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Abstract

Lost sales inventory models with large lead times, whickeaifi many practical settings, are notoriously
difficult to optimize due to the curse of dimensionality. hist paper we show that when lead times are
large, a very simple constant-order policy, first studiedR®yman B9, performs nearly optimally. The
main insight of our work is that when the lead time is very &rguch a significant amount of randomness is
injected into the system between when an order for more tovgis placed and when the order is received,
that “being smart” algorithmically provides almost no b&néur main proof technique combines a novel
coupling for suprema of random walks with arguments fromugireg theory.

1 Introduction

In this paper we consider a stochastic inventory controblerm under the so-called single-item, periodic-
review, lost-sales model with positive lead times and imthejent and identically distributed (i.i.d.) demand.
This model is based on sales being lost whenever there iffigisnt supply to fulfill demand, i.e., unfulfilled
demand is lost rather than being carried over, or backloged later time. Furthermore, there is a constant
delay of . > 0 periods (i.e., a single lead time) between when an orderdditianal inventory is placed and
when that inventory is received. The problem then is to daeitez the best policy for a series of orders across
a planning horizon comprised of a finite number of discrateetperiods, with the goal of minimizing cost in
expectation.

The cost structure of this model consists of a per-unit fggriat lost sales due to unfulfilled demand within
each period and a per-unit cost for holding excess inventgtlyin each period. Unlike the corresponding
backorder inventory control problem when unfulfilled demha@nfully backlogged from period to period, where
the optimal policy is well known to be an order-up-to polittye optimal order policy for the lost-sales inventory
model is not known in general, and in fact remains poorly ustded f].

Such periodic-review, lost-sales models have a long afdhigtory in the operations research, operations
management and management science literature. Here vily beidew some of the most relevant literature,
and refer the interested reader to the recent survey papgijvahk [4] for a more comprehensive exposition.
This class of inventory models was first introduced by Befirf#}. Certain properties of the optimal policy were
explored for the case df = 1 by Karlin and Scarf25] and by Yaspan43], where it was shown that the order-
up-to policy is not optimal for the lost-sales inventory rebdMorton [33] extended this analysis to the case
of generalL. Other properties of the optimal policy, including varicustions of convexity and monotonicity,
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were explored in47, 46, 19]. With respect to computation of the optimal policy, thenpary approach taken
in the literature is dynamic programming, combined withimas heuristics to speed up computatioBd, [
46]. However, since the state-space of any such dynamic prograws exponentially in the lead time, such
computations become extremely challenging even for leaddiless than temf]. Namely, this family of
techniques suffers from the curse of dimensionality asdébd time grows. Indeed, even for a lead time of four
and geometrically distributed demand, Zipk#6] reports that computing the optimal policy requires sajvin
dynamic program witt228, 581 states. This is not surprising because the problem at hashdeareral closely
related problems are known to be NP-compldi@.|

The difficulty of computing optimal policies for the lostlea model has led to a considerable body of
work on heuristics. The computational performance andgnt@s of various algorithms, including order-up-to
policies, have been analyzed by numerous authbts32, 34, 44, 38, 37, 9, 23, 22, 24, 3]. With respect to
policies that have provable performance guarantees, #ekitirough work of Levi et al. 26] proved that a
certain dual-balancing heuristic, inspired by previousuhs for other models?2[7, 28], yields a policy whose
cost is always within a factor of two of optimal. Huh et ak0[ show that in a certain scaling regime, in
which the ratio of the lost-sales penalty to the holding @stmptotically tends to infinity, an order-up-to
policy is asymptotically optimal; and a similar result ha&seh recently derived by Lu et al3(]. Using a very
different approach, Halman et al. provide an approximateadyic programming algorithm that, combined
with ideas from discrete convexity, yields a so-calledyfyblynomial-time approximation scheme for various
related inventory control problem&7, 18]. These techniques were recently extended to lost-saleglsith
positive lead times (as considered in this paper) by Chenh €t who provide a pseudo-polynomial-time
additive approximation algorithm. Namely, under a suitadmhcoding scheme, an algorithm is presented that,
for anye > 0, returns a policy whose performance differs additivelyrfriinat of the optimal policy by at most
e, in time which is polynomial inc—! if the overall encoding length of the problem is held fixed lehi is
varied, and otherwise is pseudo-polynomial in the overatbeling length (which grows with the lead tinig;
we refer the reader td®] for details. In a follow-up study7], the authors prove several interesting integrality
results for these and related models.

The work closest to our own is that of ReimaBO], who studies a very simple policy for a certain
continuous-review, lost-sales model with positive leadets and demand arriving as a Poisson process. In
particular, the author analyzes an open-loop constamrgrolicy, which at time 0 selects an interval sizand
simply orders a single unit of inventory everytime units. The author observes that this simple policy @n b
analyzed as & /M /1 queue, and goes on to perform an interesting asymptotigsisashowing that for any
fixed holding cost and lost-sales penalty, there existstigalriead-time valud.* such that (s.t.): (i) for all lead
times less tharl*, the best base-stock policy outperforms the best constaet- policy; and (i) for all lead
times greater than*, the best constant-order policy outperforms the best bisrc policy. The author makes
no attempt to compare either policy to the true optimal golichich he notes is unknown.

Of course, there is no a priori reason to believe that suamplsiconstant-order policy should be nearly op-
timal. However, numerical results from a recent study byki£ig46], in which the optimal policy is computed
for a lost-sales model with i.i.d. demand and positive leae$ (nearly identical to the model we consider, but
with discounting), show that the constant-order policywinich the same fixed constant is ordered in every
time period) can perform surprisingly well. More precisetynumerical experiments for a lead time of four,
the constant-order policy always incurs an expected costost twice that incurred by the optimal policy;
in 62.5% of the cases, the constant-order policy incurs tatamnostl.33 times that incurred by the optimal
policy; and in 38% of the cases, it incurs a cost at nok? times that incurred by the optimal policy. This
begs the question of how such a simple policy can perform dlooneeasonable problem instances.

In the present paper we derive theoretical results thatlgytgdn this and related phenomena. Specifically,
we prove that, as the lead time grows (with the demand digtoib, lost-sales penalty and holding cost remain-
ing fixed), the best constant-order policy is in fact asyrtipadly optimal. We also establish explicit bounds
on how large the lead time should be to ensure that the bestasgrorder policy incurs an expected cost of at
most1 + e times that incurred by the optimal policy. To the best of omowledge, this is the first algorithm



proven to be withinl + ¢ of optimal for lost-sales models when the lead time is laage] whose runtime
does not grow with the lead time. The main insight of our warkhiat when the lead time is very large, such
a significant amount of randomness is injected into the systetween when an order for more inventory is
placed and when the order is received, that “being smartrikgnically provides almost no benefit. Our main
proof technique combines a novel coupling for suprema afeemwalks with arguments from queueing theory.
Since this simple policy succeeds exactly when known algms start running into trouble due to the curse of
dimensionality, our results open the door for the creatiofingbrid” algorithms that use more elaborate forms
of dynamic programming when the lead time is small, and galyltransition to less computationally intensive
algorithms (with the constant-order policy at the extreasejhe lead time grows.

Outline of paper and overview of proof. The remainder of this paper, including the underlying psaaffour
main results, is organized as follows. Sectibformally defines the model of study and Secti®states our
main results (Theorerh and Corollary2), namely the asymptotic optimality of the constant-ordeliqy and
associated explicit performance guarantees. In Sedtiore explicitly describe the dynamics and associated
costs for a general policy over any consecutivéime periods, if one conditions on the pipeline-vector and
inventory at the start of thosk time periods, in terms of the maxima of various partial suber(ma3s). We
then customize this result to the constant-order policyr(ire4), under which various associated expressions
simplify considerably.

In Section5, we develop lower bounds on the cost incurred by a partioyéimal policy 7 described
in [47], which never orders more than a certain quantity that dépem the underlying costs and demand
distribution, but not on the leadtime nor planning horizori". First, we formulate a lower bound on the cost
incurred by over any consecutivé, time periods by supposing th@atwas able to choose the state of the
system at the start of thodetime periods to be as favorable as possible. This resultshest-case” pipeline
vectorx* and inventory level*, which can be described as the solution to an appropriateization problem
(4), and then can be used together with LenBrta derive a lower bound for the cost incurred Byver any
consecutivel, periods (Lemm&), again in terms of the maxima of various partial sums.

The second lower bound formulated in SectibfLemma?) represents the most critical step of the entire
proof, where we reason as follows. Ultimately, we wish toskimat the performance of an appropriate constant-
order policy nearly matches the lower bound establishedeimma6. To accomplish this, we first note that if
we wanted to select a constant-order policy which came dtosgatching the aforementioned lower bound, a
natural approach would be to select the constant-ordecypthlat “best mimics” the pipeline vectar®, i.e., by
definingr* 2t ZiLzl x} and considering the policy that orderSin every period (assuming® < E[D]).
Second, we note that if one compares the maxima appearihg lower bound of Lemm@, and the maxima
appearing in the dynamics of the constant-order policy wheis ordered in every period (as described in
Lemmad), the associated expressions are markedly similar. A foneadal difficulty in precisely comparing
these expressions is that the indices at which various nsappearing in Lemm@ attain their suprema may
depend on fluctuations in the vectof, while the maxima appearing in Lemmalo not have this property, as
the associated pipeline vector is constant. To remedywslescribe an explicit coupling between the maxima
that appear in Lemm@and the maxima that appear in Lemehavhenr* is ordered in every period. Indeed,
instead of computing the “true values” of the maxima appegi Lemmab, we derive bounds by examining
the associated expressions not at the index at which theip #tieir supremum, but at a different index, namely
the index at which a corresponding expression appearinggimrha4 attains its supremum. In this way, we
are able to derive a second lower bound (Lemfawhich is much closer to the corresponding expression
appearing in Lemmd, and highly amenable to analysis.

Then in Sectiorb we use Lemm&, along with a careful analysis of various quantities asgedi with
certain random walks and their suprema (Lem#pato explicitly bound the performance gap between the
aforementioned constant-order policy andover any consecutivé periods (Theoren8). In Section7, we
use Theoren® to complete the proof of our main results. Along these limesfirst prove that* is bounded
away fromE[D] (Lemmal0), as the bounds of Theore®depend sensitively on this gap. The associated proof



proceeds by contradiction in which it is shown thatifis “too close” toE[D], then a certain “sharpening”
of the central limit theorem, known as Stein’s lemma, guteas that too large of a holding cost is incurred.
Finally, we note that every constant-order policy is dorteday a certain “best-possible” constant-order policy.
Combining all of the above with a straightforward asymutathalysis completes the proof.

Closing remarks and directions for future research areepted in Sectior8. We also include a short
technical appendix in Sectidh

2 Model description and problem statement

Let us consider a standard lost-sales inventory optinumgbroblem. One is given as input the holding cost,
lost-demand penalty, planning horizon, lead time, and aehaistribution. The problem then is to determine
the optimal ordering policy to control inventory in the salled single-item, periodic-review, lost-sales model.

Specifically, we consider the following lost-sales model associated optimization problem. Letlenote
the per-unit holding cost andthe per-unit lost-demand penalty, where we assuphe> 0. Time is slotted,
with the planning horizon and lead time respectively cosgatiofl” and L periods s.tI" > L > 0. The demand
in each period, denoted byD;, is assumed to be i.i.d. and governed by a non-negative dedisinibutionD
with finite third moment. To prevent certain degenerateasitis, we further assume thatis not deterministic.

At the start of each time periaddhere is an amount of inventoty available. There is also dnrdimensional
vector of pipeline inventork; = (x1, 2,4, ...,2r) that captures the orders placed before petibdt not
yet received prior to period. The system dynamics for time periedhen proceed as follows. First, a new
amountz; ; of goods is added to the inventory. Second, before seeingettmand of period, an order for more
inventory is placed. After placing this order, the pipelineentory vector is updated in a manner analogous to
that of a queue: the front entny; ; is removed, all other entries move up one position (kg1 = 41, for
i=1,2,...,L — 1), and the new order is appended at the end, becoming .

The order placed at timeémust be a function (albeit possibly a random function) orfiyhe planning
horizonT, the current time, the inventory level; at the start of period, the pipeline vectok; at the start of
periodt, and the model primitive&, h, ¢, D. In particular, the ordering decision at timeannotdepend on the
realizations of future demand. We call all such polic@émissiblepolicies, and denote the family of admissible
policies byIl.

Next, a random demanD); is realized fromD. At the end of time period (but before the start of period
t + 1), the inventory or lost-sales costs are incurred as folloWse amount of excess inventory at the end of
periodt is given byl, 1 = (I;+z1,—D;)", noting thatD, is independent of; +z; ;. Conversely, the amount

of lost demand (due to not having enough inventory on hanggiiodt is denoted byV; 2 (It+z1:—Dy)™.
Then, the holding cost incurred (for storing excess invefitequalsh/;,, and the lost-sales penalty incurred
(for lost demand) equalsV;, noting that at most one di; and NV, is positive for any period.

The goal of the inventory planner is to minimize the expeciest incurred over the entire planning horizon.
Let 1 denote the vector of all ones afdthe vector of all zeros, where the dimension is to be infefredh
context. Let us suppodg = 0 andxy = 0, which should be assumed throughout as the given initiaditions,
and let us further define

Cy 4 hlii1+cNy = h(li+x14— D)t +c(ly + 214 — Dy).

The planner then wishes to find the polisy< II that minimizesIE[Z;F:JFLLJrl (4], where the expectation is
over the random demand and any random decisions taken loy pgliand where we suppose that ordering
decisions are made only in periods..., 7. Note that we do not penalize a policy for any costs incurred
over the firstL time periods, as this cost is completely determined by th&lirpipeline vector and random
demands. On the other hand, we do penalize a policy for costsred in period$l’, T+ L] (recallingT” > L),

as the cost incurred during these periods is completelymeted by the ordering decisions made in periods
1,...,T and random demands. We note that such a convention is cmtsigith the previous literature; see,
e.g., 7). As a notational convenience and without loss of gengrélitl.o.g.), we suppose that every policy
orders0 in periodsT + 1,...,T + L, as these ordering decisions have no effect on the problemsis For a
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given policyr, let {N/,CF,IT,x7;t = 1,...,T + L} denote the associated random variables (r.v.s) when
policy 7 is implemented (all constructed on the same probabilitgapal he corresponding lost-sales inventory

optimization problem is then given by
T+L
inf E[CT]. 1)

B
=

3 Main results

Our main results establish that there exists a very simpistaat-order policy which is asymptotically optimal
asL — oo. This section formally states these results.

3.1 Additional definitions and notations. Let D denote a r.v. governed . Note that if the same deter-
ministic quantityr < E[D] is ordered in every period, then the inventory evolves éxastthe waiting time in
aGI/GI/1 queue (initially empty) with interarrival time distriboth D and processing time distribution (the
constant)r; we refer the reader td] for an excellent discussion of the dynamics and steady-gtaperties
of theGI/GI/1 queue. Letl’ denote a r.v. distributed as the steady-state waiting timhe corresponding
GI/D/1 queue; namely’, is distributed asupq(kr — S¢_, D;).

For two vectors, y of equal dimension, we use the notatior< y to denote component-wise domination,
i.e.,x; <y; foralli. Define@ to be the_ quantile of the demand distribution, namely

Q 2 mf{seR*:P(D>s)< }-

c+h

We note that) is the optimal inventory level for the corresponding sirglege newsvendor probled, i.e.,
for any policyn and any time

E[CT] > g = hE[(Q—D)"]+cE[(D - Q)"].

Lastly, leto denote the standard deviationiof and¢ £ E [|[D—E[D]|*|o* denote the so-called skewness
of D. We then define several functions that will be instrumerdabir analysis:

m 2 [(26(3( + ¢(ho) T E[D] + 1))1 , z2 arg;znolin (RE[IY,] — cv),

and
2
y(e) £ max <2l4h(Q + Q%E[D])(Ez[D] +E[D?)30 Om3g e, (120g_1 ((2ch_1)% + 3)) 6_2> )
Although the above quantities are functionscph, D, since there will be no ambiguity, we make this depen-

dence implicit.

Remarks.

e If argmin,, (RE[I%] — cv) is not unique, we define to be the infimum of all such values. We will
later show that is the best constant possible if the same amount has to beedroeevery time period,
in an appropriate sense. Note that [0, E[D]), sinceE[I),] = 0 andlim,g(p) E[I%,] = oo.

e The functiony(e) captures how largé should be so that our constant-order policy is withiflat €)
multiplicative factor of the optimal policy.

2
¢ Note that, for all sufficiently smal, the term<12cg—1 ((2ch—1)% + 3)) ¢~2 will dominatey(e) due to
its quadratic dependence en'.



e We note that our assumption that has finite third moment is not strictly necessary, but alldarsa
considerably simplified exposition. Indeed, in an earliersion of this work 15], very similar results
were presented under the assumption of only finite secondemirout for technical reasons requiring
that. D had unbounded support. By combining the arguments of tteeptgaper (which assumes finite
third moment but allowd) to have bounded support) with the arguments of the aforaoret earlier
version, we would in principle obtain asymptotic optimakitssuming only a finite second moment. For
simplicity of exposition, we do not formalize this genezalion, and leave as an open question the
minimal required assumptions dnfor such an asymptotic optimality to hold.

3.2 Formal statement of results.Forr € [0, E[D]), letw, denote the policy that orders the random amount
I + r (i.e., the order amount is drawn from the distribution thateyns the r.vI’_ plus the constant) in

the first time period, and then orders the constaimt all subsequent time periods. We note that by ordering
I”_+rin the first time period, as opposeditathe associated sequence of inventory levels becomesansigt
process, which considerably simplifies our analysis. Wighight abuse of notation, we still refer tg. as a
constant-order policy. Let OFRT, T") denote the optimal value of the lost-sales inventory oatidon problem

(1) for a givenL and7'. We then have our main theorem and an important corollary.

Theorem 1. Forall e € (0,1), L > y(e), andT > (1 + 3¢~ 1)L,

E[ T+L 7TZ]

t=L+1
i T S R R
oOPT(L,T) ~— '€

Corollary 2.

E T+L Cﬂ'z
lim limsup i1 ]

L= Toeo  OPTL,T) =1

In particular, the simple constant-order policy is asyrtip&dly optimal asl. — oo.

4 Inventory dynamics

In this section, we derive several expressions that exlglidescribe the inventory dynamics for any policy over
any consecutivd. periods, and then customize these results to the constdet-policy for later use in our
proofs.

4.1 General policy dynamicsWe first explicitly characterize the cost incurred under gingn policy during
any consecutive, periods. Although such a characterization is generallyl-kwn (see, e.g.,47]), we
include a proof for completeness. L&denote the initial inventory level and, for positive integg k, define
d; tobelif j =k and to be) otherwise.

Lemma3. Forany policyr € IT and timer € [1,T + 1],

T+L—1
El[ j{: Cllx
t=1

L k

h;E[Ji%?X,k< Z (l"_DT—H 1 +5]kI>:|

i=k+1—j

L
+C<E[I:+L|x: =x,IT=7] -I+LE[D le>
=1

Remark. Note that, instead of using the ;, notation to indicate that the initial inventory is only acoted
for in a single term appearing in the associated maximum,omitichave, e.g., considered a transformed set of
“inventory position” variables, with each associated &hle corresponding to the sum of certain pipeline (and
possibly inventory) variables, as was done4id][ However, since our subsequent analysis will rely serdditi
on the indices at which various associated maxima are attaand precisely which pipeline-vector components



appear in the associated partial sums, as well as whethastioeiated initial inventory levél is accounted
for in the associated partial sum for which the maximum igiagd (i.e., the maximum occurs at indiex we
believe that thé; ;. notation leads to greater clarity of exposition and usertbistion throughout.

ProOOFE The result follows from a straightforward, generally wiatliown (see, e.g.4[7]), induction that for
anyk € [1,L]:

k

I, = i — Dy 0irl ). 2

T4k giI(l)fiX,k < ‘ Z ' (wz T+i 1) + 0k ) ( )
t=k+1—j

Note that for any times,, to s.t.7 < t; < to < 7+ L, the net amount of demand that is met durihgt, — 1]

equalsy_i>," D, — 312, NF. It follows that

to—1 ta—1 to—1

DN = IL—If+ Y Di— ) ara. 3

t=t1 t=t1 t=t1

Combining @) with (3) completes the prool

4.2 Constant-order policy dynamicsWe next customize Lemma to the constant-order policy,. As
previously noted, if the same deterministic quantitig ordered in every period, the inventory evolves exactly
as the waiting time in &1/G1/1 queue with interarrival distributio® and processing time distribution (the
constant)r. Recall that forr € [0,E[D]), 17, denotes a r.v. distributed as the steady-state waiting itime
the corresponding stable//D/1 queue, i.e. [’ is distributed asup,~q(kr — Zle D;). It follows that
{I7",: k > 1} is a stationary sequence of r.v.s, witfi, , distributed ag’, for all k > 1.

Before explicitly showing how Lemma simplifies when applied ta,., it will be useful to introduce some
additional notations. Lef] ., denote a particular replication df, s.t. I ., and {D;;i > 1} are mutually
independent, where we note that,, will play the role ofZ when LemmaB is applied tor,.. Fork > 0, let us
define

J
A .
wr 2 —E D;+6; .17
kTR0 (‘JT 2 i 1’°°>
and

*

J
i, S max Q j* 1 € [0,K], 5 = Y Dit 8o I oo = W
i=1

In words, ;. is the (largest) index at which the random walK attains its maximum.
From Lemma3 and the fact tha{ D;,i > 1} is a sequence of i.i.d. r.v.s, we obtain the following explic
characterization for the cost incurred by over anyL consecutive periods.

Lemma4. Foranyr e [0,E[D])andr € [L+1,T + 1],
T+L—1

> o
t=T1

5 Lower bound on an optimal policy

E

L g
=hY E |igr =3 D+ 6y 117 o | + c(LE[D] — Lr).
k=1 =1

We now derive in this section a lower bound on the cost inclimgan optimal policy during any consecutive
L time periods. First, it will be convenient to review a resaflZipkin [47], which establishes an upper bound
on the ordering quantities of a family of optimal policies Rroblem ().

Lemmab5([47]). There exists an optimal poligyfor Problem(1) that with probability (w.p.)1 never orders
more thanQ, i.e.,xF < Q1 forall t € [L + 1,T].



Remark. Note that Lemm& implicitly asserts the existence of at least one optimaicgdbr Problem (). A
priori, it could have been possible that no such policy exisi.e., the optimal value was only attained in the
limit by some sequence of policies. However, the dynamigramming formulation for Problendi) provided

in [47], combined with the convexity and monotonicity resultsyano in the same paper, as well as the strict
positivity of all underlying cost parameters and contipwf all relevant cost-to-go functions, indeed ensures
the existence of at least one optimal policy; we refer theregted reader t@ ] for details.

We now construct a lower bound by computing the cost#hiaicurs over anyl. consecutive time periods,
if the policy were able to choose the state of the system adttireof thosd. time periods to be as favorable as
possible, subject only to the conditions imposed by Lerrfahich must hold w.f.).

In particular, let(x*, Z*) denote any solution to the optimization problem

: (4)

T+L—1
min E C”r‘x”:x I"=7
x€[0,Q1],Z€R+ [ ; bmr T

where the existence ¢k*,Z*) follows from the fact thaE[Z”L Lo7|x™ = x, I™ = 7] is continuous with

respect tqx, Z) and goes to infinity ag goes to infinity, combined with a routine compactness argume
Note that w.l.0.g. we can takKe™*, Z*) to be independent of the particular valuerofind thus a function of

D, ¢, h, L only. Further note that conditional on the evérf = x*, IT = Z*}, the conditional joint distribution

of {17, N[',CT;t =1,..., L} does not depend on the particular policy choicex ofnd we denote these
conditional r.v.s a§l;, |, N/, Cf; t = 1,..., L} wherel{ = T*. Let
Vk— max < Z x; —ZD +5]kI>
1=k+1—j
and
U};émax jrigte Z m—ZD+5kI—Vk
i=k+1—j

Then, combining Lemma with the fact that{ D;, ¢ > 1} is a sequence of i.i.d. r.v.s, we derive the following
lower bound forr.

Lemma6. Foranyr e [1,T+ 1],
T+L—1 B
E[ > cf

t=1

Ultimately, we wish to show that the performance of an appab@ constant-order policy nearly matches
the lower bound established in LemmaTo accomplish this, we begin by making several observatifiirst,
note that if we wanted to select a constant-order policy Wwhame close to matching the aforementioned lower
bound, a natural approach would be to select the constdet-policy which “best mimics” the pipeline vector
x*, i.e., by considering the policy,- (assuming-* < E[D]) and recalling that* = L~! Zlex;ﬂ In this
case, we are left with the task of showing that the cost imtliaver any consecutive periods by policyr,.«,
as detailed in Lemmd4, is “close” to the lower bound established in Lemfa

To this end, first note thaZZ.L:1 x; = Lr*. As such, when comparing the terms appearing in Lerdma
(applied with constant*) to those appearing in Lemn@athe primary difficulty lies in comparingjﬁz1 E[Vk]

L

L
> hY E[Vil+¢(B[I},,] — I* + LE[D] - > 7).
k=1 =1

to Z,le E[i} r* — Z?Zl D;]. We will accomplish this through a particular coupling alédfes. Fork € [1, L],
let us construct, W;;*, andig‘ on the same probability space, using the same sequence ahdsfiD;; i =
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., L} (independent of{:;o). Since the maximum of several terms is at least any one dktines (even if
selected randomly in an arbitrary manner), fog [1, L], it follows that w.p1

*

k i,
k
i=k+1—i" i=1

Upon combining the above with Lemn@aand the non-negativity Cﬁi;* x L, we conclude that

L L

I ir” L
ZE@W>§¥%-Z EVi] < Y E[i} ] Zﬁ Z:xﬂ (5)
k=1 i=1 k=1

k=1

Note that the intuition behind why the above coupling woskthat the indiceg € [0, k] for which Z{Zl D
is exceptionally small are good candidates for b‘g?handv;;. From a purely technical perspective, the coupling
is convenient for two fundamental reasons. First, it elmés all terms of the formy.Z | D;, where Z is
a random index that may depend in a complicated way{ bt 7 > 1}, and is not in general adapted to
the filtration generated byD;; i > 1}. Second, as we shall formalize below, the temﬁgﬁzlE[iZ*] and

IE[ZZ k1" ] can each be well-approximated (in an appropriate senséy#y] 2% | 2.

=1 "1

Comblnlng Lemmab with (5), we conclude the following refined lower bound, which wil bonvenient
for comparing the cost incurred by poliay- to that incurred byr.

Lemma?7. Foranyr e [l,T+1],E [Z”L ! C’f} is at least

L Zk L k L §
h(Z;E”J’—EgD SICED M oy

k=1 i=k+1-if" k=1

+ c<E[Iz+1] —T* + LE[D] — Z:x>

6 Difference between constant-order policy and lower bound

In this section, we combine Lemmadsnd?7 to show that the cost incurred ky+ over anyL consecutive time
periods nearly matches the lower bound established in Leiridde accomplish this through a term-by-term
comparison of the expressions appearing in Lem#resd7.

Remark. We note that conceptually, our approach is closely relaiesgtveral results in the queueing literature
which prove that for certain queueing systems, the arrix@tgss in which all inter-arrival times are the same
constant is asymptotically extremal with regards to meaitinggtime [16, 21]. Itis an interesting open question
to further quantify the connection between our approachthadonvexity-type arguments typically used to
prove extremality in such queueing systerig]] which could likely be used to provide an alternate proof of
our main results.

Forr € [0, E[D]), let us define

o A _ (ED]—r)?
" A(E?[D] +E[D?])’

Then the main result of this section is formally stated alovwat.

(6)

Theorem 8. If r* < E[D], then foranyr € [L +1,T + 1],

T+L—-1 T4+L—1

[ > ¢ -E[ ) ¢7) (7)



is at most ,
hQ + 22E[D])O3 4 cI*.

Before proceeding with the proof of Theoredn it will be convenient to derive several bounds for the
distribution ofi}, andif,,, where we defer the associated proofs to the technical appenSection9.

Lemma9. Foranyr € [0,E[D]) and integersj, k > 0, i% has the same distribution asin(k, i’ ), namely
P(if, = j) = P(min(k, %) = j). Furthermore,

P(it, > k) < 6,1(1-0,)", S 3 "Pir, >j) < 6%, E[IL)Y < 20,°E*D].
k=0 j=Fk

Remark. We note that a more precise analysis of the quantities in Le@would be possible using the theory
of ladder heights and epochH [especially the precise results for the relevant momeimengn [41, 42, 11, 29|
and the recent work by Nagae®¥q]. However, since the increments of the random walks thatamsider have

a very special structure (i.e., they are absolutely bourfided above), as well as for the sake of simplicity, we
do not pursue such an analysis here.

We now complete the proof of Theoren
PROOF [Proof of Theoren8] Suppose* < E[D]. Combining Lemmag and7 with the definition ofr* and
the non-negativity of all relevant terms, and then simpify allows us to conclude thaf)is at most

L k L
h <r* SE[ - E[ > a4+ E[5;, I{foo]> + cT*. (8)
k=1 k=1 i:k+1—i£* k=1

We proceed by bounding each term appearing@gjnk{eginning with
L L
T*ZE[Z;;]—ZE[ > a:] (9)

First, it will be convenient to generalize our notati®yy, as follows. For an integei and setS, defined; s to
be 1ifj € S, and0 otherwise. Observe that

k

k k
* * _ *
Z Ty = Z””idm[kﬂ—z’;*,k] = Zwi‘szz*,[kﬂ—i,oo)’
i=1 =1

i=k+1—1],

and thus by interchanging the order of summation and apply@mmad, we obtain

L k L L
DD DI D DED D LA
k=1 i=k+1—i}: 1=1 k=i
L L
= Y iy Pl >k+1-1)
1=1 k=i
L L4+1—i
= Yat Y B 2
1=1 k=1

L
= > ap > P(in, > k). (10)



*

Applying the definition of* together with Lemm& and the fact thaE[i} | < E[i%] by Lemma9, yields that
(9) is at most

L L+1—1 L o) L L4+1—i

L
P R =D ap Y P =k) = > ary P, >k) - > af Y P(in, > k)
k=1 =1 k=1 i=1 k=1 =1 k=1

o0

= Y oa Y P(i k)

i=1 k=L+2—1

0> S B k)

<
i=1 k=L+2—1
[o¢] (o @]

< QYD Pl > k),
=0 k=1

where the final inequality follows from a straightforwardnaexing. Upon combining this with Lemnta we
conclude thatq) is at most

QO 2. (12)
Next we turn to bound

L
ZE[%*7 I (12)
k=1

Applying the Cauchy-Schwartz inequality and Lem&pgields

L

* l l *
Y Elye plie] < D B[, JE2 (1))
k=1

P3 (il > k)E3[(15)?]

k=1
< 30— 0, e ED)’
k=1
= 2%E[D]@;3(1_7@)§1 2:E[D]O;2, (13)
1-(1-0)3

where the final inequality follows from multiplying and dilmg by 1 + (1 — ®7~*)% and from noting that
(1-6,)2(1+(1-6,-)2) <2.
Finally, using both 11) to bound @) and (L3) to bound (2) in (8), completes the prool

7 Proof of main result

We now complete the proof of our main result, namely Theoflerhy combining Theoren8 with several
additional bounds. In light of TheoreB) the primary difficulty which remains is proving that is bounded
away fromE[D] asL — co. Recall that: = argmin, -, (hE[I%] — cv). The final step will be to show that
- IS itself dominated by the policy., which we will prove to be the “best-possible” constantergolicy.
Combining these results with a few straightforward asyrip@&rguments will complete the proof.

7.1 Boundingr* away from E[D]. Let us begin by proving that* is bounded away frofi| D] asL — oc.
In particular, we will prove the following result, recaltithatm = {(26(3@‘ + c(ho)'E[D] + 1))21

am

D=

Lemma10. Forall L > 8(c—1Q + 1)m?2, we have thaE[D] — r* >

D=

11



Although at first glance one might think such a result to baightforward, the fact that in principle the
components ok* could vary considerably over the periods creates difficulties here. Indeed, we will actually
argue indirectly as follows. Roughly speaking, we argugfthreany timet, if in the m periods leading up to and
includingt (i.e., periods —m +1,...,t) the corresponding pipeline vector components (&E.,, 1, .., ;)
were much larger (on average) thafD] (i.e., Ei;:t_mﬂ xf —mlE[D] is too large), then the expected value
of the inventory at the end of periad/;, ,, will be very large.

More precisely, defining; 2 >>¢_, ., a%, we note tha[I7,,] > E[max(0,v, — >4, .1 Di)l.
We then apply a type of central limit theorem scaling, coratinvith certain explicit bounds on the rate of
convergence in the central limit theorem (i.e., Stein’shrod), to argue that ify, — mE[D] is large, then
E[I}, ] is large. It will follow thaty; — mE[D] cannot be large for too many valuestofA key insight here is
that because of the maximum within the expectation, we gebaglower bound even whep — mE[D] = 0,
which in turn allows us to show that, — mE[D] should typically be significantly less than zero. We then
argue thay -~ is sufficiently close tan >, %, and combine the above observations to conclude that
E[D] — r+ must be bounded away from zero.
PROOF [Proof of Lemmal(] It follows from (2) and non-negativity that, for atl€ [m, L], w.p.1

¢
If+af—Dy > m— Z Dy,.
k=t—m+1

Thus, for allt € [m, L], E[max(0, I} + =} — D,)] is at least

E[max (0. - Zt: Dkﬂ

k=t—m+1

t
_ am%E[max (o imtomt1 (PP}~ Du) 30 = mE[D])]. (14)

1 1
om?2 om?2
Let NV denote a standard normal r.v. We now show ttd} (s well-approximated by
— mE[D
om2 E [max (O, N + W)} ,
omz2
using known results on the rate of convergence in the cditriltheorem. Such results are typically derived

via Stein’s method, and we refer the interested readebltéof details. Specifically, the following explicit
bound on the rate of convergence in the central limit thedasegenerally well known.

Theorem 11([5]). Suppose that' : R — R is any Lipschitz-continuous function with Lipschitz canstat
most unity, i.e., for all:,y € R, |F(z) — F(y)| < |x — y|. Suppose thafX;; i > 1} is any sequence of i.i.d.
rv.s s.tE[X;] =0, E[X?] = 1, and E[| X}|] < co. Then, for alln > 1,

‘E[F(n—%ix,-)}—E[F(N)]‘ < 3nrE[X P

Letting F}(z) 2 max (o, T+ wl%m) it follows from TheoremL1 and (L4) that, for allt € [m, L),

om?2

—mE|D
E[max(0, I} + xz; — D;)] > om? <E[max <0,N—|— wﬂ - 3m—%g> ,

om?2
and thus
L L & Y& — mE[D]
> E[C;] > hom2 > E [max (o, N + 71” — 3ho(L. (15)
t=1 t=m om?2

12



Note thaty(y) = E[max(o, N + y)] is a convex function of. It then follows from Jensen’s inequality that

L ]
—mE|D
SN (L -m+1)7'E [max <0,N + wl[])
t=m om?2
is at least ; )
_ —mE|D
E[max(O,N—l—(L—m—l—l) 12%71[]> . (16)
t=m am?2 i

Since(0,0) is a feasible solution to Problemd)( with valuecLE[D], the optimality of(x*, Z*) implies

L
> E[C}] < LcE[D]. (17)

t=1
Combining (5), (16), and (7) yields

E[maX(O N+(L-m+1)~ an < %(3“(;(;10)—11@[1)])77@—%. (18)

om?2 —m-+1

We now relate> "=~ to %, «F by proving that

L L

Z Z Z sz —2m2Q. (19)

t=m t=m k=t—m+1 k=1

Indeed, it follows from a straightforward counting argurntivat for allt € [m, L — m|, x} appears exactlyn
times in the double surw;, S, a%, and thus

L L—m
Sz my i
t=m t=m
Moreover, sincer; < @ for all ¢, we conclude that
L—m L
m Z x; > Z xy — 2m2Q
t=m k=1
In combination, these results yiel#l9).

Next, upon combining18) and (L9) with the monotonicity ofy, and simplifying all relevant expressions,
we obtain

1
m2 L . 2mQ L _1 _1
— (" — - < — )
E max<0,N+ = (L_er E[D] L—m+1>> < L_m+1(3C+c(ha) E[D])m ™2
1 (20)
Noting thatL > 2m implies ——+ < 2andL > 40~ sz implies —Q < %Um_i we devise from the
monotonicity ofy that, for allL 2 max(2m, 8o~ sz),
1
2 1
E [max <0,N L <r* _E[D] - §am—%>>] < 2(3¢ + c(ho) 'E[D]))m 2. (21)
g

It is easily verified tha{E[max(0, N — 1)])~! < 13, and thus from definitions and basic algebra
2
m > <2(3< + ¢(ho) 'E[D]) (E[max(0, N — 1)])—1> :

13



We conclude that the right-hand-side 81) is at mostE[max (0, N — 1)], in which case the monotonicity of

implies
1
2 1
m72 <r* —E[D] - §am_%> < -1,
namelyE[D] — r* > % 2, Combining the above with some straightforward algebrapietas the proof.
[ |

We end this subsection by combining Theor@mand LemmalO to bound the difference between the
constant-order policy and an optimal policy.

Corollary 12. Forall L > 8(c7'Q + 1)m% and anyr € [L+ 1,7 + 1], (7) is at most
2121(Q + 22E[D])(E2[D] + E[D?))*0~%m? + ¢([(2ch™L)2] + 2).
PrRoOF. It follows from Lemmal0 that
hQ+23E[D)OF < 22h(Q +25E[D))(E[D] + E[D?])*0Om?.

Thus, by Theoren8, to complete the proof it suffices to demonstrate hat< {(2ch‘1L)%1 + 2. Indeed,
suppose for contradiction that > ([(2ch‘1L)%1 + 2)E[D]. For allk € [1, [(2ch™1L)2] + 2], we have

E[I},,] > T* — kE[D] > E[D]([(2ch~"L)2] + 2 — k).
The resulting holding costs ensure t@f E[C}] is strictly greater than

[(2ch=1L)3]
WE[D] >k > CE[D]L.

Combining this with {7) completes the prool

7.2 Proof of Theorem1. With Corollary12in hand, we now proceed with the proof of our main result, i.e.
Theoreml. ,
PROOF. [Proof of Theorentl] Supposel’ > L, ¢ € (0,1), andL > 8(c~'Q + 1)m2. It then follows from
LemmalOthatr* < E[D]. Note that

i1 EICT"]

(22)
=141 EICT]

equals
(k+1)L T L o
zk lzt kL-i—l [ ] + Z ¥ J+1 YL+1 E[C ]

(k+1)L - T L 7
Zk IZt kL—i—l E[CT ]"‘Z - T )L E[CT]
As the policyr,« is stationary and yields a stationary sequence of inverdony ordering levels, it follows
that E[C{""] = E[C]"] for all t > L + 1. Further note thaE[CT] > ¢ for all ¢ > L + 1, and thus
L E[CF) > Lg forall k € [1,Z]]. Combining the above with Corollar2, and the non-negativity of

all relevant terms, we conclude th&®] is at most
[Z]
£

<1+(212h(Q+22E[D])(E2[D]+E[D2])3a‘6m3+c([(2ch L3 + ))(gL)—l). (23)
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Next, we note thal, > 214%(Q + 22E[D])(E2[D] + E[D?])305m3g~ e~ implies

2(Q + 22E[D])(E’[D] + E[D*))’0m*(9L) ™" < 7.
L > (12cg_1((20h_1)% +3)>26_2 implies c([(Zch_lL)%} +2)(gL)_1 < 1—62,
and

3 o (7]
T > <1+—>L implies % < 14
€ B

Combining the above with the fact thét + £)? < 1 + ¢ for all € € (0,1) completes the proof that the stated
performance guarantees are attained by the palieyfor any L, T' satisfying the conditions of Theorein

The final step is to prove that the same guarantees extend tndeed, it follows from stationarity that, for
anyr € [0,E[D]) andt > L + 1,

E[CT"] = hE[(IL, +7— D)+ cE[(I% +r — D)7]. (24)

However, sincd’, is distributed agI’, +r — D)™, we conclude

E[(I+r—D)"] = E[IL].
Furthermore, since
E[(I, +r—D)"|—E[(I, +r—D)"] = E[L]+r—E[D],
it follows that
E((Il,+r—D)7] = E[D]—r.

In combination with 24), we have that for any € [0, E[D]) andt > L + 1
E[C]"] = RE[IL]+ ¢(E[D]—r). (25)
The desired result then follows from the fact thas a minimizer of £5), completing the proofll

8 Conclusion

In this paper, we considered the single-item, periodidergviost-sales model with positive lead times and i.i.d.
demand, for which the optimal policy is poorly understood anmputationally intractable. We proved that,
as the lead time grows (with the demand distribution, lestss penalty, and holding cost remaining fixed), a
simple, open-loop constant-order policy is in fact asyrtipadly optimal. We also established explicit bounds
on how large the lead time should be to ensure that the bestardrorder policy incurs an expected cost of at
most1 + e times that incurred by the optimal policy. To the best of onowledge, this is the first algorithm
proven to be withinl + ¢ of optimal for lost-sales models when the lead time is lawleile maintaining a
runtime that does not grow with the lead time. Our main preohnique involved a novel coupling for suprema
of random walks, and may be useful in other settings.

This work leaves many interesting directions for futureesgsh. We suspect that our explicit bounds are
not tight, and a more precise analysis of the constant-gqodécy would further help to explain the good
performance of the algorithm for lead times as small as faarreported by Zipkin46]. Since lost sales
models commonly arise in practice, an interesting chatedego combine the core ideas of our analysis with
known results from dynamic programming to derive and arelgmactical “hybrid” algorithms, which use
more elaborate forms of dynamic programming when the lead 5 small and gradually transition to less
computationally intensive algorithms (with the constarder policy at the extreme) as the lead time grows.
It would also be interesting to prove that a similar phenocomeaccurs for other policies, as well as in other
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inventory models. In particular, it is an interesting operestion whether other simple (but perhaps slightly
more sophisticated) policies, such as the order-up-t@pobnsidered by Huh et al2(] and the cost-balancing
policy considered by Levi et al.2[], exhibit a similar asymptotic optimality as the lead timegs. On a
related note, the fact that(e) contains terms of the formh~! suggests that the constant-order policy may
require larger lead times to approach near-optimality wihenratio of lost-sales-penalty to holding-cost is
large. Since this is exactly the regime in which the ordeteupolicy of [20] provably works well, it is an
interesting open question to try and combine these (andapsrbther) algorithms to yield tighter performance
guarantees over a larger range of parameters.

Philosophically, our main results and insights fall undex broad heading of “long-range independence
/ decay of correlations” phenomena, in which so much uniceytas introduced into a model that even very
sophisticated algorithms cannot perform significantlytdrahan very simple algorithms. Such ideas have led
to significant progress on fundamental models in other fig8s31, 12, 40, 13, 8, 10], and may prove useful
in other operations management problems.

9 Appendix

9.1 Proof of Lemma9. In this appendix, we provide the proof of Lemraa

PrROOF [Proof of Lemma9.] We first prove thai], has the same distribution asin(k, 7, ). Let{D’;; i > 1}
be an additional sequence of i.i.d. realizations frdmmmutually independent fronD;; i > 1}. Then, for
anyk > 1, we can constructi ., W, {D;; i > 1}, {Dj; i > 1} on the same probability space It =

max;>o(jr — S27_, D';). Itis easy to see that we only need to show
P(iy=4) = Plil,=4), Jj=0,...k-1
By definition, we haveP[i) P[Z; N Zy N Z3] where

J
Er—ZDisj'r—ZDi, ws;‘},

i=1

V4

:{er ZD<]T—ZD“€—]+1 k—l},
J

:{jr ZD2>kr—ZD +1100}.

| |
—N—

Note that

j k ¢
Igz{jr—ZDi>kr— D+max<€7“ ZD/’>}
=1

=1 =1
J

— {jr—ZDi > max | (k+ 0)r - <ZDZ‘+ZD,1'>]}.
i=1 - i=1 1=1

It therefore follows, sincé D;;i > 1} and{D};i > 1} are mutually independent i.i.d. sequences with common
distributionD, that

]P’[ZZ = j] = ]P’[Il N7y ﬂIlg],

where
J ¢
/ — y J— . —_ .
I's = {jr ;Dl>r§1§? fr ;D,]}.

Noting that this is the definition df(i.,, = j) completes the first part of the proof.
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Before proving the remainder of the lemma, it will be usetukstablish that

k

P, =k < (1-6,)" (26)
By definition,
k
P, = k) < P<Z<r D> o>.

i=1

Applying a Chernoff bound, we find that for afy> 0

P(i"

oo

where

E[exp (Q(T — D))]

IN

IN

?|

k) < Ek[exp (6(r — D))]

exp(r)E[exp (— 6D)]
exp(6r)E[(1+ QD)_l]
14 60r+ 927”2}

(sinceexp(v) > 1 +v)

-1
0D forall 6 € (0,77],

the final inequality following from a simple Taylor-seriegpansion. However, w.p, we have

1+ 0r + 6372
1+6D

IN

and thus
E[exp (Q(T — D))]
Observing that

E[D] —r
2(r? + E[D?])
we may take
0

to conclude

E[exp (9*(7’ — D))]

92
1+6D
1+ 6(r — D) + 6%(r? + D?),

14+0(r—D)+

(7’2 — D(r — D))

< 1-06(E[D] —r) +6*(r* + E[D?)).
E[D]

= 3E[D?

_ Ep 1 .

= oEp] ~ ®D -
~ 2(r? +E[D?)

- _ (E[D]-r)?

- 4(r?2 + E[D?))

< 1 (E[D] B T)2 1— 97“7

- A(E?[D] +E[D?))

where the final inequality follows from the fact thet < E?[D]. Combining the above completes the proof of

(26).

With (26) in hand, the lemma follows directly from the basic manipiola of a few geometric series and
the fact thatl’ < ril,, < E[D]il, w.p.1, the details of which we omi
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