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Abstract

In view of solving nonsmooth and nonconvex problems involving complex constraints (like
standard NLP problems), we study general maximization-minimization procedures produced
by families of strongly convex sub-problems. Using techniques from semi-algebraic geometry
and variational analysis —in particular Lojasiewicz inequality— we establish the convergence
of sequences generated by this type of schemes to critical points.

The broad applicability of this process is illustrated in the context of NLP. In that case
critical points coincide with KKT points. When the data are semi-algebraic or real analytic
our method applies (for instance) to the study of various SQP methods: the moving balls
method, S/*QP, ESQP. Under standard qualification conditions, this provides —to the best
of our knowledge— the first general convergence results for general nonlinear programming
problems. We emphasize the fact that, unlike most works on this subject, no second-order
conditions and/or convexity assumptions whatsoever are made. Rate of convergence are
shown to be of the same form as those commonly encountered with first order methods.
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1 Introduction

Many optimization methods consist in approximating a given problem by a sequence of simpler
problems that can be solved in closed form or computed fast, and which eventually provide a
solution or some acceptable improvement. From a mathematical viewpoint some central ques-
tions are the convergence of the sequence to a desirable point (e.g. a KKT point), complexity
estimates, rates of convergence. For these theoretical purposes it is often assumed that the
constraints are simple, in the sense that their projection is easy to compute (i.e. known through
a closed formula), or that the objective involve nonsmooth terms whose proximal operators are
available (see e.g. Combettes and Pesquet (2011) [I8], Attouch et al. (2010) [3], Attouch et al.
(2013) []). An important challenge is to go beyond this proz friendly ) setting and to address
mathematically the issue of nonconvex nonsmooth problems presenting complex geometries.
The richest field in which these problems are met, and which was the principal motivation to
this research, is probably “standard nonlinear programming” in which KKT points are generally
sought through the resolution of quadratic programs of various sorts. We shall refer here to
these methods under the general vocable of SQP methods. The bibliography on the subject
is vast, we refer the readers to Bertsekas (1995) [8], Nocedal and Wright (2006) [38], Gill and

'A term we borrow from Cox et al. recent developments (2013) [19]



Wong (2012) [28], Fletcher et al. (2002) [25] (for instance) and references therein for an insight.
Although these methods are quite old now —the pioneering work seems to originate in the PhD
thesis of Wilson [47] in 1963— and massively used in practice, very few general convergence or
complexity results are available. Most of them are local and are instances of the classical case
of convergence of Newton’s method (@) Fletcher et al. (2002) [24], Bonnans et al. (2003) [13],
Nocedal and Wright (2006) [38]. Surprisingly the mere question “are the limit points KKT
points?” necessitates rather strong assumptions and/or long developments — see Bonnans et al.
(2003) [13, Theorem 17.2] or Burke and Han (1989) [14], Byrd et al. (2005) [15], Solodov (2009)
[45] for the drawbacks of “raw SQP” in this respect, see also Bertsekas (1995) [8], Bonnans et al.
(2003) [13] for some of the standard conditions/corrections/recipes ensuring that limit points
are KKT.

Works in which actual convergence (or even limit point convergence) are obtained under
minimal assumptions seem to be pretty scarce. In [26] (2003), Fukushima et al. provided
a general SQCQP method (ﬁ) together with a convergence result in terms of limit points, the
results were further improved and simplified by Solodov (2004) [44]. More related to the present
work is the contribution of Solodov (2009) [45], in which a genuinely non-trivial proof for a SQP
method to eventually provide KKT limit points is given. More recently, Auslender (2013) [5]
addressed the issue of the actual convergence in the convex case by modifying and somehow
reversing the basic SQP protocol: “the merit function” (see Han (1977) [29], Powell (1973) [41])
is directly used to devise descent directions as in Fletcher’s pioneering S¢'QP method (1985)
[23]. In this line of research one can also quote the works of Auslender et al. (2010) [6] on the
“moving balls” method — another instance of the class of SQCQP methods.

Apart from Auslender (2013) [5], Auslender et al. (2010) [6], we are not aware of other results
providing actual convergence for general smooth convex functions (@) After our own unfruitful
tries, we think this is essentially due to the fact that the dynamics of active/inactive constraints
is not well understood — despite some recent breakthroughs Lewis (2002) [33], Wright (2003)
[48], Hare and Lewis (2004) [30] to quote a few. In any cases “usual” methods for convergence
or complexity fail and to our knowledge there are very few other works on the topic. In the
nonconvex world, the recent advances of Cartis et al. (2014) [16] are first steps towards a
complexity theory for NLP. Since we focus here on convergence our approach is pretty different
but obviously connections and complementarities must be investigated.

Let us describe our method for addressing these convergence issues. Our approach is three-

fold:

— We consider nonconvex, possibly nonsmooth, semi-algebraic/real analytic data; we actu-
ally provide results for definable sets. These model many, if not most, applications.

— Secondly, we delineate and study a wide class of majorization-minimization methods for
nonconvex nonsmooth constrained problems. Our main assumption being that the proce-
dures involve locally Lipschitz continuous, strongly convex upper approrimations.

Under a general qualification assumption, we establish the convergence of the process.
Once more, nonsmooth Kurdyka-Lojasiewicz (KL) inequality (Lojasiewicz (1963) [34],
Kurdyka (1998) [32]) appears as an essential tool.

— Previous results are applied to derive convergence of SQP methods (Fletcher’s S/'QP
(1985) [23], Auslender (2013) [5]) and SQCQP methods (moving balls method Auslender

*Under second-order conditions and assuming that no Maratos effect [36] troubles the process.

3Sequential quadratically constrained quadratic programming.

4We focus here on SQP methods but alternative methods for treating complex constraints are available, see
e.g. Cox et al. (2013) [19] and references therein.



et al. (2010) [6]). To the best of our knowledge, these are the first general nonconvex
results dealing with possibly large problems with complex geometries — which are not
“prox-friendly”. Convergence rates have the form O (k%) with v > 0.

We describe now these results into more details which will also give an insight at the main
results obtained in this paper.

Majorization-minimization procedures (MMP). These methods consist in devising at
each point of the objective a simple upper model (e.g. quadratic forms) and to minimize/update
these models dynamically in order to produce minimizing/descent sequences. This principle can
be traced back, at least, to Ortega (1970) [40] section 8.3.(d)] and have found many applications
since then, mostly in the statistics literature Dempster et al. (1977) [20], but also in other
branches like recently in imaging sciences Chouzenoux et al. (2013) [I7]. In the context of
optimization, many iterative methods follow this principle, see Beck and Teboulle (2010) [7],
Mairal (2013) [35] for numerous examples —and also Noll (2014) [39] where KL inequality is
used to solve nonsmooth problems using a specific class of models. These procedures, which
we have studied as tools, appeared to have an interest for their own sake. Our main results in
this respect are self-contained and can be found in Sections Bl and @l Let us briefly sketch a
description of the MM models we use.

Being given a problem of the form

(2) min{f(x):xe.@}

where f : R” — R is a semi-algebraic continuous function and & is a nonempty closed semi-
algebraic set, we define at each feasible point x, local semi-algebraic convex models for f and
9, respectively h(z,-) : R"™ — R — which is actually strongly convex— and D(x) C R™. We then
iteratively solve problems of the form

Tp1 = pxg) = argmin{h(xk,y) TRS D(wk)}, keN.

An essential assumption is that of using upper approzimations (ﬁ) D(z) C & and h(x,-) > f(-)
on D(z). When assuming semi-algebraicity of the various ingredients, convergence cannot
definitely be seen as a consequence of the results in Attouch et al. (2013) [4], Bolte et al.
(2013) [12]. This comes from several reasons. First, we do not have a “proper (sub)gradient
method” for (£) as required in the general protocol described in Attouch et al. (2013) [4].
A flavor of these difficulty is easily felt when considering SQP. For these methods there is, at
least apparently, a sort of an unpredictability of future active/inactive constraints: the descent
direction does not allow to forecast future activity and thus does not necessarily mimic an
adequate subgradient of f + ip or of similar aggregate costs (ﬁ) Besides, even when a better
candidate for being the descent function is identified, explicit features inherent to the method
still remain to be dealt with.

The cornerstone of our analysis is the introduction and the study of the value (improve-
ment) function F(x) = h(x,p(x)). It helps circumventing the possible anarchic behavior of
active/inactive constraints by an implicit inclusion of future progress within the cost. We es-
tablish that the sequence x; has a behavior very close to a subgradient method for F', see
Section [4.3]

Our main result is an asymptotic alternative, a phenomena already guessed in Attouch et
al. (2010) [3]: either the sequence zj, tends to infinity, or it converges to a critical point. As a

SHence the wording of majorization-minimization method
;5 denotes the indicator function as defined in Section A1.1]



consequence, we have convergence of the sequence to a single point whenever the problem (ﬁ)
is coercive.

Convergence of SQP type methods. The previous results can be applied to many algo-
rithms (see e.g. Attouch et al. (2010) [3], Bolte et al. (2013) [12], Chouzenoux et al. (2013)
[17]), but we concentrate on some SQP methods for which such results are novel. In order to
avoid a too important concentration of hardships, we do not discuss here computational issues
of the sub-steps, the prominent role of step sizes, the difficult question of the feasibility of
sub-problems, we refer the reader to Fletcher (2000) [24], Bertsekas (1995) [8], Gill and Wong
(2012) [28] and references therein. We would like also to emphasize that, by construction,
the methods we investigate may or may not involve hessians in their second-order term but
they must systematically include a fraction of the identity as a regularization parameter, a la
Levenberg-Marquardt (see e.g. Nocedal and Wright (2006) [38]). Replacing Hessian terms by
their regularization or by fractions of the identity is a common approach to regularize ill-posed
problems; it is also absolutely crucial when facing large scale problems see e.g. Gill et al. (2005)
[27], Svanberg (2002) [46].

The aspects we just evoked above have motivated our choice of Auslender SQP method and
of the moving balls method which are both relatively “simple” SQP/SQCQP methods. To show
the flexibility of our approach, we also study a slight variant of S/'QP, Fletcher (1985) [23].
This method, also known as “elastic SQP”, is a modification of SQP making the sub-problems
feasible by the addition of slack variables. In Gill et al. (2005) [27] the method has been adapted
and redesigned to solve large scale problems (SNOPT); a solver based on this methodology is
available.

For these methods, we show that a bounded sequence must converge to a single KK'T point,
our results rely only on semi-algebraic techniques and do not use convexity nor second order
conditions. The semi-algebraic assumption can be relaxed to definability or local definability
(tameness, see Ioffe (2009) [31] for an overview). We also establish that these methods come
with convergence rates similar to those observed in classical first-order method (Attouch and
Bolte (2009) [2]). Finally, we would like to stress that the analysis relies on geometrical tools
which have a long history in the study of convergence of dynamical systems of gradient type,
see for e.g. Lojasiewicz (1963) [34], Kurdyka (1998) [32].

Organization of the paper. Section 2 presents our main results concerning SQP methods.
In Section B we describe an abstract framework for majorization-minimization methods that
is used to analyze the algorithms presented in Section 2l We give in particular a general result
on the convergence of MM methods. Definitions, proofs and technical aspects can be found
in Section @ Our results on MM procedures and SQP are actually valid for the broader class
of real analytic or definable data, this is explained in Section Bl The Appendix (Section [@])
is devoted to the technical study of SQP methods, it is shown in particular how they can be
interpreted as MM processes.

2 Sequential quadratic programming for semi-algebraic and tame
problems

We consider in this section problems of the form:
(Pxep)  mingern  f(2)
(1) s.t. filz) <0,i=1,....,m
reQR



where each f; is twice continuously differentiable and @) is a nonempty closed convex set. @
should be thought as a “simple” set, i.e., a set whose projection is known in closed form (or
“easily” computed), like for instance one of the archetypal self dual cone R}, second order cone,
positive semi-definite symmetric cone (E]), but also an affine space, an ¢! ball, the unit simplex,
or a box. Contrary to @, the set

F ={z, filz) <0, i=1,...,m},

has, in general, a complex geometry and its treatment necessitates local approximations in the
spirit of SQP methods. Specific assumptions regarding coercivity, regularity and constraint
qualification are usually required in order to ensure correct behavior of numerical schemes, we
shall make them precise for each method we present here. Let us simply recall that under these
assumptions, any minimizer x of (ﬁ NLP) must satisfy the famous KKT conditions:

(2) era fl(CU)SO,,fm(x)SO,
(3) IA1>0,..., A >0,

(4) V@) + > AiVfi(z) + No(z) 30,
(5) )\Zfl(x) = O,Vi = 1, e, My

where Ng(x) is the normal cone to @ at x (see Section A.).
SQP methods assume very different forms, we pertain here to three “simple models” with
the intention of illustrating the versatility of our approach (but other studies could be led):

— Moving balls method: an SQCQP method,
— ESQP method: a merit function approach with £*° penalty,

— S'QP method: a merit function approach with ¢! penalty.

2.1 A sequentially constrained quadratic method: the moving balls method

This method was introduced in Auslender et al. (2010) [6] for solving problems of the form
of (@) with @ = R™. The method enters the framework of sequentially constrained quadratic
problems. It consists in approximating the original problem by a sequence of quadratic problems
over an intersection of balls. Strategies for simplifying constraints approximation, computations
of the intermediate problems are described in Auslender et al. (2010) [6], we only focus here on
the convergence properties and rate estimates. The following assumptions are necessary.

Regularity: The functions

(6) foftyee s fm R* 5 R

are C?, with Lipschitz continuous gradients. For each i = 1,...,m, we denote by L; > 0
some Lipschitz constants of V f; and by L > 0 a Lipschitz constant of V f.

Mangasarian-Fromovitz Qualification Condition (MFQC): For z in .%, set I(x) = {i =
1,...,m: fi(x) = 0}. MFQC writes

(7) Vo € %, 3d € R" such that (Vf;(x),d) < 0,Vi € I(z).

"Computing the projection in that case requires to compute eigenvalues, which may be very hard for large
size problems



Compactness: There exists a feasible xg € % such that
(8) {z e R": f(z) < f(xo)} is bounded.
Remark 1 As presented in Auslender et al. (2010) [6], the moving ball method is applicable to

functions that are only C* with Lipschitz continuous gradient. The assumption made in (@) is
therefore slightly more restrictive than the original presentation of Auslender et al. (2010) [6].

The moving balls method is obtained by solving a sequence of quadratically constrained
problems.

Moving balls method

Step1l g€ .
Step 2 Compute 41 solution of
iy F@r) + (Vf(2r),y — ) + Sy — 2l

st filwr) +(Viler),y — zp) + Slly —al]> <0,i=1...m

The algorithm can be proven to be well defined and to produce a feasible method provided
that xq is feasible, i.e.,
T € F ,Vk > 0.

These aspects are thoroughly described in Auslender et al. (2010) [6].

Theorem 2.1 (Convergence of the moving balls method) Recall that Q@ = R™ and as-
sume that the following conditions hold

— The functions f, f1,..., fm are semi-algebraic,
— Lipschitz continuity conditions (),
— Mangasarian-Fromovitz qualification condition (1),
- boundedness condition (8],
— feasibility of the starting point xg € .
Then,

(i) The sequence {xy}ren defined by the moving balls method converges to a feasible point x
satisfying the KKT conditions for the nonlinear programming problem («@NLP)-

(ii) FEither convergence occurs in a finite number of steps or the rate is of the form:
(@) ||z, — zo|l = O(¢"), with g € (0,1),
() ||z — 2| = O (35), with v > 0.

2.2 Extended sequential quadratic method

ESQM method (and S¢'QP) grounds on the well known observation that an NLP problem can
be reformulated as an “unconstrained problem” involving an exact penalization. Set fo = 0
and consider

) iy { 1(0) 45 goxfio) )

where [ is positive parameter. Under mild qualification assumptions and for g sufficiently
large, critical points of the above are KKT points of the initial nonlinear programming (L@NLP).
Building on this fact, ESQM is devised as follows:



e At a fixed point x (non necessarily feasible), form a model of (@) such that:

— complex terms f, f1,..., f;n are linearized,

— a quadratic term gHy — x||? is added both for conditioning and local control,
e minimize the model to find a descent direction and perform a step of size A > 0,
e both terms A, 8 are adjusted online:

— ) is progressively made smaller to ensure a descent condition,

— [ is increased to eventually reach a threshold for exact penalization.

We propose here a variation of this method which consists in modifying the quadratic penalty
term instead of relying on a line search procedure to ensure some sufficient decrease. For a fixed
z in R", we consider a local model of the form:

hale.y) = f(2) + (VS @)y =) + B max {fi(z) +(Vi(@).y— 1)}

A N
+ CEBD 1y a2 4 i),

where (3 is a parameter and A\, \ > 0 are fixed.

As we shall see this model is to be iteratively used to provide descent directions and ulti-
mately KKT points. Before describing into depth the algorithm, let us state our main assump-
tions (recall that # ={z € R": fi(z) <0,Vi=1,...,m}).

Regularity: The functions
(10) Hfofm R >R

are C?, with Lipschitz continuous gradients. For each i = 1,...,m, we denote by L; > 0
some Lipschitz constants of V f; and by L > 0 a Lipschitz constant of V f. We also assume
that the step size parameters satisfy

(11) A>Land N > x| L;.
Compactness: For all real numbers u1, ..., ty,, the set

(12) {r €@, filx) <p, i=1,...,m} is compact.
Boundedness:

(13) érelgf(x) > —00.

Qualification condition: The function

‘max f; +ig

i=1,...m

has no critical points on the set {x eQ:Ji=1,....,m, fi(z) > O}.
Equivalently, Vo € {x € @ : 3i = 1,...,m, fi(x) > 0}, there cannot exist {u;};c; such
that

(14) u; > 0, Zul =1, Z (u;Vfi(x),z—z) >0, Vz € Q,

iel i€l
where I = {j > 0, fj(x) = maXi:l,...,m{fi(x)}}-

8



Remark 2 (a) Set J = {1,...,m}. The intuition behind this condition is simple:
max;cy [ +i¢ is assumed to be (locally) “sharp” and thus S max;c (0, f;) + ig resembles
ignz for big f.

(b) The condition (I4]) implies the generalized Mangasarian-Fromovitz condition (some-
times called Robinson condition):

Vee@QN.Z,Jye\{x}, (Vfi(x),y—z) <0,Vi=1,...,m, such that f;(z) =0.

(c) Assume Q = R™. The qualification condition (I4]) implies that the feasible set is
connected, which is a natural extension of the more usual convexity assumption. [Proof.
Argue by contradiction and assume that the feasible set has at least two connected com-
ponents. Take two points a, b in each of these components. The function g = max{f; : i =
1,...,m} satisfies g(a) = g(b) = 0. Using the compactness assumption (I2]), the condi-
tions of the mountain pass theorem (Shuzhong (1985) [43] Theorem 1]) are thus satisfied.
Hence, there exists a critical point ¢ such that g(c) > 0 (strictly speaking, this is a Clarke
critical point, but in this specific setting, this corresponds to the notion of crtitical point
we use un this paper see Rockafellar and Wets (1998) |42, Theorem 10.31]). Thence c¢ is
non feasible and the criticality of ¢ contradicts our qualification assumption.]

Let us finally introduce feasibility test functions

(15)

testi(z,y) = fi(x) + (Vfi(z),y — x)

foralli=1,...,m and z,y in R™.

Remark 3 (Online feasibility test) We shall use the above functions for measuring the
quality of B,. These tests function will also be applied to the analysis of S¢(*QP. Depend-
ing on the information provided by the algorithm, other choices could be done, as for instance

Ly,

testi(z,y) = fi(z) + (Vfi(z),y — z) + ||y — z|| or simply test;(z,y) = fi(y).

We proceed now to the description of the algorithm.

Extended Sequential Quadratic Method (ESQM)

Step 1 Choose xg € Q, 5y, 6§ >0

Step 2  Compute the unique solution x1; of mingern hg, (T, y),
i.e. solve for y (and s) in:
min f(zx) + (Vf (2x), y = 2) + Brs + S ly — ]

st.  filzk) +(Vii(zr),y —ax) <s,i=1...m,
s>0
y € Q.
Step 3 If test;(zg, xp+1) < 0 for all i =1,...,m, then Bxy1 = B,
otherwise fBi+1 = Bk + 9

Remark 4 (a) Working with quadratic terms involving Hessians in hg, is possible provided
that local models are upper approximations (one can work for instance with approximate func-
tions & la Levenberg-Marquardt Nocedal and Wright (2006) [38]).

(b) The algorithm presented in Auslender (2013) [5] is actually slightly different from the one
above. Indeed, the quadratic penalty term was there simply proportional to § and the step
sizes were chosen by line search. Original ESQP could thus be seen as a kind of backtracking



version of the above method.

(c) Let us also mention that many updates rules are possible, in particular rules involving upper
bounds of local Lagrange multipliers. The essential aspect is that exact penalization is reached
in a finite number of iterations.

(d) Observe that the set @ of simple constraints is kept as is in the sub-problems.

The convergence analysis carried out in Auslender (2013) [5] can be extended to our setting,
leading to the following theorem (note we do not use the semi-algebraicity assumptions).

Theorem 2.2 (Auslender (2013) [5]) Assume that the following properties hold
— Lipschitz continuity conditions (I0),

— steplength conditions (),

qualification assumption (I4),
— boundedness assumptions (I2), (I3),

then the sequence of parameters By stabilizes after a finite number of iterations kg and all cluster
points of the sequence {xy}ren are KKT points of the nonlinear programming problem (@NLP).

The application of the techniques developed in this paper allow to prove a much stronger
result:

Theorem 2.3 (Convergence of ESQM) Assume that the following conditions hold
— The functions f, f1,..., fm and the set Q) are real semi-algebraic,
— Lipschitz continuity condition (I0),
— steplength condition (LI,
— qualification assumption (I4]),
— boundedness assumptions (I2), (I3),
Then,

(i) The sequence {xy}ren generated by (ESQM) converges to a feasible point xo satisfying
the KKT conditions for the nonlinear programming problem («@NLP)-

(ii) FEither convergence occurs in a finite number of steps or the rate is of the form:
(@) ||z, — zo|l = O(¢"), with g € (0,1),
() ||z — 2| = O (3), with v > 0.

This result gives a positive answer to the “Open problem 3” in Auslender (2013) [5, Section
6] (with a slightly modified algorithm).

10



2.3 S/'QP aka “elastic sequential quadratic method”

The SC'QP is an ¢! version of the previous method. It seems to have been introduced in the
eighties by Fletcher[23]. Several aspects of this method are discussed in Fletcher (2000) [24];
see also Gill et al. (2005) [27] for its use in the resolution of large size problems (SNOPT
algorithm). The idea is based this time on the minimization of the ¢! penalty function:

m

(16) min f(z)+ B [ (2)

z€eQ =0

where [ is a positive parameter and where we have set a™ = max(0,a) for any real number a.
Local models are of the form:

hs(x,y)
= I+ I~ 48 (i) + (Vi) y — )
=1
+ BP0y a2 g, ey R,

where as previously A, N > 0 are fixed parameters. Using slack variables the minimization of
hg(x,.) amounts to solve the problem

min  f(x) + (Vf(x),y —2) + B0 si + Oy — o2
st. filzx) +(Vfilx),y—x)<s;,i=1...m
S1y.-+43,8m > 0

yE Q.

Once again, the above is very close to the “usual” SQP step, the only difference being the
elasticity conferred to the constraints by the penalty term.
The main requirements needed for this method are quasi-identical to those we used for

ESQP: we indeed assume ([I0), (I4)), (I2)), ([I3]), while (IIJ) is replaced by:

(17) A>Land X > L
=1

The latter is more restrictive in the sense that smaller step lengths are required, but on the
other hand this restriction comes with more flexibility in the relaxation of the constraints.

In the description of the algorithm below, we make use the test functions (I5) described in
the previous section.

S/ QP

Step 1 Choose zg € Q, 8y, 6 >0
Step 2 Compute the unique solution x; of mingegrn hg, (T, ),
i.e. solve for y (and s) in:
min [ (z) +(Vf(z),y o) + B Ty s+ CTE Iy — a2
st. filz) +(Vfi(x),y—x) <s;,i=1...m
81y, 8m = 0
y e Q.
Step 3  If test;(zg, xp11) <0 forall i =1,...,m, then Bxy1 = B,
otherwise 11 = Bk + 9

11



The convergence in terms of limit points and for the sequence S is similar to that of previous
section. In this theorem semi-algebraicity is not necessary.

Theorem 2.4 Assume that the following properties hold
— Lipschitz continuity conditions (I0),
— steplength conditions (1),
— qualification assumption (I4]),
— boundedness assumptions ([12)), (I3,

then the sequence of parameters By stabilizes after a finite number of iterations kg and all cluster
points of the sequence {xy}ren are KKT points of the nonlinear programming problem («@NLP)-

We obtain finally the following result:
Theorem 2.5 (Convergence of S/'QP) Assume that the following conditions hold
— The functions f, f1, ..., fm and the set Q) are semi-algebraic,
— Lipschitz continuity condition (L0,
— steplength condition (IT),
— qualification assumption (I4)),
— boundedness assumptions ([12]), (I3).
Then,

(i) The sequence {xy}ren generated by (ESQM) converges to a feasible point xo satisfying
the KKT conditions for the nonlinear programming problem («@NLP)-

(ii) FEither convergence occurs in a finite number of steps or the rate is of the form:
(a) [lzg — zoo|l = O(¢"), with q € (0,1),
() ||z — 2| = O (35), with v > 0.

3 Majorization-minimization procedures

3.1 Sequential model minimization

We consider a general problem of the form
(18) (#)  win{f@):ze 9}

where f: R™ — R is a continuous function and & is a nonempty closed set.

In what follows we study the properties of majorization-minimization methods. At each
feasible point, z, local convex models for f and Z are available, say h(z,:) : R® — R and
D(z) C R™; we then iteratively solve problems of the form

Tpt1 € argmin{h(wk,y) (Y € D(mk)}

In order to describe the majorization-minimization method we study, some elementary no-
tions from variational analysis and semi-algebraic geometry are required. However, since the
concepts and notations we use are quite standard, we have postponed their formal introduction
in Section [£1] page [Tl We believe this contributes to a smoother presentation of our results.

12



3.2 Majorization-minimization procedures

For the central problem at stake
(2) mln{f(x) tx € .@}
we make the following standing assumptions

f:R™ — R is locally Lipschitz continuous, subdifferentially regular and semi-algebraic,
() inf{f(x):x€9}>—oo,

2 C R™ is nonempty, closed, regular and semi-algebraic.

Remark 5 (Role of regularity) The meaning of the terms subdifferential regularity /regularity
is recalled in the next section. It is important to mention that these two assumptions are only
used to guarantee the good behavior of the sum rule (and thus of KKT conditions)

O(f +ig) (x) = 0f(z) + Ny(z), z € 2.

One could thus use alternative sets of assumptions, like: f is C' and D is closed (not necessarily
regular).

A critical point z € R" for (&) is characterized by the relation O(f +ig)(z) 3 0, i.e. using
the sum rule:

Of(z) + Ny(z) 50 (Fermat’s rule for constrained optimization).

When & is a nonempty intersection of sublevel sets, as in Section [2] it necessarily satisfies the
assumptions (5” ) (see Appendix). Besides, by using the generalized Mangasarian-Fromovitz
qualification condition at z, one sees that Fermat’s rule exactly amounts to KKT conditions
(see Proposition A.T]).

Inner convex constraints approximation

Constraints are locally modeled at a point x € R™ by a subset D(z) of R". One assumes that
D : R" = R" satisfies

domD D 2,

D(z) C 2 and Np(y) (z) C Ng(z),Vr € 9,

D has closed convex values,

D is continuous (in the sense of multivalued mappings).

(19)
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Local strongly convex upper models for f
Fix p > 0.
The family of local models
b { R*"xR" — R
(z,y) — hlz,y)

satisfies:

(i) h(xz,z) = f(z) for all x in 2,
(i1) Oyh(z,y)|y=c C Of(x) for all x in 2,
(i4i) For all z in 2, h(x,y) > f(y),Vy € D(x),

(iv) h is continuous. For each fixed z in &, the function h(z,-) is p strongly
convex.

Example 1 (a) A typical, but important, example of upper approximations that satisfy these
properties comes from the descent lemma (Lemma4]). Given a C! function f with L ¢-Lipschitz
continuous gradient we set

W) = F(@) + (V1 @),y— ) + Lle —

Then h satisfies all of the above (with 2 = D(z) = R" for all z).
(b) SQP methods of the previous section provide more complex examples.

A qualification condition for the surrogate problem

We require a relation between the minimizers of y — h(x,y) and the general variations of h.
Set

for all z,y in R", and iL(x, y) = +oo whenever D(x) is empty.

For any compact C' C R™, there is a constant K (C'), such that,

(21) 2€92NnC,ye D) NC and (v,0) € dh(z,y) = ||v]| < K(O)||z — yl|-
The iteration mapping and the value function

For any fixed x in &, we define the iteration mapping as the solution of the sub-problem

(22) (,@(x)) min {h(:ﬂ,y) Ly € D(:U)}
that is

(23) p(z) = argmin{h(:n,y) Ly € D(:r:)}.
We set for all  in 2,

(24) val (z) = value of P(z) = h(z, p(x)),

and val () = 400 otherwise.

14



Remark 6 (a) The restriction “z belongs to 2”7 is due to the fact that our process is based
on upper approximations and thus it is a feasible model (i.e. generating sequences in Z). Note
however that this does not mean that non feasible methods cannot be studied with this process
(see ESQP and S/'QP in the previous section) .

(b) Recalling Example [I] assuming further that D(z) = & for all z, and denoting by Py the
projection onto Z, the above writes

p(z) = Py (x - L%wm) _

With these simple instances for h and D, we recover the gradient projection iteration mapping.
Note also that for this example Oh(x,y) = (v,0) implies that

v= (LI, = V*f(2))(z — p()).

Thus the qualification assumption is trivially satisfied whenever f is C2.

Our general procedure can be summarized as:

Majorization-minimization procedure (MMP)

Assume the local approximations satisfy the assumptions:
e inner constraints approximation (I9)),
e upper objective approximation (20,
e qualification conditions (21]),

Let z¢ be in Z and define iteratively

Th+1 = p(xk)’

where p is the iteration mapping (23)).

Example 2 Coming back to our model example, (MMP) reduces simply to the gradient pro-
jection method

1
Tht1 = Py <mk — L—fo(xk)> , o € 9.

3.3 Main convergence result

Recall the standing assumptions (Y ) on (,@), our main “abstract” contribution is the following
theorem.

Theorem 3.1 (Convergence of MMP for semi-algebraic problems) Assume that the lo-
cal model pair (h,D(-)) satisfies:

— the inner convex constraints assumptions (19),
— the upper local model assumptions 20,

— the qualification assumptions (21]),
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— the tameness assumptions: f,h and D are real semi-algebraic.

Let xg € 2 be a feasible starting point and consider the sequence {xy}r=12, .. defined by
Zp+1 = p(ay). Then,

(I) The following asymptotic alternative holds

(i) either the sequence {xy}r=12, . diverges, i.e. ||zg| — +o0,

(ii) or it converges to a single point xo, such that
Of (o0) + Ng(2s) 2 0.

(1) In addition, when xy, converges, either it converges in a finite number of steps or the rate
of convergence is of the form:

(a) 2k — zoo]| = O(q"), with g € (0,1),
) ||z — 2| = O (35), with v > 0.

Remark 7 (Coercivity /Divergence) (a) If in addition [f < f(xo)] N D is bounded, the
sequence xj cannot diverge and converges thus to a critical point.

(b) The divergence property (I) — (i) is a positive result, a convergence result, which does not
correspond to a failure of the method but rather to the absence of minimizers in a given zone.

Theorem B.1] draws its strength from the fact that majorization-minimization schemes are
ubiquitous in continuous optimization (see Beck and Teboulle (2010) [7]). This is illustrated
with SQP methods but other applications can be considered.

The proof (to be developed in the next section) is not trivial but the ideas can be briefly
sketched as follows:

e Study the auxiliary function, the “value improvement function”:

72— R
F =val:
{ x—  h(z,p(z)).

e Show that there is a non-negative constants K such that sequence of iterates satisfies:
F(ag) + Kil|zg — zppa|* < flar) < Fapo)
e Show that for any compact C, there is a constant K5(C') such that if 3 € C, we have:
dist (0,0F (zx)) < K2(O)||zks1 — wil|-
e Despite the ezplicit type of the second inequality, one may use KL property (see Section [4.1])

and techniques akin to those presented in Bolte et al. (2013) [12], Attouch et al. (2013)
[4] to obtain convergence of the iterative process.

4 Convergence analysis of majorization-minimization procedures

This section is entirely devoted to the exposition of the technical details related to the proof of
Theorem [3.11
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4.1 Some concepts for nonsmooth and semi-algebraic optimization

We hereby recall a few definitions and concepts that structure our main results. In particular,
we introduce the notion of a subdifferential and of a KL function, which are the most crucial
tools used in our analysis.

4.1.1 Nonsmooth functions and subdifferentiation

A detailed exposition of these notions can be found in Rockafellar and Wets (1998) [42]. In
what follows, g denotes a proper lower semi-continuous function from R” to (—oo, +00] whose
domain is denoted and defined by domg = {x e R": g(z) < —i—oo}. Recall that g is called
proper if dom g # ().

Definition 1 (Subdifferentials) Let g be a proper lower semicontinuous function from R™
to (—oo, +0o0.

1. Let z € dom g, the Fréchet subdifferential of g at x is the subset of vectors v in R™ that
satisfy
9(y) — g(x) — (v, y — x)
[z =yl
When z € dom g, the Fréchet subdifferential is empty by definition. The Fréchet subdif-
ferential of g at x is denoted by 39(:6)

> 0.

liminf, ;. ,2z

2. The limiting subdifferential, or simply the subdifferential of g at x, is defined by the
following closure process:

Og(x) ={veR": Jz; = z,9(x;) = g(x),u, € 5g(xj),uj — v as j — 0o}
3. Assume g is finite valued and locally Lipschitz continuous. The function g is said to be
subdifferentially regular, if dg(x) = dg(x) for all z in R™.

Being given a closed subset C' of R", its indicator function ic : R™ — (—o00,+00] is defined as
follows
ic(z) =01if z € C, ic(x) = +o0 otherwise.

C' is said to be regular if dic(x) = dic(z) on C. In this case, the normal cone to C is defined
by the identity
Nc(x) = 8lc($),vx e R™

The distance function to C is defined as

dist (z,C) = min {||z — y : y € C}.

We recall the two following fundamental results.

Proposition 4.1 (Fermat’s rule, critical points, KKT points) We have the following ex-
tensions of the classical Fermat’s rule:

(i) When x is a local minimizer of g, then 0 € Og(x).
(ii) If x is a local minimizer of (ﬁ), under assumption (,7), then:

df(z) + No(z) 3 0.
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(iii) Assume further that 9 is of the form

2 ={z€Q: fi(x) <0,..., fm(x) <0},

where Q is closed, convexr and nonempty and fi,..., fm : R® = R are C' functions. For
xin P, set I(x) = {i: fi(x) = 0} and assume that there exists y € Q such that,

(Robinson QC) (Vfi(x),y —x) <0,Vi € I(x).
Then 2 1is reqular,

No(z) =< Y MVfi(x): A > 0,i € I(z) p + No(a),
i€l(x)

and critical points for (L@) are exactly KKT points of (L@)

Proof. (i) is Rockafellar and Wets (1998) [42, Theorem 10.1]). (ii) is obtained by using the
sum rule Rockafellar and Wets (1998) [42, Corollary 10.9]. For (iii), regularity and normal cone
expression follow from Rockafellar and Wets (1998) [42, Theorem 6.14] (Robinson condition
appears there in a generalized form). O

Recall that a convex cone L C R’} is a nonempty convex set such that R;L C L. Being
given a subset S of R”, the conic hull of S, denoted cone S is defined as the smallest convex
cone containing S. Since a cone always contains 0, cone () = {0}.

Proposition 4.2 (Subdifferential of set-parameterized indicator functions) Letni, no,
m be positive integers and g1, ..., gm : R™ x R" — R continuously differentiable functions. Set

Czx)={y e R™: gj(x,y) <0, Vi=1,...,m} CR"™, VzeR",

and for any y € C(x) put I(x,y) = {i = 1,...,m : g;(x,y) = 0}, the set I(x,y) is empty
otherwise. Assume that the following parametric Mangasarian-Fromovitz qualification condition
holds:

V(z,y) € R™ x R™ 3d € R™ x R™, (Vg;(z,y),d) <0,Vi € I(z,y).

Consider the real extended-valued function H : R™ x R™ — (—o0, +o0| defined through
ic()(y) whenever C(x) is nonempty
H(z,y) =

+ oo otherwise.
Then the subdifferential of H is given by
(25) OH (z,y) = cone{Vy;(z,y) : i € I(z,y)}.

Proof. For any (z,y) in dom H, set G(z,y) = (1(z,y),...,9m(z,y)). Then H(z,y) =
irm (G(z,y)) and H is the indicator of the set C' = {(z,y) € R™ x R : G(z,y) € R™}. We
will justify the application of the last equality of Rockafellar and Wets (1998) [42, Theorem
6.14]. We fix (z,y) in dom H such that G(z,y) < 0 and we set I = I(z,y). The abstract
qualification constraint required in Rockafellar and Wets (1998) [42, Theorem 6.14] is equivalent
toX; >0,> ,c; AiVgi(z,y) = 0= A; = 0. Using Hahn-Banach separation theorem this appears
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to be equivalent to the parametric MFQC condition. The set R™ is regular and we can apply
Rockafellar and Wets (1998) [42, Theorem 6.14] which assesses that C' is regular at (z,y). In
this case, the normal cone of C' and the sub-differential of H coincide and are given by

OH(z,y) = {Z AiVygi(z,y): A € NRm(G(x,y))} = {Z AiVgi(x,y): A > O} .

i=1 el

4.1.2 Multivalued mappings
A multivalued mapping F : R™ =2 R™ maps a point = in R™ to a subset F(z) of R™. The set
dom F := {x € R" : F(x) # 0}
is called the domain of F'. For instance the subdifferential of a lsc function defines a multivalued
mapping 0f : R = R™.
Several regularity properties for such mappings are useful in optimization; we focus here

on one of the most natural concept: set-valued continuity (see e.g. Dontchev and Rockafellar
(2009) [21), Section 3.B, p. 142]).

Definition 2 (Continuity of point-to-set mappings) Let F' : R” = R™ and z in dom F'.
(i) F is called outer semi-continuous at x, if for each sequence x; — = and each sequence y; — y
with y; € F(xj), we have y € F(z).

(ii) F is called inner semi-continuous at x, if for all z; — « and y € F(x) there exists a sequence
yj € F(x;), after a given term, such that y; — y.

(iii) F is called continuous at z if it is both outer and inner semi-continuous.

4.1.3 The KL property and some facts from real semi-algebraic geometry

KL is a shorthand here for Kurdyka-Lojasiewicz. This property constitutes a crucial tool in
our convergence analysis. We consider the nonsmooth version of this property which is given
in Bolte et al. (2007) [11, Theorem 11] — precisions regarding concavity of the desingularizing
function are given in Attouch et al. (2010) [3, Theorem 14].

Being given real numbers a and b, we set [a < g < b ={z € R": a < g(x) < b}. The sets
[a < g <], [g<al... are defined similarly.

For a € (0,+0o0], we denote by ®, the class of functions ¢ : [0,a) — R that satisfy the
following conditions

(a) ©(0) =0;
(b) ¢ is positive, concave and continuous;
(c) ¢ is continuously differentiable on (0, «), with ¢’ > 0.

Definition 3 (KL property) Let g be a proper lower semi-continuous function from R™ to
(_007 +OO] :

(i) The function g is said to have the Kurdyka-Lojaziewicz (KL) property at T € dom dg, if
there exist a € (0, 400], a neighborhood V' of z and a function ¢ € ®,, such that

(26) ¥'(g(x) — g(x)) dist (0,0g(x)) > 1
forallz €e VNig(z) < g(x) < al.
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(ii) The function g is said to be a KL function if it has the KL property at each point of
dom Og.

KL property basically asserts that a function can be made sharp by a reparameterization of its
values. This appears clearly when g is differentiable and g(Z) = 0, since in this case (26]) writes:

IV(pog) @l =1, YeeVno<gl) <al.

The function ¢ used in this parameterization is called a desingularizing function. As we shall
see such functions are ubiquitous in practice, see Attouch et al. (2010) [3], Attouch et al. (2013)

4.
When ¢ is of the form ¢(s) = cs'~? with ¢ > 0 and 6 € [0,1), the number @ is called a
Lojasiewicz exponent.

Definition 4 (Semi-algebraic sets and functions)

(i) A set A C R™ is said to be semi-algebraic if there exist a finite number of real polynomial
functions g;;, h;;: R™ — R such that

P oq
A=y eR": g;(y) =0,hi;(y) > 0}
i=1j=1
(ii) A mapping G : R™ = R™ is a said to be semi-algebraic if its graph

graph G = {(:U,y) ERM™™: y € G(m)}

is a semi-algebraic subset of R,

Similarly, a real extended-valued function g : R™ — (—o0,+00] is semi-algebraic if its
graph {(z,y) e R""!: y = g(x)} is semi-algebraic.

For this class of functions, we have the following result which provides a vast field of appli-
cations for our method — see also Section [0

Theorem 4.3 (Bolte et al. (2007) [11], Bolte et al. (2007) [10]) Let g be a proper lower
semi-continuous function from R™ to (—oo, +o0]. If g is semi-algebraic, then g is a KL function.

4.2 An auxiliary Lyapunov function: the value function
Basic estimations

Lemma 4.4 (Descent lemma) Let g : R” — R be a differentiable function with L-Lipschitz
continuous gradient. Then for all x and y in R,

L
l9(v) = 9(2) = (Vg(@),y — 2)| < Slle = y|
The proof is elementary, see e.g. Nesterov (2004) [37, Lemma 1.2.3].

Lemma 4.5 (Quadratic growth of the local models)

Fix x in 9. Then: h(z,y) — h(z,p(x)) > HHy —p(@)||*, Vye€ D(z).
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Proof. Since y — h(z,y) is p strongly convex, the function

D(@) 3y = hw,y) = Slly — p(@)|

is convex. Since p(z) minimizes y — h(x,y) over D(z), it also minimizes y — h(z,y) — 5|y —
p(z)||%. This follows by writing down the first order optimality condition for p(z) (convex set-
ting) and by using the convexity of y — h(z,y)—5||ly—p(z)| |2. The inequality follows readily. OJ

Lemma 4.6 (Descent property) For all x in 2,

@7) @) =h(e.a) 2 ha,p) + Slle = p@)|P = Fp@) + Sz - p@)]?

Proof. From Lemma 45 we have for all 2 in & that
H 2
h(z,z) = h(z, p(x)) 2 S llz = p@)[I".
Therefore from the fact that h(z,-) is an upper model for f on D(z), we infer

() f(@)=hiz.2) 2 he,p@) + Sl - p@)? 2 F) + Glle - p@)]?

Iteration mapping
For any fixed x in &, we recall that the iteration mapping is defined through:
p(z) := argmin{h(z,y) : y € D(z)}.

Lemma 4.7 (Continuity of the iteration mapping) The iteration function p is continu-

ous (on 9).

Proof. Let x be a point in & and let z; € & be a sequence converging to . Fix y € D(z) and
let y; be a sequence of points such that y; € D(x;) and y; — y (use the inner semi-continuity
of D). We prove first that p(z;) is bounded. To this end, observe that

i
(29) h(wj, p(w))) + 5 lys = P < hwj ).
Recall that h(z;,p(x;)) > f(p(z;)) > infy f > —oo. Thus
i .
2 lvs = p@)I* < hiwj, ;) —inf f
and p(z;) is bounded by continuity of h. Denote by 7 a cluster point of p(x;). Observe that

since p(x;) € D(z;), the outer semi-continuity of D implies that 7 € D(z). Passing to the limit
in (29) above, one obtains

hw,m) + Elly =l < hia,y).

Since this holds for arbitrary y in D(z), we have established that 7 minimizes h(zx,-) on D(x),
that is m = p(x). This proves that p is continuous. O
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Lemma 4.8 (Fixed points of the iteration mapping) Let x be in ¥ such that p(x) = =.
Then x is critical for (L@) that is

df(z) + Ngy(z) 3 0.

Proof. Using the optimality condition and the sum rule for subdifferential of convex functions
one has

(30) ayh(x,p(x)) + ND(m) > 0.

By assumption (20) (ii), we have 9,h(x,p(z)) = Oyh(z,z) C Of(z). On the other hand D(x) C
%2 and Np(, (r) C Ng(x), by (). Using these inclusions in (30) yields the result.
(]

Value function

The value function is defined through

R" — (—00,40]
F =val :
r — h(m,p(:c)).

Being given z in R", and a value f(z) = h(x,z), it measures the progress made not on the
objective f, but on the value of the model.

Tarski-Seidenberg theorem asserts a linear projection of a semi-algebraic set is semi-algebraic
set. This implies that the class of semi-algebraic functions is closed under many operations,
such as addition, multiplication, composition, inverse, projection and partial minimization (see
Bochnak et al. (2003) [9] and Attouch et al. (2013) [4, Theorem 2.2] for an illustration in
optimization). Applying standard techniques of semi-algebraic geometry, we obtain therefore:

Lemma 4.9 (Semi-algebraicity of the value function) If f, h, 2 are semi-algebraic then
F is semi-algebraic.

Let 2’ denote the domain where F is differentiable. By standard stratification results, this
set contains a dense finite union of open sets (a family of strata of maximal dimension, see e.g.
Van Den Dries and Milller (1996) [22], 4.8], see also Ioffe (2009) [31, Theorem 2.3] for a self
contained exposition). Thus we have:

(31) int 2’ is dense in 2.
We now have the following estimates

Lemma 4.10 (Subgradient bounds) Let C' C Z be a bounded set. Then there exists K > 0
such that Yx € 2'NC

(32) IVE(@)|| < Kllp(z) — x|
As a consequence

(33) dist (0,0F (z)) < K||p(x) — z||, Vo € Z N C.
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Proof. Fix 7 in int 2’ N C and let § and p be in R™. Then

Wz +6,p(z) +p)) = Wz +06,p(T) + 1) + ip@rs) (P(T) + 1)
> hZ+6,p(7 +9))
= h(z,p(7)) + (VF(2),6) + o(]|0]])
= W@, p()) + (VF(@),8) +of|[5]))-

This implies that (VF(z),0) € Bﬁ(f, p(Z)). Since C is bounded, the qualification assumption
of Section yields (32)).

To obtain (33)), it suffices to use the definition of the subdifferential, the continuity of p and
the fact that int 2’ is dense in 2. O

We have the following property for the sequence generated by the method

Proposition 4.11 (Hidden gradient steps) Let {x}}r—12, . be the sequence defined through
Tp1 = payg) with xg € P. Then xy, lies in 2 and

(34) Flay) + Sllax — ol 2 < fon) < Flan-), ¥k > 1.
Moreover, for all compact subset C' of R™, there exists Ko(C') > such that
dist (0,0F (zg)) < Ko(C)||xgs1 — k||, whenever zy € C.

Proof. The sequence xy lies in Z since p(zy) € D(x) C 2 by (19). We only need to prove
the second item (B4]) since the third one immediately follows from (B3]). Using inequality (27])
and the fact that h(x,y) > f(y) for all y in D(z), we have

Fx) = hz,p(z))
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|lp(x) — p(p(x))

therefore .
F(rg—1) > f(zg) > F(zg) + §H$k — T

which proves (34]). O

4.3 An abstract convergence result

The following abstract result is similar in spirit to Attouch et al. (2013) [4] and to recent
variations Bolte et al. (2013) [12]. However, contrary to previous works it deals with conditions
on a triplet {zy_1,xk, Tx+1} and the subgradient estimate is of explicit type (like in Absil et al.
(2005) [I] and even more closely Noll (2014) [39]).

Proposition 4.12 (Gradient sequences converge) LetG: R™ — (—o0,+00] be proper, lower
semi-continuous, semi-algebraic function. Suppose that there exists a sequence {xj}ren such
that,

(a) 3K7 > 0 such that G(zp) + Ki||zre1 — 2] [? < G(ar_1)
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(b) For all compact subset C' of R™, there exists Ko(C) > such that

dist (0,0G (z1)) < Ko(O)||xps1 — 71||, whenever zy € C.

(c) If there exists xx, — T as j — 400, then G(xy,) — G(T).
Then,
(I) The following asymptotic alternative holds:
(i) Either the sequence {xy}ren satisfies ||xg| — +oo,
(ii) or it converges to a critical point of G.
As a consequence each bounded sequence is a converging sequence.

(II) When xy, converges, we denote by o its limit and we take 0 € [0,1) a Lojasiewicz exponent
of G at To. Then,
(i) If 6 = 0, the sequence (zy)keN converges in a finite number of steps,
i) If 6 € (0, %] then there exist ¢ > 0 and q € [0,1) such that
( ) 3 q

|2k — Too| < ¢ ¢®, Yk > 1.

(iii) If 0 € (1,1) then there exists ¢ > 0 such that

—0
|k — oo]] < kT, VE > 1.

Proof. We first deal with (I). Suppose that there exists ky > 0 such that zy,41 = x,. This
implies by (a), that xg,4; = xy, for all [ > 0. Thus the sequence converges and the second
inequality (b) implies that we have a critical point of G. We now suppose that ||zg11 —zx|| > 0
for all kK > 0.
Definition of a KL neighborhood. Suppose that (I)(i) does not hold. There exists therefore a
cluster point z of zj. Combining (a) and (c), we obtain that
(35) lim G(z) = G(2).

k—+o00
With no loss of generality, we assume that G(Z) = 0. Since G is semi-algebraic, it is a KL
function (Theorem [43]). There exist 6 > 0, a > 0 and ¢ € ¢, such that

¢ (G(x))dist (0,0G(x)) > 1,
for all 2 such that ||z — Z|| < § and z € [0 < G < a]. In view of assumption (b), set
Ky = Ky (B(if,é)) .

Estimates within the neighborhood. Let r > s > 1 be some integers and assume that the points
ZTs—1,Ts...,Tr_1 belong to B(Z,d) with G(zs_1) < a. Take k € {s,...,r}, using (a), we have

G(zy) < G(wp—1) — Killwggr — x|

2
- Thtl — Tk
= Gapy) - b=l )
o — zp—1]]
. Ky ||wgr — x|, -
<G(wp_1) — —+————dist (0,0G (xp_1)).
( 1) K2 ka — 901%1“ ( ( 1))
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From the monotonicity and concavity of ¢, we derive

~ ~ ~ K ||z —zil|? .. =
poG(xy) <poG(ap_q1)—¢ o G(xkl)i%dwt (0,0G(xk-1)),

thus by using KL property, for k € {s,...,r},

~ ~ K1 [Jzpe — o]
36 oGlxy) <poG(xp_q) — ——"""——.
( ) 2 ( k) S ( k 1) K2 ||xk‘ _ xk—l”

We now use the following simple fact: for a > 0 and b € R,

a?—b*  a®—2ab+b?  (a—b)?

2(a — b) — = > ()
(a—1b) a a a -
thus for a > 0 and b € R
2 _b2
(37) 2a—b) >
a
We have therefore, for k in {s,...,r},
Moy — e ]]?
|op — zpa|] = 50—
g — 2p—1]]
_ Mg — 2l P ok — @l — [Jwwrs — @l
o — zp—1]] o — zg—1]]
(sz Tl — Tk 2
< Mo = 2l oy — ] = Nl — )
|2 — p—1]]
B0 g, _ _
< —= (o Gzr—1) — po Gax)) + 2(|lxr — zp—1]| — l|zhs1 — zil]).

e

Hence by summation

r K ~ ~
39) 3w —aial] < 72 (0 Glon) = 90 Glan)) + 2 (o — 2 = forss — ).
k=s

The sequence remains in the neighborhood and converges. Assume that for N sufficiently large
one has

0

(39) o —all < 2.

Ky ~ )

(40) 7 (poG)an) <3
(41) K;'G(xy_1) < min <g, Kl_la> .

One can require (@0) and (&) because ¢ is continuous and G(xy) | 0. By (a), one has

1A 1)
(42) eyt — an| < /K7 'Glay-1) < 7

Let us prove that z, € B(z,d) for » > N 4+ 1. We proceed by induction on r. By ([B9),
xN € B(Z,0) thus the induction assumption is valid for » = N + 1. Since by (@I]) one has
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G(zy) < «, estimation (B8] can be applied with s = N + 1. Suppose that » > N + 1 and

TN, ...,Tr—1 € B(Z,0), then we have the following
lzr =2l < |l —an| + oy — Z]
(350) - 0
< Do ek =zl + 1
k=N+1
@3) K _ )
< 2poGan) 42l —anl + 5
Ky 4
(E), @)
< d.
Hence zy,...,z, € B(Z,0) and the induction proof is complete. Therefore, x, € B(z,J) for

any 7 > N. Using (B8]) again, we obtain that the series ) ||zp11 — k|| converges, hence zj also
converges by Cauchy criterion.

The second part (II) is proved as in Attouch and Bolte (2009) [2, Theorem 2|. First, because
of the semi-algebraicity of the data, ¢ can be chosen of the form ¢(s) = c.s'~? with ¢ > 0 and
0 € [0,1). In this case, (B8) combined with KL property and (b) yields a similar result as
formula (11) in Attouch and Bolte (2009) [2], which therefore leads to the same estimates.

U

Remark 8 (1) (Coercivity implies convergence) Quite often in practice G has bounded
level sets. In that case the alternative reduces to convergence because of assumption (a).

(2) (Assumption (c)) Assumption (c) is very often satisfied in practice: for instance when G
has a closed domain and is continuous on its domain or when G is locally convex up to a square
(locally semi-convex).

At last, Propositions [£.11] and can be combined to prove Theorem [B.Il First, we can
consider the restriction of F' to the closed semi-algebraic set &, since the sequence of Proposition
AT stays in 2. F is semi-algebraic by Lemma 9 and F' is continous on 2 by continuity of
h and p. Propositions 4.1l shows that F' satisfies assumptions (a) and (b) of Proposition A.12],
and assumption (c) follows by the previous remark. Hence Proposition applies to F' and
the result follows.

5 Beyond semi-algebraicity: MMP and NLP with real analytic
data

Many concrete and essential problems involve objectives and constraints defined through real
analytic functions —which are not in general semi-algebraic functions— and this raises the ques-
tion of the actual scope of the results described previously. We would thus like to address
here the following question: Can we deal with nonlinear programming problems involving real
analytic data?

A convenient framework to capture most of what is needed to handle real analytic problems,
and of an even larger class of problems, is the use of o-minimal structures. These are classes
of sets and functions whose stability properties and topological behavior are the same as those
encountered in the semi-algebraic world.

We give below some elements necessary to understand what is at stake and how our results
enter this larger framework.
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Definition 5 (O-minimal structures, see Van Den Dries and Miller (1996) [22]) An o-minimal
structure on (R, +,.) is a sequence of families & = (0,)pen with 0, C Z(RP) (the collection of
subsets of RP), such that for each p € N:

(i) Each 0, contains R? and is stable by finite union, finite intersection and complementation;
(ii) if A belongs to 0p, then A x R and R x A belong to Oy ;

(iii) if IT : RP*! — RP is the canonical projection onto RP then for any A in 0,1, the set I1(A)
belongs to 0, ;

(iv) O contains the family of real algebraic subsets of R?, that is, every set of the form
{2 €R”: g(z) = 0},
where ¢ : RP — R is a real polynomial function ;

(v) the elements of &) are exactly the finite unions of intervals.

Examples of such structures are given in Van Den Dries and Milller (1996) [22]. We focus
here on the class of globally subanalytic sets which allows us to deal with real analytic NLP
in a simple manner. Thanks to Gabrielov’s theorem of the complement, the class of globally
subanalytic subsets can be seen as the smallest o-minimal structure containing semi-algebraic
sets and the graphs of all real analytic functions of the form: f :[—1,1]" — R, see e.g. Van
Den Dries and Milller (1996) [22]. As a consequence any real analytic function defined on an
open neighborhood of a box is globally subanalytic.

Note that a real analytic function might not be globally subanalytic (take sin whose graph
intersects the z-axis infinitely many times, and thus (iv) is not fulfilled for (graph sin) N (Ox),
however it follows from the definition that the restriction of a real analytic function to a compact
set included in its (open) domain is globally subanalytic.

We come now to the results we need for our purpose. For any o-minimal structure, one can
assert that:

(a) The KL property holds — i.e. one can replace the term “semi-algebraic” by “definable” in
Theorem A.3] see Bolte et al. (2007) [L1].

(b) The stratification properties ([BII) used to derive the abstract qualification condition hold,
see Van Den Dries and Milller (1996) [22].

As a consequence, and at the exception of convergence rates, all the results announced in the
paper are actually valid for an arbitrary o-minimal structure instead of the specific choice of the
class of semi-algebraic sets.

To deal with the case of real analytic problems, we combine the use of compactness and of
the properties of globally subanalytic sets. This leads to the following results.

Theorem 5.1 (Convergence of ESQM/S/!QP for analytic functions) Assume that the
following properties hold

— The functions f, f1, ..., fm are real analytic and Q is globally subanalytic (@),

8Q subanalytic is actually enough, see Van Den Dries and Milller (1996) [22]

27



— Lipschitz continuity assumptions (10),

— steplength condition (1),

qualification assumptions (I4)),
— boundedness assumptions ([2), (3.
Then,

(i) the sequence {xy}ren generated by (ESQM) (resp. SL'QP) converges to a feasible point
Too Satisfying the KKT conditions for the nonlinear programming problem (L@NLP).

(ii) FEither convergence occurs in a finite number of steps or the rate is of the form:
(a) [lzg — zoo|l = O(¢"), with q € (0,1),
() ||z — 2o || = O (55), with v > 0.

Theorem 5.2 (Convergence of the moving balls method) Recall that Q@ = R"™ and as-
sume that the following properties hold

— The functions f, f1, ..., fm are real analytic,

— Lipschitz continuity assumptions (@),

— Mangasarian-Fromovitz qualification condition (),
— boundedness condition (8],

— feasibility of the starting point xo € F.

Then,

(i) The sequence {xy}ren defined by the moving balls method converges to a feasible point T
satisfying the KKT conditions for the nonlinear programming problem (L@NLP).

(ii) FEither convergence occurs in a finite number of steps or the rate is of the form:
(@) ||z, — zo|l = O(¢"), with g € (0,1),
() ||z — 2| = O (7)), with v > 0.

Proof. The “proofs” of both theorems are the same. We observe first that in both cases
the sequences are bounded. Let thus a > 0 be such that z; € [—a,a]|” for all nonnegative k.
Now the initial problem can be artificially transformed to a definable problem by including the
constraints z; < a and —z; < a without inducing any change for the sequences. This imposes
restrictions to real analytic function making them globally subanalytic hence definable.

The fact that the rate of convergence are of the same nature is well known and comes from
the fact that Puiseux Lemma holds for subanalytic functions (see Van Den Dries and Milller
(1996) [22], 5.2] and the discussion in Kurdyka (1998) [32, Theorem LI]). O

28



6 Appendix: convergence proofs for SQP methods

6.1 Convergence of the moving balls method

The local model of f is given at a feasible x by

s () = () + (V1 (@),y — ) + 2lly— o, 2.y € B,

while the constraint approximation is given by
_ n. Li 2
D(x) =y € R": filx) +{Vfi(z),y —2) + Flly —«|I" < 0.

The fact that for all z in .#, D(x) C .% is ensured by Lemma L4l As an intersection of a
finite number of balls containing x the set D(z) is a nonempty compact (hence closed) convex
set. The proof of the continuity of D is as in Auslender et al. (2010) [0, Proposition A1 & A2].

Let us also recall that Mangasarian-Fromovitz condition implies that

Lemma 6.1 (Slater condition for 2?(x)) Auslender et al. (2010) [6, Proposition 2.1] The
set D(x) satisfies the Slater condition for each x in 7.

Corollary 6.2 For a given feasible x, set

L; .
gi(y) = f(x) +(Vfi(z),y —z) + 7|Iy —z|?, yeR", i=1,...,m.

Suppose that (x,y) is such that g;(y) <0, i=1...m. Then the only solution u = (u, ..., Un)
to

m
Zungi(y) =0,u; >0 and u;g;(y) =0 for 1 <i<m
=1

1s the trivial solution u = 0.

Proof. When J = {i =1,...,m : g;(y) = 0} is empty, the result is trivial. Suppose that
J is not empty and argue by contradiction. This means that 0 is in the convex envelope of
{ng(y), jed } and thus one cannot have Mangasarian-Fromovitz condition for &(z) at y
(recall that &?(z) involves constraints of the form g; < 0). This contradicts the fact that Slater
condition holds for #(x), since Slater condition classically implies Mangasarian-Fromovitz con-
dition at each point. O

Corollary 6.3 (Lagrange multipliers of the subproblems are bounded) For each = in
ZF , we denote by A(x) C R the set of Lagrange multipliers associated to & (x). Then for any
compact subset B of &,

(43) sup{‘ max A\j(x) : (M (2),..., \n(x)) € A(z),x € B} < +00.

i=1,....m

Proof. Observe that, at this stage, we know that p is continuous. We argue by contradiction
and assume that the supremum is not finite. One can thus assume, by compactness, that there
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exists a point Z in .% together with a sequence z; — Z such that at least one of the \;(z;) tends
to infinity. Writing down the optimality conditions, one derives Lagrange relations

_
Zizl Ai(z)

and complementary slackness

(Vf(z) + L(p(=z +sz1)\ (Vfi(z) + Li(p(zj) — 2j)) = 0

Aj(z5) <fz‘(2'j) +(Vfilz), p(z) — 2) + %Hp(%) - ZjH2> =0.

Up to an extraction one can assume that the sequence of p-uplet {(M) } con-
Doimq dilzj) i=1 j

verges to u = (u1,...,Up) in the unit simplex and that, for all 7, the limit of A;(2;) exists and
is either finite or infinite. Passing to the limit, one obtains that

(44) Zul Vai(p(z)) =0, gi(p(z)) <0 and u; g;i(p(z)) =0 for 1 < i < m,

where g1,..., gn are as defined in Lemma But Lemma asserts that the unique solution
to such a set of equations is u = 0, which contradicts the fact that w is a point of the unit
simplex. 0

Recall that for all z,y € R™, we set iLMB(x,y) = hu(2,Y) +ip)(y). Fix x € F and y in
D(x) set

. L;

o) = {i € (ccumbs fie) + (V@) =)+ Gl = ol =0}
Combining Proposition with Corollary 6.2} one has that the subdifferential of Ayp is given
by
(45)

ahMB (x’ y)

(P i e { (M T ) vt}

The only assumption of Section that needs to remain established is the qualification as-
sumption (21]).
Lemma 6.4 The qualification assumption (21I) holds for hyp.
Proof. (v,0) € dhyp(z,y) implies that
y = argmin_ {hup(z, 2) : z € D(z)},

in other words that y = p(z). In view of (@3]), one has the existence of non-negative \;(z),7 =
1,...,m such that

(LI = V2 (@) + Y- (o) (il = V2 £i() ) (2 = pla) =w,
=1
(46) Vi) + Ly —a)+ > Xi(@) (Vi(z) + Li(p(z) — x)) =0,

=1
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The desired bound on v follows from the bound on the the Lagrange multipliers in (46])
obtained in Corollary O

The assumptions for applying Theorem B.1] are now gathered and Theorem follows. The
fact that we eventually obtain a KKT point is a consequence of the qualification condition and
Proposition .11

6.2 Convergence of Extended SQP and S/'QP

6.2.1 Sketch of proof of Theorem

The proof arguments are adapted from Auslender (2013) [5, Theorem 3.1, Proposition 3.2].
Set | = inf f and recall that [ > —oco by ([I3). Use first regularity assumptions (I0), (II) in
combination with Lemma [4.4] to derive that

L (Flarn) D+ max filern) < —(Fonen) — )+ max fi(zge)
5k+1 1=0,...,m /Bk: 1=0,...,m
< ﬁi(hﬁk (mk-l—l’xk) - l)
k
A N
< Lhg(apnae) — 1= 2O )
Bk 2
)\/
< (flaow) =D+ max i) = ko — ol

where the first inequality follows from the monotonicity of Sy and the fact that f(xgy1)—1> 0,
the second inequality is due to the descent lemma while the third one is a consequence of the
strong convexity of the local model.

The above implies that

1
Br+1

(Fa) =)+ max flzin) < o (Fleo) =0+ max fiao)

=0,...,m 0 1=0,...,m

thus max;—o,_._m fi(zk+1) is bounded for all k£ and the compactness assumption (I2]) ensures the
boundedness of xy.

Since i(f(xk) — 1)+ max;—o,._m fi(zr) > 0, a standard telescopic sum argument gives that
l|zk+1 — zk|| — 0. Set

Je={i=0,...,m: test;(xg,xp+1) = max test;(zk, Tr11)}s
j=0...m

and suppose that 8; — oco. This means that, up to a subsequence, there exists a nonempty set
I c{1,...,m} such that

(47) Jo=1T
vt e N,Vi € I, fi(zk) + (Vfi(2k), o1 — z5) > 0.

Recall that the optimality condition for the local model minimization ensures that, for all &,
there exists dual variables u; > 0,7 € J; such that ZiEJk u; = 1 and

(48) <i (Vf(wg) + N+ XNB)(@ps1 — ax)) + Z wV fi(xg), z — $k+1> >0,

Pr =
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for any z € ). Using the boundedness properties of x; and wu;, up to another subsequence, we
can pass to the limit in equations (A7), [ 8)) to find Z € Q, u;,7 € I such that

i€l
<Zaﬁfi(f),z — :E> >0,z € Q,
i€l
which contradicts qualification assumption (I4) (lim ||xg+1 — x| = 0). Therefore, for k suffi-
ciently large, we have

Br =8>0,
filzr) + (Vfi(zr), Thy1 — 1) <0,
0 € Jg.

Given that xx11 — xp — 0, any accumulation point is feasible. Furthermore, given an accumu-
lation point z, set I = {0 < i <m, f;(Z) = 0}. It must holds that (up to a subsequence) J; = I
for a sufficiently large k. The fact that Z is a stationary point follows by passing to the limit in
).

6.2.2 Proof of convergence of ESQM

As granted by Theorem [2.2] there exists ko such that 8 = § for all integer k > ko. Since our
interest goes to the convergence of the sequence, we may assume with no loss of generality that
Bk is equal to B. Therefore, we only need to consider the behavior of the sequence {x;} with
respect to the function

Vg(x) = f(x)+ 4 max (fi(z))+ig(x),

i=0,...,m

whose minimization defines problem (L@) Set 4 = A+ BN, the local model we shall use to
study (ESQM) is given by

hesqum (e, y)

= (@) +(Vf(x),y —2) + B max (fi(z)+(Vfi(z),y—z))+ glly —z||,

1=0,....,m

while the constraints inner approximations reduce to a constant multivalued mapping
D(z) =Q.

The assumptions (I9)) for D are obviously fulfilled. Let us establish (20). From assumptions
(I0)), (), we have for any = and y in @,

fily) < Fila) + (Vfila)y —2) + Sl —ylP, 0<i<m,

F) < F@)+ (T (@)y — ) + Sl — il

Multiplying the first inequalities by (3, taking the maximum over ¢ and adding the the last
inequality gives Wg(y) < hgsqm(,y) for any « and y in @ which yields (i), (iii) @0). Item (iv)
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is obvious while item (iii) (20]) follows from the formula of the subdifferential of a max function
Rockafellar and Wets (1998) [42]. Assumption (.#) is also fulfilled (Q is convex, hence regular
and so is Wg).

Once more the only point that needs to be checked more carefully is the qualification as-
sumption (2I)). For all z,y € @, let I(x,y) be the active indices in the definition of hrsqm(z, y).
The subdifferential of A ESQM is given by

Ohesqu (@, y)
u(z —y) — V2 f(z)(z —y) > {( ~V2fi(z)(z — y) > : } ( 0 )
= + Bco 11 € Iz, + ,
("t St ’ Vi) D Notw)
where co denotes the convex hull. The result follows from the fact that the f; is C? and that
the hessian are bounded on bounded sets.

Theorem [B.I] applies and gives the desired conclusion. The fact that we eventually obtain a
KKT point of (9”) is a consequence of Theorem

6.2.3 Convergence of S/'QP
The proof is quasi-identical to that of ESQP, it is left to the reader.
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