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Robert Weismantel
Institute for Operations Research, ETH Zürich, Switzerland
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We complete the complexity classification by degree of minimizing a polynomial over the integer points in a polyhedron
in R2. Previous work shows that optimizing a quadratic polynomial over the integer points in a polyhedral region in R2

can be done in polynomial time, while optimizing a quartic polynomial in the same type of region is NP-hard. We close
the gap by showing that this problem can be solved in polynomial time for cubic polynomials.

Furthermore, we show that the problem of minimizing a homogeneous polynomial of any fixed degree over the integer
points in a bounded polyhedron in R2 is solvable in polynomial time. We show that this holds for polynomials that can
be translated into homogeneous polynomials, even when the translation vector is unknown. We demonstrate that such
problems in the unbounded case can have smallest optimal solutions of exponential size in the size of the input, thus
requiring a compact representation of solutions for a general polynomial time algorithm for the unbounded case.

1. Introduction We study the problem of minimizing a polynomial with integer coefficients over the
integer points in a polyhedron. When the polynomial is of degree one, this becomes integer linear program-
ming, which Lenstra [17] showed to be solvable in polynomial time in fixed dimension. In stark contrast, De
Loera et al. [6] showed that even for polynomials of degree four in two variables, this minimization problem
is NP-hard. For a survey on the complexity of mixed integer nonlinear optimization, see also Köppe [15].
Recently, Del Pia et al. [7] showed that the decision version of mixed-integer quadratic programming is in
NP. Del Pia and Weismantel [8] showed that for polynomials in two variables of degree two, the problem
is solvable in polynomial time.

Consider the problem
min{ f (x) : x ∈ P∩Zn}, (1)

where P = {x ∈ Rn : Ax ≤ b} is a rational polyhedron with A ∈ Zm×n, b ∈ Zm, and m,n ∈ Z≥0. Let d ∈ Z≥0

bound the maximum degree of the polynomial function f and let M be the sum of the absolute values
of the coefficients of f . We use the words size and binary encoding length synonymously. The size of P
is the sum of the sizes of A and b. We say that Problem (1) can be solved in polynomial time if in time
bounded by a polynomial in the size of A,b and M we can either determine that the problem is infeasible,
find a feasible minimizer, or show that the problem is unbounded by exhibiting a feasible point x̄ and an
integer ray r̄ ∈ rec(P) such that f (x̄ + λr̄)→−∞ as λ→∞. We almost always assume the degree d and the
dimension n are fixed in our complexity results. Moreover, in Sections 4 and 5 we assume that P is bounded.
Note that if P is bounded, then there exists an integer R ≥ 1 of polynomial size in the size of P such that
P ⊆ B := [−R,R]2 (see, for instance, [24]).
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Previous work has shown that Problem (1) is solvable in polynomial time if it is 1-dimensional or the
polynomial is quadratic, whereas for n = 2, d = 4 the problem is NP-hard, even when P is bounded.

Theorem 1.1 ([8], 1-dimensional polynomials and quadratics). Problem (1) is solvable in polyno-
mial time when n = 1 with d fixed, and when n = 2 with d ≤ 2.

Lemma 1.2 ([6]). Problem (1) is NP-hard when f is a polynomial of degree d = 4 with integer coeffi-
cients and n = 2, even when P is bounded.

Using the same reduction as Lemma 1.2, it is possible to show that Problem (1) is NP-hard even when
n = d = 2, P is a bounded, rational polyhedron, and we add a single quadratic inequality constraint (see
[18]).

We improve Theorem 1.1 to the case n = 2 and d = 3.

Theorem 1.3 (cubic). Problem (1) is solvable in polynomial time for n = 2 and d = 3.

We prove this theorem under the assumption that P is bounded in Section 4, and without this additional
assumption in Section 6. Thus, we complete the complexity classification by degree d for Problem (1) when
n = 2. It is an open question whether Problem (1) can be solved in polynomial time for n ≥ 3 and d ∈ {2,3}.

Problem (1) remains difficult even when the polynomials are restricted to be homogeneous and the degree
is fixed. The polynomial h is homogeneous of degree d if

h(x) =
∑

v∈Zn
+,‖v‖1=d

cvxv, (2)

where cv ∈ R, ‖ · ‖1 denotes the 1-norm, and xv =
∏n

i=1 xvi
i . The case of general polynomials in n variables

reduces to the case of homogeneous polynomials in n+1 variables by homogenizing f (x) using an additional
variable xn+1 and adding the constraint xn+1 = 1 to P. Thus, complexity results for general polynomials
provide partial complexity results for homogeneous polynomials.

Proposition 1.4. Problem (1) is NP-hard when f is a homogeneous polynomial of degree d with integer
coefficients, n ≥ 3 and d ≥ 4 are fixed, even when P is bounded.

We next show that we cannot expect tractable size solutions to unbounded homogeneous minimization
problems in dimension two.

Proposition 1.5. There exists an infinite family of instances of Problem (1) with f homogeneous, d = 4,
n = 2 such that the minimal size solution to Problem (1) has exponential size in the input size.

Proof. Consider the minimization problem

min{
(
x2 −Ny2)2 : (x, y) ∈ P∩Z2}, (3)

where P = {(x, y) ∈R2 : x ≥ 1, y ≥ 1} is an unbounded rational polyhedron and N is a nonsquare integer. The
objective function is a homogeneous bivariate polynomial of degree four. Since (0,0) < P, (x2 − Ny2)2 is
nonnegative, and since N is nonsquare, the optimum of Problem (3) is strictly greater than zero. Note that
(x2 − Ny2)2 = 1 if and only if (x, y) is a solution to either the Pell equation, x2 − Ny2 = 1, or the Negative
Pell equation, x2 −Ny2 = −1. The Pell equation has an infinite number of positive integer solutions (see, for
instance, [26]) and therefore, we infer that the optimum of Problem (3) equals 1.

Lagarias [16, Appendix A] shows that the Negative Pell equation with N = 52k+1 has solutions for every
k ≥ 1 and that the solution (x∗, y∗) to this equation with minimal size satisfies

x∗ + y∗
√

5 = (2 +
√

5)5k
.

The method is based on principles due to Dirichlet [9]. This implies that while the input is of size O(k), any
solution to the Negative Pell equation expressed in binary form for these N has size Ω(5k).
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Theorem 6.10 of [4] (see also [26]) shows that if the Negative Pell equation has a solution, then the
minimal size solution to x2 − Ny2 = ±1 is in fact the minimal size solution to the Negative Pell equation.
Therefore, any solution to Problem (3) with N = 52k+1 has an exponential size in the size of the input. Since
Problem (3) is has an objective function that is homogeneous of degree four and has linear constraints, this
finishes the proof. �

For bounded polyhedra P, we will show that Problem (1) is solvable in polynomial time for any fixed
degree in two variables when the objective function is a polynomial that is a coordinate translation of a
homogeneous polynomial. A polynomial f (x) : Rn→ R is homogeneous translatable if there exists t ∈ Rn

such that f (x + t) = h(x) for some homogeneous polynomial h(x). In our results, we will assume that we
are given a homogeneous translatable polynomial f with integer coefficients, but that we are not given the
translation t. Our algorithmic techniques apply to this natural generalization of homogeneous polynomials
without even needing to solve for t. Even so, for n = 2, we show in the Appendix (Proposition A.1) that in
polynomial time we can check if f is homogenous translatable and produce a rational t if it is.

Theorem 1.6 (homogeneous translatable, bounded). Problem (1) is solvable in polynomial time for
n = 2 and any fixed degree d, provided that f is homogeneous translatable and P is bounded.

This theorem highlights the fact that the complexity of bounded polynomial optimization with two integer
variables is not necessarily related to the degree of the polynomials, but instead to the difficulty in handling
the lower order terms.

Despite the possibly large size of solutions to minimizing homogeneous polynomials of degree four (see
Proposition 1.5), Theorem 1.3 shows that we can solve the unbounded case for degree three.

The details of our proofs strongly rely on the properties of cubic and homogeneous polynomials. When
f : R2 → R is a quadratic polynomial, [8] proves Theorem 1.1 using the fact that P can be divided into
regions where f is quasiconvex and quasiconcave. We use a similar approach for homogeneous polynomials
and determine quasiconvexity and quasiconcavity by analyzing the bordered Hessian. We show that the
bordered Hessian can be well understood for homogeneous polynomials. For general polynomials, these
regions cannot in general be described by hyperplanes and are much more complicated to handle, even for
the cubic case.

In Section 2, we present the tools for the main technique of the paper. This technique is based on an
operator that determines integer feasibility on sets P∩C and P \C, where P is a polyhedron, C is a convex
set, and the dimension is fixed. It relies on two important previous results, namely that in fixed dimension
the feasibility problem over semialgebraic sets can be solved in polynomial time [14], and the vertices of
the integer hull of a polyhedron can be computed in polynomial time [5, 10]. We employ this operator to
solve the feasibility problem by dividing the domain into regions where this operator can be applied.

In Section 3, we give some results related to numerically approximating roots of univariate polynomials,
which we use throughout this paper. We show how we can find inflection points of a particular function
derived from the quadratic equation using these numerical approximations, which will play a key role in
Section 4.

In Section 4, we prove Theorem 1.3 under the assumption that P is bounded. We do this by dividing the
feasible domain into regions where either the sublevel or superlevel sets of f can be expressed as a convex
semialgebraic set. With this division in hand, the operator presented in Section 2 is then applied.

In Section 5, we derive a similar division description of the feasible domain for homogeneous polyno-
mials. While for cubic polynomials the division description depends on the individual sublevel sets, there
is a single division description that can be used for all sublevel sets of a particular homogeneous function.
We separate the domain into regions where the objective function is quasiconvex or quasiconcave. These
regions allow us to use the operator from Section 2, establishing the complexity result of Theorem 1.6.

In Section 6, we consider again cubic polynomials, but relax the requirement that P is bounded, and thus
prove Theorem 1.3.
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2. Operator on Convex Sets and Polyhedra Our main approach for solving Problem (1) for bounded
P is to instead solve the feasibility problem. As is well known, the feasibility problem and the minimization
problem are polynomial time equivalent via reduction with the bisection method, given that appropriate
bounds on the objective are known. We summarize this here. Given a function f :R2→R and ω ∈R, define
S f
∗ω := {(x, y) ∈R2 : f (x, y) ∗ω} for ∗ ∈ {≤,≥, <,>,=}.

Lemma 2.1 (feasibility to optimization). Let f be a bivariate polynomial of fixed degree d with integer
coefficients and suppose that P is bounded. Then, if for each ω ∈ Z + 1

2 we can decide in polynomial time
whether the set S f

≤ω ∩Z
2 is empty or not, we can solve Problem (1) in polynomial time.

Proof. Since P ⊆ B = [−R,R]2 and f is a polynomial of degree d, it follows that −MRd ≤ f (x, y) ≤ MRd.
Thus, the result is a simple application of binary search on values of ω in [−MRd,MRd]∩ (Z+ 1/2). �

We consider ω ∈ Z+ 1
2 since this implies S f

≤bωc∩Z
2 = S f

≤ω∩Z
2 because f has integer coefficients. Further-

more, this implies that S f
=ω ∩Z

2 = ∅, and therefore S f
≤ω ∩Z

2 = S f
<ω ∩Z

2 and similarly S f
≥ω ∩Z

2 = S f
>ω ∩Z

2.
This is important for the proof of Theorem 4.8.

A semi-algebraic set in Rn is a subset of the form
⋃s

i=1
⋂ri

j=1

{
x ∈Rn | fi, j(x) ∗i, j 0

}
where fi, j :Rn→R is a

polynomial in n variables and ∗i, j is either < or = for i = 1, . . . , s and j = 1, . . . , ri (cf. [2]).

Lemma 2.2 (polyhedra/convex set operator). Let P,C ⊆Rn be such that P is a rational, bounded poly-
hedron, C is given by a membership oracle, P ∩ C is convex, and n ∈ Z≥1 is fixed. In polynomial time in
the size of P, we can determine a point in the set (P \C) ∩ Zn or assert that it is empty. Moreover, if C is
semi-algebraic and given by polynomial inequalities of degree at most d ≥ 2 and with integral coefficients
of size at most l, in polynomial time in d, l and the size of P, we can determine a point in P ∩C ∩ Zn or
assert that it is empty.

Proof. We can determine whether or not (P\C) = ∅ by first computing the integer hull PI of P in polyno-
mial time using [5, 10]. Next, we test whether all of its vertices lie in C. If they all lie in C, then by convexity
of C we have that P∩C∩Zn ⊆C, thus (P \C)∩Zn is empty. Otherwise, since vertices are integral, we have
found an integer point in (P \C)∩Zn.

Next, since P∩C is a convex, semialgebraic set, by [14] we can determine in polynomial time whether
P∩C ∩Zn is empty, and if it is not, compute a point contained in it. �

If we can appropriately divide up the feasible domain into regions of the type that Lemma 2.2 applies to,
then we are able to solve Problem (1) in polynomial time. We formalize this in the remainder of this section.

Definition 2.3. Given a sublevel set S f
≤ω and a box B = [−R,R]2, a division description of the sublevel

set on B is a list of rational polyhedra Pi, i = 1, . . . , l1, Q j, j = 1, . . . , `2, and rational lines Lk, k = 1, . . . , `3,
such that

(i) Pi ∩ S f
≤ω is convex for i = 1, . . . , `1,

(ii) Q j \ S f
≤ω = Q j ∩ S f

>ω is convex for j = 1, . . . , `2,
(iii) and

B∩Z2 =

 `1⋃
i=1

Pi ∪

`2⋃
j=1

Q j ∪

`3⋃
k=1

Lk

∩Z2. (4)

We will create division descriptions of sublevel sets S f
≤ω on a box B := [−R,R]2 with P ⊆ B.

Theorem 2.4. Suppose P is bounded, and for every ω ∈ Z+ 1
2 with ω ∈ [−MRd,MRd], we can determine

a division description for S f
≤ω on B in polynomial time. Then we can solve Problem (1) in polynomial time.

Proof. Follows from Lemmas 2.1 and 2.2. �



Del Pia, Hildebrand, Weismantel, Zemmer: Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane 5

3. Numerical Approximations and the Quadratic Formula For a finite set A = {α0 =

−R, α1, . . . , αk, αk+1 = R} ⊆ R, with αi < αi+1, i = 0, . . . , k, we define the set of points XA := {bαic, dαie : i =

0, . . . , k + 1} and the set of intervals IA := {[dαie+ 1, bαi+1c−1] : i = 0, . . . , k} (some of which may be empty).
Notice that [−R,R]∩ Z = (XA ∪

⋃
I∈IA I)∩ Z. Therefore, a minimizer x∗ ∈ arg min

{
f (x) : x ∈ P∩Z2} where

P ⊆ B := [−R,R]2 is attained either on a set P∩ ({x} ×R) for some x ∈ XA or on a set P∩ (I ×R) for some
I ∈ IA. Solving the minimization problem on each of those sets separately and taking the minimum of all
problems will solve the original minimization problem in P ∩ Z2. We use this several times with A being
an approximation to the roots, extreme points, or inflection points of some univariate function.

Lemma 3.1 (numerical approximations). Let p be a univariate polynomial of degree d with integer
coefficients, and suppose that its coefficients are given. Let M be the sum of the absolute values of the
coefficients of p, and let ε > 0 be a rational number.

(i) In polynomial time in d and the size of M, we can determine whether or not p ≡ 0.
(ii) Suppose p . 0 and α1, . . . , αk are the real roots of p. Then, in polynomial time in d and the size of

M and ε, we can find a list of rational numbers α̃1, . . . , α̃k of ε-approximations of α1, . . . , αk, that is,
|αi − α̃i| < ε for i = 1, . . . , k.

(iii) Suppose p . 0 and α1, . . . , αk are the distinct real roots of p in increasing order. Then, in polynomial
time in d and the size of M and ε, we can determine a list of rational numbers α̃−1 < α̃

+
1 < · · · < α̃

−
k < α̃

+
k

such that α̃−i < αi < α̃
+
i and |α̃−i − α̃

+
i | < ε for i = 1, . . . , k.

Proof. If all coefficients of p are equal to zero, then p ≡ 0. Otherwise p . 0, proving part (i). Parts (ii)
and (iii) follow, for example, from [21]. �

We use Lemma 3.1 repeatedly in the following sections. One way we will use it is in the form of the
following remark.

Remark 3.2. By choosing ε sufficiently small, for example ε = 1/4, we can use Lemma 3.1 part (ii) to
determine approximationsA = {α̃1, . . . , α̃k} of the roots of p such that no interval I ∈ IA contains a root of p.
Thus, by continuity, p does not change sign on each interval. Moreover, if an interval I ∈ IA is non-empty,
we can determine whether p is positive or negative on I by testing a single point in the interval.

The next lemma will be crucial for proving Lemma 4.7.

Lemma 3.3. Let f0, f1, f2 : R→ R be polynomial functions in one variable of fixed degree and suppose
that f2 . 0. Consider the two functions

y± :=
− f1 ±

√
∆

2 f2

where ∆ = f 2
1 − 4 f2 f0. In polynomial time, we can find a set of rational points A = {α̃1, . . . , α̃k} such that

y± are well defined, continuous and either convex or concave on each I ∈ IA. Moreover, we can determine
numbers cI

± ∈ {−1,1} that indicate whether y± is convex or concave on I ∈ IA.

Proof. We start with A = ∅. Since f2 is not identically equal to zero, the number of its zeros is bounded
by the degree of f2. By Lemma 3.1 part (ii), we can approximate its zeros with ε = 1/8, which we add to the
listA. We do the same for the zeros of ∆.

We will show the result for y+ only, since the computation is analogous for y−. Then

y′+ =

√
∆
(
f ′2 f1 − f2 f ′1

)
−∆ f ′2 + 1

2 f2∆
′

2 f 2
2

√
∆

=
∆
(
f ′2 f1 − f2 f ′1

)
+ (−∆ f ′2 + 1

2 f2∆
′)
√

∆

2 f 2
2 ∆

,

y′′+ =
−p +

√
∆q

8 f 3
2 ∆3/2

,

where

−p := ∆
(
2 f 2

2 ∆′′ − 4 f2 f ′2∆′
)
+ ∆2

(
8( f ′2)2 − 4 f2 f ′′2

)
− f 2

2 (∆′)2,

q := ∆
(
4 f2 f1 f ′′2 + 8 f2 f ′2 f ′1 − 8 f1( f ′2)2 − 4 f 2

2 f ′′1

)
.
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Therefore, y′′ = 0 if and only if we have p = q
√

∆. It can be checked that its solutions are exactly
the solutions of p2 = q2∆ and pq ≥ 0. We can determine integer intervals where pq ≥ 0 by computing ε-
approximations of the zeros of pq using Lemma 3.1 part (i) and part (ii). Note that if pq ≡ 0, then there is
just one interval, which is R. Moreover, we can determine whether p2 − q2∆ ≡ 0. If it is, then we add the
approximations of the zeros of pq toA. Otherwise, we compute ε-approximations of the zeros of p2 − q2∆

and add those toA. Finally, we can determine the convexity or concavity of y+ on each non-empty interval
I ∈ IA by evaluating the sign of y′′+ on an point of this interval. �

In the absence of exact computation of irrational roots, we must make up for the error. In Sections 4 and
5 we will use our numerical approximations to construct thin boxes containing irrational lines.

Lemma 3.4. Let K ⊆ R2 be a polytope with vol(K) < 1
2 . Then dim(conv(K ∩ Z2)) ≤ 1 and in polynomial

time we can determine a line containing all the integer points in K.

Proof. The fact that dim(conv(K∩Z2)) ≤ 1 is a well known result. See, for example, [1] for a proof. Using
Lenstra’s algorithm [17], in polynomial time we can either find an integer point x̄ ∈ K ∩ Z2, or determine
that no such point exists. If no point exists, then return any line. Otherwise, let K1 = K ∩ {x : x1 ≤ x̄1 − 1}
and K2 = K ∩ {x : x1 ≥ x̄1 + 1}, and use Lenstra’s algorithm twice to detect integer points in the sets K1 ∩Z

2

and K2 ∩Z
2. If an integer point x̃ ∈ (K1 ∪K2)∩Z2 is detected, then return the line given by the affine hull of

{x̄, x̃}. Otherwise return the line {x : x1 = x̄1}. �

4. Cubic Polynomials In this section we will prove that Problem (1) is solvable in polynomial time for
n = 2 and d = 3 when P is bounded. For the rest of this section, let f (x, y) be a bivariate cubic polynomial.
We represent f (x, y) in terms of y as

f (x, y) =

3∑
i=0

fi(x)yi = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3.

Let degy( f ) denote the maximum index i such that fi is not the zero polynomial. Given a similar repre-
sentation in terms of x, we can similarly define degx( f ). Without loss of generality, we can assume that
degx( f ) ≥ degy( f ). We will consider each case degy( f ) = 0,1,2,3 separately.

Theorem 4.1. Let m < n be nonnegative integers, am, . . . ,an ∈ R, am , 0, an , 0, and let x̄ ∈ R be a
nonzero root of the polynomial f (x) :=

∑n
i=m aixi. Then

min{|am|/(|am|+ |ai|) : i = m + 1, . . . ,n} < |x̄| < 1 + max{|ai/an| : i = m, . . . ,n− 1}. (5)

Proof. Follows from Rouché’s theorem. See, for example, Theorem (27,2) in [20] for the second inequal-
ity. The first inequality can be obtained from the second one by considering the polynomial g(x) := xn f (1/x).
�

Definition 4.2. A bivariate polynomial is called affinely critical if the set of critical points, i.e., points
where the gradient vanishes, is a finite union of affine spaces—i.e., all of R2, lines, or points.

Lemma 4.3. All cubic polynomials in two variables are affinely critical.

Proof. Consider a cubic polynomial f (x, y) in two variables. Since it has degree at most three, both
components of its gradient have degree at most two. Thus the gradient vanishes on the intersection of two
conic sections (i.e., quadrics in the Euclidean plane). If one of the conic sections is a line, then its intersection
with the other conic section is either a line or a finite number of points. Thus suppose that neither of the
two conics is a single line. If the two conic sections are distinct, then their intersection consists of at most
four distinct points. Therefore suppose that they are not distinct, which happens when fx = a fy for some
a ∈ R, where fx, fy are the derivatives of f with respect to x and y respectively. By equating coefficients, a
straightforward calculation shows that

f (x, y) = c3(ax + y)3 + c2(ax + y)2 + c1(ax + y) + c0,
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where c0, c1, c2, c3 are a subset of the coefficients of the original polynomial. The gradient of f vanishes if
and only if

3c3(ax + y)2 + 2c2(ax + y) + c1 = 0. (6)

If c3 = c2 = 0, then this is either the empty set or all of R2, depending on whether c1 , 0 or c1 = 0. If c3 = 0
and c2 , 0, then equation (6) reduces to the line ax + y = −

c1
2c2

. Finally, if c3 , 0, then the gradient vanishes
if and only if

ax + y = −
c2 ±

√
c2

2 − 3c1c3

3c3
,

which is either the union of two real lines, or is not satisfied by any real points, depending on whether
c2

2 − 3c1c3 ≥ 0 holds or not. �
We now start with showing that Problem (1) can be solved in polynomial time if degy( f ) = 0.

Lemma 4.4. Suppose degy( f ) = 0. Then we can solve Problem (1) in polynomial time.

Proof. The possible extreme points of the one-dimensional function f0 correspond to the zeros of its
first derivative, say α1, . . . , αk where k ≤ 3. By Remark 3.2, we can determine a list of approximations
A = {α̃1, . . . , α̃k} and define IA and XA as in Section 3. We then solve the problem on each restriction of P to
{x} ×R for each x ∈ XA using Theorem 1.1, since this problem is one dimensional. For each interval I ∈ IA,
f0(x) is either increasing or decreasing in x. Therefore, the optimal solution restricted to the interval is an
optimal solution to one of the problems min /max{x : (x, y) ∈ P∩Z2, x ∈ I}. These problems are just integer
linear programs in fixed dimension that are well known to be polynomially solvable (see Scarf [22, 23] or
Lenstra [17]). Since |IA| ≤ 3, the algorithm takes polynomial time. �

For the remaining cases, we solve the feasibility problem instead and rely on Lemma 2.1 to solve the
corresponding optimization problem. Moreover, we only need to find a division description for S f

≤ω, because
then we can solve the feasibility problem by Theorem 2.4.

Lemma 4.5. Suppose degy( f ) = 1. For any ω ∈ Z+ 1
2 , we can find a division description for S f

≤ω on B in
polynomial time.

Proof. Since f1 . 0, apply Lemma 3.1 part (ii) to find approximate roots α̃1, . . . , α̃k of f1(x) = 0 with
k ≤ 2 and an approximation guarantee of ε = 1/4. Hence, for all intervals I ∈ IA, we know that f1(x) , 0
∀x ∈ I. We now consider solutions (x, y) ∈ S f

=ω and see that we can write y as a function of x by rewriting
f (x, y) =ω. We denote this function by y∗ and compute it and its derivatives y′∗, y

′′
∗ with respect to x.

y∗(x) =
ω− f0(x)

f1(x)
,

y′∗(x) =
( f0(x)−ω) f ′1(x)− f1(x) f ′0(x)

f1(x)2
,

y′′∗ (x) =
f1(x)

(
( f0(x)−ω) f ′′1 (x) + 2 f ′0(x) f ′1(x)

)
+ 2 (ω− f0(x)) f ′1(x)2 + f1(x)2

(
− f ′′0 (x)

)
f1(x)3

.

Let N(x) be the numerator of y′′∗ , so y′′∗ = N(x)/( f1(x)3). Using Lemma 3.1 part (i), we can check whether
N(x) ≡ 0.

Case 1: N(x) ≡ 0. If N(x) ≡ 0, then y′∗ is constant, and hence y∗ is an affine function on each interval
I ∈ Iα̃. Since degy( f ) = 1, the sublevel set is either the epigraph or the hypograph of the affine function y∗.
Thus, XA and IA yield a division description.

Case 2: N(x) . 0. We use Lemma 3.1 part (ii) to find 1/4-approximations B = {β̃1, . . . , β̃k′} of the roots of
N(x) = 0. The division description is then given by XA∪B and IA∪B, since the curve has no inflection points
on these intervals. �

A crucial tool for the next lemma is the following consequence of Bézout’s theorem.
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Figure 1. The techniques from each subcase of Case 2 from the proof of Lemma 4.7. (a) The curve y2(8 + 4x) + y(−32) + (x3 −

4x2 − 16x + 32) = 0 on the region 1 ≤ x ≤ 4 satisfies y− is convex while y+ is concave. One can find a line separating the two by only
considering the y+ and y− at the endpoints x = 1 and x = 4. (b) The curve y2(−20x + 80) + (3x3 − 8x2 + 82x + 336) = 0 on the region
6 ≤ x ≤ 10 satisfies y+ is convex while y− is concave. We determine the x-values x∗ where y+ and y− are closest and then create two
separate regions on which to separate y+ from y−. The separation on each region computes a point and a slope from this point to
separate. (c) The curve y2(4x−1) + y(32) + (2x2 −16x−32) on the region −2 ≤ x ≤ 8 satisfies y+ and y− are concave. To separate the
curves, we draw the line connecting the endpoints of y+ to itself. The red shaded region around this line in the figure is explained
better in the next subfigure. (d) A more abstract example of two concave functions shows that connecting the endpoints may still
intersect the lower curve. Therefore, we remove the red shaded region around this line to ensure that we separate the two curves.

Remark 4.6. Let f (x, y) be a cubic polynomial and let L = {(x, y) : ax+by+c = 0} be any line with either
a , 0 or b , 0. Then either L is contained in the level set S f

=ω, or they intersect at most three times. When
b , 0 (a , 0 is analogous), this is because f (x,− ax+c

b ) is a cubic polynomial in x, which is either the zero
polynomial, or has at most three zeros.

Lemma 4.7. Suppose degy( f ) = 2. For any ω ∈ Z+ 1
2 , we can find a division description for S f

≤ω on B in
polynomial time.

Proof. We begin by finding a set of 1/4-approximationsA = {α̃1, . . . , α̃k}, k ≤ 1, of the zeros of f2(x) with
Lemma 3.1 part (ii). We focus on intervals I ∈ IA, since f2(x) is non-zero on these intervals. On the level
set S f

=ω, we can write y in terms of x using the quadratic formula, yielding two functions

y+(x) =
− f1(x) +

√
∆

2 f2(x)
, y−(x) =

− f1(x)−
√

∆

2 f2(x)
, where ∆ = f1(x)2 − 4 f2(x)( f0(x)−ω).

By Lemma 3.1 part (i), we can test whether or not ∆ ≡ 0.
Case 1: ∆ ≡ 0. If ∆ ≡ 0, then y+ ≡ y−, meaning that all roots are double roots. Therefore, f (x, y)−ω can

be written as f2(x)
(
y − − f1(x)

2 f2(x)

)2
. It follows that ∇ f (x, y+(x)) = 0 for all x in the domain of y+, and hence the

gradient ∇ f is zero on the level set. From the definition of affinely critical, Lemma 4.3 and the fact that f is
not constant on R2, we must have that the level set on x ∈ I is contained in a line since y+ is differentiable in
I. Moreover, we can compute the line exactly by evaluating the derivative and the function at a point where
f2(x) , 0. Then we write it as ax + by = c with a,b, c ∈ Z. As before, our division description comprises lines
from XA and the line ax + by = c, whereas the polyhedra come from IA and the inequalities ax + by ≥ c + 1
and ax + by ≤ c− 1.

Case 2: ∆ . 0. By Lemma 3.3, we can find a list A = {α̃1, . . . , α̃k} of rational points such that y± are well
defined, continuous and either convex or concave on each I ∈ IA. Moreover, on each interval ∆ , 0, so they
do not intersect. Hence, y± are convex or concave (or both) on each interval. Furthermore, we can determine
whether y+ > y− or y+ < y− on the interval by evaluating one point in the interval.

We will assume from here on that y+ > y− on the interval I as the calculations are similar if y− < y+. Note
that y+ > y− on I implies that f2 > 0 on I. Let `,u ∈ Z be the endpoints of I, that is I = [`,u]. Since we are
interested in a division description on B, we may assume −R ≤ ` ≤ u ≤ R. We distinguish the following four
cases based on the convexity or concavity of y+, y− on I.

Case 2a: y+ concave, y− convex. (cf. Figure 1 (a)) Consider f (`, y)−ω and f (u, y)−ω as quadratic poly-
nomials in y. We use Lemma 3.1 part (iii) to find upper and lower bounds on their roots. Since Lemma 3.1
part (iii) finds non-intersecting bounding boxes on each root for any prescribed ε, we simply take ε = 1.
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These approximations are actually approximations to the values of y−(x) and y+(x) at x = ` and x = u. Take
the averages between the lower bounds of the upper roots and the upper bounds of the lower roots, and call
these averages ỹ` and ỹu. Consider the rational line segment conv{(`, ỹ`), (u, ỹu)}. Due to the convexity and
concavity of y+ and y− on the interval, this line segment separates y− from y+ on [`,u].

Case 2b: y+ convex, y− concave. (cf. Figure 1 (b)) Since the epigraph of y+ and the hypograph of y− are
both convex sets, there exists a hyperplane that separates them due to the hyperplane separation theorem.
To find such a hyperplane, suppose first that we can exactly determine x∗ that minimizes y+(x) − y−(x) on
[`,u], and suppose further that we could exactly compute y′+(x∗). If x∗ ∈ (`,u), then y′+(x∗) = y′−(x∗), so the
line passing through x∗ with slope y′+(x∗) separates the two regions. Otherwise, suppose that x∗ = `. Then
y′−(x∗) ≤ y′+(x∗), so the same line again separates the two regions. The case where x∗ = u is analogous.

However, x∗ may be irrational, so we might not be able to determine it exactly. To find a numerical ap-
proximation x̃∗, note that y+ − y− =

√
∆/ f2. Since this quantity is nonnegative on [`,u], we instead minimize

the square, which is ∆/ f 2
2 . This is a quotient of polynomials, and therefore we can approximately compute

the zeros of the first derivative, which occur at ∆′ f 2
2 − 2 f2 f ′2∆ = 0. In fact, either y−, y+ are both lines, or

there are at most polynomially many local minima.
Let B = {β̃1, . . . , β̃k̂} be the ε-approximations of these roots with ε = 1/4. We consider IA∪B and XA∪B and

we focus on an interval Î ∈ IA∪B with Î ⊆ I. Let ˆ̀, û ∈ Z be the endpoints of Î. Since Î ∈ IA∪B, no minimizer
of y+ − y− lies in ( ˆ̀, û).

Since no minimizer lies in ( ˆ̀, û), y+(x) − y−(x) is minimized either at ˆ̀ or at û, so we just compare the
values. Since y+ − y− =

√
∆/ f2 is nonnegative on I, we instead compare the squares (y+( ˆ̀) − y−( ˆ̀))2 and

(y+(û) − y−(û))2, thus avoiding approximation of square roots. Suppose without loss of generality that û is
the minimizer.

Now consider

y′+ − y′− = (
√

∆/ f2)′ =
(∆′ f2 − 2 f ′2∆)

√
∆

2 f 2
2 ∆

.

Call a = ∆′ f2 − 2 f ′2∆ and b = 2 f 2
2 . Then a,b,∆ : Z ∩ Î → Z \ {0}, and they are all polynomials of bounded

degree. A straightforward calculation shows that 1 ≤ |a(û)|, |b(û)|, |∆(û)| ≤ 4× 102M3R5. Therefore

|y′+(û)− y′−(û)| =

∣∣∣∣∣∣ a(û)
b(û)
√

∆(û)

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣ 1

(4× 102M3R5)2

∣∣∣∣∣∣ .
Let ε := 1

4(4×102 M3R5)2 . We need to approximate y′+(û) and y′−(û) within a factor of ε. Using the representation

in Lemma 3.3, we have

y′+ =
∆
(
f ′2 f1 − f2 f ′1

)
+ (−∆ f ′2 + 1

2 f2∆
′)
√

∆

2 f 2
2 ∆

=
X + Y

√
∆

Z
,

Hence, we can compute X,Y,Z exactly, but we need to approximate
√

∆. A straightforward calculation
shows that we only need to approximate this within a factor of ε̂ := ε

4×102 M3R5 . A similar calculation follows
for y′−.

We can compute ε-approximations ỹ+(û) and ỹ−(û) using a numerical square root tool such as [19] to
approximate

√
∆(û) to an accuracy of ε̂. Let

m = 1
2 (ỹ′+(û) + ỹ′−(û)) ∈ [min(y−(û), y+(û)),max(y−(û), y+(û))].

Moreover, we compute ỹû = 1
2 (ỹ+(û) + ỹ−(û)) where ỹ+(û) and ỹ−(û) are approximations computed from the

roots of f (û, y) using Lemma 3.1. Then the line through (û, ỹû) with slope m separates y− and y+ on [ ˆ̀, û].
Case 2c: y+ concave, y− concave. (cf. Figure 1 (c) and (d)) Consider the line segment L connecting the

two endpoints of y+, i.e., conv{(`, y+(`)), (u, y+(u))}. We claim that L intersects the graph of y− in at most one
point in [`,u]. By Remark 4.6, either L coincides with the graph of y+, or L intersects the level set S f

=ω at
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most three times. Since L intersects the graph of y+ twice and y−(x) < y+(x), L can intersect the graph of y−
at most once.

Therefore, the line L is a weak separator of the curves y−(x) and y+(x). Since L may be irrational, we
cannot compute it exactly, but we approximate it instead. Let ε := 1

2(u−`) . We use Lemma 3.1 part (iii) to find
bounding ε-approximations to the roots of the equations f (`, y) = ω and f (u, y) = ω. Hence we can obtain
ỹ1
` < y+(`) < ỹ2

` and ỹ1
u < y+(u) < ỹ2

u such that |ỹ1
` − ỹ2

` | < ε and |ỹ1
` − ỹ2

` | < ε. We then construct the quadrangle
Q = conv({(`, ỹ1

`), (`, ỹ
2
`), (u, ỹ

1
u), (u, ỹ2

u)}). By construction, vol(Q) ≤ ε(u−`) ≤ 1/2. Therefore, by Lemma 3.4,
this contains at most one line of integer points that we can compute a description for in polynomial time.
We add this line to our division description.

Furthermore, L ⊆ Q. Therefore, y− is strictly below the line conv{(`, ỹ2
`), (u, ỹ

2
u)} and y+ is strictly above the

line conv{(`, ỹ1
`), (u, ỹ

1
u)}. We then add to our division description the two polyhedra given by (x, y) ∈ [`,u]×R

such that (x, y) is either above conv{(`, ỹ2
`), (u, ỹ

2
u)} or below conv{(`, ỹ1

`), (u, ỹ
1
u)}.

Case 2d: y+ convex, y− convex. This case is analogous to the previous case, where instead here we take
the line segment conv{(`, y−(`)), (u, y−(u))}.

We have shown how to divide each interval, thus completing the proof. �

Lemma 4.8. Suppose degy( f ) = 3. For any ω ∈ Z+ 1
2 , we can find a division description for S f

≤ω on B in
polynomial time.

Proof. We create the division description by applying a linear transformation such that the objective
function becomes a quadratic function in one variable and then apply Lemma 4.7. For any a ∈ R, consider
the linear transformation x = u and y = au + v, that is A(u, v) = (x, y) where

A =

[
1 0
a 1

]
.

Notice that A is invertible, and u = x, v = y− ax. Define

ga(u, v) := f (u,au + v) = (c0 + c1a + c2a2 + c3a3)u3 + wa(u, v),

where wa(u, v) is at most quadratic in terms of u and at most cubic in terms of v, and c0, . . . , c3 are a subset
of the coefficients of f . Let ā ∈R be such that

c0 + c1ā + c2ā2 + c3ā3 = 0.

Note that since degy( f ) = 3, we have that c3 , 0. Since this is a cubic equation with integer coefficients, we

know there is at least one real solution. Define Ā =

[
1 0
ā 1

]
and let R̄ ≥ 1 be an upper bound on |ā|+1 = ‖Ā−1‖1 =

‖Ā−1‖∞, which can be chosen of polynomial size in terms of the coefficients of f by Theorem 4.1. Set
1/ε = 4× 36×M(2R̄ + 1)3(R̄ + 1)3R3 and compute an approximation āε such that |ā− āε | < ε. By Lemma 3.1
part (ii), this approximation can be found in polynomial time.

Since ε ≤ 1, for 1 ≤ i ≤ 3 we have |āi − āi
ε | ≤ ε i (2R̄ + 1)i. Thus for any (u, v) with ‖(u, v)‖2 ≤ (R̄ + 1)R, we

have

|gāε (u, v)−wāε (u, v)| =
∣∣∣(c0 + c1āε + c2ā2

ε + c3ā3
ε ) u3

∣∣∣ ≤ ∣∣∣∣∣∣∣
3∑

i=1

ci(āi − āi
ε)

∣∣∣∣∣∣∣ (R̄ + 1)3R3 ≤

3∑
i=1

|ci||āi − āi
ε |(R̄ + 1)3R3

≤

3∑
i=1

4 Mε 3 (2R̄ + 1)3(R̄ + 1)3R3 ≤ ε × 36×M(2R̄ + 1)3(R̄ + 1)3R3 ≤ 1
4 .

Let fε(x, y) := wāε (x, y− āε x) and consider Āε(u, v) = (x, y) with Āε =

[
1 0
āε 1

]
. Then, for all x, y ∈ B we have

‖(u, v)‖2 = ‖Ā−1
ε (x, y)‖2 ≤ ‖Ā−1

ε ‖2 ‖(x, y)‖2 ≤ ‖Ā−1
ε ‖1 ‖(x, y)‖2 ≤ (R̄ + 1) ‖(x, y)‖2 ≤ (R̄ + 1)R,
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because ‖Ā−1
ε ‖2 ≤

√
‖Ā−1

ε ‖1‖Ā−1
ε ‖∞ = ‖Ā−1

ε ‖1 and |ā− āε | < ε ≤ 1. Thus

| f (x, y)− fε(x, y)| = |gāε (u, v)−wāε (u, v)| ≤ 1/4.

Thus, for ω ∈ Z+ 1
2 , we have that

{(x, y) ∈ B∩Z2 : f (x, y) ≤ω} = {(x, y) ∈ B∩Z2 : fε(x, y) ≤ω}.

Therefore, we can solve the feasibility problem for f by solving the feasibility problem for fε . By
Lemma 4.7, we can find Pi,Qi and Li to divide the plane for the level sets of wāε , which is done by scaling the
function to have integer coefficients. Then, under the linear transformation Āε , we have that ĀεPi, ĀεQi, ĀεLi

are all rational polyhedra, so they comprise a division description. �

Theorem 4.9 (cubic, bounded). Theorem 1.3 holds when P is bounded.

Proof. Follows directly from Lemmas 4.4, 4.5, 4.7, 4.8 and Theorem 2.4. �

5. Homogeneous Polynomials In this section we will prove Theorem 1.6 by showing that for homo-
geneous polynomials, we can choose one division description of the plane that works for all level sets.
This is done by appropriately approximating the regions where the function is quasiconvex and quasicon-
cave. We say that a function f is quasiconvex on a convex set S if all the sublevel sets are convex, i.e.,
{x ∈ S : f (x) ≤ω} is convex for all ω ∈R. A function f is quasiconcave on a set S if − f is quasiconvex on S .
A polyhedral division of the regions of quasiconvexity and quasiconcavity is a division description for any
sublevel set. Therefore, if we can divide the domain into polyhedral regions where the objective is either
quasiconvex or quasiconcave, then we can apply Theorem 2.4.

In Section 5.1 we study homogeneous functions and investigate where they are quasiconvex or quasicon-
cave. In Section 5.2, we show how to divide the domain appropriately into regions of quasiconvexity and
quasiconcavity, proving the main result for homogeneous polynomials.

5.1. Homogeneous Functions and the Bordered Hessian The main tool that we will use for distin-
guishing regions where f is quasiconvex or quasiconcave is the bordered Hessian. For a twice differentiable
function f : Rn→R the bordered Hessian is defined as

H f =

[
0 ∇ f T

∇ f ∇2 f

]
, (7)

where ∇ f is the gradient of f and ∇2 f is the Hessian of f .
We will denote by D f the determinant of the bordered Hessian of f . Let fi denote the partial derivative

of f with respect to xi and fi j denote the mixed partial with respect to xi and x j. The following result can be
derived from Theorem 2.2.12 and 3.4.13 in [3].

Lemma 5.1. Let f : R2→R be a continuous function that is twice continuously differentiable on a convex
set S .

(i) If D f < 0, then f is quasiconvex on the closure of S .
(ii) If D f > 0, then f is quasiconcave on the closure of S .

We now briefly discuss general homogeneous functions. We say that h : Rn → R is homogeneous of
degree d if h(λx) = λdh(x) for all x ∈ Rn and λ ∈ R. Clearly a homogeneous polynomial of degree d is a
homogeneous function of degree d.

The following lemma shows that the determinant of the bordered Hessian has a nice formula for any
homogeneous function. This was proved in Hemmer [11] for the case of n = 2, which can be adapted easily
to general n.
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Lemma 5.2. Let h : Rn→R be a twice continuously differentiable homogeneous function of degree d ≥ 2.
Then

Dh(x) =
−d

d − 1
h(x) · det(∇2h(x)) for all x ∈Rn. (8)

Recall that a polynomial f (x) : Rn → R is homogeneous translatable if there exists a t ∈ Rn such that
f (x + t) = h(x) for some homogeneous polynomial h(x).

Corollary 5.3. Let f be a homogeneous translatable polynomial in 2 variables of degree d ≥ 2. Then
either D f is identically equal to zero, or D f is a homogeneous translatable polynomial that translates to a
homogeneous polynomial of degree 3d − 4.

If h : R2→ R is a homogeneous polynomial of degree d ≥ 2 and Dh ≡ 0, then h is the power of a linear
form, as the following lemma shows.

Lemma 5.4 (Lemma 3 in [11]). Let h : R2 → R be a homogeneous polynomial of degree d ≥ 2. Then
Dh ≡ 0 if and only if there exist c ∈R2 such that

h(x) = (cT x)d. (9)

5.2. Division of Quasiconvex and Quasiconcave Regions and Proof of Theorem 1.6 Let P be a
bounded rational polyhedron and let f be a homogeneous translatable polynomial and suppose that D f is
also homogeneous translatable. Recall that there exists an integer R ≥ 1 whose size is polynomial in the size
of P such that P ⊆ B := [−R,R]2.

We will show how to decompose B∩Z2 into polyhedra Pi where D f < 0, Qi where D f > 0, and lines Lk.
Thus we obtain a classification of regions of quasiconvexity and quasiconcavity by Lemma 5.1 and can then
use Theorem 2.4.

The regions D f ≤ 0 and D f ≥ 0 cannot be described by rational hyperplanes; therefore, we approximate
them sufficiently closely by rational hyperplanes. In order to avoid numerical difficulties, we allow the
possibility of leaving out a line of integer points, which we consider separately. To determine those lines,
Lemma 3.4 will be useful.

We will summarize a strategy to create the desired regions for a homogeneous polynomial h of degree d.
We will then prove a theorem for the more general setting of a homogeneous translatable polynomial F in
a similar way, which we later apply to F = D f .

For a homogeneous polynomial h of degree d that is not the zero function, the roots of h must lie on at
most d lines, which we will call zero lines. This is because if h(x̄) = 0, then we have h(λx̄) = λdh(x̄) = 0 for
all λ ∈R. Each zero line is either the line x1 = 0, or must intersect the line x2 = δ for any fixed δ , 0. The fact
that the former is a zero line can be established by testing whether h(0, x2) is the zero polynomial. To see
how the latter defines zero lines, consider the polynomial h(x1, δ). It is a univariate polynomial of degree d,
and hence has at most d roots. Therefore, finding these roots (and hence the intersections of the zero lines
of h with the line x2 = δ) completes our classification of all the zero lines of h.

We choose δ = R and use Lemma 3.1 part (iii) to find intervals containing the roots of h(x1,R). These
intervals can be used to create quadrilaterals that cover the zero lines of h within B. Provided that the proper
accuracy is used, these quadrilaterals will contain at most one line of integer points. Finally, taking the
complement of quadrilaterals in B, we find a union of polyhedra where h is non-zero. We can then find an
interior point of each polyhedron on which we can evaluate h to determine the sign on each polyhedron.

Theorem 5.5. Let F(x) be a homogeneous translatable polynomial in two variables of degree d ∈ Z≥0

with integer coefficients that is not the zero function. Let ` ∈ Z+ be a bound on the size of the coefficients of
F. In polynomial time in `, d and the size of R, we can partition B∩Z2 into three types of regions:

(i) rational polyhedra Pi where F(x) > 0 for all x ∈ Pi ∩ B∩Z2,
(ii) rational polyhedra Q j where F(x) < 0 for all x ∈ Q j ∩ B∩Z2,

(iii) one dimensional rational linear spaces Lk,
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where each polyhedron Pi,Qi is described by polynomially many rational linear inequalities and each linear
space is described by one rational hyperplane, and all have size polynomial in `, d, and the size of R.
Furthermore, there are only polynomially many polyhedra Pi,Qi and linear spaces Lk.

Proof. Since F is homogeneous translatable, there exists t ∈R2 such that h(x) = F(x+t) is a homogeneous
polynomial of degree at most d. The zeros of h lie on lines through the origin. Therefore, the zeros of F
must lie on lines through t.

We consider the region S = {x ∈ R2 : −R ≤ x2 ≤ R}. Since all zero lines of F pass through t, the geometry
of the nonnegative regions in B depends on whether or not t ∈ S .

Consider the distinct roots α1 < α2 < · · · < αr and β1 < β2 < · · · < βs of the univariate polynomials F(x1,R)
and F(x1,−R), respectively. Assume without loss of generality that r = s, because if we encounter the case
r , s, then t is on the boundary of the region, so we can simply set R := R + 1, which will result in r = s.

If t < S , then the zero lines of F do not intersect in S and hence there must be a zero line from each αi to
each βi (cf. Figure 2a). If t ∈ S , the zero lines intersect in S , and therefore the zero lines of F connect each
αi to each βr−i (cf. Figure 2b). The union of those two sets of lines has cardinality at most 2d and contains
all zero lines of F except for lines parallel to the x2 axis (cf. Figure 2c). By switching x1 and x2, repeating
the same procedure and adding the resulting at most 2d lines, we thus get a set of at most 4d lines which
contain all the zero lines of F.

For each of the at most 4d lines we now construct a rational quadrilateral containing its intersection
with B and with the property that all integer points in the quadrilateral are contained on a single line. We
describe this only where we fix x2 = ±R, as the case of fixing x1 is similar. Consider the line passing through
(α,R) and (β,−R). In time and output size that is bounded by polynomial in `, and the size of R and ε (see
Lemma 3.1), we can compute a sequence of disjoint intervals, each of length smaller than ε containing the
roots of F(x1,±R). Thus, for the root α, we can construct α−, α+ ∈Qwith α− < α < α+ such that |α+−α−| < ε.
Similarly, we can construct β−, β+ ∈Q for β.

If we choose ε := 1
4R , then the rational quadrilateral defined by vertices (α−,R), (α+,R), (β−,−R) and

(β+,−R) has volume less than 2×R 1
4R = 1

2 . Moreover, it can be defined by inequalities with a polynomial size
description. Hence by Lemma 3.4, the integer points in it are contained in a rational line that we can find a
description of in polynomial time. Each one of those lines will define one Lk in the division description.

In total, this results in at most 4d linear spaces Lk, 8d hyperplanes for the quadrilaterals and 4 hyperplanes
for the boundary of B. Apply the hyperplane arrangement algorithm of [25] to enumerate all O(d2) cells of
the arrangement in O(d3 `p(2,d)) time. Here `p(2,d) is the cost of running a linear program in dimension 2
with d inequalities, which is in polynomial time because of the inputs are of polynomial size. For each cell,
a signed vector of +, 0, and − describing if the relatively open cell satisfies ai · x > bi, ai · x = bi, ai · x < bi,
respectively, for every hyperplane ai · x = bi in the arrangement. We exclude cells that are contained in the
union of quadrilaterals and cells not contained in B by reading these signed vectors. This is all done in
polynomial time in d.

We have described how to obtain at most 4d linear spaces Lk and polynomially many rational polyhedra
that contain all integer points in B. Using linear programming techniques, we can determine an interior point
of each of these polyhedra. Evaluating F at each interior point determines the sign of F on each polyhedron.
Hence this construction determines the list of polyhedra Pi and Q j. This finishes the result. �

Recall that for a convex set C, f is quasiconvex on C if and only if C ∩ S f
≤ω is convex ∀ω ∈R. Moreover,

f is quasiconcave on C if and only if C ∩ S f
>ω is convex ∀ω.

Corollary 5.6. Let f be a homogeneous translatable polynomial of degree d ≥ 2 with integer coeffi-
cients. In time and output size bounded by polynomial in d, the size of R, and the size of the coefficients
of f , we can find a polynomial number of rational polyhedra Pi, Q j and rational lines Lk such that f is
quasiconvex on Pi, quasiconcave on Q j, and

B∩Z2 =

 `1⋃
i=1

Pi ∪

`2⋃
j=1

Q j ∪

`3⋃
k=1

Lk

∩Z2. (10)
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α1 α2 α3

β1 β2 β3

x2 = R

x2 = −R

(a)

α1 α2 α3

β1 β2 β3

t

(b)

α1 α2 α3

β1 β2 β3

(c)

Figure 2. This figure illustrates the techniques in Theorem 5.5. The black solid lines are the zero lines of F. We construct the
shaded quadrilaterals using numerical approximations on the roots αi and βi to an accuracy such that they each contain at most one
line of integer points. (a) If the zero lines of F do not intersect in S , then each zero line passes through (αi,R), (βi,−R) for some i.
(b) If the zero lines of F intersect in S , then they intersect in a common intersection point t. Each zero line passes through (αi,R),
(βr−i,−R) for some i, except for a potential horizontal zero line. (c) To avoid having to know whether the zero lines intersect in S or
not, we simply consider all potential lines from both cases. Note that this still does not include a potential horizontal zero line. This
line is covered by switching x1 with x2 and repeating the same procedure.

In particular, for a given ω ∈R, this yields a division description for S f
≤ω on B.

Proof. If D f ≡ 0, then by Lemma 5.4 f has the form f (x) = (cT (x−t))d. This function has one line of zeros
and has the property that whenever f > 0, f is convex and whenever f < 0, f is concave. By Theorem 5.5,
we hence divide B ∩ Z2 into polyhedra where f is quasiconvex or quasiconcave and some rational lines
containing integer points. If instead D f . 0, then by Corollary 5.3, D f is homogeneous translatable of degree
3d − 4. By Theorem 5.5, we can cover B ∩ Z2 with polyhedra where D f < 0 or D f > 0 and just lines.
Applying Lemma 5.1, shows that f is quasiconvex or quasiconcave in these polyhedra. By the definition of
quasiconvexity, this yields a division description for S f

≤ω for all ω. �
Proof of Theorem 1.6 If d ≤ 1, the problem is a particular case of integer linear programming, which is

polynomially solvable in fixed dimension [22, 23, 17]. Assume that d ≥ 2. By Corollary 5.6, we can con-
struct a polynomial number of rational polyhedra with polynomially bounded size where f is quasiconvex
or quasiconcave, and linear spaces, that cover P∩Z2. This description yields a division description for any
ω. We can then solve our problem in polynomial time using Theorem 2.4. �

The proof of Theorem 1.6 is more general than is needed here. In fact, the same proof shows that we
can also minimize a polynomial f (x1, x2) whenever D f is homogeneous translatable and is not identically
zero. Minimizing general quadratics in two variables can then be done in this manner, because either D f has
those properties, or we can compute a rational constant c0 such that f (x) + c0 is homogeneous translatable.

6. Cubic Polynomials and Unbounded Polyhedra In this section, we prove Theorem 1.3, i.e., we
show how to solve Problem (1) in two variables when f is cubic and P is allowed to be unbounded. The
behavior of the objective function on feasible directions of unboundedness is mostly determined by the
degree three homogeneous part of f . Hence we will study degree three homogeneous polynomials before
proceeding with the proof of Theorem 1.3

A homogeneous polynomial of degree three factors (over the reals) either into a linear function and an
irreducible quadratic polynomial, or three linear functions. We distinguish between the cases where the
linear functions are distinct, have multiplicity two, or have multiplicity three, in part, by analyzing the
discriminant ∆d of certain degree d polynomials. In particular, if p(x) =

∑d
i=0 cixi, with cd , 0, then ∆2 =

c2
1 − 4c0c2 and ∆3 = c2

1c2
2 − 4c3

1c3 − 4c0c3
2 − 27c2

0c2
3 + 18c0c1c2c3.
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Figure 3. The top four plots are contour plots for examples of the four classes of cubic homogeneous polynomials as described in
the proof of Lemma 6.2. The bottom four plots depict the sign of the polynomial. The red lines are the zero level set. The polynomial
is zero on (i) three distinct lines, (ii) one single and one repeated line, (iii) a triple line or (iv) a single line. The thicker red line in
(ii) and (iii) is the zero line with multiplicity 2 and 3 respectively. If the function is zero on a single line only as in (iv), then it is
the product of a line and a quadratic polynomial that is irreducible over the reals. Examples of rec(P) as discussed in Case 3 of the
proof of Theorem 1.3 are depicted in green.

Lemma 6.1 (repeated lines). Let h(x, y) = c0x3 + c1x2y + c2xy2 + c3y3 be a homogeneous polynomial of
degree 3 with integer coefficients, that is, ci ∈ Z for i = 0,1,2,3. Suppose h . 0 and there exist a1,b1,a2,b2 ∈

R such that
h(x, y) = (a1x + b1y)2(a2x + b2y). (11)

Then, in polynomial time we can determine a′i ,b
′
i ∈Q, for i = 1,2, such that h(x, y) = d (a′1x+b′1y)2(a′2x+b′2y)

for some d ∈R.

Proof. First, suppose that c0 = c3 = 0. Then h(x, y) = xy(c1x + c2y), which implies c1 = 0 or c2 = 0 by
equation (11). If c1 = 0, then we can take a′1 = 0, b′1 = 1, a′2 = c2 and b′2 = 0. The case c2 = 0 follows by
switching x and y. Henceforth, we consider the case where either c1 , 0 or c3 , 0. Since these cases are
symmetric in switching x and y, we assume without loss of generality that c0 , 0.

Since c0 , 0, by equation (11) we have that ai , 0 for i = 1,2. Consider the rational cubic polynomial
h(x,1) = c0x3 + c1x2 + c2x + c3. By equation (11) it has a repeated root, so its discriminant ∆3 is equal to zero
(see, for example, [12]). Let p = −

c2
1

3c2
0

+
c2
c0

and q =
2c3

1
27c3

0
−

c1c2
3c2

0
+

c3
c0

. Since ∆3 = 0, by [13] the roots of h(x,1)

are of the form r − c1
3c0

, where either r = 0, r = ±
√
−p/3 or r = ±2

√
−p/3. Since ∆3 = c4

0(−4p3 − 27q2) = 0,
we have that if p , 0, then

√
−p/3 =

3|q|
2|p| , which is rational. Thus all roots are rational and can be computed

explicitly in terms of the coefficients of h.
Finally, if r1 is the double root of h(x,1) and r2 is the single root, then a′1 = 1, b′1 = −r1, a′2 = 1 and b′2 = −r2

are rational and h(x, y) = d (a′1x + b′1y)2(a′2x + b′2y) for d = a2
1a2. �

If h is a cubic homogeneous bivariate polynomial, then a linear factor always factors out over the reals.
Thus, there exist real numbers ai,bi for i = 1,2,3, with (ai,bi) and (a j,b j) linearly independent if i , j, a
quadratic irreducible polynomial q(x, y), and d ∈R such that it is of one of the following types:

Type (i) h(x, y) = (a1x + b1y) (a2x + b2y) (a3x + b3y),
Type (ii) h(x, y) = (a1x + b1y)2 (a2x + b2y),

Type (iii) h(x, y) = d (a1x + b1y)3,
Type (iv) h(x, y) = (a1x + b1y) q(x, y).

An example of each type is shown in Figure 3.
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Lemma 6.2. Let h be a cubic homogeneous bivariate polynomial. In polynomial time, we can determine
which of the four Types (i)-(iv) the polynomial h belongs to. Furthermore, if it is of Type (ii) or Type (iii), in
polynomial time, we can compute rational ai,bi, i = 1,2, satisfying the equation.

Proof. We show how to determine which of the Types (i)-(iv) the polynomial belongs to. Suppose first
that the coefficient of y3 is zero. Then x = 0 is one of the zero lines of the polynomials and we can factor out
x, leaving us with a homogeneous polynomial of degree 2. If x factors out again, then depending on whether
it factors out a third time or not, we are either in Type (ii) or (iii), because either h(x, y) = a2

1x2(a2x + b2y),
b2 , 0, or h(x, y) = a3

1x3. If x does not factor out a second time, then we look at the discriminant ∆2 of the
degree 2 polynomial where we set x = 1. It is well known that the sign of ∆2 determines whether h(1, y) has
2, 1 or 0 distinct real roots (see, for example, [12]). Remember that since h is homogeneous, h(1, ȳ) = 0 if
and only if h(λ, λȳ) = 0 ∀λ ≥ 0. Thus, if ∆2 > 0 we are in Type (i), if ∆2 = 0 in Type (ii), and if ∆2 < 0 in
Type (iv).

Let us now look at the case where x = 0 is not a zero line of the polynomial. Set x = 1 and consider the
discriminant ∆3 of the resulting polynomial. It is well known that the sign of ∆3 determines whether h(1, y)
has three distinct real roots, one real root and two complex conjugate roots, or if all roots are real and at
least two of them coincide (see, for example, [12]). Thus, if ∆3 > 0, we are in Type (i), and if ∆3 < 0, we are
in Type (iv). Finally, if ∆3 = 0 we are either in Type (ii) or (iii). To distinguish between those two, note that it
is possible to establish the multiplicity of a root of a univariate polynomial by checking whether it is also a
root of its derivatives. Thus compute the root of the second derivative. Note that it is a rational expression in
terms of the coefficients of the original polynomial, so it is rational. If it is also a root of the first derivative
and the original polynomial (with x = 1), then it is a triple root, so we are in Type (iii). Otherwise, we are in
Type (ii). Hence, in polynomial time, we can determine which case we are in.

Finally, by Lemma 6.1, if h is of Type (ii) or (iii), then we can compute rational ai,bi for i = 1,2. In
fact, if h is of Type (ii) this is straightforward, whereas if it is of Type (iii), we can rewrite h as h(x, y) =

(a1x + b1y)2 (da1x + db1y). �
We will also need the following lemma about lower bounding a polynomial that is positive on a compact

set.

Lemma 6.3. Let f : [0,1]→ R be a polynomial of maximum degree at most 3 with rational coefficients.
Suppose f (x) > 0 for all x ∈ [0,1]. Then there exists a lower bound m of polynomial size in the size of the
coefficients of f such that f (x) >m > 0 for all x ∈ [0,1].

Proof. We will bound the minimum value of f on [0,1]. Since f is a polynomial, it attains its minimum
value at a critical value or at one of the endpoints of the interval. Clearly, f (0) and f (1) have a polynomial
size in the size of the coefficients of f , so we only need to bound the function at any critical values.

Consider
f (x) = ax3 + bx2 + cx + d, and f ′(x) = 3ax2 + 2bx + c = 0.

If a = 0, then the only critical point is at x = −c/(2b). Clearly f (−c/(2b)) also has polynomial size.
Otherwise, a , 0. Then, from the quadratic formula, it follows that

x± =
−b±

√
b2 − 3ac

3a
, and f (x±) =

27a2d − 9abc + 2b3 ±
(
6ac− 2b2) √b2 − 3ac

27a2
.

Thus, set p = 27a2d−9abc+2b3

27a2 , q = ± 6ac−2b2

27a2 , and t = b2 − 3ac, and let f ∗ = p + q
√

t. By rearranging, we arrive at

( f ∗ − p)2 − q2t = 0.

Since we know that f ∗ > 0, by Theorem 4.1 its smallest positive root is at least as large as some m > 0,
where m is of polynomial size in the original coefficients. �

We now prove Theorem 1.3.
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Proof of Theorem 1.3 We will either show that Problem (1) is unbounded and exhibit a feasible point x̄
and an integral ray r̄, each of polynomial size, such that the objective function tends to −∞ along x̄ + λr̄ as
λ→∞, or we will exhibit a polynomial size bound R such that the optimal solution x∗ of Problem (1) is
contained in P∩ [−R,R]2, and hence the solution can be found in polynomial time using Theorem 4.9.

We assume that PI is unbounded, because otherwise Problem (1) can be solved using Theorem 4.9. If the
degree of f is not greater than two, then Problem (1) can be solved by [8]. Thus we will assume that the
degree of f is exactly three. We will also assume that rec(P) is a pointed cone, where rec(P) denotes the
recession cone of P. If not, then we can divide P into four polyhedra where the recession cone is pointed,
for instance, by restricting to the four standard orthants of R2, and solving on each polyhedron separately.
Since rec(P) is pointed, using linear programming techniques, we can compute rational rays r1, r2 such that
rec(P) = cone{r1, r2} = {λ1r1 + λ2r2 : λ1, λ2 ≥ 0}. Without loss of generality, we assume that r1, r2 ∈ Z2 are
integral, as this can be obtained by scaling.

We will be focused on the behavior of f (x+λr) as λ varies, where x ∈ P∩Z2 and r ∈ rec(P). Since rec(P) =

cone{r1, r2}, we only need to restrict our attention to r ∈ conv{r1, r2}. Since P is pointed, 0 < conv{r1, r2}. In
large part, the behavior of f (x+λr) is determined by h, where h is the non-trivial degree three homogeneous
polynomial such that f − h is of degree two. We decompose f (x + λr) by parametrizing with λ in the
following way:

f (x + λr) = h(r)λ3 + g2(x, r)λ2 + g1(x, r)λ+ f (x). (12)

We consider cases based on the sign of h on conv{r1, r2}. In particular, let h∗ = min{h(r) : r ∈ conv{r1, r2}}.
We can determine the sign of h∗ by considering the univariate polynomial h̄(s) := h(sr1 + (1 − s)r2) on the
interval s ∈ [0,1] and applying Lemma 3.1 part (iii) and testing the points based on the location of the zeros.
Note that the sign of h∗ can be determined without actually computing h∗. This is important, since the value
h∗ could be irrational.

Case 1: Suppose h∗ < 0.
Then h(r) < 0 for some r ∈ conv{r1, r2}. We begin by computing a rational ray r̄ ∈ conv{r1, r2} with

h(r̄) < 0. If h(r1) < 0 or h(r2) < 0, then we are done. Otherwise, by Rolle’s theorem, h̄(s) = 0 somewhere on
[0,1]. By numerically approximating the zeros of h with Lemma 3.1 part (iii), we obtain separated upper
and lower bounds, α̃+

i and α̃−i , on the zeros of h. Note that any prescribed tolerance ε works here since we
only want to separate the zeros. Once the zeros are separated, one of these approximations must attain a
negative value, call it s̃. Then set r̄ = s̃r1 + (1− s̃)r2.

Using Lenstra’s algorithm, find a point x̄ ∈ P ∩ Z2 of polynomially bounded size. There exist infinitely
many points x̄ + λr̄ ∈ P∩Z2 for λ ≥ 0. By (12), f (x̄ + λr̄) is a cubic polynomial in λ with a negative leading
coefficient. Hence f (x + λr)→−∞ as λ→∞, i.e., Problem (1) is unbounded from x̄ along the ray r̄.

Case 2: Suppose h∗ > 0.
Since h∗ > 0 and r1, r2 are rational of polynomial size, and h̄ is a polynomial with coefficients of polyno-

mial size, we can also pick an 0 < h0 ≤ h∗ of polynomial size using Lemma 6.3.
Using the Minkowski-Weyl theorem and linear programming, we can decompose P into P = Q + rec(P),

where Q is a polytope and hence bounded. Let RQ be of polynomial size such that Q ⊆ [−RQ,RQ]2.
Again, using Lenstra’s algorithm, determine any x̄ ∈ P∩Z2 of polynomial size. We now will determine a

bound on λ such that f (q + λr) ≥ f (x̄) for all q ∈ Q and r ∈ conv{r1, r2}.
From (12), we have f (q + λr) − f (x̄) = h(r)λ3 + g2(q, r)λ2 + g1(q, r)λ + f (q) − f (x̄). Note that gi are

polynomials with coefficients of size bounded by a polynomial in the size of the coefficients of f . Since
(q, r) ∈ Q × conv{r1, r2}, there exists a uniform polynomial size upper bound on | f (q) − f (x̄)|, |gi(q, r)|, i =

1,2, on Q× conv{r1, r2}, call this U. Then

f (x)− f (x̄) ≥ h(r)λ3 − 3Uλ2 ≥ h0λ
3 − 3Uλ2 = (h0λ− 3U)λ2 ≥ 0,

where first and last inequalities together hold whenever λ ≥ max{ 3U
h0
,1}. Therefore, if x = q + λr ∈ P ∩ Z2

with λ ≥ 3U
h0

, then f (x) ≥ f (x̄).
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Finally, let R := RQ + max
{
1, 3U

h0

}
×max

{
‖r1‖22, ‖r2‖22

}
.

Therefore, the optimal solution to Problem (1) is contained in [−R,R]2 and R is of polynomial size.
Case 3: Suppose h∗ ≥ 0.
If h∗ > 0, then we are in Case 2. Otherwise, there exists at least one ray r ∈ conv{r1, r2} such that h(r) = 0.

Now rec(P) ⊆ S h
≥0. Recall that the homogeneous polynomial h is of one of the four types (Types (i)-(iv)).

Notice that Type (ii) is the only type where int(rec(P)) ∩ S h
=0 can be non-empty (cf. Figure 3). Therefore,

if h is not of Type (ii), then r must be an extreme ray of rec(P), i.e., r = r1 or r = r2. Otherwise, when h is
of Type (ii), the set S h

=0 is a rational line. By Lemma 6.2, we can distinguish these cases and compute the
rational line if necessary. Hence, we can compute all candidate rays r ∈ conv{r1, r2} such that h(r) = 0 in
polynomial time.

We now divide the problem such that we must consider at most one of these recession rays and such
that it is an extreme ray of the divided problem. This can be done, for instance, by averaging the candidate
rays, then restricting recession cones described by neighboring pairs of rays. We show how to solve just one
such problem, as the others can be solved in an identical manner. Thus, for the remainder of the proof, we
redefine r1, r2 such that rec(P) = cone{r1, r2} with h(r1) = 0, h(r) > 0 for all r ∈ conv{r1, r2} \ {r1}. Without
loss of generality, r1, r2 ∈ Z2.

Finally, we make one more decomposition. Let Q be the convex hull of the vertices of PI , in particular
PI = Q + rec(P), and Q is bounded. Let x̂ be the vertex of Q such that PI = P1 ∪ P2 where P1 = x̂ + rec(P)
and P2 = Q + cone{r2}. Choose (r1)⊥ as either (−r1

2, r
1
1) or (r1

2,−r1
1) such that r2 · (r1)⊥ > 0. Then the vertex x̂

is a solution to the minimization problem min{(r1)⊥ · x : x ∈ P∩Z2}.
Notice that rec(P2) = cone(r2) and h(r2) > 0. Thus, we can derive a bound just as in Case 2, that is, we

find polynomial size bounds λ̄2 and R2 such that the optimal solution in P2 is contained in [−R2,R2]2 and
also f (q + λ2r2) ≥ f (x̂) for all λ2 ≥ λ̄2 and q ∈ Q.

Henceforth, we only need to focus on the region P1 = x̂ + rec(P).
We will use equation (12) with r = r1 fixed. To make explicit that g1, g2 only depend on x, we write

gr1

1 (x) := g1(x, r1) and gr1

2 (x) := g2(x, r1). Since we know r1, we can compute explicitly the coefficients in the
polynomials gr1

1 (x) and gr1

2 (x). Since h(r1) = 0, equation (12) reduces to

f (x̂ + λr1 + λ2r2) = gr1

2 (x̂ + λ2r2)λ2 + gr1

1 (x̂ + λ2r2)λ+ f (x̂ + λ2r2). (13)

Case 3a: Suppose gr1

2 (x) . 0. Now consider the equivalent rewritings of f (x + µr1 + λr1) as polynomials
in λ,

f ((x + µr1) + λr1) = gr1

2 (x + µr1)λ2 + gr1

1 (x + µr1)λ+ f (x + µr1),
f (x + (µ+ λ)r1) = gr1

2 (x)(µ+ λ)2 + gr1

1 (x)(µ+ λ) + f (x).

Considering these as polynomials in λ, the highest order coefficients, i.e., the coefficients of λ2, must coin-
cide. Hence gr1

2 (x + µr1) = gr1

2 (x), so g2 is invariant with respect to changes in the r1 direction.
Therefore, we compute

g∗2 := min{gr1

2 (x) : x ∈ P1 ∩Z
2} = min{gr1

2 (x̂ + λ2r2) : λ1r1 + λ2r2 ∈ Z2, λ1, λ2 ≥ 0}
= min{gr1

2 (x̂ + λ2r2) : λ2 ∈
p
qZ+},

(14)

where p = gcd{r1
1, r

1
2}, and q = (r1)⊥ · r2. The last inequality holds since ∃x ∈ Z2 such that (r1)⊥ · x = z ∈ Z if

and only if z ∈ pZ and moreover (r1)⊥ ·x = (r1)⊥ · (x̂+λ1r1 +λ2r2) = (r1)⊥ · (x̂+λ2r2). Therefore, λ2(r1)⊥ ·r2 ∈

pZ, i.e., λ2 ∈
p
qZ. This last problem is a one dimensional integer polynomial optimization problem that can

be solved by Theorem 1.1.
We now do a case analysis on the sign of g∗2 provided that gr1

2 (x) . 0.
Case 3a1: Suppose g∗2 < 0. Then let λ∗2 be a minimizer to the minimization problem (14). Let x̄ ∈ Z2 be

such that x̄ = x̂ +λ∗2r2 +λ1r1 ∈ Z2 for some λ1 ≥ 0, which can be found using a linear integer program. Since
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f (x̄+λr1) is a quadratic polynomial in λ with a negative leading coefficient and f (x̄+λr1)→−∞ as λ→∞,
the problem is unbounded from the point x̄ along the ray r1.

Case 3a2: Suppose g∗2 > 0. Since all inputs are integral, gr1

2 (x̂) ∈ Z and g∗2 > 0, we have gr1

2 (x̂) ≥ 1. Since
gr1

2 (x) is linear in x, we have for ε ∈R2, with ‖ε‖∞ ≤ 1

|gr1

2 (x̂)− g2(x̂, r1 + ε)| ≤ 45×M ×max{1, ‖x̂‖∞} × ‖r1‖∞ × ‖ε‖∞.

Recall that M is the sum of the absolute values of the coefficients of f . We choose ε = (r2 − r1) ε such
that 0 < ε < 1

‖r2−r1‖2
, and such that ε < 1

2×45×M×max{1,‖x̂‖∞}×‖r1‖∞
. Let r̂ = r1 + (r2 − r1) ε. It follows that r̂ is of

polynomial size and for all r ∈ conv{r1, r̂}, we have

g2(x̂, r) ≥ gr1

2 (x̂)− |gr1

2 (x̂)− g2(x̂, r)| ≥ 1−
1
2

=
1
2
.

We now decompose P1 into pieces P11 = x̂ + cone{r1, r̂} and P12 = x̂ + cone{r̂, r2}.
On P12, a polynomial size bound R12 is given by the analysis in Case 2 since h(r) > 0 for all r ∈ conv{r̂, r2}.
On P11, consider any x̂ ∈ P11. Similar to Case 2, we find a λ̄ of polynomial size such that f (x̂ +λr) ≥ f (x̂)

for all λ ≥ λ̄ and r ∈ [r1, r̂]. We determine λ̄ this time using the fact that g2 > 0. Using equation (12) and the
fact that h(r) ≥ 0, we have

f (x̂ + λr)− f (x̂) = h(r)λ3 + g2(x̂, r)λ2 + g1(x̂, r)λ+ f (x̂)− f (x̂) ≥ λ
(
g2(x̂, r)λ+ g1(x̂, r)

)
≥ 0.

This last inequality holds when g2(x̂, r)λ ≥ |g1(x̂, r)|. We can write down gi(x̂, r), i = 1,2, explicitly as poly-
nomials of r with coefficients of size bounded by a polynomial in the size of the coefficients of f . Since
r ∈ conv{r1, r̂}, which is a compact set, there exists a uniform polynomial size upper bound on |g1(x̂, r)|, call
this U. Hence, we can choose λ̄ = U.

Finally, let R11 := ‖x̂‖∞ + max {1,U} × max
{
‖r1‖22, ‖r̂‖22

}
. Therefore, the optimal solution in P1 to Prob-

lem (1) is contained in [−R,R]2 for R = max {R11,R12}, which is of polynomial size since R11,R12 are of
polynomial size.

Case 3a3: Suppose g∗2 = 0. Since gr1

2 (x) . 0, there are only polynomially many points where gr1

2 (x̂ +

λ2r2) = 0 for λ2 ∈
1
qZ+. After repeated application of Theorem 1.1, we can find all such points, and call them

λ2,1, . . . , λ2,m. In fact, we can show that gr1

2 (x̂ + λ2r2) is linear in terms of λ2, but we use the more general
technique here as it will be repeated in Case 3b3.

Each subproblem min{ f (x̂ + λ1r1 + λ2,ir2) : x̂ + λ1r1 + λ2,ir2 ∈ P1 ∩ Z
2} can be converted into a univariate

subproblem and solved with Theorem 1.1.
The remaining integer points in the feasible region are contained in the polyhedra Pi

1 = P1 ∩ {x̂ + x :
λ2,i(r1)⊥ · r2 ≤ (r1)⊥ · x ≤ λ2,i+1(r1)⊥ · r2} for i = 0, . . . ,m + 1, where we define λ2,0 = 0 and λ2,m+1 =∞.

As before, decompose each Pi
1 as we did with P, into the polyhedra Qi

1 + cone{r2} and x̂i + rec(Pi
1). As

before with P2, the optimal solution on Qi
1 + cone{r2} can be bounded using the techniques of Case 2. On

each subproblem x̂i + rec(Pi
1), we have gr1

2 (x̂i) > 0; hence we can apply the techniques of Case 3a2.
Case 3b: Suppose gr1

2 (x) ≡ 0, but gr1

1 (x) . 0.
Consider the equivalent rewritings of f (x + µr1 + λr1) as polynomials in λ,

f ((x + µr1) + λr1) = gr1

1 (x + µr1)λ+ f (x + µr1),
f (x + (µ+ λ)r1) = gr1

1 (x)(µ+ λ) + f (x).

Considering these as polynomials in λ, the coefficients of λ must coincide. Hence gr1

1 (x + µr1) = gr1

1 (x), so
we see that gr1

1 is invariant with respect to changes in the r1 direction.
Therefore, we compute

g∗1 := min{gr1

1 (x) : x ∈ P1 ∩Z
2} = min{gr1

1 (x̂ + λ2r2) : λ1r1 + λ2r2 ∈ Z2, λ1, λ2 ≥ 0}
= min{gr1

1 (x̂ + λ2r2) : λ2 ∈
p
qZ+},

(15)
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where p = gcd{r1
1, r

1
2}, q = (r1)⊥ · r2, and the last inequality holds just as in Case 3a. This last problem is a

one-dimensional integer polynomial optimization problem that can be solved by Theorem 1.1.
We now do a case analysis on the sign of g∗1 provided that gr1

1 (x) . 0.
Case 3b1: Suppose g∗1 < 0. Similar to Case 3a1, there is a point x̄ ∈ P ∩ Z2 such that gr1

1 (x̄) = g∗1 < 0.
Then f (x̄ + λ1r1) = gr1

1 (x̄)λ1 + f (x̄)→−∞ for λ1→∞, so the problem is unbounded from the point x̄ in the
direction r1.

Case 3b2: Suppose g∗1 > 0. Since the minimization problem for g∗1 is discrete and the objective is at most
quadratic in λ2, we have that g∗1 ≥

1
q2 .

First, for λ1 ≥ 0 we have that

f (x̂ + λ1r1 + λ2r2) = h(r2)λ3
2 + g2(x̂, r2)λ2

2 + g1(x̂, r2)λ2 + gr1

1 (x̂ + λ2r2)λ1 + f (x̂)
≥ h(r2)λ3

2 + g2(x̂, r2)λ2
2 + g1(x̂, r2)λ2 + f (x̂).

In particular, f (x̂ + λ1r1 + λ2r2) ≥ f (x̂) if h(r2)λ2
2 + g2(x̂, r2)λ2 + g1(x̂, r2) ≥ 0. By Theorem 4.1 and h(r2) > 0,

we have that this is satisfied for λ2 ≥ λ̄2 := 1 + 1
|h(r2)| max{|g2(x̂, r2)|, |g1(x̂, r2)|}, which is of polynomial size.

Thus for λ2 ≥ λ̄2 and λ1 ≥ 0, we have that f (x̂ + λ1r1 + λ2r2) ≥ f (x̂).
Next, let

L ≤min{h(r2)λ3
2 + g2(x̂, r2)λ2

2 + g1(x̂, r2)λ2 : λ2 ≥ 0}
= min{h(r2)λ3

2 + g2(x̂, r2)λ2
2 + g1(x̂, r2)λ2 : λ2 ∈ [0, λ̄2]}.

The last inequality holds because either the minimum is zero, in which case λ2 = 0 is a minimizer, or the
minimum is negative, in which case there is a minimizer in [0, λ̄2] because all zeros lie in this interval. Since
[0, λ̄2] is compact and polynomially bounded, we can find a L of polynomial size. Then

f (x̂ + λ1r1 + λ2r2) = h(r2)λ3
2 + g2(x̂, r2)λ2

2 + g1(x̂, r2)λ2 + gr1

1 (x̂ + λ2r2)λ1 + f (x̂)

≥ L +
λ1

q2
+ f (x̂).

Thus, f (x̂ + λ1r1 + λ2r2) ≥ f (x̂) when λ1 ≥ λ̄1 := −Lq2. Set R := λ̄1 × ‖r1‖22 + λ̄2 × ‖r2‖22. Then the optimal
solution on P1 is bounded in [−R,R]2.

Case 3b3: Suppose g∗1 = 0. This is similar to Case 3a3.
Case 3c: Suppose gr1

2 (x) ≡ 0 and gr1

1 (x) ≡ 0.
In this case, f (x) = f (x + λr1) for all λ. Let p,q be as in Case 3. Then

min{ f (x) : x ∈ P1 ∩Z
2} = min{ f (x̂ + λ2r2) : λ2 ∈

p
qZ+},

which again can be solved using Theorem 1.1. �

Appendix A: Additional Proofs In this section we give some proofs that we omit from the main part
of the paper.

Proof of Lemma 5.1. We will just prove statement (i), as the proof for (ii) is similar. Note that D1
f (x) =

− f1(x)2 ≤ 0, so we need to establish that it is strictly negative. Clearly this restriction is symmetric in x1 and
x2. Hence, we only need either − f1(x)2 < 0 or − f2(x)2 < 0. Suppose that f1(x)2 = f2(x)2 = 0, in particular,
∇ f (x) = 0. By definition of D f , expanding the determinant along the first row or first column shows that
D f (x) = 0, which is a contradiction. Therefore,∇ f (x) , 0. Hence, by Theorem 3.4.13 in [3], f is quasiconvex
on S , and by Theorem 2.2.12 in [3], f is quasiconvex on the closure of S . �

Proof of Lemma 5.2. Applying Euler’s Theorem for homogeneous functions to the gradient, we obtain
the equation

∇h(x) =
1

d − 1
∇2h(x) · x for all x ∈Rn. (16)
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Consider the linear combination of columns of H f (x) given by[
∇hT (x)
∇2h(x)

]
x =

[
∇hT (x) · x
∇2h(x) · x

]
=

[
d h(x)

(d − 1)∇h(x)

]
,

where the last equation comes from applying Euler’s Theorem and equation (16). We add this vector to the
first column of Hh(x), which does not change Dh(x), thus

Dh(x) =

∣∣∣∣∣∣ 0 ∇hT (x)
∇h(x) ∇2h(x)

∣∣∣∣∣∣ =
∣∣∣∣∣∣ d h(x) ∇hT (x)
d∇h(x) ∇2h(x)

∣∣∣∣∣∣ = d

∣∣∣∣∣∣ h(x) ∇hT (x)
∇h(x) ∇2h(x)

∣∣∣∣∣∣ .
Expanding about the left column, we separate this into two determinant computations

Dh(x) = d h(x) det(∇2h(x)) + d

∣∣∣∣∣∣ 0 ∇hT (x)
∇h(x) ∇2h(x)

∣∣∣∣∣∣ = d h det(∇2h(x)) + d Dh(x).

Solving for Dh(x) finishes the result. �
Proof of Corollary 5.3. Since f is homogeneous translatable, there exists a t ∈R2 such that f (x+ t) = h(x)

for some homogeneous polynomial h of degree d. By Lemma 5.2,

Dh(x) =
−d

d − 1
h(x) det(∇2h(x)) =

−d
d − 1

h(x)
(
h11(x)h22(x)− h2

12(x)
)
. (17)

By applying Euler’s Theorem to the partial derivatives, we find that the second partial derivatives are homo-
geneous of degree d − 2. Since products of homogeneous functions are homogeneous of the degrees added
and sums of homogeneous functions are homogeneous provided they have the same degree, we see that Dh

is homogeneous of degree d + (d − 2) + (d − 2) = 3d − 4. If det(∇2h) is the zero function, then Dh is actually
the zero function. Therefore, Dh is either a homogeneous polynomial of degree 3d − 4, or it is the zero
function. Finally, notice that D f (x + t) = Dh(x). Therefore D f is also homogeneous translatable. �

We last show how to check in polynomial time if a polynomial f : R2→R is homogeneous translatable.

Proposition A.1. Let f : R2→R be a polynomial of degree d ≥ 1 given by f (x) =
∑

v∈Z2
+,‖v‖1≤d cvxv where

cv ∈ Z. In polynomial time in the size of the coefficients cv, we can determine if f is homogeneous translat-
able and if so, compute a rational translation vector t such that f (x + t) is a homogeneous polynomial.

Proof. We begin by applying an invertible linear transformation T to the variables such that f (Tx) such
that f (Tx) =

∑
v∈Z2

+,‖v‖1≤d c̄vxv where c̄v = 0 for some v ∈ Z2
+ with ‖v‖1 = d. If f already has this property, then

we take T = I. Otherwise, c(d,0), c(d−1,1) , 0. Then we choose T such that Tx = (x1−c(d−1,1)x2/(dcd,0), x2). With
this choice, c̄(d−1,1) = 0. Since homogeneity is preserved under linear transformations, f is homogeneous
translatable if and only if f ◦T is homogeneous translatable.

Now that c̄v = 0 for some v ∈ Z2
+ with ‖v‖1 = d, there must exist a v̄ ∈ Z2

+ with ‖v̄‖1 = d and c̄v̄ = 0 such that
either c̄(v̄1+1,v̄2−1) , 0 or c̄(v̄1−1,v̄2+1) , 0. Fix such a v̄ and assume, without loss of generality, that c̄(v̄1+1,v̄2−1) , 0.

We consider the monomials of degree d−1 (in terms of the x variables) of the expanded version of f (Tx+

t). The coefficient on the monomial xv for any ‖v‖1 = d − 1 must vanish for t to be a desired translation;
hence we must have the equation

c̄v +

(
v1 + 1

1

)
c̄(v1+1,v2)t1 +

(
v2 + 1

1

)
c̄(v1,v2+1)t2 = 0.

In particular, this relation for v = (v̄1, v̄2 − 1) shows that t1 = −c̄(v̄1,v̄2−1)

((
v1+1

1

)
c̄(v̄1+1,v̄2−1

)−1
. If there is any

relation where the coefficient on t2 is nonzero, then t2 is determined by this equation and by t1. Otherwise,
if t2 does not appear in any coefficients of f (Tx + t), then it suffices to choose t2 = 0 since this value has
no effect on f (Tx + t). If instead t2 only appears in lower degree monomials, then f is not homogeneous



22 Del Pia, Hildebrand, Weismantel, Zemmer: Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane

translatable since the coefficient of xv̂ in the expansion of f (Tx + t), where v̂ ∈ arg max{‖v‖1 : v ∈ Z2
+, ‖v‖1 ≤

d, cv , 0, v2 , 0}, is exactly cv̂ , 0 and is not affected by the translation t.
Finally, by computing all coefficients in the expanded version of f (Tx + t), we can test if f (Tx + t) is

homogeneous hence verify whether or not f ◦T is homogeneous translatable. If so, then f is homogeneous
translatable with translation vector T−1t. All the operations done in these calculations can be carried out in
polynomial time in the size of the coefficients cv. �
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