byX the resulting fractional schedule. We next bound the vaquﬁ in terms of WX for every

i € M. The work ofi may increase (if = & for somet = 4,5,...,7(a)). Since(X,a) is a favorable
pair, the amount of this increase is at mestiV,X < 2eW.X, since2v:—2+m+1 < 2v—" — (WX, Next,
we bound the total size of parts of jobs removed from machifier 2 < i < m). Lett’ be the maximum
index such that; < ¢ (which must exist sinc€; = 1). Then, for everyt = 4,5,...,¢, we may have
removed a total size of at mogt—2+7+1 < 5 - 2" from machinei (and move these parts of jobs to machine

¢&). ThuswX — wX < <. S, 2n < e- 2 < 2 - WX. We conclude that for every;, we have
(1—2)WX < WX < (14 20)WX.

Let Jz(X) = Jr(X). We observe thak is a valid fractional schedule which is compatible withri
(similarly to the bounds on such jobs in Lema 9, it can be shihat if ajob moved to machingthen its
size is belovvsWX sincel — 2¢ > ¢). We now apply Round\Fi on X to create an integral schedufe
Every;j € Jr(X) such thatX (j,i) > 0 has sizep; < cWX < 2:W;, so for everyi € M we have

(1-4e)WX <Wd < (1+4e)W5¥ . )

The maximum size of a job in a prefix of machinesdris the same as iX, and a job moved from its
position in.X to a new position on machirg in X has size at mostt-3 < 2"t = £2%:.

Consider the set of job#!(a). SinceX is consistent with, for every;j € J'(a) andi < &1, we have
X(j,1) = 0, and since the maximum size of a job in a prefix of machines dicchangeS(j) > 4. Since
Wgt+1 = 271, we have for allj € J*(a) andi > &4 thatp; < 2v+17" =¢- WX < e-WX. We remove

the jobs inJ*(a) from their positions inS, and we will schedule the alternatlve jObS instead (whiclegia
schedule of the original jobs which respects the alteragtitss of mega-classes+r+1, . Vi1 =T — 1).

For everyi € M we letU; be the total size of jobs id*(a) which are assigned to machlmday S. The set

of machines for which U; # 0 is contained in the interva€, 1, &.+4] where ift + 4 > 7(a), then we let
&+4 = m. We applyFNFI to fractionally schedule the alternative jobs, followedRgundFNFI. This is
done for every value of for which J!(a) # () sequentially. We denote hy the resulting integral solution.
Leti € M. There are at most four values ofor which i participated in the process of the rescheduling
of J'(a). As a result of applying RoungnrFi for the alternative jobs for all, every machine can have

at most four additional parts of jobs and less parts of at rfuastjobs, all of which have size of at most
eWX < 2eWX. Thus, W — 8eWX < W < W + 8W;X. Using [2), we get{1).

The integral schedul&’ is almost consistent with the magnitude vector To see this claim, first
observe that no job is too large: if the maximum size of a jon@cthine: in S’ is not the same as in
S, this maximum size joij € J*(a) is moved from its position irf to a new position on maching and
thereforepj U7 = g2¥H1 anda; > ag, ., = v441. The claim holds because for everywe have

X —ozS|<1smce1+125<2and1 o <2. m
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Definition 13 A schedules is quasi-consistenwith a magnitude vectat if for everyi = 1,2,...,m such
thats < i < &1, the set of jobs assigned to machingoes not contain any job of a mega-class higher
thanvyy1 +r, and ifa; # a;—; (fori € M) then|a; — | < 1.

Definition 14 A scheduleS : J — M is structuredf the following properties hold.

1. There exists a magnitude vectosuch thatS is quasi-consistent with, and furthermore for every
t=1,2,...,7(a) — 5thereis noj andi > &5 such thap; < 2"~" and S(j) = 1.

2. Foreveryt = 1,2,...,7(a) — 1, if J¢(a) # 0, thenS respects the alternative jobs of mega-classes
I/t—|—7“+17...71/t+1 —r—1.

W <Wy <. <W5.
4. For each pair of jobg, j' ¢ U;J'(a) belonging to a common mini-class;jik 5/, thenS(j) < S(5').

5. For each pair of alternative jobg j’ resulting from the sef(a) belonging to a common alternative
mini-class such that the size pfs smaller than the size gf, the following holds. IfS schedules the
original jobs inj andj’ on machines andi’, respectively, then < 7'.

Theorem 15 Given a schedul& : J — M such that < Wy < ... < W;, there exists a structured
scheduleS* : J — M such that fori = 1,2,...,m, we have

(1—14e) - W7 < WP < (1+14e) - W7 . (3)

Proof. Let S’ be the good schedule that is based%as established in Lemnla]12. We apply a sorting
procedure of the works of the machines similarly to the on¢lBf. In this procedure we are given as
an input a partition of the jobs into subsefs, . . ., J.,, we create a new partition of the jobs as follows.
Fori: = 1,2,...,m — 1 we assume that we are given the subsg@éts .. 7,, and we choose the set of
jobs scheduled on machirigpossibly modifying the remaining subsets). For each riass (including
the alternative mini-classes), we temporarily replacejobs in 7; (i’ = 4,7 + 1,...,m) from this mini-
class with the smallest set of jobs of this mini-class whioh still available (i.e., they are not scheduled
on machines with indices smaller than We pick the set of jobs which have minimum total size as the
setJ;, possibly swapping locations of jobs in the same mini-claéste that due to our use of alternative
mini-classes, the jobs that are inside these alternathe foightnot be allocated in order of their size (but
still in a fixed order according to the size of the alternajtas). Consider a pair of consecutive machines
1,7+ 1, then the resulting work of machiriés not larger than the resulting work of machine 1, since the
set of jobs allocated to machire- 1 were available for allocation to this subset of jobs when w&eqd 7;

for machinei (the jobs taken byy; are replaced by other jobs of the same mini-class when weseliq;,
which cannot be smaller).

We apply the sorting procedure on the partition definedbyl he output of this procedure is an integral
schedule denoted hy*. Clearly, W{%" < W5™ < ... < W,3". Moreover, propertie]Z] 4 and 5 in the
definition of structured schedules are satisfied. We nextep(@) for every machine. Every machine
1 receives a subset of jobs which is based on a subset of jatisatdd to some machingin S’, after
swapping pairs of jobs within a common mini-class. Therfor

WS

27 cwS < (1 WS 4
1+E_ (3 —(+E) (A ()
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Fix a machine index. When we choose the sgt for machinei, at least one of the origindlsubsets
J1,...J; (Up to swapping some locations of pairs of jobs within commaini-classes and alternative
mini-classes) remains available. Liétdenote its index. The total size of the jobs in this subset mast
W5 - (14e) < Wi - (1+12)(1+¢) < W7 (14 12¢)(1 4 ) where the first inequality holds by Lemma
[12, and the second inequality holds by the monotonicity ake&@ S. Therefore, machinéreceives inS*

a total work of at mostV® - (1 + 14¢). We next prove the other inequality, that ($,— 14¢) - W < W,
The schedules has at most — 1 machines which receive work strictly beIdMiS. Therefore, inS’ there
are at most — 1 machines which receive work strictly beld#? - (1 — 12¢). In S* the number of machines
with work strictly smaller thaw cannot exceed— 1, and due to the monotonicity of the works in
S*, the claim holds.

Finally, we prove propertyl1 of structured schedules. Thegral schedul&™ is quasi-consistent with
the magnitude vectai. To see this claim, consider a machinsuch that; < i < &1 and denote by
the maximum sized job on machineccording taS*. We need to prove that; < 2+1+7+1, The set of
jobs 7; which the sorting procedure allocated to machimweas scheduled on a machiiein S’ (possibly

swapping pairs of jobs in common mini-classes). A jolof the same mini-class gswas allocated to
. R W‘%‘l * !/ . . .
machinei’ in S’. Recall thatljr < WZ-S <(1+4¢)- Wf . By Lemmd12,S’ is almost consistent with,

€
and thereforg; < 20 +m+1 Sincej andj’ belong to a common mini-class, they also belong to a common
mega-class, and thus we also haye< 2% *7+1 In order to prove thap; < 2v+17+1 it suffices to show

thati’ < &.o. Assume by contradiction thét> &.o. We haveWi,S > ng > 2v+2~1 which holds since

~ S
the works inS are monotonically non-decreasing aiflefg+2 > Wg+2 = 2%+2 = 2”42, On the other

hand W < W, < 2. By @) and Lemmal2, we have(" 2 1z > “r 2 Wi~ 14e)
erefore, we get
S
2Vt+1 2 Wz
we"
b
— 14 14e =
S
- 14 14e
1—14¢
> guetz—l.
14 14¢
> ovi+2—3 > QUt41+1r—2 , sincee < 3—12

contradictingr > 5. Therefore,S* is quasi-consistent with the magnitude vecidyecause for every, we
have|ay — a7"| < 1sincel + 14e < 2 and - < 2.

Fix a value oft = 1,2,...,7(a) — 5, it remains to prove that there is noand: > ;15 such that
p; < 277 andS* schedules joly to machinei.

Consider a machine such thaté; .5 < i < &.6. The set of jobs7; which the sorting procedure
allocated to machiné was scheduled on a machifien S’ (possibly swapping pairs of jobs in common
mini-classes). Lej be a job such that*(j) = 4. In order to prove thap; > 2"~ it suffices to show that

i > &14. Assume by contradiction thatt < &..4. We havel;; < W < 2+ which holds since the

~ S
works in S are monotonically non-decreasing aﬂ(f < WSS — 2%+a = 2¥+4, On the other hand,
t+4 t+4

WS >wg > 2wl By @) and Lemm&l2, we hat&®” < W7 - (1+¢) < W7 (1+12e)(1+4¢) <
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W3 (1 + 14¢). Therefore, using{3) we get

2I/t+5 é 2‘/1/23

2W S
< L b
—1-—14¢ =
_ AW+ 1)
- 1—14¢
< 2Vt+4+1 . 1—1—7145
- 1— 14¢
< Vt+at3 < Q45 —T+2 , sincee < 3—12

contradictingr > 5. m

4 A dynamic programming for computing the best highly structured solu-
tion

In this section we show how to compute the optimal structigelteduleS*. Our algorithm will use a
dynamic programming procedure which is based on a shortght (pr an optimal bottleneck path) in a
directed layered grapf¥ = (V, E) with weights on its vertices.

We will define a layered graph, in which the algorithm compudepath corresponding to an optimal
solution with respect to a given goal function. Each layeairofndex1, 2, . .., m corresponds to a machine,
and each vertex in one of these layers encodes a set of joluh widre scheduled prior to the current
machine, and a set of jobs which were scheduled up to anddinguhe current machine. The difference
between these sets easily reveals the work of the currertiineg@and allows us to restrict the paths in the
graph to schedules in which the works are monotonically eecreasing. Given the woil; of the current
machinei, the weight of the vertex is the load of this machibg or f(L;) for a well-behaved functiorf.
The edges between layers correspond to compatibility tongdiwhich in particular enforce the condition
that the works of machines are monotonically non-decrgasithe order of the layers is according to the
speeds of the machines, that is, machines with higher spesdsa higher index of their layers, and subsets
of machines with a common speed are ordered according to@ dixkering of the machines. The graph
which we will use allows us to find any structured schedule magtbe additional schedules. The schedule
which will be found will be at least as good as the structureltedule whose existence we proved in the
previous section. To distinguish between several optirokitions, and to prioritize the possible outputs,
we number all vertices of each layer with distinct integersi] we always search for paths whose reverse
sequence of numbers along the path (that is, the sequenegticbg given from the end of the path towards
the beginning of the path) is minimal (Iexicographically)t@f paths which have an optimal cost with
respect to our goal function. This property allows us to assthat there exists a total order over the paths
in the graph, and the algorithm always outputs the minim#i &ccording to this order) which is optimal
in the current scenario.

The graphG will encode in each layer all possible short histories ofiegnitude vectors (which we
call short magnitude vectors). There will be a startingesert, also seen as the layer of vertices of index
0, and an end vertex, also seen as the layer of vertices of indext+ 1, and we always look for a path
in G from s to ¢t. Thus,V consists ofn regular layers denoted as2, ..., m (one for each machine) and
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two additional layer®) andm + 1. For every possible structured schedule, there will beg ant path
corresponding to it (and possibly additional ¢ paths corresponding to other feasible schedules).

A short magnitude vectop = (¢°, !, 12, ... ,45) for machinei is a vector consisting of seven con-
secutive distinct values in a magnitude vegidthat is, there exist$ < ¢ < 7(a) such that)” = v;,_5
forn = 0,1,2,...,6). If this vector is associated with machinethena; = . If a; = v, 5 for some
value oft, theny) = (vg,ve41,. .., ve46). If the magnitude)?® is the largest magnitude iy we will let +°
be the fictitious valuex. Similarly, if 4 is one of the smallest five values i we add—oo as the first
components ofy. We say that a short magnitude veciois quasi-consistent with a scheduflés ) consists
of six consecutive distinct values of a magnitude veateuch thatS is quasi-consistent with.

Other than the entries which arex or oo, a short magnitude vector must be such that it can be a part
of a magnitude vector. Thugy"t! > ¢ +r + 1 forn = 0,...,5. In addition, we define a list of allowed
finite components.

Lemma 16 For j € J letp; = [log, p;]. Then, for every possible subsgtC .J of jobs whose total size is

W, we have
[logy n]

Nog, Wle | ) | {5 +k}

jeJ k=0

Proof. Let j € J' be a maximum indexed job ifi’. Then,W > p; andW < j - p; < n - p;. Therefore,
P < [logy W < [logy(n - pj)| = [logy n + logy p;| < [log, n] + p; and the claim holdsm

Corollary 17 The number of possibilities of short magnitude vecto3(is®).

Proof. The set of different values for each component in a short hadg vector is

[logyn]+1

U U {pj + k} U {—00,00}

jeJ  k=-1

since we are only interested in magnitude vectors which aasieconsistent with some schedule. Therefore,
there are at mos - (log, n + 4) + 2)" = O(n®) different short magnitude vectors

Next, we define the seti(y) of active mega-classes for a short magnitude veg¢torA mega-class
k belongs toA(v) if there exists a value of = 0,1,...,6 such that|k — ¢"| < r, and an alternative
mega-clasg*! —r —1 (and perhaps a smaller alternative mega-class considtimgiogle alternative job)
belongs toA(¢) if it is an alternative mega-class consisting of alterrejobs of mega-classes’ + r +
1,...,y"!t —p —1forvalues ofy = 0,1, ...,5 for which "1 — 4" > 21 4 2,

The motivation for this definition ofi(v)) is that if machine has a short magnitude vector then all
jobs of size at mos2¥o~" are scheduled on machines with magnitude at nidsh any structured schedule
that is quasi-consistent with, i.e., strictly before machiné (sincea; = °). Moreover, all jobs of size
more thare¥s*7+1 are scheduled on machines with magnitude at leésh any structured schedule that is
guasi-consistent witlp, i.e., after machine. Thus the only relevant (alternative) mega-classes fohinac
1 are the ones described above. These properties will beceafday the structure of the graph. Moreover,
given a set of consecutive mega-classes it can be decideght@rt the jobs of these mega-classes into
alternative jobs, and this can only happen if no jobs of theega-classes were already scheduled. Once it
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is decided, this decision is irrevocable and future set®n$ecutive mega-classes which are converted into
alternative jobs will be disjoint.

A status vectoof a short magnitude vecta@r consists of a component for each mini-class which belongs
to a mega-class id(¢)). This component represents the number of jobs (or altemgbs if this is an
alternative mini-class) which were already scheduledaft¢izat in a structured schedule we always schedule
these jobs sorted by their sizes (with a fixed tie-breakinigcyp and therefore the number of jobs which
were scheduled uniquely identifies which jobs these are).

Lemma 18 The number of status vectors for one specific short magnitadtor ) is O(n(72r+1)+12)A),
Therefore, overall there ar@ (n((147+19X+8)) status vectors.

Proof. The claim holds since every component in the status vectan isiteger in[0, n|, the number of
mini-classes in a mega-class[isg, . 2] = A, and there are at mo$® alternative mega-classes #{1)).
|

Consider a pair of ordered paif®, ) and(¢’,u') whereu and«’ are status vectors of the short mag-
nitude vectors) andv’, respectively. We say that such a pair is compatible if ontheffollowing cases
hold.

1. If ¢p = ¢’ and every component imis at most its corresponding componentin

2. Ifforalln =1,2,...,6,9" = (¢)"!, and every component incorresponding to a mini-clags, ¢)
(such that mega-clagsis in A(¢')) is at most its corresponding componentin Moreover, every
component in:/ which corresponds to a mini-claés, ¢) such that: ¢ A(v)) is zero. Informally, jobs
of such zero components irl are too large for).

If (¢,u)and(vy’,«') are compatible, then their difference defines a set of jobisiwéan be scheduled
on a machine. This set of job&((¢,u), (¢',v)) is defined as follows. The set((i, ), (¢, u')) will
contain all remaining jobs of mini-classes which have @pomding components im but not inu’ (these
are the last jobs of each mini-class which are not schedwedgcording to the information encodedin
Informally, such jobs are too small fgr and must be assigned immediately. For every mini-classivwias
components in both andw’, the number of jobs of this mini-class if( (v, u), (¢, ")) is the difference
between these components (these are the next jobs in eachlass). We denote by (v, u), (¢, u))
the total size of jobs iV ((¢, u), (¢, u')).

The set of vertices of layer (for i = 1,2,...,m) is the set of compatible pairs),«) and (¢, u').
Thus such a vertex corresponds (@, u), (¢',«’)). The meaning of such a pair is to assign the jobs of their
difference to machiné (and thus the work of would be exactlyV ((¢, u), (¢',4’))), wherey is the short
magnitude vector of machingeandq/’ is the short magnitude vector of machine 1.

The weight of such a vertex in layéris defined asM if we are solving the minimum
makespan problem or the problem of maximizing the m|n|mumildfwe are interested in the problem of
minimizing Y., f(L;) for a well-behaved functiorf, then the weight of the vertex ﬂw).
The verticess, ¢t do not have weights.

A vertex in layeri (for 1 < ¢ < m — 1) corresponding tq (), u), (¢, u’)) is adjacent to a vertex in

layeri + 1 corresponding t¢(y)’, u’), (4", u")) if and only if W ((¢, u), (¢, u')) < W((q// N, (@7, u")).
There are no other edges between these layers, that is,cdverge no edge fror(y!, ul), (1, u'")) to
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((v?%,u?), (¢%,4?)) in consecutive layers ify", u'') # (12, u?). The vertexs of layer0 is adjacent to all
vertices in layeil corresponding td(v), u), (¢, u")) such that all components of the status vectare zero,
andy® = —oco. The vertices of layem which are adjacent tb(of layerm+1) are the ones corresponding to
(¢, ), (¥, u')) such that)’s = oo, and for every mini-class whose mega-class id ') the component
in u’ is exactly the number of jobs in this mini-class (also for beraative mini-class). The topology of the
graphG depends only on the set of jobs and their sizes, and on theetuofilmachines (and not on their
speeds). Only the weights depend on the exact problem arfte@peeds of the machines.

We observe that an-¢ path in the graph gives immediately a schedule, since eatdx\(€y, u), (¢, u'))
in the graph defines a specific set of jobs allocated to the imaetith index equal to the index of its layer,
whose total size is exacthy’ ((v, u), (¢, u’)). Moreover, every — ¢ path defines a partition of the job set,
and every such solution satisfies that the works of the mashéme monotonically non-decreasing in the
index of the machine. We also observe that every structwiketien corresponds to (at least) one ¢ path
in the graphG.

Using this graph, we compute a label for each vertex. Thisllabequal to the cost (or value) of the
partial solution defined by the best path franto this vertex. Moreover, we compute a pointeto the
previous vertex on this best path framlf there are several possibilities for best paths (endirtheasame
vertex) 7 is defined to be the minimum index of the vertex satisfyings¢éheonditions according to the
numbering of vertices in each layer. We next define the natiba best path for each of the objectives
considered in this paper. For the problem of minimizing trekespan, a best path is one that minimizes the
maximum weight of a vertex along the path. For the problem afimizing the minimum load, a best path
is one that maximizes the minimum weight of a vertex alongptith. Finally for the problem of minimizing
>, f(L;) wheref is a well-behaved function, a best path is a path of minimuai teeight of its vertices.

5 Monotonicity proof

Our monotonicity proofs are based on analysis of a scenangrevmachine, changes its speed. We will
assume that every machiné # ~ has a fixed speed of, while machiney has two possible speeds
andsg. We sometimes consider additional speeds betvse,eandsg. In the next two lemmassy, ..., s,
denotes a sorted list of machines speeds.

Lemma 19 Consider two executions of the algorithm, both with respechinimizing)_;" , f(L;) where

f is awell-behaved function (with a common functinwhere the sorted order of machinedig, ..., m,
each with its own set of speeds, resulting in the two schedijland.S; found by the path#; and P,. The
two sets of speeds are defined as follows. For e¥egy i the speed of is s;» in both sets, and the speed
of i is o1 and s, respectively, such that_; < o1 < 09 < s;11 (Wheresg = 0 and s,, 11 = o0). Then,
W < w2,

Proof. For a schedules' denote bycosTg, COSTy the costs of schedul§ using the speeds; and o

for machinei, respectively. Recall that the grajgh remains the same in the two executions. Since the
path P; could have been found by the algorithm when it computesnd vice versacosfs1 > COST, )
andcosTg, > COSTg,, which givesCcOsTg — COSTg, > COSTg, — COSTs,. Assume by contradiction

w2 < W
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Sinceoy > oy andW;® < W, we find W (2 — L) > W?(L - 1), Rearranging the last
. . L owSr owS2 S w2 . . e
inequality gives et T 5 > Sincei does not change its position in the sorted order of

W2 )’
).

S S
. wt Wt
machines, we haveosTy, — COSTs, = f(—5-) — f(—) andcosTg, COSTS2 = (

W) > s

)(
)(

and so we find usingosTg — COSTg, > COSTg, — COSTg, that f(—

52 S
Usingo < o andW>? < W we have— < W /i . By convexity, we findf (‘% )+f( - ) >
S1 S1 So S1 Sl Sa Sl
f(%) +f(”;i1 + ”(/;'2 — V[C/é ). Using strict monotommty off, f( (;l + V[C/;'Q — MZ;'Q ) > f(wc/,1 ),

which is a contradictionm

The next lemma is used in the case that the speed of a mactangeh We will split the process of
changing the speed into steps, and one type of step will bpEngthe positions with another machine of
the same speed. Therefore, we note the following.

Lemma 20 Consider two executions of the algorithm, both with respette same objective function, each
with the same set of speesls so, . . ., s,, Wheres; = s;1, where the sorted order of machines is given by
increasing indices in the first execution and the order aidiby swapping the positions of machingst1

in the second execution, resulting in the two sched@leand S;. Denote byw; the work of machiné in

the schedule (that is,w; = Wfl), and byw, the work of the same machine $3 (that is,w, = WSQI)
Thenw; < ws.

Proof. Since the set of optimal solutions for the two inputs is dyattte same, so is the set of optimal
paths in the graph. Since our algorithm always outputs ¢ex@phic minimal optimal path, we conclude
that.S; = S3. The claim holds because the solutions obtained as patlieigraph have monotonically
non-decreasing works of machines.

Theorem 21 The approximation scheme for minimizihg” , f(L;) wheref is a well-behaved function is
a monotone PTAS. The approximation scheme for minimizig,thorm of the vector of machine loads
(obtained by running the algorithm with(x) = zP) is a monotone PTAS evenpifs a part of the input.

Proof. Let S be an optimal solution, then by Theoreni 15, there is a stredtsolutionS™* such that for every
iwe havelV®" < (1+14¢)-W7, and thusL?" < L?-(1+ 14¢), and therefore the cost 6F as a solution to
our problem is at mosE.™ | f(LF7) < Y., (L7 - (1+14e)) < (1+0(1)e) 1| f(LF) where the first
inequality holds by monotonicity of, and the second inequality by the propertyfahat if x < (1 +¢)y
thenf(z) < (14 O(1)e)f(y). The schedule given by the algorithm as output has a costwigico larger
than the cost o6*. Note that the approximation ratio 6f for the problem of minimizing thé, norm of
the vector of machine loads is at mast 14e since (3", (L)) P11 (2T, (L5)")'?.

To prove the monotonicity, consider a machinghich increases its speed frasto ;. We split the
process of increasing the speed of a given machine into tpastpf events. The first type are time intervals
in which the position of this machine in the sorted order @& thachines does not change. The second
type are points in time when the speed is fixed, but the madviraps its location with the next machine
in the list of machines sorted by speed. There can be mukipdd time intervals and points in time, and
it is sufficient to consider one event of each type, thus wesidam two cases. The case where macliine
increases its spees, < s, 1, and machine does not change its position in the sorted list of machines, a
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the cases; = s;41, where the only change is that these two machines swap #laiive order. For the first
case, the claim follows by Lemma]19. For the second case/adime tllows by Lemma 20.m

Theorem 22 The approximation scheme for maximizingn;c s L; is @ monotone PTAS.

Proof. Let S be an optimal solution, then by Theorém 15, there is a stredtsolutionS* such that for
everyi we haveW" > (1 — 14¢) - W, and thusLy” > L7 - (1 — 14¢), and therefore the value 6f is

at leastl — 14¢ times the value of. The schedule given by the algorithm as output has a valuehagino
smaller than the value of*.

To prove the monotonicity, consider a machinghich increases its speed frosnto s;. Consider the
solution S; obtained by the algorithm for the case where the speedi®f;. Let C; be the value of5;
(computed for the set of speeds where the speédsof;). We split the process of increasing the speed of
a given machine into two periods where the first period ig $pither into two types of events. In the first
period, the speed dafis at mostr, whereo is the maximum speed for which the value of the solutigris
exactlyC; (possibly swapping the contents of machines if machirteanges its position in the sorted list of
machines according to the sorting done by the algorithmjeNwato is well-defined, that is, the maximum
exists. Ifo = s;, we say that this period is empty. d4f > s, we setoc = s,. Therefore, during the first
period the speed dfis in (s;, o]. If o = s}, then the second period is empty, and otherwise the speeid of
in (o, s;] in this period. For the first period, the first type of evenestime intervals in which the position of
this machine in the sorted order of the machines does nogehdrhe second type are points in time when
the speed is fixed, but the machine swaps its location withéixemachine in the list of machines sorted by
speed.

We prove that for every speed ig;, o], the solutionS; is returned by the algorithm. First, we show
that the value of an optimal solution remaifis. The value of an optimal solution cannot increase when
increases its speed, so by definiti&n remains an optimal solution. Moreover, wheimcreases its speed
in the first period, the set of optimal solutions is a subsdahefset of optimal solutions when the speed of
1 is s; (even if locations of machines are swapped). Thereforeald@ithm outputsS; for every speed in
the first period. Thus, for time intervals in which the pasitiofi in the sorted list of machines is fixed, the
work of 7 is exactly the same, and in events in which machiseaps its position with another machine, the
work of i cannot decrease by Lemind 20. In the case s, we are done. Otherwise, we assume that there
are no further machines of speedvhich appear later thahin the ordering of the machines (possibly by
adding events of the second type for the first period).

Next consider the case whese< s,. Denote bylW the work ofi in the solutionS; where the speed
of i is 0. Recall that for this speed @f the value of the optimal solution (i.e., 6f) is exactlyC;. We
prove that% = (. Assume by contradiction that the claim does not hold (thaté assume the‘é;i > (1,
as otherwise the value ¢f; in this case is strictly smaller thath; contradicting the definition of). Let
o1 > o be such that; < le ando is smaller than the speed of the next machine dfterthe sorted list
of machines, if such a machine exists. Then, the valug, dbr the speedr; of i remainsC; contradicting
the maximality ofo. Let C, be the value of an optimal solutidsy found by the algorithm where the speed
ofiis s,. Then,Cy > C - § since otherwises; is a strictly better solution for speed of 7, because even

if machines swap locations the machine in every positiomssefr by no more thafgfé. Denote bylV’ the
work of i in S3. We havelV’ > C5 - s, > Cy - 0 = W, and the claim follows.m

The proof of the next theorem is similar to the proof of Th@ol&2, and it is given in Appendix AlL2.

18



Theorem 23 The approximation scheme for minimizingx;c s L; is @ monotone PTAS.

6 Computing the payments

Archer and Tardos [5] defined a payment scheme which can bBreedppr any monotone scheduling algo-
rithm to create a truthful mechanism. Denote the paymengémt by P;. We briefly repeat the definition
of P;. Letb_; denote the vector of bids, not including agéntVe writeb (the complete bid vector) also as
(b—;, b;). Then the payment function for agens defined as

b;
Pu(b_s,b5) = ha(b_s) + byws(b_s, bi) — / wib_i, w)du, 5)
0

wherew; (b_;, b;) is the work (total size of jobs) allocated to machirgiven the bid vectob and theh; are
arbitrary functions (Theorem 4.2 inl[5]).

In order to compute the payments, we need to calculate tbgradtin [$). Recall that the bid of an agent
represents its claimed cost for processing one unit of wetich can be seen as the inverse of the speed
of its machine. For a given set of bids, . . . , b,,), calculating the integral for agefntequires us to know
what its work would be for every possible bidf this agent, i.e., for the bid$_;, b) for b € (0, o0). First,
we partition the possible bids into intervals in which theigon in the ordered set of machines (that is, its
layer in the graph) of machineremains constant. Consider the §etoo} U {b;}2,\{b;} and denote its
elements by) = ¢; < -+ < ¢y = o0 (M < m + 1), then the intervals to consider afe;, c;;1) for
j=1,...,m —1.

For each vertex in layeri, we compute a functiod’, (b) which is the objective function value of the
best path which traverséisis vertex as a function of the bid of machirneRecall that the algorithm outputs
the minimum or maximum (over all vertices of the layer) ofgbdunctions depending on the objective
function.

Claim 24 For each vertex and every bid intervalc;, c;+1), F,(b) is a piecewise linear continuous func-
tion with a polynomial number of pieces.

Proof. In layeri, the weight of vertex which represents the compatible pdiv’, u), (', ")) is the constant
W ((¢,u), (¢',4)) divided bys;, wheres; = 1/b;. Note that the pair represented bylso specifies the set
of jobs assigned to machines before machirand the set assigned afterDue to the tie breaking done in
the dynamic program, and the fact that only the speed of maé¢tihanges, this means that the identity of
the best path which passes througtioes not depend dn(only its objective value does).

For the makespan and the maximizing the minimum load prabl¢ine objective value of a path is the
maximum (minimum, respectively) weight of a vertex along hath. Hence, al increases frone; to
cj+1, the only change that can happen is that the weight of vertstarts having the maximum weight
along the fixed best path (for the makespan objective) osdtaping the minimum weight (for the covering
objective). ThereforeF, (b) has at most two pieces, where for one piece machis@bottleneckmachine
(that is, a machine whose load equals the objective funetidure of the solution) and for the other it is not.
If 7 is the bottleneckF, (b) = b- W ((v,u), (¢/,u')), elseF,(b) is constant.

For the minimization ofy """, f(L;) for a well-behaved functiorf, the objective value of a path is the
total weight of its vertices. Herdy, (b) is a constant plug(b- W ((¢,u), (¢, ")) (where the constant is the
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total weight of the other vertices along the best path whiaterses)). Hence by using the approximated
piecewise-linear convex monotonically increasing fumtif f instead off itself the claim follows since it
is sufficient to consider such an approximated function widtes ending at integer powers(af+ <) (and
thus with polynomially many such pieces.

Claim[24 implies that the number of intersection points teetwany pair of functiongF, (b), F, (b)) is
also polynomial. Thus we can compute all of these points Iprmonial time, and determine which points
lie inside the intervalc;, ¢;+1). Moreover, we can also determine whistheduleour mechanism uses for
each intersection point by running the PTAS for each pamuluidingc; (if ¢; > 0) andc; 11 (if ¢j41 < 00).
After removing duplicates, this gives us a list of interg@tipoints with associated schedules and works.

Remark 25 The replacement of with the convex monotonically increasing piecewise-lingaproxima-
tion of f is crucial. Without it, computing the value &fin which one solution becomes better than another
solution involves computation of an exact solution of eigmat involving convex functions (this cannot be
done even for the case whefézx) = ). However, for piecewise-linear functions this can be defiie
ciently.

It is now straightforward to determine the schedule usedifgrpossible bid, and from that the work
for any bid, as follows. Note that the schedule chosen doeshrange between any pair of consecutive
intersection points by construction. Thus the work remasstant between any such pair. If the schedule
used is the same at both endpoints, the work in between is fiwehis schedule. If two different schedules
are used, then in the entire open interval between the pailsehedule is used which gives the best value
for the objective function. This can be determined by rugrtime PTAS for one point inside this interval.
Thus we can find the exact value of the integralin (5) (withowinding the speeds of the machines).

A Omitted proofs

A.1 Proof of the second part of Claim1

Consider a schedulg with makespan\/ and covetC. Call a pair of machines j reversedf 1 <i < j <

m and W > Wf. We show that removing a consecutive reversed pair (thatds,: + 1) by swapping

the sets of jobs assigned to them from any schefudees not increase the makespan or decrease the cover,
which implies the claim (since after a finite number of suapstthere will no longer be reversed pairs).
Let S’ be the schedule resulting from swapping the two job sets ehimasi,;j. In S’, machinej gets more
work, but the load remains at moaf: we haverS'/sj = W7/s; < Wf/s; < M. Machinei gets less

work, but the cover remains at least we haveWV*' /s; = W /s; > W5 /s; > C.

A.2 Proof of Theorem[23

Let S be an optimal solution, then by Theorén 15, there is a stredtsolutionS* such that for every we
haveW?™ < (1 + 14¢) - W, and thus.?” < L¥ - (1 + 14e), and therefore the makespan$fis at most
1 + 14¢ times the makespan &f. The schedule given by the algorithm as output has a makesgpiah is
no larger than the makespan.sf.

To prove the monotonicity, consider a machinghich decreases its speed framto s;. Consider the
solution.S; obtained by the algorithm for the case where the speédsof;. Let C; be the makespan ¢f;
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(computed for the set of speeds where the speedsof;). We split the process of decreasing the speed of
a given machine into two periods where the first period ig $pither into two types of events. In the first
period, the speed dfis at leastr, whereo is the minimum speed for which the makespan of the solution
S1 is exactlyC (possibly swapping the contents of machines if machiclganges its position in the sorted
list of machines according to the sorting done by the algorjt Note thatr is well-defined, that is, the
minimum exists. lfo = s;, we say that this period is empty.df< s/, we sets = s.. Therefore, during the
first period the speed dfis in [0, s;). If o = s, the second period is empty, otherwise the speedoin
[s;,0). For the first period, the first type of events are time intisr@ which the position of this machine
in the sorted order of the machines does not change. Thed&gom are points in time when the speed is
fixed, but the machine swaps its location with the previoushime in the list of machines sorted by speed.

We prove that for every speed |a, s;], the solutionS; is returned by the algorithm. First, we show
that the makespan of an optimal solution remaihs The makespan of an optimal solution cannot decrease
wheni decreases its speed, and by definitiynremains an optimal solution. Moreover, whedecreases
its speed in the first period, the set of optimal solutions ssilaset of the set of optimal solutions when the
speed ofi is s; (even if locations of machines are swapped). Thereforealdpaithm outputss; for every
speed in the first period. Thus, for time intervals in which gosition ofi in the sorted list of machines
is fixed, the work of; is exactly the same, and in events in which machisgvaps its position with the
previous machine, the work efcannot increase by Lemrhal20. In the case s we are done. Otherwise,
we assume that there are no further machines of spegldich appear earlier thahin the ordering of the
machines (possibly by adding events of the second type éofirt period).

Next consider the case where> s,. Denote bylV the work ofi in the solutionS; where the speed of
1 is . Recall that for this speed 6f the makespan of the optimal solution (i.e.,53f is exactlyC;. We
prove that¥ = (1. Assume by contradiction that the claim does not hold (thatéd assume thé@i < C,
as otherwise the makespan $f in this case is strictly larger thafi; contradicting the definition of).

Let oy < o be such that; > CKI ando is larger than the speed of the previous machine befanghe
sorted list of machines, if such a machine exists. Then, thleespan of5; for the speedr of i remainsCy
contradicting the minimality of. Let C'; be the makespan of an optimal solutinfound by the algorithm
where the speed dfis s;. Then,Cy < C - Z since otherwises is a strictly better solution for speeg
of i, because even if machines swap locations the machine ig pasition is slower by no more tha;!;in.

Denote bylV’ the work ofi in Sy. We havelW’ < Cs - s, < C - 0 = W, and the claim follows.
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