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Abstract

We consider a model for linear transient price impact for multiple assets that takes
cross-asset impact into account. Our main goal is to single out properties that need to be
imposed on the decay kernel so that the model admits well-behaved optimal trade execution
strategies. We first show that the existence of such strategies is guaranteed by assuming
that the decay kernel corresponds to a matrix-valued positive definite function. An exam-
ple illustrates, however, that positive definiteness alone does not guarantee that optimal
strategies are well-behaved. Building on previous results from the one-dimensional case,
we investigate a class of nonincreasing, nonnegative, and convex decay kernels with values
in the symmetric K ×K matrices. We show that these decay kernels are always positive
definite and characterize when they are even strictly positive definite, a result that may
be of independent interest. Optimal strategies for kernels from this class are particularly
well-behaved if one requires that the decay kernel is also commuting. We show how such
decay kernels can be constructed by means of matrix functions and provide a number of
examples. In particular, we completely solve the case of matrix exponential decay.

Keywords: Multivariate price impact, matrix-valued positive definite function, optimal trade
execution, optimal portfolio liquidation, matrix function

1 Introduction

Price impact refers to the feedback effect of trades on the quoted price of an asset and it is
responsible for the creation of execution costs. It is an empirically established fact that price
impact is predominantly transient; see, e.g., Moro et al. [2009]. When trading speed is sufficiently
slow, the effects of transience can be reduced to considering only a temporary and a permanent

∗Université Paris-Est, CERMICS, Projet MathRisk ENPC-INRIA-UMLV, Ecole des Ponts, 6-8 avenue Blaise
Pascal, 77455 Marne La Vallée, France. alfonsi@cermics.enpc.fr
‡Department of Mathematics, University of Mannheim, A5, 6, 68131 Mannheim, Germany.
∗∗Department of Mathematics, University of Mannheim, A5, 6, 68131 Mannheim, Germany.

schied@uni-mannheim.de

The authors thank an anonymous referee for comments that helped to substantially improve a previous version
of the manuscript. A.A. is grateful for the support of the “Chaire Risques Financiers” of Fondation du Risque.
F.K. and A.S. thank Martin Schlather and Marco Oesting for discussions and gratefully acknowledge financial
support by Deutsche Forschungsgemeinschaft DFG through Research Grant SCHI 500/3-1.

1

ar
X

iv
:1

31
0.

44
71

v6
  [

q-
fi

n.
T

R
] 

 9
 S

ep
 2

01
5



price impact component [Bertsimas and Lo, 1998, Almgren and Chriss, 2001]. For higher trading
speeds, however, one needs a model that explicitly describes the decay of price impact between
trades. First models of this type were proposed by Bouchaud et al. [2004] and Obizhaeva and
Wang [2013]. These models were later extended into various directions by Alfonsi et al. [2008,
2010], Gatheral [2010], Alfonsi et al. [2012], Gatheral et al. [2012], Predoiu et al. [2011], Fruth
et al. [2014], and Løkka [2012], to mention only a few. A more comprehensive list of references
can be found in Gatheral and Schied [2013]. We also refer to Guo [2013] for an introduction to
the microscopic order book picture that is behind the mesoscopic models mentioned above.

All above-mentioned models for transient price impact deal only with one single risky asset.
While multi-asset models for temporary and permanent price impact [Schöneborn, 2011] or for
generic price impact functionals [Schied et al., 2010, Kratz and Schöneborn, 2013] were considered
earlier, we are not aware of any previous approaches to analyzing the specific effects of transient
cross-asset price impact. Our goal in this paper is to propose and analyze a simple model for
transient price impact between K different risky assets. Following the one-dimensional ansatz
of Gatheral [2010], the time-t impact on the price of the ith asset that is generated by trading
one unit of the jth asset at time s < t will be described by the number Gij(t − s) for a certain
function Gij : [0,∞)→ R. The matrix-valued function G(t) = (Gij(t))i,j=1,...,K will be called the
decay kernel of the multi-asset price impact model.

When setting up such a model in a concrete situation, the first question one encounters is
how to choose the decay kernel. Already in the one-dimensional situation, K = 1, the decay
kernel G needs to satisfy certain conditions so that the resulting price impact model has some
minimal regularity properties such as the existence of optimal trade execution strategies, the
absence of price manipulation in the sense of Huberman and Stanzl [2004], or the non-occurrence
of oscillatory strategies. It was shown in Alfonsi et al. [2012] that these properties are satisfied
when G is nonnegative, nonincreasing, and convex. Here we will continue the corresponding
analysis and extend it to matrix-valued decay kernels G. Our first observation is that G must
correspond to a certain matrix-valued positive definite function. Such functions were previously
characterized and analyzed, e.g., by Cramér [1940], Naimark [1943], Falb [1969]. An example
illustrates, however, that positive definiteness alone does not guarantee that optimal strategies
are well-behaved. We therefore introduce a class of nonincreasing, nonnegative, and convex decay
kernels with values in the symmetric K × K matrices. We show that these decay kernels are
always positive definite, and we characterize in Theorem 2.15 when they are even strictly positive
definite. Optimal strategies for kernels from this class do not admit oscillations if one additionally
requires that the decay kernel is commuting. Based on this result, we will address in Section 2.5
the problem of optimizing simultaneously over time grids and strategies and state the solution
in terms of a suitable continuous-time limit. We finally show how such decay kernels can be
constructed by means of matrix functions and provide a number of examples. In particular, we
completely solve the case of matrix exponential decay.

Our main general results are stated in Section 2. Transformation results for decay kernels and
their optimal strategies along with several explicit examples are given in Section 3. Since the sit-
uation K > 1 is considerably more complex than the one-dimensional case, we have summarized
the main conclusions that can be drawn from our results in Section 4. These conclusions will
focus on our initial question: From which class of functions should decay kernels for transient
price impact be chosen? Most proofs are given in Section 5.
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2 Statement of general results

In this section, we first introduce a linear market impact model with transient price impact for K
different risky assets. We then discuss which properties a decay kernel should satisfy so that the
corresponding market impact model has certain desirable features and properties. Two of these
properties are the existence of optimal strategies and the absence of price manipulation strategies
in the sense of Huberman and Stanzl [2004], which we will both characterize by establishing a
link to the theory of positive definite matrix-valued functions. Requiring positive definiteness,
however, will typically not be sufficient to guarantee that optimal strategies are well-behaved. We
will thus be led to a more detailed analysis of positive definite matrix-valued functions and the
associated quadratic minimization problems, an analysis that might be of independent interest.

2.1 Preliminaries

We introduce here a market impact model for an investor trading in K different securities. When
the investor is not active, the unaffected price process of these assets is given by a right-continuous
K-dimensional martingale (S0

t )t∈[0,T ] defined on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P).
Now suppose that the investor can trade at the times of a time grid T = {t1, . . . , tN}, where
N ∈ N and 0 = t1 < t2 < · · · < tN (an extended setup with the possibility of trading in
continuous time will be considered in Section 2.5). The size of the order in the ith asset at time
tk is described by a Ftk-measurable random variable ξik, where positive values denote buys and
negative values denote sells. By ξk = (ξ1

k, . . . , ξ
K
k )> we denote the column vector of all orders

placed at time tk. Our main interest here will be in admissible strategies that P-a.s. liquidate a
given initial portfolio X0 ∈ RK . Such strategies are needed in practice when the initial portfolio
X0 is too big to be liquidated immediately; see, e.g., Almgren and Chriss [2001].

Definition 2.1. Let T = {t1, . . . , tN} be a time grid. An admissible strategy for T is a se-
quence ξ = (ξ1, . . . , ξN) of bounded1 K-dimensional random variables such that each ξk is Ftk-
measurable; ξ is called deterministic if each ξik does not depend on ω ∈ Ω. The set of admissible
liquidation strategies for a given initial portfolio X0 ∈ RK and T is defined as

X (T, X0) :=
{
ξ = (ξ1, . . . , ξN)

∣∣∣ ξ is admissible and X0 +
N∑
k=1

ξk = 0 P-a.s.
}
. (1)

The set of deterministic liquidation strategies in X (T, X0) is denoted by Xdet(T, X0).

We now turn toward the definition of the price impact generated by an admissible strategy.
As discussed in more detail in the introduction, in recent years several models were proposed
that take the transience of price impact into account. All these models, however, consider only
one risky asset. In this paper, our goal is to extend the model from Alfonsi et al. [2012], which
is itself a linear and discrete-time version of the model from Gatheral [2010], to a situation with
K > 1 risky assets. A decay kernel will be a continuous function

G : [0,∞) −→ RK×K

1Boundedness is assumed here for simplicity and can easily be relaxed; for instance, it is enough to assume that
both ξk and S0 are square-integrable. Since the total number of shares of an asset is always finite, boundedness
can be assumed without loss of generality from an economic point of view.
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taking values in the space RK×K of all real K ×K-matrices. When ξ is an admissible strategy
for some time grid T = {t1, . . . , tN} and t ≥ tk ∈ T, the value Gij(t − tk) describes the time-t
impact on the price of the ith asset that was generated by trading one unit of the jth asset at
time tk. We therefore define the impacted price process as

Sξ
t = S0

t +
∑
tk<t

G(t− tk) ξk, t ≥ 0. (2)

Here G(t − tk) ξk denotes the application of the K ×K matrix G(t − tk) to the K-dimensional
vector ξk.

Let us write Sξ,i
t for the ith component of the price vector Sξ

t = (Sξ,1
t , . . . , Sξ,K

t )>. The
execution of the kth order, ξk, shifts the price of the ith asset linearly from Sξ,i

tk
to Sξ,i

tk+. The order

ξik of shares of the ith asset is therefore executed at the average price 1
2
(Sξ,i

tk+ +Sξ,i
tk

). The proceeds

from executing the amount of ξik shares of the ith asset are therefore given by −ξik 1
2
(Sξ,i

tk+ + Sξ,i
tk

).
It follows that the total revenues incurred by the strategy ξ are given by

R(ξ) = −1

2

N∑
k=1

ξ>k (Sξ
tk+ + Sξ

tk
). (3)

In the sequel, it will be convenient to switch from revenues to costs, which are defined as the
amount X>0 S

0
0 −R(ξ) by which the revenues fall short of the book value, X>0 S

0
0 , of the initial

portfolio.

Remark 2.2. In the one-dimensional version of our model, a bid-ask spread is often added so as
to provide an interpretation of ξk as a market order placed in a block-shaped limit order book;
see, e.g., Section 2.6 in Alfonsi and Schied [2010]. In practice, however, execution algorithms
will use a variety of different order types, and one should think of price impact and costs as
being aggregated over these order types. For instance, while half the spread has to be paid when
placing a market buy order, the same amount can be earned when a limit sell order is executed.
Other order types may yield rebates when executed or may allow execution at mid price. So
ignoring the bid-ask spread is probably more realistic than adding it to each single execution of
an order.

In this paper we will investigate the minimization of the expected costs of a strategy, which in
many situations is an appropriate optimization problem for determining optimal trade execution
strategies. Our main interest, however, is to provide conditions on the decay kernel G under
which the model is sufficiently regular. As discussed at length in Gatheral and Schied [2013],
the regularity of a market impact model should be measured by the existence and behavior of
execution strategies that minimize the expected costs, because the regularity of a model should
be considered independently from the possible risk aversion that an agent using this model might
have.

To analyze the expected costs of an admissible strategy ξ = (ξ1, . . . , ξN), it will be convenient
to identify the particular realization, ξ(ω) = (ξ1(ω), . . . , ξN(ω)), with an element of the tensor
product space RN ⊗ RK . We will also write |T| for the cardinality of a time grid.

Lemma 2.3. The expected costs of a strategy ξ ∈X (T, X0) for a time grid T are given by

E[X>0 S0 −R(ξ) ] = E[CT(ξ) ], (4)
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where the cost function CT : R|T| ⊗ RK → R is given by

CT(ξ) =
1

2

N∑
k,`=1

ξ>k G̃(tk − t`)ξ` (5)

for the function G̃ : R→ RK×K defined by

G̃(t) :=


G(t) for t > 0,
1
2
(G(0)> +G(0)) for t = 0,

G(−t)> for t < 0.

(6)

We will now discuss the possible existence and structure of admissible strategies minimizing
the expected costs within the class X (T, X0). The problem of optimizing simultaneously over
time grids T and strategies ξ ∈X (T, X0) will be addressed in Section 2.5.

Lemma 2.4. There exists a strategy in X (T, X0) that minimizes the expected costs E[CT(η) ]
among all strategies η ∈ X (T, X0) if and only if there exists a deterministic strategy that
minimizes the cost function CT(ξ) over all ξ ∈ Xdet(T, X0). In this case, any minimizer
η∗ ∈ X (T, X0) can be regarded as a function from Ω into Xdet(T, X0) that takes P-a.s. val-
ues in the set of deterministic minimizers of the cost function CT(·).

The condition

E[CT(η) ] ≥ 0 for all T, X0 ∈ Rk, and η ∈X (T, X0) (7)

can be regarded as a regularity condition for the underlying market impact model. It rules out
the possibility of obtaining positive expected profits through exploiting one’s own price impact;
see, e.g., Alfonsi et al. [2012] or Gatheral and Schied [2013] for detailed discussions. In particular,
it rules out the existence of price manipulation strategies in the sense of Huberman and Stanzl
[2004]. In the sequel we will therefore focus on decay kernels that satisfy (7). It will turn out

that (7) can be equivalently characterized by requiring that the function G̃ from (6) is a positive
definite matrix-valued function in the following sense.

Definition 2.5. A function H : R → CK×K is called a positive definite matrix-valued function
if for all N ∈ N, t1, . . . , tN ∈ R, and z1, . . . , zN ∈ CK ,

N∑
i,j=1

z∗iH(ti − tj)zj ≥ 0, (8)

where a ∗-superscript denotes the usual conjugate transpose of a complex vector or matrix. If
moreover equality in (8) can hold only for z1 = · · · = zN = 0, then H is called strictly positive
definite. When K = 1, we say that H is a (strictly) positive definite function.

Note that a positive definite matrix-valued function H is defined on the entire real line R and
is allowed to take values in the complex matrices. A decay kernel, G, on the other hand, is defined
only on [0,∞) and takes values in the real matrices, RK×K . Considering the extended framework
of CK×K-valued positive definite functions will turn out to be convenient for our analysis. The
next proposition explains the relation between positive definite functions and decay kernels with
nonnegative expected costs.
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Proposition 2.6. For a decay kernel G, the following conditions are equivalent.

(a) E[CT(η) ] ≥ 0 for all time grids T, initial portfolios X0 ∈ RK, and η ∈X (T, X0).

(b) CT(ξ) ≥ 0 for all time grids T and ξ ∈ R|T| ⊗ RK.

(c) For all time grids T, CT : R|T| ⊗ RK → R is convex.

(d) G̃ defined in (6) is a positive definite matrix-valued function.

If moreover these equivalent conditions are satisfied, then the equality CT(ξ) = 0 holds for all time

grids T only for ξ = 0, if and only if G̃ is strictly positive definite. In this case, CT : R|T|⊗RK → R
is strictly convex for all T.

Positive definiteness of G̃ not only excludes the existence of price manipulation strategies.
The following proposition states that it also guarantees the existence of strategies that minimize
the expected costs within a class X (T, X0). Such strategies will be called optimal strategies in
the sequel. Once the existence of optimal strategies has been established, they can be computed
by means of standard techniques from quadratic programming (see, e.g., Boot [1964] or Gill et al.
[1981]).

Proposition 2.7. Suppose that G̃ is positive definite. Then there exists an optimal strategy
in Xdet(X0,T) (and hence in X (X0,T)) for all X0 ∈ RK and each time grid T. Moreover, a
strategy ξ ∈Xdet(X0,T) is optimal if and only if there exists λ ∈ RK such that

N∑
`=1

G̃(tk − t`)ξ` = λ for k = 1, . . . , |T|. (9)

If G̃ is strictly positive definite then optimal strategies and the Lagrange multiplier λ in (9) are
unique.

Propositions 2.6 and 2.7 suggest that decay kernels G for multivariate price impact should
be constructed such that the corresponding function G̃ from (6) is a positive definite matrix-
valued function. Part (a) of the following elementary lemma implies that this can be achieved
by defining G(t) := H(t) for t ≥ 0 when H : R → RK×K is a given continuous positive definite

matrix-valued function, because we will then automatically have G̃ = H.

Lemma 2.8. Let H : R→ CK×K be a positive definite matrix-valued function. Then:

(a) The matrix H(0) is nonnegative definite, and we have H(−t) = H(t)∗ for every t ∈ R. In
particular, H(−t) = H(t)> if H takes its values in RK×K.

(b) Also t 7→ H(t)∗ is a positive definite matrix-valued function; it is strictly positive definite
if and only H is strictly positive definite.

Due to the established one-to-one correspondence of decay kernels with nonnegative expected
costs and continuous RK×K-valued positive definite functions, we will henceforth use the following
terminology.

Definition 2.9. A decay kernel G : [0,∞) → RK×K is called (strictly) positive definite if the

corresponding function G̃ from (6) is a (strictly) positive definite matrix-valued function.
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2.2 Integral representation of positive definite decay kernels

We turn now to characterizations of the positive definiteness of a matrix-valued function. In the
one-dimensional situation, K = 1, Bochner’s theorem [Bochner, 1932] characterizes all continuous
positive definite functions as the Fourier transforms of nonnegative finite Borel measures. There
are several extensions of Bochner’s theorem to the case of matrix- or operator-valued functions.
Some of these results will be combined in Theorem 2.10 and Corollary 2.11 below. For the
corresponding statements, we first introduce some terminology.

As usual, a complex matrix N ∈ Cn×n is called nonnegative definite if z∗Nz ≥ 0 for every
z ∈ Cn. When even z∗Nz > 0 for every nonzero z, N is called strictly positive definite. A
nonnegative definite complex matrix N ∈ Cn×n is necessarily Hermitian, i.e. N = N∗. In
particular, a real matrix N ∈ Rn×n is nonnegative definite if and only if it belongs to the set
S+(n) of nonnegative definite symmetric real n × n-matrices. By S(n) we denote the set of all
symmetric matrices in Rn×n. An arbitrary real matrix M ∈ Rn×n will be called nonnegative if
x>Mx ≥ 0 for every x ∈ Rn and strictly positive if x>Mx > 0 for all nonzero x ∈ Rn. Note
that a real matrix M ∈ Rn×n is nonnegative if and only if its symmetric part, 1

2
(M + M>), is

nonnegative definite.
Let B(R) be the Borel σ-algebra on R. A mapping M : B(R) → CK×K will be called a

nonnegative definite matrix-valued measure if every component Mij is a complex measure with
finite total variation and the matrix M(A) ∈ CK×K is nonnegative definite for every A ∈ B(R).

The following theorem combines results by Cramér [1940], Falb [1969], and Naimark [1943];
we refer to Glöckner [2003] for extensions of this result and for a comprehensive historical account.

Theorem 2.10. For a continuous function H : R→ CK×K the following are equivalent.

(a) H is a positive definite matrix-valued function.

(b) For every z ∈ CK, the complex function t 7→ z∗H(t)z is positive definite.

(c) H is the Fourier transform of a nonnegative definite matrix-valued measure M , i.e.,

H(t) =

∫
R
eiγtM(dγ) for t ∈ R. (10)

Moreover, any matrix-valued measure M with (10) is uniquely determined by H.

Proof. The equivalence of (b) and (c) was proved in Falb [1969]. The equivalence of (a) and (c)
follows from two statements in the book by Gihman and Skorohod [1974], namely the remark
after Theorem 1 in §1 of Chapter IV and Theorem 5 in §2 of Chapter IV. The uniqueness of M
is standard.

The preceding theorem simplifies as follows when considering positive definite functions H
taking values in the space S(K) of symmetric real K × K-matrices. By Lemma 2.8 (a), such
functions H correspond to positive definite decay kernels G that are symmetric in the sense that
G(t)> = G(t) for all t ≥ 0. In this case, we have H(t) = G̃(t) = G(|t|) for all t ∈ R.

Corollary 2.11. For a continuous function H : R→ CK×K the following statements are equiv-
alent.
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(a) H(t) ∈ S(K) for all t, and H is a positive definite matrix-valued function.

(b) H(t) ∈ S(K) for all t, and the real function t 7→ x>H(t)x is positive definite for every
x ∈ RK.

(c) H admits a representation (10) with a nonnegative definite measure M that takes values
in RK×K (and hence in S+(K)) and is symmetric on R in the sense that M(A) = M(−A)
for all A ∈ B(R).

Remark 2.12 (Discontinuous positive definite functions and temporary price impact).
Let H0 be a nonzero nonnegative definite matrix. Then H(t) := H01{0}(t) is a positive definite
matrix-valued function that is not continuous and therefore does not admit a representation
(10). It is possible, however, to give a similar integral representation also for discontinuous
matrix-valued positive definite functions satisfying a certain boundedness condition. To this
end, one needs to replace the measure M by a nonnegative definite matrix-valued measure on the
larger space of characters for the additive (semi-)groups R or R+; see Glöckner [2003, Theorem
15.7]. In the context of price impact modeling, the costs (5) associated with a discontinuous
decay kernel of the form G(t) := G01{0}(t) for some nonnegative matrix G0 can be viewed
as resulting from temporary price impact that affects only the order that has triggered it and
disappears immediately afterwards; see Bertsimas and Lo [1998] and Almgren and Chriss [2001]
for temporary price impact in one-dimensional models. More generally, to take account the
discontinuity G(0)−G(0+) ∈ S+(K), one will have to precise the definition (3) of the revenues
by assuming R(ξ) = −

∑N
k=1 ξ

>
k (Sξ

tk
+ 1

2
G(0)ξk) (note that this is G(0) and not G(0+)). Last, let

us mention that the discontinuity at 0 is the only one relevant in practice: other discontinuities
would generate a weird and predictable price impact. Thus, the temporary price impact can be
handled separately and assuming G continuous is not restrictive.

2.3 Convex, nonincreasing, and nonnegative decay kernels

As shown and discussed in Alfonsi et al. [2012], not every decay kernel G : [0,∞) → R with

positive definite G̃ is a reasonable model for the decay of price impact in a single-asset model.
Specifically it was shown that for K = 1 it makes sense to require that decay kernels are non-
negative, nonincreasing, and convex. Since similar effects as in Alfonsi et al. [2012] can also be
observed in our multivariate setting (see Figure 1), we need to introduce and analyze further
conditions to be satisfied by G. To motivate the following definition, consider two trades ξ1 and
ξ2 placed at times t1 < t2. The quantity ξ>2 G(t2 − t1)ξ1 describes that part of the liquidation
costs for the order ξ2 that was caused by the order ξ1. When ξ1 = ξ2, it is intuitively clear that
these costs should be nonnegative and nonincreasing in t2 − t1.

Definition 2.13. A matrix-valued function G : [0,∞)→ RK×K is called

(a) nonincreasing, if for every x ∈ RK the function t 7→ x>G(t)x is nonincreasing;

(b) nonnegative, if G(t) is a nonnegative matrix for every t ∈ [0,∞);

(c) (strictly) convex, if for all x ∈ RK the function t 7→ x>G(t)x is (strictly) convex.

8



Here and in Lemma 2.14 and Theorem 2.15 below, we do not assume that G is continuous.
Note that the properties introduced in the preceding definition depend only on the symmetriza-
tion, 1

2
(G> + G), of G. We have the following simple result on two properties introduced in

Definition 2.13.

Lemma 2.14. Suppose that G : [0,∞) → RK×K is a nonincreasing and positive definite decay
kernel. Then G is nonnegative.

If G is nonincreasing, nonnegative, and convex, then so is the function gx(t) := x>G(t)x for
each x ∈ RK . Hence, t 7→ gx(|t|) is a positive definite function due to a criterion often attributed
to Pólya [1949], although this criterion is also an easy consequence of Young [1913]. It hence

follows from Corollary 2.11 that also the matrix-valued function G̃ is positive definite as soon as
G is symmetric and continuous. But an even stronger result is possible: G is even strictly positive
definite as soon as gx is nonincreasing, nonnegative, convex, and nonconstant for each nonzero
x ∈ RK . This is the content of our subsequent theorem, which extends the corresponding result
for K = 1 (see Theorems 3.9.11 and 3.1.6 in Sasvári [2013] or Proposition 2 in Alfonsi et al.
[2012] for two different proofs) and is of independent interest.

Theorem 2.15. If G : [0,∞) → RK×K is symmetric, nonnegative, nonincreasing, and convex
then G is positive definite. Moreover, G is even strictly positive definite if and only if t 7→ x>G(t)x
is nonconstant for each nonzero x ∈ RK.

We will see in Proposition 3.9 that in Theorem 2.15 we can typically not dispense of the
requirement that G is symmetric to conclude positive definiteness.

2.4 Commuting decay kernels

We will now introduce another property that one can require from a decay kernel.

Definition 2.16. A decay kernel G : [0,∞) → RK×K is called commuting if G(t)G(s) =
G(s)G(t) holds for all s, t ≥ 0.

If a symmetric decay kernel is commuting, it may be simultaneously diagonalized, and its
properties can be characterized via the resulting collection of one-dimensional decay kernels, as
explained in the following proposition.

Proposition 2.17. A symmetric decay kernel G is commuting if and only if there exists an
orthogonal matrix O and functions g1, . . . , gK : [0,∞)→ R such that

G(t) = O>diag(g1(t), . . . , gK(t))O. (11)

Moreover, the following assertions hold.

(a) G is (strictly) positive definite if and only if the R-valued functions t 7→ gi(t) are (strictly)
positive definite for all i.

(b) G is nonnegative if and only if gi(t) ≥ 0 for all i and t.

(c) G is nonincreasing if and only if gi is nonincreasing for all i.

9
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Figure 1: Optimal strategy ξ for X0 = (10, 0), N = 23, and the strictly positive definite decay
kernel G(t) = exp(−(tB)2) for B =

(
1 ρ
ρ 1

)
. The first component of ξ is plotted in green, the

second component in black. Note that the amplitude of the oscillations exceeds the initial asset
position by a factor of more than 110. That G is strictly positive definite follows from Remark
2.20.

(d) G is convex if and only if gi is convex for all i.

(e) If G is positive definite, then a strategy ξ = (ξ1, . . . , ξ|T|) ∈ Xdet(T, X0) is optimal if and
only if it is of the form

ξj = O>(η1
j , . . . , η

K
j )>,

where ηi = (ηi1, . . . , η
i
|T|) ∈ R|T| ⊗ R is an optimal strategy in Xdet(T, (OX0)i) for the one-

dimensional decay kernel gi (here (OX0)i denotes the ith component of the vector OX0).

For K = 1, we know that a nonnegative nonincreasing convex function is positive definite,
and even strictly positive definite when it is nonconstant. Thus, Proposition 2.17 implies Theo-
rem 2.15 in the special situation of commuting decay kernels.

In the case K = 1, Alfonsi et al. [2012] observed that there exist nonincreasing, nonnegative,
and strictly positive definite decay kernels G for which the optimal strategies exhibit strong
oscillations between buy and sell orders (“transaction-triggered price manipulation”); see Figure 1
for an example in our multivariate setting. Theorem 1 in Alfonsi et al. [2012] gives conditions
that exclude such oscillatory strategies for K = 1 and guarantee that optimal strategies are
buy-only or sell-only: G should be nonnegative, nonincreasing, and convex. For K > 1, however,
the situation changes and one cannot expect to exclude the coexistence of buy and sell orders in
the same asset. The reason is that liquidating a position in a first asset may create a drift in the
price of a second asset through cross-asset price impact. Exploiting this drift in the second asset
via a round trip may help to mitigate the costs resulting from liquidating the position in the first
asset; see Figure 2. Therefore one cannot hope to completely rule out all round trips for decay
kernels that are not diagonal. Nevertheless, our next result gives conditions on G under which
optimal strategies can be expressed as linear combinations of K strategies with buy-only/sell-
only components which leads to a uniform bound of the total number of shares traded by the
optimal strategy, preventing large oscillations as in Figure 1. This result will also allow us to
construct minimizers on non-discrete time grids in Section 2.5 below.
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Proposition 2.18. Let G be a symmetric, nonnegative, nonincreasing, convex and commuting
decay kernel. Then there exist an orthonormal basis v1, . . . , vK of RK and, for each time grid T,
optimal strategies ξ(i) ∈Xdet(T, vi), i = 1, . . . , K, such that the following conditions hold.

(a) The components of each ξ(i) consist of buy-only or sell-only strategies. More precisely, for

i, j ∈ {1, . . . , K} and n,m ∈ {1, . . . , |T|} we have ξ
(i),j
m ξ

(i),j
n ≥ 0.

(b) For X0 =
∑K

i=1 αivi ∈ RK given, ξ :=
∑K

i=1 αiξ
(i) is an optimal strategy in Xdet(T, X0).

Note that for K = 1 every decay kernel is symmetric and commuting. Hence, for K = 1 the
preceding proposition reduces to Theorem 1 in Alfonsi et al. [2012]: The optimal strategy for a
one-dimensional, nonconstant, nonnegative, nonincreasing, and convex decay kernel is buy-only
or sell-only.

Remark 2.19. Oscillations of trading strategies as those observed in Figure 1 can be prevented
by adding sufficiently high transaction costs to each trade. Such transaction costs arise naturally
if only market orders are permitted; see, e.g., Sections 7.1 and 7.2 in Busseti and Lillo [2012]. As
discussed in Remark 2.2, however, actual trading strategies will often incur much lower trans-
action costs than strategies that only use market orders and, if transaction costs are sufficiently
small, oscillations may only be dampened but not be completely eliminated. As a matter of fact,
oscillatory trading strategies of high-frequency traders played a major role in the “Flash Crash”
of May 6, 2010; see CFTC-SEC [2010, p. 3].

Propositions 2.17 and 2.18 give not only a characterization of nice properties of certain de-
cay kernels. They also provide a way of constructing decay kernels G that have all desirable
properties. One simply needs to start with an orthogonal matrix O and nonincreasing, con-
vex, and nonconstant functions g1, . . . , gK : [0,∞) → [0,∞) and then define a decay kernel as
G(t) = O>diag(g1(t), . . . , gK(t))O. A special case of this construction is provided by the so-called
matrix functions, which we will explain in the sequel; see also Section 3.2 for several examples in
this context.

Let g : [0,∞)→ R be a function and B ∈ S+(K). Then there exists an orthogonal matrix O
such that B = O>diag(ρ1, . . . , ρK)O, where ρ1, . . . , ρK ≥ 0 are the eigenvalues of B. The matrix
g(B) ∈ S(K) is then defined as

g(B) := O>diag(g(ρ1), . . . , g(ρK))O; (12)

see, e.g., Donoghue [1974]. We can thus define a decay kernel G : [0,∞)→ S(K) by

G(t) = g(tB) = O>diag(g(tρ1), . . . , g(tρK))O, t ≥ 0. (13)

We summarize the properties of G in the following remark. In Section 3.2 we will analyze
decay kernels that arise as matrix exponentials and explicitly compute the corresponding optimal
strategies.

Remark 2.20. The decay kernel G defined in (13) is commuting. Moreover, it is of the form
(11) with gi(t) = g(tρi), and so Proposition 2.17 characterizes the properties of G. In particular,
it is positive definite if and only if t 7→ g(|t|) is a positive definite function. Moreover, it will
be nonnegative, nonincreasing, or convex if and only if g has the corresponding properties. In
addition, optimal strategies can be computed via Proposition 2.17 (e).
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Remark 2.21. Let G be a nonnegative, symmetric and commuting decay kernel, and f : [0,∞)→
[0,∞) be a convex nondecreasing function. We define the kernel F by F (t) := f(G(t)) as in (12).
We get easily from Proposition 2.17 that F is nonincreasing and convex if G is also nonincreasing
and convex. It is therefore positive definite in this case.

2.5 Strategies on non-discrete time grids

If T and T′ are time grids such that T ⊂ T′, then X (T, X0) ⊂X (T′, X0) and hence

min
ξ∈X (T,X0)

E[CT(ξ) ] ≥ min
ξ′∈X (T′,X0)

E[CT′(ξ
′) ].

It is therefore clear that problem of minimizing E[CT(ξ) ] jointly over ξ ∈ X (T, X0) and time
grids T has in general no solution within the class of finite time grids. For this reason it is natural
to consider an extension of our framework to non-discrete time grids. For the one-dimensional
case K = 1 a corresponding framework was developed in Gatheral et al. [2012]. Proposition 2.18
(b) will enable us to obtain a similar extension in our present framework.

Definition 2.22. Let T be an arbitrary compact subset of [0, T ]. An admissible strategy for T is
a left-continuous, adapted, and bounded K-dimensional stochastic process (Xt) such that t 7→ X i

t

is of finite variation for i = 1, . . . , K and satisfies Xt = 0 for all t > T . We assume furthermore
that the vector-valued random measure dXt is supported on T and that its components have
P-a.s. bounded total variation. The class of strategies with given initial condition X0 will be
denoted by X (T, X0), the subset of deterministic strategies in X (T, X0) will be denoted by
Xdet(T, X0).

If T = {t1, . . . , tN} is a finite time grid and ξ ∈ X (T, X0) is an admissible strategy in the
sense of Definition 2.1, then

Xξ
t := X0 −

∑
tk∈T, tk<t

ξk (14)

is an admissible strategy in the sense of Definition 2.22. Therefore Definition 2.22 is consistent
with Definition 2.1. Now let T be an arbitrary compact subset of [0, T ] and G be a decay kernel.
For X ∈X (T, X0) we define the associated costs as

CT(X) :=
1

2

∫
T

(∫
T
G̃(t− s) dXs

)>
dXt.

When T is a finite time grid, ξ ∈ X (T, X0), and Xξ is defined by (14) then we clearly have
CT(Xξ) = CT(ξ), and so also the definition of the cost functional is consistent with our earlier
definition for discrete time grids. We have the following result.

Theorem 2.23. Let G be a symmetric, nonnegative, nonincreasing, convex, nonconstant, and
commuting decay kernel and T be a compact subset of [0, T ]. Then the following assertions hold.

(a) For X0 ∈ RK there exists precisely one strategy X∗ ∈X (T, X0) that minimizes the expected
costs, E[CT(X) ], over all strategies X ∈X (T, X0). Moreover, X∗ is deterministic and can
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be characterized as the unique strategy in Xdet(T, X0) that solves the following generalized
Fredholm integral equation for some λ ∈ RK,∫

T
G̃(t− s) dXs = λ for all t ∈ T. (15)

(b) Let T denote the class of all finite time grids in T. Then

inf
T′∈T

min
ξ∈X (T′,X0)

E[CT′(ξ) ] = E[CT(X∗) ].

3 Examples

3.1 Constructing decay kernels by transformation

In this section we will now look at some transformations of decay kernels. The first of these
results concerns decay kernels of the simple form G(t) = g(t)L where g : [0,∞)→ R is a function
and L ∈ RK×K is a fixed matrix.

Proposition 3.1. For L ∈ S+(K) and a positive definite function g : R → R, the decay kernel
G(t) := g(t)L is positive definite. If, moreover, g is a strictly positive definite function and L is
a strictly positive definite matrix, then G is also strictly positive.

The simple decay kernels from the preceding proposition provide a class of examples to which
also the next result applies. In particular, by choosing in the subsequent Proposition 3.2 the
decay kernel as G(t) := g(t)Id for g : R → R positive definite and Id ∈ RK×K denoting the
identity matrix, one sees that the optimal strategies for decay kernels of the form g(t)L with
L ∈ S+(K) do not depend on the cross-asset impact g(t)Lij for i 6= j. Hence, cross-asset impact
will only become relevant when the components of G decay at varying rates.

Proposition 3.2. Let G be a decay kernel and define GL(t) := LG(t) for some L ∈ RK×K.
When both G and GL are positive definite, then every optimal strategy in Xdet(T, X0) for G is
also an optimal strategy for GL.

The main message obtained from combining Propositions 3.1 and 3.2 is the following: if the
price impact between all pairs of assets decays at the same rate, then cross-asset impact can be
ignored and one can simply consider each asset individually.

We show next that also congruence transforms preserve positive definiteness. This result
extends Proposition 2.17 (e).

Proposition 3.3. If G is a (strictly) positive definite decay kernel and L and an invertible
K ×K matrix, then GL := L>G(t)L is (strictly) positive definite. If, moreover, ξ is an optimal
strategy for G in Xdet(T, LX0), then ξL := (L−1ξ1, . . . , L

−1ξ|T|) is an optimal strategy for GL in
Xdet(T, X0).

Example 3.4 (Permanent impact). Let G(t) = G0, where G0 is any fixed matrix in RK×K .
For any time grid T, X0 ∈ RK , and ξ ∈ X (T, X0) we then have CT(ξ) = X>0 G0X0. Hence G is
positive definite as soon as G0 is nonnegative. By taking G0 such that X>0 G0X0 ≥ 0 for some
nonzero X0 and Y >0 G0Y0 < 0 for some other Y0 one gets an example illustrating that it is not
possible to fix X0 in part (a) of Proposition 2.6.
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3.2 Exponential decay kernels

In this section we will discuss decay kernels with an exponential decay of price impact. For
K = 1 exponential decay was introduced in Obizhaeva and Wang [2013] and further studied,
e.g., in Alfonsi et al. [2008] and Predoiu et al. [2011]. The next example extends the results from
Obizhaeva and Wang [2013] and Alfonsi et al. [2008] to a multivariate setting in which the decay
kernel is defined in terms of matrix exponentials. The remaining results of this section are stated
in a more general but two-dimensional context. The main message of these examples is that,
on the one hand, it is easy to construct decay kernels with all desirable properties via matrix
functions. But, on the other hand, it is typically not easy to establish properties such as positive
definiteness for decay kernels that are defined coordinate-wise.

Example 3.5 (Matrix exponentials). For an orthogonal matrix O, ρ1, . . . , ρK ≥ 0, and
B = O>diag(ρ1, . . . , ρK)O ∈ S+(K), the decay kernel G(t) = exp(−tB) is of the form (13)
with g(t) = e−t. It follows that G is nonnegative, nonincreasing, and convex. In particular, G
is positive definite. When the matrix B is strictly positive definite, as we will assume from now
on, the decay kernel G is even strictly positive definite. We now compute the optimal strategy
ξ = (ξ1, . . . , ξN) for an initial portfolio X0 ∈ RK and time grid T = {t1, . . . , tN}. To this end,
we will use part (e) of Proposition 2.17. Let ηi := (ηi1, . . . , η

i
N) be the optimal strategy for the

initial position yi and for the one-dimensional decay kernel gi(t) = e−tρi . Let

ain := e−(tn−tn−1)ρi and λi :=
−yi

2
1+ai2

+
∑N

n=3
1−ain
1+ain

.

Theorem 3.1 in Alfonsi et al. [2008] implies that the optimal strategy ηi = (ηi1, . . . , η
i
N) in

Xget(T, yi) is given by

ηi1 =
λi

1 + ai2
, ηin =

( 1

1 + ain
−

ain+1

1 + ain+1

)
λi for n = 2, . . . , N − 1, and ηiN =

λi
1 + aiN

.

Via part (e) of Proposition 2.17, we can now compute the optimal strategy ξ. Consider first
the optimal strategy η for the decay kernel D(t) := diag(exp(−ρ1t), . . . , exp(−ρKt)) and initial
position OX0. Then η = (η1, . . . ,ηK)> for yi := (OX0)i. When defining Qn := D(tn− tn−1) and

λ̃ = −

(
2(Id +Q2)−1 +

N∑
n=3

(Id−Qn)(Id +Qn)−1

)−1

OX0,

η = (η1, . . . , ηN) can be conveniently expressed as follows:

η1 = (1 +Q2)−1λ̃,

ηn = (Id +Qn)−1λ̃−Qn+1(Id +Qn+1)−1λ̃ for n = 2, . . . , N − 1,

ηN = (Id +QN)−1λ̃.

By part (e) of Proposition 2.17 the optimal strategy ξ for G and X0 is now given by ξ = OTη.
To remove O from these expressions, define An = e−(tn−tn−1)B = O>QnO and

λ := −
[
2
(
Id + A2

)−1
+

N∑
i=3

(
Id− Ai

)(
Id + Ai

)−1
]−1

X0.
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By observing that (Id + An)−1 = O>(Id + Qn)−1O and λ = O>λ̃, we find that the components
of the optimal strategy ξ are

ξ1 =
(
Id + A2

)−1
λ,

ξn =
(
Id + An

)−1
λ− An+1

(
Id + An+1

)−1
λ for n = 2, . . . , N − 1,

ξN =
(
Id + AN

)−1
λ.

Let us finally consider the situation of an equidistant time grid, ti = i−1
N−1

. In this case, all
matrices Ai are equal to a single matrix A. Our formula for λ then becomes

λ = −(Id + A)
(
NId− (N − 2)A

)−1

X0.

The formula for the optimal strategy thus simplifies to

ξ1 = −
(
NId− (N − 2)A

)−1

X0,

ξi = (Id− A)ξ1 for i = 2, . . . , N − 1,

ξN = ξ1.

It is not difficult to extend this result to the setting of Section 2.5 by arguing as in Gatheral
et al. [2012, Example 2.12]. The details are left to the reader. ♦

When g : R → R is an analytic function, the definition of g(B) is also possible for nonsym-
metric matrices by letting

g(B) :=
∞∑
k=0

akB
k,

where g(x) =
∑∞

k=0 akx
k is the power series development of g. In the following example we

analyze the properties of the decay kernel G(t) := exp(−tB) for the particular nonsymmetric
but strictly positive 2 × 2-matrix B = ( b 1

0 b ) with b > 0. We will see that G may or may not
be positive definite, according to the particular choice of b. Thus, our general results obtained
for decay kernels defined as matrix functions of symmetric matrices do not carry over to the
nonsymmetric case.

Example 3.6 (Nonsymmetric matrix exponential decay). Let B = ( b 1
0 b ), where b > 0 and

consider the following decay kernel

G(t) = e−tB =

(
exp(−tb) −t exp(−tb)

0 exp(−tb)

)
.

Applying Lemmas 5.2 and 5.3, we easily see that G is not symmetric, not nonnegative, not
nonincreasing, and not convex. But G is positive definite if and only if b ≥ 1/2. To see this, we

observe by calculating the inverse Fourier transform that G̃(t) =
∫
R e

itzM(z) dz with

M(z) =
1

π

(
b

b2+z2
−1

2(b+iz)2
−1

2(b−iz)2
b

b2+z2

)
.
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Figure 2: Optimal strategy ξ for G as in Corollary 3.8 with κ = 1, κ̃ = 1.8, ρ = 0.3, X0 =
(−50, 1)>, T = 5, and N = 11. Left: ξ1

1 , . . . , ξ
1
11, right: ξ2

1 , . . . , ξ
2
11.

From Theorem 2.10 and Lemma 5.2, G is positive definite if and only if for all z ∈ R

1

4

1

(b2 + z2)2
≤
(

b

b2 + z2

)2

,

which is in turn equivalent to 1/2 ≤ b. ♦

For the following results we no longer require that the decay kernel is given in the particular
form of a matrix function.

Proposition 3.7. Let

G(t) =

(
a11 exp(−b11t) a12 exp(−b12t)
a21 exp(−b21t) a22 exp(−b22t)

)
with a11, a12, a21, a22, b11, b12, b21, b22 > 0.

(a) G is nonnegative if and only if min{b12, b21} ≥ 1
2
(b11 + b22) and 1

4
(a12 + a21)2 ≤ a11a22.

(b) G is nonincreasing if and only if min{b12, b21} ≥ 1
2
(b11 + b22) and 1

4
(a12b12 + a21b21)2 ≤

a11b11a22b22.

(c) G is convex if and only if min{b12, b21} ≥ 1
2
(b11 +b22) and 1

4
(a12b

2
12 +a21b

2
21)2 ≤ a11b

2
11a22b

2
22.

(d) Let G be nonincreasing and a12 = a21. Then G is positive definite.

(e) G is commuting if and only if either b11 = b12 = b21 = b22, or b11 = b22 and b12 = b21 and
a11 = a22.

For the following simpler and symmetric decay kernel, the results follow immediately from
the preceding proposition. See Figure 2 for an illustration of a corresponding optimal strategy.

Corollary 3.8. Let ρ, κ, κ̃ > 0 and

G(t) =

(
exp(−κt) ρ exp(−κ̃t)
ρ exp(−κ̃t) exp(−κt)

)
.

(a) G is nonnegative if and only if κ
κ̃
≤ 1 and ρ ≤ 1.
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(b) G is nonincreasing if and only if ρ ≤ κ
κ̃
≤ 1. In this case, it is also nonnegative.

(c) G is convex if and only if ρ ≤ κ2

κ̃2
≤ 1.

(d) If G is nonincreasing, G is positive definite.

(e) G is commuting.

The following proposition shows that we cannot drop the assumption of symmetry in Theo-
rem 2.15 in general.

Proposition 3.9. Let

G(t) =

(
exp(−t ∧ 1) 1

8
exp(−2(t ∧ 1))

1
8

exp(−3(t ∧ 1)) exp(−t ∧ 1)

)
.

G is continuous, convex, nonincreasing, and nonnegative, but not positive definite.

3.3 Linear decay

In this section, we analyze linear decay of price impact for K = 2 assets.

Proposition 3.10. Let

G(t) =

(
(a11 − b11t)

+ (a12 − b12t)
+

(a21 − b21t)
+ (a22 − b22t)

+

)
with a11, a12, a21, a22, b11, b12, b21, b22 > 0.

(a) G is nonnegative if and only if max{a12
b12
, a21
b21
} ≤ min{a11

b11
, a22
b22
} and 1

4
(a12 + a21)2 ≤ a11a22.

(b) G is nonincreasing if and only if max{a12
b12
, a21
b21
} ≤ min{a11

b11
, a22
b22
} and 1

4
(b12 + b21)2 ≤ b11b22.

(c) Assume that max{a12
b12
, a21
b21
} ≤ min{a11

b11
, a22
b22
} and a12 = a21. Then, G is positive definite if

and only if G is symmetric (i.e. a12 = a21 and b12 = b21), a11
b11

= a12
b12

= a22
b22

and b2
12 ≤ b11b22.

In this case, we set λ = a11
b11

and have

G(t) = (λ− t)+

(
b11 b12

b12 b22

)
,

and G is also nonincreasing, convex, and commuting.

4 Conclusion

Our goal in this paper was to analyze a linear market impact model with transient price impact
for K different risky assets. We were in particular interested in the question which properties a
decay kernel should satisfy so that the corresponding market impact model has certain desirable
features and properties. Let us summarize some of the main messages for the practical application
of transient price impact models that can be drawn from our results.
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(a) To exclude price manipulation in the sense of Huberman and Stanzl [2004] and to guarantee
the existence of optimal strategies, decay kernels should be positive definite in the sense of
Definition 2.9 (Propositions 2.6 and 2.7 and Lemma 2.8).

(b) Requiring only positive definiteness is typically not sufficient to guarantee that optimal
strategies are well-behaved (Figure 1). In particular, the nonparametric estimation of
decay kernels can be problematic.

(c) Assuming that the decay kernel is symmetric, nonnegative, nonincreasing, convex, and
commuting guarantees that optimal strategies have many desirable properties and can easily
be computed (Propositions 2.17 and 2.18). The additional assumption that t 7→ x>G(t)x
is nonconstant for all x ∈ RK guarantees that optimal strategies are unique (Theorem 2.15
and Proposition 2.7). In this setting, one can also optimize jointly over time grids and
strategies and pass to a continuous-time limit.

(d) Matrix functions (13) provide a convenient method for constructing decay kernels satisfying
the properties from (c). Optimal strategies for matrix exponential decay can be computed
in closed form (Example 3.5).

(e) If the price impact between all asset pairs decay at a uniform rate, then cross-asset impact
can be ignored and one can consider each asset individually (Propositions 3.1 and 3.2).

5 Proofs

Proof of Lemma 2.3. Using the continuity of G and the right-continuity of S0, we have

−E[ R(ξ) ] = E
[ 1

2

N∑
k=1

ξ>k (Sξ
tk+ + Sξ

tk
)
]

= E
[ N∑

k=1

ξ>k S
0
tk

]
+ E

[
1

2

N∑
k=1

ξ>k G(0)ξk +
N∑
k=1

k−1∑
`=1

ξ>k G(tk − t`)ξ`
]
.

From the martingale property of S0 and the requirement that
∑N

k=1 ξk = −X0 we obtain that

E
[ N∑

k=1

ξ>k S
0
tk

]
= E

[ N∑
k=1

ξ>k S
0
T

]
= −X>0 S0

0 .

Furthermore,

1

2

N∑
k=1

ξ>k G(0)ξk +
N∑
k=1

k−1∑
`=1

ξ>k G(tk − t`)ξ`

=
1

2

N∑
k=1

ξ>k G̃(0)ξk +
1

2

N∑
k=1

k−1∑
`=1

ξ>k G̃(tk − t`)ξ` +
1

2

N∑
k=1

k−1∑
`=1

ξ>` G̃(t` − tk)ξk = CT(ξ).

This proves (4).
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Proof of Lemma 2.4. Suppose that a minimizer η ∈ X (T, X0) of E[CT(η) ] exists but that,
by way of contradiction, there is no deterministic minimizer of CT(·). Then there can be no
ξ ∈ Xdet(T, X0) such that CT(ξ) ≤ E[CT(η) ]. Since η(ω) ∈ Xdet(T, X0) for P-a.e. ω, we must
thus have CT(η(ω)) > E[CT(η) ] for P-a.e. ω ∈ Ω. But this is a contradiction. The proofs of the
remaining assertions are also obvious and left to the reader.

Proof of Proposition 2.6. The equivalence of conditions (a) and (b) follows from Lemma 2.4.
To prove the equivalence of (b) and (c), it is sufficient to observe that CT(ξ) is a quadratic

form on R|T| ⊗ RK , and it is well known that a quadratic form is convex if and only if it is
nonnegative.

We next prove the equivalence of (b) and (d). Clearly, (d) immediately implies (b) using
the representation (5) of CT(·) and comparing it with (8) with zi ∈ RK . For the proof of the
converse implication, we fix t1, . . . , tN ∈ R. , Clearly we can assume without loss of generality
that T = {t1, . . . , tN} is a time grid in the sense that 0 = t1 < t2 < · · · < tN . An N -tuple
ζ := (ζ1, . . . , ζN) with ζi ∈ CK can be regarded as an element in the tensor product CN ⊗ CK .
Let us thus define the linear map L : CN ⊗ CK → CN ⊗ CK by

Lζ =
( N∑
j=1

G̃(t1 − tj)ζj,
N∑
j=1

G̃(t2 − tj)ζj, . . . ,
N∑
j=1

G̃(tN − tj)ζj
)
. (16)

We claim that L is Hermitian. Indeed, for η, ζ ∈ CN ⊗ CK , the inner product in CN ⊗ CK

between η and Lζ is given by

〈η,Lζ〉 =
N∑

i,j=1

η∗i G̃(ti − tj)ζj =
N∑

i,j=1

ζ∗j G̃(ti − tj)∗ηi =
N∑

i,j=1

ζ∗j G̃(tj − ti)ηi = 〈ζ,Lη〉,

where we have used the fact that G̃(ti − tj)
∗ = G̃(ti − tj)

> = G̃(tj − ti). It follows that the
restriction of L to RN⊗RK is symmetric and, due to condition (b), satisfies 0 ≤ CT(ξ) = 〈ξ,Lξ〉
for all ξ ∈ RN ⊗ RK . By the symmetry of L and since L has only real entries, it follows that
〈ζ,Lζ〉 ≥ 0 for all ζ ∈ CN ⊗ CK , which is the same as (8) and hence yields (d). The remaining
assertions are obvious.

Proof of Proposition 2.7. We first show the existence of optimal strategies when G̃ is positive
definite. We will use the notation introduced in the proof of Proposition 2.6. For X0 ∈ RK

and T with N = |T| fixed, the minimization of CT(ξ) over ξ ∈ Xdet(T, X0) is equivalent to the
minimization of the symmetric and positive semidefinite quadratic form RN ⊗RK 3 ξ 7→ 〈ξ,Lξ〉
under the equality constraint Aξ = X0, where L is as in (16) and A : RN⊗RK → RK is the linear
map Aξ :=

∑N
k=1 ξk. For fixed η ∈ Xdet(T, X0), every other ξ ∈ Xdet(T, X0) can be written as

ξ = η + ξ0 for some ξ0 ∈Xdet(T, 0). Then, due to the symmetry of L,

〈ξ,Lξ〉 = 〈η,Lη〉+ 2〈Lη, ξ0〉+ 〈ξ0,Lξ0〉,

and our problem is now equivalent to the unconstraint minimization of the right-hand expression
over ξ0 ∈ Xdet(T, 0). Clearly, Lξ0 = 0 implies that also 2〈Lη, ξ0〉 = 2〈η,Lξ0〉 = 0. Therefore
the existence of minimizers follows from Section 2.4.2 in Boot [1964].

The uniqueness of optimal strategies for strictly positive definite G̃ follows immediately from
the strict convexity of ξ 7→ CT(ξ) (see Proposition 2.6). The characterization of optimal strategies
through Lagrange multipliers as in (9) is standard.
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Proof of Lemma 2.8. (a) That H(0) is nonnegative definite follows by taking N = 1 in (8). To
show H(−t) = H(t)∗ for any given t ∈ R we take N = 2 in (8) and let t1 = 0 and t2 = t.
It follows from the preceding assertion that z∗1H(−t)z2 + z∗2H(t)z1 must be a real number for
all z1, z2 ∈ CK . Taking z1 = c1ei and z2 = c2ej with ck ∈ C and e` denoting the `th unit
vector in RK yields that c1c2Hij(−t) + c1c2Hji(t) ∈ R, where c denotes the complex conjugate
of c ∈ C. Choosing c1 = c2 = 1 gives Im(Hij(−t)) = − Im(Hji(t)) and c1 = 1, c2 = i yields
Re(Hij(−t)) = Re(Hji(t)).

(b) For t1, . . . , tN ∈ R, we define t̃i = tN − tN+1−i and get from part (a) that for ζ ∈ CN ⊗CK

0 ≤
N∑

i,j=1

ζ∗N+1−iH(t̃i − t̃j)ζN+1−j =
N∑

i,j=1

ζ∗N+1−iH(−(tN+1−i − tN+1−j))ζN+1−j

=
N∑

i,j=1

ζ∗iH(ti − tj)∗ζj.

Proof of Corollary 2.11. For the proof of implication (c)⇒(b), we note first that the matrix
M(dγ) is symmetric, as M is nonnegative definite and RK×K-valued. This implies that the matrix
H(t) is also symmetric for all t. Next, the symmetry of M on R implies that the imaginary
part of

∫
R e

iγtMk`(dγ) is equal to
∫∞

0

(
sin(tγ) + sin(−tγ)

)
Mk`(dγ) = 0. Therefore, H takes

values in RK×K and, in turn, in S(K). We next define a finite R+-valued measure µ through
µ(A) := x>M(A)x for A ∈ B(R). Then the function t 7→ x>H(t)x is the Fourier transform of µ
and hence a positive definite function by Bochner’s theorem.

To prove (b)⇒(a), we will establish condition (b) of Theorem 2.10. To this end, write z ∈ CK

as z = x+ iw, where x,w ∈ RK and i =
√
−1. Then z∗H(t)z = x>H(t)x+w>H(t)w due to the

symmetry of H(t). Hence t 7→ z∗H(t)z is the sum of two real-valued positive definite functions
and therefore positive definite.

To prove (a)⇒(c), note that each component Hk` of H is equal to the Fourier transform of
the complex measure Mk`. Since Mk` is uniquely determined through Hk` and since Hk` = H`k

we must have that Mk` = M`k. But a symmetric matrix can be nonnegative definite, and hence
Hermitian, only if it is real. Therefore we must have M(A) ∈ S+(K) for all A ∈ B(R). Finally,
the fact that the symmetric positive definite matrix-valued function Hk` takes only real values
implies via Lemma 2.8 (a) that H(−t) = H(t). Therefore, H is equal to the Fourier transform
of the measure N(A) := 1

2
(M(A) + M(−A)), A ∈ B(R). But, since M is uniquely determined

by H according to Theorem 2.10, we get that N = M , and so M must be symmetric on R.

Proof of Lemma 2.14. We assume by way of contradiction that there exist x ∈ RK , t∗ > 0 and
ε > 0 such that gx(t) := x>G(t)x satisfies gx(t∗) = −ε. We are going to show that the function
gx is not positive definite. Set tk = k · t∗ and xk = 1 for k ∈ N. Since |tk − tl| ≥ t∗ for k 6= l
and gx is nonincreasing, we have gx(|tk − tl|) ≤ −ε for k 6= l. Thus,

∑n
k,l=1 xkxlg

x(|tk − tl|) ≤
ngx(0)− (n2−n) ε. If n is large enough, the latter expression is negative. Thus, gx is not positive
definite, and so G can not be positive definite.

We now start preparing the proof of Theorem 2.15 and give a representation of a convex,
nonincreasing, nonnegative, and symmetric function G : [0,∞) → RK×K . To this end, let us
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first observe that, for such G, the limit G(∞) := limt↑∞G(t) is well defined in the set of non-
negative definite matrices. Indeed, for any x ∈ RK , gx(t) = x>G(t)x is a convex, nonincreasing,
nonnegative function and thus converges to a limit that we denote by gx(∞). Let ei denote the
ith unit vector. By polarization, we have Gij(t) = 1

4
(gei+ej(t) − gei−ej(t)), and this expression

converges to Gij(∞) = 1
4
(gei+ej(∞)− gei−ej(∞)). In particular, we have gx(∞) = x>G(∞)x for

any x ∈ RK .

Proposition 5.1. Let G : [0,∞) → RK×K be convex, nonincreasing, nonnegative, symmet-
ric, and continuous. There exists a nonnegative Radon measure µ on (0,∞) and a measurable
function Λ : (0,∞)→ S+(K) such that

G(t) = G(∞) +

∫
(0,∞)

(r − t)+Λ(r)µ(dr). (17)

Furthermore, G is the Fourier transform of the nonnegative definite matrix-valued measure

M(dγ) = G(∞) δ0(dγ) + Φ(γ) dγ,

where Φ : R→ S+(K) is the continuous function given by

Φ(x) =
1

π

∫
(0,∞)

1− cosxy

x2
Λ(y)µ(dy).

Proof. By Lemmas 4.1 and 4.2 in Gatheral et al. [2012], we find that for every x ∈ RK there is
a Radon measure µx on (0,∞) such that

gx(t) = gx(∞) +

∫
(0,∞)

(r − t)+ µx(dr), t > 0. (18)

Moreover, gx(t) is the Fourier transform of the following nonnegative Radon measure on R

µx(dt) = x>G(∞)x δ0(dt) + ϕx(t) dt, (19)

where δ0 is the Dirac measure concentrated in 0 and

ϕx(t) =
1

π

∫
(0,∞)

1− cos ty

t2
µx(dy). (20)

We consider the finite set Z := {ei ± ej | i, j = 1, . . . , K} and define µ =
∑

z∈Z µz. Then each
µz with z ∈ Z is absolutely continuous with respect to µ and has the Radon-Nikodym derivative
λz = dµz/dµ. We set

Λij(r) :=
1

4

(
λei+ej(r)− λei−ej(r)

)
, r > 0. (21)

Clearly, Λij(r) = Λji(r), and it remains to prove that Λ is µ-a.s. nonnegative definite. Let x ∈ RK .

Since gx(t) = 1
4

∑K
i,j=1 xixj(g

ei+ej(t)− gei−ej(t)), we necessarily have from (18):

gx(t)− gx(∞) =

∫
(0,∞)

(r − t)+ µx(dr) =

∫
(0,∞)

(r − t)+

K∑
i,j=1

xixjΛij(r)µ(dr), t > 0.
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Writing (r− t)+ as
∫∞

0
1{t≤s<r} ds, integrating by parts, and taking derivatives with respect to t

gives

0 ≤ µx
(
(t,+∞)

)
=

∫
(t,+∞)

K∑
i,j=1

xixjΛij(r)µ(dr)

for any t ≥ 0 and so
∑K

i,j=1 xixjΛij(r) ≥ 0 for r 6∈ Nx, where Nx is such that µ(Nx) = 0. We

define N =
⋃
x∈QK Nx. Then µ(N) = 0 and, by continuity,

∑K
i,j=1 xixjΛij(r) ≥ 0 for all x ∈ RK

and r 6∈ N .
Now that we have shown µx(dr) =

∑K
i,j=1 xixjΛij(r)µ(dr), we get (17) from (18). Next, we

obtain from (20) that

ϕx(t) =
1

π

∫
(0,∞)

1− cos ty

t2

K∑
i,j=1

xixjΛij(y)µ(dy).

Again, we define by polarization Φ(t)ij = 1
4
(ϕei+ej(t)− ϕei−ej(t)). We then have

Φ(t) =
1

π

∫
(0,∞)

1− cos ty

t2
Λ(y)µ(dy),

and ϕx(t) = x>Φ(t)x. Together with (19), this gives the claim.

Proof of Theorem 2.15. From Theorem 2.10 and the fact that gx is positive definite for each x,
we already know that G is positive definite. Note also that G cannot be strictly positive definite
if there exists some nonzero x ∈ RK such that t 7→ x>G(t)x is constant, for then the choice
z1 = x and z2 = −x gives

∑2
i,j=1 z

∗
iG(ti − tj)zj = 0 for all t1, t2 ∈ R.

It thus remains to show that G strictly definite positive if ζ>G(t)ζ is nonconstant for any
ζ ∈ RK . We argue first that, in proving this assertion, we can assume without loss of generality
that G is continuous. To this end, consider again the functions gx(t) := x>G(t)x for x ∈ RK .
As these functions are convex and nonincreasing, they are continuous on (0,∞) and admit right-
hand limits, gx(0+) := limt↓0 g

x(t) ≤ gx(0). Using polarization as in the paragraph preceding
Proposition 5.1, we thus conclude that G is continuous on (0,∞), admits a right-hand limit
G(0+), and that ∆G(0) := G(0) − G(0+) is nonnegative definite. On the other hand, the
continuous matrix-valued function Gcont(t) := G(t+) also satisfies our assumptions and so will
be strictly positive definite when the assertion has been established for continuous matrix-valued
functions. But then G(t) = Gcont(t)+1{0}(t)∆G(0) will also be strictly positive definite, because
∆G(0) is nonnegative definite.

Now, let M , Φ, Λ, and µ be as in Proposition 5.1. It follows from this proposition that for
ζ = (ζ1, ζ2, . . . , ζN) ∈ CN ⊗ CK and t1, t2, . . . , tN ∈ R

N∑
k,`=1

ζ∗kG̃(tk − t`)ζ` =
N∑

k,`=1

ζ∗k

(∫
R
ei(tk−t`)γM(dγ)

)
ζ`

=
( N∑
k=1

ζk

)∗
G(∞)

( N∑
k=1

ζk

)
+

∫ ( N∑
k=1

e−itkγζk

)∗
Φ(γ)

( N∑
k=1

e−itkγζk

)
dγ

= v(0)∗G(∞)v(0) +

∫
v(γ)∗Φ(γ)v(γ) dγ,
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where v(γ) :=
∑N

k=1 e
−itkγζk. We are now going to show that

∫
v(γ)∗Φ(γ)v(γ) dγ is strictly

positive unless ζ = 0. To this end, we note first that the components of the vector field v(·) are
holomorphic functions of γ ∈ C. When ζ 6= 0, at least one of these components is nonconstant
and hence vanishes only for at most countably many γ ∈ R. It follows that v(γ) 6= 0 for all but
countably many γ ∈ R. Moreover, we are going to argue next that the matrix Φ(γ) is strictly
positive definite for all but countably many γ ∈ R. Thus, v(γ)∗Φ(γ)v(γ) > 0 for Lebesgue-almost

every γ ∈ R, and it will follow that
∑
ζ∗kG̃(tk − t`)ζ` > 0.

So let us show now that the matrix Φ(γ) is strictly positive definite for all but countably
many γ ∈ R. To this end, we first note that for z ∈ CK

gz(t) = z∗G(∞)z +

∫
(0,∞)

(r − t)+z∗Λ(r)z µ(dr).

Since the matrix Λ(r) is nonnegative definite for all r, the fact that gz is nonconstant for z 6= 0
implies that ∫

(0,∞)

z∗Λ(r)z µ(dr) > 0 for z 6= 0. (22)

Now let D be the set of all y > 0 such that µ({y}) > 0, and let

µd(E) := µ(D ∩ E) and µc(E) := µ(Dc ∩ E)

be the discrete and continuous parts of µ, respectively. Clearly,

N :=
{
x ∈ R

∣∣ cosxy = 1 for some y ∈ D
}

=
⋃
y∈D

{
x ∈ R

∣∣ cosxy = 1
}

is at most countable. Moreover, the set {y > 0 | cosxy = 1} is a µc-nullset for all x 6= 0. It
thus follows that the measure 1−cosxy

x2
µ(dy) is equivalent to µ for all x /∈ N ∪{0}. Therefore (22)

implies that

z∗Φ(x)z =
1

π

∫
(0,∞)

1− cosxy

x2
z∗Λ(r)z µ(dy) > 0

for all z 6= 0 as long as x /∈ N ∪ {0}. This concludes the proof.

Proof of Proposition 2.17. We first prove (11). To this end, give a constructive proof for the
existence of O. For t ∈ R, we write RK = Et

λ1(t) ⊕ · · · ⊕ Et
λ`(t)(t)

for the orthogonal direct sum

of the eigenspaces of G(t) corresponding to the distinct eigenvalues λ1(t), . . . λ`(t)(t) of G(t). It
follows from the commuting property that the eigenspaces of G(t) are stable under the map G(s),
because λi(t)G(s)v = G(t)G(s)v if v ∈ Eλi(t).

Let t1 ≥ 0 and define D1 =
∑`(t1)

i=1 (dim(Et1
λi(t1)) − 1)+ ≤ K − 1. If for any s ≥ 0 and

1 ≤ i ≤ `(t1) there is µi(s) such that G(s)v = µi(s)v for any v ∈ Et1
λi(t1), we are done by

considering an orthonormal basis (v1
i , . . . , v

di
i ) of each eigenspaces Et1

λi(t1) and by setting O =

(v1
1, . . . , v

d1
1 , . . . , v

1
` , . . . , v

d`
` ) for ` := `(t1). This is necessarily the case if D1 = 0. Otherwise,

there is t2 ≥ 0 such that, for at least one i ∈ {1, . . . , `(t1)}, the decomposition

Et1
λi(t1) = (Et2

λ1(t2) ∩ E
t1
λi(t1))⊕ · · · ⊕ (Et2

λ`(t2)(t2) ∩ E
t1
λi(t1))
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is such that

dim(Et1
λi(t1))− 1 >

λ`(t2)∑
k=0

(
dim(Et2

λk(t2) ∩ E
t1
λi(t1))− 1

)+
.

We write
RK =

⊕
1≤i1≤`(t1),1≤i2≤`(t2)

Et1
λi1 (t1) ∩ E

t2
λi2 (t2)

and have D2 =
∑`(t1)

i1=1

∑`(t2)
i2=1(dim(Et1

λi1 (t1)∩E
t2
λi2 (t2))− 1)+ < D1. Once again, we are done if there

is for any s ≥ 0, 1 ≤ i1 ≤ `(t1) and 1 ≤ i2 ≤ `(t2), µi1,i2(s) such that G(s)v = µi1,i2(s)v for any
v ∈ Et1

λi1 (t1) ∩ E
t2
λi2 (t2). This is the case when D2 = 0. Otherwise, there is t3 such that

D3 =

`(t1)∑
i1=1

`(t2)∑
i2=1

`(t3)∑
i3=1

(
dim(Et1

λi1 (t1) ∩ E
t2
λi2 (t2) ∩ E

t3
λi3 (t3))− 1

)+
< D2

and we repeat this procedure at most K times to get (11).
We now prove properties (a)—(e). Let vi be the ith column of O. Then vi is the eigenvector

of Gi(t) for the eigenvalue gi(t). A given x ∈ RK can be written as x =
∑K

i=1 αivi. Then

Ox =
∑K

i=1 αiei, where ei is the ith unit vector. It follows from (11) that gx(t) =
∑K

i=1 α
2
i gi(t).

From here, the assertions (a)—(d) are obvious. Part (e) follows from Proposition 3.3.

Proof of Proposition 2.18. Let O and g1, . . . , gK be as in Proposition 2.17. We let v1, . . . , vK be
the columns of O. By Theorem 1 from Alfonsi et al. [2012] there is a one-dimensional optimal
strategy ηi = (ηi1, . . . , η

i
|T|) ∈ Xdet(T, 1) for the one-dimensional, nonincreasing, nonnegative,

and convex decay kernel gi, and ηi has only nonnegative components. By part (e) of Propo-
sition 2.17, ξ(i) := ηivi is an optimal strategy for G in Xdet(T, vi) that satisfies condition (a).
When X0 =

∑K
i=1 αivi ∈ RK is given, the strategy with components αiη

ivi is an optimal strategy
in Xdet(T, X0) by Proposition 2.17 (e).

Proof of Theorem 2.23. The proof of part (a) can be performed along the lines of the proof of
Theorem 2.20 from Gatheral et al. [2012] by noting that Proposition 2.18 (b) yields an upper
bound on the number of shares traded by an optimal strategy ξ ∈X (S, X0) uniformly over finite
time grids S ⊂ T: ∑

1≤n≤|S|,1≤j≤K

|ξjn| ≤
K∑
i=1

|αi|
K∑
j=1

|vji |.

The details are left to the reader.
As for part (b), the argument from the proof of Theorem 2.20 in Gatheral et al. [2012] yields

in particular, that E[CTn(ξ(n)) ] decreases to E[CT(X∗) ] if T1 ⊂ T2 ⊂ · · · are finite time grids
such that

⋃
n Tn is dense in T and ξ(n) is an optimal strategy in X (Tn, X0). This proves (b).

Proof of Proposition 3.1. Let A ∈ RK×K be a symmetric square root of the nonnegative definite
matrix L so that L = A2 = A>A. For t1, . . . , tN ∈ R and ζ1, . . . , ζN ∈ CK let ηk := Aζk. It
follows that

N∑
k,`=1

ζ∗kG̃(tk − t`)ζ` =
N∑

k,`=1

ζ∗kA
>g(|tk − t`|)Aζ` =

N∑
k,`=1

η∗kg(|tk − t`|)η` =
K∑
i=1

N∑
k,`=1

ηikη
i
`g(|tk − t`|),
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which is nonnegative since the function g is positive definite. Now let g and L be even strictly
positive definite. Then the matrix A is nonsingular and so we have η1 = · · · = ηN = 0 if and
only if ζ1 = · · · = ζN = 0. It follows that in all other cases the right-hand side above is strictly
positive.

Proof of Prop. 3.2. Let ξ ∈ Xdet(T, X0) be an optimal strategy for the decay kernel G. By
Proposition 2.7 there exists a Lagrange multiplier λ ∈ RK such that

N∑
`=1

G̃(tk − t`)ξ` = λ for k = 1, . . . , |T|.

By multiplying both sides of this equation with L we obtain

N∑
`=1

G̃L(tk − t`)ξ` = Lλ for k = 1, . . . , |T|,

which, again by Proposition 2.7, implies that ξ is also optimal for GL.

Proof of Proposition 3.3. Since L is invertible, the transformation

ξ 7−→ ξL := (L−1ξ1, . . . , L
−1ξ|T|)

is a one-to-one map from Xdet(T, LX0) to Xdet(T, X0). We also have

0 ≤
∑
k,`

ξ>k G̃(tk − t`)ξ` =
∑
k,`

(ξLk )>G̃L(tk − t`)ξL`

for all T and ξ. Minimizing the two sums over the respective classes of strategies yields the
result.

To study the examples for K = 2 assets, we will frequently use the following simple lemma.

Lemma 5.2. For a, d ≥ 0 and b, c ∈ R, the matrix M := ( a bc d ) is nonnegative if and only if
1
4
(b + c)2 ≤ ad. When b ∈ C, the Hermitian matrix N :=

(
a b
b̄ d

)
is nonnegative definite if and

only if |b|2 ≤ ad.

Proof. The matrix M is nonnegative if and only if its symmetrization, M̃ := 1
2
(M + M>), is

positive definite. Since a symmetric matrix is nonnegative definite if and only if all its leading
principle minors are nonnegative and since det M̃ = ad − 1

4
(b + c)2, the result follows. In the

Hermitian case, the same condition on the minors holds.

Lemma 5.3. Let G : [0,∞) → RK×K and assume that G(t) =
∫ t

0
Λ(s)ds for t ≥ 0. Then, G

is nonincreasing if and only if −Λ(s) is nonnegative for a.e. s. If in addition Λ is piecewise
continuous, then G is convex if and only if −Λ is nonincreasing.

Proof. The function G is nonincreasing if and only if for any ζ ∈ RK ,
∫ t

0
ζ>Λ(s)ζds is nonin-

creasing. This gives ζ>Λ(s)ζ ≥ 0 for s 6∈ Nζ , where Nζ is a set with zero Lebesgue measure. We
define N = ∪ζ∈QKNζ and have by continuity ζ>Λ(s)ζ ≥ 0 for any s 6∈ N , ζ ∈ RK . The converse
implication as well as the other equivalence are obvious.
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Proof of Proposition 3.7. (a): By Lemma 5.2, G is nonnegative if and only if for every t ≥ 0

1

4
(a12 exp(−b12t) + a21 exp(−b21t))

2 ≤ a11 exp(−b11t)a22 exp(−b22t).

That is, if and only if

1

4
(a2

12 exp(−2b12t) + 2a12a21 exp(−(b12 + b21)t) + a2
21 exp(−2b21t)) ≤ a11a22 exp(−(b11 + b22)t).

If G is nonnegative, taking t = 0 shows 1
4
(a12 + a21)2 ≤ a11a22, while sending t → ∞ shows

min{b12, b21} ≥ 1
2
(b11 + b22). Conversely, if these inequalities hold, G is nonnegative.

(b): G is continuously differentiable. By Lemma 5.3, G is hence nonincreasing if and only if
for every t ≥ 0

−G′(t) =

(
a11b11 exp(−b11t) a12b12 exp(−b12t)
a21b21 exp(−b21t) a22b22 exp(−b22t)

)
is nonnegative. Analogously to (a), the result follows.

(c): Analogously to (b), by Lemma 5.3 G is convex if and only if for every ≥ 0 its second
derivative

G′′(t) =

(
a11b

2
11 exp(−b11t) a12b

2
12 exp(−b12t)

a21b
2
21 exp(−b21t) a22b

2
22 exp(−b22t)

)
is nonnegative. The result follows analogously to (a).

(d): The assumption a12 = a21 gives the continuity of G̃. We have that G̃(t) =
∫
R e

iγtM(dγ),
where M(dγ) = 1

2π
Λ(γ) dγ with the Hermitian matrix

Λ(γ) =

(
2 a11b11
b211+γ2

a12
b21−iγ + a12

b12+iγ
a12

b12−iγ + a12
b21+iγ

2 a22b22
b222+γ2

)
.

From Theorem 2.10, G is positive definite if and only if the matrix Λ(γ) is nonnegative for almost
all γ ∈ R. According to Lemma 5.2, this is equivalent to

a2
12(b12 + b21)2

(b2
12 + γ2)(b2

21 + γ2)
≤ 4

a11b11

b2
11 + γ2

a22b22

b2
22 + γ2

.

This condition is in turn equivalent to

a2
12(b12 + b21)2(b2

11 + γ2)(b2
22 + γ2) ≤ 4a11b11a22b22(b2

12 + γ2)(b2
21 + γ2).

Comparing the coefficients for γ0, γ2 and γ4, we see that it is sufficient to have

a2
12(b12 + b21)2b11b22 ≤ 4a11a22b

2
12b

2
21 (23)

a2
12(b12 + b21)2(b2

11 + b2
22) ≤ 4a11b11a22b22(b2

12 + b2
21) (24)

a2
12(b12 + b21)2 ≤ 4a11b11a22b22. (25)

Note that (25) follows immediately from (b), sinceG is nonincreasing and a12 = a21. To show (23),
note that

√
b11b22 ≤ 1

2
(b11 + b22) ≤ min{b12, b21}, so b11b22 ≤ (min{b12, b21})2 ≤ b12b21. Together

with (25) the result follows. Now, we claim that b2
11 + b2

22 ≤ b2
12 + b2

21, which together with (25)
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gives (24). To see this, we define m = min{b12, b21} and assume without loss of generality that
b11 ≤ b22. Since 1

2
(b11 + b22) ≤ m, we have b11 ∈ (0,m] and b2

11 + b2
22 ≤ (2m− b11)2 + b2

11 ≤ 2m2

because the polynomial function x ∈ [0,m] 7→ (2m−x)2+x2 reaches its maximum for x ∈ {0,m}.
(e): We find that the left upper entry of G(0)G(t) − G(t)G(0) is a12a21(e−b21t − e−b12t), so

G(0)G(t) = G(t)G(0) implies b12 = b21. Given that, a direct calculation shows that G(0)G(t) =
G(t)G(0) is equivalent to a11(e−b11t − e−b12t) + a22(e−b12t − e−b22t) = 0. If a11 = a22, this implies
b11 = b22. If a11 6= a22, by the equivalent equation a22 − a11 = a22e

−(b22−b12)t − a11e
−(b11−b12)t we

see that b11 = b22 = b12.
Conversely, if either a11 = a22 and b12 = b21 and b11 = b22, or b11 = b12 = b21 = b22, a direct

calculation shows that G(s)G(t) = G(t)G(s) for all s, t ≥ 0.

Proof of Proposition 3.9. G is obviously continuous and Proposition 3.7 yields that G is nonneg-
ative, nonincreasing and convex since −G′ is nonincreasing.

To show that G is not positive definite, using Mathematica we find that G(t) =
∫
R e

iγtM(dγ),
where M(dγ) = CΛ(γ) dγ + Dδ0(dγ) with a constant C > 0, a matrix D ∈ R2×2, the Dirac
measure δ0 at 0 and Λ(γ) given by(

2e2(− cos(γ)γ+eγ−sin(γ))
γ3+γ

5e3γ−((3+2e)γ+6i(−1+e)) cos(γ)+(i(−3+2e)γ−6(1+e)) sin(γ)
8γ(γ(γ+i)+6)

5e3γ−(3(γ+2i)+2e(γ−3i)) cos(γ)+(−2ieγ+3iγ−6e−6) sin(γ)
8γ(γ+2i)(γ−3i)

2e2(− cos(γ)γ+eγ−sin(γ))
γ3+γ

)
.

If G was positive definite, then all eigenvalues of Λ(γ) would be positive for γ 6= 0. But using
Mathematica we find that one eigenvalue of Λ(γ) is

1

8 (γ2 + 4) (γ2 + 9) (γ3 + γ)2

(
16e3

(
γ2 + 1

) (
γ2 + 4

) (
γ2 + 9

)
γ2

−16e2
(
γ2 + 1

) (
γ2 + 4

) (
γ2 + 9

)
γ(sin(γ) + γ cos(γ))

−
(
γ2
(
γ2 + 1

)4 (
γ2 + 4

) (
γ2 + 9

) ( (
9 + 4e2 + 25e6

)
γ2

−10e3(3 + 2e)γ2 cos(γ) + 12e
(
γ2 − 6

)
cos(2γ)

−60eγ sin(γ)
(
−2 cos(γ) + e3 + e2

)
+ 36

(
1 + e2

) )) 1
2
)
,

which is negative for all γ with 0 < |γ| < 0.02. So G is not positive definite.

Proof of Proposition 3.10. (a): By Lemma 5.2, G is nonnegative if and only if for every t ≥ 0

1

4
((a12 − b12t)

+ + (a21 − b21t)
+)2 ≤ (a11 − b11t)

+(a22 − b22t)
+.

Assume that G is nonnegative. Choosing t = 0 yields 1
4
(a12 + a21)2 ≤ a11a22. Choosing t =

min{a11
b11
, a22
b22
} yields that the right-hand side of the preceding equation is zero. So the left-hand

side has to be zero which implies that max{a12
b12
, a21
b21
} ≤ t.

Conversely, assume that 1
4
(a12 + a21)2 ≤ a11a22 and max{a12

b12
, a21
b21
} ≤ min{a11

b11
, a22
b22
}. So for any
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t ≥ 0, we have that max{(1− b12
a12
t)+, (1− b21

a21
t)+} ≤ min{(1− b11

a11
t)+, (1− b22

a22
t)+}. Thus,

1

4
((a12 − b12t)

+ + (a21 − b21t)
+)2 =

1

4

(
a12

(
1− b12

a12

t

)+

+ a21

(
1− b21

a21

t

)+
)2

≤ 1

4

(
(a12 + a21) max

{(
1− b12

a12

t

)+

,

(
1− b21

a21

t

)+
})2

≤ a11a22

(
min

{(
1− b11

a11

t

)+

,

(
1− b22

a22

t

)+
})2

≤ a11a22

(
1− b11

a11

t

)+(
1− b22

a22

t

)+

= (a11 − b11t)
+(a22 − b22t)

+.

So G is nonnegative.
(b): G is absolutely continuous with derivative

G′(t) =

(
−b111{t<a11

b11
} −b121{t<a12

b12
}

−b211{t<a21
b21
} −b221{t<a22

b22
}

)

By Lemmas 5.2 and 5.3, G is nonincreasing if and only if for almost all t > 0

1

4
(b121{t<a12

b12
} + b211{t<a21

b21
})

2 ≤ b111{t<a11
b11
}b221{t<a22

b22
}.

Assume G is nonincreasing. Then choosing t small enough shows 1
4
(b12 +b21)2 ≤ b11b22. Choosing

any t ≥ min{a11
b11
, a22
b22
} yields that the right-hand side of the preceding equation is zero. So the

left-hand-side has to be zero which implies max{a12
b12
, a21
b21
} ≤ min{a11

b11
, a22
b22
}.

Conversely, if 1
4
(b12 + b21)2 ≤ b11b22 and max{a12

b12
, a21
b21
} ≤ min{a11

b11
, a22
b22
}, it is obvious that G is

nonincreasing.
(c): By computing the inverse Fourier transform, we easily get that for a, b+, b− > 0,

1{t≥0}(a− b+t)
+ + 1{t<0}(a+ b−t)

+ =

∫
R
eiγt

1

2πγ2

(
b+(1− e−

aγ
b+ ) + b−(1− e

aγ
b− )
)
dγ.

Thanks to the assumption a12 = a21, G̃ is continuous and G̃(t) =
∫
R e

iγtM(dγ) with M(dγ) =
1

2πγ2
Λ(γ)dγ, with the Hermitian matrix

Λ(γ) =

(
2b11(1− cos(a11

b11
γ)) b12(1− e

−ia12γ
b12 ) + b21(1− e

ia12γ
b21 )

b21(1− e
−ia12γ
b21 ) + b12(1− e

ia12γ
b12 ) 2b22(1− cos(a22

b22
γ))

)
.

From Theorem 2.10, G is positive definite if and only if Λ(γ) is positive definite for every γ ∈ R.
Using Lemma 5.2, Λ(γ) is positive definite if and only if

|b12(1− e
−ia12γ
b12 ) + b21(1− e

ia12γ
b21 )|2 ≤ b11(1− cos(

a11

b11

γ))b22(1− cos(
a22

b22

γ)),
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i.e. if and only if(
b12(1− cos(

a12

b12

γ)) + b21(1− cos(
a12

b21

γ))

)2

+

(
b12 sin(

a12

b12

γ)− b21 sin(
a12

b21

γ)

)2

≤ 4b11(1− cos(
a11

b11

γ))b22(1− cos(
a22

b22

γ)),

which is equivalent to
a11

b11

=
a12

b12

=
a21

b21

=
a22

b22

, b2
12 ≤ b11b22.

One implication is obvious. To see the other one, we apply the condition to γ = 2π b11
a11

, which

gives a12b11
b12a11

∈ N and a21b11
b21a11

∈ N, and thus a12b11
b12a11

= a21b11
b21a11

= 1 since max{a12
b12
, a21
b21
} ≤ min{a11

b11
, a22
b22
}

by assumption. Similarly, considering γ = 2π b22
a22

gives a12b22
b12a22

= a21b22
b21a22

= 1. In particular, b12 = b21

and the condition for γ = 0 gives the inequality on b’s. The remainder is obvious.
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