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1. Introduction The Fundamental Theorem of Asset Pricing (FTAP), as suggested by its
name, is one of the most important theorems in mathematical finance and has been established in
many different settings: discrete and continuous, with and without transaction costs. It relates no-
arbitrage concepts to the existence of certain fair pricing mechanisms, which provides the rationale
for why in duality theory, it is often reasonable to assume that the dual domain is non-empty.
We consider a discrete time, finite horizon financial market consisting of stocks and a zero-

interest money market account. When the market is frictionless and modeled by a single probability
measure, the classical result by Dalang-Morton-Willinger [5] asserts there is no-arbitrage if and
only if the set of equivalent martingale measures is not empty. With proportional transaction
costs, the set of martingale measures is replaced by the set of consistent price systems (CPS’s)
or strictly consistent price systems (SCPS’s). Equivalence between no-arbitrage and existence of a
CPS is established by Kabanov and Stricker [12] for finite probability space Ω, and by Grigoriev
[8] when the dimension is two. Such equivalence in general does no hold for infinite spaces and
higher dimensions (see Section 3 of Schachermayer [18] and page 128-129 of Kabanov and Safarian
[11] for counter examples). For such an equivalence one needs the notion of robust no-arbitrage
introduced by Schachermayer in [18], where he showed that this notion is equivalent to the existence
of an SCPS. Alternatively, robust no-arbitrage can be replaced by strict no-arbitrage plus efficient
friction (see Kabanov et al. [10]). There exist a few different proofs of the FTAP under transaction
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costs. Besides the proofs of Schachermayer [18] and Kabanov et al. [10] which rely on the closedness
of the set of hedgeable claims and a separation argument, there is a utility-based proof by Smaga
[19] and proofs based on random sets by Rokhlin [16].
In recent years, model uncertainty has gained a lot of interest in financial mathematics since

it corresponds to a more realistic modeling of the financial market. By model uncertainty, we
mean a family P of probability measures, usually non-dominated. Each member of P represents
a possible model for the stock. One should think of P as being obtained from market data. We
have a collection of measures rather than a single one because we do not have point estimates
but confidence intervals. The non-dominated case is generally much harder because the classical
separation argument does not work. In a market model without transaction cost, the recent work
by Bouchard and Nutz [4] used a local analysis to establish the equivalence between the absence of
arbitrage in a quasi-sure sense and the existence of an “equivalent” family of martingale measures.
Acciaio et al. [1] obtained a different version of the FTAP by working with a different no-arbitrage
condition which excludes model-independent arbitrage, i.e. arbitrage in a sure sense only.
In this paper, we prove the FTAP when both proportional transaction cost and model uncertainty

are present. We start with a financial market consisting of a money market account and a single
stock and introduce the no-arbitrage concept NA(P). We prove its equivalence to the existence of
a family of CPS’s, and later extend our results to a market with multiple assets where NA(P) is
replaced by NAs(P) plus efficient friction, and CPS is replaced by SCPS. Similar to the classical
theory (in the set-up of which there is a dominating measure), the two-dimensional case is different
from the multi-dimensional case in that no-arbitrage alone is sufficient to imply the existence of a
CPS. That is the market model need not satisfy the efficient friction hypothesis. Hence the two-
dimensional case is worth a separate study, and will be the main focus of this paper. On a related
note, when there is a single stock, Dolinsky and Soner [7] proved the super-hedging theorem (by
first discretizing the state space and then taking a limit) and stated the FTAP as a corollary.
We follow a different methodology and state the result for an arbitrary collection of probability
measures instead of the collection of all probability measures as they do. Thanks to our method
we are able to work with a more general structure on the proportional transaction cost instead
of taking it a constant, which is useful as this proportion in real markets is likely to change with
changing market conditions over time. Our contribution can be seen as an extension of Bouchard
and Nutz [4] to the transaction cost case, and a generalization of the results of Rokhlin [16] on the
martingale selection problem to the non-dominated case.
Similar to Bouchard and Nutz [4], we proceed in a local fashion: first obtain a CPS for each single-

period model and then do pasting using a suitable measurable selection theorem. Although our
proof follows the ideas in [4], the multi-period case turns out to be quite different when transaction
costs are added. A distinct feature for frictionless markets is that the absence of arbitrage for the
multi-period market is equivalent to the absence of arbitrage in all single-period markets. So it
is enough to look at each single period separately and paste the martingale measures together.
This equivalence, however, breaks down in the presence of transaction cost. A simple example is
the following two-period market: S0 = 1, S0 = 3, S1 = 2, S1 = 4, S2 = 3.5, S2 = 5 where an underline
denotes the bid price and an overline denotes the ask price. Each period is arbitrage-free, but
buying at time 0 and selling at time 2 is an arbitrage for the two-period market. So we cannot
in general paste two one-period martingale measures to get a two-period martingale measure; in
particular, the endpoints of the underlying martingales constructed for each single period may not
match. We need to solve a non-dominated martingale selection problem. The martingale selection
problem when P is a singleton was studied by Rokhlin in a series of papers [15, 17, 16] using the
notion of support of regular conditional upper distribution of set-valued maps. In our case, it is
difficult to talk about conditional distribution due to the lack of dominating measure. Nevertheless,
we got some inspiration from Rokhlin [17, 16] and Smaga [19] and developed a backward-forward
scheme:
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Backward recursion: modify the original bid-ask prices backward in time by potentially more
favorable ones to account for the missing future investment opportunities;
Forward extension: extend the CPS forward in time in the modified market.
When there is no dominating measure, the backward-forward scheme brings some measurability

issues. On one hand, neither Borel nor universal measurability is preserved under the backward
recursion. This can be circumvented by working with lower semi-analytic bid prices and upper
semi-analytic ask prices. On the other hand, the proofs of Lemmas 4.6 and 4.8 in Bouchard and
Nutz [4] rely critically on the stock prices being Borel measurable. However, our modified market
only has semi-analytic bid-ask prices, which makes measurable selection in many places challenging
(see Remarks 6 and 7). To overcome this difficulty, we break up the selection of a CPS into two
steps: first select a pair of measures (Q1,Q2) using the semi-analyticity of the bid and ask prices
separately, and then find a convex weight function λ which plays an important role in boundary
extension, which is an additional step that needs to be taken care of in dimension two because of
the lack of the efficient friction hypothesis. A measurable one-period CPS can be constructed out
of the measurable triplet (Q1,Q2, λ) and the bid-ask prices of the modified market.
Similar measurability issues exist in the multi-dimensional case. Fortunately, it turns out that

doing backward recursion on the dual cones of the solvency cones preserves graph analyticity which
is enough to make measurable selection in the forward extension possible. Here at each step in the
forward extension, we do not select a one-period SCPS (Q,Z) with a prescribed initial value Z0 = z
directly, but a vector of equivalent measures (Q,µ1, . . . , µd) related to (Q,Z) via Zi

1 = zidµi/dQ.
This allows us to use the fact that there exists a jointly Borel measurable function (Q,µi, ω′) 7→
dµi

dQ
(ω′), which is key to measurable selection.
We point out that during the review process, a paper by Bouchard and Nutz [3] which is closely

related to ours came out. There the authors propose a different notion of no-arbitrage (a quasi-sure
version of no-arbitrage of the second kind), denoted by NA2(P), with which they proved a multi-
dimensional version of the FTAP under the extra assumption of efficient and bounded friction. We
find their no-arbitrage notion a bit too strong. It means that the market is already in a good form
for martingale extension, so that the backward recursion is avoided. A simple one-period, single
stock market S0 = 1, S0 =3, S1 = 2, S1 = 4 which satisfies NAs(P), thus reasonable in our opinion,
fails NA2(P). Despite that NA2(P) fails for the original market, it holds for the corresponding
modified market. The multi-dimensional part of our paper is a generalization of [3] to allow for
more general market structure. Apart from the no-arbitrage concept used, our paper also differs
in two other ways. First, we do not assume bounded friction and K∗

t ∩∂R
d
+ = {0}; efficient friction

can also be dropped in the two-dimensional case. Second, our measurability assumption is weaker;
we are able to handle markets with universally measurable solvency cones as long as their dual
cones have analytic graphs.
The rest of the paper is organized as follows. Sections 2, 3 and 4 are devoted to the two-

dimensional case. In Section 2, we introduce the probabilistic framework, set up the financial
market model, and state the main result. In Section 3, we prove some one-period results which
serve as the building blocks. In Section 4, we present the backward-forward schemes for a multi-
period market and prove the main theorem. Section 5 extends our methodology and results to the
multi-dimensional case. A few technical lemmas are collected in Appendix.

2. The Financial Market Model and Main Results We follow the notation in Bouchard
and Nutz [4]. Let T ∈N be the time horizon. Let Ω1 be a Polish space and Ωt := Ωt

1 be the t-fold
Cartesian product with the convention that Ω0 is a singleton. Denote by B(Ωt) the Borel sigma-
algebra on Ωt, and by Ft the universal completion of B(Ωt). We write (Ω,F) for (ΩT,FT). When
we say a stochastic process is predictable or adapted, we mean with respect to the filtration (Ft).
Let P(Ω1) denote the set of all probability measures on (Ω1,B(Ω1)). For each t ∈ {0, . . . ,T− 1}
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and ω ∈ Ωt, we are given a nonempty convex set Pt(ω)⊆P(Ω1), representing the set of possible
models for the (t+1)-th period. We assume Pt (considered as set-valued maps from Ωt to P(Ω1))
has an analytic graph. This assumption ensures that Pt admits a universally measurable selector.
Define the uncertainty set P ⊆P(Ω) of the multi-period market by

P := {P0 ⊗ · · ·⊗PT−1 : each Pt is a universally measureable selector of Pt},

where

P0 ⊗ · · ·⊗PT−1(A) =

∫

Ω1

· · ·

∫

Ω1

1A(ω1, . . . , ωT)PT−1(ω1, . . . , ωT−1;dωT) · · ·P0(dω1), A∈F .

Consider a financial market consisting of a money market account with zero interest rate, and
a stock with strictly positive bid price St and ask price St. St, St : Ωt → R are assumed to be
lower semi-analytic (l.s.a.) and upper semi-analytic (u.s.a.), respectively, for all t. A self-financing1

portfolio process is an R
2-valued predictable process φ = (φ0, φ1) satisfying φ0 = 0 and △φ0

t+1 ≤
−(△φ1

t+1)
+St + (△φ1

t+1)
−St for all t = 0, . . . ,T, where △φt+1 := φt+1 − φt. Denote by H the set

of self-financing portfolio processes. Let AT := {φT+1 : φ ∈ H}. AT is interpreted as the set of
hedgeable claims (in terms of physical units) from zero initial endowment.
Definition 1. We say NA(P) holds if for all f ∈AT, f ≥ 0 P-quasi-surely (q.s.)2 implies f =0

P-q.s..
Remark 1. NA(P ) ∀P ∈P implies NA(P). Indeed, let f ∈AT be such that f ≥ 0 P-q.s. hence

P -a.s. for all P ∈P. For each P , NA(P ) implies f = 0 P -a.s.. Since this holds for all P ∈P, f = 0
P-q.s. and NA(P) holds. The reverse direction is not true. Consider a one-period market with
S0 = 2 and S1(ω) = 1, S1(ω

′) = 3. Let P1 = δω, P2 = δω′ be the Dirac measures concentrated on ω
and ω′, respectively. Then it is easy to see that there is arbitrage under both P1 and P2, but not
under P := conv{P1, P2}.

3

Definition 2. A pair (Q, S̃) is called a consistent price system (CPS) if S̃ is a Q-martingale
in the filtration (Ft) and S̃t ∈ [St, St] Q-a.s.. Denote the set of all consistent price systems by Z.
The main theorem of this paper is given below.

Theorem 1. The following are equivalent:
(i) NA(P) holds.
(ii) ∀P ∈P,∃(Q, S̃)∈Z such that P ≪Q≪P.4

Remark 2. Let Q be the collection of the first components of Z that are dominated by some
measure in P. Theorem 1(ii) is equivalent to saying P,Q are equivalent in terms of polar sets.
When P is a singleton, we recover the classical result of the existence of an equivalent measure.

3. The One-Period Case In this section, we prove the more difficult direction of the FTAP
(i.e. no-arbitrage implies the existence of CPS’s) for a one-period market. To prepare for multi-
period case, we also discuss how to construct martingales with prescribed initial values.
Let (Ω,F) be a measurable space with filtration (F0,F1) and F0 = {∅,Ω}. Let P ⊆P(Ω) be a

nonempty convex set. The bid and ask price processes of the stock are given by constants S0, S0

and F1-measurable random variables S1, S1, respectively. Note that NA(P) for this one-period
market can be stated in the equivalent form: ∀y ∈R, y+(S1 −S0)− y−(S1 −S0)≥ 0 P-q.s. implies
y+(S1 −S0)− y−(S1 −S0) = 0 P-q.s..

1 We allow agents to throw away non-negative quantities of the assets.

2 A set is P-polar if it is P -null for all P ∈P . A property is said to hold P-q.s. if it holds outside a P-polar set.

3 “conv” stands for convex hull.

4 The notation Q≪P is taken from [4]. It means Q≪ P for some P ∈P .
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For each P ∈P, define

ΘP := {R ∈P(Ω) : P ≪R≪P,ER[|S1 −S0|+ |S1 −S0|]<∞}.

ΘP is nonempty by Lemma 11.

Lemma 1. Suppose ∃P1, P2 ∈ P satisfying P1(S1 − S0 > 0)> 0 and P2(S1 − S0 < 0)> 0. Then
∀P ∈P, ∃Q1,Q2 ∈ΘP such that Q1 ∼Q2 and

EQ1 [S1 −S0]> 0, EQ2 [S1 −S0]< 0.

Proof. Let P ∈ P. We first show, along the same lines in the first paragraph on page 13 of [4],
that there exist P ′

1, P
′
2 ∈ΘP (not necessarily equivalent) such that

EP ′

1 [S1 −S0]> 0, EP ′

2 [S1 −S0]< 0.

Let A := {S1 > S0}. We have P1(A) > 0. Define R1 := (P1 + P )/2, use Lemma 11 to replace R1

by R2 ∼ R1 such that R2 ∈ ΘP , and further replace R2 by P ′
1 ∼ R2 defined by dP ′

1/dR2 := (1A +
ε)/ER2[1A + ε]. It can be checked that P ′

1 ∈ΘP and EP ′

1 [S1 −S0]> 0 for ε small enough. Similar,
we obtain the existence of P ′

2.
It remains to replace P ′

1, P
′
2 by Q1, Q2 with the additional requirement that Q1 ∼Q2. To this

end, let Qλ := λP ′
1+(1−λ)P ′

2. It is easy to see that {Qλ : λ∈ (0,1)} is a set of equivalent measures
contained in ΘP . Moreover, EQλ [S1−S0]> 0 for λ sufficiently close to 1, and EQλ [S1−S0]< 0 for
λ sufficiently close to zero. �

Proposition 1. Suppose NA(P) holds. Then ∀P ∈P,∃(Q, S̃)∈Z such that P ≪Q≪P.

Proof. Let P ∈P and consider three cases:
Case 1. S1 −S0 ≤ 0 P-q.s.. In this case, NA(P) implies S1 −S0 = 0 P-q.s.. We choose the CPS

to be Q := P , S̃0 := S0 and S̃1 := S1.
Case 2. S1 −S0 ≥ 0 P-q.s.. In this case, NA(P) implies S1 −S0 = 0 P-q.s.. We choose the CPS

to be Q := P , S̃0 := S0 and S̃1 := S1.
Case 3. ∃P1, P2 ∈ P such that P1(S1 − S0 > 0) > 0 and P2(S1 − S0 < 0) > 0. In this case, let

Q1,Q2 ∈ΘP be given by Lemma 1. We can find λ∈ (0,1) such that

λEQ1 [S1 −S0] + (1−λ)EQ2 [S1 −S0] = 0.

Define

Q := λQ1 +(1−λ)Q2 (1)

and

S̃0 := (1−λ)S0 +λS0, S̃1 := λ
dQ1

dQ
S1 +(1−λ)

dQ2

dQ
S1. (2)

We haveQ∈ΘP , S̃ ∈ [S1, S1] Q-a.s., and EQ[S̃1−S̃0] = λEQ1 [S1−S0]+(1−λ)EQ2 [S1−S0] = 0. �

Remark 3. We can directly use P ′
1, P

′
2 (defined in the proof of Lemma 1) instead of Q1,Q2 to

construct the CPS in Case 3. The equivalence of Q1 and Q2 only matters in the multi-period case
where it is important for us to construct martingales that stay away from the boundary of the
bid-ask spread whenever possible (so that they are extendable to the next period). If Q1 ∼Q2, S̃
defined by (2) will satisfy S̃1 ∈ ri[S1, S1] Q-a.s..5

5 “ri” stands for relative interior.
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Recall that when we go to the multi-period case, we cannot directly paste two single-period
CPSs, but to first make sure the starting point of the current-period martingale matches the
terminal point of its parent. In other words, we are interested in constructing martingales with
certain prescribed initial values. Proposition 2 gives a set of starting points that admit a martingale
extension.
For a random variable S : Ω→ R and a nonempty family R of probability measures on Ω, the

support of the distribution of S under R, denoted by suppRS, is the smallest closed set A⊆R such
that P (S ∈ A) = 1 ∀P ∈ R. Equivalently, a point y belongs to suppRS if and only if every open
ball around y has positive measure under some member of {P ◦S−1 : P ∈R}.

Proposition 2. Suppose inf suppPS1 < s < sup suppPS1. Then ∀P ∈ P, ∃Q1,Q2 ∈ ΘP such
that Q1 ∼Q2 and

EQ2 [S1]< s<E
Q1 [S1].

Proof. We can find x ∈ suppPS1 and y ∈ suppPS1 such that x < s < y. By definition of sup-
port, ∃P1, P2 ∈ P satisfying P1(S1 > s) > 0 and P2(S1 < s) > 0. Lemma 1 applied to the market
{s, [S1, S1]} yields the desired Q1 and Q2. �

Remark 4. It is possible to show that ∀s ∈ (inf suppPS1, sup suppPS1) and P ∈ P, ∃Q ∈ ΘP

and λ ∈ (0,1) such that EQ[(1− λ)S1 + λS1] = s. For the proof, simply consider three cases: 1)
∃R∈ΘP with ER[S1]>s, 2) ∃R∈ΘP with ER[S1]< s, and 3) ∀R∈ΘP , E

R[S1]≤ s≤ER[S1]. We
state the one-period result in terms of a pair of measures (Q1,Q2) because it is more amenable for
measurable selection when moving to the multi-period case (see Remark 7). Once we have a pair
of measures, a CPS can be easily constructed by means of (1) and (2).

4. The Multi-period Case In this section, we prove the FTAP for a multi-period market
through a backward-forward scheme. Back to the setup in introduction, the set P is defined as the
product of the nonempty convex sets Pt(·) which have analytic graphs. Throughout this section,
we also assume St(·) is l.s.a. and St(·) is u.s.a.. The reason for working with semi-analytic price
processes is that we need a property that can be preserved under the backward recursion (3). Both
Borel and universal measurability are not preserved (see Remark 5). This problem does not exist
in market without transaction cost since there is no need to redefine the stock price, nor does it
matter when there is a dominating measure P , since we can always modify a universally measurable
map on a P -null set to make it Borel measurable. Finally, for a map f on Ωt+1, we will often see
it as a map on Ωt ×Ω1 and write f = f(ω,ω′).
Define processes X,Y recursively by XT = ST, YT = ST and

Xt(ω) : =
(
inf suppPt(ω)Xt+1(ω, ·)

)
∨St(ω),

Yt(ω) : =
(
supsuppPt(ω)Yt+1(ω, ·)

)
∧St(ω),

(3)

for t=T− 1, . . . ,0, ω ∈Ωt.

Lemma 2. For each t, Xt is l.s.a. and Yt is u.s.a..

Proof. We only show the lower semi-analyticity of Xt. A symmetric argument gives the upper
semi-analyticity of Yt. XT is l.s.a. by assumption. Suppose Xt+1 is l.s.a., we deduce the lower
semi-analyticity of Xt. Let a∈R, we have

{ω ∈Ωt : inf suppPt(ω)Xt+1(ω, ·)<a}
= {ω ∈Ωt : P (Xt+1(ω, ·)< a)> 0 for some P ∈Pt(ω)}
=projΩt

({
(ω,P )∈Ωt ×P(Ω1) :E

P [1{Xt+1(ω,·)<a}]> 0
}
∩ graph(Pt)

)

It can be checked that if A is an analytic set, then 1A is an u.s.a. function. Hence (ω,ω′) 7→
1{Xt+1(ω,ω′)<a} is u.s.a. by the induction hypothesis. By [2, Proposition 7.48], we also have (ω,P ) 7→
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EP [1{Xt+1(ω,·)<a}] is u.s.a.. It follows that {ω ∈Ωt : inf suppPt(ω)Xt+1(ω, ·)< a} is the projection of
the intersection of two analytic sets, thus also analytic. This shows inf suppPt(ω)Xt+1(ω, ·) is l.s.a..
Xt, being the maximum of two l.s.a. functions, is also l.s.a.. �

Remark 5. Neither Borel nor universal measurability are preserved under the backward recur-
sion. To see this, similar to Remark 4.4 of Bouchard and Nutz [4], consider Ω1 = [0,1], Pt ≡P(Ω1)
and Xt+1 = 1Ac for some A⊆ Ωt ×Ω1. Then inf suppPt(ω)Xt+1(ω, ·) = 1(projΩt

A)c(ω). If A is Borel,
then Xt+1 is Borel measurable. But 1(projΩt

A)c is not Borel measurable in general because the pro-
jection of a Borel set may not be Borel. Similarly, if A is universally measurable, then Xt+1 is
universally measurable. But 1(projΩt

A)c is not universally measurable in general because the projec-
tion of a universally measurable set may not be universally measurable.
Apart from preserving semi-analyticity, the recursively defined [X,Y ]-market6 has two nice prop-

erties. First, its spread is not too wide: at least all points in the interior of [Xt, Yt] admits a
martingale extension to the next period P-q.s., although there are delicate issues when the point
lies on the boundary of the spread. Second, its spread is not too narrow either, in the sense that
it still satisfies NA(P) when the original market does. In summary, this new market fits our needs
perfectly. The general idea of proving the nontrivial implication of multi-period FTAP is to replace
the original market by the modified market [X,Y ], and do martingale extension in the modified
market. Interior extension is not too hard in view of Proposition 2; the challenging part is boundary
extension. It turns out that boundary extension is possible if we avoid hitting boundaries as much
as we can from the beginning.
Before proving the main theorem, we need two crucial lemmas.

Lemma 3. Let NA(P) hold for the original market [S,S]. Then NA(P) also holds for the mod-
ified market [X,Y ]. In particular, Xt ≤ Yt P-q.s. for all t.

Proof. We prove NA(P) for the modified market by backward induction. Let

Mt := {[Sr, Sr]r=0,...,t−1, [Xr, Yr]r=t,...,T}, t=T, . . . ,0

denotes the (T − t)-th intermediate market obtained in the backward recursion procedure. We
show NA(P) for Mt+1 implies that for Mt. It suffices to show that for any self-financing portfolio
process in Mt, there exists a self-financing portfolio process in Mt+1 with equal or better terminal
position.
Let φ be a self-financing portfolio process in Mt with φ0 = 0 and φT+1 ≥ 0 P-q.s.. Consider

another portfolio process defined by ηr := φr ∀r= 0, . . . , t,

△η1t+1 : = 1{Yt=St}
(△φ1

t+1)
+ − 1{Xt=St}

(△φ1
t+1)

−,
△η1t+2 : =△φ1

t+2 +1{Yt 6=St}
(△φ1

t+1)
+ − 1{Xt 6=St}

(△φ1
t+1)

−,
△η1r+1 : =△φ1

r+1, r= t+2, . . . ,T,
△η0r+1 : =−(△η1r+1)

+Xr +(△η1r+1)
−Yr, r= t, . . . ,T.

That is, we follow φ up to time t− 1, stick to its stock position whenever the transaction at time t
can be carried out inMt+1, and postpone the transaction to time t+1 if it is not admissible inMt+1,
and follow the stock position of φ again afterwards. Clearly, η is self-financing in Mt+1, and η1T+1 =
φ1
T+1. We want to show η0T+1 ≥ φ0

T+1 P-q.s.. It suffices to show △η0t+1 +△η0t+2 ≥△φ0
t+1 +△φ0

t+2.
During the (t+1)-th and (t+2)-th periods, η and φ are trading the same total number of shares,
just at different times. So we only need to check that η faces a trading price as favorable as, if
not more favorable than the one faced by φ. By our construction of Xt, when Xt(ω) 6= St(ω), we
must have Xt(ω)≤Xt+1(ω, ·) Pt(ω)-q.s.. Fubini’s theorem implies Xt+1 ≥Xt P-q.s. on {Xt 6= St}.
Similarly, Yt+1 ≤ Yt P-q.s. on {Yt 6= St}. Therefore, η has price disadvantage only on a P-polar
set. �

6 [X,Y ] refers to a multi-period market with bid price Xt and ask price Yt for all t.
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Remark 6. Unlike Bouchard and Nutz [4], we do not attempt to show the set

Nt := {ω ∈Ωt : NA(Pt(ω)) fails for the modified market}

is universally measurable and P-polar. In fact, the measurability ofNt depends on the measurability
of the set-value maps ω 7→suppPt(ω)Xt+1(ω, ·), suppPt(ω)Yt+1(ω, ·). With Xt+1, Yt+1 only known to
be semi-analytic, the measurability of the support maps is questionable. Even if they are universally
measurable, to show Nt is P-polar by a contradiction argument similar to [4], one needs to construct
an arbitrage strategy and a measure under which a profit can be realized with positive probability.
The construction of such a measure involves a measurable selection from e.g. the set-valued map
Φ(ω) := {P ∈Pt(ω) :E

P [Xt+1(ω, ·)− Yt(ω)]> 0}. However, when Xt+1 is l.s.a. and Yt is u.s.a., we
have that ψ : (ω,P ) 7→ EP [Xt+1(ω, ·)− Yt(ω)] is l.s.a. and {ψ > 0} is co-analytic. So graph(Φ) =
graph(Pt)∩{ψ> 0} fails to be analytic in general. By assuming Pt has a Borel graph, we can make
graph(Φ) co-analytic. But we are not aware of a selection theorem that applies to co-analytic set,
unless one is willing to assume Σ1

1-determinancy7 (see Kechris [13, Corollary 36.21]).

Lemma 4. Let t∈ {0, . . . ,T− 1} and P (·) : Ωt →P(Ω1), S̃t(·) : Ωt →R be Borel. Let

Ξt(ω) := {(Q1,Q2, P̂ )∈P(Ω1)×P(Ω1)×Pt(ω) : P (ω)≪Q1 ∼Q2 ≪ P̂ ,

EQ1 [Yt+1(ω, ·)− S̃t(ω)]> 0 and EQ2 [Xt+1(ω, ·)− S̃t(ω)]< 0}, ω ∈Ωt.
(4)

Then Ξt has an analytic graph and there exist universally measurable selectors Q1(·),Q2(·), P̂ (·) for
Ξt on the universally measurable set {Ξt 6= ∅}. In addition, there exists a universally measurable
function λ(·) : Ωt → (0,1) such that

λ(ω)EQ1(ω)[Yt+1(ω, ·)]+ (1−λ(ω))EQ2(ω)[Xt+1(ω, ·)] = S̃t(ω) if Ξt(ω) 6= ∅. (5)

Proof. We first show Ξt has an analytic graph. The proof is very similar to that of Bouchard
and Nutz [4, Lemma 4.8]. So we shall be brief. Let

Ψ(ω) := {(Q1,Q2)∈P(Ω1)
2 :EQ1 [Yt+1(ω, ·)− S̃t(ω)]> 0 and EQ2 [Xt+1(ω, ·)− S̃t(ω)]< 0}.

By Bertsekas and Shreve [2, Proposition 7.48], (ω,Q1,Q2) 7→ EQ1 [Yt+1(ω, ·)− S̃t(ω)] is u.s.a. and
(ω,Q1,Q2) 7→EQ2 [Xt+1(ω, ·)− S̃t(ω)] is l.s.a.. So Ψ has an analytic graph. Let

Φ(ω) := {(Q1,Q2, P̂ ) ∈P(Ω1)
3 : P (ω)≪Q1 ∼Q2 ≪ P̂}.

Define

φ(ω,Q1,Q2, P̂ ) :=EQ1 [dP (ω)/dQ1] +EQ2 [dQ1/dQ2] +EQ1 [dQ2/dQ1] +EP̂ [dQ2/dP̂ ],

where we choose a version of the Radon-Nikodym derivatives (using absolutely continuous parts)
that are jointly Borel measurable (see Dellacherie andMeyer [6, TheoremV.58] and the remark after
it). Bertsekas and Shreve [2, Propositions 7.26, 7.29] then imply φ is Borel. So graph(Φ) = {φ= 4}
is Borel. Hence Ξt(ω) = (Ψ(ω)×Pt(ω))∩Φ(ω) has an analytic graph. An application of Jankov-von
Neumann Selection Theorem (Lemma 14) yields the desired universally measurable selectors Q1(·),
Q2(·) and P̂ (·) for Ξt on {Ξt 6= ∅}. Outside this set, define Q1(·) =Q2(·) = P̂ (·) := P (·).
Next, we construct a universally measurable weight function λ. By Bertsekas and Shreve [2,

Proposition 7.46], the maps f : ω 7→EQ1(ω)[Yt+1(ω, ·)− S̃t(ω)] and g : ω 7→EQ2(ω)[Xt+1(ω, ·)− S̃t(ω)]
are universally measurable. We have f > 0 and g < 0 on {Ξ 6= ∅}. Define λ := g/(g− f) on {Ξ 6= ∅}
and λ := 1/2 on {Ξ= ∅}. Then λ is universally measurable, (0,1)-valued and satisfies (5). �

7 Σ1
1-determinancy refers to the principle that every analytic game is determined. It cannot be proved in the standard

ZFC axioms (Zermelo-Fraenkel with the Axiom of Choice).
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Remark 7. Lemma 4 is the measurable version of Proposition 2. By Remark 4, in a one-
period market, one can directly construct a CPS with the martingale component being a convex
combination of the bid-ask prices. Thus it may be natural to work with

Ξt(ω) := {(Q,λ, P̂ ) ∈P(Ω1)× (0,1)×Pt(ω) : P (ω)≪Q≪ P̂ ,EQ[Dλ(ω, ·)] = 0}

where Dλ(ω, ·) := (1− λ)Xt+1(ω, ·) + λYt+1(ω, ·)− S̃t(ω). The problem is that when Xt+1 is l.s.a.
and Yt+1 is u.s.a., D

λ is only universally measurable and graph(Ξt) is not analytic in general, which
makes measurable selection difficult. To overcome this issue, we break up the selection of a CPS
into two steps: first select a pair of measures (Q1,Q2) using the lower semi-analyticity of Xt+1 and
the upper semi-analyticity of Yt+1 separately, and then find a convex weight λ. A martingale can
be constructed out of these selectors as an adapted convex combination of the bid-ask prices (see
(8)).
We are now ready to prove our main results.
Proof of Theorem 1 . (i)⇒ (ii): We first replace the original [S,S]-market by the modified [X,Y ]-

market which lies inside [S,S], is still semi-analytic by Lemma 2 and satisfies NA(P) by Lemma
3. It suffices to prove (ii) for the modified market because any CPS for the modified market is a
CPS for the original market. Let us prove an auxiliary claim that (i) implies the following:
(ii’) ∀P ∈ P, ∃(Q, S̃) ∈ Z, P̂ ∈ P with P ≪Q≪ P̂ and an adapted process λ, valued in [0,1],

such that S̃t =Xt if λt−1 = 0, S̃t = Yt if λt−1 = 1, and S̃t ∈ ri[Xt, Yt] if λt−1 ∈ (0,1), t = 1, . . . ,T.
Moreover, letting

τ 01 : = inf{t∈ [0,T− 1] : λt = 0},
σ0
n : = inf{t∈ (τ 0n,T− 1] : λt > 0},

τ 0n+1 : = inf{t∈ (σ0
n,T− 1] : λt = 0},

with the convention that inf ∅=∞, we have Xτ0n
= Yτ0n

=Xt ∀t ∈ [τ 0n, σ
0
n ∧T] on the set {τ 0n <∞}

P-q.s.. Similarly, letting

σ1
1 : = inf{t∈ [0,T− 1] : λt = 1},
τ 1n : = inf{t∈ (σ1

n,T− 1] : λt < 1},
σ1
n+1 : = inf{t∈ (τ 1n,T− 1] : λt = 1},

we have Xσ1
n
= Yσ1

n
= Yt ∀t∈ [σ1

n, τ
1
n ∧T] on the set {σ1

n <∞} P-q.s..
We do induction on the number of periods in the market. When there is only one period, for

any P ∈ P, we set λ := 0 when X0 = Y0 = inf suppPX1 < supsuppPY1, λ := 1 when X0 = Y0 =
supsuppPY1 > inf suppPX1, and λ := 1/2 when X0 = Y0 = inf suppPX1 = supsuppPY1. In these
three cases, define Q= P̂ := P , S̃0 :=X0 = Y0 and S̃1 := (1−λ)X1+λY1. It is not hard to see that
NA(P) implies X1 = Y0 P-q.s. in the first case, Y1 =X0 P-q.s. in the second case, and X0 = Y0 =
X1 = Y1 P-q.s. in the third case. Hence S̃ is a Q-martingale. In all other cases (under NA(P)), we
can pick s ∈ (inf suppPX1, sup suppPY1). Proposition 2 implies the existence of Q1,Q2, P̂ such that
P ≪Q1 ∼Q2 ≪ P̂ and EQ2 [X1]< s<E

Q1 [Y1]<∞. Exactly the same construction as in Case 3 of
the proof of Proposition 1 yields a desired CPS (Q, S̃) and a weight λ ∈ (0,1). It can be checked
that all the statements in (ii’) are satisfied.
Now, suppose (i) implies (ii’) for any market with T −1 periods that satisfies backward recursion

(3). We will deduce the same property for such recursively defined markets with T periods.
Let NA(P) hold for the T -period market denoted by M. Its submarket up to time T −1, denoted

by M′, satisfies NA(P ′) where

P ′ = {P0 ⊗ · · ·⊗PT−2 : each Pt is a universally measurable selector of Pt}
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is the set of possible models for the first T − 1 periods. Let P ∈ P have decomposition P =
P |ΩT−1

⊗PT−1. We can apply the induction hypothesis to obtain Q′, S̃, λ, P̂ ′ described in (ii’) up

to time T − 1 with P |ΩT−1
≪Q′ ≪ P̂ ′ ∈P ′. Our goal is to extend Q′, S̃, λ, P̂ ′ to the T -th period.

Step 1. Extension. Lemma 3 implies the universally measurable set N := {XT−1 > YT−1} is P-
polar. On N , we simply set QT−1 = P̂T−1 := PT−1, λT−1 := 1/2 and S̃T := (XT +YT )/2. On N c, we
have by the definition of XT−1, YT−1 that

inf suppPT−1
XT ≤XT−1 ≤ YT−1 ≤ supsuppPT−1

YT .

We perform extension on the following universally measurable sets separately:
On A1 := {inf suppPT−1

XT =XT−1 = S̃T−1 < supsuppPT−1
YT}∩N

c, we set QT−1 = P̂T−1 := PT−1,

λT−1 := 0 and S̃T :=XT .
On A2 := {inf suppPT−1

XT < S̃T−1 = YT−1 = supsuppPT−1
YT }∩N

c, we set QT−1 = P̂T−1 := PT−1,

λT−1 := 1 and S̃T := YT .
On A3 := {inf suppPT−1

XT = S̃T−1 = supsuppPT−1
YT }∩N

c, we setQT−1 = P̂T−1 := PT−1, λT−1 :=

1/2 and S̃T := (XT +YT )/2.
On A4 := {inf suppPT−1

XT < S̃T−1 < supsuppPT−1
YT } ∩N

c, Proposition 2 guarantees the set-
valued map ΞT−1 defined by (4) is nonempty. To obtain a universally measurable selector, we first
modify PT−1(·) and S̃T−1(·) on a P̂ ′-null set N̂ (hence Q′-null and P |ΩT−1

-null) to make them Borel
measurable (see Bertsekas and Shreve [2, Lemma 7.27]). Denote the resulting Borel kernel and
random variable by PB

T−1 and S̃B
T−1. We can then use Lemma 4 to obtain universally measurable

maps Q1
T−1(·),Q

2
T−1(·), P̂T−1(·) and λT−1(·) such that PB

T−1(ω)≪Q1
T−1(ω)∼Q2

T−1(ω)≪ P̂T−1(ω),

and if ω ∈A4\N̂ , then P̂T−1(ω)∈PT−1(ω), and

λT−1(ω)E
Q1

T−1
(ω)[YT (ω, ·)]+ (1−λT−1(ω))E

Q2
T−1

(ω)[XT (ω, ·)] = S̃B
T−1(ω). (6)

Define
QT−1 := λT−1Q

1
T−1 +(1−λT−1)Q

2
T−1. (7)

Let Q1B
T−1, Q

2B
T−1, Q

B
T−1 be any Borel modifications of Q1

T−1, Q
2
T−1, QT−1 under P̂ ′. Also define

S̃T := λT−1

dQ1B
T−1

dQB
T−1

YT +(1−λT−1)
dQ2B

T−1

dQB
T−1

XT (8)

where we choose a version of the Radon-Nikodym derivative that are jointly Borel measurable in
(ω,ω′)∈Ωt ×Ω1. On A4 ∩ N̂ , redefine QT−1 = P̂T−1 := PT−1, λT−1 := 1/2 and S̃T := (XT +YT )/2.
Defining Q := Q′ ⊗QT−1, P̂ = P̂ ′ ⊗ P̂T−1, we have P ≪Q≪ P̂ ∈ P (notice that P = P |ΩT−1

⊗

PT−1 =P |ΩT−1
⊗PB

T−1), and S̃T ∈ ri[XT , YT ] Q-a.s..

Step 2: Verify that EQ[S̃T |FT−1] = S̃T−1. This says S̃ is a generalized martingale, and in
fact, a true martingale by Kabanov and Safarian [11, Propositions 5.3.2, 5.3.3]. We now check
EQ[S̃T |FT−1] = S̃T−1 on each Ai separately.
2a) Claim that XT = S̃T−1 P-q.s. (hence Q-a.s.) on A1. Define stopping times τ̃n, σ̃n by

τ̃ 01 : = inf{t∈ [0, T − 2] : λt =0},
σ̃0
n : = inf{t∈ (τ̃ 0n, T − 2] : λt > 0},

τ̃ 0n+1 : = inf{t∈ (σ̃0
n, T − 2] : λt = 0}.

Induction hypothesis implies that

Xτ̃0n
= Yτ̃0n

=Xt ∀t∈ [τ̃ 0n, σ̃
0
n ∧ (T − 1)] (9)
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on the set {τ̃ 0n <∞} P ′-q.s.. Define a portfolio process φ by φ0 := 0, and for t=0, . . . , T ,

φ1
t+1 :=

∑

n

1{τ̃0n≤t<σ̃0
n} − 1{τ̃0n<σ̃0

n=∞}∩Ac
1
∩{t=T−1} − 1{τ̃0n<σ̃0

n=∞}∩A1∩{t=T},

and
△φ0

t+1 =−(△φ1
t+1)

+Xt − (△φ1
t+1)

−Yt.

Then φ is self-financing in the market M. Moreover, φT+1 ≥ 0 P-q.s.. Indeed, on the set {τ̃ 01 =∞},
no trade occurs. On the set {τ̃ 0m < σ̃0

m =∞} for some m≥ 1, the strategy is to repeatedly buy a
share at time τ̃ 0n and sell it at time σ̃0

n for all n < m. After that, buy a share at τ̃ 0m and sell it
at time T − 1 if A1 is not observed, and at time T if A1 is observed. In the case where A1 is not
observed, (9) implies the selling price of every holding period is P ′-q.s. (hence also P-q.s. since
all trades occur on or before time T − 1) the same as the buying price of that holding period.
So we end up in zero position. In the case where A1 is observed, (9) again implies P ′-q.s. perfect
cancellation before the last holding period; in the last holding period, we buy a share at time τ̃ 0m
at the price Yτ̃0m

, and sell it at time T at the price XT which is PT−1-q.s. larger than or equal to

S̃T−1 =XT−1 by the definition of A1. (9) then implies XT ≥ Yτ̃0m
P-q.s. on {τ̃ 0m < σ̃0

m =∞}∩A1.
So we can close our position without loss. On the set {σ̃0

m < τ̃ 0m+1 =∞} for some m≥ 1, all trades
happen on or before time T −2 and we have P ′-q.s. (hence P-q.s.) perfect cancellation. By NA(P)
for the modified market (Lemma 3), we must have φT+1 = 0 P-q.s.. But

φT+1 =1A1∩{λT−2=0}(XT − S̃T−1).

This shows XT = S̃T−1 P-q.s. on A1 ∩{λT−2 =0}. Observe that

A1 ∩{λT−2 > 0} ⊆A′
1 := {inf suppPT−1

XT =XT−1 = S̃T−1 = YT−1 < supsuppPT−1
YT}∩N

c.

We can construct another self-financing portfolio process which buys a share at time T − 1 on the
set A′

1 and sells it at time T . The resulting terminal position is 1A′

1
(XT − S̃T−1) which is P-q.s.

non-negative. NA(P) then implies XT = S̃T−1 P-q.s. on A′
1. Combining with the previous result,

we have proved the claim. It follows that

1A1
EQ[S̃T |FT−1] =EQ[1A1

XT |FT−1] =EQ[1A1
S̃T−1|FT−1] = 1A1

S̃T−1,

where the first equality holds by construction, we have
2b) Similarly, we can show that YT = S̃T−1 P-q.s. on A2. This implies

1A2
EQ[S̃T |FT−1] =EQ[1A2

YT |FT−1] =EQ[1A2
S̃T−1|FT−1] = 1A2

S̃T−1.

2c) Since XT = S̃T−1 = YT P-q.s. and S̃T = (XT +YT )/2 on A3, we have

1A3
EQ[S̃T |FT−1] =EQ[1A3

(XT +YT )/2|FT−1] =EQ[1A3
S̃T−1|FT−1] = 1A3

S̃T−1.

2d) On A4, using (6), (7) and (8), we have

EQT−1 [S̃T ] =EQB
T−1 [S̃T ] = λT−1E

Q1B
T−1 [YT ] + (1−λT−1)E

Q2B
T−1 [XT ]

= λT−1E
Q1

T−1 [YT ] + (1−λT−1)E
Q2

T−1 [XT ]

= S̃B
T−1 = S̃T−1,

where all equalities except the second one hold Q′-a.s.. This implies

1A4
EQ[S̃T |FT−1] = 1A4

S̃T−1.
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Step 3. Verify that the extended weight process (λt)t=0,...,T−1 and the corresponding stopping
times satisfy the properties described in (ii’). We shall denote those stopping times for the market
M by τ 0n, σ

0
n, τ

1
n, σ

1
n. Notice that they differ from their counterparts τ̃ 0n, σ̃

0
n, τ̃

1
n, σ̃

1
n for the market M′

only possibly in the last trading cycle. We check only the properties related to τ 0n, σ
0
n since our

extension in step 2 is symmetric. In this step, to keep notation simple, we treat Ft-measurable
functions as defined on Ω for each t, i.e. if f is Ft-measurable and ω|Ωt

is the first t components of
ω ∈Ω, then we write f(ω) to mean f(ω|Ωt

).
Let ω ∈ {τ 0n <∞}. Also assume ω belongs to the P ′-q.s. set where (9) hold (the P ′-q.s. set is also

P-q.s.). There are four cases.
3a) τ 0n(ω)<σ

0
n(ω)≤ T − 2. In this case, τ 0n(ω) = τ̃ 0n(ω), σ

0
n(ω) = σ̃0

n(ω), and we have Xτ0n(ω)(ω) =
Yτ0n(ω)(ω) =Xt(ω) ∀t∈ [τ 0n(ω), σ

0
n(ω)∧T ] = [τ̃ 0n(ω), σ̃

0
n(ω)∧ (T − 1)] by the induction hypothesis.

3b) τ 0n(ω)≤ T − 2, σ0
n(ω) = T − 1. In this case, τ 0n(ω) = τ̃ 0n(ω) and σ̃

0
n(ω) =∞. Again, induction

hypothesis gives Xτ0n(ω)(ω) = Yτ0n(ω)(ω) =Xt(ω) ∀t∈ [τ 0n(ω), σ
0
n(ω)∧T ] = [τ̃ 0n(ω), σ̃

0
n(ω)∧ (T − 1)].

3c) τ 0n(ω)≤ T − 2, σ0
n(ω) =∞. In this case, τ 0n(ω) = τ̃ 0n(ω), σ̃

0
n(ω) =∞ and [τ 0n(ω), σ

0
n(ω)∧ T ] =

[τ̃ 0n(ω), T ]. Induction hypothesis implies Xτ0n(ω)(ω) = Yτ0n(ω)(ω) = Xt(ω) for t ∈ [τ̃ 0n(ω), T − 1]. It
remains to checkXT (ω) =XT−1(ω) for P-q.s. such ω. In terms of the process λ, case 3c) corresponds
to λT−2(ω) = λT−1(ω) = 0. λT−2(ω) = 0 implies S̃T−1(ω) = XT−1(ω). Based on our construction,
λT−1 = 0 only on A1 on which we have shown that XT = S̃T−1 =XT−1 P-q.s..
3d) τ 0n(ω) = T − 1, σ0

n(ω) =∞. In this case, τ̃ 0n(ω) = σ̃0
n(ω) =∞. We need to check XT−1(ω) =

YT−1(ω) =XT (ω) for P-q.s. such ω. In terms of the process λ, case 3d) corresponds to λT−2(ω)>
0 = λT−1(ω). By construction, λT−1(ω) = 0 only when ω ∈A1. So XT (ω) = S̃T−1(ω) =XT−1(ω) for
P-q.s. such ω. If XT−1(ω) 6= YT−1(ω), then λT−2(ω) > 0 would imply S̃T−1(ω) > XT−1(ω). So we
must have XT−1(ω) = YT−1(ω) = S̃T−1(ω) =XT (ω) for P-q.s. ω that falls into case 3d).
Statements about σ1

n, τ
1
n can be verified by a symmetric argument. We therefore have proved

that (i) implies (ii’) for the recursively defined markets [X,Y ] with T periods.
Finally, we note that (ii’) clearly implies (ii).
(ii)⇒ (i): Let f ∈ AT be such that f ≥ 0 P-q.s.. To show f = 0 P-q.s., we suppose on the

contrary, ∃P ∈ P such that P (‖f‖> 0)> 0 and try to derive a contradiction. Write f = φT+1 for
some φ ∈ H. Let (Q, S̃) be the CPS given by (ii). According to Lemma 11, we can find Q′ ∼ Q
such that △φt+1 are Q′-integrable for all t= 0, . . . ,T. Then a slight modification of Kabanov and
Safarian [11, Lemma 3.2.4] yields a bounded, strictly positive Q′-martingale Z = (Z0,Z1) satisfying
S ≤Z1/Z0 ≤ S. Let 〈·, ·〉 denote the usual inner product. On one hand,

EQ′

[〈ZT, f〉] =
T∑

t=0

EQ′

[〈ZT,△φt+1〉] =
T∑

t=0

EQ′

[〈Zt,△φt+1〉]

=
T∑

t=0

EQ′

[
Z0

t

(
△φ0

t+1 +
Z1

t

Z0
t

△φ1
t+1

)]

≤
T∑

t=0

EQ′ [
Z0

t

(
△φ0

t+1 +St(△φ
1
t+1)

+ −St(△φ
1
t+1)

−
)]

≤ 0

by the martingale property of Z under Q′ and the self-financing property of φ. On the other hand,
Q′ ∼Q≫ P implies Q′(‖f‖> 0) > 0. Together with f ≥ 0 and ZT > 0, we get the contradictory
inequality EQ′

[〈ZT, f〉]> 0. �

5. The multi-dimensional extension In this section, we extend our methodology and
results to the multi-dimensional case. The probabilistic framework and model uncertainty set will
be the same as in Section 2. The financial market now considered consists of d dynamically traded
assets where at each time t ∈ {0, . . . ,T}, we are given a random cone Kt : Ωt ։ R

d, called the
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solvency cone. Each Kt is assumed to be a closed, convex cone containing the non-negative orthant
R

d
+. It is the cone of portfolios that can be liquidated into the zero portfolio. −Kt is the cone of

portfolios available from zero, and K0
t :=Kt ∩ (−Kt) is the linear space of portfolios that can be

converted to zero and vice versa. We also define the dual cone K∗
t (ω) := {y ∈R

d : 〈x, y〉 ≥ 0 ∀ x ∈
Kt(ω)}, ω ∈ Ωt. K

∗
t is a closed, convex cone contained in R

d
+. We assume graph(K∗

t ) is analytic.
In particular, this implies K∗

t and Kt are universally measurable by Lemmas 12, 13 and 16 (see
Appendix for the definition of measurable set-valued maps).
Given a (random) set G ⊆ R

d, we write L0(G;Ft) for the set of all Ft-measurable functions
taking values in G. Define At :=

∑t

s=0L
0(−Ks;Fs). Then At is interpreted as the set of attainable

claims at time t from zero initial endowment. Also write L0
P(G;Ft) for the set of all Ft-measurable

functions taking values in G P-q.s..
Remark 8. For the market described in Section 2, the solvency cone Kt is the closed, convex

cone in R
2 spanned by the unit vectors e1, e2 and the vectors Ste1−e2,

1
St
e2−e1. The self-financing

condition can be equivalently written as △φt+1 ∈−L0(Kt;Ft).
Definition 3. We say NAs(P) holds if for all t∈ {0, . . . ,T},

At ∩L
0
P(Kt;Ft)⊆L0

P(K
0
t ;Ft).

Definition 4. We say efficient friction holds if intK∗
t 6= ∅ P-q.s. for all t∈ {0, . . . ,T}.

Remark 9. intK∗
t 6= ∅ is equivalent to K0

t = {0}.
We now compare NAs(P) with the no-arbitrage notion NA2(P) used by Bouchard and Nutz [3].

It is completely analogous to the classical single-measure case.
Definition 5 ([3, Definition 2.2]). We say NA2(P) holds if for all t∈ {0, . . . ,T},

L0
P(Kt+1;Ft)⊆L0

P(Kt;Ft).

Lemma 5. Assuming efficient friction, NA2(P) implies NAs(P).

Proof. Let f ∈ At ∩ L
0
P(Kt;Ft). Write f = ξ0 + · · · + ξt where ξs ∈ L0(−Ks;Fs), s = 1, . . . , t.

We have ξ0 + · · ·+ ξt−1 ∈ L
0
P(Kt;Ft−1) since Kt is a cone. NA2(P) then implies ξ0 + · · ·+ ξt−1 ∈

L0
P(Kt−1;Ft−1). It follows that ξ0 + · · · + ξt−2 = ξ0 + · · · + ξt−1 + (−ξt−1) ∈ L0

P(Kt−1;Ft−2) ⊆
L0

P(Kt−2;Ft−2). Repeat this process until we have ξ0 + · · · + ξs ∈ L
0
P(Ks;Fs) for all s = t, . . . ,0.

Then ξ0 ∈ K0 ∩ (−K0) = {0} by efficient friction. Going back one step, we have ξ0 + ξ1 = ξ1 ∈
K1 ∩ (−K1) = {0} P-q.s.. Repeat this process until we get ξs = 0 P-q.s. for all s= 0, . . . , t. Then
f = ξ0 + · · ·+ ξt =0 ∈K0

t P-q.s.. �

Remark 10. In Lemma 5, the efficient friction assumption cannot be dropped. For example,
consider a simple one-period deterministic market consisting of a zero-interest rate money market
and a single stock with bid-ask prices S0 = S0 = S1 = 1 and S1 = 2. Then K0 = {(x1, x2) ∈ R

2 :
x1 + x2 ≥ 0} and K1 = {(x1, x2) ∈ R

2 : x1 + x2 ≥ 0, x1 + 2x2 ≥ 0}. Clearly, K1 ⊆ K0. So NA2(P)
holds. But (−1,1)∈A1 ∩L

0(K1;F1) is not an element of K0
1 = {0}. So NAs(P) fails.

Remark 11. The converse is not true. NA2(P) says a position which is not solvent today
cannot be solvent tomorrow, which is quite strong. Again, consider a one-period deterministic
market consisting of a zero-interest rate money market and a single stock with bid-ask prices
S0 = 1, S0 = 3, S1 = 2 and S1 = 4. We have K0 = {(x1, x2) ∈ R

2 : x1 + x2 ≥ 0, x1 + 3x2 ≥ 0} and
K1 = {(x1, x2) ∈ R

2 : x1 + 2x2 ≥ 0, x1 + 4x2 ≥ 0}. It is easy to verify by picture that this market
satisfies NAs(P) but fails NA2(P). The position (−1,2/3) is not solvent today, but will be solvent
tomorrow, hence is an arbitrage of the second kind. We do not wish to consider this type of arbitrage
because (−1,2/3) is not even attainable today.
To allow for a more general market structure, we will use NAs(P) instead of NA2(P). It turns

out that NAs(P) together with efficient friction is sufficient to imply the existence of a family of
dual elements.
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Theorem 2. The following are equivalent.
(i) NAs(P) and efficient friction hold.
(ii) ∀P ∈P, ∃ Q∈P(Ω) and a Q-martingale Z in the filtration (Ft) such that P ≪Q≪P and

Zt ∈ intK
∗
t Q-a.s. ∀ t= 0, . . . ,T.

We will refer to the above pair (Q,Z) as a strictly consistent price system (SCPS).8 For the more
difficult direction (i) ⇒ (ii), our goal is to show that NAs(P) together with efficient friction implies
that there exists a modified market with solvency cone K̃t ⊇Kt for all t, which also satisfies efficient
friction and, in addition, the local version of NA2(P). We can then mimic the proof in Bouchard
and Nutz [3] to obtain a family of SCPS’s, one for each P ∈ P, for the modified market. Since
intK̃∗

t ⊆ intK∗
t for all t, any SCPS for the modified market is also an SCPS for the original market.

In the forward extension part, we cannot directly use the result of [3] because our modified market
K̃ is not Borel measurable in general. We also find their assumptions of bounded friction and
K∗

t ∩ ∂R
d
+ = {0} unnecessary.

5.1. Backward recursion Let K̃∗
T :=K∗

T and for t=T− 1, . . . ,0, ω ∈Ωt,

K̃∗
t (ω) :=K∗

t ∩ cl(conv(Γt(ω))) where Γt(ω) := suppPt(ω)K̃
∗
t+1(ω, ·). (10)

Here suppPt(ω)K̃
∗
t+1(ω, ·) denotes the smallest closed set F ⊆ R

d such that P (K̃∗
t+1(ω, ·) ⊆ F ) = 1

∀P ∈ Pt(ω). It can be shown that y ∈ suppPt(ω)K̃
∗
t+1(ω, ·) if and only if ∀ε > 0, ∃P ∈ Pt(ω) such

that P (K̃∗
t+1(ω, ·)∩Bε(y) 6= ∅)> 0. Each K̃∗

t is well-defined, i.e. the support operation makes sense,

thanks to Lemma 6. K̃∗
t is a non-empty, closed, convex cone. Once we have K̃∗

t , we can define the
solvency cone for the modified market by K̃t := (K̃∗

t )
∗. Clearly, K̃∗

t ⊆K∗
t and Kt ⊆ K̃t.

Lemma 6. For each t, graph(K̃∗
t ) is analytic.

Proof. By assumption, graph(K̃∗
T) = graph(K∗

T) is analytic. Supposing graph(K̃
∗
t+1) is analytic,

we will show graph(K̃∗
t ) is analytic. Observe that

graph(Γt) =
{
(ω,y)∈Ωt ×R

d : y ∈ suppPt(ω)K̃
∗
t+1(ω, ·)

}

=
⋂

n

{
(ω,y)∈Ωt ×R

d : ∃P ∈Pt(ω) s.t. P (K̃∗
t+1(ω, ·)∩B1/n(y) 6= ∅)> 0

}

=
⋂

n

projΩt×Rd

{
(ω,y,P )∈Ωt ×R

d ×P(Ω1) :

(ω,P )∈ graph(Pt),E
P
[
1{K̃∗

t+1
(ω,·)∩B1/n(y) 6=∅}

]
> 0

}
.

Since graph(K̃∗
t+1) is analytic by the induction hypothesis, we know

{
(ω,ω′, y)∈Ωt ×Ω1 ×R

d : K̃∗
t+1(ω,ω

′)∩B1/n(y) 6= ∅
}

=projΩt×Ω1×Rd

{
(ω,ω′, y, z) ∈Ωt ×Ω1 ×R

d×R
d : |y− z|< 1/n, (ω,ω′, z) ∈ graph(K̃∗

t+1)
}

is analytic. It follows that (ω,y,P ) 7→EP
[
1{K̃∗

t+1
(ω,·)∩B1/n(y) 6=∅}

]
is u.s.a.. Hence Γt has an analytic

graph. The rest follows from Lemma 12. �

The backward recursion can also be described using K̃t instead of K̃∗
t , which is more convenient

for deriving no-arbitrage properties. Let

Λt(ω) := {x ∈R
d : x∈ K̃t+1(ω, ·) Pt(ω)-q.s.}.

8 In fact, it is a little more than an SCPS since SCPS only requires Zt ∈ riK∗

t Q-a.s. for all t.
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Lemma 7. Λt =Γ∗
t .

Proof. “ ⊆ ”: Let x ∈ Λt(ω) and y ∈ Γt(ω). We want to show 〈x, y〉 ≥ 0. Let A ⊆ Ω1 be the
Pt(ω)-q.s. set such that x ∈ K̃t+1(ω,ω

′) ∀ω′ ∈ A. y ∈ Γt(ω) = suppPt(ω)K̃
∗
t+1(ω, ·) implies ∀ε > 0,

∃Pε ∈ Pt(ω) such that Pε(Aε)> 0 where Aε := {ω′ ∈Ω1 : K̃
∗
t+1(ω,ω

′)∩Bε(y) 6= ∅}. For each ε > 0,

since Pε(A) = 1 and Pε(Aε)> 0, we must have A∩Aε 6= ∅. Let ωε ∈A∩Aε. We have x∈ K̃t+1(ω,ωε)
and K̃∗

t+1(ω,ωε) ∩Bε(y) 6= ∅. Pick zε ∈ K̃
∗
t+1(ω,ωε) ∩Bε(y). We have constructed a sequence (zε)

satisfying 〈x, zε〉 ≥ 0 and zε → y as ε→ 0. This shows 〈x, y〉 ≥ 0.
“ ⊇ ”: For each ω ∈ Ωt, consider the universally measurable set Aω := {ω′ ∈ Ω1 : K̃

∗
t+1(ω,ω

′) ⊆
Γt(ω)}. By the definition of the support of set-valued maps, we have P (Aω) = 1 for all P ∈Pt(ω).
Let x∈ Γ∗

t (ω). To show x∈Λt(ω), it suffices to show x∈ K̃t+1(ω,ω
′) ∀ω′ ∈Aω. This is obvious since

Γ∗
t (ω)⊆ (K̃∗

t+1)
∗(ω,ω′) = K̃t+1(ω,ω

′) ∀ω′ ∈Aω. �

Proposition 3. (i) K̃∗
t =K∗

t ∩Λ∗
t .

(ii) K̃t = cl(Kt+Λt).
9 If intK̃∗

t 6= ∅, then K̃t =Kt +Λt.

Proof. (i) By Lemmas 16 and 7, equation (10) can be rewritten as K̃∗
t =K∗

t ∩ (Γ∗
t )

∗ =K∗
t ∩Λ∗

t .
(ii) Take dual on both sides of (i) and use Lemma 16.10 �

Corollary 1. NA2(Pt(ω)) holds for the one-period market {K̃t(ω), K̃t+1(ω, ·)}.

Proof. The statement holds if and only if Λt(ω)⊆ K̃t(ω), which follows immediately from Propo-
sition 3(ii). �

The next goal is to verify the modified market satisfies efficient friction. To do this, we prove
efficient friction and strict no-arbitrage property at the same time using a backward induction.

Lemma 8. Any f ∈ L0
P(Kt + Λt;Ft) admits a decomposition f = g + h P-q.s. for some g ∈

L0(Kt;Ft) and h∈L
0(K̃t+1;Ft).

Proof. Applying Filippov’s implicit function theorem Himmelberg [9, Theorem 7.1] with
F (ω,x, y) = x+ y as the Carathéodory function, we get the existence of g ∈ L0(Kt;Ft) and h ∈
L0(Λt;Ft) such that f = g+h P-q.s.. By definition of Λt and Fubini’s theorem, h ∈ K̃t+1 P-q.s.. �

Proposition 4. Let NAs(P) and efficient friction hold for the original market. Then they also
hold for the modified market.

Proof. Let Mt := {K0, . . . ,Kt−1, K̃t, . . . , K̃T} denote the (T− t)-th intermediate market obtained
in the backward recursion procedure. Suppose intK̃∗

r 6= ∅ P-q.s. for r = t+ 1, . . . ,T, and NAs(P)
holds for Mt+1. We want to show intK̃∗

t 6= ∅ P-q.s., and NAs(P) holds for Mt.
Step 1. Let us show that intΛ∗

t 6= ∅ P-q.s.. We have

Λ∗
t (ω) = (Γ∗

t (ω))
∗ ⊇ Γt(ω) = suppPt(ω)K̃

∗
t+1(ω, ·)⊇ K̃∗

t+1(ω, ·) Pt(ω)-q.s.,

where the last inclusion holds by the definition of support of a set-valued map. Fubini’s theorem
implies Λ∗

t ⊇ K̃∗
t+1 P-q.s.. It then follows from the induction hypothesis that intΛ∗

t ⊇ intK̃∗
t+1 6= ∅

P-q.s..
Step 2. Now, we will verify that intK̃∗

t 6= ∅ P-q.s.. By Proposition 3(i), it suffices to show that

intK∗
t ∩ intΛ

∗
t 6= ∅ P-q.s..

Both intK∗
t and intΛ∗

t are (P-q.s.) non-empty, open, convex cones. For each ω such that intK∗
t (ω) 6=

∅ and intΛ∗
t (ω) 6= ∅, but intK∗

t (ω) ∩ intΛ
∗
t (ω) = ∅, we can use Hahn-Banach separation theorem

9 Given two sets A and B in R
d, A+B := {x+ y : x ∈A,y ∈B} denotes their Minkowski sum.

10 Note that the interior of finite intersection equals the intersection of interiors.
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to obtain an x ∈ R
d\{0} such that 〈x, y〉 < 0 ∀ y ∈ intK∗

t (ω) and 〈x, z〉 ≥ 0 ∀ z ∈ intΛ∗
t (ω). The

first inequality and that intK∗
t (ω) 6= ∅ imply −x∈ (intK∗

t (ω))
∗ = (riK∗

t (ω))
∗ = (K∗

t (ω))
∗ =Kt(ω),

where we also used Lemma 16. Similarly, the second inequality implies x ∈ (intΛ∗
t (ω))

∗ = Λt(ω).
We have therefore shown that (−Kt(ω)∩Λ(ω))\{0} 6= ∅.
Since K∗

t and Γt have analytic graphs, we know from Lemmas 12 and 13 that Kt = (K∗
t )

∗ and
Λt =Γ∗

t are universally measurable. Hence −Kt∩Λt is also universally measurable by Himmelberg
[9, Corollary 4.2], and has an Ft ⊗B(Rd)-measurable graph by Lemma 13. It is easy to see that
the graph of (−Kt ∩Λt)\{0} is also Ft ⊗B(Rd)-measurable. We can then use Lemma 15 to get a
universally measurable selector x(·) of (−Kt∩Λt)\{0} on the set {(−Kt∩Λt)\{0} 6= ∅} ⊇ {intK∗

t ∩
intΛ∗

t = ∅}∩{intK∗
t 6= ∅}∩{intΛ∗

t 6= ∅}. Outside this set, we define x := 0. Then such an x belongs
to L0(−Kt∩Λt;Ft).
Now, x∈L0(−Kt;Ft) implies x∈AMt+1

t+1 where AM
r denotes the set of attainable claims at time

r from zero initial endowment in a given market M, and x∈Λt implies x∈ K̃t+1 P-q.s. by Fubini’s
theorem. By the strict no-arbitrage property in the induction hypothesis, we have x∈ K̃0

t+1 P-q.s..

By the efficient friction property in the induction hypothesis, we have K̃0
t+1 = {0} P-q.s.. So x=0

P-q.s.. Since x 6= 0 on {intK∗
t ∩ intΛ

∗
t = ∅} ∩ {intK∗

t 6= ∅} ∩ {intΛ∗
t 6= ∅} by our construction, and

intK∗
t 6= ∅, intΛ∗

t 6= ∅ P-q.s., {intK∗
t ∩ intΛ

∗
t = ∅} must be P-polar.

Step 3. In this step, we will demonstrate that NAs(P) holds for Mt.
Let r ∈ {t, . . .T} and f ∈AMt

r ∩L0
P(K̃r;Fr). We want to show f ∈ L0

P(K̃
0
r ;Fr). (The case when

r ∈ {0, . . . , t− 1} is trivial since the solvency cones before time t have not been modified in the
market Mt.) To this end, write f = ξ0 + · · ·+ ξr where ξs ∈ L

0(−Ks;Fs) for s = 0, . . . , t− 1 and
ξs ∈L

0(−K̃s;Fs) for s= t, . . . , r. By Step 2 and Proposition 3, we have K̃t =Kt +Λt P-q.s..
Case 1. r≥ t+1. In this case, Lemma 8 implies that ξt = ζt+ηt P-q.s. for some ζt ∈L

0(−Kt;Ft)
and ηt ∈L

0(−K̃t+1;Ft). We have

f = ξ0 + · · ·+ ξt−1 + ζt +(ηt + ξt+1)+ · · ·+ ξr ∈A
Mt+1

r .

Since f ∈ K̃r P-q.s., we can use NAs(P) for Mt+1 to obtain f ∈ K̃0
r P-q.s..

Case 2. r= t. In this case, first notice that ξ0 + · · ·+ ξt−1 = f − ξt ∈ K̃t P-q.s.. Lemma 8 implies
ξ0 + · · ·+ ξt−1 = g+h P-q.s. for some g ∈L0(Kt;Ft) and h ∈L

0(K̃t+1;Ft). It follows that

h= ξ0 + · · ·+ ξt−1 − g ∈AMt+1

t+1 .

By induction hypothesis, h∈ K̃0
t+1 = {0} P-q.s.. So ξ0 + · · ·+ ξt−1 = g ∈Kt P-q.s.. Since

ξ0 + · · ·+ ξt−1 ∈A
Mt+1

t .

Induction hypothesis again yields ξ0 + · · ·+ ξt−1 ∈K
0
t = {0} P-q.s.. Therefore, we have f = ξt ∈

(−K̃t)∩ K̃t = K̃0
t P-q.s.. �

5.2. Forward extension We first state a one-period result.

Lemma 9. Suppose T= 1 and NA2(P) holds. Let P ∈P. We have ∀z ∈ intK̃∗
0 , ∃Q∈P(Ω) and

Z1 ∈L
0
P(intK̃

∗
1 ;F1) such that P ≪Q≪P and EQ[Z1] = z.

Proof. The proof is a slight modification of that of Bouchard of Nutz [3, Proposition 3.1]. Let
P ∈P. The first step is to show the set ΘP := {ER[Y ] : P ≪R≪P, Y ∈L0

P(intK̃
∗
1 ;F1)} is convex

and has non-empty interior. The second step is to use separating hyperplane theorem and NA2(P)
to show intK̃∗

0 ⊆ ΘP . The main change is: when showing intΘP 6= ∅, due to the lack of Borel
measurability of K̃∗

1 , we cannot directly select a Borel measurable Y ∈ L0
P(intK̃

∗
1 ;F1), but only

a universally measurable one using the analyticity of graph(intK̃∗
1). Nevertheless, since we are
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interested in showing ER[Y ] ∈ intΘP for a fixed measure R satisfying P ≪ R≪ P, we can first
modify Y on an R-null set to make it Borel measurable, and then select εi ∈ L

0((0,1);F1), i =
1, . . . , d such that Y ± εiei ∈ intK̃

∗
1 R-a.s.. Outside this R-a.s. set, define εi := 0. Then ER[εi]> 0,

Y ± εiei ∈ L
0
P(intK̃

∗
1 ;F1) and ER[Y ± εiei] = ER[Y ]± ER[εi]ei ∈ ΘP . We conclude that ER[Y ] ∈

int(conv{ER[Y ± εiei] : i= 1, . . . d})⊆ intΘP . �

Let Z be a one-period Q-martingale satisfying Z0 = z ∈ intK̃∗
0 and Z1 ∈ intK̃

∗
1 Q-a.s., we can

associate to Z1 a vector µ= (µ1, . . . , µd) of probability measures on Ω defined by dµi/dQ :=Zi
1/z

i.
Conversely, given z ∈ intK̃∗

0 and µ= (µ1, . . . , µd)∈P(Ω)d satisfying µ∼Q (i.e. µi ∼Q for all i) and
zdµ/dQ∈ intK̃∗

1 Q-a.s.,11 we can define a Q-martingale Z by Z0 := z and Z1 := zdµ/dQ. At each
step in the forward extension, instead of selecting (Q,Z1), we will select (Q,µ).

Lemma 10. Let t∈ {0, . . . ,T− 1} and P (·) : Ωt →P(Ω1), Zt(·) : Ωt →R
d be Borel. Let

Ξt(ω) :=

{
(Q,µ, P̂ )∈P(Ω1)

1+d×Pt(ω) : P (ω)≪Q∼ µ≪ P̂ ,Zt(ω)
dµ

dQ
(·)∈ intK̃∗

t+1(ω, ·) Q-a.s.

}
.

(11)
Then Ξt has analytic graph and admits universally measurable selectors Q(·), µ(·), P̂ (·) on the
universally measurable set {Ξ 6= ∅}.

Proof.

graph(Ξt) =

{
(ω,Q,µ, P̂ )∈Ωt ×P(Ω1)

1+d ×Pt(ω) : P (ω)≪Q∼ µ≪ P̂ ,

EQ
[
1{Zt(ω)(dµ/dQ)(·)∈intK̃∗

t+1
(ω,·)}

]
≥ 1

}

For each i, choose a version of dµi

dQ
(ω′) that is jointly Borel measurable in (ω′,Q,µi) by Dellacherie

and Meyer [6, Theorem V.58]. Then the map (ω,ω′,Q,µ) 7→ Zt(ω)
dµ
dQ

(ω′) is Borel. Since intK̃∗
t+1

has an analytic graph by Lemma 12, it can be shown that the set A := {(ω,ω′,Q,µ) ∈ Ωt ×Ω1 ×
P(Ω1)

1+d : Zt(ω)
dµ
dQ

(ω′) ∈ intK̃∗
t+1(ω,ω

′)} is analytic. This implies 1A and thus (ω,Q,µ) 7→EQ[1A]

are u.s.a.. Therefore, {(ω,Q,µ) ∈ Ωt ×P(Ω1)
1+d : EQ[Zt(ω)

dµ
dQ

(·) ∈ intK̃∗
t+1(ω, ·)] ≥ 1} is analytic.

The rest of the proof is similar to that of Lemma 4 or Bouchard and Nutz [4, Lemma 4.8]. �

5.3. Proof of Theorem 2
(i)⇒ (ii): First construct the modified market K̃ through the backward recursion (10). For each

t, intK̃∗
t 6= ∅ P-q.s. by Proposition 4. Since K̃∗

t ⊆K∗
t for all t, it suffices to construct SCPS’s in the

modified market. Let P ∈P be given. Pick Z0 ∈ intK̃
∗
0 6= ∅. Suppose P = P |Ωt−1

⊗Pt ⊗ · · · ⊗PT−1,

and we have already constructed Q′, P̂ ′ up to time t− 1 and Z up to time t such that P |Ωt−1
≪

Q′ ≪ P̂ ′ and Zr ∈ intK
∗
r Q

′-a.s. for all r ≤ t. We now extend them to the next time period in a
measurable way. By modifying Pt(·), Zt(·) on a P̂ ′-null set if necessary, we may assume they are
Borel measurable.
Let A := {ω ∈ Ωt : Zt ∈ intK̃

∗
t } ∈ Ft. We have Q′(A) = 1 by construction. By Corollary 1 and

Lemma 9, we know the set-valued map Ξt defined in (11) is non-empty on A. Using Lemma 10,
we can find universally measurable maps Qt(·), µt(·), P̂t(·) such that (Qt, µt, P̂t)∈ Ξt on A. Modify
Qt, µt on a P̂ ′-mull set N to make them Borel. Define Zt+1 := Ztdµt/dQt where we use the Borel
modification of Qt and µt to get a vector of jointly Borel measurable Radon-Nikodym derivatives.
We have Zt+1(ω, ·) ∈ intK̃

∗
t+1(ω, ·) Qt(ω)-a.s. and EQt(ω)[Zt+1(ω, ·)] = Zt(ω) ∀ω ∈ A ∩N c. On the

11 Here and in the sequel, for x, y ∈ R
d, xy ∈R

d denotes their component-wise product. If we want to refer to their
inner product, we will use 〈x, y〉.
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Q′-null set Ac∪N , redefine Qt = P̂t := Pt and set Zt+1 to be any universally measurable selector of
K̃∗

t+1. We have P |Ωt−1
⊗Pt ≪Q′⊗Qt ≪ P̂ ′⊗ P̂t, Zt+1 ∈ intK̃

∗
t+1 Q

′⊗Qt-a.s., and E
Q′⊗Qt [Zt+1|Ft] =

Zt.
Repeat the steps until time T. We get measures Q=Q′⊗Qt⊗· · ·⊗QT−1 and P̂ = P̂ ′⊗Pt⊗· · ·⊗

PT−1 satisfying P ≪ Q≪ P̂ ∈ P, and a Q-generalized martingale Z satisfying Zt ∈ intK̃
∗
t Q-a.s.

for all t. By Kabanov and Safarian [11, Propositions 5.3.2, 5.3.3], Z is actually a Q-martingale.
(ii)⇒ (i): First observe that (ii) implies intK∗

t 6= ∅ P-q.s. for all t, hence efficient friction holds.
Let f ∈ At ∩L

0
P(Kt;Ft). To show f ∈K0

t = {0} P-q.s., we suppose on the contrary ∃P ∈ P such
that P (‖f‖> 0)> 0 and try to derive a contradiction. The proof is similar to that of Theorem 1.
We present it here for the sake of completeness. Write f =

∑t

r=0 ξr for some ξr ∈L
0(−Kr;Fr). Let

(Q,Z) be the SCPS given by (ii). By Lemma 11, we can pick Q′ ∼Q such that ξr is Q′-integrable
for all r = 0, . . . , t. Then by Kabanov and Safarian [11, Lemma 3.2.4], there exists a bounded
Q′-martingale Z ′ such that Z ′

t ∈ riK
∗
t = intK∗

t Q
′-a.s. for all t. On one hand,

EQ′

[〈Z ′
t, f〉] =

t∑

r=0

EQ′

[〈Z ′
t, ξr〉] =

t∑

r=0

EQ′

[〈Z ′
r, ξr〉]≤ 0

by the martingale property of Z ′ under Q′ and that Z ′
r ∈ K∗

r , ξr ∈ −Kr. On the other hand,
Q′ ∼Q≫ P implies Q′(‖f‖> 0)> 0. Together with f ∈Kt and Z

′
t ∈ intK

∗
t ⊆ intRd

+ Q′-a.s., we get

the contradictory inequality EQ′

[〈Z ′
t, f〉]> 0. �

Appendix

Lemma 11 ([6, Theorem VII.57]). Let P ∈ P(Ω) and fn be a sequence of (P -a.s. finite)
random variables. There exists probability measure R∼ P with bounded density with respect to P ,
such that all fn are R-integrable.

Definition 6. Let (Ω,Σ) be a measureable space and X be a topological space. A set-valued
map Φ : (Ω,Σ)։X is Σ-measurable (resp. weakly Σ-measurable) if Φ−1(B) := {ω ∈Ω : Φ(ω)∩B 6=
∅} ∈Σ for each closed (resp. open) subset B of X .
When X is a σ-compact, separable, metrizable space (e.g. Rd) and Φ is closed-valued, measurable
and weakly measurable are equivalent (see Himmelberg [9, Theorem 3.2(ii)]).

Lemma 12. Let Ω be a Polish space and Φ : Ω։R
d be a set-valued map with an analytic graph.

The following results hold.
(a) For any Borel set B ⊆ R

d, {ω ∈Ω : Φ(ω)∩B 6= ∅} is analytic. In particular, this implies Φ
is universally measurable.

(b) conv(Φ) and cl(Φ) have analytic graphs.
(c) If Φ is convex-valued, then int(Φ) has an analytic graph.
(d) If Ψ is another set-valued map with an analytic graph, then Φ∩Ψ has an analytic graph.

Proof. For (a), observe that

{ω ∈Ω : Φ(ω)∩B 6= ∅}=projΩ(graph(Φ)∩ (Ω×B)).

For (b), observe that

graph(conv(Φ)) =
⋃

n

projΩ×Rd

{
(ω,y,α1, . . . , αn, y1, . . . , yn)∈Ω×R

d × [0,1]d ×R
nd :

(ω,yi)∈ graph(Φ) ∀i,
∑

i

αi =1 and y=
∑

i

αiyi

}
,
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and

graph(cl(Φ))=
⋂

n

projΩ×Rd

{
(ω,y, z)∈Ω×R

d ×R
d : |y− z|< 1/n, (ω, z)∈ graph(Φ)

}
.

For (c), observe that if Φ(ω) is convex, then y ∈ int(Φ(ω)) if and only if ∃n∈N such that y±ei/n∈
Φ(ω) ∀ i=1, . . . , d. Hence,

graph(int(Φ))=
⋃

n

projΩ×Rd

{
(ω,y, y±1 , . . . , y

±
d ) ∈Ω×R

d ×R
2d :

y±i = y± ei/n, (ω,y
±
i ) ∈ graph(Φ), i= 1, . . . , d

}

is analytic. (d) follows from graph(Φ∩Ψ)= graph(Φ)∩ graph(Ψ). �

Lemma 13 ([3, Lemma A.1]). Let (Ω,Σ) be a measurable space and Φ : Ω։ R
d be a non-

empty, closed-valued, Σ-measurable set-valued map. The following results hold.
(a) Φ∗ is Σ-measurable.
(b) graph(Φ) is Σ⊗B(Rd)-measurable.

Lemma 14 (Jankov von-Neumman Selection Theorem, [20, Theorem 5.5.2]). Let X,Y
be Polish spaces and A ⊆ X × Y be an analytic set. Then there exists a universally measurable
function φ : projX(A)→ Y such that graph(φ)⊆A.

Lemma 15 ([20, Theorem 5.5.7]). Let (X,Σ) be a measurable space with Σ closed under the
Souslin operation, Y be a Polish space, and A ∈Σ⊗B(Y ). Then projX(A) ∈Σ, and there exists a
Σ-measurable function φ : projX(A)→ Y such that graph(φ)⊆A.

Lemma 16. Let K,K1,K2 be non-empty cones in R
d.

(a) K∗ is a closed, convex cone.
(b) (K∗)∗ = cl(conv(K)).
(c) (riK)∗ =K∗.
(d) K1 ⊆K2 implies K∗

1 ⊇K∗
2 .

If in addition, K1,K2 are convex, then
(e) (K1+K2)

∗ =K∗
1 ∩K

∗
2 .

(f) (clK1∩ clK2)
∗ = cl(K∗

1 +K∗
2 ), and the closure operation can be omitted if riK1 ∩ riK2 6= ∅.

Proof. (a)-(d) are standard results. (e) and (f) can be found in the book by Rockafellar [14,
Corollary 16.4.2]. �
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