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Abstract

We study a simple adaptive model in the framework of an N -player normal form game. The model
consists of a repeated game where the players only know their own action space and their own payoff scored
at each stage, not those of the other agents. Each player, in order to update her mixed action, computes
the average vector payoff she has obtained by using the number of times she has played each pure action.
The resulting stochastic process is analyzed via the ODE method from stochastic approximation theory.
We are interested in the convergence of the process to rest points of the related continuous dynamics.
Results concerning almost sure convergence and convergence with positive probability are obtained and
applied to a traffic game. We also provide some examples where convergence occurs with probability zero.
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1 Introduction

This paper studies an adaptive model for an N -player repeated game. We consider boundedly rational players
that adapt using simple behavioral rules based on past experience.

The decision that a player can make at each stage hinges on the amount of information available. There
are several approaches, depending on how much information agents can gather over time. Fictitious play
(see Brown [8], Fudenberg and Levine [15]) is one of the most widely studied procedures. Players adapt their
behavior by performing best responses to the opponent’s average past play over time. In this case, each
player needs to know her own payoff function and to receive complete information about the other players’
moves. A less restrictive framework is when each player is informed of all the possible payoffs she could have
obtained by using alternative moves. The exponential procedure (Freund and Shapire [14]) is one example
of this kind of adaptive process. Note that, in this case, a player does not necessarily observe her payoff
function.

We are interested in a less informative context here. Players do not anticipate opponents’ behavior and
we assume that they have no information on the structure of the game. This means that agents have only
their own action space and past realized payoffs to react to the environment. We assume that players are
given a rule of behavior (a decision rule) which depends on a state variable. The state variable is updated
by a possibly time-dependent rule (an updating rule) based on the history of play and current observations.

A model widely studied in this framework is the cumulative reinforcement learning procedure, where
players conserve a vector perception (the state variable) in which each coordinate of the vector represents
how a move performs. The updating rule is defined by adding the payoff received to the component of the
previous vector perception corresponding to the move actually played, and keeping the other components
unaltered for the unused moves. The decision rule is given by the normalization of this perception vector,
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assuming that payoffs are positive. Several results for the convergence (and nonconvergence) of players’ mixed
actions have been obtained (see Beggs [2], Börgers and Sarin [6], Laslier et al. [20], as well as a normalized
version by Posch [26] for the 2-player game framework and Erev and Roth [13] for experimental results).
In Cominetti et al. [10], the authors study a model in the same spirit, mainly using a Logit decision rule
(which allows nonpositive payoffs) in the N -player case. Players update the perception vector by performing
an average between the new payoff received and the previous perception. Conditions are given to ensure
the convergence to a Nash equilibrium of a perturbed version of the game. A similar model is studied by
Leslie and Collins [21], where results concerning 2-player games are obtained. Another approach using this
information framework is proposed by Hart and Mas-Colell [17], where the analysis focuses on the convergence
of the empirical frequency of play instead of the long-term behavior of the mixed action. Using techniques
based on consistent procedures (see Hart and Mas-Colell [16]), it is shown that, for all games, the set of
correlated equilibria is attained.

We consider here a particular updating rule where players maintain a perception vector that is updated, on
the coordinate corresponding to the action played, by computing the average between the previous perception
and the payoff received using the number of times that each action has been played. It is natural to consider
this variant: the actions that have been played most often in the past are the ones for which the player should
have the most accurate perception, so it is sensible for the player to put less weight on the most recent payoff
when updating his perception of this action.

The resulting process turns out to be a variation of that explored by Cominetti et al. [10]; but in our case,
players use more information on the history of play. Using the tools provided by the stochastic approximation
theory (see e.g., Benäım [3], Benveniste et al. [4], Kushner and Yin [19]), the asymptotic behavior of the
process can be analyzed by studying a related continuous dynamics. We are interested in the case where
players use the Logit decison rule, and our aim is to find general conditions that will lead to almost sure,
or with positive probability, convergence to an attractor of the associated ODE. This case is particularly
interesting because the rest points of the ODE are the Nash equilibria of a related game.

This paper is organized as follows. Section 2 describes the fundamental theory underpinning the stochastic
approximation. Section 3 precisely defines our model in the framework of an infinitely repeated N -player
normal form game. In Section 4, we restate our algorithm so that it fits the stochastic approximation setting
and we provide a general almost sure convergence result. In Section 5.1 we treat the case of the Logit rule in
detail. We start by finding an explicit condition to ensure almost sure convergence derived from Section 4.
This condition requires the smoothing parameters associated with the Logit rule to be sufficiently small.
It is worth noting that, by this point, we have proved that the results obtained for the process studied by
Cominetti et al. [10] also hold in our setting. Given this, we compare these two processes in terms of the path-
wise rate of convergence. Later, under a weaker assumption, we study convergence to attractors with positive
probability. We apply this result to a particular traffic game on a simple network (studied as an application
in [10]), showing that convergence with positive probability holds under a much weaker assumption than in
the general case. Finally, we provide some examples where the convergence is lost.

2 Preliminaries

This section recalls some basic features of the stochastic approximation theory following the approach in
Benäım [3]. The aim is to study the following discrete process in Rd

zn+1 − zn = γn+1

(
H(zn) + Vn+1

)
, (2.1)

where (γn)n is a nonnegative step-size sequence, H : Rd → Rd is a continuous function and (Vn)n is a
(deterministic or random) noise term. Let us denote by L(zn) the limit set of the sequence (zn)n, i.e., the
set of points z such that liml→+∞ znl

= z for some sequence nl → +∞.
The connection between the asymptotic behavior of the discrete process (2.1) and the asymptotic behavior

of the continuous dynamics
ż = H(z) (2.2)
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is obtained as follows. Given ε > 0, T > 0, a set Z ⊆ Rd and two points x, y ∈ Z, we say that there is
an (ε, T )-chain IN z between x and y if there exist k solutions of (2.2) {x1, . . . ,xk} and times {t1, . . . , tk}
greater than T such that

(1) xi([0, ti]) ⊆ Z for all i ∈ {1, . . . , k},
(2) ‖xi(ti)− xi+1(0)‖ < ε for all i ∈ {1, . . . , k − 1},
(3) ‖x1(0)− x‖ < ε and ‖xk(tk)− y‖ < ε.

Definition 2.1. A set D ⊆ Rd is Internally Chain Transitive (ICT) for the dynamics (2.2) if it is compact
and for all ε > 0, T > 0 and x, y ∈ D there exists an (ε, T )-chain in D between x and y.

This definition is derived from the notion of Internally Chain Recurrent sets introduced by Conley [11].
Roughly speaking, on an ICT set, we can link any two points by a chain of solutions of the dynamics (2.2) by
allowing small perturbations. ICT sets are compact, invariant and attractor-free. In Benäım [3] the following
general theorem is proved.

Theorem 2.2. Consider the discrete process (2.1). Assume that H is a Lipschitz function and that

(a) the sequence (γn) is deterministic, γn ≥ 0,
∑
n γn = +∞ and γn → 0,

(b) sup
n∈N
‖zn‖ < +∞, and

(c) for any T > 0

lim
n→+∞

sup

{∥∥∥∥∥
k−1∑
i=n

γi+1Vi+1

∥∥∥∥∥ ; k ∈ {n+ 1, . . . ,m(

n∑
j=1

γj + T )}
}

= 0,

where m(t) is the largest integer l such that t ≥
l∑

j=1

γj. Then L(zn) is an ICT set for the dynamics (2.2).

Remark 2.3. In the case where the noise (Vn)n in (2.1) is a martingale difference sequence with respect
to some filtration on a probability space, we say that (2.1) is a Robbins–Monro [27] algorithm . In this

framework if, for instance, supn E(‖Vn‖2) < +∞ and (γn)n ∈ l2(N) then assumption (c) in Theorem 2.2
holds with probability one (see Benäım [3, Proposition 4.2]). Moreover this result is still valid if the noise
can be decomposed into a martingale difference process plus a random variable that converges almost surely
to zero.

3 The model

An N -player normal form game is introduced as follows. Let A = {1, 2, . . . , N} be the set of players. For

every i ∈ A let Si be the finite action set for player i and let the set ∆i = {z ∈ R|Si|; zi ≥ 0,
∑
i z
i = 1}

denote her mixed action set. S =
∏
i∈A S

i is the set of action profiles and ∆ =
∏
i∈A ∆i is the set of mixed

action profiles. We write as (s, s−i) ∈ S the action profile where player i uses s ∈ Si and her opponents
use the profile s−i ∈ ∏j 6=i S

j and we adopt the same notation when a mixed action profile is involved. The

payoff function of each player i ∈ A is denoted by Gi : S → R and its multilinear extension by Gi : ∆→ R.
The game is repeated infinitely and we assume that players are not informed about the structure of the

game, i.e., neither the number of players (or their strategies) nor the payoff functions are known. At the
stage n ∈ N, each player i selects an action sin ∈ Si using the mixed action σin ∈ ∆i. Then, she obtains her
own payoff gin = Gi(sin, s

−i
n ), and this is the only information she receives.

For every n ∈ N and for each player i, we assume that the mixed action at stage n , σin ∈ ∆i, is determined
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as a function of a previous perception vector xin−1 ∈ R|Si|, i.e., σin = σi(xin−1) with σi : R|Si| → ∆i. The

state space for the perception vector profiles x = (x1, . . . , xN ) ∈ ∏i∈A R|Si| is denoted X. We also assume
that, for every i ∈ A,

the function σi : R|S
i| → ∆i is continuous, and

for all s ∈ Si and xi ∈ R|S
i|, σis(xi) > 0.

(A)

We will refer to the function σ : X → ∆ with σ(x) = (σ1(x1), . . . , σN (xN )) as the decision rule of the
players.

At the end of stage n, each player i uses the value gin and xin−1 to obtain the new perception vector xin,
and so on. The manner in which xn is updated is called the updating rule of the players.

Cominetti et al. [10] study the following updating rule

xisn+1 =

{(
1− γn+1

)
xisn + γn+1g

i
n+1, if s = sin+1,

xisn , otherwise,
(3.1)

where we assume that γn = 1
n (see the discussion after Proposition 5.6 for an explanation on this choice).

In this paper we consider a variation of (3.1). Players will use more information by taking into account
the number of times their actions have been played. Explicitly, we define the adjusted process (APD) by

xisn+1 =


(
1− 1

θisn+1

)
xisn +

1

θisn + 1
gin+1, if s = sin+1,

xisn , otherwise,
(APD)

where θisn denotes the number of times action s has been used by player i ∈ A up to time n. Given the
particular structure in (APD), xn can be assumed to lie within a compact subset of X for all n ∈ N. Note
that the new variable is simply an average between the previous one and the new payoff scored. We also
notice that (A) implies that the decision rule can be assumed to be component-wise bounded away from zero.

As usual, we denote by Fn the σ-algebra generated by the history up to time n, Fn = σ
(
(sm, gm)1≤m≤n

)
,

where sm = (s1
m, . . . , s

N
m) and gm = (g1

m, . . . , g
N
m).

4 Asymptotic analysis

If we want to analyze (APD) using the tools decribed in Section 2, the main problem is that we have a
stochastic algorithm in discrete time where the step size is random and, moreover, depends on the coordinates
of the vector to be updated. Thus, in order to study the asymptotic properties of our adaptive process, let
us restate the updating scheme (APD) in the following manner:

xisn+1 − xisn =
1

θisn + 1{s=sin+1}
(gin+1 − xisn )1{s=sin+1}

=
1

(n+ 1)λisn

[
(gin+1 − xisn )1{s=sin+1} + bisn+1

]
,

and bisn+1 = O
(

1
n

)
, where λisn =

θisn
n is the empirical frequency of action s for player i up to time n and 1C

stands for the indicator function of set C.

Remark 4.1. Note that the previous decomposition is not well-defined when θisn = 0, but Lemma 4.3 shows
that it is almost surely valid for large n and for all i and s ∈ Si.

Standard computations involving averages show that

λisn+1 − λisn =
1

n+ 1

(
1{s=sin+1} − λ

is
n

)
.
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Then we can express (APD) differently by introducing the empirical frequency of play. The new form is
the (up to a vanishing term) martingale difference scheme

xisn+1 − xisn =
1

n+ 1

[σis(xin)

λisn
(Gi(s, σ−i(xn))− xisn ) + U isn+1

]
,

λisn+1 − λisn =
1

n+ 1

[
σis(xin)− λisn +M is

n+1

]
,

(4.1)

where the noise terms are explicitly

U isn+1 =
1

λisn
(gin+1 − xisn )1{s=sin+1} −

[
σis(xin)

λisn
(Gi(s, σ−i(xn))− xisn )

]
+ bisn+1,

=
1

λisn
(gin+1 − xisn )1{s=sin+1} − E

( 1

λisn
(gin+1 − xisn )1{s=sin+1} | Fn

)
+ bisn+1,

M is
n+1 = 1{s=sin+1} − σ

is(xin),

=
(
1{s=sin+1} − λ

is
n

)
− E(

(
1{s=sin+1} − λ

is
n

)
| Fn).

(4.2)

From now on, we denote by εn = (Un,Mn) the noise term associated with our process.
The scheme (4.1) will allow us to deal with the random (and player-dependent) character of the step size

in (APD). Now, in the spirit of Theorem 2.2, the asymptotic behavior of (4.1) is related to the continuous
dynamics 

ẋist =
σis(xit)

λist

(
Gi(s, σ−i(xt))− xist

)
= Ψis

x (xt, λt),

λ̇ist = σis(xit)− λist = Ψis
λ (xt, λt),

(4.3)

with Ψx : X ×∆ → ∏
i∈A R|Si| and Ψλ : X ×∆ → ∏

i∈A ∆i
0, and ∆i

0 standing for the tangent space to ∆i,

i.e., ∆i
0 = {z ∈ R|Si|;

∑
s∈Si zs = 0}. Let us denote Ψ the function defined by Ψ(x, λ) = (Ψx(x, λ),Ψλ(x, λ)).

For the sake of completeness, let us write the process (3.1) as

xisn+1 − xisn =
1

n+ 1

[
σis(xin)(Gi(s, σ−i(xn))− xisn ) + Ũ isn+1

]
, (4.4)

with the noise term given by

Ũ isn+1 = (gin+1 − xisn )1{s=sin+1} − σ
is(xin)(Gi(s, σ−in (xn))− xisn ),

= (gin+1 − xisn )1{s=sin+1} − E((gin+1 − xisn )1{s=sin+1} | Fn).
(4.5)

Therefore, the corresponding continuous dynamics is given by

ẋist = σis(xit)
(
Gi(s, σ−i(xt))− xist

)
= Φis(xt), (4.6)

where Φ : X →∏
i∈A R|Si|.

Remark 4.2. Observe that the following simple fact holds

(x, σ(x)) ∈ X ×∆ is a rest point of (4.3)⇔ x ∈ X is a rest point of (4.6).

In the following, we will show that asymptotic properties similar to those of (4.4) can be obtained for our
process. This means that explicit conditions can be found to ensure that the process (4.1) converges almost
surely to a global attractor for the dynamics (4.3).

Recall that we have assumed that, for every n ∈ N and i ∈ A, the mixed action σin ∈ ∆i is component-wise
bounded away from zero. The purpose of the next simple lemma is to verify that the same holds, almost
surely, for empirical frequencies of play.
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Lemma 4.3. For n ≥ 1, let σn be a probability distribution over a finite set T and let in+1 be an element of
T which is drawn with law σn and assume (σn)n is adapted to the natural filtration generated by the history.
For all j ∈ T , set

λjn =
1

n

n∑
p=1

1{ip=j}.

Assume that there exists σ > 0 such that σjn ≥ σ. Then

lim inf
n→+∞

λjn ≥ σ,

almost surely, for every j ∈ T .

Proof. Fix j ∈ T and let Fk be the σ-algebra generated by the history {i1, . . . , ik} up to time k. Then we
have that E(1{ik=j} | Fk−1) = σjk−1 ≥ σ. On the other hand the random process (φjn)n given by

φjn =

n∑
k=1

1

k

(
1{ik=j} − E(1{ik=j} | Fk−1)

)
is a martingale and supn∈N (φjn)2 ≤ C ·∑p≥1

1
p2 < +∞ for some constant C. Hence (φjn)n converges almost

surely. Now Kronecker’s lemma (see e.g., Shiryaev [30, Lemma IV.3.2]) gives that

lim
n→+∞

1

n

n∑
k=1

(
1{ik=j} − E(1{ik=j} | Fk−1)

)
= 0.

So that 1
n

∑n
k=1(1{ik=j} − E(1{ik=j} | Fk−1)) ≤ λjn − σ. Taking the lim inf we conclude.

Proposition 4.4. The process (4.1) converges almost surely to an ICT set for the continuous dynamics
(4.3).

Proof. We only have to show that our process satisfies the hypotheses of Theorem 2.2. The assumptions
concerning the regularity of the function involved, the step-size sequence and the boundedness of the process
(xn, λn)n hold immediately.

According to (4.2), Mn is almost surely bounded and can be written as a martingale difference scheme
plus a vanishing term. Observe that E(Un+1 | Fn) = 0 and that∥∥U isn+1

∥∥ ≤ C/λisn ,
for some constant C. Then Lemma 4.3 implies that Un is almost surely bounded. In view of Remark 2.3,
assumption (c) of Theorem 2.2 holds for the noise term εn = (Un,Mn) and the conclusion follows.

Let us define the function F : X →∏
iR|S

i| by

F is(x) = Gi(s, σ−i(x)). (4.7)

Cominetti et al. [10] show that if the function F is contracting for the infinity norm, then the process (4.4)
converges almost surely to the unique rest point of the dynamics (4.6). The following result shows that the
same holds for the process (4.1) by adding a slighlty stronger assumption on the decision rule σ.

Proposition 4.5. Assume that F is contracting for the infinity norm and that, for every i ∈ A, the function
σi is Lipschitz for the infinity norm. Then there exists a unique rest point (x∗, σ(x∗)) ∈ X × ∆ of (4.3).
Furthermore, the set {(x∗, σ(x∗))} is a global attractor and the process (4.1) converges almost surely to
(x∗, σ(x∗)).
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Proof. According to Remark 4.2, (x∗, σ(x∗)) ∈ X×∆ is a rest point of (4.3) if and only if F (x∗) = x∗, hence
the existence and uniqueness follow from the fact that F is contracting.

Let 0 ≤ L < 1 and Ki be the Lipstchitz constants associated with the functions F and σi, i ∈ A,
respectively. We want to find a suitable strict Lyapunov function, i.e., a function V that decreases along the
solution paths and that verifies V −1({0}) = {(x∗, λ∗)} with λ∗ = σ(x∗). Let V : X ×∆→ R+ be defined by

V (x, λ) = max
{
‖x− x∗‖∞ ,

1

ζ
‖λ− λ∗‖∞

}
,

where ζ > 0 will be defined later. Function V is the maximum of a finite number of smooth functions,
therefore it is absolutely continuous and its derivatives are the evaluation of the derivatives of the function
attaining the maximum. We distinguish two cases:
Case 1. V (xt, λt) = ‖xt − x∗‖∞. Let i ∈ A and s ∈ Si be such that V (xt, λt) = |xist − xis∗ |. Let us assume
that xist − xis∗ ≥ 0. Then, for almost all t ∈ R,

d

dt
V (xt, λt) =

d

dt
(xist − xis∗ ) =

σis(xit)

λist

(
F is(xt)− F is(x∗) + xis∗ − xist

)
,

≤ −ξ(1− L) ‖xt − x∗‖∞ = −ξ(1− L)V (xt, λt),

for some ξ > 0 such that σis(x) ≥ ξ for every i ∈ A and s ∈ Si. If xist − xis∗ < 0, the computations are
analogous.
Case 2. V (xt, λt) = 1

ζ ‖λt − x∗‖∞. Let i ∈ A and s ∈ Si be such that V (xt, λt) = 1
ζ |λ

jr
t − λjr∗ |. We also

assume that λjrt − λjr∗ ≥ 0. Then, for almost all t ∈ R,

d

dt
V (xt, λt) =

1

ζ

[
σjr(xjt )− σjr(x∗) + λjr∗ − λjrt

]
≤ −1

ζ
‖λt − λ∗‖∞ +

1

ζ
|σjr(xjt )− σjr(x∗)|

≤ −V (xt, λt) +
maxiKi

ζ
‖xt − x∗‖∞

= −(1− maxiKi

ζ
)V (xt, λt),

and we take ζ > 0 sufficiently large to have 1 > maxiKi/ζ. Again, if the relation λjrt − λjr∗ < 0 holds, the
computations are the same.

Hence V (xt, λt) ≤ −KV (xt, λt) for some K > 0. So V decreases exponentially fast along the solution
paths of the dynamics and V (x, λ) = 0 if and only if (x, λ) = (x∗, λ∗). Therefore the set {(x∗, λ∗)} is a global
attractor which is the unique ICT set for (4.3) (see [3, Corollary 5.4]). Proposition 4.4 finishes the proof.

5 Logit rule

The Logit rule is broadly based on the field of discrete choice models as well as game theory. For instance, a
model of learning in games where the logit function is used is given by the logit-response dynamics [5, 1]. In
this model, the aim is to study the stochastic stability states of the induced process along with equilibrium
selection issues (see [22] for a payoff-based implementation of this dynamics and related models).

Explicitly, the decision rule σ : X → ∆ is given by

σis(xi) =
exp (βix

is)∑
r∈Si

exp (βixir)
, (5.1)

for every i ∈ A and s ∈ Si, where βi > 0 is called the smoothing parameter for player i. According to
Remark 4.2, the following result shows that the rest points of the dynamics (4.3) are the Nash equilibria for
an entropy perturbed version of the original game (see Cominetti et al. [10]).
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Lemma 5.1. Under the Logit decision rule (5.1), if x ∈ X is a rest point of the dynamics (4.6), then σ(x)

is a Nash equilibrium of a game where the action set for each player i is ∆i and her payoff G
i

: ∆ → R is
given by

G
i
(π) =

∑
s∈Si

πisGi(s, π−i)− 1

βi

∑
s∈Si

πis
(

ln(πis)− 1
)
. (5.2)

5.1 Almost sure convergence

We want to apply Proposition 4.5 within this framework. For that purpose, let us introduce the maximum
unilateral deviation payoff that a single player can experience,

η = max
i∈A,s∈Si

r1,r2∈S̃−i

|Gi(s, r1)−Gi(s, r2)|, (5.3)

where S̃−i = {(r1, r2) ∈ S−i × S−i; rk1 6= rk2 for exactly one k}. Now the following proposition ensures that,
if the parameters are sufficiently small, the unique attractor is attained with probability one. From now on,
we denote α = maxi∈A

∑
j 6=i βj .

Proposition 5.2. If 2ηα < 1, the discrete process (4.1) converges almost surely to the unique rest point
(x∗, σ(x∗)) of the dynamics (4.3).

Proof. We know from Cominetti et al. [10, Proposition 5] that, if 2ηα < 1, function F (defined in (4.7)) is
contracting for the infinity norm. Observe also that, for every i ∈ A, function σi is Lipschitz for the infinity
norm, since it is a smooth function defined on a compact set. Therefore, Proposition 4.5 applies.

Rate of Convergence

Up to this point, we were able to reproduce some of the theoretical results of the original model (4.4) regarding
its almost sure convergence to global attractors. Now, we want to justify the inclusion of a counter to the
previous actions in terms of the rate of convergence when both learning processes (4.1) and (4.4) converge
almost surely to (x∗, λ∗) and x∗, respectively, and step size γn = 1

n is considered. This rate of convergence
is closely linked to the largest real part eigenvalue of the Jacobian matrix of the functions Ψ = (Ψx,Ψλ) and
Φ at the respective rest points.

Let us denote ρ(B) the maximum real part of the eigenvalues of a matrix B ∈ Rk×k , i.e.,

ρ(B) = max{Re(µj); j = 1, . . . , k, where µj ∈ C is an eigenvalue of the matrix B}.
We say that a matrix B is stable if ρ(B) < 0.

Lemma 5.3. Assume that 2ηα < 1. Let (x∗, λ∗) and x∗ be the unique rest points of the dynamics (4.3) and
(4.6), respectively. Then

− 1 ≤ ρ(∇Ψ(x∗, λ∗)) < −
1

2
≤ − N∑

k∈A
|Sk| ≤ ρ(∇Φ(x∗)) < 0. (5.4)

Proof. Straightforward computations concerning the function Ψ (see (4.3)) show that

∂Ψis
λ

∂xjr
(x∗, λ∗) = 0 and

∂Ψis
λ

∂λjr
(x∗, λ∗) = −1{is=jr},

for every i, j ∈ A and (s, r) ∈ Si × Sj . Therefore, the matrix ∇Ψ(x∗, λ∗) looks like

∇Ψ(x∗, λ∗) =

(
∇xΨx(x∗, λ∗) 0

L −I

)
, (5.5)
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where I stands for the identity matrix and ∇xΨx(x∗, λ∗) denotes the Jacobian matrix of Ψx with respect to
x at (x∗, λ∗). Notice that the interesting eigenvalues of this matrix are given by its upper-left block because

of the zero block and the identity matrix on the right side in (5.5). Observe also that
∂Ψis

x

∂xis (x∗, λ∗) = −1, i.e.,
matrix ∇xΨx(x∗, λ∗) has diagonal terms equal to −1.

On the other hand, we know that every eigenvalue of a complex matrix B = (Bpq) lies within at least one
of the Gershgorin discs Dp(B) = {z ∈ C, |z − Bpp| ≤ Rp} where Rp =

∑
q 6=p |Bpq|. Given the specific form of

matrix ∇xΨ(x∗, λ∗) we can estimate the position of its eigenvalues. So, in our case,

Ris =
∑
j∈A,
j 6=i

∑
r∈Sj

∣∣∣∣∂Ψis
x

∂xjr
(x∗, λ∗)

∣∣∣∣,
since

∂Ψis
x

∂xjr (x∗, λ∗) = 0 if i = j and r 6= s. This follows from the fact that F is(x) (defined in (4.7)) is
independent of the vector xi. Explicitly,

∂Ψis
x

∂xjr
(x∗, λ∗) = βjσ

jr
∗
[
Gi(s, r, σ

−(i,j)
∗ )−Gi(s, σ−i∗ )

]
,

where
Gi(s, r, σ

−(i,j)
∗ ) =

∑
a∈S−i

aj=r

Gi(s, a)
∏
k 6=i
k 6=j

σka
k

∗ ,

for i 6= j. So that

Ris =
∑
j∈A
j 6=i

βj
∑
r∈Sj

σjr∗
∣∣Gi(s, r, σ−(i,j)

∗ )−Gi(s, σ−i∗ )
∣∣

≤ ηα.

Then we have that all the eigenvalues of matrix ∇xΨx(x∗, λ∗) are contained in the complex disc

{z ∈ C, |z + 1| ≤ ηα} ⊇
⋃
i∈A
s∈Si

Dis(∇xΨx(x∗, λ∗)), (5.6)

which implies that ρ(∇Ψ(x∗, λ∗)) < −1/2.
Analogous computations involving function Φ show that

Dis(∇Φ(x∗)) ⊆ {z ∈ C, |z + σis∗ | ≤ σis∗ ηα},

for every i ∈ A and s ∈ Si. Since −σis∗ + σis∗ ηα < 0, then ρ(∇Φ(x∗)) < 0.
It is obvious that −1 ≤ ρ(∇Ψ(x∗, λ∗)). Inequality −N/∑k |Sk| ≤ ρ(∇Φ(x∗)) follows since the trace of

matrix ∇Φ(x∗) is equal to −N .

Remark 5.4. Notice that 1/2 = N/
∑
k |Sk| if and only if |Sk| = 2 for all k ∈ A.

The following reduced version of Chen [9, Theorem 3.1.1] will be useful.

Theorem 5.5. Consider the discrete process given by (2.1). Assume that the following hold.

(a) For every n ∈ N, γn > 0, limn→+∞ γn = 0,
∑
n γn = +∞ and

lim
n→+∞

γn − γn+1

γn+1γn
= γ ≥ 0.

(b) zn → z0 almost surely.

9



(c) There exists δ ∈ (0, 1] such that

(c.1) for a path such that zn → z0, the noise Vn can be decomposed into Vn = V ′n + V ′′n where∑
n≥1

γ1−δ
n V ′n+1 < +∞ and V ′′n = O(γδn),

(c.2) the function H is locally bounded and is differentiable at z0 such that H(z) = H(z − z0) + r(z)
where r(z0) = 0 and r(z) = o(‖z − z0‖) as z → z0 and

(c.2) the matrix H is stable and, furthermore, H + δγI is also stable.

Then, almost surely,
εn(zn − z0)→ 0, as n→ +∞,

for any εn = o((1/γn)δ).

The previous result allows us to show that our algorithm is faster. This means that, under the common
hypothesis 2ηα < 1 (which ensures almost sure convergence for both processes), employing the adjusted
process (4.1) will help the players to adapt their behavior faster than with the original process (4.4).

Proposition 5.6. Assume that 2ηα < 1 and let (x∗, λ∗) ∈ X ×∆ and x∗ ∈ X be the unique rest points of
dynamics (4.3) and (4.6), respectively. Then the following estimates hold

(i) for almost all trajectories of (4.4)

εn(xn − x∗)→ 0, as n→ +∞,

for every sequence εn = o(n|ρ(∇Φ(x∗))|),

(ii) for almost all trajectories of (4.1)

εn
(
(xn, λn)− (x∗, λ∗)

)
→ 0, as n→ +∞,

for every sequence εn = o(n
1
2 ).

Proof. Recall that εn = (Un,Mn) and Ũn are the noise terms associated with (4.1) and (4.4), respectively (see
(4.2) and (4.5)). We observe that, for both processes, hypotheses (a) and (b) in Theorem 5.5 are immediately
satisfied, since γn = 1

n , (with γ = 1) and since Proposition 5.2 applies. Let us verify that condition (c) holds.

(i) Fix δ ∈ (0, |ρ(∇Φ(x∗))|). The random process (Ũn)n is almost surely bounded and satisfies that

E(Ũn+1 | Fn) = 0. Therefore, Zn =
∑n
k=1(1/k)1−δŨk+1 is a martingale where supn ‖Zn‖2 <∑+∞

k=1(1/k)2(1−δ) < +∞, and thus convergent (since δ < 1/2). To conclude, observe that function
Φ is smooth and that matrix ∇Φ(x∗) + δI is stable.

(ii) Fix δ ∈ (0, 1/2). We repeat the argument by noting that εn = ε̃n + b̃n where b̃n = O(1/n) and
E(ε̃n+1 | Fn) = 0. To finish, we use the fact that matrix ∇Ψ(x∗, λ∗) + δI is stable since inequality (5.4)
holds.

10



Two important comments are in order. First, as before, let us call Cn the upper-left block of the matrix
E(εTn+1εn+1 | Fn), where,

Cis,jrn =


0 if i 6= j,

−
(
σis(xi

n)
λis
n

(Gi(s, σ−i(xn))− xisn )
)
·
(
σir(xi

n)
λir
n

(Gi(r, σ−i(xn))− xirn )
)

+O
(

1
n

)
if i = j, s 6= r,

σis
n

(λis
n )2

[
E((Gi(s, s−in+1)− xisn )2 | Fn)− σisn (Gi(s, σ−in )− xisn )2+

]
O
(

1
n

)
otherwise .

Given that the vector of probabilities σn converges, Cn converges almost surely to a deterministic matrix C
(which is diagonal since Cis,jrn → 0 when i = j and s 6= r). Moreover, C is positive definite since

Cis,jrn =
σisn

(λisn )2

[
E((Gi(s, s−in+1))2 | Fn)− σisn (Gi(s, σ−in ))2 + σisn (1− σisn )xisn (xisn −Gi(s, σisn ))

]
+O

(
1

n

)
,

and therefore

Cis,jr =
1

σis∗

[ ∑
s−i∈S−i

(Gi(s, s−i))2σ−i∗ (s−i)− σis∗ (Gi(s, σ−i∗ ))2

]

>
1

σis∗

[ ∑
s−i∈S−i

(Gi(s, s−i))2σ−i∗ (s−i)− (Gi(s, σ−i∗ ))2

]
≥ 0,

from the fact that 0 < σis∗ < 1 and the convexity of x2. Hence we can conclude that E(εTn+1εn+1 | Fn) con-
verges to a positive definite deterministic matrix and that

√
n((xn, λn) − (x∗, λ∗)) converges in distribution

to a normal random variable (see e.g.. [9, Theorem 3.3.2]). For (4.4), considering the continuous function
C(x) = E(ŨTn+1Ũn+1 | xn = x) and slightly modifying the proof of [12, Theorem 2.2.12], it can be shown

that n|ρ(∇Φ(x∗))|(xn − x∗) converges almost surely to a finite random variable if 0 < |ρ(∇Φ(x∗))| < 1/2. For
instance, considering the game defined by (5.7), we have that |ρ(∇Φ(x∗))| ≈ 0.3. Figure 1 depicts the results
of a numerical experience in this particular example where 2ηα = 0.8.

Second, observe that a better rate can be achieved for (4.4) if the step size is given by γn = a
n for

a > |ρ(∇Ψ(x∗))|. This leads to the rate o(n−δ) for all δ ∈ (0, 1/2). However it is somewhat unrealistic to
assume that the players have this information in advance. Nevertheless, we always have that |ρ(∇Φ(x∗))| <
|ρ(∇Ψ(x∗, λ∗))| and thus the scheme (4.1) can reach at least the same path-wise rate of convergence under
the hypotheses of Proposition 5.6 and regardless of the step size considered.(0, 0) (1, 0) (0, 1)

(0, 1) (0, 0) (1, 0)
(1, 0) (0, 1) (0, 0)

 (5.7)

5.2 Convergence with positive probability

We use the estimates given by Lemma 5.3 to extend the range of parameters where general convergence
results can be obtained for the process (4.1). We start by showing that there exists a unique rest point of
(4.3) which is stable if 1 ≤ 2ηα < 2. Let Y ⊆ X ×∆ be the set of rest points of (4.3) and let B(A) be the
basin of attraction corresponding to an attractor A.

Proposition 5.7. Assume that 1 ≤ 2ηα < 2. Then, there exists a unique rest point (x∗, λ∗) for the dynamics
(4.3) which is an attractor.

Proof. Let (x∗, λ∗) ∈ Y. If 1 ≤ 2ηα < 2, equation (5.6) shows that matrix ∇Ψ(x∗, λ∗) is stable. To prove
that {(x∗, λ∗)} is an attractor, take V (x, λ) = ((x, λ)− (x∗, λ∗))TD((x, λ)− (x∗, λ∗)) as a (local) Lyapunov
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Figure 1: ‖(xn, λn)− (x∗, λ∗)‖2 versus ‖xn − x∗‖2.

function where, for instance, D is the positive definite solution of the Lyapunov equation ∇Ψ(x∗, λ∗)TD +
D∇Ψ(x∗, λ∗) = −I. Given the fact that basins of attraction cannot overlap, Y is finite since X × ∆ is
compact and Ψ is regular. Finally, Y reduces to one point since, in this case, it is impossible to have finitely
many stable equilibibria due to the Poincaré–Hopf Theorem (see e.g., Milnor [23, Chapter 6]).

The following definition is crucial to ensure convergence with positive probability of the process (xn, λn)n
to a given (not necessarily global) attractor.

Definition 5.8. Let (zn)n be a discrete stochastic process with state space Z. A point z ∈ Z is attainable by
(zn)n if for each m ∈ N and every open neighborhood U of z, P(∃n ≥ m, zn ∈ U) > 0.

The following lemma relies on the particular form of the updating rule (APD) considered in this work.

Lemma 5.9. Fix λ = (λ1, . . . , λN ) ∈ ∆. Set xi ∈ R|Si| such that xis = Gi(s, λ−i) for all s ∈ Si and set
x = (x1, . . . , xN ) ∈ X. Then, (x, λ) ∈ X ×∆ is attainable by the process (xn, λn)n. In particular, any rest
point of (4.3) is attainable.

Proof. The fact that σisn ≥ ξ > 0 for every i ∈ A, s ∈ Si and n ∈ N implies that any finite sequence generated
by (4.1) has positive probability. The updating rule (APD) can be expressed almost surely, for n sufficiently
large, as

xisn+1 =
1

θisn

(
giυis(θisn ) + giυis(θisn −1) + · · ·+ giυis(1) + xis0

)
+O

(
1

n

)
, (5.8)

where υis(k) = inf{q ≥ 1, θisq = k}, i.e., the stage when player i has played s ∈ Si for the k-th time. Observe
that we can assume that m = 0 in the definition of attainability. Let ζsn be the number of times that the
action profile s ∈ S has been played up to time n. Hence, for every i ∈ A and s ∈ Si, (5.8) implies that

xisn+1 =
∑

r∈S−i

Gi(s, r)
ζ

(s,r)
n

θisn
+ bn,

with bn = O
(
(θisn )−1

)
. Observe that θisn → +∞ almost surely, due to the conditional Borel–Cantelli lemma.

Fix ε > 0 and let n be an integer such that kis = nk̃is ∈ N, where, for every i ∈ A and s ∈ Si, k̃is denotes
a rational number satisfying that |λis − k̃is| < ε. For a profile s ∈ S, let us define the positive integers
ns =

∏
i∈A k

i
si and n =

∑
s∈S ns. Now we take the sequence generated by (4.1) defined by l ∈ N blocks of
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size n where within each block, each s ∈ S is played exactly ns times, regardless of the order of play. Fix
i ∈ A and r ∈ S−i, so that, by construction

ζ
(s,r)
ln

θisln
=

∏
j 6=i k

j
rjk

i
s

kis
∑

u∈S−i

∏
j 6=i k

j
uj

=
∏
j 6=i

λjr
j

+ b̃ε,

where b̃ε → 0 as ε→ 0. Finally, given ε′ > 0, set l large and ε small to have ‖(xln+1, λln+1)− (x, λ)‖ < ε′.

Recall that L(zn) is the limit set of sequence (zn)n. The following result is the goal of this subsection.

Proposition 5.10. If an attractor A for the dynamics (4.3) satisfies that B(A)∩Y 6= ∅, then P(L(xn, λn) ⊆
A) > 0. In particular, under the Logit decision rule (5.1), if 1 ≤ 2ηα < 2, then Y reduces to one point
(x∗, λ∗) and P((xn, λn)→ (x∗, λ∗)) > 0.

Before providing the proof we need, to briefly introduce the following concepts. Let φ be the semi-flow
induced by the differential equation (4.3) and Yt the continuous time affine process associated with the
discrete process (xn, λn)n, i.e.,

Y (τn + u) = (xn, λn) + u
(xn+1, λn+1)− (xn, λn)

τn+1 − τn
, (5.9)

for all n ∈ N and u ∈ [0, 1
n+1 ), where τn =

∑n
m=1

1
m . Let (Ft)t≥0 be the natural associated filtration.

The following technical lemma is now needed. We omit the proof because we keep strictly to the lines
of Benäım [3, Proposition 4.1] along with the explicit computations provided in the proof of Schreiber [29,
Theorem 2.6].

Lemma 5.11. For all T > 0 and δ > 0,

P
(

sup
u≥t

[
sup

0≤h≤T
‖Y (u+ h)− φh(Y (u))‖

]
≥ δ | Ft

)
≤ C(δ, T )

exp(ct)
,

for some positive constants c and C(δ, T ) when t ≥ 0 is large enough.

Proof of Proposition 5.10. In view of Proposition 5.7 and Lemmas 5.9 and 5.11 the result follows directly
from Benäım [3, Theorem 7.3].

Note that for Lemma 5.9 and for the first part of the statement in Proposition 5.10, we have only assumed
condition (A) on decision rule σ.

The following example shows that the first part of Proposition 5.10 is interesting in its own right. Consider
the 2-player zero-sum game defined by the payoff

G =

(
0 −1
1 0

)
. (5.10)

Let (x∗, σ(x∗)), with σ1(x1
∗) = σ2(x2

∗) = (1/(1 + eβ), eβ/(1 + eβ)) and x1
∗ = x2

∗ = (−eβ/(1 + eβ), 1/(1 + eβ)),
be the unique rest point of (4.3). In this case, every eigenvalue of ∇Ψ(x∗, σ(x∗)) is equal to -1. Then
P((xn, λn)→ (x∗, σ(x∗))) > 0 for all β > 0.

Remark 5.12. Observe that, for any zero-sum game, there exists a unique equilibrium. It is exactly the
same proof as in [18, Theorem 3.2], since if (x, λ) is a rest point of (4.3), then λ is the unique rest point of
the perturbed best response dynamics studied.
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A traffic game

The (almost sure or with positive probability) convergence to attractor results obtained when the Logit
decision rule is considered are valid under the strong assumption 2ηα < 2. In fact, this condition becomes
very difficult to verify as the number of players increases. Moreover, nonconvergence can occur for some games
(see Section 5.3 for details) if parameter ηα is large. In this part, we will discuss the interesting application
developed in Cominetti et al. [10, Section 3] and we will show that a result in the spirit of Proposition 5.10
can be obtained under a much weaker condition.

Consider a network with a topology that consists of a set of parallel routes. Each route r ∈ R in the
network is characterized by an increasing sequence of values cr1 ≤ · · · ≤ crN where cru represents the average
travel time when r carries a load of u users. The traffic game is defined as follows. The action set is common
to all players, i.e., Si = R, for every i ∈ A with R the set of available routes. The payoff to each player i,
when action profile r ∈ RN is played (i.e., when the network is loaded by the configuration r), is given by

−criu = Gi(r), that is, minus her travel time.
This traffic game is shown to be a potential game in the sense that there exists a function Λ : [0, 1]N×|R| →

R such that
∂Λ

∂λis
(λ) = Gi(s, λ−i),

for every λ ∈ ∆. Explicitly, the function Λ is given by

Λ(π) = −Eπ
[∑
r∈R

Ur∑
u=1

cru
]
, (5.11)

where the expectation is taken with respect to random variables Ur =
∑
i∈AX

ir with Xir independent
Bernouilli variables such that P(Xir = 1) = πir. It is also shown that the second derivatives of Λ are zero
except for

∂2Λ

∂πjr∂πir
(π) = Eπ

(
crUr

ij+1 − crUr
ij+2

)
∈ [−η, 0], (5.12)

i 6= j, where Urij =
∑
k 6=i,j X

kr. Notice that this notion does not correspond to the standard Monderer and
Shapley’s [24] notion of a potential game.

We suppose that the smoothing parameters are identical for all players, i.e., βi = β for every i ∈ A. Note
that, in this framework, η (defined in (5.3)) translates to

η = max{ηru ; r ∈ R, 2 ≤ u ≤ N} = max{cru − cru−1 ; r ∈ R, 2 ≤ u ≤ N}. (5.13)

Cominetti et al. [10] obtain the following result.

Proposition 5.13. If ηβ < 1, then (4.6) has a unique rest point x∗ ∈ X which is symmetric in the sense
that x∗ = (x̂, . . . , x̂). Furthermore, {x∗} is an attractor for (4.6).

Remark 5.14. The strong requirement (also for the model in [10]) on the smoothing parameter in order to
ensure uniqueness of equilibrium, can make the prediction of the model very different from the set of Nash
equilibria of the stage game. For instance, this is the case in the two-player congestion game with two links
represented by the matrix

G =

(
−2 −1
−1 −3

)
,

where there are two strict equilibria (one player on each route) and one symmetric mixed Nash equilibrium
σ̂ = (2/3, 1/3). In this particular case, we can check numerically that if β ≤ β∗ = 0.99 then there exists
a unique equilibrium point (σ∗, x∗) of our model. Observe that, naturally, this range is larger than the
one derived from our general result β < η−1 = 0.5. When taking the value β∗, we have that σ1

∗ = σ2
∗ =

(0.5709, 0.4290), which is far from the Nash equilibrium σ̂.

The previous proposition provides a much weaker condition for the existence and uniqueness of a rest
point of (4.6). Observe also that, despite the fact that the second part yields the existence of an attractor, no
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convergence result is obtained for the discrete process (4.4). The next result shows that, under the assumption
ηβ < 1, an additional result can be obtained for (4.1).

Proposition 5.15. If ηβ < 1, (4.3) has a unique rest point (x∗, λ∗) ∈ X × ∆ which is symmetric in the

sense that x∗ = (x̂, . . . , x̂) and λ∗ = (λ̂, . . . , λ̂) = σ(x∗). Furthermore, {(x∗, λ∗)} is an attractor for (4.3) and
P((xn, λn)→ (x∗, λ∗)) > 0.

Proof. The existence and uniqueness of the symmetric rest point of (4.3) follows from Remark 4.2 and
Proposition 5.13. The rest of the proof (below) shows that matrix ∇Ψ(x∗, λ∗) is stable. Hence, {(x∗, λ∗)} is
an attractor for (4.3) and Proposition 5.10 applies.

Recall that Jβ = ∇xΨx(x∗, λ∗) is the upper-left block of matrix ∇Ψ(x∗, λ∗) (see (5.5)). Observe that,
from the definition of Ψx, the fact that σi depends only on xi and (5.11), the entries of Jβ are given by

J is,jrβ =
∑
k∈A

∑
r′∈R

∂2Λ

∂πkr′∂πis
(λ∗)

∂σkr
′

∂xjr
(x∗)− 1{is=jr} =

∑
r′∈R

∂2Λ

∂πjr′∂πis
(λ∗)

∂σjr
′

∂xjr
(x∗)− 1{is=jr}

= βλjr∗ (1− λjr∗ )Eλ∗
(
crUr

ij+1 − crUr
ij+2

)
1{s=r,i 6=j} − 1{is=jr}. (5.14)

Since λ∗ is symmetric (λir = λjr, for all i, j ∈ A), Jβ is a symmetric matrix. Let us show that Jβ is negative
definite by modifying the trick used in Cominetti et al. [10, Proposition 12]. Take h ∈ RN |R|\{0}, then, from
(5.14),

hTJβh =
∑
r∈R

[
β
∑
i 6=j

hir
√
λir∗ (1− λir∗ )hjr

√
λjr∗ (1− λjr∗ )Eλ∗

(
crUr

ij+1 − crUr
ij+2

)
−
∑
i

(hir)2
]
.

For every i ∈ A and r ∈ R, put vir = hir
√

1−λir
∗

λir
∗

, Zir = virXir and set ηr0 = ηr1 = 0. Therefore,

hTJβh =
∑
r∈R

[
β
∑
i 6=j

virvjrλir∗ λ
jr
∗ Eλ∗

(
crUr

ij+1 − crUr
ij+2

)
−
∑
i

λir∗
(vir)2

1− λir∗

]

=
∑
r∈R

Eλ∗
(
β
∑
i 6=j

ZirZjr(crUr−1 − crUr

)
−
∑
i

(Zir)2

1− λir∗

)

≤
∑
r∈R

Eλ∗
(
− ηrUrβ

(∑
i

Zir
)2

+ (ηrUrβ − 1)
∑
i

(Zir)2

)
< 0,

where the last inequality follows by observing that ηrUr ≤ η.

5.3 Nonconvergence

In order to give an idea of the behavior of the stochastic process defined by (4.1) when β (we assume βi = β for
all i ∈ A) becomes large, we provide a small class of games which underlines the relevance of the hypotheses
considered throughout this paper. Consider a 2-player symmetric game, i.e., the action set S = S1 = S2 is
common for both players and the payoffs verify that G1 = (G2)T . Let us assume that G1 has constant-sum
by row, which is,

∑
r G

1(s, r) = k ∈ R for every s ∈ S. It is easy to check that for this kind of game there
exists a rest point of (4.3) which has the form (x, σ(x)) ∈ X ×∆ such that xi = (1/k, . . . , 1/k) for i ∈ {1, 2}.
We also assume that

∑
sG

1(s, s) 6= k.
A game that satisfies the preceding conditions is the good (resp. bad) Rock-Scissors-Paper game 0 a −b

−b 0 a
a −b 0

 ,
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where 0 < b < a (resp. 0 < a < b) or the game (5.7).
The (strong) hypotheses above ensure that at least one rest point of (4.3) does not depend on the parameter

β. In the following we will easily show that if β is sufficiently large then the rest point (x, σ(x)) becomes
linearly unstable. Later, we will prove that this implies that P((xn, λn)→ (x, σ(x))) = 0.

Lemma 5.16. If β > 0 is sufficiently large, then there exists an eigenvalue µ of ∇Ψ(x, σ(x)) such that
Re(µ) > 0.

Proof. Again, let Jβ = ∇xΨx(x, σ(x)) be the upper-left block of the Jacobian matrix of Ψ, which is the only
relevant part, evaluated at (x, σ(x)). The precise expression for the entries of Jβ is

J is,jrβ =
∂Ψis

x

∂xjr
(x, σ(x)) =


−1, if i = j and s = r

0, if i = j and s 6= r

β 1
|S|
[
Gi(s, r)− k

|S|
]
, otherwise,

i, j ∈ {1, 2}. Thus Jβ has the form (
−I Jβ
Jβ −I

)
,

with Jβ ∈ R|S| × R|S|. Observe that we can decompose Jβ as Jβ = βJ − I, where

J =

(
0 J
J 0

)
.

Let µ1, . . . , µ|S| ∈ C be the eigenvalues of J (counting multiplicity). Since we have assumed that∑
sG

1(s, s) 6= k, the trace of J is not zero. Therefore, there exists some eigenvalue µk , k ∈ {1, . . . |S|},
with a nonzero real part. We have that, if v is an eigenvector associated with µk, then µk is an eigenvalue of

J with corresponding eigenvector u = (v, v) ∈ R|S| × R|S| since

Ju =

(
0 J
J 0

)(
v
v

)
=

(
Jv
Jv

)
= µku.

If Re(µk) > 0, the proof is finished. If Re(µl) ≤ 0 for all l ∈ {1, . . . |S|} then
∑
l Re(µl) < 0. Also, the

trace of J is zero and therefore there exists an eigenvalue µ of J (which is not an eigenvalue of J) such that
Re(µ) > 0.

Finally, observe that

det (βJ − µI) =
1

β|S|
det

(
J − µ

β
I

)
, (5.15)

and it is straightforward from (5.15) that µ is an eigenvalue of the matrix Jβ if µ = (1+µ)/β is an eigenvalue
of J . Then µ = βµ− 1 whose real part is strictly positive for a sufficiently large β.

Proposition 5.17. There exists β > 0 large enough and at least one rest point (x, σ(x)) ∈ X ×∆ of (4.3)
such that,

P((xn, λn)→ (x, σ(x))) = 0.

Proof. We can directly apply Brandière and Duflo [7, Theorem 1]. The hypotheses of the theorem concerning
the continuous dynamics and the step size of the discrete process (4.1) are immediately satisfied. The only
condition that needs to be verified if how powerfully the noise is projected in a repulsive direction at (x, σ(x)).
Explicitly, it is sufficient to prove that

lim inf
n→+∞

E(||εprn+1||2 | Fn) > 0 a.s. on the event Γ
(
x, σ(x)

)
= {(xn, λn)→ (x, σ(x))}, (5.16)

since the noise term εn = (Un,Mn) is almost surely bounded. Here, the upper-script pr stands for the
projection onto the repulsive subspace spanned by the eigenvectors associated with the eigenvalues with a
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positive real part.
Fix i ∈ {1, 2}, take β large to have an eigenvalue µ of ∇Ψ(x, σ(x)) such that Re(µ) > 0 and let v

be a correspondent (possibly generalized) eigenvector. The vector v has the form v = (v1, v2). Note that,
necessarily, v2 6= 0 since, if v2 = 0, then v1 is a vector of ones, which is indeed an eigenvector for the upper-left
block of ∇Ψ(x, σ(x)) having -1 as the associated eigenvalue. So that

E(||εprn+1||2 | Fn) ≥ E(‖〈εn+1,v〉v‖2 | Fn) ≥ cE((M jr
n+1)2 | Fn),

with j = −i and for some r ∈ S and c > 0. In view of (4.2),

E((M jr
n+1)2 | Fn) = E((1{sjn+1=r} − σjr(xjn))2 | Fn) +O

(
1

n

)
= σjr(xjn)(1− σjr(xjn)) +O

(
1

n

)
.

To conclude, take the lim infn in the previous expression on the event Γ(x, σ(x)) to conclude that (5.16)
holds, since σis is bounded away from zero for every i ∈ {1, 2} and s ∈ S.

As observed by Pemantle [25], nonconvergence results like the previous proposition are not very interesting
if the set of unstable points is too large. The most useful consequences can be stated when this set is finite, as
in our example (5.7); moreover, it is easy to check that (x, σ(x)) is the unique rest point of (4.3) for all β > 0.
The previous result shows that, for a large β, (x, σ(x)) has probability zero of being the limit of the process,
while for small β it is almost surely the limit. More precisely, we have that ρ(∇Ψ(x, σ(x))) > 0 if β > 3.
Note that, since in this particular case the equilibrium point is known, we can show that (x, σ(x)) is stable if
2ηα = 2β < 6, i.e. if β < 3. Therefore, by using Proposition 5.10, we can fully characterize the behavior of the
process in this case (except for the case where β = 3). Simulations suggest that there is a cycle that attracts
the trajectories and that the empirical frequencies of play still converge to σ(x), when β is large (see Figure 2).
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Figure 2: The mixed action σ1
n of Player 1 when β = 4.

Finally, note that the same analysis will not work for a general class of games (for instance zero-sum
games, as shown by the game given by Equation (5.10)). Nevertheless, similar analysis can be applied to
cases where the game has a unique equilibrium which is known to be unstable. See, for instance, [28, Chapter
9], where this type of study is applied to some of the most well-known dynamics.
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