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Empirical Distribution of Equilibrium Play and

Its Testing Application

Yakov Babichenko∗ Siddharth Barman† Ron Peretz‡

Abstract

We show that in any n-player m-action normal-form game, we can obtain

an approximate equilibrium by sampling any mixed-action equilibrium a small

number of times. We study three types of equilibria: Nash, correlated and

coarse correlated. For each one of them we obtain upper and lower bounds

on the number of samples required for the empirical distribution over the

sampled action profiles to form an approximate equilibrium with probability

close to one.

These bounds imply that using a small number of samples we can test

whether or not players are playing according to an approximate equilibrium,

even in games where n and m are large. In addition, our results substantially

improve previously known upper bounds on the support size of approximate

equilibria in games with many players. In particular, for all the three types

of equilibria we show the existence of approximate equilibrium with support

size polylogarithmic in n and m, whereas the previously best-known upper

bounds were polynomial in n [16, 11, 15].

1 Introduction

Equilibria are central solution concepts in game theory. They are widely used as

models to explain the observed behavior of self-interested entities like human play-

ers in strategic settings. Arguably the most prominent examples of such notions
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of rationality are Nash equilibrium [21], correlated equilibrium [2], and coarse cor-

related equilibrium [14]. At a high level, these concepts denote distributions over

players’ action profiles where no player can benefit, in expectation, by unilateral

deviation. Though, in most empirical applications of game theory these underlying

distributions are not explicitly known to an observer. Rather, what one observes is

the behavior of the players, i.e., players’ realized actions.

This naturally leads us to consider a setting in which players implement an

underlying distribution—i.e., a mixed strategy—during multiple plays of the same

game. Here, the mixed strategy is not known to an outside observer. Rather, the

observer sees the (pure) actions selected by the players during the play; in other

words, she observes independent and identically distributed (i.i.d.) samples from

the mixed strategy. This framework captures typical (empirical) applications of

game theory, and entails the following fundamental question: How many samples

from an equilibrium (Nash, correlated, or coarse correlated) play are required to

ensure that the induced empirical distribution forms an approximate equilibrium1

(again, Nash, correlated, or coarse correlated)? The main objective of this paper

is to show that even in large games—i.e., games with a large number of players

and/or actions—an extremely small number of samples generate an approximate

equilibrium with high probability. This result has several useful interpretations.

1. Testing whether players are playing according to an equilibrium. In

many strategic settings, it is important to test whether players are playing according

to an equilibrium or not, but experimental data is limited and costly. Such scenarios

are studied throughout experimental economics. In such contexts it is desirable to

have tests that are reliable and require a small number of data points. Another case

wherein this testing exercise is relevant is when the same game is played multiple

times in independent environments. We observe a limited number of outcomes/data

and our goal is to analyze, through the data, whether the agents are implementing

an equilibrium. Our results (Theorems 2, 5 and Corollary 4) show that we can

accomplish this testing task even with a small dataset (i.e., few samples) that con-

sists of i.i.d. action profiles drawn from the underlying mixed strategy. Moreover

the results show that the test can be performed via a direct algorithm: we simply

need to check whether or not the empirical distribution of the observed data is an

approximate equilibrium.

2. Existence of simple approximate equilibrium. The existence of ap-

proximate equilibrium with support size polynomial in the number of players has

been established in prior work (see [1], [19], and [16]). In particular, these results

1An approximate equilibrium, with approximation parameter ε > 0, is a distribution over action

profiles at which no player has more than an ε incentive to deviate.
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show that in every normal-form game there exists an approximate equilibrium that

is simply the uniform distribution over a small set of action profiles; such approxi-

mate equilibria are referred to as simple approximate equilibria. Our result extends

this line of work by substantially improving the upper bounds on the support size of

simple approximate equilibrium. In particular, Corollaries 1 and 3 along with The-

orem 4 show that in every game there exists an approximate equilibrium of support

size polylogarithmic in n (the number of players) and m (the number of actions per

player), see Table 2.

3. Population games. Sampling occurs in life very naturally. In biology

[25], for example, members of a species come in different traits: sex, size, color,

etc. Every newborn has a trait which is sampled according to some distribution

prescribed by its species. An ecological system is abstractly modeled as a game,

where the players are species, the strategies are their traits, and mixed strategies

represent distributions of traits among individuals of a species. This abstraction

relies on the assumption that the size of the population is large enough to represent

the mixed strategy of the species faithfully. The present paper provides estimates

on what should be considered as “large enough” for such strategic reasoning. The

above situation is modeled in detail by a population game. Here, each individual

is modeled as a player, where members of the same species are identical players.

It is assumed that individuals can’t change their trait (sex, color, etc.); therefore

it is reasonable to look at (approximate) pure equilibria. The diversity of traits is

explained by assuming some source of randomization in the creation of individuals;

therefore the special interest in sampled equilibria.

Another justification for seeking such sampling-based pure equilibria was given

by Kalai [18], who viewed them as ex-post equilibria. That is, the players play a

mixed strategy equilibrium, and even after their strategies are realized they have no

incentive to modify them.

Our results can be interpreted as bounds on the minimal size of the population

that ensures an ex-post equilibrium in a population game. Kalai [18] worked in the

more general framework of semi-anonymous games. The minimal number of players

needed for such an equilibrium to emerge was studied by Azrieli and Shmaya in the

even more general framework of Lipschitz games [3]. It should be noted that the

results we obtain for the special case of population games are stronger than what

one could hope to obtain for arbitrary Lipschitz games.

4. Short-Run Stability of Equilibrium in Repeated Games with Bounded

Rationality. The premise that players do not know their opponents’ utility func-

tions is a central construct in the study of uncoupled learning in repeated games

(see [15] and [27]). A reasonable assumption along these lines is that players do
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not know the mixed strategy of their opponents. This gives us a repeated-game

model in which every player learns her opponents’ mixed strategies by observing

the actions that they play in each repetition of the game.2 In this framework, a

natural way of learning opponents’ mixed strategy is through the empirical distri-

bution (i.e., approximating opponents’ mixed strategy by the empirical distribution

of the observed action profiles). Such a learning process has been considered in the

classical fictitious play literature [23], and in many other recent results; e.g., the

regret-testing dynamics (see [10] and [12]).

Overall, we get the following key question in settings where players learn their

opponents’ mixed strategy through pure-action samples played by the opponents:

How fast does the empirical distribution of equilibrium play forms an approximate

equilibrium?

The answer to this question sheds light on the short-run stability of equilibria. If

the empirical distribution does not form an approximate equilibrium after multiple

iterations (i.e., after multiple plays), then it is likely that an impatient player—who

is uncertain about her opponents’ strategies—will infer from the observed samples

that her current mixed strategy is not a best reply to her opponents’ strategies and

deviate to some other strategy. This exact setup has been considered in [10] and

[12]. Our results imply that, even in large games, after a small number of iterations

with high probability such a situation will not occur. I.e., the equilibria are stable

in the short run.

Specifically, we provide almost tight bounds for the above question (see Table

1). These bounds in particular show that after a small number of iterations, each

player can learn whether her current strategy is approximately a best reply to her

opponents’ strategies.

1.1 Informal Statement of the Results

We consider large normal-form games with n players and m actions per player (here

at least one of the numbers n or m is large). Let x be an equilibrium of the game

(Nash, correlated, or coarse correlated), which is a distribution over the action

profiles. We observe k i.i.d. samples from x.

For the case of Nash equilibrium, since the players are playing according to a

product distribution, the correct notion for the empirical distribution of play is the

product of the empirical distributions of the actions played by each player. For

the cases of correlated and coarse correlated equilibrium the correct notion for the

2Note that this assumption holds in most repeated-game models, i.e., perfect monitoring.
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empirical distribution of play is simply the empirical distribution of the sampled

action profiles.

The empirical distribution of play is a random variable. In this paper we address

the following question: how large should the number of samples k be to guarantee

that the empirical distribution of play forms an approximate equilibrium with prob-

ability close to 1? We provide almost tight bounds for this question, which are

summarized in the table below.

Equilibrium Upper Bound Lower bound

Nash k = O(logm+ logn) k = Ω(logm+ logn)

Theorem 1 Examples 2 and 1

Correlated k = O(m logm+ logn) k = Ω(m+ logn)

Theorem 3 Examples 3 and 1

Coarse Correlated k = O(logm+ logn) k = Ω(logm+ logn)

Theorem 7 Examples 2 and 1

Table 1: Bounds on the number of samples that are required for the empirical

distribution of a play to form an approximate equilibrium with probability close to

1.

Moreover, we show that if players are playing according to a distribution that

is not an approximate equilibrium, then for the same values of k (as in the upper

bound column in Table 1), with probability close to 1, the empirical distribution

of play will not form an approximate equilibrium. Therefore, we can test whether

players are playing according to an approximate equilibrium using k samples (see

Theorems 2 and Corollaries 5 and 4). These results suggests that even in games with

a very large number of players or a very large number of actions there exists efficient

tests to determine whether players are playing according to a Nash equilibrium or

a coarse correlated equilibrium. Correlated equilibrium on the other hand is a

slightly more complicated notion in this respect. We establish this by proving that

there does exists a test for approximate correlated equilibrium that uses less than

Ω(
√
m) samples (see Theorem 6). This is in contrast to Nash equilibrium and coarse

correlated equilibrium that require only O(logm) samples.

The fact that the empirical distribution of play forms an approximate equilib-

rium with merely positive probability is interesting in its own right. The fact that

this event occurs with positive probability establishes, via the probabilistic method,

the existence of an approximate equilibrium with small support size. Note that

“support size” has different meanings in the case of Nash equilibrium and the cases
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of correlated and coarse correlated equilibrium. For Nash equilibrium the support

size is the maximum number of actions that are played with positive probability by

any single player. For correlated and coarse correlated equilibrium, the support size

is the number of action profiles that have a non-zero probability of being played in

the approximate equilibrium.

Small-support approximate Nash equilibria have been previously studied in [1],

[19], and [16]. Althöfer [1] along with Lipton and Young [20] studied the problem

for two-player m-action zero-sum games and established a Θ(logm) bound on the

support size. Lipton, Markakis, and Mehta [19] studied the same question of general

n-player m-actions games and achieved an upper bound of O(n2 logm). Hémon et

al. [16] improved the bound of [19] to O(n logm). Our result implies the existence of

an approximate Nash equilibrium with support size O(logm+ logn) (see Corollary

1). This result gives us an algorithm for computing an approximate Nash equilib-

rium with running time O(N log logN) in games where m = poly(n) (i.e., the number

of actions is not significantly larger than the number of players). Here N is the

input size of the game; see Corollary 2. Note that the running time of the best pre-

viously known algorithm for this problem is O(N logN) (see [22]). Hence, the current

paper provides an exponential improvement upon prior work in the computation of

approximate Nash equilibrium in large games.

Support-size upper bounds for exact correlated equilibria were studied by Ger-

mano and Lugosi in [11]. Specifically, they showed that every n-player m-action

game admits a correlated equilibrium with support size O(nm2). Applying the

technique of [11] we can obtain a bound of O(nm) on the support size of exact

coarse correlated equilibrium. The results in this paper prove that for approximate

correlated equilibrium and approximate coarse correlated equilibrium the size of the

support can be significantly reduced to O(logm(logm+log n)) and O(logm+log n)

respectively.

Our bounds on the support size of approximate equilibria and previously known

results are summarized in Table 2.

2 Notation and Preliminaries

We consider n-player m-action games, i.e., games with n-player and m actions per

player.3 Write N := nmn to denote the input size of such games; i.e., the size of a list

3All the results in the paper hold also for the case where each player has a different number

of actions (i.e., player i has mi actions). For ease of presentation, we assume throughout that all

players have the same number of actions m.
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Approximate Equilibrium Our Results Previous Bounds

Nash O(logm+ logn) O(n logm)

Corollary 1 [16]

Correlated O(logm(logm+ logn)) Exact: O(nm2)

Theorem 4 [11]

Coarse Correlated O(logm+ logn) Exact: O(nm)

Corollary 3 [11]

Table 2: Support size of approximate equilibria.

that enumerates players’ utilities at every pure action profile. We use the following

standard notation. The set of players is [n] = {1, 2, ..., n}. The set of actions of each
player is Ai = [m] = {1, 2, ..., m}. The set of strategy profiles is A = [m]n. The set

of all probability distributions over a set B is denoted by ∆(B). Therefore, ∆(A)

is the set of all probability distributions over the action profiles, and Πi∈[n]∆(Ai)

is the set of all product distributions. For a vector v = (vj)j∈[n], we denote by

v−i := (vj)j 6=i,j∈[n] the vector that does not contain the i’th coordinate. The payoffs

of the players are normalized between 0 and 1. Specifically, the payoff function of

player i is denoted by ui : A → [0, 1] and it can be extended to ui : ∆(A) → [0, 1]

by ui(x) := Ea∼x[ui(a)].

Definition 1. A distribution over a set B is called k-uniform if it is the uniform

distribution over a size-k multiset of elements from B. Equivalently, x ∈ ∆(B) is

k-uniform iff x(b) = cb
k

for every b ∈ B where cb ∈ N. The set of all k-uniform

distributions on B is denoted ∆k(B).

3 Approximate Nash Equilibrium

Definition 2. A product distribution x = (xi)i∈[n] is an ε-Nash equilibrium if no

player can gain more than ε by deviating to another strategy. Formally, ui(x) ≥
ui(ai, x−i)− ε for every i ∈ [n] and every ai ∈ Ai.

When ε = 0 we say that x is an exact Nash equilibrium, or simply Nash equilib-

rium.

Throughout the paper we refer to ε as a constant, and derive asymptotic results

for games where at least one of the parameters m or n goes to infinity.

Assume that the players are playing according to a product distribution x =

(xi)i∈[n]. We observe k i.i.d. samples from x that are denoted (a(t))t∈[k], where
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each a(t) ∈ A. Since we assume that the players are playing according to a product

distribution, the correct interpretation of the observed data is as follows. We denote

by ski the empirical distribution of player i, defined to be the empirical distribution

of the samples (ai(t))t∈[k]. Formally, ski (ai) := 1
k
|{t : ai(t) = ai}|. The product

empirical distribution of play is the product distribution Πi s
k
i .

The following theorem states that if players are playing according to a Nash

equilibrium then the product empirical distribution of play (which is a random vari-

able) is an ε-Nash equilibrium after k = O(logn+ logm) samples, with probability

close to 1.

Theorem 1. Let x be a Nash equilibrium of an n-player m-action game and param-

eters ε, α ∈ (0, 1). Then, the product empirical distribution of play (ski )i∈[n] defined

over k i.i.d. samples from x is an ε-Nash equilibrium with probability greater than

1− α, for every

k >
8(lnm+ lnn− lnα− ln ε+ ln 8)

ε2
= O(logm+ logn + | logα|).

We emphasize the logarithmic dependence of the number of samples k on the

probability of error α, which means that in order to reduce the probability of error

by a factor of two we should increase the number of samples only by a constant

(8 ln 2
ε2

).

A proof of Theorem 1 is given in Section 3.3. We note that the bound O(logm+

log n) is tight (up to a constant factor), see Examples 1 and 2 in Section 6.

3.1 Existence of Simple Approximate Nash Equilibrium

Note that if sk is an ε-Nash equilibrium with positive probability then there exists

a multiset of k samples that forms an ε-Nash equilibrium; this claim follows from

the probabilistic method. Note also that the empirical distribution of every player

i is a k-uniform distribution (see Definition 1). This simple observation implies

the following corollary from Theorem 1. Here, we say that an approximate Nash

equilibrium
∏

i si is k-uniform if every si is a k-uniform distribution.

Corollary 1. Every n-player m-action game admits an k-uniform ε-Nash equilib-

rium for every

k >
8(lnm+ lnn− ln ε+ ln 8)

ε2
= O(logm+ log n).

This corollary guarantees the existence of an approximate equilibrium (in every

n-player m-action game) where each player uses only a small number of actions in
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her mixed strategy (at most O(logm + log n)). Another useful consequence, is the

simplicity of the probabilistic structure of the mixed strategy of each player. To see

it, consider, for example, the case of n-player 2-action games. Here, corollary 1 with

k =

⌊

8

ε2
(lnn+ ln ε+ ln 16)

⌋

+ 1 = O(logn),

implies that there exists an ε-Nash equilibrium in which each player i uses a mixed

strategy of the form ( ci
k
, 1− ci

k
), where ci ∈ N.

The fact that such a simple approximate Nash equilibrium exists allows us to find

an approximate Nash equilibrium just by exhaustively searching over all the possible

n-tuples of k-uniform strategies. Although the algorithm is simple, to the best of

our knowledge it provides the best-known running-time bound for this problem.

Corollary 2. Given an n-player m-action normal-form game and constant ε > 0,

there exists an algorithm that computes an ε-Nash equilibrium of the game in time

min{mnk, knm}, with k = O(logm+ logn).

Recall that N = nmn denotes the input size of n-player m-action games. For all

games we have

mnk = poly(Nk) ≤ poly(Nn logm) = poly(N logN),

which implies that the running time of the exhaustive search algorithm is at most

NO(logN). This bound coincides with the best-known upper bound for computing

approximate Nash equilibrium (see [22]).

For the class of games where m = poly(n) (e.g., n-player games with n2-action

games) the bound of Corollary 2 improves from N logN to N log logN :

mnk = poly(Nk) = poly(N logn) = poly(N log logN ).

For the class of games where the number of actions is constant (m = O(1)), the

bound of Corollary 2 further improves to N log log logN :

knm = N
nm log k

logN = poly(N log k) = poly(N log log logN).

3.2 Testing Approximate Nash Equilibrium

Our goal is to test whether players are playing according to an approximate Nash

equilibrium. The assumption is that the exact mixed strategies of the players are

unobserved. Instead, we observe i.i.d. samples from the underlying mixed strategies.
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Our focus is on the following question: how many samples are required to perform

this test?

Ideally, we would like to design a test that outputs the answer Y ES (with

probability close to 1) if the players are playing according to δ-Nash equilibrium,

and it returns NO (with probability close to 1), otherwise. It is easy to see that

such a test does not exist. The problem arises at the “boundary”. Consider a

distribution x that is a δ-Nash equilibrium, but every arbitrary small neighborhood

of x contains a distribution that is not a δ-Nash equilibrium (it is easy to see that

such a distribution x always exists). Then the test should distinguish between x and

distributions that are arbitrary close to x using a finite number of samples, which is

impossible. Therefore, we weaken our requirements from a test by providing a slack

of ε.

Definition 3. Given a number of samples k ∈ Z+, a function T : Ak → {Y ES,NO}
is said to be an ε-test that has error probability α for δ-Nash equilibrium if for every

product distribution x = (xi)i∈[n] ∈
∏

i∆(Ai) we have

• P(T ((a(t))t∈[k]) = Y ES) ≥ 1− α, for every x that is a δ-Nash equilibrium;

• P(T ((a(t))t∈[k]) = NO) ≥ 1 − α, for every x that is not a (δ + ε)-Nash

equilibrium.

In other words, we require that the test returns the correct answer, with proba-

bility close to 1, for all distributions that are δ-Nash equilibrium and for all distribu-

tions that are not (δ+ ε)-Nash equilibrium. We allow the test to return any answer

when the distribution is a (δ + ε)-Nash equilibrium but not a δ-Nash equilibrium.

The following theorem states that using O(logn + logm) samples we can test

whether players are playing according to an approximate Nash equilibrium. More-

over, the test is very natural, we need to simply check whether the empirical distri-

bution of play is an approximate Nash equilibrium or not.

Theorem 2. Let

T ((a(t)t∈[k]) =

{

Y ES if (ski )i∈[n] is a (δ + ε
2
)-Nash equilibrium,

NO otherwise.

Then T is an ε-test that has error probability α for δ-Nash equilibrium, when the

number of samples

k >
72

ε2
(ln(m+ 1) + lnn− lnα− ln ε+ ln 24) = O(logm+ log n+ | logα|).

Note that the number of samples is independent of δ. Section 3.3 contains a proof

of Theorem 2.
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3.3 Proofs

The proofs of Theorems 1 and 2 are based on the following Lemma.

Lemma 1. For every n-player m-action game, every player i ∈ [n], every action

ai ∈ Ai = [m], and every product distribution of the opponents x−i = (xj)j 6=i we

have

P(|ui(ai, s
k
−i)− ui(ai, x−i)| ≥ ε) ≤ 4e−

ε
2

2
k

ε
.

In other words, this lemma states that with probability that is exponentially (in

k) close to 1, player i is almost indifferent between the case where his opponents are

playing the original distribution x−i or the product empirical distribution sk−i.

We emphasize that this lemma is a key technical contribution of this work that

proves a novel concentration inequality for product distributions. Even though we

apply the sampling method as in [19] and [16], the fact that we use Lemma 1 instead

of some standard concentration inequality essentially enables us to significantly im-

prove upon the previously-best-know bounds. A proof of Lemma 1 is given in the

appendix.

Proof of Theorem 1. The proof uses similar idea to [19] or [16]. Lemma 1 and the

choice of k guarantee that

P(|ui(ai, s
k
−i)− ui(ai, x−i)| ≥

ε

2
) ≤ 8e−

ε
2

8
k

ε
<

α

mn
,

for every player i and every action ai ∈ [m]. Using the union bound, we get that with

probability greater then 1− α we have |ui(ai, s
k
−i)− ui(ai, x−i)| < ε

2
, for all players

i ∈ [n] and all actions ai ∈ [m]. In such a case (ski )i∈[n] is an ε-Nash equilibrium

because

ui(ai, s
k
−i) ≤ ui(ai, x−i) +

ε

2
≤

∑

a′
i
∈Ai

ski (a
′
i)ui(a

′
i, x−i) +

ε

2

≤
∑

a′
i
∈Ai

ski (a
′
i)ui(a

′
i, s

k
−i) + ε = ui(s

k
i , s

k
−i) + ε,

where the second inequality holds because all the strategies in the support of ski are

in the support of xi, which contains only best replies to x−i.

Proof of Theorem 2. Lemma 1 and the choice of k guarantee that

P(|ui(ai, s
k
−i)− ui(ai, x−i)| ≥

ε

3
) ≤ 24e−

ε
2

72
k

ε
<

α

(m+ 1)n
, (1)
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for every player i and every action ai ∈ [m]. In addition, Hoeffding’s inequality (see

[17]) guarantees that for a given x−i we have

P(|ui(s
k
i , x−i)− ui(xi, x−i)| ≥

ε

6
) ≤ 2e−

ε
2

72
k <

24e−
ε
2

72
k

ε
<

α

(m+ 1)n
, (2)

for every player i ∈ [n]. Note that there are n(m+1) inequalities of the form (1) and

(2). Therefore, the union bound implies that with probability greater than 1 − α

the following n(m+ 1) inequalities hold:

|ui(ai, s
k
−i)− ui(ai, x−i)| ≤

ε

6
∀i ∈ [n], ∀ai ∈ [m].

|ui(s
k
i , x−i)− ui(xi, x−i)| ≤

ε

6
∀i ∈ [n].

(3)

Throughout the proof we will assume that all the inequalities in (3) are satisfied.

If (xi)i∈[n] is a δ-Nash equilibrium then (ski )i∈[n] is a (δ + ε
2
)-Nash equilibrium

because

ui(ai, s
k
−i) ≤ ui(ai, x−i) +

ε

6
≤ ui(xi, x−i) + δ +

ε

6
≤ ui(s

k
i , x−i) + δ +

ε

3

=
∑

ai∈Ai

ski (ai)ui(ai, x−i)+δ+
ε

3
≤

∑

ai∈Ai

ski (ai)ui(ai, s
k
−i)+δ+

ε

2
= ui(s

k
i , s

k
−i)+δ+

ε

2
.

On the other hand, if (xi)i∈[n] is not a (δ+ε)-Nash equilibrium, then there exists

a player i and an action a∗i such that ui(a
∗
i , x−i) > ui(xi, x−i)+ δ+ ε. In such a case

(ski )i∈[n] is not a (δ + ε
2
)-Nash equilibrium because

ui(a
∗
i , s

k
−i) ≥ ui(a

∗
i , x−i)−

ε

6
> ui(xi, x−i) + δ +

5ε

6
≥ ui(s

k
i , x−i) + δ +

4ε

6

=
∑

ai∈Ai

ski (ai)ui(ai, x−i)+δ+
2ε

3
≥

∑

ai∈Ai

ski (ai)ui(ai, s
k
−i)+δ+

ε

2
= ui(s

k
i , s

k
−i)+δ+

ε

2
.

Summarizing, the choice of k guarantees that all the inequalities in (3) will be

satisfied with probability of at least 1−α. If those inequalities are satisfied then we

have the following:

- For every product distribution x that is a δ-Nash equilibrium, the product

empirical distribution is a (δ + ε
2
)-Nash equilibrium. Hence, for δ-Nash equilibria,

the given test T returns the correct answer Y ES.

- For every product distribution x that is not a (δ + ε)-Nash equilibrium, the

product empirical distribution is not a (δ + ε
2
)-Nash equilibrium. Hence, for a

distribution that is not a (δ + ε)-Nash equilibirum, the given test T returns the

correct answer NO.
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4 Approximate Correlated Equilibrium

Section 3 considered the case of product distributions, i.e., a setting in which players

followed their mixed strategies independently. We will now consider complementary

notions of equilibria that address settings in which players’ actions are correlated.

Specifically, this section is focused on correlated equilibira and the next section is

on coarse correlated equilibria.

A typical interpretation of correlated equilibrium is as follows. There exists a

mediator who samples an action profile a = (ai)i∈[n] according to a distribution

x. Then the mediator (privately) tells every player i the corresponding action ai.

We will call the drawn action ai the recommendation to player i. A distribution

x ∈ ∆(A) is an ε-correlated equilibrium if no player can gain more than ε by devi-

ating from the recommendation of the mediator. A deviation from the mediator’s

recommendation is described by a switching rule f : Ai → Ai, that corresponds

to the case where instead of the recommended action ai the player chooses to play

f(ai).

Definition 4. For every switching rule f : Ai → Ai we denote by Ri
f (a) :=

ui(f(ai), a−i) − ui(ai, a−i) the regret of player i for not implementing the switch-

ing rule f at strategy profile a.

A distribution x ∈ ∆(A) is an ε-correlated equilibrium if Ea∼x[R
i
f (a)] ≤ ε for

every player i and every switching rule f : Ai → Ai.

Unlike the case of product distributions where it was reasonable to consider the

product empirical distribution, here in the case of general (not necessarily product)

distributions we consider the empirical distribution of the sampled profiles. We

assume that players are playing according to a distribution x ∈ ∆(A). We observe

k i.i.d. samples from x that are denoted by (a(t))t∈[k] where a(t) ∈ A. Write sk for

the empirical distribution of the samples, specifically sk(a) := 1
k
|{t ∈ [k] : a(t) = a}.

We begin with stating the analogue of Theorem 1 for the case of correlated

equilibrium.

Theorem 3. Let x be a correlated equilibrium of an n-player m-action game and

parameters ε, α ∈ (0, 1). Then, the empirical distribution sk defined over k i.i.d. sam-

ples from x is an ε-correlated equilibrium with probability greater than 1 − α for

every

k >
2

ε2
(m lnm+ lnn− lnα) = O(m logm+ log n).

13



The bounds of Theorem 3 are almost tight. Specifically, Example 1 in Section 6

demonstrates that the log n dependence on n is tight, and Example 3 demonstrates

that at least Ω(m) samples are required in order to form an approximate correlated

equilibrium.

The arguments for proving Theorem 3 are more direct than the Nash-equilibrium

case (i.e., Theorem 1) . A proof of Theorem 3 appears in Section 4.3.

4.1 Existence of Simple Approximate Correlated Equilib-

rium

We should emphasize again that the support of a correlated equilibrium is the num-

ber of action profiles in the support of the equilibrium. Also, note that in an n-player

m-action game the number of action profiles is mn. If we use the existence of small-

support approximate Nash equilibrium (which is also an approximate correlated

equilibrium) we obtain the existence of an approximate correlated equilibrium with

support of size O((logm+ log n)n).

By observing that Theorem 3 holds with positive probability we can deduce the

existence of approximate correlated equilibrium with support of size O(m logm +

log n). But can we obtain an approximate correlated equilibrium support size poly-

logarithmic in m, instead of a polynomial? Example 3 demonstrates that if we

sample from an arbitrary correlated equilibrium then we cannot. But, if we sample

from a specific approximate correlated equilibrium, then poly-logarithmic number

of samples will be sufficient. It turns out that the specific approximate correlated

equilibrium from which we should sample is an equilibrium in which each player uses

only a small number of her own actions in the support of the equilibrium. Existence

of such an approximate correlated equilibrium is proved in Corollary 1 (because

every approximate Nash equilibrium is also an approximate correlated equilibrium).

The following theorem shows that there always exists an approximate correlated

equilibrium with support size poly-logarithmic in n and m; moreover, the proba-

bilistic structure of the equilibrium is simple: it is a k-uniform distribution (see

Definition 1).

Theorem 4. Every n-player m-action game admits a k-uniform ε-correlated equi-

librium for every

k >
264

ε4
lnm(lnm+ lnn− ln ε+ ln 16) = O(logm(logm+ logn)) (4)

A proof of this theorem, which uses the above mentioned ideas, appears in Section

4.3.
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4.2 Testing Approximate Correlated Equilibrium Play

As in Section 3.2, we would like to design a test that uses k samples to determine

whether players are playing according to a δ-correlated equilibrium or according to

a distribution that is not a (δ + ε)-correlated equilibrium.4

Definition 5. Given a number of samples k ∈ Z+, an ε-test with error proba-

bility α for δ-correlated equilibrium that uses k-samples, is a function T : Ak →
{Y ES,NO}, such that for every distribution x ∈ ∆(A) we have

• P(T ((a(t))t∈[k]) = Y ES) ≥ 1−α for every x that is a δ-correlated equilibrium,

• P(T ((a(t))t∈[k]) = NO) ≥ 1 − α for every x that is not a (δ + ε)-correlated

equilibrium.

The following theorem states that using O(m logm+ log n) samples we can test

whether players are playing according to an approximate correlated equilibrium.

Moreover, the test is quite natural, we need to simply check whether the empirical

distribution of play is an approximate correlated equilibrium or not.

Theorem 5. Let

T ((a(t)t∈[k]) =

{

Y ES if sk is a (δ + ε
2
)-correlated equilibrium

NO otherwise.

Then T is an ε-test with an α-error-probability for δ-correlated equilibrium, when

the number of samples

k >
8

ε2
(m lnm+ lnn− lnα) = O(m logm+ log n).

Section 4.3 contains a proof of this theorem.

An unsatisfactory property of the above test is the polynomial dependence on

the number of actions. Example 3 in Section 6 demonstrate that the natural test

that is presented in the theorem cannot use less then Ω(m) samples. Hypothetically,

it could be the case that there exists some other test that uses significantly fewer

samples. The following theorem states that this is not the case. The number of

samples must be polynomial in m, even for the case where ε and α are constants.

Theorem 6. Every 1
2
-test with an error probability 1

4
for exact correlated equilib-

rium for two-player m-action games must use at least
√

m
2
samples.

See Section 4.3 for a proof.

4We note again, that it is impossible to design such a test for distinguishing between δ-correlated

equilibrium and not a δ-correlated equilibrium. This follows via arguments similar to the ones in

Section 3.2.
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4.3 Proofs

Proof of Theorem 3. Note thatRi
f (a) where a ∼ x is a random variable that assumes

values in [−1, 1], and Ea∼sk [R
i
f (a)] =

1
k
Ri

f (a(t)) is the average regret on the samples.

Since x is a correlated equilibrium we know that Ea∼x[R
i
f (a)] ≤ 0. Therefore by

Hoeffding’s inequality and the choice of k we have

P(Ea∼sk [R
i
f (a)] ≥ ε) ≤ e−

ε
2

2
k ≤ α

nmm
.

For every player i, there are mm switching rules of the form f : Ai → Ai. Hence,

summing across n players, we get that the total number of different switching rules is

nmm. Therefore, the union bound implies that with probability greater than 1− α

we have Ea∼sk [R
i
f (a)] < ε. Hence, with probability at least 1 − α, the empirical

distribution sk is an ε-correlated equilibrium.

Proof of Theorem 4. By Corollary 1, there exists an ε
2
-Nash equilibrium x where

every player i uses at most b =
⌈

32
ε2
(lnn+ lnm− ln ε+ ln 16)

⌉

actions from Ai. We

denote the set of player’s i actions that are played with positive probability in x by

Bi, where |Bi| ≤ b. Let us implement the sampling method for the distribution x

which is an ε
2
-Nash equilibrium, and therefore, also an ε

2
-correlated equilibrium.

Since Ea∼x[R
i
f(a)] ≤ ε

2
by Hoeffding’s inequality, we have

Pr(Ea∼sk [R
i
f (a)] ≥ ε) ≤ e−

ε
2

8
k. (5)

Note that sk is an ε-correlated equilibrium iff Ea∼sk [R
i
f (a)] ≤ ε for every switch-

ing rule f : Bi → Ai (note that the number of such switching rules is at most mb

for every player). In other words, we can consider only switching rules f : Bi → Ai

instead of f : Ai → Ai, because all the recommendations to player i will be from

the set Bi.

The choice of k guarantees that

e−
ε
2

8
k <

1

nmb
. (6)

Therefore, using inequality (5) and the union bound, we get that with positive

probability Ea∼sk [R
i
f(a)] ≤ ε is satisfied for every f : Bi → Ai, which implies that

sk is an ε-correlated equilibrium. This implies, via the probabilistic method, that

such a k-uniform correlated equilibrium exists.
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Proof of Theorem 5. Hoeffding’s inequality and the choice of k guarantee that

P(|Ea∼x[R
i
f (a)]− Ea∼sk [R

i
f (a)]| ≥

ε

2
) ≤ 2e−

ε

8
k <

α

nmm
.

The total number of switching rules is nmm, therefore with probability of at least

1− α we have

|Ea∼x[R
i
f (a)]− Ea∼sk [R

i
f(a)]| <

ε

2
, (7)

for all players i and all switching rules f : Ai → Ai. Throughout the reset of the

paper, we assume that inequality (7) is satisfied for every switching rule.

If x is a δ-correlated equilibrium then

Ea∼sk [R
i
f (a)] ≤ Ea∼x[R

i
f (a)] +

ε

2
≤ δ +

ε

2
,

which means that sk is an (δ + ε
2
)-correlated equilibrium.

If x is not a (δ + ε)-correlated equilibrium then there exists a player i and a

switching rule f ∗ such that Ea∼x[R
i
f∗(a)] > δ + ε. So,

Ea∼sk [R
i
f∗(a)] ≥ Ea∼x[R

i
f∗(a)]− ε

2
> δ +

ε

2
,

which means that sk is not a (δ + ε
2
)-correlated equilibrium.

Proof of Theorem 6. Instead of proving that in 2-players m-actions games every

test must use at least k =
√

m
2
samples, we prove the equivalent statement that in

2-players (2m)-actions games every test must use at least k =
√
m samples.

We consider the same game as in Example 3 in Section 6: consider a two-players

2m-actions zero-sum game in which the players are playing matching-pennies, but

in addition to player’s i “real” action r1 ∈ [2] player i also chooses a “dummy”

action di ∈ [m] which does not influence the payoff. Formally, the payoff functions

of the players are defined by

u1((r1, d1), (r2, d2)) = 1− u2((r1, d1), (r2, d2)) =

{

1 if r1 = r2,

0 otherwise.

Consider the correlated equilibrium x where x((r1, d), (r2, d)) = 1
4m

, for every

d ∈ [m] and every r1, r2 ∈ [2]. In other words, x is the correlated equilibrium where

beyond the actual (1
2
, 1
2
) play of the real matching-pennies, the players always choose

the same dummy action.
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Let b := (bd)d∈[m] be a vector of size m, where each coordinate bd is a pair

bd ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}. We define the distributions yb (we have 4m such

distributions) by:

yb((r1, d1), (r2, d2)) =

{

1
m

if d1 = d2 = d and (r1, r2) = bd,

0 otherwise.
(8)

Loosely speaking, the distribution yb picks for every d ∈ [m] a single action (ri, rj)

for both players and puts a measure of 1
m

on it. This is in contrast to x which puts

an equal measure of 1
4m

on all four actions (ri, rj).

Let ω be the event ω := {((r(t), d(t))t∈[k] : d(t) 6= d(t′) for t 6= t′}; i.e., all the
samples have different values of d. Note that Px(ω) = Pyb(ω) for every b, because

the event ω depends only on the samples of d, and both x and yb have the uniform

distribution over the values of d.

We claim that if k = ⌊√m⌋ then Px(ω) = Pyb(ω) >
1
2
(for every b).

The tth sample will have the same value d as one of the previous with probability

of at most t−1
m
. Using the union bound we get that

1− Px(ω) ≤
0

m
+

1

m
+

2

m
+ ... +

⌊√m⌋ − 1

m
≤ (

√
m− 1)

√
m

2m
<

1

2
.

A test with error-probability 1
4
should return with probability 3

4
the answer

Y ES for the correlated equilibrium x, and it should return the answer NO with

probability 3
4
for all the distributions yb which are not 1

2
-correlated equilibria. In

particular, if we first draw the distribution from which we sample (according to

some probability distribution), and then sample from the chosen distribution, the

probability of an error of the test should be less than 1
4
(because for each one of

the distributions that we draw the probability of error is less than 1
4
). Let us draw

the distribution from which we sample as follows. The distribution x is chosen

with probability 1
2
, and each one of the distributions yb is chosen with probability

1
2·4m . If the sequence of samples is (r(t), d(t))t∈[k] ∈ ω then, by the symmetry

of the distributions {yb}b, the probability that it is sampled from x is equal to

the probability that it is sampled from one of the distributions yb. Therefore, for

sequences of samples in ω the test makes an error with probability of at least 1
2
, and

sequence of samples is in ω with probability of at least 1
2
. Therefore, the probability

of an error is at least 1
4
.
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5 Approximate Coarse Correlated Equilibrium

The case of coarse correlated equilibrium is the simplest one. Here we present the

results for coarse correlated equilibria without the proofs, since they are quite similar

to the proofs of the correlated equilibrium results presented in Section 4.

The key difference between coarse correlated equilibrium and correlated equilib-

rium is that in coarse correlated equilibrium every player is allowed to deviate to

one fixed pure action (irrespective of the recommendations of the mediator), instead

of allowing the player to deviate to different actions for different recommendations.

Definition 6. For every pure action j ∈ Ai we denote by Ri
j(a) := ui(j, a−i) −

ui(ai, a−i) the regret of player i for not choosing the action j at strategy profile a.

A distribution x ∈ ∆(A) is an ε-coarse correlated equilibrium if Ea∼x[R
i
j(a)] ≤ ε

for every player i and every action j ∈ Ai.

Theorem 7. Let x be a coarse correlated equilibrium of an n-player m-action game

and parameters ε, α ∈ (0, 1). Then, the empirical distribution sk defined over k

i.i.d. samples from x is an ε-coarse correlated equilibrium with probability greater

than 1− α for every

k >
2

ε2
(lnm+ lnn− lnα) = O(logm+ log n).

We can establish this theorem using the same ideas as in the proof of Theorem

3. The only difference is that here, instead of nmm inequalities (one for every Ri
f ,

where f : Ai → Ai), we need to satisfy only nm inequalities, one for every Ri
j .

This theorem gives us the following result that establishes the existence of simple

approximate coarse correlated equilibrium:

Corollary 3. Every n-player m-action game admits a k-uniform ε-coarse correlated

equilibrium for every

k >
2

ε2
(lnm+ lnn) = O(logm+ log n). (9)

This bound is tight, see Examples 1 and 2.

Analogous to Theorem 5, we have the following result for testing approximate

coarse correlated equilibrium play.

Corollary 4. Let

T ((a(t)t∈[k]) =

{

Y ES if sk is a (δ + ε
2
)-coarse correlated equilibrium,

NO otherwise.
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Then T is an ε-test with error probability α for δ-coarse correlated equilibrium for

k >
8

ε2
(lnm+ lnn− lnα) = O(logm+ log n).

The theorem follows from a proof similar to the one for Theorem 5.

6 Lower Bounds

In this section we present lower bounds for the number of samples from an equi-

librium that are required in order that the empirical distribution of play will be an

approximate equilibrium (with high probability).

The following example demonstrates that Ω(log n) samples are required for all

cases: Nash equilibrium, correlated equilibrium, and coarse-correlated equilibrium.

Example 1. Consider the following 2n-players two-actions game. We have n pairs

of players (p1i , p
2
i )i∈[n]. Player p

j
i is playing matching-pennies with his partner p3−j

i

(the actions of the pair (p1i , p
2
i ) have no influence on the payoffs of other pairs).

Consider the Nash equilibrium where each player is playing (1
2
, 1
2
) (which is also

a correlated equilibrium and a coarse-correlated equilibrium). If the number of

samples is k ≤ logn
2

then the probability that player’s p
j
i empirical distribution of

play will be a pure strategy is

2

(

1

2

)
logn

2

≥ 1√
n
.

Therefore the probability that no player will have a pure-strategy empirical distri-

bution is at most
(

1− 1√
n

)2n

≈ e−2
√
n.

Note that the requirement that no player will have a pure-strategy empirical distri-

bution is necessary for the empirical distribution of play to be a 1
2
-coarse correlated

equilibrium (and therefore it is necessary also for 1
2
-correlated and 1

2
-Nash equilib-

ria). It follows that the probability that the empirical distribution of play will form

a 1
2
-equilibrium is exponentially small in n.

The following example of Althöfer [1] demonstrates that Ω(logm) samples are

required for all cases: Nash equilibrium, correlated equilibrium and coarse-correlated

equilibrium (actually for the correlated equilibrium case Example 3 will demonstrate

a much stronger result).
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Example 2. Let m = 4b for b ∈ N, and consider the following two-players m-actions

zero-sum game.

Player 1 picks an element i ∈ [2b] (player 1 has 2b < m actions).

Player 2 picks a subset of Sj ⊂ [2b] such that |Sj| = b (player 2 has
(

2b
b

)

< m

actions).

The payoffs are defined by

u2(i, Sj) = −u1(i, Sj) =

{

1 if i ∈ Sj,

0 otherwise.

Player 1 can guarantee to pay at most 1
2
by playing the uniform distribution.

If in the support of the distribution (which might be correlated) player 1 plays at

most b different actions, then player 2 has a pure strategy that will yield a payoff of

1; therefore in every 1
4
-equilibrium (Nash, correlated or coarse-correlated) player 1

should play at least b+1 different strategies. Therefore, in order that the empirical

distribution will be a 1
4
-equilibrium the number of samples must be greater than

b = logm
2

.

The following example demonstrates that Ω(m) samples are required for the case

of correlated equilibrium.

Example 3. Consider the following two-players 2m-actions zero-sum game. The

players are playing matching-pennies, but in addition to player’s i “real” action

r1 ∈ [2] player i also chooses a “dummy” action di ∈ [m] which does not influence

the payoff. Formally, the payoff functions of the players are defined by

u1((r1, d1), (r2, d2)) = 1− u2((r1, d1), (r2, d2)) =

{

1 if r1 = r2,

0 otherwise.

Consider the correlated equilibrium x where x((r1, d), (r2, d)) = 1
4m

for every

d ∈ [m] and every r1, r2 ∈ [2]. In other words, x is the correlated equilibrium where

beyond the actual (1
2
, 1
2
) play of the real matching-pennies, the players always choose

the same dummy action.

If the number of samples is k = m, then for any d ∈ [m] the probability that it is

picked exactly once during the sampling is m 1
m
·
(

1− 1
m

)m−1 ≈ 1
e
. If a certain d was

picked exactly once then both players can deduce from d which action their opponent

will play. Note that the expected number of d ∈ [m] that are sampled exactly once

is m
e
. Moreover, the probability that the number of exactly-once-sampled d’s will

be smaller than m
2e

is exponentially small in m (see , e.g., [9], Lemma 4). So, with

probability that is exponentially close to 1, in the resulting uniform distribution at
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least one player may increase it’s payoff by at least 1
4e

by reacting optimally to the

opponent’s known strategy in all cases where she got the recommendation (ri, d)

where d was chosen exactly once. Therefore the empirical distribution of samples is

an 1
4e
-correlated equilibrium with probability exponentially small in m.

The focus of the paper was on the dependence of the number of samples on m

and n. However, Theorems 1, 3, and 7 proves also a dependence on ε. For the

case of Nash equilibrium, Theorem 1 proves a bound of O( 1
ε2
log(1

ε
)). Theorems 3

and 7 proves a bound of O( 1
ε2
) for correlated and coarse-correlated equilibrium. The

following example demonstrates that those bounds are tight (except for the case of

Nash equilibrium where is it almost tight).

Example 4. Consider the matching-pennies game, with the unique Nash equilib-

rium ((1
2
, 1
2
)(1

2
, 1
2
)). A necessary condition for the empirical distribution of play to

form an ε-equilibrium (Nash correlated or coarse-correlated) is that the empirical

distribution of player 1 should be (p, 1− p) where p ∈ [1
2
− ε, 1

2
+ ε]. By the central

limit theorem, after k samples, with constant probability the deviation from the

expectation (p = 1
2
) is at least 1√

k
. Therefore, if we draw k samples for k < 1

ε2
, then

with positive probability the deviation from 1
2
will be at least 1√

k
> ε.

7 Discussion

7.1 Sampling from One Type of Equilibrium to Achieve An-

other

In this paper we considered three types of equilibria: Nash, correlated, and coarse

correlated. Our high level approach was to sample from an equilibrium of a partic-

ular type to generate an approximate equilibrium of the same type. We can modify

this approach a bit and, in principle, ask the following question: How many samples

from an equilibrium of a particular type are required to generate an approximate

equilibrium of a different type?

Note that the notion of coarse correlated equilibrium is a generalization of corre-

lated equilibrium, and the latter generalizes Nash equilibrium. In general, we cannot

hope to get a more refined notion of equilibrium by sampling from a more general

one. But, hypothetically, it might be the case that fewer samples from a refined

equilibrium type are sufficient for generating an approximate equilibrium of a more

general type.

First we observe that Ω(log n + logm) samples are necessarily required to gen-

erate a coarse correlated equilibrium, even if the samples are drawn from a Nash
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equilibrium. This follows from the lower bound of Example 1 (wherein we actually

sample from a Nash equilibrium) and Example 2 (in which the counting argument

holds irrespective of the initial distribution).

So the remaining question is, can o(m) samples from a Nash equilibrium generate

an approximate correlated equilibrium? In other words, can we overcome the Ω(m)

sampling lower bound established in Example 3? The answer to this question is no.

In particular, consider the same game as in Example 3, but now draw m samples

from the Nash equilibrium where both plays are playing the uniform distribution

over their 2m actions. We say that a pair (d1, d2) appears exactly once if the pair

(d1, d2) appears in the sample (i.e., one of the samples is ((r1, d1), (r2, d2)) for some

r1, r2 ∈ [2]) and, for i = 1, 2, di appears exactly once among all the samples.

For every pair (d1, d2), the probability that it appears exactly once is equal

to m 1
m2 (1 − 2m−1

m2 )m ≈ 1
e2m

. Therefore, the expected number of recommendation

pairs, (d1, d2), that appear exactly once is m
e2
. Hence, among the m samples a

significant fraction of pairs appear exactly once. Note that if a recommendation

appears exactly once, then both of the players can deduce their opponent’s strategy

from the recommendation, which cannot occur in an equilibrium.

7.2 Hypothesis Testing

The present paper proposes simple intuitive tests to whether players are following

some (approximate) equilibrium or behaving far from any equilibrium. The notion

of distance that we use, ε-equilibrium, is given in terms of the game incentives.

This is in contrast to the general-purpose hypothesis-testing literature that refers

to distances between distributions, such as the total variation norm.

Putting our problem in a more general context, gives rise to a question of inde-

pendent interest.

Question 1. Consider the set of all probability measures on d elements, ∆(d).

Given a polytope P ⊂ ∆(d) and ε > 0, how many independent samples from an

unknown distribution q ∈ ∆(d) are needed to ascertain with high probability that

either

• H1: q is in P , or

• H2: the total variation distance dist(q, P ) > ǫ ?

Upper bounds for Question 1 translate automatically to upper bounds for our

correlated and coarse-correlated equilibrium testing; this is because the game payoff

function is 1-Lipschitz in the total-variation norm.
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It should be noted that the upper bounds obtained in this paper are stronger

than what one could hope to deduce from total variation estimates. A special case of

Question 1, when P consists of a single point, is known as the “multinomial goodness

of fit” problem in hypothesis-testing literature [24, 8], and as the “identity testing”

problem in the computer science literature [13, 6, 4, 5, 7, 26]. For this special case

the answer to Question 1 is Θ(
√
d). Note that this special case corresponds to exact

equilibrium testing (δ = 0) in games with a unique equilibrium. Here the dimension

is d = mn; therefore an upper bound of m
n

2 is obtained. Even in this particular

case, the total variation bound is generally weaker than what we obtained. The

only exception is the case of correlated equilibrium in two-player games, where our

upper bound is O(m logm), and the total variation result suggest the possibility of

an O(m) upper bound.

Lower bounds for Question 1 do not directly translate to equilibrium testing,

because being close in payoffs does not mean being close in total variation distance.

For example, a full support equilibrium can be approximated (in terms of payoffs)

by mixed strategies of much smaller support.

7.3 Future Work

This paper establishes tight bounds on the rate of convergence of the empirical

distribution (of equilibrium play) to an approximate equilibrium. These bounds

imply the existence of small-support approximate equilibria. But, whether our poly-

logarithmic upper bounds on support size are tight remains an open question. Note

that the logm lower bound developed in Example 2 applies to support size as well. In

particular, Example 2 establishes that there does not exist an ε-equilibrium (Nash,

correlated, or coarse correlated) with support size smaller than logm. However, to

the best of our knowledge, lower bounds on support size of approximate equilibrium

(Nash, correlated, or coarse correlated) that depends on n have not been established.

Question 2. Let k = k(n,m, ε) be the smallest number such that every n-player

m-action game admits a k-uniform ǫ-equilibrium. Fix ǫ > 0 and m ∈ N (i.e., we

refer to them as constants), and denote f(n) = f(n,m, ε). What is the asymptotic

behavior of k(n)? In particular, does limn→∞ k(n) = ∞? The question remains

open for all three equilibrium types: Nash, correlated, and coarse correlated.
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A Concentration Inequality for Product Distri-

butions

Here we generalize the classic Hoeffding’s inequality [17] to product probability

spaces. In order to state our generalization we need the following definition.

Definition 7. Let (Ω, µ) be a discrete probability space. The k-sample approxima-

tion of µ is the random k-uniform distribution µ(k) ∈ ∆k(Ω) given by taking the

average of k i.i.d. samples from µ.

Formally, one can implement µ(k) by taking k independent random variables

x1, . . . , xk assuming values in Ω with distribution µ. By identifying Ω with ∆1(Ω),

µ(k) is given as the ∆k(Ω)-valued random variable

µ(k) =
1

k

k
∑

i=1

xi.

The classic Hoeffding’s Inequality can be stated as follows:

Theorem 8 (Hoeffding 1963). Let (Ω, µ) be a (discrete) probability space. For

every ε > 0, k ∈ N, and f : Ω → [0, 1]

P(|Eµ(k) [f ]− Eµ[f ]| > ε) ≤ 2e−
ε
2

2
k.

When (Ω, µ) is the product of n probability spaces, we obtain a similar inequality

in which the approximation is achieved by a product measure and the error term is

independent of n.
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Theorem 9. Let (Ω1, µ1), . . . , (Ωn, µn) be discrete probability spaces. Consider the

product space (Ω =
∏

i Ωi, µ =
∏

i µi). For every ε > 0, k ∈ N, and f : Ω → [0, 1]

P(|E∏
i
µ
(k)
i

[f ]− Eµ[f ]| > ε) ≤ 4e−
ε
2

8
k

ε
.

Lemma 1 follows immediately from Theorem 9.

Proof of Lemma 1. The strategy profile sk−i is just the k-sampling approximation of

x−i.

Proof of Theorem 9. For every i ∈ [n], let us implement each µ
(k)
i as the average of

the k i.i.d. random variables xi
1, . . . , x

i
k prescribed by the definition of k-sampling

approximation. We begin by rewriting Eµ[f ]. For every l ∈ [k], we can write

Eµ[f ] =
1

kn

∑

j1,j2,...,jn∈[k]

E[f(x1
j1+l, ..., x

n
jn+l)],

where the indexes ji+ l are taken modulo k. If we take the average over all possible

l we have

Eµ[f ] =
1

kn

∑

j1,j2,...,jn∈[k]

1

k

∑

l∈[k]

E[f(x1
j1+l, ..., x

n
jn+l)]. (10)

For every initial multi-index j∗ = (j1, j2, ..., jn) ∈ [k]n and every l ∈ [k], we denote

xj∗+l := (x1
j1+l, ..., x

n
jn+l) ∈ Ω, and we define the random variable

d(j∗) :=











0 if

∣

∣

∣

∣

∣

1
k

∑

l∈[k]
E[f(xj∗+l)]− Eµ[f ]

∣

∣

∣

∣

∣

≤ ε

2
,

1 otherwise.

(11)

By the definition of d(j∗), we have

d(j∗) +
ε

2
≥

∣

∣

∣

∣

∣

∣

1

k

∑

l∈[k]

E[f(xj∗+l)]− Eµ[f ]

∣

∣

∣

∣

∣

∣

. (12)

Note also that for any fixed j∗, the random variables xj∗+1, xj∗+2, . . . , xj∗+k are in-

dependent with distribution µ; therefore their average implements µ(k); therefore,

by Hoeffding’s inequality, we have

E[d(j∗)] ≤ 2e−
ε
2

8
k. (13)
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Using representation (10) of Eµ[f ] and inequalities (12) and (13), we get

P(|E∏
i
(µ

(k)
i

)
[f ]− Eµ[f ]| ≥ ε) =

= P





∣

∣

∣

∣

∣

∣

1

kn

∑

j∗∈[k]n

1

k

∑

l∈[k]

E[f(xj∗+l)]− Eµ[f ]

∣

∣

∣

∣

∣

∣

≥ ε





≤ P





1

kn

∑

j∗∈[k]n

∣

∣

∣

∣

∣

∣

1

k

∑

l∈[k]

E[f(xj∗+l)]− Eµ[f ]

∣

∣

∣

∣

∣

∣

≥ ε





≤ P





1

kn

∑

j∗∈[k]n
d(j∗) ≥

ε

2



 ≤ 4e−
ε
2

8
k

ε
,

(14)

where the last inequality follows from Markov’s inequality.

29


	1 Introduction
	1.1 Informal Statement of the Results

	2 Notation and Preliminaries
	3 Approximate Nash Equilibrium
	3.1 Existence of Simple Approximate Nash Equilibrium
	3.2 Testing Approximate Nash Equilibrium
	3.3 Proofs

	4 Approximate Correlated Equilibrium
	4.1 Existence of Simple Approximate Correlated Equilibrium
	4.2 Testing Approximate Correlated Equilibrium Play
	4.3 Proofs

	5 Approximate Coarse Correlated Equilibrium
	6 Lower Bounds
	7 Discussion
	7.1 Sampling from One Type of Equilibrium to Achieve Another
	7.2 Hypothesis Testing
	7.3 Future Work

	A Concentration Inequality for Product Distributions

