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Abstract

Lost sales inventory models with large lead times, which arise in many practical settings, are notoriously
difficult to optimize due to the curse of dimensionality. In this paper we show that when lead times are
large, a very simple constant-order policy, first studied byReiman [39], performs nearly optimally. The
main insight of our work is that when the lead time is very large, such a significant amount of randomness is
injected into the system between when an order for more inventory is placed and when the order is received,
that “being smart” algorithmically provides almost no benefit. Our main proof technique combines a novel
coupling for suprema of random walks with arguments from queueing theory.

1 Introduction

In this paper we consider a stochastic inventory control problem under the so-called single-item, periodic-
review, lost-sales model with positive lead times and independent and identically distributed (i.i.d.) demand.
This model is based on sales being lost whenever there is insufficient supply to fulfill demand, i.e., unfulfilled
demand is lost rather than being carried over, or backlogged, to a later time. Furthermore, there is a constant
delay ofL > 0 periods (i.e., a single lead time) between when an order for additional inventory is placed and
when that inventory is received. The problem then is to determine the best policy for a series of orders across
a planning horizon comprised of a finite number of discrete time periods, with the goal of minimizing cost in
expectation.

The cost structure of this model consists of a per-unit penalty for lost sales due to unfulfilled demand within
each period and a per-unit cost for holding excess inventorywithin each period. Unlike the corresponding
backorder inventory control problem when unfulfilled demand is fully backlogged from period to period, where
the optimal policy is well known to be an order-up-to policy,the optimal order policy for the lost-sales inventory
model is not known in general, and in fact remains poorly understood [4].

Such periodic-review, lost-sales models have a long and rich history in the operations research, operations
management and management science literature. Here we briefly review some of the most relevant literature,
and refer the interested reader to the recent survey paper ofBijvank [4] for a more comprehensive exposition.
This class of inventory models was first introduced by Bellman [2]. Certain properties of the optimal policy were
explored for the case ofL = 1 by Karlin and Scarf [25] and by Yaspan [43], where it was shown that the order-
up-to policy is not optimal for the lost-sales inventory model. Morton [33] extended this analysis to the case
of generalL. Other properties of the optimal policy, including variousnotions of convexity and monotonicity,
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were explored in [47, 46, 19]. With respect to computation of the optimal policy, the primary approach taken
in the literature is dynamic programming, combined with various heuristics to speed up computations [34,
46]. However, since the state-space of any such dynamic program grows exponentially in the lead time, such
computations become extremely challenging even for lead times less than ten [46]. Namely, this family of
techniques suffers from the curse of dimensionality as the lead time grows. Indeed, even for a lead time of four
and geometrically distributed demand, Zipkin [46] reports that computing the optimal policy requires solving a
dynamic program with228, 581 states. This is not surprising because the problem at hand and several closely
related problems are known to be NP-complete [18].

The difficulty of computing optimal policies for the lost-sales model has led to a considerable body of
work on heuristics. The computational performance and properties of various algorithms, including order-up-to
policies, have been analyzed by numerous authors [14, 32, 34, 44, 38, 37, 9, 23, 22, 24, 3]. With respect to
policies that have provable performance guarantees, the breakthrough work of Levi et al. [26] proved that a
certain dual-balancing heuristic, inspired by previous results for other models [27, 28], yields a policy whose
cost is always within a factor of two of optimal. Huh et al. [20] show that in a certain scaling regime, in
which the ratio of the lost-sales penalty to the holding costasymptotically tends to infinity, an order-up-to
policy is asymptotically optimal; and a similar result has been recently derived by Lu et al. [30]. Using a very
different approach, Halman et al. provide an approximate dynamic programming algorithm that, combined
with ideas from discrete convexity, yields a so-called fully polynomial-time approximation scheme for various
related inventory control problems [17, 18]. These techniques were recently extended to lost-sales models with
positive lead times (as considered in this paper) by Chen et al. [6], who provide a pseudo-polynomial-time
additive approximation algorithm. Namely, under a suitable encoding scheme, an algorithm is presented that,
for anyǫ > 0, returns a policy whose performance differs additively from that of the optimal policy by at most
ǫ, in time which is polynomial inǫ−1 if the overall encoding length of the problem is held fixed while ǫ is
varied, and otherwise is pseudo-polynomial in the overall encoding length (which grows with the lead timeL);
we refer the reader to [6] for details. In a follow-up study [7], the authors prove several interesting integrality
results for these and related models.

The work closest to our own is that of Reiman [39], who studies a very simple policy for a certain
continuous-review, lost-sales model with positive lead times and demand arriving as a Poisson process. In
particular, the author analyzes an open-loop constant-order policy, which at time 0 selects an interval sizeτ and
simply orders a single unit of inventory everyτ time units. The author observes that this simple policy can be
analyzed as aD/M/1 queue, and goes on to perform an interesting asymptotic analysis, showing that for any
fixed holding cost and lost-sales penalty, there exists a critical lead-time valueL∗ such that (s.t.): (i) for all lead
times less thanL∗, the best base-stock policy outperforms the best constant-order policy; and (ii) for all lead
times greater thanL∗, the best constant-order policy outperforms the best base-stock policy. The author makes
no attempt to compare either policy to the true optimal policy, which he notes is unknown.

Of course, there is no a priori reason to believe that such a simple constant-order policy should be nearly op-
timal. However, numerical results from a recent study by Zipkin [46], in which the optimal policy is computed
for a lost-sales model with i.i.d. demand and positive lead times (nearly identical to the model we consider, but
with discounting), show that the constant-order policy (inwhich the same fixed constant is ordered in every
time period) can perform surprisingly well. More precisely, in numerical experiments for a lead time of four,
the constant-order policy always incurs an expected cost atmost twice that incurred by the optimal policy;
in 62.5% of the cases, the constant-order policy incurs a cost at most1.33 times that incurred by the optimal
policy; and in 38% of the cases, it incurs a cost at most1.12 times that incurred by the optimal policy. This
begs the question of how such a simple policy can perform so well on reasonable problem instances.

In the present paper we derive theoretical results that shedlight on this and related phenomena. Specifically,
we prove that, as the lead time grows (with the demand distribution, lost-sales penalty and holding cost remain-
ing fixed), the best constant-order policy is in fact asymptotically optimal. We also establish explicit bounds
on how large the lead time should be to ensure that the best constant-order policy incurs an expected cost of at
most1 + ǫ times that incurred by the optimal policy. To the best of our knowledge, this is the first algorithm
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proven to be within1 + ǫ of optimal for lost-sales models when the lead time is large,and whose runtime
does not grow with the lead time. The main insight of our work is that when the lead time is very large, such
a significant amount of randomness is injected into the system between when an order for more inventory is
placed and when the order is received, that “being smart” algorithmically provides almost no benefit. Our main
proof technique combines a novel coupling for suprema of random walks with arguments from queueing theory.
Since this simple policy succeeds exactly when known algorithms start running into trouble due to the curse of
dimensionality, our results open the door for the creation of “hybrid” algorithms that use more elaborate forms
of dynamic programming when the lead time is small, and gradually transition to less computationally intensive
algorithms (with the constant-order policy at the extreme)as the lead time grows.

Outline of paper and overview of proof. The remainder of this paper, including the underlying proofs of our
main results, is organized as follows. Section2 formally defines the model of study and Section3 states our
main results (Theorem1 and Corollary2), namely the asymptotic optimality of the constant-order policy and
associated explicit performance guarantees. In Section4, we explicitly describe the dynamics and associated
costs for a general policy over any consecutiveL time periods, if one conditions on the pipeline-vector and
inventory at the start of thoseL time periods, in terms of the maxima of various partial sums (Lemma3). We
then customize this result to the constant-order policy (Lemma4), under which various associated expressions
simplify considerably.

In Section5, we develop lower bounds on the cost incurred by a particularoptimal policyπ described
in [47], which never orders more than a certain quantity that depends on the underlying costs and demand
distribution, but not on the leadtimeL nor planning horizonT . First, we formulate a lower bound on the cost
incurred byπ over any consecutiveL time periods by supposing thatπ was able to choose the state of the
system at the start of thoseL time periods to be as favorable as possible. This results in a“best-case” pipeline
vectorx∗ and inventory levelI∗, which can be described as the solution to an appropriate optimization problem
(4), and then can be used together with Lemma3 to derive a lower bound for the cost incurred byπ over any
consecutiveL periods (Lemma6), again in terms of the maxima of various partial sums.

The second lower bound formulated in Section5 (Lemma7) represents the most critical step of the entire
proof, where we reason as follows. Ultimately, we wish to show that the performance of an appropriate constant-
order policy nearly matches the lower bound established in Lemma6. To accomplish this, we first note that if
we wanted to select a constant-order policy which came closeto matching the aforementioned lower bound, a
natural approach would be to select the constant-order policy that “best mimics” the pipeline vectorx∗, i.e., by

definingr∗
∆
= L−1

∑L
i=1 x

∗
i and considering the policy that ordersr∗ in every period (assumingr∗ < E[D]).

Second, we note that if one compares the maxima appearing in the lower bound of Lemma6, and the maxima
appearing in the dynamics of the constant-order policy whenr∗ is ordered in every period (as described in
Lemma4), the associated expressions are markedly similar. A fundamental difficulty in precisely comparing
these expressions is that the indices at which various maxima appearing in Lemma6 attain their suprema may
depend on fluctuations in the vectorx∗, while the maxima appearing in Lemma4 do not have this property, as
the associated pipeline vector is constant. To remedy this,we describe an explicit coupling between the maxima
that appear in Lemma6 and the maxima that appear in Lemma4 whenr∗ is ordered in every period. Indeed,
instead of computing the “true values” of the maxima appearing in Lemma6, we derive bounds by examining
the associated expressions not at the index at which they attain their supremum, but at a different index, namely
the index at which a corresponding expression appearing in Lemma4 attains its supremum. In this way, we
are able to derive a second lower bound (Lemma7), which is much closer to the corresponding expression
appearing in Lemma4, and highly amenable to analysis.

Then in Section6 we use Lemma7, along with a careful analysis of various quantities associated with
certain random walks and their suprema (Lemma9), to explicitly bound the performance gap between the
aforementioned constant-order policy andπ, over any consecutiveL periods (Theorem8). In Section7, we
use Theorem8 to complete the proof of our main results. Along these lines,we first prove thatr∗ is bounded
away fromE[D] (Lemma10), as the bounds of Theorem8 depend sensitively on this gap. The associated proof
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proceeds by contradiction in which it is shown that ifr∗ is “too close” toE[D], then a certain “sharpening”
of the central limit theorem, known as Stein’s lemma, guarantees that too large of a holding cost is incurred.
Finally, we note that every constant-order policy is dominated by a certain “best-possible” constant-order policy.
Combining all of the above with a straightforward asymptotic analysis completes the proof.

Closing remarks and directions for future research are presented in Section8. We also include a short
technical appendix in Section9.

2 Model description and problem statement

Let us consider a standard lost-sales inventory optimization problem. One is given as input the holding cost,
lost-demand penalty, planning horizon, lead time, and demand distribution. The problem then is to determine
the optimal ordering policy to control inventory in the so-called single-item, periodic-review, lost-sales model.

Specifically, we consider the following lost-sales model and associated optimization problem. Leth denote
the per-unit holding cost andc the per-unit lost-demand penalty, where we assumec, h > 0. Time is slotted,
with the planning horizon and lead time respectively comprised ofT andL periods s.t.T > L > 0. The demand
in each periodt, denoted byDt, is assumed to be i.i.d. and governed by a non-negative demand distributionD
with finite third moment. To prevent certain degenerate situations, we further assume thatD is not deterministic.

At the start of each time periodt there is an amount of inventoryIt available. There is also anL-dimensional
vector of pipeline inventoryxt = (x1,t, x2,t, . . . , xL,t) that captures the orders placed before periodt but not
yet received prior to periodt. The system dynamics for time periodt then proceed as follows. First, a new
amountx1,t of goods is added to the inventory. Second, before seeing thedemand of periodt, an order for more
inventory is placed. After placing this order, the pipelineinventory vector is updated in a manner analogous to
that of a queue: the front entryx1,t is removed, all other entries move up one position (i.e.,xi,t+1 = xi+1,t for
i = 1, 2, . . . , L− 1), and the new order is appended at the end, becomingxL,t+1.

The order placed at timet must be a function (albeit possibly a random function) only of the planning
horizonT , the current timet, the inventory levelIt at the start of periodt, the pipeline vectorxt at the start of
periodt, and the model primitivesL, h, c,D. In particular, the ordering decision at timet cannotdepend on the
realizations of future demand. We call all such policiesadmissiblepolicies, and denote the family of admissible
policies byΠ.

Next, a random demandDt is realized fromD. At the end of time periodt (but before the start of period
t + 1), the inventory or lost-sales costs are incurred as follows. The amount of excess inventory at the end of
periodt is given byIt+1 = (It+x1,t−Dt)

+, noting thatDt is independent ofIt+x1,t. Conversely, the amount

of lost demand (due to not having enough inventory on hand) inperiodt is denoted byNt
∆
= (It+x1,t−Dt)

−.
Then, the holding cost incurred (for storing excess inventory) equalshIt+1 and the lost-sales penalty incurred
(for lost demand) equalscNt, noting that at most one ofIt+1 andNt is positive for any periodt.

The goal of the inventory planner is to minimize the expectedcost incurred over the entire planning horizon.
Let 1 denote the vector of all ones and0 the vector of all zeros, where the dimension is to be inferredfrom
context. Let us supposeI0 = 0 andx0 = 0, which should be assumed throughout as the given initial conditions,
and let us further define

Ct
∆
= hIt+1 + cNt = h(It + x1,t −Dt)

+ + c(It + x1,t −Dt)
−.

The planner then wishes to find the policyπ ∈ Π that minimizesE[
∑T+L

t=L+1 Ct], where the expectation is
over the random demand and any random decisions taken by policy π, and where we suppose that ordering
decisions are made only in periods1, . . . , T . Note that we do not penalize a policy for any costs incurred
over the firstL time periods, as this cost is completely determined by the initial pipeline vector and random
demands. On the other hand, we do penalize a policy for costs incurred in periods[T, T +L] (recallingT > L),
as the cost incurred during these periods is completely determined by the ordering decisions made in periods
1, . . . , T and random demands. We note that such a convention is consistent with the previous literature; see,
e.g., [47]. As a notational convenience and without loss of generality (w.l.o.g.), we suppose that every policy
orders0 in periodsT + 1, . . . , T + L, as these ordering decisions have no effect on the problem’scost. For a
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given policyπ, let {Nπ
t , C

π
t , I

π
t ,x

π
t ; t = 1, . . . , T + L} denote the associated random variables (r.v.s) when

policyπ is implemented (all constructed on the same probability space). The corresponding lost-sales inventory
optimization problem is then given by

inf
π∈Π

T+L
∑

t=L+1

E[Cπ
t ]. (1)

3 Main results

Our main results establish that there exists a very simple constant-order policy which is asymptotically optimal
asL → ∞. This section formally states these results.

3.1 Additional definitions and notations. Let D denote a r.v. governed byD. Note that if the same deter-
ministic quantityr < E[D] is ordered in every period, then the inventory evolves exactly as the waiting time in
aGI/GI/1 queue (initially empty) with interarrival time distribution D and processing time distribution (the
constant)r; we refer the reader to [1] for an excellent discussion of the dynamics and steady-state properties
of theGI/GI/1 queue. LetIr∞ denote a r.v. distributed as the steady-state waiting time in the corresponding
GI/D/1 queue; namely,Ir∞ is distributed assupk≥0(kr −

∑k
i=1Di).

For two vectorsx,y of equal dimension, we use the notationx ≤ y to denote component-wise domination,
i.e.,xi ≤ yi for all i. DefineQ to be the c

c+h
quantile of the demand distribution, namely

Q
∆
= inf{s ∈ R+ : P(D > s) ≤

h

c+ h
}.

We note thatQ is the optimal inventory level for the corresponding single-stage newsvendor problem [45], i.e.,
for any policyπ and any timet

E[Cπ
t ] ≥ g , hE[(Q−D)+] + cE[(D −Q)+].

Lastly, letσ denote the standard deviation ofD, andζ
∆
= E

[

|D−E[D]|3
]

σ−3 denote the so-called skewness
of D. We then define several functions that will be instrumental for our analysis:

m ,

⌈

(

26
(

3ζ + c(hσ)−1
E[D] + 1

)

)2
⌉

, z , argmin
v≥0

(

hE
[

Iv∞
]

− cv
)

,

and

y(ǫ) , max

(

214h(Q+ 2
3

2E[D])(E2[D] + E[D2])3σ−6m3g−1ǫ−1,
(

12cg−1
(

(2ch−1)
1

2 + 3
)

)2
ǫ−2

)

.

Although the above quantities are functions ofc, h,D, since there will be no ambiguity, we make this depen-
dence implicit.

Remarks.

• If argminv≥0

(

hE
[

Iv∞
]

− cv
)

is not unique, we definez to be the infimum of all such values. We will
later show thatz is the best constant possible if the same amount has to be ordered in every time period,
in an appropriate sense. Note thatz ∈ [0,E[D]), sinceE

[

I0∞
]

= 0 andlimr↑E[D] E
[

Ir∞
]

= ∞.

• The functiony(ǫ) captures how largeL should be so that our constant-order policy is within a(1 + ǫ)
multiplicative factor of the optimal policy.

• Note that, for all sufficiently smallǫ, the term
(

12cg−1
(

(2ch−1)
1

2 + 3
)

)2
ǫ−2 will dominatey(ǫ) due to

its quadratic dependence onǫ−1.
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• We note that our assumption thatD has finite third moment is not strictly necessary, but allowsfor a
considerably simplified exposition. Indeed, in an earlier version of this work [15], very similar results
were presented under the assumption of only finite second moment, but for technical reasons requiring
thatD had unbounded support. By combining the arguments of the present paper (which assumes finite
third moment but allowsD to have bounded support) with the arguments of the aforementioned earlier
version, we would in principle obtain asymptotic optimality assuming only a finite second moment. For
simplicity of exposition, we do not formalize this generalization, and leave as an open question the
minimal required assumptions onD for such an asymptotic optimality to hold.

3.2 Formal statement of results.For r ∈ [0,E[D]), let πr denote the policy that orders the random amount
Ir∞ + r (i.e., the order amount is drawn from the distribution that governs the r.v.Ir∞ plus the constantr) in
the first time period, and then orders the constantr in all subsequent time periods. We note that by ordering
Ir∞+r in the first time period, as opposed tor, the associated sequence of inventory levels becomes a stationary
process, which considerably simplifies our analysis. With aslight abuse of notation, we still refer toπr as a
constant-order policy. Let OPT(L, T ) denote the optimal value of the lost-sales inventory optimization problem
(1) for a givenL andT . We then have our main theorem and an important corollary.

Theorem 1. For all ǫ ∈ (0, 1), L ≥ y(ǫ), andT ≥ (1 + 3ǫ−1)L,

E[
∑T+L

t=L+1 C
πz

t ]

OPT(L, T )
≤ 1 + ǫ.

Corollary 2.

lim
L→∞

lim sup
T→∞

E[
∑T+L

t=L+1 C
πz

t ]

OPT(L, T )
= 1.

In particular, the simple constant-order policy is asymptotically optimal asL→ ∞.

4 Inventory dynamics

In this section, we derive several expressions that explicitly describe the inventory dynamics for any policy over
any consecutiveL periods, and then customize these results to the constant-order policy for later use in our
proofs.

4.1 General policy dynamicsWe first explicitly characterize the cost incurred under anygiven policy during
any consecutiveL periods. Although such a characterization is generally well-known (see, e.g., [47]), we
include a proof for completeness. LetI denote the initial inventory level and, for positive integers j, k, define
δj,k to be1 if j = k and to be0 otherwise.

Lemma 3. For any policyπ ∈ Π and timeτ ∈ [1, T + 1],

E

[

τ+L−1
∑

t=τ

Cπ
t

∣

∣

∣
xπ
τ = x, Iπτ = I

]

= h

L
∑

k=1

E

[

max
j=0,...,k

( k
∑

i=k+1−j

(

xi −Dτ+i−1) + δj,kI

)]

+ c

(

E
[

Iπτ+L

∣

∣xπ
τ = x, Iπτ = I

]

− I + LE[D]−

L
∑

i=1

xi

)

.

Remark. Note that, instead of using theδj,k notation to indicate that the initial inventory is only accounted
for in a single term appearing in the associated maximum, we could have, e.g., considered a transformed set of
“inventory position” variables, with each associated variable corresponding to the sum of certain pipeline (and
possibly inventory) variables, as was done in [47]. However, since our subsequent analysis will rely sensitively
on the indices at which various associated maxima are attained, and precisely which pipeline-vector components
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appear in the associated partial sums, as well as whether theassociated initial inventory levelI is accounted
for in the associated partial sum for which the maximum is attained (i.e., the maximum occurs at indexk), we
believe that theδj,k notation leads to greater clarity of exposition and use thisnotation throughout.

PROOF. The result follows from a straightforward, generally well-known (see, e.g., [47]), induction that for
anyk ∈ [1, L]:

Iπτ+k = max
j=0,...,k

( k
∑

i=k+1−j

(

xi −Dτ+i−1) + δj,kI

)

. (2)

Note that for any timest1, t2 s.t.τ ≤ t1 < t2 ≤ τ +L, the net amount of demand that is met during[t1, t2 − 1]
equals

∑t2−1
t=t1

Dt −
∑t2−1

t=t1
Nπ

t . It follows that

t2−1
∑

t=t1

Nπ
t = Iπt2 − Iπt1 +

t2−1
∑

t=t1

Dt −

t2−1
∑

t=t1

xt−τ+1. (3)

Combining (2) with (3) completes the proof.�

4.2 Constant-order policy dynamicsWe next customize Lemma3 to the constant-order policyπr. As
previously noted, if the same deterministic quantityr is ordered in every period, the inventory evolves exactly
as the waiting time in aGI/GI/1 queue with interarrival distributionD and processing time distribution (the
constant)r. Recall that forr ∈ [0,E[D]), Ir∞ denotes a r.v. distributed as the steady-state waiting timein
the corresponding stableGI/D/1 queue, i.e.,Ir∞ is distributed assupk≥0(kr −

∑k
i=1Di). It follows that

{Iπr

L+k; k ≥ 1} is a stationary sequence of r.v.s, withIπr

L+k distributed asIr∞ for all k ≥ 1.
Before explicitly showing how Lemma3 simplifies when applied toπr, it will be useful to introduce some

additional notations. LetIr1,∞ denote a particular replication ofIr∞ s.t. Ir1,∞ and{Di; i ≥ 1} are mutually
independent, where we note thatIr1,∞ will play the role ofI when Lemma3 is applied toπr. Fork ≥ 0, let us
define

W r
k

∆
= max

j=0,...,k

(

jr −

j
∑

i=1

Di + δj,kI
r
1,∞

)

and

irk
∆
= max







j∗ : j∗ ∈ [0, k], j∗r −

j∗
∑

i=1

Di + δj∗,kI
r
1,∞ =W r

k







.

In words,irk is the (largest) index at which the random walkW r
k attains its maximum.

From Lemma3 and the fact that{Di, i ≥ 1} is a sequence of i.i.d. r.v.s, we obtain the following explicit
characterization for the cost incurred byπr over anyL consecutive periods.

Lemma 4. For anyr ∈ [0,E[D]) andτ ∈ [L+ 1, T + 1],

E

[

τ+L−1
∑

t=τ

Cπr

t

]

= h

L
∑

k=1

E



irkr −

ir
k
∑

i=1

Di + δir
k
,kI

r
1,∞



+ c
(

LE[D]− Lr
)

.

5 Lower bound on an optimal policy

We now derive in this section a lower bound on the cost incurred by an optimal policy during any consecutive
L time periods. First, it will be convenient to review a resultof Zipkin [47], which establishes an upper bound
on the ordering quantities of a family of optimal policies for Problem (1).

Lemma 5 ([47]). There exists an optimal policyπ for Problem(1) that with probability (w.p.)1 never orders
more thanQ, i.e.,xπ

t ≤ Q1 for all t ∈ [L+ 1, T ].
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Remark. Note that Lemma5 implicitly asserts the existence of at least one optimal policy for Problem (1). A
priori, it could have been possible that no such policy existed, i.e., the optimal value was only attained in the
limit by some sequence of policies. However, the dynamic programming formulation for Problem (1) provided
in [47], combined with the convexity and monotonicity results proven in the same paper, as well as the strict
positivity of all underlying cost parameters and continuity of all relevant cost-to-go functions, indeed ensures
the existence of at least one optimal policy; we refer the interested reader to [47] for details.

We now construct a lower bound by computing the cost thatπ incurs over anyL consecutive time periods,
if the policy were able to choose the state of the system at thestart of thoseL time periods to be as favorable as
possible, subject only to the conditions imposed by Lemma5 (which must hold w.p.1).

In particular, let(x∗,I∗) denote any solution to the optimization problem

min
x∈[0,Q1],I∈R+

E

[

τ+L−1
∑

t=τ

Cπ
t

∣

∣

∣
xπ
τ = x, Iπτ = I

]

, (4)

where the existence of(x∗,I∗) follows from the fact thatE[
∑τ+L−1

t=τ Cπ
t |x

π
τ = x, Iπτ = I] is continuous with

respect to(x,I) and goes to infinity asI goes to infinity, combined with a routine compactness argument.
Note that w.l.o.g. we can take(x∗,I∗) to be independent of the particular value ofτ , and thus a function of

D, c, h, L only. Further note that conditional on the event{xπ
1 = x∗, Iπ1 = I∗}, the conditional joint distribution

of {Iπt+1, N
π
t , C

π
t ; t = 1, . . . , L} does not depend on the particular policy choices ofπ, and we denote these

conditional r.v.s as{I∗t+1, N
∗
t , C

∗
t ; t = 1, . . . , L} whereI∗1 = I∗. Let

Vk
∆
= max

j=0,...,k

( k
∑

i=k+1−j

x∗i −

j
∑

i=1

Di + δj,kI
∗

)

and

v∗k
∆
= max







j∗ : j∗ ∈ [0, k],

k
∑

i=k+1−j

x∗i −

j
∑

i=1

Di + δj,kI
∗ = Vk







.

Then, combining Lemma3 with the fact that{Di, i ≥ 1} is a sequence of i.i.d. r.v.s, we derive the following
lower bound forπ.

Lemma 6. For anyτ ∈ [1, T + 1],

E

[

τ+L−1
∑

t=τ

Cπ
t

]

≥ h
L
∑

k=1

E[Vk] + c
(

E[I∗L+1]− I∗ + LE[D]−
L
∑

i=1

x∗i
)

.

Ultimately, we wish to show that the performance of an appropriate constant-order policy nearly matches
the lower bound established in Lemma6. To accomplish this, we begin by making several observations. First,
note that if we wanted to select a constant-order policy which came close to matching the aforementioned lower
bound, a natural approach would be to select the constant-order policy which “best mimics” the pipeline vector
x∗, i.e., by considering the policyπr∗ (assumingr∗ < E[D]) and recalling thatr∗ = L−1

∑L
i=1 x

∗
i . In this

case, we are left with the task of showing that the cost incurred over any consecutiveL periods by policyπr∗,
as detailed in Lemma4, is “close” to the lower bound established in Lemma6.

To this end, first note that
∑L

i=1 x
∗
i = Lr∗. As such, when comparing the terms appearing in Lemma4

(applied with constantr∗) to those appearing in Lemma6, the primary difficulty lies in comparing
∑L

k=1 E[Vk]

to
∑L

k=1 E[i
r∗

k r
∗−
∑ir

∗

k

i=1Di]. We will accomplish this through a particular coupling as follows. Fork ∈ [1, L],
let us constructVk,W r∗

k , andir
∗

k on the same probability space, using the same sequence of demands{Di; i =

8



1, . . . , L} (independent ofIr
∗

1,∞). Since the maximum of several terms is at least any one of theterms (even if
selected randomly in an arbitrary manner), fork ∈ [1, L], it follows that w.p.1

Vk ≥
k
∑

i=k+1−ir
∗

k

x∗i −

ir
∗

k
∑

i=1

Di + δir∗
k

,kI
∗.

Upon combining the above with Lemma6 and the non-negativity ofδir∗
k

,kI
∗, we conclude that

L
∑

k=1

E






ir

∗

k r
∗ −

ir
∗

k
∑

i=1

Di






−

L
∑

k=1

E[Vk] ≤ r∗
L
∑

k=1

E[ir
∗

k ]−

L
∑

k=1

E[

k
∑

i=k+1−ir
∗

k

x∗i ]. (5)

Note that the intuition behind why the above coupling works is that the indicesj ∈ [0, k] for which
∑j

i=1Di

is exceptionally small are good candidates for bothir
∗

k andv∗k. From a purely technical perspective, the coupling
is convenient for two fundamental reasons. First, it eliminates all terms of the form

∑Z
i=1Di, whereZ is

a random index that may depend in a complicated way on{Di; i ≥ 1}, and is not in general adapted to
the filtration generated by{Di; i ≥ 1}. Second, as we shall formalize below, the termsr∗

∑L
k=1 E[i

r∗

k ] and
∑L

k=1 E[
∑k

i=k+1−ir
∗

k

x∗i ] can each be well-approximated (in an appropriate sense) byE[ir
∗

∞]
∑L

i=1 x
∗
i .

Combining Lemma6 with (5), we conclude the following refined lower bound, which will be convenient
for comparing the cost incurred by policyπr∗ to that incurred byπ.

Lemma 7. For anyτ ∈ [1, T + 1], E
[

∑τ+L−1
t=τ Cπ

t

]

is at least

h

( L
∑

k=1

E
[

ir
∗

k r
∗ −

ir
∗

k
∑

i=1

Di

]

+
L
∑

k=1

E[
k
∑

i=k+1−ir
∗

k

x∗i ]− r∗
L
∑

k=1

E[ir
∗

k ]

)

+ c

(

E[I∗L+1]− I∗ + LE[D]−

L
∑

i=1

x∗i

)

.

6 Difference between constant-order policy and lower bound

In this section, we combine Lemmas4 and7 to show that the cost incurred byπr∗ over anyL consecutive time
periods nearly matches the lower bound established in Lemma7. We accomplish this through a term-by-term
comparison of the expressions appearing in Lemmas4 and7.

Remark. We note that conceptually, our approach is closely related to several results in the queueing literature
which prove that for certain queueing systems, the arrival process in which all inter-arrival times are the same
constant is asymptotically extremal with regards to mean waiting time [16, 21]. It is an interesting open question
to further quantify the connection between our approach andthe convexity-type arguments typically used to
prove extremality in such queueing systems [21], which could likely be used to provide an alternate proof of
our main results.

For r ∈ [0, E[D]), let us define

Θr
∆
=

(E[D]− r)2

4(E2[D] + E[D2])
. (6)

Then the main result of this section is formally stated as follows.

Theorem 8. If r∗ < E[D], then for anyτ ∈ [L+ 1, T + 1],

E[

τ+L−1
∑

t=τ

C
πr∗

t ]− E[

τ+L−1
∑

t=τ

Cπ
t ] (7)

9



is at most
h(Q+ 2

3

2E[D])Θ−3
r∗ + cI∗.

Before proceeding with the proof of Theorem8, it will be convenient to derive several bounds for the
distribution ofirk andir∞, where we defer the associated proofs to the technical appendix in Section9.

Lemma 9. For anyr ∈ [0,E[D]) and integersj, k ≥ 0, irk has the same distribution asmin(k, ir∞), namely
P(irk = j) = P

(

min(k, ir∞) = j
)

. Furthermore,

P(ir∞ ≥ k) ≤ Θ−1
r

(

1−Θr

)k
,

∞
∑

k=0

∞
∑

j=k

P(ir∞ ≥ j) ≤ Θ−3
r , E[(Ir∞)2] ≤ 2Θ−3

r E
2[D].

Remark. We note that a more precise analysis of the quantities in Lemma9 would be possible using the theory
of ladder heights and epochs [1], especially the precise results for the relevant moments given in [41, 42, 11, 29]
and the recent work by Nagaev [36]. However, since the increments of the random walks that we consider have
a very special structure (i.e., they are absolutely boundedfrom above), as well as for the sake of simplicity, we
do not pursue such an analysis here.

We now complete the proof of Theorem8.
PROOF. [Proof of Theorem8] Supposer∗ < E[D]. Combining Lemmas4 and7 with the definition ofr∗ and
the non-negativity of all relevant terms, and then simplifying, allows us to conclude that (7) is at most

h

(

r∗
L
∑

k=1

E[ir
∗

k ]−

L
∑

k=1

E[

k
∑

i=k+1−ir
∗

k

x∗i ] +

L
∑

k=1

E[δir∗
k

,kI
r∗

1,∞]

)

+ cI∗. (8)

We proceed by bounding each term appearing in (8), beginning with

r∗
L
∑

k=1

E[ir
∗

k ]−

L
∑

k=1

E

[ k
∑

i=k+1−ir
∗

k

x∗i

]

. (9)

First, it will be convenient to generalize our notationδj,k as follows. For an integerj and setS, defineδj,S to
be 1 if j ∈ S, and0 otherwise. Observe that

k
∑

i=k+1−ir
∗

k

x∗i =
k
∑

i=1

x∗i δi,[k+1−ir
∗

k
,k] =

k
∑

i=1

x∗i δir∗
k

,[k+1−i,∞),

and thus by interchanging the order of summation and applying Lemma9, we obtain

L
∑

k=1

E

[ k
∑

i=k+1−ir
∗

k

x∗i

]

=
L
∑

i=1

x∗i

L
∑

k=i

E[δir∗
k

,[k+1−i,∞)]

=

L
∑

i=1

x∗i

L
∑

k=i

P(ir
∗

k ≥ k + 1− i)

=

L
∑

i=1

x∗i

L+1−i
∑

k=1

P(ir
∗

k+i−1 ≥ k)

=
L
∑

i=1

x∗i

L+1−i
∑

k=1

P
(

ir
∗

∞ ≥ k
)

. (10)

10



Applying the definition ofr∗ together with Lemma5 and the fact thatE[ir
∗

k ] ≤ E[ir
∗

∞] by Lemma9, yields that
(9) is at most

r∗
L
∑

k=1

E[ir
∗

∞]−
L
∑

i=1

x∗i

L+1−i
∑

k=1

P
(

ir
∗

∞ ≥ k
)

=
L
∑

i=1

x∗i

∞
∑

k=1

P
(

ir
∗

∞ ≥ k
)

−
L
∑

i=1

x∗i

L+1−i
∑

k=1

P
(

ir
∗

∞ ≥ k
)

=

L
∑

i=1

x∗i

∞
∑

k=L+2−i

P
(

ir
∗

∞ ≥ k
)

≤ Q

L
∑

i=1

∞
∑

k=L+2−i

P
(

ir
∗

∞ ≥ k
)

≤ Q

∞
∑

i=0

∞
∑

k=i

P(ir
∗

∞ ≥ k),

where the final inequality follows from a straightforward reindexing. Upon combining this with Lemma9, we
conclude that (9) is at most

QΘ−3
r∗ . (11)

Next we turn to bound
L
∑

k=1

E[δir∗
k

,kI
r∗

1,∞]. (12)

Applying the Cauchy-Schwartz inequality and Lemma9, yields

L
∑

k=1

E[δir∗
k

,kI
r∗

1,∞] ≤

L
∑

k=1

E
1

2 [δir∗
k

,k]E
1

2 [(Ir
∗

∞ )2]

=

L
∑

k=1

P
1

2

(

ir
∗

∞ ≥ k
)

E
1

2 [(Ir
∗

∞)2]

≤
∞
∑

k=1

(

Θ−1
r∗

(

1−Θr∗
)k) 1

2
(

2Θ−3
r E

2[D]
)

1

2

= 2
1

2E[D]Θ−2
r∗

(1−Θ)
1

2

1− (1−Θ)
1

2

≤ 2
3

2E[D]Θ−3
r∗ , (13)

where the final inequality follows from multiplying and dividing by 1 + (1 − Θr∗)
1

2 and from noting that

(1−Θr∗)
1

2

(

1 + (1−Θr∗)
1

2

)

≤ 2.
Finally, using both (11) to bound (9) and (13) to bound (12) in (8), completes the proof.�

7 Proof of main result

We now complete the proof of our main result, namely Theorem1, by combining Theorem8 with several
additional bounds. In light of Theorem8, the primary difficulty which remains is proving thatr∗ is bounded
away fromE[D] asL → ∞. Recall thatz = argminv≥0

(

hE
[

Iv∞
]

− cv
)

. The final step will be to show that
πr∗ is itself dominated by the policyπz, which we will prove to be the “best-possible” constant-order policy.
Combining these results with a few straightforward asymptotic arguments will complete the proof.

7.1 Boundingr∗ away from E[D]. Let us begin by proving thatr∗ is bounded away fromE[D] asL → ∞.

In particular, we will prove the following result, recalling thatm =
⌈

(

26(3ζ + c(hσ)−1
E[D] + 1)

)2
⌉

.

Lemma 10. For all L ≥ 8(σ−1Q+ 1)m
3

2 , we have thatE[D]− r∗ ≥ 1
2σm

− 1

2 .
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Although at first glance one might think such a result to be straightforward, the fact that in principle the
components ofx∗ could vary considerably over theL periods creates difficulties here. Indeed, we will actually
argue indirectly as follows. Roughly speaking, we argue that for any timet, if in them periods leading up to and
includingt (i.e., periodst−m+1, . . . , t) the corresponding pipeline vector components (i.e.,x∗t−m+1, . . . , x

∗
t )

were much larger (on average) thanE[D] (i.e.,
∑t

k=t−m+1 x
∗
k −mE[D] is too large), then the expected value

of the inventory at the end of periodt, I∗t+1, will be very large.

More precisely, definingγt
∆
=
∑t

k=t−m+1 x
∗
k, we note thatE[I∗t+1] ≥ E[max(0, γt −

∑t
k=t−m+1Dk)].

We then apply a type of central limit theorem scaling, combined with certain explicit bounds on the rate of
convergence in the central limit theorem (i.e., Stein’s method), to argue that ifγt − mE[D] is large, then
E[I∗t+1] is large. It will follow thatγt −mE[D] cannot be large for too many values oft. A key insight here is
that because of the maximum within the expectation, we get a strong lower bound even whenγt−mE[D] = 0,
which in turn allows us to show thatγt − mE[D] should typically be significantly less than zero. We then
argue that

∑L
t=m γt is sufficiently close tom

∑L
k=1 x

∗
k, and combine the above observations to conclude that

E[D]− r∗ must be bounded away from zero.
PROOF. [Proof of Lemma10] It follows from (2) and non-negativity that, for allt ∈ [m,L], w.p.1

I∗t + x∗t −Dt ≥ γt −

t
∑

k=t−m+1

Dk.

Thus, for allt ∈ [m,L], E[max(0, I∗t + x∗t −Dt)] is at least

E

[

max
(

0, γt −

t
∑

k=t−m+1

Dk

)

]

= σm
1

2E

[

max
(

0,

∑t
k=t−m+1(E[D]−Dk)

σm
1

2

+
γt −mE[D]

σm
1

2

)

]

. (14)

LetN denote a standard normal r.v. We now show that (14) is well-approximated by

σm
1

2 E

[

max
(

0, N +
γt −mE[D]

σm
1

2

)

]

,

using known results on the rate of convergence in the centrallimit theorem. Such results are typically derived
via Stein’s method, and we refer the interested reader to [5] for details. Specifically, the following explicit
bound on the rate of convergence in the central limit theoremis generally well known.

Theorem 11([5]). Suppose thatF : R → R is any Lipschitz-continuous function with Lipschitz constant at
most unity, i.e., for allx, y ∈ R, |F (x) − F (y)| ≤ |x− y|. Suppose that{Xi; i ≥ 1} is any sequence of i.i.d.
r.v.s s.t.E[X1] = 0, E[X2

1 ] = 1, andE[|X3
1 |] <∞. Then, for alln ≥ 1,

∣

∣

∣

∣

E
[

F (n−
1

2

n
∑

i=1

Xi)
]

− E[F (N)]

∣

∣

∣

∣

≤ 3n−
1

2E[|X1|
3].

LettingFt(x)
∆
= max

(

0, x+ γt−mE[D]

σm
1
2

)

, it follows from Theorem11 and (14) that, for allt ∈ [m,L],

E[max(0, I∗t + x∗t −Dt)] ≥ σm
1

2

(

E

[

max
(

0, N +
γt −mE[D]

σm
1

2

)

]

− 3m− 1

2 ζ

)

,

and thus
L
∑

t=1

E[C∗
t ] ≥ hσm

1

2

L
∑

t=m

E

[

max
(

0, N +
γt −mE[D]

σm
1

2

)

]

− 3hσζL. (15)
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Note thatψ(y)
∆
= E[max(0, N + y)] is a convex function ofy. It then follows from Jensen’s inequality that

L
∑

t=m

(L−m+ 1)−1
E

[

max
(

0, N +
γt −mE[D]

σm
1

2

)

]

is at least

E

[

max
(

0, N + (L−m+ 1)−1
L
∑

t=m

γt −mE[D]

σm
1

2

)

]

. (16)

Since(0, 0) is a feasible solution to Problem (4), with valuecLE[D], the optimality of(x∗,I∗) implies

L
∑

t=1

E[C∗
t ] ≤ LcE[D]. (17)

Combining (15), (16), and (17) yields

E

[

max
(

0, N + (L−m+ 1)−1
L
∑

t=m

γt −mE[D]

σm
1

2

)

]

≤
L

L−m+ 1

(

3ζ + c(hσ)−1
E[D]

)

m− 1

2 . (18)

We now relate
∑L

t=m γt to
∑L

t=1 x
∗
t by proving that

L
∑

t=m

γt =

L
∑

t=m

t
∑

k=t−m+1

x∗k ≥ m

L
∑

k=1

x∗k − 2m2Q. (19)

Indeed, it follows from a straightforward counting argument that for allt ∈ [m,L−m], x∗t appears exactlym
times in the double sum

∑L
t=m

∑t
k=t−m+1 x

∗
k, and thus

L
∑

t=m

γt ≥ m
L−m
∑

t=m

x∗t .

Moreover, sincex∗t ≤ Q for all t, we conclude that

m

L−m
∑

t=m

x∗t ≥ m

L
∑

k=1

x∗k − 2m2Q.

In combination, these results yield (19).
Next, upon combining (18) and (19) with the monotonicity ofψ, and simplifying all relevant expressions,

we obtain

E

[

max

(

0, N +
m

1

2

σ

( L

L−m+ 1
r∗ − E[D]−

2mQ

L−m+ 1

)

)

]

≤
L

L−m+ 1

(

3ζ + c(hσ)−1
E[D]

)

m− 1

2 .

(20)
Noting thatL ≥ 2m implies L

L−m+1 ≤ 2 andL ≥ 4σ−1m
3

2Q implies 2mQ
L

≤ 1
2σm

− 1

2 , we devise from the

monotonicity ofψ that, for allL ≥ max(2m, 8σ−1m
3

2Q),

E

[

max

(

0, N +
m

1

2

σ

(

r∗ − E[D]−
1

2
σm− 1

2

)

)

]

≤ 2
(

3ζ + c(hσ)−1
E[D]

)

m− 1

2 . (21)

It is easily verified that(E[max(0, N − 1)])−1 ≤ 13, and thus from definitions and basic algebra

m ≥

(

2
(

3ζ + c(hσ)−1
E[D]

)

(E[max(0, N − 1)])−1

)2

.
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We conclude that the right-hand-side of (21) is at mostE[max(0, N − 1)], in which case the monotonicity ofψ
implies

m
1

2

σ

(

r∗ − E[D]−
1

2
σm− 1

2

)

≤ −1,

namelyE[D] − r∗ ≥ 1
2σm

− 1

2 . Combining the above with some straightforward algebra completes the proof.
�

We end this subsection by combining Theorem8 and Lemma10 to bound the difference between the
constant-order policy and an optimal policy.

Corollary 12. For all L ≥ 8(σ−1Q+ 1)m
3

2 and anyτ ∈ [L+ 1, T + 1], (7) is at most

212h(Q+ 2
3

2E[D])(E2[D] + E[D2])3σ−6m3 + c
(

⌈(2ch−1L)
1

2 ⌉+ 2
)

.

PROOF. It follows from Lemma10 that

h(Q+ 2
3

2E[D])Θ−3
r∗ ≤ 212h(Q+ 2

3

2E[D])(E2[D] + E[D2])3σ−6m3.

Thus, by Theorem8, to complete the proof it suffices to demonstrate thatI∗ ≤ ⌈(2ch−1L)
1

2 ⌉ + 2. Indeed,
suppose for contradiction thatI∗ >

(

⌈(2ch−1L)
1

2 ⌉+ 2
)

E[D]. For allk ∈ [1, ⌈(2ch−1L)
1

2 ⌉+ 2], we have

E[I∗1+k] ≥ I∗ − kE[D] > E[D]
(

⌈(2ch−1L)
1

2 ⌉+ 2− k
)

.

The resulting holding costs ensure that
∑L

t=1 E[C
∗
t ] is strictly greater than

hE[D]

⌈(2ch−1L)
1
2 ⌉

∑

k=1

k ≥ cE[D]L.

Combining this with (17) completes the proof.�

7.2 Proof of Theorem1. With Corollary12 in hand, we now proceed with the proof of our main result, i.e.,
Theorem1.
PROOF. [Proof of Theorem1] SupposeT ≥ L, ǫ ∈ (0, 1), andL ≥ 8(σ−1Q + 1)m

3

2 . It then follows from
Lemma10 thatr∗ < E[D]. Note that

∑T+L
t=L+1 E[C

πr∗

t ]
∑T+L

t=L+1 E[C
π
t ]

(22)

equals
∑⌊T

L
⌋

k=1

∑(k+1)L
t=kL+1 E[C

πr∗

t ] +
∑T+L

t=(⌊T

L
⌋+1)L+1

E[C
πr∗

t ]

∑⌊T

L
⌋

k=1

∑(k+1)L
t=kL+1 E[C

π
t ] +

∑T+L

t=(⌊T

L
⌋+1)L+1

E[Cπ
t ]

.

As the policyπr∗ is stationary and yields a stationary sequence of inventoryand ordering levels, it follows
that E[Cπr∗

t ] = E[C
πr∗

L+1] for all t ≥ L + 1. Further note thatE[Cπ
t ] ≥ g for all t ≥ L + 1, and thus

∑(k+1)L
t=kL+1 E[C

π
t ] ≥ Lg for all k ∈ [1, ⌊T

L
⌋]. Combining the above with Corollary12, and the non-negativity of

all relevant terms, we conclude that (22) is at most

⌈T
L
⌉

⌊T
L
⌋

(

1 +
(

212h(Q+ 2
3

2E[D])(E2[D] + E[D2])3σ−6m3 + c
(

⌈(2ch−1L)
1

2 ⌉+ 2
)

)

(gL)−1
)

. (23)
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Next, we note thatL ≥ 214h(Q+ 2
3

2E[D])(E2[D] + E[D2])3σ−6m3g−1ǫ−1 implies

212h(Q+ 2
3

2E[D])(E2[D] + E[D2])3σ−6m3(gL)−1 ≤
ǫ

4
,

L ≥
(

12cg−1
(

(2ch−1)
1

2 + 3
)

)2
ǫ−2 implies c

(

⌈(2ch−1L)
1

2 ⌉+ 2
)

(gL)−1 ≤
ǫ

12
,

and

T ≥

(

1 +
3

ǫ

)

L implies
⌈T
L
⌉

⌊T
L
⌋

≤ 1 +
ǫ

3
.

Combining the above with the fact that(1 + ǫ
3)

2 ≤ 1 + ǫ for all ǫ ∈ (0, 1) completes the proof that the stated
performance guarantees are attained by the policyπr∗ , for anyL, T satisfying the conditions of Theorem1.

The final step is to prove that the same guarantees extend toπz. Indeed, it follows from stationarity that, for
anyr ∈ [0,E[D]) andt ≥ L+ 1,

E[Cπr

t ] = hE[(Ir∞ + r −D)+] + cE[(Ir∞ + r −D)−]. (24)

However, sinceIr∞ is distributed as(Ir∞ + r −D)+, we conclude

E[(Ir∞ + r −D)+] = E[Ir∞].

Furthermore, since

E[(Ir∞ + r −D)+]− E[(Ir∞ + r −D)−] = E[Ir∞] + r − E[D],

it follows that
E[(Ir∞ + r −D)−] = E[D]− r.

In combination with (24), we have that for anyr ∈ [0,E[D]) andt ≥ L+ 1

E[Cπr

t ] = hE[Ir∞] + c
(

E[D]− r
)

. (25)

The desired result then follows from the fact thatz is a minimizer of (25), completing the proof.�

8 Conclusion

In this paper, we considered the single-item, periodic-review, lost-sales model with positive lead times and i.i.d.
demand, for which the optimal policy is poorly understood and computationally intractable. We proved that,
as the lead time grows (with the demand distribution, lost-sales penalty, and holding cost remaining fixed), a
simple, open-loop constant-order policy is in fact asymptotically optimal. We also established explicit bounds
on how large the lead time should be to ensure that the best constant-order policy incurs an expected cost of at
most1 + ǫ times that incurred by the optimal policy. To the best of our knowledge, this is the first algorithm
proven to be within1 + ǫ of optimal for lost-sales models when the lead time is large,while maintaining a
runtime that does not grow with the lead time. Our main proof technique involved a novel coupling for suprema
of random walks, and may be useful in other settings.

This work leaves many interesting directions for future research. We suspect that our explicit bounds are
not tight, and a more precise analysis of the constant-orderpolicy would further help to explain the good
performance of the algorithm for lead times as small as four,as reported by Zipkin [46]. Since lost sales
models commonly arise in practice, an interesting challenge is to combine the core ideas of our analysis with
known results from dynamic programming to derive and analyze practical “hybrid” algorithms, which use
more elaborate forms of dynamic programming when the lead time is small and gradually transition to less
computationally intensive algorithms (with the constant-order policy at the extreme) as the lead time grows.
It would also be interesting to prove that a similar phenomenon occurs for other policies, as well as in other
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inventory models. In particular, it is an interesting open question whether other simple (but perhaps slightly
more sophisticated) policies, such as the order-up-to policy considered by Huh et al. [20] and the cost-balancing
policy considered by Levi et al. [27], exhibit a similar asymptotic optimality as the lead time grows. On a
related note, the fact thaty(ǫ) contains terms of the formch−1 suggests that the constant-order policy may
require larger lead times to approach near-optimality whenthe ratio of lost-sales-penalty to holding-cost is
large. Since this is exactly the regime in which the order-up-to policy of [20] provably works well, it is an
interesting open question to try and combine these (and perhaps other) algorithms to yield tighter performance
guarantees over a larger range of parameters.

Philosophically, our main results and insights fall under the broad heading of “long-range independence
/ decay of correlations” phenomena, in which so much uncertainty is introduced into a model that even very
sophisticated algorithms cannot perform significantly better than very simple algorithms. Such ideas have led
to significant progress on fundamental models in other fields[35, 31, 12, 40, 13, 8, 10], and may prove useful
in other operations management problems.

9 Appendix

9.1 Proof of Lemma9. In this appendix, we provide the proof of Lemma9.
PROOF. [Proof of Lemma9.] We first prove thatirk has the same distribution asmin(k, ir∞). Let {D′

i; i ≥ 1}
be an additional sequence of i.i.d. realizations fromD, mutually independent from{Di; i ≥ 1}. Then, for
anyk ≥ 1, we can constructIr1,∞,W

r
k , {Di; i ≥ 1}, {D′

i; i ≥ 1} on the same probability space s.t.Ir1,∞ =

maxj≥0(jr −
∑j

i=1D
′
i). It is easy to see that we only need to show

P(irk = j) = P(ir∞ = j) , j = 0, . . . , k − 1.

By definition, we haveP[irk = j] = P[I1 ∩ I2 ∩ I3] where

I1 =

{

ℓr −

ℓ
∑

i=1

Di ≤ jr −

j
∑

i=1

Di, ∀ℓ ≤ j

}

,

I2 =

{

ℓr −

ℓ
∑

i=1

Di < jr −

j
∑

i=1

Di, ℓ = j + 1, . . . , k − 1

}

,

I3 =

{

jr −

j
∑

i=1

Di > kr −

k
∑

i=1

Di + Ir1,∞

}

.

Note that

I3 =

{

jr −

j
∑

i=1

Di > kr −
k
∑

i=1

Di +max
ℓ≥0

(

ℓr −
ℓ
∑

i=1

D′
i

)}

=

{

jr −

j
∑

i=1

Di > max
ℓ≥0

[

(k + ℓ)r −

(

k
∑

i=1

Di +
ℓ
∑

i=1

D′
i

)]}

.

It therefore follows, since{Di; i ≥ 1} and{D′
i; i ≥ 1} are mutually independent i.i.d. sequences with common

distributionD, that
P[irk = j] = P[I1 ∩ I2 ∩ I ′

3],

where

I ′
3 =

{

jr −

j
∑

i=1

Di > max
ℓ≥k

[

ℓr −

ℓ
∑

i=1

Di

]}

.

Noting that this is the definition ofP(ir∞ = j) completes the first part of the proof.
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Before proving the remainder of the lemma, it will be useful to establish that

P(ir∞ = k) ≤
(

1−Θr

)k
. (26)

By definition,

P(ir∞ = k) ≤ P

( k
∑

i=1

(r −Di) ≥ 0

)

.

Applying a Chernoff bound, we find that for anyθ > 0

P(ir∞ = k) ≤ E
k
[

exp
(

θ(r −D)
)]

where

E
[

exp
(

θ(r −D)
)]

= exp(θr)E
[

exp
(

− θD
)]

≤ exp(θr)E
[(

1 + θD
)−1]

(sinceexp(v) ≥ 1 + v)

≤ E

[

1 + θr + θ2r2

1 + θD

]

, for all θ ∈ (0, r−1],

the final inequality following from a simple Taylor-series expansion. However, w.p.1, we have

1 + θr + θ2r2

1 + θD
= 1 + θ(r −D) +

θ2

1 + θD

(

r2 −D(r −D)
)

≤ 1 + θ(r −D) + θ2(r2 +D2),

and thus
E
[

exp
(

θ(r −D)
)]

≤ 1− θ
(

E[D]− r
)

+ θ2
(

r2 + E[D2]
)

.

Observing that

E[D]− r

2(r2 + E[D2])
≤

E[D]

2E[D2]

≤
E[D]

2E2[D]
=

1

2E[D]
< r−1,

we may take

θ = θ∗
∆
=

E[D]− r

2(r2 + E[D2])

to conclude

E
[

exp
(

θ∗(r −D)
)]

≤ 1−
(E[D]− r)2

4(r2 + E[D2])

≤ 1−
(E[D]− r)2

4(E2[D] + E[D2])
= 1−Θr,

where the final inequality follows from the fact thatr2 ≤ E
2[D]. Combining the above completes the proof of

(26).
With (26) in hand, the lemma follows directly from the basic manipulation of a few geometric series and

the fact thatIr∞ ≤ rir∞ ≤ E[D]ir∞ w.p.1, the details of which we omit.�
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