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Abstract

This paper deals with Bruss’ odds problem with multiple stopping
chances. A decision maker observes sequentially a sequence of independent
0/1 (failure/success) random variables with the objective to predict the
last success correctly with multiple stopping chances. First, we give a non-
trivial lower bound of the probability of win (obtaining the last success)
for the problem with m-stoppings. Next, we show that the asymptotic
value for each classical secretary problem with multiple stoppings attains
our lower bound. Finally, we prove a conjecture on the classical secretary
problem, which gives a connection between the probability of win and the
threshold values of the optimal stopping strategy.

1 Introduction.

We discuss asymptotic lower bounds of probability of “win” (i.e., obtaining the
last success) for odds problem with multiple stoppings, which has some general
setting in optimal stopping theory. The problem may be stated as follows.

Suppose that you know that you will be given a random sequence
of zeros and ones; you know how long the sequence will be, say N ;
you know that you will be given the digits one by one; you do not
know what the next digit will be zero or one, but you do know the
probability that it will be a one. You are allowed to claim at most
m times, when you see a one, “the one that I observe now, will be
the last one in the sequence.” You will win if your last claim turns
out to be indeed the last one.

The above problem is called an m-stopping odds problem. You want to win
with maximal probability. Of course, we assume m << N , for instance m = 1,
which is the Bruss’ optimal stopping problem, and which is closely related to
the classical secretary problem.

Now we define a class of feasible policies, say Π. Each policy in Π gets input
of a sequence of 0/1 random variables X = (X1, X2, . . . , XN ), that is, Bernoulli
sequence. We say “success” if Xi = 1 and “failure” if Xi = 0. A policy π ∈ Π
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returns (indices of) variables in X at which you claim to observe the last success.
The value of the policy, which is called the probability of win, is its probability
to win: P[π(X ) = ∞] (where “= 1” means “includes the variable of the last
success”). An optimal policy would be π∗ = argmaxπ∈Π P[π(X ) = ∞].

This is an attractive problem setting. We may quote from Bruss Bruss
(2000): “Many stopping problems are of a similar kind. One often wants to
stop on the very last success. For instance, investors are typically interested in
stopping on the last success in a given period, where a success is a price increase
in a long position and a decrease in a short position. Similarly, venture capital
investors often try to put all reserved capital in the last technological innovation
in the targeted field. In secretary problems, we want to select the best candidate
(which means stopping on the last record value) and so on.”

The single stopping problem has an elegant and a simple optimal stopping
strategy determined by Odds theorem or Sum the Odds theorem. A typical lower
bound for an asymptotic optimal value (the probability of win), when N goes to
infinity, is shown to be e−1 in Bruss Bruss (2000, 2003). The value often appears
in the literature of the many modifications of the secretary problem having a
specified probability of success, P[Xi = 1] = 1/i (see, e.g., Pfeifer Pfeifer (1989),
Samuels Samuels (1992) for a review and others), and in the one of the variations
of prophet inequality based on relative ranks (see, e.g., Hill and Krengel Hill
and Krengel (1992) and Hill and Kennedy Hill and Kennedy (1992)). The value
e−1 also appears in the asymptotic threshold value of the optimal stopping
strategy for the secretary problem. For large N , the optimal strategy (for the
secretary problem) is to pass all the candidates until e−1N and then stop at
the first relative best (if any) thereafter. Other variations of the single stopping
problem are studied by Bruss and Paindaveine Bruss and Paindaveine (2000)
for stopping on the ℓ-th last success, Hsiau and Yang Hsiau and Yang (2002)
for Markov-dependent trials, and Tamaki Tamaki (2010) for stopping on any of
the last ℓ successes.

For the multiple stopping odds problem, Ano, Kakinuma and Miyoshi Ano
et al. (2010) provided an optimal strategy based on a (multiple) threshold strat-
egy. They also showed that the double stopping odds problem has a lower bound
e−

3
2 +e−1 for an asymptotic optimal value (the probability of win) when N goes

to infinity. It is interesting that their lower bound is equal to the asymptotic
optimal value of the double stopping secretary problem. Another variation of
Markov-dependent trials with multiple stoppings is studied by Ano, Kakie and
Miyoshi Ano et al. (2011).

For odds problems and the secretary problems with multiple stoppings, this
paper answers to the following questions.

(Q1) What is the maximum probability of win and the lower bound of the odds
problem (and not only for the secretary problem) with m-stoppings?

We give an explicit formula of the probability of win for the m-stopping
odds problem, which is based on an enumeration technique for specified integer
sequences.

(Q2) What is the asymptotic lower bound of the probability of win for the

2



m-stopping odds problem, when N goes to infinity?
For any fixed number m of stopping chances, we give an asymptotic lower

bound of the probability of win for odds problem.

(Q3) Is the greatest lower bound of the m-stopping odds problem equal to
the asymptotic optimal value (the probability of win) of the secretary problem
with m-stopping chances? In other words, does the secretary problem still keep
benchmark position of the bound for odds problem?

In the secretary problem, multiple stopping setting may go back to Gilbert
and Mosteller Gilbert and Mosteller (1966). Asymptotic optimal values of sec-
retary problems for m = 1, 2, 3 and 4 appears in Gilbert and Mosteller (1966);
Bruss (1988). The single stopping odds problem has a lower bound e−1, shown
by Bruss Bruss (2003), which is equal to the asymptotic optimal value of the
classical secretary problem. For double stopping case (m = 2), Ano, Kakinuma

and Miyoshi Ano et al. (2010) derived a lower bound e−
3
2 +e−1 of odds problem,

which is equal to the asymptotic optimal value of the double stopping secretary
problem.

We prove that the above property holds for any m, which also implies the
tightness of our lower bounds. We also give asymptotic optimal values of the
secretary problem withm stopping chances form = 5, 6, 7, 8, 9 and 10 in Table 1.

(Q4) Is the lower bound of the secretary problem remarkably composed of the
asymptotic threshold values in the optimal multiple stopping strategy?

For example, it is known that the triple of threshold values (i
(3)
N , i

(2)
N , i

(1)
N )

for the secretary problem with three stopping chances satisfies

lim
N→∞

(

i
(3)
N

N
,
i
(2)
N

N
,
i
(1)
N

N

)

= (e−
47
24 , e−

3
2 , e−1),

and the corresponding probability of win converges to (e−
47
24 + e−

3
2 + e−1). It is

also known that a similar relation holds when the number of stopping chances
is 1, 2, 3, or 4. We prove a conjecture on the secretary problem indicated by
Gilbert and Mosteller Gilbert and Mosteller (1966) and raised explicitly in Ano
et al. (2010), which shows a beautiful connection between threshold values of

the optimal stopping strategy and the probability of win. Let (i
(m)
N , i

(m−1)
N ,

. . . , i
(1)
N ) be a vector of optimal threshold values for the secretary problem with

m-stopping chances, where N denotes the number of random variables. We
prove the following equality

lim
N→∞

(

i
(m)
N

N
+

i
(m−1)
N

N
+ · · ·+ i

(1)
N

N

)

= lim
N→∞

P
(win)
N (m)

where P
(win)
N (m) denotes the corresponding probability of win for the secretary

problem with m-stopping chances.
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2 Threshold Strategy and Probability of Win.

Let X = (X1, X2, . . . , XN ) be a given Bernoulli sequence, i.e., a sequence of
independent 0/1 random variables. For any i ∈ {1, 2, . . . , N}, we denote pi =
E[Xi]. Throughout this paper, we assume that 0 < pi < 1 for any i. We

denote a probability of failure 1 − pi by qi and an odds
pi
qi

of Xi by ri, for

each i ∈ {1, 2, . . . , N}. In this section, we discuss an optimal strategy for the
m-stopping odds problem defined on X .

By applying dynamic programming (DP) techniques, Ano, Kakinuma and
Miyoshi Ano et al. (2010) showed that an optimal policy has the structure of
a multiple threshold strategy, denoted by Threshold(i(m), i(m−1), . . . , i(1)), de-
fined by threshold values satisfying 1 ≤ i(m) ≤ i(m−1) ≤ · · · ≤ i(1) ≤ N . The
threshold strategy Threshold(i(m), i(m−1), . . . , i(1)) selects a variable of success
(at which you claim to observe the last success) if and only if the number of previ-
ously selected variables is less than the number of passed threshold values on and
before the observation. For example, we consider a case that (X1, X2, . . . , X8)
has a vector of the realized values (0, 1, 1, 0, 0, 1, 1, 1). If we apply the threshold
strategy Threshold(2, 4, 5), for the 3-stopping odds problem, then the strategy
selects variables X2, X6, X7, which does not includes the last success X8. More
precisely, the threshold strategy Threshold(i(m), i(m−1), . . . , i(1)) selects a set
of variables indexed by a set of indices π(1) defined by the following recurrence
relation

π(m+ 1) = ∅,

π(k) = π(k + 1) ∪
{

min

{

i ∈ {1, 2, . . . , N}
∣

∣

∣

∣

i(k) ≤ i, Xi = 1,
i′ < i (∀i′ ∈ π(k + 1)).

}}

(∀k ∈ {m,m− 1, . . . , 1}),

where we define {min{∅}} = ∅.
First, we discuss the probability of win of Threshold(i(m), i(m−1), . . . , i(1)).

We introduce a partition {Bm+1, Bm, . . . , B1} of index set {1, 2, . . . , N} defined
by

Bk =







{i ∈ {1, 2, . . . , N} | i(1) ≤ i ≤ N} (k = 1),
{i ∈ {1, 2, . . . , N} | i(k) ≤ i < i(k−1)} (1 < k ≤ m),

{i ∈ {1, 2, . . . , N} | 1 ≤ i < i(m)} (k = m+ 1).

Each index set in {Bm+1, Bm, . . . , B1} is called a block. We identify the set
of indices in each block with the set of corresponding variables, if there is no
ambiguity. Given a 0-1 vector x ∈ {0, 1}N , we introduce a pattern vector of x,
denoted by b(x) = (bm, bm−1, . . . , b1), satisfying that bk is the number of 1s in
the subvector of x defined by block Bk, i.e., bk =

∑

i∈Bk
xi (k ∈ {1, 2, . . . ,m}).

Here we note that elements of vector b(x) are arranged in decreasing order of
indices and block Bm+1 is ignored. For any vector b = (bd, bd−1, . . . , b1), we say
that a vector (bd′ , bd′−1, . . . , b1) satisfying d ≥ d′ ≥ 1 is a left truncated subvector
of b.

If an index corresponding to the last success is obtained by executing Threshold(i),
we say that a vector of realized values (x1, x2, . . . , xN ) ∈ {0, 1}N of (X1, X2, . . . , XN )
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is winning. When we consider a single-stopping odds problem (discussed in Bruss
(2003)), a vector x ∈ {0, 1}N is winning if and only if its pattern vector
b(x) satisfies b1 = 1, i.e., one-dimensional vector (1) ∈ {0, 1}1 is a left trun-
cated subvector of b(x). The probability of win of Threshold(i(1)) is equal to
(
∏

i∈B1
qi
)

·
(
∑

i∈B1
ri
)

.
Next, we consider the case that m = 2 (discussed in Ano et al. (2010)).

We assume that |B1| ≥ 2. It is easy to show that a vector x ∈ {0, 1}N is
winning if and only if its pattern vector b(x) has a left truncated subvector in
{(1), (1, 0), (0, 2)}. Thus, the probability of win of Threshold(i(2), i(1)) is equal
to

(

∏

i∈B1

qi

)(

∑

i∈B1

ri

)

+

(

∏

i∈B2∪B1

qi

)





∑

i∈B2

ri +
∑

{i,i′}⊆B1

riri′



 .

When m ≤ 5, a brute force method shows that a vector x ∈ {0, 1}N is
winning if and only if there exists a set Ξk (k ∈ {1, 2, . . . , 5}) that includes a
left truncated subvector of b(x), where

Ξ1 = {(1)}, (1)

Ξ2 = {(1, 0), (0, 2)}, (2)

Ξ3 = {(1, 0, 0), (0, 2, 0), (0, 1, 2), (0, 0, 3)}, (3)

Ξ4 =

{

(1, 0, 0, 0), (0, 2, 0, 0), (0, 1, 2, 0), (0, 1, 1, 2), (0, 1, 0, 3),
(0, 0, 3, 0), (0, 0, 2, 2), (0, 0, 1, 3), (0, 0, 0, 4)

}

, (4)

Ξ5 =















(1, 0, 0, 0, 0)(0, 2, 0, 0, 0)(0, 1, 2, 0, 0)(0, 1, 1, 2, 0)(0, 1, 1, 1, 2)(0, 1, 1, 0, 3)
(0, 1, 0, 3, 0)(0, 1, 0, 2, 2)(0, 1, 0, 1, 3)(0, 1, 0, 0, 4)(0, 0, 3, 0, 0)(0, 0, 2, 2, 0)
(0, 0, 2, 1, 2)(0, 0, 2, 0, 3)(0, 0, 1, 3, 0)(0, 0, 1, 2, 2)(0, 0, 1, 1, 3)(0, 0, 1, 0, 4)
(0, 0, 0, 4, 0)(0, 0, 0, 3, 2)(0, 0, 0, 2, 3)(0, 0, 0, 1, 4)(0, 0, 0, 0, 5)















.(5)

The following table of the sizes of Ξk is obtained by a naive computer program
for enumeration.

k 1 2 3 4 5 6 7 8 9 10 11 · · ·
|Ξk| 1 2 4 9 23 65 197 626 2056 6918 23714 · · ·

Here we discuss an example of the 5-stopping odds problem. Assume that
x ∈ {0, 1}N has a pattern vector b(x) = (3, 1, 0, 2, 0). The threshold strategy
selects first variable of success in block B5, rejects second and third variables of
success in B5, and selects all the remained three variables of success in B4∪B2.
The vector x is winning, since b(x) = (3, 1, 0, 2, 0) has a left-truncated subvector
(0, 2, 0) ∈ Ξ3.

Now we discuss the general case. First, we show a necessary and sufficient
condition that a vector x ∈ {0, 1}N becomes a winning vector of the m-stopping
odds problem. Throughout this paper, Z+ denotes the set of non-negative
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integers. We define a set of k-vectors

Ξk =











































(bk, bk−1, . . . , b1) ∈ Z
k
+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∃k∗ ∈ {k, k − 1, . . . , 2, 1},
1 > bk,
2 > bk + bk−1,

...
k − k∗ > bk + bk−1 + · · ·+ bk∗+1,

1 + k − k∗ = bk + bk−1 + · · ·+ bk∗+1 + bk∗ ,
bk∗−1 = bk∗−2 = · · · = b1 = 0.











































for each positive integer k. Here we note that when k∗ = k in the above
definition, all the inequalities are ignored and (1, 0, 0, . . . , 0) ∈ Z

k
+ becomes a

unique vector satisfying the remaining conditions. Thus, the set Ξk contains
the k-vector (1, 0, 0, . . . , 0).

Lemma 2.1. Let x ∈ {0, 1}N be a vector satisfying that ∃k ∈ {1, 2, . . . ,m},
∃b ∈ Ξk, b is a left truncated subvector of b(x). Then x is a winning vector of
the m-stopping odds problem.

Proof. Let k∗ be an index of variable appearing in the definition of Ξk with
respect to b ∈ Ξk. The definition of Ξk implies that block Bk∗ includes the index
of the variable of the last success and the number of successes with respect to
x in blocks Bk ∪Bk−1 ∪ · · · ∪Bk∗ is equal to 1 + k − k∗.

When we apply the threshold strategy, the number of selected variables in
blocks Bm ∪Bm−1 ∪ · · · ∪Bk+1 is less than or equal to m− k, obviously.

Thus, when we observe the variables of the last success, the number of
previously selected variables is less than or equal to (m−k)+ (1+k−k∗)− 1 =
m − k∗, which is less than the number of passed threshold values m − k∗ + 1,
where passed threshold values are {i(m), . . . , i(k

∗)}.
It implies that the threshold strategy selects the variable of the last success

and thus x is winning. (Here we note that all the variables of success in Bk ∪
Bk−1 ∪ · · · ∪Bk∗ are also selected.)

Next, we discuss the inverse implication.

Lemma 2.2. For any winning vector x ∈ {0, 1}N of the m-stopping odds prob-
lem, there exists an index k ∈ {1, 2, . . . ,m} and a vector b ∈ Ξk satisfying that
b is a left truncated subvector of b(x).

Proof. We show the above by induction on m. When m = 1, it is obvious.
We assume that the above property holds for each integer in {1, 2, . . . ,m− 1}.
(i) Consider a case that when we apply the threshold strategy Threshold(i(m), . . . , i(1)),
the number of previously selected variables is strictly less than the number
of passed threshold values at every time instance just after a variable is se-
lected. Then, it is easy to see that even if we apply the threshold strat-
egy Threshold(i(m−1), . . . , i(1)) to x, the set of selected variables remains un-
changed, and thus x is also a winning vector of the (m−1)-stopping odds prob-
lem. The induction hypothesis implies that, ∃k ∈ {1, 2, . . . ,m − 1}, ∃b ∈ Ξk

satisfying that b is a left truncated subvector of b(x).
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(ii) Next, we consider the remaining case. Let i∗ ∈ {1, 2, . . . , N} be the minimum
index of a variable selected by the threshold strategy Threshold(i(m), . . . , i(1))
under the condition that just after xi∗ is selected, the number of previously
selected variables becomes equal to the number of passed threshold values. We
denote the block including i∗ by Bk∗ . From the minimality of i∗, m-vector
b(x) = (bm, bm−1, . . . , b1) satisfies inequalities

1 > bm,

2 > bm + bm−1,

...

m− k∗ > bm + bm−1 + · · ·+ bk∗+1.

Here we note that when k∗ = m, we omit the above inequalities. Since the num-
ber of previously selected variables is equal to the number of passed threshold
values just after xi∗ is selected, all the variables in {Xi | i ∈ Bk∗ and i∗ < i}
are not selected and thus we have the equality

1 +m− k∗ = bm + bm−1 + · · ·+ bk∗+1 + bk∗ . (6)

(ii-a) If xi∗ is the last success, then bk∗−1 = bk∗−2 = · · · = b1 = 0, which yields
b(x) ∈ Ξm.
(ii-b) Lastly, we consider the case that xi∗ is not the last success. Clearly, Bk∗

does not include the index of the variable of the last success, since variables in
{xi | i ∈ Bk∗ and i∗ < i} are not selected.

The equality (6) implies that if we apply Threshold(i(k
∗−1), . . . , i(1)) to x,

the set of selected variables in Bk∗−1 ∪ · · · ∪ B2 ∪ B1 remains unchanged and
thus x is a winning vector of the (k∗−1)-stopping odds problem. The induction
hypothesis implies the desired result.

We can also show the following uniqueness.

Corollary 2.3. For any winning vector x ∈ {0, 1}N of the m-stopping odds
problem, there exists a unique index k ∈ {1, 2, . . . ,m} and a unique vector b ∈ Ξk

satisfying that b is a left truncated subvector of b(x).

Proof. The definition of Ξk directly implies that for any pair of vectors
b
′ ∈ Ξk′ and b

′′ ∈ Ξk′′ , when b
′′ is a left truncated subvector of b′, then both

b
′ = b

′′ and k′ = k′′ hold. As a consequence, we have the desired result.
Summarizing the above properties, we have the following theorem.

Theorem 2.4. A vector x ∈ {0, 1}N is a winning vector of the m-stopping odds
problem if and only if there exists a unique integer k ∈ {1, 2, . . . ,m} satisfying
that a pattern vector b(x) = (bm, bm−1, . . . , b1) has a left truncated subvector
(bk, bk−1, . . . , b1) ∈ Ξk.

Next, we discuss the probability of win. Given an index subsetB ⊆ {1, 2, . . . , N}
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and a positive integer b, we define

f b(B) =











∑

B′⊆B, |B′|=b

(

∏

i∈B′

ri

)

(|B| ≥ b),

0 (|B| < b),

which is called an elementary symmetric polynomial defined on {ri | i ∈ B}.
We define f0(B) = 1.

Theorem 2.5. Given a threshold strategy Threshold(i(m), . . . , i(2), i(1)) for the
m-stopping odds problem defined on X1, X2, . . . , XN , the corresponding proba-
bility of win is equal to

m
∑

k=1





(

∏

i∈Bk∪···∪B2∪B1

qi

)

∑

(bk,...,b1)∈Ξk

(

f bk(Bk)f
bk−1(Bk−1) · · · f b1(B1)

)



 .

Proof. The definition of f b(B) directly implies that for any (bk, bk−1, . . . , b1) ∈
Z
k
+,

P





k
⋂

k′=1







∑

i∈B
k′

Xi = bk′









 =

((

∏

i∈Bk

qi

)

f bk(Bk)

)

· · ·
((

∏

i∈B1

qi

)

f b1(B1)

)

=

(

∏

i∈Bk∪···∪B2∪B1

qi

)

(

f bk(Bk)f
bk−1(Bk−1) · · · f b1(B1)

)

.

From the uniqueness appearing in Theorem 2.4, the probability of win of the
threshold strategy Threshold(i(m), . . . , i(2), i(1)) is equal to

m
∑

k=1

∑

(bk,...,b1)∈Ξk

P





k
⋂

k′=1







∑

i∈B
k′

Xi = bk′











=

m
∑

k=1





(

∏

i∈Bk∪···∪B2∪B1

qi

)

∑

(bk,...,b1)∈Ξk

(

f bk(Bk)f
bk−1(Bk−1) · · · f b1(B1)

)



 .

For example, when m = 3, the set Ξ3 of winning patterns includes four vectors
Ξ3 = {(1, 0, 0), (0, 2, 0), (0, 1, 2), (0, 0, 3)} and thus the probability of win is equal
to
(

∏

i∈B1

qi

)(

∑

i∈B1

ri

)

+

(

∏

i∈B2∪B1

qi

)





∑

i∈B2

ri +
∑

{i1,i2}⊆B1

ri1ri2





+

(

∏

i∈B3∪B2∪B1

qi

)













∑

i∈B3

ri +
∑

{i1,i2}⊆B2

ri1ri2

+

(

∑

i∈B2

ri

)





∑

{i1,i2}⊆B1

ri1ri2



+
∑

{i1,i2,i3}⊆B1

ri1ri2ri3













.
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3 Lower Bounds.

In this section, we discuss a lower bound of the probability of win.
First, we discuss a solution vector (λ1, λ2, . . . , λm) of an equality system;

∑

(bk,...,b1)∈Ξk

(

λbk
k

bk!

λ
bk−1

k−1

bk−1!
· · · λ

b1
1

b1!

)

= 1 (k ∈ {1, 2, . . . ,m}), (7)

which plays an important role in this paper. Let us begin with small examples.
The description of Ξ1,Ξ2,Ξ3 and Ξ4 (see (1)–(4)) implies that (λ1, λ2, λ3, λ4) is
a solution of the following system;

λ1
1

1!
= 1,

λ1
2λ

0
1

1! 0!
+

λ0
2λ

2
1

0! 2!
= 1,

λ1
3λ

0
2λ

0
1

1! 0! 0!
+

λ0
3λ

2
2λ

0
1

0! 2! 0!
+

λ0
3λ

1
2λ

2
1

0! 1! 2!
+

λ0
3λ

0
2λ

3
1

0! 0! 3!
= 1,

λ1
4λ

0
3λ

0
2λ

0
1

1! 0! 0! 0!
+

λ0
4λ

2
3λ

0
2λ

0
1

0! 2! 0! 0!
+

λ0
4λ

1
3λ

2
2λ

0
1

0! 1! 2! 0!
+

λ0
4λ

1
3λ

1
2λ

2
1

0! 1! 1! 2!
+

λ0
4λ

1
3λ

0
2λ

3
1

0! 1! 0! 3!

+
λ0
4λ

0
3λ

3
2λ

0
1

0! 0! 3! 0!
+

λ0
4λ

0
3λ

2
2λ

2
1

0! 0! 2! 2!
+

λ0
4λ

0
3λ

1
2λ

3
1

0! 0! 1! 3!
+

λ0
4λ

0
3λ

0
2λ

4
1

0! 0! 0! 4!
= 1.

The above system has a solution (λ1, λ2, λ3, λ4) = (1, 1/2, 11/24, 505/1152).
(Our theorem appearing below shows that e−1 + e−3/2 + e−47/24 + e−2761/1152

gives a lower bound of the probability of win.) Here we note that λ5 =
209519/491520 and λ6 = 49081919440723/117413668454400. Values λ7, . . . , λ10

appear in our mimeo Matsui and Ano (2012). First, we show the uniqueness of
a solution. The following property is discussed by Gilbert and Mosteller Gilbert
and Mosteller (1966) in a setting of the secretary problem.

Lemma 3.1. For any k ∈ {1, 2, . . . ,m}, Ξk includes the unit k-vector e =
(1, 0, 0, . . . , 0) and every vector (bk, bk−1, . . . , b1) ∈ Ξk \ {e} satisfies bk = 0.

Proof. It is obvious that e ∈ Ξk. Conversely, if a vector b = (bk, . . . , b1) ∈
Ξk satisfies bk 6= 0, then the index k∗ appearing in the definition of Ξk satisfies
k∗ = k and thus b = e.

The above lemma says that the k-th equality of (7) includes k variables
λk, λk−1, . . . , λ1 and is a linear equality with respect to λk. Thus, the equality
system (7) has a unique solution.

Theorem 3.2. Equality system (7) has a unique solution (λ1, λ2, . . . , λm) sat-
isfying λk > 0 for every k ∈ {1, 2, . . . ,m}.

A proof is given in appendix section.

Given a pair of Bernoulli sequences X and X ′, we denote X·≻ X ′, if and
only if ∃i ∈ {1, 2, . . . , N}, satisfying X = (X1, X2, . . . , Xi, . . . , XN), X ′ =
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(X1, X2, . . . , Xi−1, X
′
i, X

′′
i , Xi+1, . . . , XN ), and P[Xi = 0] = P[X ′

i = 0]P[X ′′
i =

0]. We say that a Bernoulli sequences X ′′ is a subdivision of X , denoted by
X � X ′′, if and only if either X is equivalent to X ′′ or there exists a finite
sequence X·≻ X 1·≻ X 2·≻ · · · ·≻ X ′′.

Now we consider the m-stopping odds problems defined on X and X ′ satis-
fying X � X ′.

Lemma 3.3. Let X be a Bernoulli sequence and X ′ be a subdivision of X , i.e.,
X � X ′. Odds problems with m-stoppings defined on X and X ′ satisfies that
the probability of win of an optimal strategy for X is greater than or equal to
that of X ′.

Proof. Obviously, we only need to consider the case that X·≻ X ′. In the
following, we show that there exists a strategy for X whose probability of win
is equivalent to that of a (fixed) optimal strategy for X ′.

Since X· ≻ X ′, there exists an index i ∈ {1, 2, . . . , N}, satisfying X =
(X1, X2, . . . XN), X ′ = (X1, X2, . . . , Xi−1, X

′
i, X

′′
i , Xi+1, . . . , XN ), and q = q′q′′,

where q = P[Xi = 0], q′ = P[X ′
i = 0], q′′ = P[X ′′

i = 0].
When we observe variables (X1, X2, . . . , Xi−1) in X , we apply the optimal

strategy for X ′ and halt just before observing Xi.
(1) If Xi = 0, then we do not select Xi and put (X ′

i, X
′′
i ) = (0, 0). We re-start

the optimal strategy for X ′ and apply to observed sequence of random variables
(Xi+1, . . . , XN ).
(2) In case that Xi = 1, we choose (X ′

i, X
′′
i ) ∈ {(1, 0), (0, 1), (1, 1)} according to

the following conditional probabilities;

(X ′
i, X

′′
i ) =







(1, 0) with probability (1 − q′)q′′/(1− q′q′′),
(0, 1) with probability q′(1− q′′)/(1− q′q′′),
(1, 1) with probability (1− q′)(1 − q′′)/(1− q′q′′).

We apply the optimal strategy for X ′ to the chosen vector of (X ′
i, X

′′
i ). If the

optimal strategy for X ′ selects the last success in (X ′
i, X

′′
i ), we also select Xi in

X and vise verse. We re-start the optimal strategy for X ′ and apply to observed
sequence of random variables (Xi+1, . . . , XN).

It is clear that, the strategy for X , described above, selects the last success
of X , if and only if the optimal strategy for X ′ selects the last success of X ′.
Thus, the probability of win of the above strategy is equivalent to that of the
optimal strategy for X ′.

Theorem 3.4. Let (λ1, λ2, . . . , λm) be a unique solution of equality system (7).

If a Bernoulli sequence X1, X2, . . . , XN satisfies
∏N

i=1 qi < e−
∑

m

k=1 λk , then the
probability of win of an optimal strategy for the m-stopping odds problem defined
on X1, X2, . . . , XN is greater than or equal to

m
∑

k=1

e−
∑

k

k′=1
λ
k′ = e−λ1 + e−(λ1+λ2) + e−(λ1+λ2+λ3) + · · ·+ e−(λ1+···+λm).
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This theorem says that; when m = 3, 4, 5, our lower bounds are e−1 +
e−

3
2 + e−

47
24 ≥ 0.7321029820, e−1 + e−

3
2 + e−

47
24 + e−

2761
1152 ≥ 0.8231206726, and

e−1 + e−
3
2 + e−

47
24 + e−

2761
1152 + e−

4162637
1474560 ≥ 0.8825499145, respectively. Table 1

shows our lower bounds in cases m ≤ 10.

Proof. Let X 0 = (X1, X2, . . . , XN ) be a given Bernoulli sequence. We
construct a sequences X 1 satisfying X 0·≻ X 1 by splitting a variable Xi in X 0

which attains the minimum min{q1, q2, . . . , qN}, and introducing two random
variables X ′

i, X
′′
i satisfying P[X ′

i = 0] = P[X ′′
i = 0] =

√
qi. Applying the above

procedure iteratively, we obtain an infinite sequence X 0·≻ X 1·≻ X 2·≻ · · · . It is
clear that the maximum of odds of variables in X d approaches to 0 as d → ∞.

Let (Y1,Y2, . . .) be a subsequence of (X 1,X 2, . . .) satisfying that the maxi-
mum odds of Yd is less than or equal to 2−d. We denote the Bernoulli sequence

Yd by (Y d
1 , Y

d
2 , . . . , Y

d
Ld

) and the corresponding odds by (r
(d)
1 , r

(d)
2 , . . . , r

(d)
Ld

),

where Ld denotes the length of Yd. We introduce a specified threshold strategy

Threshold(j
(m)
d , j

(m−1)
d , . . . , j

(1)
d ) for them-stopping odds problem on (Y d

1 , Y
d
2 , . . . , Y

d
Ld

)
defined by

j
(k)
d = min







j ∈ {1, 2, . . . , Ld}

∣

∣

∣

∣

∣

∣

λ1 + λ2 + · · ·+ λk >

Ld
∑

j′=j

r
(d)
j′







, (8)

for each k ∈ {1, 2, . . . ,m}. Theorem 3.2 implies inequalities 1 ≤ j
(m)
d ≤

j
(m−1)
d ≤ · · · ≤ j

(1)
d ≤ Ld and thus we can define a corresponding threshold strat-

egy. Let {Bm+1(d), Bm(d), . . . , B1(d)} be a partition of index set {1, 2, . . . , Ld}
defined by

Bk(d) =











{j ∈ {1, 2, . . . , Ld} | j(1)d ≤ j ≤ Ld} (k = 1),

{j ∈ {1, 2, . . . , Ld} | j(k)d ≤ j < j
(k−1)
d } (1 < k ≤ m),

{j ∈ {1, 2, . . . , Ld} | 1 ≤ j < j
(m)
d } (k = m+ 1).

Here we show that 1 < jm(d). Since Yd is a subdivision of X , the probabil-

ities of failure q
(d)
i = P[Y d

i = 0] and qi = P[Xi = 0] satisfy q
(d)
1 q

(d)
2 · · · q(d)Ld

=

q1q2 · · · qN . The total sum of odds of Yd satisfies that

Ld
∑

i=1

r
(d)
i =

Ld
∑

i=1

(

1

q
(d)
i

− 1

)

=

Ld
∑

i=1

(

1

q
(d)
i

)

− Ld ≥ Ld

(

Ld
∏

i=1

1

q
(d)
i

)

1
L
d

− Ld = Ld

(

1
∏Ld

i=1 q
(d)
i

)
1

L
d

− Ld

= Ld

(

1
∏N

i=1 qi

)
1

L
d

− Ld > Ld

(

1

e−
∑

m

k=1 λk

)
1

L
d

− Ld = Ld

(

(

e
∑

m

k=1 λk

)
1

L
d − 1

)

≥ lim
L′→∞

L′

(

(

e
∑

m

k=1 λk

)
1
L′ − 1

)

= ln
(

e
∑

m

k=1 λk

)

=

m
∑

k=1

λk.

From the above, the total sum of odds of Yd is strictly greater than
∑m

k=1 λk

and thus 1 < jm(d), which implies 1 ∈ Bm+1(d) 6= ∅.
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(i) First, we show that

lim
d→∞

∑

i∈Bk(d)

r
(d)
i = λk and lim

d→∞
|Bk(d)| = +∞, ∀k ∈ {1, 2, . . . ,m}. (9)

Since the odds of Yd is less than 2−d, block Bk(d) satisfies

λk − 2−d ≤
∑

i∈Bk(d)

r
(d)
i ≤ λk + 2−d (∀k ∈ {1, 2, . . . ,m}) (10)

and thus, we obtain the first equality in (9). Since λk − 2−d ≤
∑

i∈Bk(d)

r
(d)
i ≤

|Bk(d)|2−d, it is clear that lim
d→∞

|Bk(d)| ≥ lim
d→∞

(2dλk − 1) = +∞.

(ii) It is easy to show that for any k ∈ {1, 2, . . . ,m},

lim
d→∞

∏

j∈Bk(d)

q
(d)
i = lim

d→∞

∏

j∈Bk(d)

(

1

1 + r
(d)
i

)

= lim
d→∞





∏

j∈Bk(d)

(1 + r
(d)
i )





−1

≥ lim
d→∞

(
∑

j∈Bk(d)
(1 + r

(d)
i )

|Bk(d)|

)−|Bk(d)|

= lim
d→∞

(

1 +

∑

j∈Bk(d)
r
(d)
i

|Bk(d)|

)−|Bk(d)|

= e−λk .

(iii) Third, we show that the elementary symmetric polynomials satisfy

∀k ∈ {1, 2, . . . ,m}, ∀b ∈ {0, 1, . . . ,m}, lim
d→∞

f b(Bk(d)) ≥
λb
k

b!
.

When b = 0, the definition of f0(Bk(d)) says that f0(Bk(d)) = 1 =
λ0
k

0!
holds permanently. Let us consider the cases that b ≥ 1. When d is sufficiently
large, the size ofBk(d) is greater thanm, since limd→∞ |Bk(d)| = +∞. Thus, we

only need to consider the case that f b(Bk(d)) =
∑

B′⊆Bk(d), |B′|=b

(

∏

i∈B′ r
(d)
i

)

.

If we introduce a vector of variables r
′ = (r′1, r

′
2, . . . , r

′
j) where j = |Bk(d)|,

then the value f b(Bk(d)) is bounded from below by the optimal value of an
optimization problem

min
{

f b(r′)
∣

∣0 ≤ r′i ≤ 2−d (∀i ∈ {1, 2, . . . , j}), r′1 + r′2 + · · ·+ r′j ≥ λk − 2−d
}

, (11)

where f b(r′) =
∑

1≤i1<i2<···<ib≤j r
′
i1
r′i2 · · · r′ib and the last inequality constraint

is obtained from (10). The optimization problem (11) minimizes a continuous
function over a bounded closed set (a compact set) and has an optimal solution,

since a given vector of odds (r
(d)
i | i ∈ Bk(d)) (arranged in increasing order

of indices) is feasible for (11). Let r∗ = (r∗1 , r
∗
2 , . . . , r

∗
j ) be an optimal solution

of (11). From the symmetry of the objective function and the feasible region, we
can assume that r∗ satisfies r∗1 ≥ r∗2 ≥ · · · ≥ r∗j . Now we show that if r∗i+1 > 0,

then r∗i = 2−d. Assume on the contrary that 2−d > r∗i and r∗i+1 > 0 hold. Then
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the vector (r∗1 , r
∗
2 , . . . , r

∗
i +ε, r∗i+1−ε, r∗i+2, . . . , r

∗
j ) is feasible to (11) and strictly

decreases the objective function value, for some sufficiently small positive ε. This
contradicts with the optimality of r∗. Thus, the optimal solution r

∗ is denoted
by (2−d, 2−d, . . . , 2−d, r′′, 0, . . . , 0) where 0 ≤ r′′ ≤ 2−d. It is easy to see that
r
∗ satisfies the last constraint with equality, i.e., r∗1 + r∗2 + · · ·+ r∗j = λk − 2−d.

Consequently, the number of non-zero elements in r
∗ is greater than or equal

to 2dλk − 1. Thus, we have that ∀b ∈ {1, 2, . . . ,m},

lim
d→∞

f b(Bk(d)) ≥ lim
d→∞

f b(r∗) ≥ lim
d→∞

(

2dλk − 2
b

)

(2−d)b

≥ lim
d→∞

(2dλk − 2− b)b

b!
(2−d)b = lim

d→∞

(λk − (2 + b)/2d)b

b!
=

λb
k

b!
.

(iv) Lastly, we show our lower bound. As shown in Lemma 3.3, for any positive
integer d, the probability of win of any threshold strategy for the m-stopping
odds problem defined on Yd gives a lower bound of that defined on the given
sequence X . Lower bounds derived in (ii) and (iii) directly imply that the win

probability of Threshold(j
(m)
d , j

(m−1)
d , . . . , j

(1)
d ) gives a lower bound

lim
d→∞

m
∑

k=1





(

∏

i∈Bk∪···∪B2∪B1

qi

)

∑

(bk,...,b1)∈Ξk

(

f bk(Bk(d)) · · · f b1(B1(d))
)





≥
m
∑

k=1





(

k
∏

k′=1

e−λ
k′

)





∑

(bk,...,b1)∈Ξk

λbk
k

bk!

λ
bk−1

k−1

bk−1!
· · · λ

b1
1

b1!







 =

m
∑

k=1

e−
∑

k

k′=1
λ
k′

where the last equality is obtained from (7).

4 Secretary Problem.

In this section, we show that an optimal strategy for the secretary problem
attains our lower bounds appearing in Theorem 3.4. We discuss a sequence
of 0/1 random variables X2, X3, . . . , XN satisfying P[Xi = 1] = 1/i, for any
i ∈ {2, 3, . . . , N}. In this section, qi denotes the probability of failure 1 − 1/i
and ri denotes the odds 1/(i − 1) of Xi, for all i ∈ {1, 2, . . . , N}. Gilbert and
Mosteller Gilbert and Mosteller (1966) showed that an optimal strategy for the
secretary problem with m-stoppings is attained by a threshold strategy.

First, we show some properties related to the optimal threshold strategy.

Lemma 4.1. Consider an m-stopping secretary problem defined on Bernoulli
sequence X2, X3, . . . , XN satisfying P[Xi = 1] = 1/i (∀i ∈ {2, 3, . . . , N}). We

denote an optimal threshold strategy by Threshold(i
(m)
N , i

(m−1)
N , . . . , i

(1)
N ), and

define a block partition {Bm+1(N), Bm(N), . . . , B1(N)} of index set {2, 3, . . . , N}
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Table 1: Cumulative sum of entries in (λ1, λ2, . . . , λm) and lower bounds.

m

m
∑

k=1

λk

m
∑

k=1

e−
∑

k

k′=1
λ
k′

1 1 = 1 0.3678794411 · · ·
2 3/2 = 1.5 0.5910096013 · · ·
3 47/24 = 1.958333 · · · 0.7321029820 · · ·
4 2761/1152 = 2.396701 · · · 0.8231206726 · · ·
5 4162637/1474560 = 2.822969 · · · 0.8825499145 · · ·
6 380537052235603/117413668454400 = 3.240994 · · · 0.9216748810 · · ·

7
705040594914523588948186792543

193003573558876719588311040000
= 3.652992 · · · 0.9475883491 · · ·

8

3025002101
77484374840641189918370275991590974715547528765249

745007588
12993473612938854416966977838930799571763200000000

= 4.060364 · · · 0.9648310882 · · ·

9

4955429267826902943
22991702889058732983678465397265103848504031927299
12522937262239403638817695466470734534217406992001

1110072612742364945
47845493213273623476317581768829551455545915219181
23315624957195621435513013513748480000000000000000

= 4.464059 · · · 0.9763466188 · · ·

10

11989289035379212035246168789525873032
80849078486814692748999764352069320540924554366342
20167531781129657310860185112917637526070528528590
30333616681207477435841890935057636581590554638168
66245450807944253110095088765765115912740477984001

2464522411121321065440235649497935699
29104324006809890312129945082092425080632748539150
55027199035483748007701106129537805807977992169375
27132513498662936774805285136477456358447232852772
52323755961404620800000000000000000000000000000000

= 4.864751 · · · 0.9840603638 · · ·
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by

Bk(N) =











{i ∈ {2, 3, . . . , N} | i(1)N ≤ i ≤ N} (k = 1),

{i ∈ {2, 3, . . . , N} | i(k)N ≤ i < i
(k−1)
N } (1 < k ≤ m),

{i ∈ {2, 3, . . . , N} | 2 ≤ i < i
(m)
N } (k = m+ 1).

Then, for each k ∈ {1, 2, . . . ,m}, the following properties hold; (i) limN→∞ i
(k)
N = +∞,

(ii) limN→∞

∑

i∈Bk(N) ri = λk, (iii) limN→∞

∏

i∈Bk(N) qi = e−λk , and (iv) limN→∞ f b(Bk(N)) =
λb

k

b! (∀b ∈ {0, 1, . . . ,m}) where (λ1, λ2, . . . , λm) is a unique solution of (7).

Proof. It is well-known that for any k ∈ {1, 2, . . . ,m}, the threshold strat-

egy Threshold(i
(k)
N , i

(k−1)
N , . . . , i

(1)
N ) is also optimal to the k-stopping secretary

problem Gilbert and Mosteller (1966).
In the following, we show desired properties by induction on k. When k = 1,

the problem becomes the classical secretary problem, and properties (i), . . . ,(iv)
are well-known (see Gilbert and Mosteller (1966) for example).

Now, we begin a discussion of the k-th induction step (where k ≤ m) under
an assumption that for any k′ ∈ {1, 2, . . . , k − 1}, properties (i), . . . ,(iv) hold.
Let e be a unit k-vector (1, 0, 0, . . . , 0). Lemma 3.1 says that e ∈ Ξk and
every vector (bk, bk−1, . . . , b1) ∈ Ξk \ {e} satisfies bk = 0. Thus, the induction
hypothesis (iv) and the definition of equality system (7) imply that

lim
N→∞





∑

(bk,...,b1)∈Ξk\{e}

(

f
bk−1(Bk−1(N))fbk−2(Bk−2(N)) · · · fb1(B1(N))

)





=
∑

(bk,...,b1)∈Ξk\{e}

(

λ
bk−1

k−1

bk−1!

λ
bk−2

k−2

bk−2!
· · ·

λ
b1
1

b1!

)

=
∑

(bk,...,b1)∈Ξk\{e}

(

λ0
k

0!

λ
bk−1

k−1

bk−1!

λ
bk−2

k−2

bk−2!
· · ·

λ
b1
1

b1!

)

= 1− λk.(12)

Now we introduce a threshold strategy Threshold(i, i
(k−1)
N , i

(k−2)
N , . . . , i

(1)
N )

(∀i ∈ {2, 3, . . . , i(k−1)
N }) for the k-stopping secretary problem and employ a one-

stage look-ahead approach Ano (2001). Let P
(win)
N (k, i) be a probability of win

of the threshold strategy Threshold(i, i
(k−1)
N , i

(k−2)
N , . . . , i

(1)
N ).
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A difference of a pair P
(win)
N (k, i− 1) and P

(win)
N (k, i) satisfies

P
(win)
N (k, i− 1)− P

(win)
N (k, i)

=





N
∏

i′=i−1

qi′











i
(k−1)
N

−1
∑

i′=i−1

ri′ +
∑

(bk,...,b1)∈Ξk\{e}

(

f
bk−1(Bk−1(N)) · · · fb1(B1(N))

)







−

(

N
∏

i′=i

qi′

)







i
(k−1)
N

−1
∑

i′=i

ri′ +
∑

(bk,...,b1)∈Ξk\{e}

(

f
bk−1 (Bk−1(N)) · · · fb1 (B1(N))

)







=

(

N
∏

i′=i

qi′

)















(qi−1 − 1)

i
(k−1)
N

−1
∑

i′=i

ri′ + qi−1ri−1

+(qi−1 − 1)
∑

(bk,...,b1)∈Ξk\{e}

(

f
bk−1(Bk−1(N)) · · · fb1(B1(N))

)















=

(

N
∏

i′=i

qi′

)

(1− qi−1)















−
i
(k−1)
N

−1
∑

i′=i

ri′ + 1

−
∑

(bk,...,b1)∈Ξk\{e}

(

f
bk−1(Bk−1(N)) · · · fb1(B1(N))

)















.(13)

It is easy to show that

lim
N→∞

(

P
(win)
N (k, 3)− P

(win)
N (k, 2)

)

> 0 > lim
N→∞

(

P
(win)
N (k, i

(k−1)
N )− P

(win)
N (k, i

(k−1)
N − 1)

)

,

which implies that ∃N ′, ∀N > N ′, 3 ≤ i
(k)
N ≤ i

(k−1)
N − 1. From the optimality

of the threshold value i
(k)
N , inequalities P

(win)
N (k, i

(k)
N − 1) ≤ P

(win)
N (k, i

(k)
N ) ≥

P
(win)
N (k, i

(k)
N + 1) hold.

(i) Since 0 ≤ P
(win)
N (k, i

(k)
N )− P

(win)
N (k, i

(k)
N + 1), equality (13) implies that

i
(k−1)
N

−1
∑

i′=i
(k)
N

+1

ri′ ≤ 1−
∑

(bk,...,b1)∈Ξk\{e}

(

f
bk−1 (Bk−1(N)) · · · fb1 (B1(N))

)

.

As a consequence of the above inequality and (12), we have that

λk = lim
N→∞



1−
∑

(bk,...,b1)∈Ξk\{e}

(

f
bk−1(Bk−1(N)) · · · fb1(B1(N))

)



 ≥ lim
N→∞







i
(k−1)
N

−1
∑

i′=i
(k)
N

+1

ri′






(14)

= lim
N→∞







i
(k−1)
N

−2
∑

i′=i
(k)
N

1

i′






≥ lim

N→∞

(

ln
i
(k−1)
N − 1

i
(k)
N

)

.

The above inequality and the assumption that limN→∞ i
(k−1)
N = +∞ imply the

property that limN→∞ i
(k)
N = +∞.
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(ii) Form inequality (14) and the property limN→∞ i
(k)
N = +∞, we obtain that

lim
N→∞

∑

i′∈Bk(N)

ri′ = lim
N→∞

i
(k−1)
N

−1
∑

i′=i
(k)
N

ri′ = lim
N→∞






r
i
(k)
N

+

i
(k−1)
N

−1
∑

i′=i
(k)
N

+1

ri′






≤ lim

N→+∞

(

1

i
(k)
N − 1

)

+ λk = λk.

The inequality 0 ≥ P
(win)
N (k, i

(k)
N − 1)− P

(win)
N (k, i

(k)
N ) and equality (13) directly

imply that

i
(k−1)
N

−1
∑

i′=i
(k)
N

ri′ ≥ 1−
∑

(bk,...,b1)∈Ξk\{e}

(

f
bk−1(Bk−1(N)) · · · fb1(B1(N))

)

.

Combining the above inequality and (12), we obtain that

lim
N→∞

∑

i′∈Bk(N)

ri′ = lim
N→∞

i
(k−1)
N

−1
∑

i′=i
(k)
N

ri′ ≥ lim
N→∞



1−
∑

(bk,...,b1)∈Ξk\{e}

(

f
bk−1 (Bk−1(N)) · · · fb1(B1(N))

)



 = λk.

As a result, we have shown that limN→∞

∑

i∈Bk(N) ri = λk.

(iii) From the definition of qi, it is clear that

ln
∏

i∈Bk(N)

qi =
∑

i∈Bk(N)

ln(1− 1/i) =
∑

i∈Bk(N)

(ln(i − 1)− ln i)

= ln(i
(k)
N − 1)− ln(i

(k−1)
N − 1) = ln

i
(k)
N − 1

i
(k−1)
N − 1

(15)

and

i
(k−1)
N

−2
∑

i=i
(k)
N

−1

1

i
≥ ln(i

(k−1)
N − 1)− ln(i

(k)
N − 1) ≥

i
(k−1)
N

−2
∑

i=i
(k)
N

1

i
,

where i
(0)
N denotes N + 1. From the above, we obtain that

− lim
N→∞

ln
∏

i∈Bk(N)

qi ≤ lim
N→∞

i
(k−1)
N

−2
∑

i=i
(k)
N

−1

1

i
= lim

N→∞

i
(k−1)
N

−1
∑

i=i
(k)
N

ri = lim
N→∞

∑

i=Bk(N)

ri = λk, and

− lim
N→∞

ln
∏

i∈Bk(N)

qi ≥ lim
N→∞

i
(k−1)
N

−2
∑

i=i
(k)
N

1

i
= lim

N→∞







(

−1

i
(k)
N − 1

)

+

i
(k−1)
N

−1
∑

i=i
(k)
N

ri






= lim

N→∞

∑

i=Bk(N)

ri = λk.

Accordingly, we have that limN→∞

∏

i∈Bk(N) qi = e−λk .
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(iv) We omit the case of f0(Bk(N)) in the following, since the equality f0(Bk(N)) =

1 =
λ0
k

0! holds permanently. We discuss cases b ∈ {1, 2, . . . ,m}. The size of block
Bk(N) satisfies the following;

lim
N→∞

|Bk(N)|r
i
(k)
N

≥ lim
N→∞

i
(k−1)
N

−1
∑

i=i
(k)
N

ri = lim
N→∞

∑

i∈Bk(N)

ri = λk > 0.

The positivity of λk and the equality limN→∞ r
i
(k)
N

= limN→∞
1

i
(k)
N

−1
= 0 imply

that limN→∞ |Bk(N)| = +∞. Thus, we have that ∃N ′, ∀N > N ′, the size of
Bk(N) exceeds m and thus

∀b ∈ {1, 2, . . . ,m}, f b(Bk(N)) =
∑

B′⊆Bk(N), |B′|=b

(

∏

i∈B′

ri

)

.

We show that limN→∞ f b(Bk(N)) =
λb

k

b! by induction on b. When b = 1,
property (ii) implies that

lim
N→∞

f1(Bk(N)) = lim
N→∞

∑

i∈Bk(N)

ri =
λ1
k

1!
.

For any positive vector r
′ ∈ R

n′

, the inequality f b(r′) ≤ (
∑n′

i=1 r
′
i)/(b!) holds,

and thus we have

lim
N→∞

f b(Bk(N)) ≤ lim
N→∞

(

∑

i∈Bk(N) ri

)b

b!
=

λb
k

b!
. (16)

The induction hypothesis limN→∞ f b−1(Bk(N)) =
λb−1
k

(b−1)! implies that

lim
N→∞

f b(Bk(N)) = lim
N→∞

∑

B′⊆Bk(N), |B′|=b

(

∏

i∈B′

ri

)

= lim
N→∞

(

1

b

)

∑

B′′⊆Bk(N), |B′′|=b−1





(

∏

i∈B′′

ri

)





∑

j∈Bk(B)\B′′

rj









≥ lim
N→∞

(

1

b

)





∑

i∈Bk(N)

ri − (b− 1)r
i
(k)
N





∑

B′′⊆Bk(N), |B′′|=b−1

(

∏

i∈B′′

ri

)

= lim
N→∞

(

∑

i∈Bk(N) ri − (b− 1)r
i
(k)
N

)

b
f b−1(Bk(N)) =

λk

b

λb−1
k

(b − 1)!
=

λb
k

b!
.(17)

Thus, we have shown limN→∞ f b(Bk(N)) =
λb

k

b! .

The following theorem gives the win probability of the secretary problem.
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Theorem 4.2. Let (λ1, λ2, . . . , λm) be a unique solution of (7). Given a se-
quence of 0/1 random variables X2, X3, . . . , XN satisfying P[Xi = 1] = 1/i

(∀i ∈ {2, 3, . . . , N}), the probability of win P
(win)
N (m) of an optimal strategy for

the m-stopping secretary problem defined on X2, X3, . . . , XN satisfies

lim
N→∞

P
(win)
N (m) =

m
∑

k=1

e−
∑

k

k′=1
λ
k′ .

Proof. In the previous lemma, we have shown properties (iii) and (iv) for

each k ∈ {1, 2, . . . ,m}. Thus, the probability of win P
(win)
N (m) satisfies

lim
N→∞

P
(win)
N (m) = lim

N→∞

m
∑

k=1









∏

i∈Bk(N)∪···∪B1(N)

qi









∑

(bk,...,b1)∈Ξk

(

f bk(Bk(N)) · · · f b1(B1(N))
)









=

m
∑

k=1





(

k
∏

k′=1

e−λ
k′

)





∑

(bk,...,b1)∈Ξk

λbk
k

bk!

λ
bk−1

k−1

bk−1!
· · · λ

b1
1

b1!







 =

m
∑

k=1

e−
∑

k

k′=1
λ
k′ ,

where the last equality is obtained from (7).

In the rest of this section, we prove a conjecture on a relation between thresh-
old values and win probability of the secretary problem indicated by Gilbert and
Mosteller Gilbert and Mosteller (1966).

Theorem 4.3. Given a sequence of 0/1 random variables X2, X3, . . . , XN sat-
isfying P[Xi = 1] = 1/i (∀i ∈ {2, 3, . . . , N}), an optimal (threshold) strategy

Threshold(i
(m)
N , i

(m−1)
N , . . . , i

(1)
N ) for the m-stopping secretary problem satisfies

lim
N→∞

(

i
(m)
N

N
+

i
(m−1)
N

N
+ · · ·+ i

(1)
N

N

)

= lim
N→∞

P
(win)
N (m)

where P
(win)
N (m) denotes a corresponding probability of win.

Proof. In the following, we put i
(0)
N = N+1 and we denotes a unique solution

of (7) by (λ1, λ2, . . . , λm). Equality (15) imply that for any k ∈ {1, 2, . . . ,m},

lim
N→∞

ln
i
(k)
N

i
(k−1)
N

= lim
N→∞

ln

(

i
(k)
N − 1

i
(k−1)
N − 1

i
(k−1)
N − 1

i
(k−1)
N

i
(k)
N

i
(k)
N − 1

)

= lim
N→∞



ln





∏

i∈Bk(N)

qi



+ ln

(

1− 1

i
(k−1)
N

)

+ ln

(

1 +
1

i
(k)
N − 1

)



 = −λk.
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Thus, we have

lim
N→∞

ln
i
(k)
N

N
= lim

N→∞
ln

((

i
(k)
N

i
(k−1)
N

)(

i
(k−1)
N

i
(k−2)
N

)

· · ·
(

i
(1)
N

i
(0)
N

)

(

N + 1

N

)

)

= lim
N→∞

(

ln

(

i
(k)
N

i
(k−1)
N

)

+ ln

(

i
(k−1)
N

i
(k−2)
N

)

+ · · ·+ ln

(

i
(1)
N

i
(0)
N

)

+ ln

(

N + 1

N

)

)

= −(λk + λk−1 + · · ·+ λ1) = −
k
∑

k′=1

λk′ .

The above equality and Theorem 4.2 imply that

lim
N→∞

(

i
(m)
N

N
+

i
(m−1)
N

N
+ · · ·+ i

(1)
N

N

)

= lim
N→∞

m
∑

k=1

i
(k)
N

N
=

m
∑

k=1

e−
∑

k

k′=1
λ
k′ = lim

N→∞
P
(win)
N (m).

5 Discussion.

We dealt with the odds problem and the secretary problem with multiple stop-
ping chances. We derived a tight lower bound of the probability of win for odds
problem and showed that the lower bound is attained by the secretary prob-
lem. We also proved a conjecture on the secretary problem which connects the
optimal threshold strategy and the probability of win.

APPENDIX

Proof of Theorem 3.2
Before showing Theorem 3.2, we need some definitions and a lemma. For

any pair of positive integers (k, k′) satisfying m ≥ k > k′ ≥ 1, we introduce

Ξ0
k(k

′) = {(bk, bk−1, . . . , b1) ∈ Ξk | 0 = bk = bk−1 = · · · = bk′+1 } ,

where we define Ξ0
k(k) = Ξk. We also denote

α(k, k′) =
∑

(bk,...,b1)∈Ξ0
k
(k′)

(

λbk
k

bk!

λ
bk−1

k−1

bk−1!
· · · λ

b1
1

b1!

)

=
∑

(0,...,0,b
k′ ,...,b1)∈Ξ0

k
(k′)

(

λ
b
k′

k′

bk′ !

λ
b
k′

−1

k′−1

bk′−1!
· · · λ

b1
1

b1!

)

,

where (λm, λm−1, . . . , λ1) is a solution of equality system (7).

Lemma 5.1. For any integer k′ ∈ {1, 2, . . . ,m}, α(·, ·) satisfies the following
inequalities

1 = α(k′, k′) > α(k′ + 1, k′) > · · · > α(m, k′) > 0.
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Proof. When we consider α(k′, k′), equality Ξ0
k′ (k′) = Ξk′ holds and thus

(7) directly implies that

α(k′, k′) =
∑

(b
k′ ,...,b1)∈Ξ

k′

(

λ
b
k′

k′

bk′ !

λ
b
k′

−1

k′−1

bk′−1!
· · · λ

b1
1

b1!

)

= 1.

Next, we show the above inequalities by induction on k′.
When k′ = 1, it is clear that Ξ0

k(1) = {(0, 0, · · · , 0, k)} and thus α(k, 1) =
λk

1

k! = 1
k! for each k ∈ {1, 2, . . . ,m}, since λ1 = 1. Thus, we have the inequality

1 = α(1, 1) > α(2, 1) > · · · > α(m, 1) > 0.

Next, we consider a general case. Every vector (0, . . . , 0, bk′ , . . . , b1) ∈ Ξ0
k(k

′)
satisfies that bk′ ∈ {0, 1, . . . , 1 + k − k′}. Especially in the case that bk′ =
1+ k− k′, the definition of Ξk implies that (0, . . . , 0, bk′ , . . . , b1) = (0, . . . , 0, 1+
k − k′, 0, . . . , 0). We consider the remaining case that bk′ ∈ {0, 1, . . . , k − k′}.
Then, there exists an index k∗ ∈ {k′ − 1, k′ − 2 . . . , 2, 1} satisfying

1 + k − k′ > bk′ ,
1 + k − (k′ − 1) > bk′ + bk′−1,

...
1 + k − (k∗ + 1) > bk′ + bk′−1 + · · ·+ bk∗+1,
1 + k − k∗ = bk′ + bk′−1 + · · ·+ bk∗+1 + bk∗ ,
0 = bk∗−1 = · · · = b1.

The above inequalities and equalities imply that

1 + (k − bk′)− k′ > 0,
1 + (k − bk′)− (k′ − 1) > bk′−1,

...
1 + (k − bk′)− (k∗ + 1) > bk′−1 + · · ·+ bk∗+1,
1 + (k − bk′)− k∗ = bk′−1 + · · ·+ bk∗+1 + bk∗ ,
0 = bk∗−1 = · · · = b1,

and thus we have (0, . . . , 0, 0, bk′−1, . . . , b1) ∈ Ξ0
k−b

k′
(k′−1). The inverse implica-

tion is clear, i.e., 0 ≤ ∀bk′ ≤ k−k′, if (0, . . . , 0, 0, bk′−1, . . . , b1) ∈ Ξ0
k−b

k′
(k′− 1),

then (0, . . . , 0, bk′ , . . . , b1) ∈ Ξ0
k(k

′).
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From the above, the definition of α(k, k′) implies that

α(k, k′) =
∑

(0,...,0,b
k′ ,...,b1)∈Ξ0

k
(k′)

(

λ
b
k′

k′

bk′ !

λ
b
k′

−1

k′−1

bk′−1!
· · · λ

b1
1

b1!

)

=

1+k−k′

∑

b=0

∑

(0,...,0,b,b
k′

−1,...,b1)∈Ξ0
k
(k′)

(

λb
k′

b!

λ
b
k′

−1

k′−1

bk′−1!
· · · λ

b1
1

b1!

)

=
λ1+k−k′

k′

(1 + k − k′)!

(

λ0
k′−1

0!
· · · λ

0
1

0!

)

+

k−k′

∑

b=0





λb
k′

b!

∑

(0,...,0,0,b
k′

−1,...,b1)∈Ξ0
k−b

(k′−1)

(

λ
b
k′

−1

k′−1

bk′−1!
· · · λ

b1
1

b1!

)





=
λ1+k−k′

k′

(1 + k − k′)!
+

k−k′

∑

b=0

(

λb
k′

b!
α(k − b, k′ − 1)

)

. (18)

When k = k′, the above equality implies that

1 = α(k′, k′) =
λk′

1!
+

λ0
k′

0!
α(k′, k′ − 1) = λk′ + α(k′, k′ − 1) (19)

We assume the following induction hypothesis

1 = α(k′ − 1, k′ − 1) > α(k′, k′ − 1) > · · · > α(m, k′ − 1) > 0. (20)

Then, for any integer k ∈ {k′, k′ + 1, . . . ,m}, we can show that

α(k, k′)− α(k + 1, k′)

=
λ1+k−k′

k′

(1 + k − k′)!
+

k−k′

∑

b=0

(

λb
k′

b!
α(k − b, k′ − 1)

)

− λ2+k−k′

k′

(2 + k − k′)!
−

1+k−k′

∑

b=0

(

λb
k′

b!
α(k + 1− b, k′ − 1)

)

=
λ1+k−k′

k′

(1 + k − k′)!
− λ2+k−k′

k′

(2 + k − k′)!
− λ1+k−k′

k′

(1 + k − k′)!
α(k′, k′ − 1)

+

k−k′

∑

b=0

(

λb
k′

b!

(

α(k − b, k′ − 1)− α(k + 1− b, k′ − 1)
)

)

≥ λ1+k−k′

k′

(1 + k − k′)!

(

1− α(k′, k′ − 1)
)

− λ2+k−k′

k′

(2 + k − k′)!
(obtained from (20))

=
λ1+k−k′

k′

(1 + k − k′)!
λk′ − λ2+k−k′

k′

(2 + k − k′)!
(obtained from (19))

=
λ2+k−k′

k′

(1 + k − k′)!

(

1− 1

2 + k − k′

)

> 0.

Now we describe a proof of Theorem 3.2.
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Proof of Theorem 3.2. Obviously, λ1 = 1 > 0. Equalities (19) and Lemma 5.1
imply that

∀k′ ∈ {2, 3, . . . ,m}, λk′ = 1− α(k′, k′ − 1) = α(k′ − 1, k′ − 1)− α(k′, k′ − 1) > 0.

Recurrence relations (18) and (19) give the following efficient algorithm for
calculating (λ1, λ2, . . . , λm) without enumerating vectors in Ξk.

Algorithm A

Step 0: Set k′ := 1; λ1 := 1; α(k, 1) := 1/k! for all k ∈ {1, 2, . . . ,m}.

Step 1: Set k′ := k′ + 1; α(k′, k′) := 1; λk′ := 1− α(k′, k′ − 1).
For each k ∈ {k′ + 1, . . . ,m}, calculate α(k, k′) by (18).

Step 2: If k′ = m, then stop and output (λ1, λ2, . . . , λm). Else, goto
Step 1.

The total number of basic arithmetic operations required in Algorithm A is
bounded by O(m3).
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