

László A. Végh

A strongly polynomial algorithm for
generalized flow maximization

Article (Accepted version)
(Refereed)

 Original citation:
Végh, László A. (2016) A strongly polynomial algorithm for generalized flow maximization.
Mathematics of Operations Research, 42 (1). pp. 179-211. ISSN 0364-765X
DOI: 10.1287/moor.2016.0800

© 2016 INFORMS

This version available at: http://eprints.lse.ac.uk/69679/
Available in LSE Research Online: March 2017

LSE has developed LSE Research Online so that users may access research output of the
School. Copyright © and Moral Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download and/or print one copy of any
article(s) in LSE Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE
Research Online website.

This document is the author’s final accepted version of the journal article. There may be
differences between this version and the published version. You are advised to consult the
publisher’s version if you wish to cite from it.

http://www.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=l.vegh@lse.ac.uk
http://dx.doi.org/10.1287/moor.2016.0800
http://eprints.lse.ac.uk/69679/

A strongly polynomial algorithm for generalized flow maximization

László A. Végh

Department of Mathematics
London School of Economics and Political Science

L.Vegh@lse.ac.uk

Abstract

A strongly polynomial algorithm is given for the generalized flow maximization problem. It
uses a new variant of the scaling technique, called continuous scaling. The main measure of
progress is that within a strongly polynomial number of steps, an arc can be identified that must
be tight in every dual optimal solution, and thus can be contracted. As a consequence of the
result, we also obtain a strongly polynomial algorithm for the linear feasibility problem with at
most two nonzero entries per column in the constraint matrix.

1 Introduction

The generalized flow model is a classical extension of network flows. Besides the capacity constraints,
for every arc e there is a gain factor γe > 0, such that flow amount gets multiplied by γe while
traversing arc e. We study the flow maximization problem, where the objective is to send the
maximum amount of flow to a sink node t. The model was already formulated by Kantorovich
[19], as one of the first examples of Linear Programming; it has several applications in Operations
Research [2, Chapter 15]. Gain factors can be used to model physical changes such as leakage or
theft. Other common applications use the nodes to represent different types of entities, e.g. different
currencies, and the gain factors correspond to the exchange rates.

The existence of a strongly polynomial algorithm for Linear Programming is a major open ques-
tion in the theory of computation. This refers to an algorithm with the number of arithmetic
operations polynomially bounded in the number of variables and constraints, and the size of the
numbers during the computations polynomially bounded in the input size. A landmark result by
Tardos [30] is an algorithm with the running time dependent only on the size of numbers in the
constraint matrix, but independent from the right-hand side and the objective vector. This gives
strongly polynomial algorithms for several combinatorial problems such as minimum cost flows (see
also Tardos [29]) and multicommodity flows.

Instead of bounding the sizes of numbers, one might impose structural restrictions on the con-
straint matrix. A natural question arises whether there exists a strongly polynomial algorithm for
linear programs (LPs) with at most two nonzero entries per column (that can be arbitrary numbers).
This question is still open; as shown by Hochbaum [17], all such LPs can be efficiently transformed
to equivalent instances of the minimum cost generalized flow problem. (Note also that every LP
can be efficiently transformed to an equivalent one with at most three nonzero entries per column.)
In 1983, Megiddo [21] gave a strongly polynomial algorithm for solving the dual feasibility problem
for such LPs; he introduced the concept of strongly polynomial algorithms in the same paper. A
corollary of our result is the first strongly polynomial algorithm for the primal feasibility problem.

1

Generalized flow maximization is probably the simplest natural class of LPs where no strongly
polynomial algorithm was known. The existence of such an algorithm has been a well-studied and
longstanding open problem (see e.g. [9, 3, 35, 26, 28]). A strongly polynomial algorithm for a
restricted class was given by Adler and Cosares [1].

In this paper, we exhibit a strongly polynomial algorithm for generalized flow maximization.
Let n denote the number of nodes and m the number of arcs in the network, and let B denote the
largest integer used in the description of the input (see Section 2 for the precise problem definition).
A strongly polynomial algorithm for the problem entails the following (see [16]): (i) it uses only
elementary arithmetic operations (addition, subtraction, multiplication, division), and comparisons;
(ii) the number of these operations is bounded by a polynomial of n and m; (iii) all numbers
occurring in the computations are rational numbers of encoding size polynomially bounded in n,
m and logB – or equivalently, it is a polynomial space algorithm. Here, the encoding size of a
positive rational number p/q is defined as dlog2(p + 1)e + dlog2(q + 1)e. By the running time of a
strongly polynomial algorithm we mean the total number of elementary arithmetic operations and
comparisons.

Combinatorial approaches have been applied to generalized flows already in the sixties by Dantzig
[4] and Jewell [18]. However, the first polynomial-time combinatorial algorithm was only given in
1991 by Goldberg, Plotkin and Tardos [9]. This was followed by a multitude of further combinatorial
algorithms e.g. [3, 11, 13, 31, 6, 12, 14, 35, 26, 27, 34]; a central motivation of this line of research was
to develop a strongly polynomial algorithm. The algorithms of Cohen and Megiddo [3], Wayne [35],
and Restrepo and Williamson [27] present fully polynomial time approximation schemes, that is, for
every ε > 0, they can find a solution within ε from the optimum value in running time polynomial
in n, m and log(1/ε). This can be transformed to an optimal solution for a sufficiently small ε;
however, this value does depend on B and hence the overall running time will also depend on logB.
The current most efficient weakly polynomial algorithms are the interior point approach of Kapoor
an Vaidya [20] with running time O(m1.5n2 logB), and the combinatorial algorithm by Radzik [26]
with running time Õ(m2n logB).1 For a survey on combinatorial generalized flow algorithms, see
Shigeno [28].

The generalized flow maximization problem exhibits deep structural similarities to the minimum
cost circulation problem, as first pointed out by Truemper [32]. Most combinatorial algorithms for
generalized flows, including both algorithms by Goldberg et al. [9], exploit this analogy and adapt
existing efficient techniques from minimum cost circulations. For the latter problem, several strongly
polynomial algorithms are known, the first one given by Tardos [29]; others relevant to our discussion
are those by Goldberg and Tarjan [10], and by Orlin [23]; see also [2, Chapters 9-11]. Whereas these
algorithms serve as starting points for most generalized flow algorithms, the applicability of the
techniques is by no means obvious, and different methods have to be combined. As a consequence,
the strongly polynomial analysis cannot be carried over when adapting minimum cost circulation
approaches to generalized flows, although weakly polynomial bounds can be shown. To achieve a
strongly polynomial guarantee, further new algorithmic ideas are required that are specific to the
structure of generalized flows. The new ingredients of our algorithm are highlighted in Section 2.4.

Let us now outline the scaling method for minimum cost circulations, a motivation of our gener-
alized flow algorithm. The first (weakly) polynomial time algorithm for minimum cost circulations
was given by Edmonds and Karp [5], introducing the simple yet powerful idea of scaling (see also [2,
Chapter 9.7]). The algorithm consists of ∆-phases, with the value of ∆ > 0 decreasing by a factor
of at least two between every two phases, yielding an optimal solution for sufficiently small ∆. In

1The Õ() notation hides a polylogarithmic factor.

2

the ∆-phase, the flow is transported in units of ∆ from nodes with excess to nodes with deficiency
using shortest paths in the graph of arcs with residual capacity at least ∆. Orlin [23], (see also [2,
Chapters 10.6-7]) devised a strongly polynomial version of this algorithm. The key notion is that of
“abundant arcs”. In the ∆-phase of the scaling algorithm [5], the arc e is called abundant if it carries
> 4n∆ units of flow. For such an arc e, it can be shown that x∗e > 0 must hold for some optimal
solution x∗. By primal-dual slackness, the corresponding constraint must be tight in every dual
optimal solution. Based on this observation, Orlin [23] showed that such an arc can be contracted;
the scaling algorithm is then restarted on the smaller graph. This leads to a dual optimal solution
in strongly polynomial time; that provided, a primal optimal solution can be found via a single
maximum flow computation. Orlin [23] also presents a more efficient but also more sophisticated
implementation of this idea.

Let us now turn to generalized flows. The analogue of the scaling method was an important
component of the Fat-Path algorithm of [9]; the algorithm of Goldfarb, Jin and Orlin [13] and the
one in [34] also use this technique. The notion of “abundant arcs” can be easily extended to these
frameworks: if an arc e carries a “large” amount of flow as compared to ∆, then it must be tight
in every dual optimal solution, and hence can be contracted. This idea was already used by Radzik
[26], to boost the running time of [13]. Nevertheless, it is not known whether an “abundant arc”
would always appear in any of the above algorithms within a strongly polynomial number of steps.

Our contribution is a new type of scaling algorithm that suits better the dual structure of the
generalized flow problem, and thereby the quick appearance of an “abundant arc” will be guaranteed.
Whereas in all previous methods, the scaling factor ∆ remains constant for a linear number of path
augmentations, our continuous scaling method keeps it decreasing in every elementary iteration of
the algorithm, even in those that lead to finding the next augmenting path.

The rest of the paper is structured as follows. Section 2 first defines the problem setting, in-
troduces relabelings, gives the characterization of optimality, and defines the notion of ∆-feasibility.
Section 2.4 then gives a more detailed account of the main algorithmic ideas.

The algorithm is presented in three different versions. First, Section 2.5 describes a relatively
simple scaling algorithm called Continuous Scaling, with a weakly polynomial running time guar-
antee proved in Section 3. Our strongly polynomial algorithm Enhanced Continuous Scaling
in Section 4 builds on this, by including one additional subroutine, and a framework for contracting
arcs. The running time analysis is given in Section 5. This achieves a strongly polynomial bound on
the number of steps. A strongly polynomial algorith must also satisfy requirement (iii) on bounded
number sizes. This requires further modifications of the algorithm in Section 6 by introducing certain
rounding steps.

Section 7 shows reductions between different formulations; in particular, the corollary on LP
feasibility problems with at most two nonzeros per column is shown here. Section 7 is independent
from the preceding sections and can be read directly after Section 2. Section 8 concludes with some
additional remarks and open questions.

2 Preliminaries

We start by introducing the most general formulation our approach is applicable to. Consider the
linear feasibility problem

Ax = b (LP2)

0 ≤ x ≤ u,

3

such that every column of A contains at most two nonzero entries. By making use of a reduction
by Hochbaum [17], in Section 7.2 we show that every problem of this form can be reduced to the
generalized flow maximization problem as defined next.

Let G = (V,E) be a directed graph with a designated sink node t ∈ V . Let n = |V |, m = |E|,
and for each node i ∈ V , let di denote total number of arcs incident to i (both entering and leaving).
We will always assume n ≤ m. We do not allow parallel arcs and hence we may use ij to denote
the arc from i to j. This is for notational convenience only, and all results straightforwardly extend
to the setting with parallel arcs. All paths and cycles in the paper will refer to directed paths and
directed cycles.

The following is the standard formulation of the problem. Let us be given arc capacities u : E →
Q>0 ∪ {∞} and gain factors γ : E → Q>0.

max
∑
j:jt∈E

γjtfjt −
∑
j:tj∈E

ftj∑
j:ji∈E

γjifji −
∑
j:ij∈E

fij ≥ 0 ∀i ∈ V − t (Pu)

0 ≤ f ≤ u

It is common in the literature to define the problem with equalities in the node constraints. The two
forms are essentially equivalent, see e.g. [28]; moreover, the form with equality is often solved via a
reduction to (Pu). In this paper, we prefer to use yet another equivalent formulation, where the arcs
have no upper capacities, but there are node demands instead. A problem given in the standard
formulation can be easily transformed to an equivalent instance in this form; the transformation is
described in Section 7.1. Given a node demand vector b : V → Q and gain factors γ : E → Q>0, the
uncapacitated formulation is defined as

max
∑
j:jt∈E

γjtfjt −
∑
j:tj∈E

ftj∑
j:ji∈E

γjifji −
∑
j:ij∈E

fij ≥ bi ∀i ∈ V − t (P)

0 ≤ f

Note the value of bt is irrelevant as it is not present in the formulation; we may e.g. assume bt = 0.

For a vector f ∈ R|E|≥0 , let us define the excess of a node i ∈ V by

ei(f) :=
∑
j:ji∈E

γjifji −
∑
j:ij∈E

fij − bi.

The node constraints in (P) can be written as ei(f) ≥ 0, and the objective is equivalent to maximizing
et(f). When f is clear from the context, we will denote the excess simply by ei := ei(f). By a

generalized flow we mean a feasible solution to (P), that is, a nonnegative vector f ∈ R|E|≥0 with
ei(f) ≥ 0 for all i ∈ V − t. Let us define the surplus of f as

Ex(f) :=
∑
i∈V−t

ei(f).

It will be convenient to make the following assumptions.

There is an arc it ∈ E for every i ∈ V − t; (?)

The problem (P) is feasible, and an initial feasible solution f̄ is provided. (??)

The objective value in (P) is bounded. (? ? ?)

4

These assumptions are without loss of generality; it is shown in Section 7.1 that any problem in the
standard form can be transformed to an equivalent one in the uncapacitated form that also satisfies
assumptions (?) and (??). Condition (?) can be easily achieved by adding new arcs to the sink
with gain factors small enough not to influence the solution. To obtain (??), observe that f ≡ 0
is feasible to (Pu); f̄ in (??) will be the image of 0 under the transformation. To justify (? ? ?), in
the same Section 7.1 we show how unboundedness can be detected. Furthermore, in Section 7.2 we
show how an arbitrary instance of (LP2) can be reduced to solving two instances of (P) satisfying
these assumptions.

Let us introduce some further notation. For an arc set H ⊆ E, let
←−
H denote the set of reverse

arcs, that is,
←−
H := {ji : ij ∈ H}; let

←→
H := H ∪

←−
H . We define the gain factor of a reverse arc ji ∈

←−
H

by γji := 1/γij . For an arc set F ⊆ E and node sets S, T ⊆ V , let F [S, T] := {ij ∈ F : i ∈ S, j ∈ T}.
We also use F [S] := F [S, S] to denote the set of arcs in F spanned by S. For a node i ∈ V , let δin(i)
and δout(i) denote the set of arcs entering and leaving i, respectively. We will use the vector norms
||x||1 =

∑
i |xi| and ||x||∞ = maxi |xi|. For integers a ≤ b, let [a, b] := {a, a+ 1, . . . , b}.

A vector f :
←→
E → R≥0 is called a path flow, if its support is a path P = w1w2 . . . wt ⊆

←→
E , and

γw`fw` = fw`+1
for every 1 ≤ ` ≤ t− 1. In other words, the incoming flow equals the outgoing flow

in every internal node of the path. We say that a path flow f sends α units of flow from p to q, if
the support of f is a p− q path, and the flow value arriving at q equals α. Note however, that the
amount of flow leaving p is typically different from α.

2.1 Encoding size

In the weakly polynomial algorithm, the running time will be dependent on the encoding size of the
input, that consists of rational numbers. In a strongly polynomial algorithm, all numbers appearing
during the computations must be rational of encoding size polynomially bounded in the input size.
(We remark that the notion of strongly polynomial algorithms is also applicable to problems with
arbitrary real numbers in the input; this model assumes that every basic arithmetic operation can
be carried out in O(1) time.)

Standard formulation. We are given an integer B such that all capacities u and gain factors γ
are rational numbers, given as quotients of two integers ≤ B.

Uncapacitated formulation. We give more complicated conditions on the encoding size of the
different quantities. This is in order to maintain good bounds on the encoding size when transforming
an instance from the standard to the uncapacitated formulation in Section 7.1.

Assume the instance satisfies conditions (?), (??) and (? ? ?). We use the integer B̄ to bound the
encoding size of the input as follows.

• The arcs can be classified into two types, regular and auxiliary, with t being the endpoint of
every auxiliary arc. For a regular arc ij, the gain factor γij is given as a rational number,
such that B̄ is an integer multiple of the product of the numerators and denominators of all
γij values for regular arcs. For every auxiliary arc it, γit = 1/B̄.

• For every i ∈ V − t, |bi| ≤ B̄, and is an integer multiple of 1/B̄.

• For the initial solution f̄ , and for every ij ∈ E, f̄ij ≤ B̄ and f̄ij is an integer multiple of 1/B̄.

The reduction in Section 7.1 will transform an instance in the standard formulation with n nodes
and m arcs and parameter B to an uncapacitated instance with ≤ m + n nodes, ≤ 2m arcs and
B̄ ≤ 2B4m.

Our main result is the following.

5

Theorem 2.1. There exists an O(n3m2) time strongly polynomial algorithm for the uncapacitated
formulation (P) with assumptions (?), (??) and (? ? ?).

Using the transformation in Section 7.1, this gives an O(m5) time strongly polynomial algorithm
for the standard formulation (Pu). Finally, using the reduction in Section 7.2, we get an O(m5)
algorithm for the linear feasibility problem (LP2) with n constraints and m variables.

2.2 Labelings and optimality conditions

Dual solutions to (P) play a crucial role in the entire generalized flow literature. Let y : V → R≥0

be a solution to the dual of (P). Following Glover and Klingman [8], the literature standard is not
to consider the y values but their inverses instead. With µi := 1/yi, we can write the dual of (P) in
the following form.

max
∑
i∈V

bi
µi

γijµi ≤ µj ∀ij ∈ E (D)

µi > 0 ∀i ∈ V − t
µt = 1

A feasible solution µ to this program will be called a relabeling or labeling. An optimal labeling is an
optimal solution to (D). Whereas there could be values µi =∞ corresponding to yi = 0, assumption
(?) guarantees that all µi values must be finite. A useful and well-known property is the following.

Proposition 2.2. Given an optimal solution to (D), an optimal solution to (P) can be obtained in
strongly polynomial time, and conversely, given an optimal solution to (P), an optimal solution to
(D) can be obtained in strongly polynomial time.

In fact, our strongly polynomial algorithm proceeds via finding an optimal solution to (D), and
computing the primal optimal solution via a single maximum flow computation. The first part of
the above proposition is proved in Theorem 2.6(i), whereas the second part (which is not needed for
our algorithm) can be shown using an argument similar to the proof of Lemma 3.1.

Relabelings will be used in all parts of the algorithm and proofs. For a generalized flow f and a
labeling µ, we define the relabeled flow fµ by

fµij :=
fij
µi

for all ij ∈ E. This can be interpreted as changing the base unit of measure at the nodes (i.e. in
the example of the currency exchange network, it corresponds to changing the unit from pounds
to pennies). To get a problem setting equivalent to the original one, we have to relabel all other
quantities accordingly. That is, we define relabeled gains, demands, excesses and surplus by

γµij := γij
µi
µj
, bµi :=

bi
µi
, eµi :=

ei
µi
, and Exµ(f) :=

∑
i∈V−t

eµi ,

respectively. Another standard notion is the residual network Gf = (V,Ef) of a generalized flow f ,
defined as

Ef := E ∪ {ij : ji ∈ E, fji > 0}.

Arcs in E are called forward arcs, while arcs in the second set are reverse arcs. Recall that for a
reverse arc ji we defined γji = 1/γij . Also, we define fji := −γijfij for every reverse arc ji ∈ Ef .

6

By increasing (decreasing) fji by α on a reverse arc ji ∈ Ef , we mean decreasing (increasing) fij
by α/γij . The input graph G = (V,E) is allowed to have pairs of oppositely directed arcs ij and ji,
making our notation slightly ambiguous: for an arc ij, we will denote its reverse arc by ji, which
might be an arc parallel to the original arc from j to i in the input. However, this should not be a
source of confusion: whenever the arc ji is mentioned in the context of ij, it will always refer to the
reverse arc.

The crucial notion of conservative labelings is motivated by primal-dual slackness. Let f be a
generalized flow (that is, a feasible solution to (P)), and let µ : V → R>0. We say that µ is a
conservative labeling for f , if µ is a feasible solution to (D) with the further requirement that γµij = 1
whenever fij > 0 for ij ∈ E. The following characterization of optimality is a straightforward
consequence of primal-dual slackness in Linear Programming. We state the optimality conditions
both for the uncapacitated formulation (P), and for the standard formulation (Pu). In the latter
part we do not assume (?), and therefore µi =∞ is also allowed.

Theorem 2.3. (i) Assume (?) holds. A generalized flow f is an optimal solution to (P) if and
only if there exists a finite conservative labeling µ, and ei = 0 for all i ∈ V − t.

(ii) A feasible solution f to the standard form (Pu) is optimal if and only if there exists a function
µ : V → R>0 ∪ {∞} such that µt = 1, and γijµi ≤ µj if fij = 0, γijµi = µj if 0 < fij < uij,
and γijµi ≥ µj if fij = uij; further, ei = 0 whenever µi <∞.

Given a labeling µ, we say that an arc ij ∈ Ef is tight if γµij = 1. A directed path in Ef is called
tight if it consists of tight arcs.

2.3 ∆-feasible labels

Let us now introduce a relaxation of conservativity crucial in the algorithm. This is new notion,
although similar concepts have been used in previous scaling algorithms [11, 34]. Section 2.4 explains
the background and motivation of this notion. Given a labeling µ, let us call arcs in E with γµij < 1
non-tight, and denote their set by

Fµ := {ij ∈ E : γµij < 1}.

For every i ∈ V , let

Ri :=
∑

j:ji∈Fµ
γjifji

denote the total flow incoming on non-tight arcs; let Rµi := Ri
µi

=
∑

j:ji∈Fµ γ
µ
jif

µ
ji. For some ∆ ≥ 0,

let us define the ∆-fat graph as

Eµf (∆) = E ∪ {ij : ji ∈ E, fµji > ∆}.

We say that µ is a ∆-conservative labeling for f , or that (f, µ) is a ∆-feasible pair, if

• γµij ≤ 1 holds for all ij ∈ Eµf (∆), and

• µt = 1, and µi > 0, ei ≥ Ri for every i ∈ V − t.

Note that in particular, µ must be a feasible solution to (D). The first condition is equivalent
to requiring fµij ≤ ∆ for every non-tight arc. Note that 0-conservativeness is identical to conser-
vativeness: Eµf (0) = Eµf , and therefore every arc carrying positive flow must be tight; the second
condition simply gives ei ≥ 0 whenever µi > 0. The next lemma can be seen as the converse of this
observation.

7

Lemma 2.4. Let (f, µ) be a ∆-feasible pair for some ∆ > 0. Let us define the generalized flow
f̃ with f̃ij = 0 if ij ∈ Fµ and f̃ij = fij otherwise. Then f̃ is a feasible generalized flow, µ is a
conservative labeling for f̃ , and Exµ(f̃) ≤ Exµ(f) + |Fµ|∆.

Proof. For feasibility, we need to verify ei(f̃) ≥ 0 for all i ∈ V − t. This follows since

ei(f̃) ≥ ei(f)−
∑

j:ji∈Fµ
γjifji = ei(f)−Ri ≥ 0.

It is straightforward by the construction that γµij ≤ 1 for every ij ∈ E with equality whenever

f̃ij > 0. This shows that µ is a conservative labeling. For the last part, observe that decreasing the
flow value to 0 on a non-tight arc ij may create fµij ≤ ∆ units of relabeled excess at i.

Claim 2.5. In a ∆-conservative labeling, Rµi < di∆ holds for every i ∈ V .

Proof. If µ is a ∆-conservative labeling, then fµji ≤ ∆ holds for every non-tight arc ji; also note that
the relabeled flow arriving from j on a non-tight arc is γµjif

µ
ji < fµji ≤ ∆, and hence Rµi < di∆.

2.4 Overview of the algorithms

We now informally describe some fundamental ideas of our algorithms Continuous Scaling and
Enhanced Continuous Scaling, and explain their relations to previous generalized flow algo-
rithms. The precise algorithms and arguments will be given in the later sections.

Basic features of the algorithms

Given a generalized flow f , a cycle C in the residual graph Ef is called flow-generating, if γ(C) =∏
e∈C γe > 1. If there exists a flow-generating cycle, then some positive amount of flow can be sent

around it to create positive excess in an arbitrary node i incident to C.
The notion of conservative labellings is closely related to flow generating cycles. Notice that for

an arbitrary labeling µ, γ(C) = γµ(C). Therefore, if µ is a finite conservative labeling, then Ef
cannot contain any flow-generating cycles. It is also easy to verify the converse: if there are no
flow-generating cycles, then there exists a conservative labeling (see also Lemma 3.1).

The Maximum-mean-gain cycle-canceling procedure, introduced by Goldberg et al. [9], can
be used to eliminate all flow-generating cycles efficiently. The subroutine proceeds by choosing a cycle
C ⊆ Ef maximizing γ(C)1/|C|, and from an arbitrary node i incident to C, sending the maximum
possible amount of flow around C admitted by the capacity constraints, thereby increasing the excess
ei. It terminates once there are no more flow-generating cycles left in Ef . This is a natural analogue
of the minimum mean cycle cancellation algorithm of Goldberg and Tarjan [10] for minimum cost
circulations. Radzik [25] (see also [28]) gave a strongly polynomial running time bound O(m2n log2 n)
for the Maximum-mean-gain cycle-canceling algorithm.

Our algorithm also starts with performing this algorithm, with the input being the initial solution
f̄ provided by (??). Hence one can obtain a feasible solution f along with a conservative labeling µ
in strongly polynomial time.

Such an f can be transformed to an optimal solution using Onaga’s algorithm [22]: while there
exists a node i ∈ V − t with ei > 0, find a highest gain augmenting path from i to t, that is, a path
P in the residual graph Ef with the product of the gains maximum. Send the maximum amount
of flow on this augmenting path enabled by the capacity constraints. A conservative labeling can
be used to identify such paths: we can transform a conservative labeling to a canonical labeling
(see [9]), where every node i is connected to the sink via a tight path. Such a canonical labeling

8

can be found via a Dijkstra-type algorithm, increasing the labels of certain nodes. The correctness
of Onaga’s algorithm follows by the observation that sending flow on a tight path maintains the
conservativeness of the labeling, hence no new flow-generating cycles may appear.

Unfortunately, Onaga’s algorithm may run in exponentially many steps, and might not even
terminate if the input is irrational. The Fat-Path algorithm [9] introduces a scaling technique to
overcome this difficulty. The algorithm maintains a scaling factor ∆ that decreases geometrically.
In the ∆-phase, flow is sent on a highest gain “∆-fat” augmenting path, that is, a highest gain path
among those that have sufficient capacity to send ∆ units of flow to the sink. In our notation, these
are paths in Eµf (∆). However, path augmentations might create new flow-generating cycles, which
have to be repeatedly cancelled by calling the cycle-canceling subroutine at the beginning of every
phase.

Our notion of ∆-feasible pairs in Section 2.3 is motivated by the idea of ∆-fat paths: note that
every arc in the ∆-fat graph Eµf (∆) has sufficient capacity to send ∆ units of relabeled flow. A main
step in our algorithm will be sending ∆ units of relabeled flow on a tight path in Ef (∆) from a node
with “high” excess to the sink t or another node with “low” excess. This is in contrast to Fat-Path
and most other algorithms, where these augmenting paths always terminate in the sink t. We allow
other nodes as well in order to maintain ei ≥ Ri are througout the algorithm. The purpose of these
conditions is to make sure that we always stay “close” to a conservative labeling: recall Lemma 2.4
asserting that if (f, µ) is a ∆-feasible pair, then if we set the flow values to 0 on every non-tight arc,
the resulting f̃ is a feasible solution to (P) not containing any flow-generating cycles. That is the
reason why we need to call the cycle-canceling algorithm only once, at the initialization, in contrast
to Fat-Path.

Similar ideas have been already used previously. The algorithm of Goldfarb, Jin and Orlin [11]
also uses a single initial cycle-canceling and then performs highest-gain augmentations in a scaling
framework, combined with a clever bookkeeping on the arcs. The algorithm in [34] does not perform
any cycle cancellations and uses a homonymous notion of ∆-conservativeness that is closely related
to ours; however, it uses a different problem setup (called “symmetric formulation”), and includes a
condition stronger than ei ≥ Ri.

The way to the strongly polynomial bound

The basic principle of our strongly polynomial algorithm is motivated by Orlin’s strongly polynomial
algorithm for minimum cost circulations ([23], see also [2, Chapters 10.6-7]). The true purpose of the
algorithm is to compute a dual optimal solution to (D). Provided a dual optimal solution, we can
compute a primal optimal solution to (P) by a single maximum flow computation on the network of
tight arcs (see Theorem 2.6(i)).

The main measure of progress is identifying an arc ij ∈ E that must be tight in every dual optimal
solution. Such an arc can be contracted, and an optimal dual solution to the contracted instance
can be easily extended to an optimal dual solution on the original instance (see Sections 4.1, 5.1).
The algorithm could be simply restarted from scratch in the contracted instance. Our algorithm
Enhanced Continuous Scaling is somewhat more complicated and keeps the previous primal
solution to achieve better running time bounds by a global analysis of all contraction phases.

We use a scaling-type algorithm to identify such arcs tight in every dual optimal solution. Our
algorithm maintains a scaling parameter ∆, and a ∆-feasible pair (f, µ) such that Exµ(f) ≤ 16m∆.
Using standard flow decomposition techniques, it can be shown that an arc ij with fµij ≥ 17m∆ must
be positive in some optimal solution f∗ to (P) (see Theorem 4.1). Then by primal-dual slackness
it follows that this arc is tight in every dual optimal solution. Arcs with fµij ≥ 17m∆ will be called
abundant.

9

A simple calculation (see the proof of Claim 5.4) shows that once |bµi | ≥ 32mn∆ for a node
i ∈ V − t, there must be an abundant arc leaving or entering i. Hence our goal is to design an
algorithm where such a node appears within a strongly polynomial number of iterations.

A basic step in the scaling approaches (e.g. [9, 11, 34]) is sending ∆ units of relabeled flow on
a tight path; we shall call this a path augmentation. In all previous approaches, the scaling factor
∆ remained fixed for a number of path augmentations, and reduces by a substantial amount (by
at least a factor of two) for the next ∆-phase. Our main idea is what we call continuous scaling:
the boundaries between ∆-phases are dissolved, and the scaling factor decreases continuously, even
during the iterations that lead to finding the next path for augmentation. The precise description
will be given in Section 2.5; in what follows, we give a high-level overview of some key features.

We shall have a set T0 with nodes of “high” relabelled excess; another set N will be the set
consisting of the sink t and further nodes with “low” relabelled excess. We will look for tight paths
connecting a node in T0 to one in N ; we will send ∆ units of relabeled flow along such a path. In an
intermediate elementary step, we let T to denote the set of nodes reachable from T0 on a tight path;
if it does not intersect N , then we increase the labels µi for all i ∈ T by the same factor α hoping
that a new tight arc appears between T and V \T , and thus T can be extended. We simultaneously
decrease the value of ∆ by the same factor α. Thus the relabeled excess of nodes in V \ T increases
relative to ∆. This might lead to changes in the sets T0 and N ; hence an elementary step does not
necessarily terminate when a new tight arc appears, and therefore the value of α has to be carefully
chosen.

This framework is undoubtedly more complicated than the traditional scaling algorithms. The
main reason for this approach is the phenomenon one might call “inflation” in the previous scaling-
type algorithms. There it might happen that the relabeling steps used for identifying the next
augmenting paths increase some labels by very high amounts, and thus the relabeled flow remains
small compared to ∆ on every arc of the network - therefore a new abundant arc can never be iden-
tified. It could even be the case that most ∆-scaling phases do not perform any path augmentations
at all, but only label updates: the relabeled excess at every node becomes smaller than ∆ during
the relabeling steps.2

The advantage of changing ∆ continuously in our algorithm is that the ratios |bµi |/∆ are non-
decreasing for every i ∈ V − t during the entire algorithm. In the above described situation, these
ratios are unchanged for i ∈ T and increase for i ∈ V \ T . As remarked above, there must be an
abundant arc incident to i once |bµi |/∆ ≥ 32mn.

We first present a simpler version of this algorithm, Continuous Scaling in Section 2.5, where
we can only prove a weakly polynomial running time bound. Whereas the ratios |bµi |/∆ are nonde-
creasing, we are not able to prove that one of them eventually reaches the level 32mn in a strongly
polynomial number of steps. This is since the set V \ T where the ratio increases might always
consist only of nodes where |bµi |/∆ is very small. The algorithm Enhanced Continuous Scaling
in Section 4 therefore introduces one additional subroutine, called Filtration. In case |bµi | < ∆/n
for every i ∈ (V \ T)− t, we “tidy-up” the flow inside V \ T , by performing a maximum flow com-
putation here. This drastically reduces all relabeled excesses in V \ T , and thereby guarantees that
most iterations of the algorithm will have to increase certain |bµi |/∆ values that are already at least
1/n.

In summary, the strongly polynomiality of our algorithm is based on the following three main
new ideas.

• The definition of ∆-feasible pairs, in particular, the condition on maintaining a security reserve

2However, to the extent of the author’s knowledge, no actual examples are known for these phenomena in any of
the algorithms.

10

Ri. It is a cleaner and more efficient framework than similar ones in [11] and [34]; we believe
this is the “real” condition a scaling type algorithm has to maintain.

• Continuous scaling, that guarantees that the ratios |bµi |/∆ are nondecreasing during the algo-
rithm. This is achieved by doing the exact opposite of [9, 11, 34] that use the natural analogue
of the scaling technique for minimum cost circulations.

• The Filtration subroutine that intervenes in the algorithm whenever the nodes on a certain,
relatively isolated part of the network have “unreasonably high” excesses as compared to the
small node demands in this part.

2.5 The maximum flow subroutine

Standard maximum flow computation (see e.g. [2, Chapters 6-7]) will be a crucial subroutine in our
algorithm. First and foremost, if an optimal labeling is provided, then an optimal solution to (P) can
be obtained by computing a maximum flow. We now describe the subroutine Tight-Flow(S, µ),
to perform such computations. In the weakly polynomial algorithm (Section 2.5), it will be used
only twice: at the initialization and at the termination of the algorithm, in both cases with S = V .
However, it will also be the key part of the subroutine Filtration in the strongly polynomial
algorithm (Section 4), also applied to subsets S (V .

The input of Tight-Flow(S, µ) is a node set S ⊆ V with t ∈ S, and a labeling µ, that is a feasible
solution to (D) when restricted to S. The subroutine returns a generalized flow f ′ supported on
E[S], such that µ restricted to S is a conservative labeling for f ′. Let us define the arc set Ẽ ⊆ E[S]
as the set of tight arcs for µ:

Ẽ := {ij ∈ E[S] : γµij = 1}.

Let us extend S by a new source node s, and add an arc si from s to every i ∈ S − t; let Ẽ′ denote
the union of Ẽ and these new arcs. Let us set lower and upper arc capacities `ij := 0, uij :=∞ on
all arcs of Ẽ; for i ∈ S − t, let `si := −∞ and usi := −bµi .

Tight-Flow(S, µ) computes a maximum flow x from s to t on the network (S ∪ {s}, Ẽ′) with
capacities ` and u. Let us define f ′ : E[S] → R≥0 by f ′ij := xijµi if ij ∈ Ẽ and f ′ij := 0 otherwise.
This completes the description of the subroutine Tight-Flow. Because of the possibly negative
upper capacities on the si arcs, the maximum flow problem might be infeasible; in this case, the
subroutine returns an error.

Theorem 2.6. (i) If µ is an optimal solution to (D), then Tight-flow(V, µ) returns an optimal
solution to (P).

(ii) Assume that the maximum flow problem in Tight-flow(S, µ) is feasible, and returns a vector
f ′. Then f ′ is a feasible solution to (P) on S, and

eµi (f ′) ≤ n max
j∈S−t

|bµj | ∀i ∈ S.

(iii) Assume that the flow problem in Tight-flow(V, µ) is feasible and returns a generalized flow
f ′ with Ex(f ′) < 1/B̄3. Then Ex(f ′) = 0 must hold, that is, f ′ is an optimal solution to (P).

Proof. To prove part (i), assume µ is an optimal labeling. Let g be an optimal solution to (P). Let us
define xij := gµij if ij ∈ E and xsi :=

∑
j:ij∈E g

µ
ij−

∑
j:ji∈E g

µ
ji for every i ∈ V − t. By Theorem 2.3(i),

xsi = −bµi for all i ∈ V − t, and therefore x is a maximum flow, with ({s}, V) forming a minimum
cut. Conversely, an arbitrary maximum flow must saturate every arc leaving s, and therefore we get

11

ei(f
′) = 0 for every i ∈ V − t for the f ′ returned by Tight Flow(V, µ). It is straightforward that

all conditions in Theorem 2.3(i) are satisfied.
For part (ii), first observe that if there is a feasible solution x to the flow problem, then ei(f

′) ≥ 0
must hold for every i ∈ V − t, due to the constraint xsi ≤ −bµi ; further, µ is a conservative labeling
for f ′. Let us pick a node r ∈ S − t with er(f

′) > 0, and let Z ⊆ S denote the set of nodes that can
be reached from r on a directed path in the residual graph (S, Ẽf ′), defined by

Ẽf ′ = Ẽ ∪ {ji : ij ∈ Ẽ, f ′ij > 0}.

Note that f ′ij
µ = xij for every ij ∈ Ẽf ′ . Assume that t ∈ Z, that is, there is a directed path P from

r to t in the residual graph. Since er(f
′) > 0, we have xsr < −bµi = usr; hence sr and P give an

augmenting path for the flow x, in a contradiction to its choice as a maximum flow.
We may thus conclude that t /∈ Z. Hence eµi (f ′) ≥ 0 for all i ∈ Z, and therefore

0 < eµr (f ′) ≤
∑
i∈Z

eµi (f ′) =
∑
i∈Z

 ∑
j∈Z:ji∈Ẽ

xji −
∑

j∈Z:ij∈Ẽ

xij − bµi

 = −
∑
i∈Z

bµi ≤ n max
j∈S−t

|bµj |, (1)

proving part (ii) of the Theorem. Here we used that if xij > 0 then i ∈ Z if and only if j ∈ Z.
Let us turn to part (iii); assume that eµr (f ′) > 0 for some r ∈ V − t. The equation (1) can be

further written as

0 < eµr (f ′) ≤
∑
i∈Z

eµi (f ′) = −
∑
i∈Z

bµi = − 1

µr

∑
i∈Z

bi
µr
µi
. (2)

For every i ∈ Z, there is a tight path P in Ẽf ′ from r to i, that is, µr/µi =
∏
e∈P 1/γe. By our

assumption on the encoding sizes, this product must be an integer multiple of 1/B̄. We further
assumed that every bi value is an integer multiple of 1/B̄. Hence every term bi

µr
µi

is an integer

multiple of 1/B̄2. Further, by (?), we have rt ∈ E, and γrt ≥ 1/B̄. By the conservativeness of µ
w.r.t. to f̃ , 1

µr
≥ γrt ≥ 1/B̄. Consequently, the last expression in (2) must be at least 1/B̄3 whenever

it is nonzero. Therefore
1/B̄3 ≤

∑
i∈Z

eµi (f ′) ≤ Exµ(f ′),

contradicting our assumption. Hence it follows that er(f) = 0 for all r ∈ V − t.

sectionThe Continuous Scaling algorithm
The algorithm Continuous Scaling is shown in Figure 1. The strongly polynomial algorithm

Enhanced Continuous Scaling in Section 4 will be an improved variant of this. We shall always
make assumptions (?), (??) and (? ? ?).

The algorithm starts with the subroutine Initialize, described in Section 2.6, that returns an
initial flow f , along with a ∆ = ∆̄-conservative labeling µ such that eµi < (di + 2)∆ holds for every
i ∈ V . This is based on the Maximum-mean-gain cycle-canceling algorithm as in [9, 25]. The
main part of the algorithm (the while loop) consists of iterations. The value of the scaling parameter
∆ is monotone decreasing, and all µi values are monotone increasing during the algorithm. In every
iteration, a ∆-feasible pair (f, µ) is maintained. These iterations stop once the scaling parameter ∆
decreases below 1/(17mB̄3). At this point we apply the subroutine Tight-flow(V, µ), as described
in Section 2.5, to find an optimal solution by a single maximum flow computation.

The set N denotes the set consisting of t and all nodes with eµi < (di + 1)∆. The set T0 consists
of a certain set of nodes (but not all) with eµi ≥ (di+ 2)∆. The set T denotes a set of nodes that can
be reached from T0 on a tight path in the ∆-fat graph Eµf (∆). Both T0 and T are initialized empty.

12

Algorithm Continuous Scaling
Initialize(V,E, b, γ, f̄) ;
T0 ← ∅ ; T ← ∅ ;
While ∆ ≥ 1/(17mB̄3) do

N ← {t} ∪ {i ∈ V − t : eµi < (di + 1)∆} ;
if N ∩ T 6= ∅ then

pick p ∈ T0, q ∈ N ∩ T connected by a tight path P in Eµf (∆) ;

send ∆ units of relabeled flow from p to q along P ;
if eµp < (dp + 2)∆ then T0 ← T0 \ {p} ;
T ← T0 ;

else
if ∃ij ∈ Eµf (∆), γµij = 1, i ∈ T , j ∈ V \ T then T ← T ∪ {j} ;

else Elementary Step(T, T0, f, µ,∆) ;
Tight-Flow(V, µ) ;

Figure 1: Description of the weakly polynomial algorithm

Every iteration first checks whether N ∩ T 6= ∅. If yes, then nodes p ∈ T0 and q ∈ N ∩ T are
picked connected by a tight path P in the ∆-fat graph. ∆ units of relabeled flow is sent from p to q
on P : that is, fij is increased by ∆µi for every ij ∈ P (if ij was a reverse arc, this means decreasing
fji by ∆µj). The only ei values that change are ep and eq. If the new value is eµp < (dp+2)∆, then p
is removed from T0. The iteration finishes in this case by resetting T = T0 (irrespective to whether
p was removed or not).

Let us now turn to the case N ∩ T = ∅. If there is a node j ∈ V \ T connected by a tight arc
in Eµf (∆) to T , then we extend T by j, and the iteration terminates. Otherwise, the subroutine
Elementary Step(T, T0, f, µ,∆) is called. The precise description is given in Section 2.7; we give
an outline below.

For a carefully chosen α > 1, all µi values are multiplied by α for i ∈ T , and µi is left unchanged
for i ∈ V \ T . At the same time, ∆ is divided by α (this is the only step in the main part of the
algorithm modifying the µi’s and the value of ∆). The flow is divided by α on all non-tight arcs
in Fµ[V \ T], and on every arc entering T . The value of α is chosen to be the largest such that
the labeling remains ∆-feasible with the above changes, and further eµi ≤ 4(di + 2)∆ holds for all
i ∈ V \T . If α =∞, then the algorithm terminates with an optimal solution. For finite α, all nodes
i for which eµi = 4(di + 2)∆ holds after the change are added both to T0 and to T . On the other
hand, the eµi values might also decrease both for i ∈ T and i ∈ V \T . If for some i ∈ T0, the value of
eµi drops below (di + 2)∆, then i is removed from T0, and T is reset to T = T0. In every step when
T0 is not changed, a tight arc in Eµf (∆) leaving T must appear. Consequently, T will be extended
in the next iteration. We shall prove the following running time bound:

Theorem 2.7. The algorithm Continuous Scaling can be implemented to find an optimal solution
for the uncapacitated formulation (P) in running time max{O(m(m+n log n) log B̄), O(m2n log2 n)}.

The high level idea of the analysis is the following. The eµi values for nodes i ∈ T0 are non-
increasing, and a path augmentation starting from i reduces eµi by ∆. The node i leaves T0 once eµi
drops below (di+2)∆, and may enter again once it increases to 4(di+2)∆. As shown in Lemma 3.7,
the value of ∆ must decrease by at least a factor 2 between two such events. Also, it is easy to

13

verify that within every 2n Elementary step operations, either a path augmentation must be
carried out, or a node i must leave T0 due to decrease in eµi caused by label changes. These two
facts together give a polynomial bound on the running time.

In the proof of Theorem 2.7, we outline a more efficient implementation of the algorithm, with
all iterations between two path augmentations performed together.

For a problem in the standard form on n nodes, m arcs and complexity parameter B, the
reduction in Section 7.1 shows that it can be transformed to an equivalent instance with ≤ n + m
nodes, ≤ 2m arcs, and B̄ ≤ 2B4m. Hence the theorem gives a running time O(m3 log n logB),
assuming n ≤ B.

Our algorithm could be naturally adapted to work on a problem instance with both node demands
and arc capacities; the reason for choosing the uncapacitated instance is its suitability for the strongly
polynomial algorithm in Section 4. Such a modification would run in time O(m2(m+n log n) logB),
matching the bound of Goldfarb et al. [13].

2.6 The Initialization subroutine

In this section we describe the Initialize(V,E, b, γ, f̄) subroutine. The input is a graph G = (V,E),
node demands bi : V → R, gain factors γ : E → R>0 and the initial generalized flow f̄ guaranteed by
the assumption (??). The initial value of ∆ = ∆̄ is computed and a ∆-feasible pair (f, µ) is returned
such that eµi < (di + 2)∆ holds for every i ∈ V − t.

First, we use the Maximum-mean-gain cycle-canceling algorithm by Radzik [25]. This
paper uses the standard capacitated formulation (Pu) with finite capacities on the arcs. As a con-
sequence, every flow-generating cycle can only generate a finite amount of flow. Our boundedness
assumption (? ? ?), together with (?), guarantees the same property. Provided this boundedness
property, Radzik’s strongly polynomial bound extends verbatim to the uncapacitated formulation
(P).

This returns a generalized flow g such that the residual graph Eg contains no flow generating
cycles, that is, no cycles C with γ(C) > 1. Let us define µt := 1 and for i ∈ V − t,

µi := 1/max {γ(P) : P ⊆ Eg is a walk from i to t.} (3)

Such a path must exist according to assumption (?), and since γ(C) ≤ 1 for all cycles C, the walk
giving the maximum can always be chosen to be a path. The µi values can be computed efficiently:
note that they correspond to shortest paths with respect to the cost function − log γe. To avoid
computing logarithms, we may use a multiplicative version of Dijkstra’s algorithm to obtain the µi
values in strongly polynomial time.

After the cycle cancelling subroutine and computing the µi values, the subroutine Tight Flow(V, µ)
is called, as described in Section 2.5. This computes a generalized flow f ′. We set f = f ′, and set
the initial ∆ = ∆̄ := maxi∈V−t e

µ
i .

2.7 The Elementary step subroutine

Let (f, µ) be a ∆-feasible pair for ∆ > 0. Let T ⊆ V be a (possibly empty) set of nodes with
eµi ≤ 4(di + 2)∆ for every i ∈ V , with strict inequality whenever i ∈ V \ T . The subroutine
(Figure 2) perfoms the following modifications for some α > 1. The µi values are multiplied by α
for i ∈ T , and left unchanged for i ∈ V \ T . The new value of the scaling parameter is set to ∆/α.
Finally, the flow on non-tight arcs ij ∈ Fµ[V \ T] and on all arcs ij ∈ E[V \ T, T] is divided by α.

The value of α is chosen maximal such that for the new values of f, µ, and ∆, (f, µ) is ∆-feasible,
and further the modified excess ei ≤ 4(di + 2)∆µi holds for every i ∈ V . For the latter, we need the

14

Subroutine Elementary step(T, T0, f, µ,∆)
α1 ← min {δi : i ∈ (V \ T)− t}, with δi as defined in (5) ;

α2 ← min

{
1
γµij

: ij ∈ E[T, V \ T]

}
;

α← min{α1, α2} ;
if α =∞ then

set fti = 0 for all ti ∈ E: γµti < 1 ;
return optimal flow f and optimal relabeling µ ;
TERMINATE.

∆← ∆
α ;

for i ∈ T do µi ← αµi ;

for ij ∈ Fµ[V \ T] ∪ E[V \ T, T] do fij ← fij
α ;

T0 ← T0 ∪ {i : i ∈ V \ T, eµi = 4(di + 2)∆} ;
T ← T ∪ T0 ;
if ∃i ∈ T0 : eµi < (di + 2)∆ then

T0 ← T0 \ {i : eµi < (di + 2)∆} ;
T ← T0 ;

Figure 2: The Elementary Step subroutine

following definitions for every i ∈ (V \ T)− t. Let

F1(i) := δin(i) ∩ Fµ[V \ T], r1(i) :=
∑

j:ji∈F1(i) γjifji,

F2(i) := δin(i) \ F1(i), r2(i) :=
∑

j:ji∈F2(i) γjifji,

F3(i) := δout(i) ∩ (Fµ[V \ T] ∪ E[V \ T, T]), r3(i) :=
∑

j:ij∈F3(i) fij ,

F4(i) := δout(i) \ F3(i), r4(i) :=
∑

j:ij∈F4(i) fij .

(4)

Note that F1(i) and F3(i) denote the set of those incoming and outgoing arcs where we wish to
decrease the flow by a factor α. For every i ∈ (V \ T)− t, let us define

δi :=
4(di + 2)∆µi + r3(i)− r1(i)

r2(i)− r4(i)− bi
. (5)

If the denominator is 0 then δi := ∞ is set. We shall verify in the proof of Lemma 3.3 that the
denominator is always nonnegative and the numerator is positive.

The subroutine (Figure 2) chooses α as the largest value subject to α ≤ δi for all i ∈ (V \T)− t,
and α ≤ 1

γµij
for all arcs ij ∈ E leaving the set T . If α = ∞, then f becomes an optimal solution,

after setting the value on all non-tight arcs leaving t to 0. If α is finite, the algorithm performs the
above described modifications. Nodes i with eµi = 4(di + 2)∆ (that is, α = δi) are added to both T0

and T . Finally, if eµi drops below (di + 2)∆ for some i ∈ T0, then all such nodes i will be removed
from T0, and T is reset to T = T0. The validity of this subroutine is proved in Lemma 3.3.

3 Analysis of the Continuous Scaling algorithm

Lemma 3.1. The subroutine Initialize(V,E, b, γ, f̄) returns a ∆-feasible pair (f, µ) with eµi ≤
(di + 2)∆ for every i ∈ V − t, and ∆ = ∆̄ ≤ nB̄2.

15

Proof. First, we have to verify that the flow problem in Tight-flow(V, µ) is feasible. We use the
generalized flow g obtained by the Maximum-mean-gain cycle-canceling algorithm to verify
this, by showing that µ is a conservative labeling for g. The nontrivial part is to prove γµij ≤ 1 for
every residual arc ij ∈ Eg.

Let ij ∈ Eg be an arbitrary residual arc. Consider the j − t path P j with µj = 1/γ(P j) in
(3). Let P ′ denote the path resulting by adding the arc ij ∈ Eg to the beginning of P j . Then by
definition, 1/µi ≥ γ(P ′) = γij/µj , showing γµij ≤ 1.

Let us now consider the maximum flow instance in Tight-flow(V, µ). Setting xij := gµij if
ij ∈ E and xsi :=

∑
j:ij∈E g

µ
ij −

∑
j:ji∈E g

µ
ji for every i ∈ V − t gives a feasible solution. This

guarantees the existence of the optimal solution f ′.
It is straightforward by the construction that µ is a conservative labeling for f , and hence (f, µ)

is ∆-feasible for arbitrary ∆ > 0. The condition eµi ≤ (di + 2)∆ is also straightforward by definition.
Let us verify the bound on ∆. By Theorem 2.6(ii), we have ∆ ≤ nmaxi∈V−t |bi|/µi. Our

assumption on the encoding sizes give |bi| ≤ B̄. Further, we have 1/µi ≤ B̄, according to the
definition of 1/µi = γ(P i) for some i−t path P i, and the encoding assumptions on the γe values.

The next straightforward claim justifies the path augmentation step carried out between p ∈ T0

and q ∈ N ∩ T whenever N ∩ T 6= ∅.

Claim 3.2. Let (f, µ) be a ∆-feasible pair, and assume P is a tight path in Eµf (∆) from node p to

node q, with eµp (f) ≥ ∆ +Rµp . Let us increase fij by ∆µi if ij ∈ P is a forward arc, and decrease fji
by ∆µj if ij ∈ P is a backward arc; let f ′ denote the resulting flow. Then (f ′, µ) is also a ∆-feasible
pair.

We next prove some fundamental properties of the subroutine Elementary step, most im-
portantly, that it maintains the ∆-feasibility of (f, µ). By induction, we may assume that the
four conditions in the lemma always hold when Elementary step(T, T0, f, µ,∆) is called in the
algorithm.

Lemma 3.3. Let (f, µ) be a ∆-feasible pair for some ∆ > 0, and let T ⊆ V − t satisfy the following
conditions:

• eµi < 4(di + 2)∆ for all i ∈ (V \ T)− t;

• eµi ≥ (di + 1)∆ for all i ∈ T ;

• γµij < 1 for all ij ∈ E[T, V \ T];

• fµij ≤ ∆ for all ij ∈ E[V \ T, T].

Let f ′, µ′, ∆′, and e′i denote the respective values at the end of Elementary step(T, T0, f, µ,∆).
If α <∞, then the pair (f ′, µ′) is ∆′-feasible. Further, the following statements hold.

(i) α > 1. If α =∞ then the modified flow returned by the algorithm is optimal to (P), and µ is
optimal to (D).

(ii) e′i
µ′i ≤ 4(di + 2)∆′ for all i ∈ V \ T , and if α = α1, then ∃i ∈ V \ T such that equality holds.

(iii) e′i ≤ ei for all i ∈ T .

(iv) If α = α2 then ∃ij ∈ E with i ∈ T , j ∈ V \ T , and γµ
′

ij = 1.

16

Proof. For ∆′-feasibility, let us first verify γµ
′

ij ≤ 1 for all ij ∈ E. If ij ∈ E[T] or ij ∈ E[V \ T], then

γµ
′

ij = γµij . If ij ∈ E[T, V \ T], then we have γµ
′

ij = αγµij ≤ 1 due to the choice α ≤ α2. Finally, if

ij ∈ E[V \ T, T], then γµ
′

ij = γµij/α < 1. The next two claims verify the remaining properties needed
for ∆′-feasibility.

Claim 3.4. If γµ
′

ij < 1 for an arc ij ∈ E, then f ′ij
µ′ = fµij/α ≤ ∆/α = ∆′.

Proof. Let us first assume i ∈ T ; the first equality follows by f ′ij = fij , µ
′
i = µiα. The inequality

fµij ≤ ∆ is due to the ∆-feasibility of f , because of γµij < 1. If j ∈ V \ T , this is included among the

assumptions, whereas if j ∈ T , then it follows by γµij = γµ
′

ij < 1.

Consider now the case i ∈ V \ T . If also j ∈ V \ T , then γµij = γµ
′

ij < 1, and hence f ′ij = fij/α, as
we decrease the flow values by a factor α on arcs Fµ[V \ T]; the inequality fµij ≤ ∆ follows again by
the ∆-feasibility of f . If j ∈ T , that is, ij ∈ E[V \ T, T], then we must again have f ′ij = fij/α, and
fµij ≤ ∆ is included among the assumptions.

Claim 3.5. The inequality e′i ≥ R′i holds for all i ∈ V − t, where R′i denotes the f ′ flow entering i
on non-tight arcs for µ′.

Proof. We have ei ≥ Ri by the ∆-feasibility of f .

Case I: i ∈ V \ T . Since f ′ ≤ f , the change of flow on outgoing arcs may only increase ei. If

f ′ji < fji on an incoming arc ji ∈ E, then j ∈ V \ T must hold. Therefore γµ
′

ji = γµji, and hence ji
must be a non-tight arc for both µ and µ′. The change on ji decreases ei by (1 − 1/α)γjifji, and
causes the same change in the value of Ri.
Case II: i ∈ T . By the assumption of the lemma, eµi ≥ (di + 1)∆. The flow on outgoing arcs
is unchanged. Let ji ∈ E be an incoming arc with f ′ji < fji. We must have j ∈ V \ T and thus
fji ≤ ∆µj by assumption; further, γµji ≤ 1 by the ∆-feasibility of (f, µ). Hence it follows that
γjifji < ∆γjiµj ≤ ∆µi. This enables us to bound the value e′i. Let λ denote the number of arcs ji
with j ∈ V \ T . Using also the assumption ei ≥ (di + 1)∆µi, we have

e′i = ei −
∑

j∈V \T :ji∈E

(γjifji − γjif ′ji) ≥ ei −
∑

j∈V \T :ji∈E

(∆µi − γjif ′ji)

≥
∑

j∈V \T :ji∈E

γjif
′
ji + (di + 1− λ)∆µi > R′i.

In the last inequality, we use that if ji is a non-tight arc with j ∈ T , then γjif
′
ji ≤ ∆′µ′i = ∆µi, and

that the total number of such arcs is ≤ di − λ.

Let us now verify claims (i)-(iv). We first show that in the formula (5) defining δi, the denomi-
nator is nonnegative and δi > 1. Note that

r1(i) + r2(i)− r3(i)− r4(i)− bi = ei ≥ Ri ≥ r1(i). (6)

The equality is by the definition of the four terms; the first inequality is required by ∆-feasibility,
and the second since the definition of Ri includes all terms in r1(i). This shows that the denominator
is r2(i) − r4(i) − bi ≥ r3(i) ≥ 0. The inequality δi > 1 then follows by the equality in (6) and the
assumption 4(di + 2)∆µi > ei.

For (i), the above argument gives α1 > 1. It is easy to see that α2 > 1, and hence α > 1 follows.
For the second part, let us analyze the α = ∞ case. First, we show that T = ∅ must hold. For a
contradiction, assume T 6= ∅. We have t ∈ V \T is assumed, and every j ∈ V − t is connected by an

17

arc to t by (?). Therefore the set of arcs defining α2 is always nonempty, showing that α must be
finite.

We thus have T = ∅. Since α1 = ∞, we must have δi = ∞ for every i ∈ V − t, that is, the
denominator in (5) is always 0. According to (6), this is only possible if r3(i) = 0 for every i ∈ V − t.
This means that for every ij ∈ Fµ, if fij > 0, then i = t must hold. As a further consequence of
(6), we have ei = Ri = r1(i) for every i ∈ V − t. Combining these two, for every i ∈ V − t we obtain
ei = r1(i) = γtifti if ti ∈ Fµ, and ei = r1(i) = 0 if ti /∈ Fµ. After the algorithm sets the value of all
these arcs to 0, µ becomes a conservative labeling, and ei = 0 for all i ∈ V − t, yielding primal and
dual optimality according to Theorem 2.3(i).

Let us now prove claim (ii). The flow on the arcs incident to i is divided by α on all arcs in

F1(i) and F3(i), and left unchanged on arcs in F2(i) and F4(i). Therefore, e′i
µ′i ≤ 4(di + 2)∆′ follows

whenever α ≤ δi. The claims on nodes/arcs with equalities in (ii) and (iv) are straightforward.
Finally, (iii) follows since if i ∈ T , then the flow is unchanged on outgoing arcs and on arcs incoming
from T , but decreases on arcs incoming from V \ T .

3.1 Bounding the number of iterations

Let ∆(τ) denote the value of the scaling factor at the beginning of the τ ’th iteration; clearly, ∆(1) ≥
∆(2) ≥ . . . ≥ ∆(τ). Let f (τ), µ(τ), e(τ) and T (τ) denote the respective vectors and set T at the
beginning of iteration τ .

Let us classify the iterations into three categories. The iteration θ is shrinking, if T (θ)\T (θ+1) 6= ∅.
Every iteration with a path augmentation is shrinking, since T is reset to T0, although it contained
some other nodes, in particular, the endpoint q of the path previously. The other type of shrinking
iteration is when Elementary step is performed, and for some i ∈ T0, the value of eµi is decreased
below (di + 2)∆.

The iteration θ is expanding, if T (θ) (T (θ+1). This can either happen if the iteration only consists
of extending T by adding a new node reachable by a tight arc in the ∆-fat graph, or if T0 is extended
in Elementary step, and no node is removed from T0. An iteration that is neither shrinking nor
expanding is called neutral. Note that in a neutral iteration we must perform Elementary step,
and further we must have T (θ) = T (θ+1). We claim that the iteration following the neutral iteration
θ must be either expanding or shrinking. Indeed, if T (θ+1) ∩ N (θ+1) 6= ∅, then it will be shrinking.
Otherwise, Lemma 3.3(iv) guarantees that it must be expanding. The main goal of this section is
to prove the following lemma.

Lemma 3.6. For the starting value ∆(1) = ∆̄ and arbitrary integer τ ≥ 1, we have

τ ≤ 26mn log2

∆̄

∆(τ+1)
.

Further, the total number of shrinking iterations among the first τ is at most

13m log2

∆̄

∆(τ+1)
.

An important quantity in our analysis will be

βi :=
ei

∆µi
;

let β
(τ)
i denote the corresponding value at the beginning of iteration τ . Let α(τ) denote the value

of α in iteration τ if the subroutine Elementary Step is called, and let α(τ) = 1 otherwise. Note

18

that the value of the scaling factor only changes in the subroutine Elementary Step. Therefore

∆̄

∆(τ+1)
=

∏
θ∈[1,τ]

α(θ) ∀τ ∈ Z, τ > 1.

Lemma 3.7. During the first τ iterations, a node i may enter the set T0 altogether at most log2
∆̄

∆(τ+1)

times.

Before proving the lemma, let us show how it can be used to bound the number of iterations.

Proof of Lemma 3.6. Let us consider the potential

Ψ :=
∑
i∈T0

bβi − (di + 1)c. (7)

Initially, T0 = ∅ and therefore Ψ = 0. Note that every term is positive in every step of the algorithm,
since nodes with βi < (di + 2) are immediately removed from T0. The subroutine Elementary
step may only decrease the value of Ψ: Lemma 3.3(iii) guarantees that if i ∈ T0, then βi may only
decrease during the subroutine, since e′i ≤ ei and ∆′µ′i = ∆µi.

Every shrinking iteration must decrease Ψ by at least one. Indeed, a path augmentation decreases
ep by ∆µp for the starting node p, which decreases bβp − (dp + 1)c by one. No other βi value is
modified for i ∈ T0. Next, consider the case when a shrinking iteration removes some nodes i from
T0 after performing Elementary step because of βi < (di + 2). In the previous iteration, we must
have had βi ≥ (di + 2) for such nodes, hence Ψ decreases by at least 1.

When a node i enters T0, then it increases Ψ by (3di + 7). Assume that the node i enters T0

altogether λi times between iterations 1 and τ . Then Lemma 3.7 gives λi ≤ log2
∆̄

∆(τ+1) . Therefore
the total increase in the Ψ value between iterations 1 and τ is bounded by∑

i∈V−t
(3di + 7)λi ≤

∑
i∈V−t

(3di + 7) log2

∆̄

∆(τ+1)
≤ (6m+ 7n) log2

∆̄

∆(τ+1)
≤ 13m log2

∆̄

∆(τ+1)

This bounds the number of shrinking iterations (recall the assumption n ≤ m). Between two subse-
quent shrinking iterations, all phases are expanding or neutral. Every expanding iteration increases
T , and every neutral iteration is followed by a shrinking or an expanding iteration. Therefore the
total number of iterations between two subsequent shrinking iterations is ≤ 2n, giving an overall
bound

26mn log2

∆̄

∆(τ+1)

on the number of iterations.

The proof of Lemma 3.7 is based on the following simple claim.

Claim 3.8. Let β′i denote the new value of βi after performing the subroutine Elementary Step(T, T0, f, µ,∆),
that computes the value α. For every node i ∈ V − t, we have

β′i ≤ α2 max {βi, di} .

Proof. Let ∆ and ∆′ = ∆/α denote the scaling factor before and after performing the subroutine
Elementary Step(T, T0, f, µ,∆). If i ∈ T , then e′i ≤ ei by Lemma 3.3(iii) and ∆′µ′i = ∆µi, and
hence β′i ≤ βi, implying the claim. Assume therefore that i ∈ V \ T . We have f ′ ≤ f , and the flow

19

changes on arcs entering i may only decrease ei. Recall that F3(i) denotes the set of outgoing arcs
ij where f ′ij < fij . Note that fij ≤ ∆µi on every such arc. We get the upper bound

e′i ≤ ei +
∑

j:ij∈F3(i)

(1− 1/α)fij ≤ ei + (1− 1/α)|F3(i)|∆µi ≤ ei + (α− 1)|F3(i)|∆µi.

In the last inequality, we used 1 − 1/α ≤ α − 1, which is true for every α > 0. Using further that
∆′µ′i = ∆µi/α, we get

β′i =
e′i

∆′µ′i
≤ α(ei + (α− 1)|F3(i)|∆µi)

∆µi
= α

ei
∆µi

+ (α− 1)|F3(i)| ≤

αβi + (α− 1)di ≤ (2α− 1) max{βi, di} ≤ α2 max{βi, di},

completing the proof.

Proof of Lemma 3.7. Let τ1 < τ2 < . . . < τλ ≤ τ denote the iterations when i enters T0 up to

iteration τ . This means that β
(τ`+1)
i = 4(di + 2) for 1 ≤ ` ≤ λ.

For 1 ≤ ` ≤ λ, let us define τ ′` to be the largest value τ ′` ≤ τ` such that β
(τ ′`)
i < (di + 2). Note

that these values must exist and satisfy τ`−1 < τ ′` ≤ τ` for ` > 1. Indeed, for ` = 1, we assumed

that at the beginning of the algorithm β
(1)
i < (di + 2). For ` > 1, note that i must leave T0 in some

iteration θ between τ`−1 and τ`, and this can happen only if β
(θ)
i < (di + 2).

In iteration τ ′`, we have i /∈ T0, since once the excess ei drops below (di + 2)∆µi, the node i is
immediately removed from T0. By definition, i will be added to T0 in iteration τ`.

The ei values may change in two ways between iterations τ ′` and τ`: either during a path aug-
mentation or in the subroutine Elementary step. We claim that no path augmentation changes
ei in the iterations τ ′` ≤ θ ≤ τ`. Indeed, the only values that change are at the starting point p and
endpoints q of the tight path P . We cannot have i = p as i /∈ T0 during these iterations. Assume

now i = q is the endpoint; therefore e
(θ)
i < (di + 1)∆(θ)µ

(θ)
i . This clearly cannot be the case for

τ ′` < θ ≤ τ` by the maximal choice of τ ′`. Let us consider the case θ = τ ′`. The path augmentation

terminating in i = q increases e
(τ ′`)
i by ∆(τ ′`)µ

(τ ′`)
i . However, we had e

(τ ′`)
i < (di + 1)∆(τ ′`)µ

(τ ′`)
i , and

therefore
e

(τ ′`+1)
i = e

(τ ′`)
i + ∆(τ ′`)µ

(τ ′`)
i < (di + 2)∆(τ ′`+1)µ

(τ ′`+1)
i ,

again a contradiction to the choice of τ ′`. (Note that if a path augmentation is done in iteration τ ′`,
then the values of ∆ and µ do not change).

Hence all changes in the value of ei are due to modifications in Elementary step. Consequently,

4 =
4(di + 2)

(di + 2)
<

β(τ`+1)

max{β(τ ′`), di}
≤ β(τ ′`+1)

max{β(τ ′`), di}

∏
θ∈[τ ′`+1,τ`]

β(θ+1)

β(θ)
(8)

For θ ∈ [τ ′` + 1, τ`], we assumed β(θ) > di, and hence Claim 3.8 gives that β(θ+1)

β(θ) ≤
(
α(θ)

)2
. The same

claim bounds the first term by ≤
(
α(τ ′`)

)2
. Hence we get

4 ≤

 ∏
θ∈[τ ′`,τ`]

α(θ)

2

.

20

Adding the logarithms of these inequalities for all ` = 1, . . . , λ, we obtain

λ ≤
∑
θ∈[1,τ]

log2 α
(θ) = log2

∆̄

∆(τ+1)
,

completing the proof.

3.2 The termination of the algorithm

The algorithm either terminates in Elementary step or by the final subroutine Tight-flow(V, µ).
Optimality for the first case was already proved in Lemma 3.3(i). The next claim addresses the second
case.

Lemma 3.9. The final f ′ and µ returned by the subroutine Tight-flow(V, µ) are a primal and a
dual optimal solution to (P) and (D), respectively.

Proof. We show that the flow problem in Tight-flow(V, µ) is feasible and Exµ(f ′) < 1/B̄3. Then
optimality follows by Theorem 2.6(iii). At the termination of the While iterations of the algorithm
Continuous Scaling, we have

Exµ(f) =
∑
i∈V−t

eµi ≤ 4∆
∑
i∈V

(di + 2) = (8m+ 8n)∆.

Let us define f̃ by f̃ij = 0 if ij ∈ Fµ and f̃ij = fij otherwise. By Lemma 2.4,

Exµ(f̃) < Exµ(f) + |Fµ|∆ ≤ (9m+ 8n)∆ < 1/B̄3,

since ∆ < 1/(17mB̄3) at the termination. The proof is complete by verifying the feasibility of the
flow problem and showing that Exµ(f ′) ≤ Exµ(f̃).

Let us define the feasible solution x̃ to the flow problem in Tight Flow as follows. We use the
notation introduced in the description of the subroutine in Section 2.5. Let x̃ij := f̃µij for ij ∈ E.

Further, for i ∈ V − t, let us set x̃si :=
∑

j:ij∈E f̃
µ
ij −

∑
j:ji∈E f̃

µ
ji. The conservativeness of f̃ implies

that x̃si ≤ −bµi = usi. Therefore x̃ is a feasible solution to the flow problem. The value of this flow
x̃ (i.e. the sum of the flow on the arcs leaving s) is∑

i∈Ṽ−t

x̃si = −
∑
i∈V−t

(bµi + eµi (f̃)) = −Exµ(f̃)−
∑
i∈V−t

bµi .

Similarly, the value of the flow x found by Tight Flow is −Exµ(f ′) −
∑

i∈V−t b
µ
i . Since x is

maximal, it follows that Exµ(f ′) ≤ Exµ(f̃).

3.3 Running time analysis

Proof of Theorem 2.7. The starting value of the scaling factor is ∆̄ ≤ nB̄2 by Lemma 3.1, and we
terminate once ∆(τ+1) < 1/(17mB̄3). Therefore log ∆̄

∆(τ+1) ∈ O(log B̄) (we may assume log B̄ is

larger than m). According to Lemma 3.6, the number of iterations of the algorithm is O(mn log B̄),
out of them O(m log B̄) shrinking ones. We have to execute two maximum flow computations, that
can be done in O(nm) time using the recent algorithm by Orlin [24]. The initial cycle canceling
subroutine can be executed in time O(m2n log2 n), see Radzik [25]. The proof is complete by showing
that the part of the algorithm between two shrinking iterations can be implemented in O(m+n log n)
time.

21

We implement all these iterations together via a Dijkstra-type algorithm, using the Fibonacci-
heap data structure [7], see also [2, Chapter 4.7]. The precise details are given in Section 6, see
Figure 5; here we outline the main ideas only. Each label is modified only once, at the beginning of
the subsequent shrinking iteration; for every i, it is sufficient to record the value of α at the moment
when i enters T . We have to modify the fij values accordingly. We maintain a heap with elements
i ∈ V \ T , with five keys associated to each of them. The main key for i ∈ V \ T corresponds
to the minimum of the 1/γµji’s for j ∈ T , and of δi. The four auxiliary keys store the flow values
r1(i), . . . , r4(i), as in the definition (5) of δi. We choose the next i who enters T with the minimal
main key. If the minimal key corresponds to the δi value, then i enters both T and T0; otherwise, it
enters only T . We remove i from the heap, and update the keys on the adjacent nodes. We maintain
another heap structure on T to identify events when for a node i ∈ T0, eµi < (di + 2)∆ happens, or
when a node in T \ T0 enters N .

Overall, these modifications entail O(m) key modifications only; the keys can be initialized in
total time O(m). We therefore obtain the running time O(m+n log n) as for Dijkstra’s algorithm.

4 The strongly polynomial algorithm

The while loop of the algorithm Enhanced Continuous Scaling proceeds very similarly to Con-
tinuous Scaling, with the addition of the special subroutine Filtration, described in Section 4.2.
However, the termination criterion is quite different. As discussed in Section 2.4, the goal is to find

a node i ∈ V − t with
|bµi |
∆ ≥ 32mn. There must be an abundant arc incident to such a node that we

can contract and continue the algorithm in the smaller graph. Section 4.1 describes the abundant
arcs and the contraction operation.

Let us now give some motivation for the algorithm; we focus on the sequence of iterations leading
to the first abundant arc. Consider the set

D :=

{
i ∈ V − t :

|bµi |
∆
≥ 1

n

}
.

Our aim is to guarantee that most iterations when ∆ is multiplied by α will multiply
|bµi |
∆ by α for

some i ∈ D. This will ensure that
|bµi |
∆ ≥ 32mn happens within O(nm log n) number of steps. Note

that in the subroutine Elementary step(T, f, µ,∆), the
|bµi |
∆ ratio is multiplied by α for all nodes

i ∈ V \ T and remains unchanged for i ∈ T .
Therefore we modify the while loop of Continuous Scaling as follows. If (V \ T) ∩ D 6= ∅,

Elementary step(T, f, µ,∆) is performed identically. If (V \T)∩D = ∅, then before Elementary
step(T, f, µ,∆), the special subroutine Filtration(V \T, f, µ) is executed, performing the following
changes.

The value of f is set to 0 for every arc entering T , and fij is left unchanged for i ∈ T . The
flow value on arcs inside E[V \ T] is replaced by an entirely new flow f ′ computed by Tight
Flow(V \ T, µ).

An important part of the analysis is Theorem 2.6(ii), asserting that eµi (f ′) ≤ nmaxj∈(V \T)−t |b
µ
j |.

This will imply that either the set D must be extended in the iteration following Filtration(V \
T, f, µ), or there must be a shrinking one among the next two iterations (Lemma 5.11(ii)). Note
that once a node enters D, it stays there until the next contraction.

4.1 Abundant arcs and contractions

Given a ∆-feasible pair (f, µ), we say that an arc pq ∈ E is abundant, if fµpq ≥ 17m∆. The importance
of abundant arcs is that they must be tight in all dual optimal solutions. This is a corollary of the

22

following theorem.

Theorem 4.1. Let (f, µ) be a ∆-feasible pair. Then there exists an optimal solution f∗ such that

||fµ − f∗µ||∞ ≤ Exµ(f) + (|Fµ|+ 1)∆.

The standard proof using flow decompositions is given in the Appendix; it can also be derived
from Lemma 5 in Radzik [26]. For the flow f in an iteration with scaling factor ∆, we have
Exµ(f) ≤

∑
i∈V−t 4(di + 2)∆ < (8m+ 8n− 8)∆ ≤ (16m− 8)∆. Further, |Fµ| ≤ m. This gives the

following corollary; the last part follows by primal-dual slackness conditions.

Corollary 4.2. Let (f, µ) be the ∆-feasible pair during the algorithm. If for an arc pq ∈ E, fµpq ≥
17m∆, then f∗pq > 0 for some optimal solution f∗ to (P). Consequently, γpqµ

∗
p = µ∗q for every

optimal solution µ∗ to (D).

Once an abundant arc pq is identified in the Enhanced Continuous Scaling algorithm, it is
possible to reduce the problem by contracting pq. Consider the problem instance (V,E, t, b, γ). The
contraction of the arc pq returns a problem instance (V ′, E′, t′, b′, γ′) with t′ := t, as follows.

Case I: p 6= t. Let V ′ = V \ {p}, and add an arc ij ∈ E′ if ij ∈ E and i, j 6= p. For every
arc ip ∈ E, add an arc iq ∈ E′, and for every arc pi ∈ E, i 6= q, add an arc qi ∈ E′. Set the gain
factors as γ′ij := γij if i, j 6= p, γ′iq := γipγpq and γ′qi := γpi/γpq. Let us set b′i := bi if i 6= q, and
b′q := bq + γpqbp.

Case II: p = t. Let V ′ = V \ {q}, and add an arc ij ∈ E′ if ij ∈ E and i, j 6= q. For every
arc iq ∈ E, i 6= p, add an arc ip ∈ E′, and for every arc qi ∈ E, add an arc pi ∈ E′. Set the gain
factors as γ′ij := γij if i, j 6= p, γ′ip := γiq/γpq and γ′pi := γqiγpq. Let us set b′i := bi if i 6= p, and
b′p := bp + bq/γpq.

In both cases, if parallel arcs are created, keep only one that maximizes the γ′ value. Let s := q
in the first and s := p in the second case. If a loop incident to s is created (corresponding to a qp
arc), remove it.

Assume further we are given a generalized flow f and a labeling µ with γµpq = 1 in the instance.
We define the image labels µ′, by simply setting µ′i = µi for all i ∈ V ′ in both cases. Note that we

will have b′s
µ′ = bµp + bµq in both cases.

As for the generalized flow, let f ′ij := fij whenever i, j 6= s. For every i ∈ V ′ \ {s}, we let f ′is :=
fip + fiq. Further, in Case I, we let f ′si := γpqfpi + fqi, whereas in Case II, we let f ′si := fpi + fqi/γpq.
If one of these arcs is not in E, then we substitute the corresponding value by 0. Recall that in the
construction, we keep the larger gain factor from two parallel incoming or outgoing arcs.

The above transformation of an instance, generalized flow and labels will be executed by the
subroutine Contract(pq). Note that if the original instance satisfies (?), (??), and (? ? ?), then
these also hold for the contracted instance; the contracted image of the initial feasible solution f̄ is
feasible for the contracted instance.

Let us also describe the reverse operation, Reverse(pq), that transforms a dual solution on the
contracted instance to a dual solution in the original one. Assume µ′ is a dual solution in the graph
obtained by the contraction of pq. Let us set µi := µ′i for all i ∈ V −s. In the first case (p 6= t, s = q),
let us set µp := µ′q/γpq, whereas in the second case (p = t, s = p), let us set µq := µ′pγpq = γpq.

4.2 The Filtration subroutine

A typical iteration of the Enhanced Continuous Scaling algorithm (Figure 4) will be the same
as in Continuous Scaling, with adding one additional subroutine, Filtration(V \T, f, µ) before

23

performing Elementary step(T, T0, f, µ,∆). This subroutine is executed if |bµi | < ∆/(16kn) holds
for all i ∈ (V \ T)− t, where k is the number of arcs contracted so far, initially k = 0.

Filtration(V \T, f, µ) (Figure 3) performs the subroutine Tight Flow(V \T, µ), as described
in Section 2.5. This replaces f by an entirely new flow f ′ on the arcs in E[V \ T]. We further
set fij = 0 on all arcs entering T , and keep the original f value on all other arcs (that is, arcs in
E[T] ∪ E[T, V \ T]).

Subroutine Filtration(V \ T, f, µ)
f ′ ← Tight Flow(V \ T, µ) ;
for ij ∈ E do

if ij ∈ E[V \ T] then fij ← f ′ij ;

if ij ∈ E[V \ T, T] then fij ← 0 ;

Figure 3: The Filtration subroutine

4.3 The Enhanced Continuous Scaling Algorithm

We are ready to describe our strongly polynomial algorithm, shown on Figure 4. The algorithm
consists of iterations similar to Continuous Scaling, with the addition of the above described
Filtration subroutine. This subroutine might decrease eµi values below (di + 2)∆ for some i ∈ T0;
also, eµi < (di+1)∆ might happen for some i ∈ T , that is, i is added to the set N∩T . If either of these
events happen, we proceed to the next iteration without performing the subroutine Elementary
step(T, T0, f, µ,∆). Further, if there are nodes i ∈ T0 where the eµi values drop below (di + 2)∆,
then we remove all such nodes from T0, and reset T = T0.

The termination criterion is not on the value of ∆, but on the size of the graph: we terminate
once it is reduced to a single node. The main progress is done when an abundant arc pq appears:
in this case, we first set the flow value on every non-tight arc to 0, and then reduce the number of
nodes by one using the above described subroutine Contract(pq). Further, the value of the scaling
factor ∆ is multiplied by 16, and the counter k is increased by one. The sets T0 and T are reset to ∅.
A sequence of such contractions is performed until all abundant arcs are contracted. The iterations
between two phases where contractions are performed (and those up to the first contraction) will
be referred to as a major cycle of the algorithm. In the description and the analysis, n and m will
always refer to the size of the original instance and not the actual contracted one.

At termination, the subroutine Expand-to-Original finds primal and dual optimal solutions
in the original graph. This is done by first expanding all contracted arcs pq by the subroutine
Reverse(pq), taking these arcs in the reverse order of their contraction. Hence we obtain a dual op-
timal solution µ∗ in the original graph (see Lemma 5.1). Finally, the subroutine Tight-flow(V, µ∗)
obtains a primal optimal solution, as guaranteed by Theorem 2.6(i).

Theorem 4.3. The algorithm Enhanced Continuous Scaling finds an optimal solution for
the uncapacitated formulation (P) in running time O(n3m2) elementary arithmetic operations and
comparisons.

To get a truly strongly polynomial algorithm, we also need to guarantee that the size of the
numbers during the computations remain polynomially bounded. We shall modify the algorithm in
Section 6 by incorporating additional rounding steps to achieve that.

24

Algorithm Enhanced Continuous Scaling
Initialize(V,E, b, γ, f̄) ;
T0 ← ∅ ; T ← ∅ ;
k ← 0 ;
While |V | > 1 do

N ← {t} ∪ {i ∈ V − t : eµi < (di + 1)∆} ;
if N ∩ T 6= ∅ then

pick p ∈ T0, q ∈ N ∩ T connected by a tight path P in Eµf (∆) ;

send ∆ units of relabeled flow from p to q along P ;
if eµp < (dp + 2)∆ then T0 ← T0 \ {p} ;
T ← T0 ;

else
if ∃ij ∈ Eµf (∆), γµij = 1, i ∈ T , j ∈ V \ T then T ← T ∪ {j} ;

else

if
(
∀i ∈ (V \ T)− t : |bµi | <

∆
16kn

)
then Filtration(V \ T, f, µ) ;

if (eµi ≥ (di + 2)∆ for all i ∈ T0) and (eµi ≥ (di + 1)∆ for all i ∈ T)
then Elementary step(T, T0, f, µ,∆) ;

elseif ∃i ∈ T0 : eµi < (di + 2)∆ then
T0 ← T0 \ {i : eµi < (di + 2)∆} ;
T ← T0 ;

while ∃ pq ∈ E: fµpq ≥ 17m∆ do
for all ij ∈ E : γµij < 1 do fij ← 0 ;

Contract(pq) ;
∆← 16∆ ;
k ← k + 1 ;
T0 ← ∅ ; T ← ∅ ;

Expand-to-Original(µ) ;

Figure 4: Description of the strongly polynomial algorithm

We remark that the algorithm can be simplified by terminating once the first abundant arc is
found, and restarting from scratch on the contracted graph. This would give a running time bound
O(n3m2 log n): hence, we are able to save a factor log n by continuing with the contracted image of
the current flow instead of a fresh start.

5 Analysis of the strongly polynomial algorithm

Many properties of the Continuous Scaling algorithm derived in Section 3 remain valid. In
particular, Lemmas 3.1 and 3.3, and Claims 3.2 and 3.8 are applicable with repeating the proofs
verbatim. The argument bounding the number of iterations will be an extension of the one in
Section 3.1.

25

5.1 Properties of dual solutions

Let us first verify that expanding the dual optimal solution of the contracted instance results in a
valid dual optimal solution of the original instance.

Lemma 5.1. Assume that pq ∈ E satisfies γpqµ
∗
p = µ∗q for every optimal solution µ∗ to (D) for

the problem instance (V,E, t, b, γ). Let µ′ be an optimal solution to (D) to the contracted instance
(V ′, E′, t′, b′, γ′) obtained by the subroutine Contract(pq). If p 6= t, then let µi := µ′i for every
i ∈ V − p and let µp := µ′q/γpq. If p = t, then let µi := µ′i for every i ∈ V − q and let µq = γpq. Then
µ is an optimal solution to (D) in the original instance (V,E, t, b, γ).

Proof. We give the proof to the p 6= t case only; the other case follows similarly. First, let us verify
that µ is a feasible solution to (D). It is straightforward that µt = 1 and µi > 0 if i ∈ V − t. Also,
γµij ≤ 1 is straightforward if i, j 6= q, and γµpq = 1. For an arc ip ∈ E, let iq ∈ E′ denote its image.

Then γ′iq
µ′i
µ′q
≤ 1, which can be written as γipγpq

µi
µpγpq

≤ 1, giving γµip ≤ 1. One can verify γµpi ≤ 1 for

every pi ∈ E analogously.
Assume for a contradiction that µ is not optimal to (D): there exists an optimal solution µ∗

with
∑

i∈V b
µ∗

i >
∑

i∈V b
µ
i . By our assumption, γpqµ

∗
p = µ∗q must hold. Consider the restriction of

µ∗ to V ′ = V \ {p}; it is easy to check that it is feasible to (D) in the contracted instance. Using

b′p = bp + γpqbq, and thus b′s
µ∗ = bµ

∗
p + bµ

∗
q , and b′s

µ′ = bµp + bµq , we obtain a contradiction by∑
i∈V

bµ
′

i <
∑
i∈V

bµ
∗

i =
∑
i∈V ′

b′i
µ∗ ≤

∑
i∈V ′

b′i
µ′

=
∑
i∈V

bi
µ′ .

Our next claim justifies that the feasibility properties are maintained during the algorithm.

Claim 5.2. Let ∆′ := 16∆, and let f ′ and µ′ denote the flow and labels after contracting the

abundant arc pq. Then µ′ is a conservative labeling for f ′, with eµ
′

i (f ′) < (di+2)∆′ for all i ∈ V − t.

Proof. Before the contraction, the flow on every non-tight arcs is set to 0; this increases eµi on every
node by at most di∆. Let s = p or s = q denote the contracted node. It is straightforward by the

properties of the contraction that if e′ is the image of the arc e, then γµ
′

e′ = γµe . Since µ is conservative
for f before the contraction, it follows that µ′ is conservative for f ′.

Consider a node i 6= s. Setting the flow values on non-tight arcs to 0 increased eµi by at most

di∆, and eµ
′

i (f ′) = eµi (f), and hence eµ
′

i (f ′) ≤ (5di + 8)∆ < (di + 2)∆′. Let us now consider the

contracted node s. There is nothing to prove about eµ
′
s (f ′) if s = t, hence we may assume s 6= t.

Before the contraction, we had eµp (f) ≤ (5dp + 8)∆, eµq (f) ≤ (5dq + 8)∆, and it is easy to verify that

eµ
′
s (f ′) = eµp (f) + eµq (f) ≤ (5dp + 5dq + 16)∆. Note that ds ≥ max{dp, dq} − 1 ≥ dp+dq

2 − 1, implying

that eµ
′
s (f ′) ≤ (ds + 2)∆′, as required.

5.2 Bounding the number of iterations

Recall the notions of shrinking, expanding and neutral iterations from Section 3.1. We shall prove
the following bound.

Theorem 5.3. The total number of iterations in Enhanced Continuous Scaling is at most
390n3m, among them at most 195n2m shrinking ones.

26

The ground set V changes due to the arc contractions. Let us say that a node s is born in
iteration τ + 1 if s ∈ {p, q} for an abundant arc contracted in iteration τ ; the original nodes are
born in iteration 1. Note that we keep the same notation p or q for the new node. Further, we
say that a node is alive until the first iteration when an incident arc gets contracted, when it dies.
Also note that multiple contractions may happen in the same iteration; in this case, some nodes die
immediately after they are born; such nodes will be ignored in the analysis. A key quantity in the
analysis is

Γi := log2

32mn∆

|bµi |
,

for all nodes i ∈ V − t. Let Γ
(τ)
i denote the value at the beginning of iteration τ . We first show that

Γi ≥ 0 must hold for every i ∈ V − t, as otherwise some abundant arcs would appear.

Claim 5.4. Γi ≥ 0 holds for all i ∈ V − t in every iteration after the first one.

Proof. Assume Γi ≤ 0, that is, |bµi | ≥ 32mn∆ holds for some node i ∈ V − t at a certain iteration
after the first one. We show that there is an abundant incoming or outgoing arc incident to i. This
contradicts the fact that all such arcs were contracted at the end of the previous iteration. Since f
is generalized flow in every iteration, we have eµi ≥ 0. If there are no abundant arcs incident, then
fµji < 17m∆ on every incoming arc ji and fµij < 17m∆ on all outgoing arcs ij. First, consider the
case when bµi > 0. Now

0 ≤ eµi =
∑
j:ji∈E

γµjif
µ
ji −

∑
j:ij∈E

fµij − b
µ
i < 17dim∆− 32nm∆ < 0

a contradiction. On the other hand, if bµi < 0, then

(4di + 8)∆ ≥ eµi =
∑
j:ji∈E

γµjif
µ
ji −

∑
j:ij∈E

fµij − b
µ
i > −17dim∆ + 32nm∆ ≥ (15nm+ 17m)∆,

using di ≤ n− 1. This is a contradiction since m ≥ n ≥ di + 1.

Let us introduce the following set; recall that k is the number of abundant arcs contracted so
far.

D :=

{
i ∈ V − t : |bµi | ≥

∆

16kn

}
. (9)

Let D(τ) denote this set at the beginning of iteration τ . Note that the condition for calling Filtra-
tion in the algorithm is precisely (V \ T) ∩D = ∅.

Lemma 5.5. (i) The Γ
(τ)
i values are monotone decreasing inside every major cycle, and they

increase by 4 when an abundant arc is contracted.

(ii) After the contraction of k abundant arcs,

Γ
(τ)
i ≤ 4k + 5 + 4 log2 n

holds for every i ∈ D(τ).

(iii) D(τ) ⊆ D(τ+1) inside a major cycle. When an abundant arc pq is contracted at the end of
iteration τ , then D(τ) \ {p, q} ⊆ D(τ+1) \ {p, q}.

27

Proof. Inside a major cycle of the algorithm, the ratio |bµi |/∆ can never decrease: in Elementary
step(T, T0, f, µ,∆), it is unchanged for i ∈ T and increases for i ∈ V \ T . At the end of a major
cycle, every ratio |bµi |/∆ decreases by a factor of 16. This proves (i). Part (ii) is straightforward by
|bµi | ≥ ∆/(16kn) and log2(mn2) ≤ 4 log2 n.

For part (iii), it is straightforward that if no arcs are contracted, then no node may leave D.
Further, when an abundant arc is contracted, the threshold in the definition of D is unchanged since
∆/16k = (16∆)/16k+1. Therefore if i ∈ D \ {p, q} before the contraction, then i remains in D after
the contraction.

Let us introduce some further classification of iterations. Let C denote the set of iterations when
contractions are performed. Clearly, |C| ≤ n − 1. Let F denote the set of iterations when the
subroutine Filtration is performed; such iterations will be called filtrating. Notice that τ ∈ F ,
that is, iteration τ is filtrating if and only if (V \T (τ))∩D(τ) = ∅. Let D denote the set of iterations
τ when D is extended: D(τ) (D(τ+1). By the above claim, this may happen at most 2n− 1 times,
as every node may enter D only once during its lifetime. Hence |D| ≤ 2n− 1. Let us define

Γ(τ) :=
∑
i∈D(τ)

Γ
(τ)
i

Claim 5.6. During the entire algorithm, the total increase in the value of Γ(τ) can be bounded by
14n2.

Proof. When a node i enters D after the contraction of k arcs, by Lemma 5.5(ii) we have Γi ≤ 4k+
5+4 log2 n. There are ≤ n−1−k more contractions, accounting for a total increase of ≤ 4(n−1−k)
in all later iterations. Hence the total increase for a node i is bounded by 4n + 1 + 4 log2 n ≤ 7n.
On the other hand, there are altogether ≤ 2n− 1 nodes born during the entire algorithm.

The following claim is straightforward, since for every i ∈ V \ T , bµi is unchanged during Ele-
mentary step(T, T0, f, µ,∆), whereas ∆ decreases by a factor α.

Claim 5.7. If iteration τ /∈ F , then for at least one i ∈ D(τ), the Γi value decreases by log2 α
(τ).

Together with Claim 5.6, it yields the following.

Lemma 5.8. During the entire algorithm, we have∑
τ /∈C∪F

log2 α
(τ) ≤ 14n2,

Proof. The right hand side bounds the total increase in Γ according to Claim 5.6. By the previous

claim, at least one Γ
(τ)
i decreases by at least log2 α

(τ) in iteration τ /∈ F . By Claim 5.4, Γ
(τ+1)
i ≥ 0

and therefore Γ
(τ)
i ≥ log2 α

(τ), as otherwise an abundant arc incident to i should have been contracted
at the end of iteration τ , giving τ ∈ C.

The following lemma is the analogue of Lemma 3.7.

Lemma 5.9. While alive, every node i ∈ V − t may enter the set T0 at most |D|+
∑

τ /∈C∪F log2 α
(τ)

times.

Before proving the lemma, let us show how it can be used to bound the total number of iterations.

28

Proof of Theorem 5.3. The proof follows the same lines as that of Lemma 3.6, analyzing the invariant
Ψ as defined by (7). Consider an iteration τ ∈ C when some abundant arcs are contracted. According
to Claim 5.2, the value of Ψ decreases to 0 in all such iterations.

Every shrinking iteration decreases Ψ by one, and the only steps when Ψ increases is when some
node i ∈ V − t enters T0. Let λi denote the number of times this happens. Lemmas 5.8 and 5.9
imply λi ≤ |D|+ 14n2 ≤ 2n+ 14n2 ≤ 15n2. Consequently, the total increase in Ψ is bounded by∑

i∈V−t
(3di + 7)λi ≤ 15n2

∑
i∈V−t

(3di + 7) ≤ 15n2(6m+ 7n) ≤ 195n2m.

As in the proof of Lemma 3.6, this bounds the number of shrinking iterations, and there can be
≤ 2n iterations between two subsequent shrinking iterations. This completes the proof.

The next claims are needed for the proof of Lemma 5.9.

Claim 5.10. Consider a filtrating iteration τ ∈ F . The maximum flow problem in Filtration(V \
T, f, µ) is feasible, and after the subroutine, every i ∈ V \ T satisfies

eµi ≤ R
µ
i + n max

j∈(V \T)−t
|bµj |.

Proof. Feasibility is verified by the restriction of f (τ) to tight arcs in E[V \ T]. This gives a feasible
solution as in the proof of Lemma 3.9; note that the arcs entering V \T are all non-tight, as otherwise
we would have extended T in this iteration instead. Let f ′ denote the generalized flow on V \ T
returned by Tight Flow(V \T, µ), and f the generalized flow returned by Filtration(V \T, f, µ).
Inside E[V \T], f is nonzero only on tight arcs, and equals fij = f ′ij for all ij ∈ E[V \T]. The value

of f is set to zero on arcs leaving V \ T and the original values f
(τ)
ij are kept if i ∈ T . We obtain

eµi (f) = eµi (f ′) +Rµi for i ∈ V \ T , since the non-tight arcs are precisely those coming from T . The
claim then follows by Theorem 2.6(ii).

Lemma 5.11. Let τ ∈ F \ C be a filtrating iteration when no contraction is performed.

(i) If β
(τ+1)
i ≥ (di + 1) for some i ∈ V \ T (τ), then τ ∈ D, that is, D(τ+1)) D(τ).

(ii) Either τ ∈ D, or one of the iterations τ , (τ + 1) and (τ + 2) must be shrinking.

Proof. (i): Let ∆ = ∆(τ) and T = T (τ). First, let us prove that Elementary step(T, T0, f, µ,∆)
must have been performed in iteration τ . This follows by Claim 5.10. Indeed, if Elementary
step(T, T0, f, µ,∆) is skipped after calling Filtration(V \T, f, µ), then for every i ∈ V \T we have

eµi ≤ R
µ
i + n max

j∈(V \T)−t
|bµj | < (di + 1)∆

at the beginning of iteration τ+1. This follows by Claim 2.5 (Rµi < di∆), and since maxj∈(V \T)−t |b
µ
j | <

∆/n by (V \ T) ∩D(τ) = ∅. This is a contradiction to β
(τ+1)
i ≥ (di + 1). This shows Elementary

step(T, T0, f, µ,∆) must have been performed in iteration τ , setting ∆′ = ∆(τ+1) = ∆(τ)/α(τ) (note
that we assumed τ /∈ C as well).

Consider a node i ∈ V \ T in iteration τ for which βi increased above (di + 1). After Filtra-
tion(V \ T, f, µ), Fµ[V \ T] = ∅ and fpq = 0 for every pq ∈ E[V \ T, T]. Therefore Elementary
step(T, T0, f, µ,∆) does not change the flow f at all; also by definition, the labels µi are unchanged

29

for i ∈ V \ T . Hence eµi and bµi do not change for i ∈ V \ T . Let ∆ and ∆′ denote the scaling factor
before and after Elementary step(T, T0, f, µ,∆). We have

di + 1 ≤
eµi
∆′
≤
Rµi + nmaxj∈(V \T)−t |b

µ
j |

∆′
≤ di +

nmaxj∈(V \T)−t |b
µ
j |

∆′
.

In the second inequality we use that Rµi is unchanged in Elementary step(T, T0, f, µ,∆) and it
must be at most di∆

′ by Claim 2.5. This implies ∆′/n ≤ maxj∈(V \T)−t |b
µ
j |. Since (V \T)∩D(τ) = ∅

was assumed, it follows that D must be extended in this iteration, that is, τ ∈ D.
For part (ii), assume τ /∈ D. Some nodes i ∈ T0 might be removed in iteration τ if eµi decreases

below (di+ 2); in this case, iteration τ itself is shrinking. Otherwise, part (i) implies that V \T (τ) ⊆
N (τ+1), and that α = α2 in iteration τ . Therefore at the beginning of iteration τ + 1, there exists a
tight arc ij ∈ E with i ∈ T (t), j ∈ V \ T (t). Now either T (τ) ∩N (τ) 6= ∅ already holds, in which case
a path augmentation is performed; or iteration τ + 1 extends T using the tight arc ij. In this case,
j ∈ T (τ+2) ∩N (τ+2), and iteration τ + 2 is shrinking.

We are ready to prove Lemma 5.9. The proof is based on that of Lemma 3.7, also making use of
the above claims.

Proof of Lemma 5.9. Let τ1 < τ2 < . . . < τλ denote the iterations when i enters T0. This number is

not necessarily finite; hence λ =∞ is allowed. We have β
(τ`+1)
i = 4(di + 2) for 1 ≤ ` ≤ λ.

For 1 ≤ ` ≤ λ, let us define τ ′` to be the largest value τ ′` ≤ τ` such that β
(τ ′`)
i < (di + 2). The

existence of these values follows as in the proof of Lemma 3.7.
In iteration τ ′`, we have i /∈ T0, since once the excess ei drops below (di + 2)∆µi, the node

i is immediately removed from T0. Also, i will be added to T0 in iteration τ`. We claim that

C ∩ [τ ′`, τ`] = ∅. Indeed, if θ ∈ C, then β
(θ+1)
i < (di + 2) by Claim 5.2; this would contradict the

maximal choice of τ ′`.
Let us analyze the case when D ∩ [τ ′`, τ`] = ∅ holds. According to Lemma 5.11(i), this implies

F ∩ [τ ′`, τ`] = ∅. Indeed, if θ ∈ F ∩ [τ ′`, τ`], then β
(θ+1)
i < (di + 1) would follow, a contradiction again

to the maximal choice of τ ′`.
With the same argument as in the proof of Lemma 3.7, making use of Claim 3.8, we obtain

4 ≤

 ∏
θ∈[τ ′`,τ`]

α(θ)

2

.

Note that we have [τ ′`, τ`]∩ (C ∪F ∪D) = ∅. Let us add the logarithms of these inequalities for those
values ` = 1, . . . , λ where [τ ′`, τ`] ∩ D = ∅. Hence we obtain

λ− |D| ≤
∑

θ/∈C∪F

log2 α
(θ)

completing the proof.

5.3 Running time analysis

Proof of Theorem 4.3. As shown in Theorem 5.3, the total number of shrinking steps is O(n2m). If
Filtration is not called between two shrinking iterations, then this part of the algorithm can be
implemented in O(m+n log n) time using Fibonacci heaps, using the variant described in Section 6.
If Filtration is called, then we must execute a maximum flow computation in O(nm) time [24].

30

According to Lemma 5.11(ii), in this case we must have a shrinking one within the next three
iterations. Consequently, the running time between two shrinking iterations is dominated by O(nm).
This gives a total estimation of O(n3m2); all other steps of the algorithm (contractions, initial and
final flow computations, etc.) are dominated by this term.

6 Bounding the encoding size

In this section, we complete the proof of Theorem 2.1: we modify the algorithm to guarantee
that the encoding size of the numbers during the computations remain polynomially bounded in
the input size. Further, we present a more efficient implementation, by jointly performing the
elementary steps between two shrinking iterations; this enables a better running time bound, as
already indicated in the proofs of Theorems 2.7 and 4.3. We describe the modifications for the
Enhanced Continuous Scaling algorithm, but they are naturally applicable for the weakly
polynomial Continuous Scaling algorithm as well.

In this section, let us assume that
B̄ ≥ 500n5. (10)

Indeed, if B̄ is polynomially bounded in n, then any of the previous weakly polynomial algorithms
has strongly polynomial running time. We define the following quantities needed for the roundings;
as in the previous section, n and m will always refer to the size of the original input instance (and
not the actual contracted one).

q := 40mB̄4, q̄ := 40mB̄2 = q/B̄2

For a real number a ∈ R≥0, let bacq denote the largest number p/q with p ∈ Z, p/q ≤ a, and
similarly, let daeq denote the smallest number p/q with p ∈ Z, p/q ≥ a. The same notation will also
be used for q̄.

The main subroutine Aggregate steps(T0, f, µ,∆) is shown in Figure 5. The input is a set
T0 with eµi ≥ (di + 2)∆ for every i ∈ T0. The output is either a node s ∈ V or s = NULL. If
s 6= NULL, then we can find a tight path in Eµf (∆) between a node p ∈ T0 and s, where either s = t

or eµs < (ds + 1)∆. The case s = NULL means that some node i leaves T0, that is, eµi drops below
(di + 2)∆. In the first case, we can perform a path augmentation from s to t. The entire algorithm
is exhibited in Figure 6. Note that termination can happen either because the graph is shrunk to a
single node, or because ∆ decreases below a certain threshold as in the weakly polynomial algorithm
Continuous Scaling.

We now describe the main features of the subroutine Aggregate steps and compare it to the
algorithm Enhanced Continuous Scaling. Apart from the rounding and contraction steps, it
performs essentially the same as a sequence of Elementary steps starting with T = T0, until a
next shrinking iteration. The difference is that in Enhanced Continuous Scaling, whenever the
set T is extended by a node, Elementary step needs to update the labels of every node in T and
change flow values on certain arcs. During a sequence of iterations between two shrinking steps, this
can lead to O(n) value updates in certain nodes and arcs. In contrast, Aggregate steps changes
the labels only once and the flow values at most twice. The key quantity in Aggregate steps is
α∗. This corresponds to the product of the α multipliers of the sequence of Elementary steps
thus far in Enhanced Continuous Scaling.

The subroutine Aggregate steps starts with T = T0 and extends T by adding nodes one-by-
one, until t ∈ T , or eµs < (ds + 1)∆ for some s ∈ T \ T0, or eµi < (di + 2)∆ for some i ∈ T0. Node
labels are changed at the end of the subroutine only. For a node i ∈ T , we store the value αi at the

31

Subroutine Aggregate steps(T0, f, µ,∆)
for all i ∈ (V \ T0)− t do

update r1(i), r2(i), r3(i), r4(i) and δi as in (4) and (5) ;

αi ← min
{
bδicq,min{1/γµji : ji ∈ Eµf (∆), j ∈ T0}

}
;

αt ← min{1/γµjt : jt ∈ Eµf (∆), j ∈ T0} ;

for all i ∈ T0 do
update ρi, νi as in (11) ; αi ← 1 ;

T ← T0 ; α∗ ← 1 ; λ← min{νj : j ∈ T0} ;
while (α∗ ≤ λ) and (t /∈ T) do

α∗ ← min{αi : i ∈ V \ T} ;
if α∗ =∞ then

set fti = 0 for all ti ∈ E: γµti < 1 ;
return optimal flow f and optimal relabeling µ ; TERMINATE.

i← argmin{αi : i ∈ V \ T} ;
T ← T ∪ {i} ;
if αi = bδicq then T0 ← T0 ∪ {i} ;
for all ij ∈ E : j ∈ T do

fij ← fij/α
∗ ;

update ρj , νj as in (11) ;
λ← min{λ, νj} ;

for all ij ∈ E : j ∈ V \ T do
if γµij < 1 then fij ← fij/α

∗ ;

if j 6= t then
update r1(j), r2(j), δj as in (4) and (5) ;

αj ← min
{
αj , bδjcq, αi/γµij

}
;

if j = t then αt ← min {αt, αi/γµit} ;
for all ji ∈ E : j ∈ V \ T do

if γµji = 1 then

fji ← fjiα
∗ ;

if fji > ∆µj then αj ← α∗ ;
if j 6= t then

update r3(j), r4(j), δj as in (4) and (5) ;
αj ← min {αj , bδjcq} ;

update ρi, νi as in (11) ;
λ← min{λ, νi} ;

if
(
∀j ∈ (V \ T)− t : |bµj | <

∆
16kn(1+1/B̄)g

)
then

Filtration(V \ T, f, µ) ;
for all j ∈ T do

ej ← ej − ρj ; ρj ← 0 ;
update νj as in (11) ;

for all j ∈ V \ T do
update r1(i), r2(i), r3(i), r4(i), δi as in (4) and (5) ;
αi ← min {bδicq, αi} ;

λ← min{νj : j ∈ T} ;
∆← d∆/α∗eq ;
for all ij ∈ Fµ[V \ T] ∪ E[V \ T, T] do fij ← fij/α

∗ ;
for all i ∈ T do µi ← µiα

∗/αi ;
for all j ∈ T0 : νj < α∗ do T0 ← T0 \ {j} ;
Round Label(f, µ) ;
if t ∈ T then RETURN s = t ; elseif ∃s ∈ T \ T0 : νs < α∗ then RETURN such an s ;
otherwise RETURN s = NULL.

Figure 5: The Aggregate steps subroutine

32

Algorithm Modified Enhanced Continuous Scaling
Initialize;
T0 ← ∅ ; k ← 0 ; g ← 0 ;
While |V | > 1 and ∆ ≥ 1/(17mB̄3) do

s← Aggregate Steps(T0, f, µ,∆) ;
g ← g + 1 ;
if s 6= NULL then

pick a tight p− s path P in Eµf (∆) with p ∈ T0 ;

send ∆ units of relabeled flow from p to s along P ;
if eµp < (dp + 2)∆ then T0 ← T0 \ {p} ;

while ∃ pq ∈ E: fµpq ≥ 17m∆ do
for all ij ∈ E : γµij < 1 do fij ← 0 ;

Contract(pq) ;
∆← 16∆ ;
k ← k + 1 ;
T0 ← ∅ ;

if ∆ < 1/(17mB̄3) then Tight-Flow(V, µ)
else Expand-to-Original(µ) ;

Figure 6: Description of the modified strongly polynomial algorithm

time when i enters T , and multiply the label µi at the end by α∗/αi. The flow on an arc ij may
change when its endpoints enter T , or at the end of the subroutine, altogether at most twice.

For nodes i ∈ V \ T , we use αi to denote the candidate value of α∗ when i must enter T , either
due to a new tight arc ji ∈ Eµf (∆), j ∈ T , or because the excess ei reaches the threshold 4(di+2)∆µi
and hence i must be included in T0. We define δi as in (5), representing the value of α∗ when i would
enter T because of ei = 4(di + 2)∆µi, provided that no other node enters T before. We let

αi := min
{
bδicq,min{αj/γµji : ij ∈ Eµf (∆), j ∈ T}

}
.

Note the rounding bδicq in the first case. This means that ei might be slightly less than 4(di+2)∆µi
when i enters T . The second event corresponds to the case when i enters T due to a new tight arc
from a node j ∈ T . Note that either ji ∈ E, or ji is a reverse arc with ij ∈ E, γµij = 1, fµij > ∆. In
the latter case the corresponding term equals αj .

For i ∈ T \ T0, wish to estimate when ei < (di + 1)∆µi would be attained, and for i ∈ T0, we
wish to estimate when ei < (di + 2)∆µi would be attained. To provide a unified notation for these
two cases, let us define ξi = 1 if i ∈ T \ T0 and ξi = 2 if i ∈ T0. We let

ρi :=
∑
j∈V \T

γjifji,

νi :=

{
∞ if ei − ρi ≥ (di + ξi)∆µi;

ρi
(di+ξi)∆µi+ρi−ei otherwise.

(11)

Here ρi denotes the total flow entering i on arcs from V \ T , these are the ones where the flow value
will be reduced. We define νi as the smallest value of α∗ when ei = (di + ξi)∆µi is reached. λ will
denote the minimum value of {νi : i ∈ T}. The iterations terminate once λ < α∗.

33

In every iteration, we set the new value α∗ := min{αi : i ∈ V \ T}, pick a node i minimizing
this value, and include it into T . The modifications of the incident fij and fji values are in order
to guarantee the same change as in the sequence of Elementary step operations in Enhanced
Continous Scaling. We update the corresponding r1(j), . . . , r4(j), δj and ej , ρj , νj values on the
neighbours of i accordingly. These updates can be performed in O(1) time. Indeed, for each of the
sums r1(j), . . . , r4(j), ej , ρj , only one term changes. Provided these, δj and νj are obtained by simple
formulae.

The Filtration subroutine is used similarly as in Enhanced Continuous Scaling, but the
bound on |bµj | is different, containing a term (1+1/B̄)g necessary due to the roundings. The counter
g denotes the total number of times the subroutine Aggregate steps was performed.

Compared to Enhanced Continuous Scaling, there is a further minor difference regarding
contractions. In Enhanced Continuous Scaling, a contraction can be performed after every
Elementary step, whereas in the modified algorithm, only after the entire sequence represented
by Aggregate steps(T0, f, µ,∆).

If Filtration is not called, then the subroutine Aggregate Steps can be implemented in
O(m + n log n) time using the Fibonacci heap data structure. To see this, we maintain two heap
structures, one for the αi’s for i ∈ V \ T , an one for the νi’s, i ∈ T . Besides, we maintain the
r1(i), . . . , r4(i) values for i ∈ V \ T , and the ei, ρi values for i ∈ T . Every arc is examined O(1)
times, and the corresponding key modifications can be implemented in O(1) time. Consequently,
the bound in [7] is applicable.

It is easy to verify that all µi and fij values are modified exactly as in a sequence of Elementary
step operations. For example, consider an arc ji with originally i, j ∈ V \ T , such that i enters T
before j. The scaling factor when i enters T is ∆/αi. If ij ∈ Eµf (∆/αi), that is, fµji > ∆/αi, then
j enters T in the next neutral phase. Accordingly, Aggregate Steps sets αj = α∗ in the same
case. If ji was a non-tight arc already at the beginning, then fji is decreased in every elementary
step until j enters T ; in our subroutine, fji is divided by αj . However, if ji was tight initially, and
fµji < ∆αi, then it becomes non-tight after i enters T . Notice that in this case our subroutine divides
fji by αj/αi. The other cases can be verified similarly.

At termination, we perform the subroutine Round Label, shown in Figure 7. This is a Dijkstra-
type algorithm that takes labeling µ, and changes it to a labeling µ′ ≥ µ such that the set of tight
arcs in Ef may only increase. Consequently, if (f, µ) is a ∆-feasible pair for some ∆, then so is
(f, µ′).

We repeatedly extend the set S starting from S = {t} until S = V is achieved. In every iteration
we multiply all µi’s for i ∈ V \ S by ε > 1, so that either a new tight arc between V \ S and S is
created, or some value µi for i ∈ V \ S becomes an integer multiple of 1/q̄.

6.1 Analysis

It is easy to adapt Theorem 2.6 and Lemma 3.9 to show that if in any contracted graph during the
algorithm Modified Enhanced Continuous Scaling, we have ∆ ≤ 1/(17mB̄3) for the original
values of B, m and n, then the current labeling µ is optimal and thus we may terminate. Also
note that 2B̄/q ≤ 1/(17mB̄3), and therefore we may assume that 2B̄/q ≤ ∆ in all iterations of the
algorithm except the last one.

Claim 6.1. The subroutine Round Label returns a labeling µ′ such that every µ′i is an integer
multiple of B̄/q. If (f, µ) is ∆-conservative for some ∆ ≥ 0, then so is (f, µ′). Finally, µi ≤ µ′i ≤(
1 + 1/(40mB̄)

)
µi.

34

Subroutine Round Label(f, µ)
S ← {t} ;
while S 6= V do

ε1 ← min
{
dµieq̄
µi

: i ∈ V \ S
}

;

ε2 ← min

{
1
γµij

: ij ∈ Ef , i ∈ V \ S, j ∈ S
}

;

ε← min{ε1, ε2} ;
for i ∈ V \ S do µ← µ/ε ;
S ← S ∪ {i ∈ V \ S : dµieq̄ = µi} ∪ {i ∈ V \ S : ∃j ∈ S, ij ∈ Ef , γµij = 1} ;

Figure 7: The Round Label subroutine

Proof. A node i enters S either if µi is an integer multiple of 1/q̄ = B̄2/q, or if it is connected by
a tight path P in Ef to a node j such that µj is an integer multiple of 1/q̄. In the latter case,
µi = µj/γ(P), and since B̄ is an integer multiple of γ(P) by definition of B̄ in Section 2.1, it follows
that µi is an integer multiple of B̄/q. The claim on conservativeness follows since every tight arc in
Ef remains tight. Finally, it is clear that µ′i ≤ dµieq̄ < µi + 1/q̄ = µi(1 + 1/(q̄µi)). On the other
hand, µi ≥ 1/B̄ because of the initial definition (3), and hence 1 + 1/(q̄µi) ≤

(
1 + 1/(40mB̄)

)
.

In the original algorithm, ∆µi is nonincreasing during every Elementary step iteration. Due
to the roundings, this is not true anymore; however, we have the following bound (the possible
increase corresponds to the case αi ≤ 1 + 1/B̄).

Claim 6.2. When performing Aggregate steps, ∆µi decreases by at least a factor of αi/(1+1/B̄)
for every i ∈ T , and by α∗/(1 + 1/B̄) for every i ∈ V \ T , except for possibly the ultimate iteration.

Proof. Without the rounding, we would set the new value of the scaling factor to ∆/α∗ and the
new value of µi as µiα

∗/αi if i ∈ T and leave it unchanged if i ∈ V \ T . Let us focus on the case
i ∈ T ; the same argument works for i ∈ V \ T as well. These will be rounded to ∆′ = d∆/α∗eq and
µ′i ≤ (1 + 1/(40mB̄))µiα

∗/αi by the previous claim. As remarked above, we have 2B̄/q ≤ ∆′ in all
save the last step of the algorithm. Therefore ∆′ = d∆/α∗eq ≤ (1 + 1/(2B̄))∆/α∗. Consequently,

∆′µ′i ≤
(
1 + 1/(2B̄)

) (
1 + 1/(40mB̄)

)
∆µi/αi ≤

(
1 + 1/B̄

)
∆µi/αi,

proving the claim.

Provided this, one can derive the bound O(n2m) on the total number of calls to Aggregate
steps as in Theorem 5.3. This subroutine corresponds to a sequence of Elementary step, however,
the argument can be easily adapted. We now outline the changes in the analysis. Instead of (9), we
define the set D as

D :=

{
i ∈ V − t : |bµi | ≥

∆

16kn(1 + 1/B̄)g

}
.

According to the above claim, if no arc is contracted, then no node may leave the set D, as in
Lemma 5.5. After the contraction of k arcs, the maximum value of Γi can be at most

Γ
(τ)
i ≤ 4k + 5 + 4 log2 n+ g log

(
1 + 1/B̄

)
≤ 4k + 5 + 4 log2 n+ g/B̄.

By the assumption (10), the last term is at most 1/n even after 500n2m iterations. Hence the proof
of Claim 5.6 can be easily modified to prove the following.

35

Claim 6.3. After at most 500n2m executions of Aggregate steps, the total increase in the value
of Γ(τ) can be bounded by 14n2.

Another change in the argument is due to the fact that when a node i enters T0 in Aggregate
steps, it might have ei < 4(di + 2)µi due to the rounding of δi. This affects the way Claim 3.8
is applied in the proof of Lemmas 3.7 and 5.9. In (8), 4 has to be replaced by a slightly smaller
number; consequently, we have to replace log2 by log2−ε in the argument for some small ε. However,
this increases the running time estimation only by a small constant factor.

One can show that the O(n3m2) bound on the number of elementary arithmetic operations and
comparisions is still applicable for the modified algorithm. The proof of Theorem 2.1 is complete by
showing that the size of the variables remain polynomially bounded. Due to the rounding steps, ∆
and the µi’s are always of polynomially bounded size. It is left to show that the same holds for the
fij values.

Lemma 6.4. Every fij value is a rational number of polynomially bounded size in B̄.

Proof. The fij values can be changed in two ways. One is via maximum flow computations in the
initial Tight-flow subroutine and during the later Filtration iterations. We can always assume
that the flow computations return a basic optimal solution; since the flow problem is defined by
polynomially bounded capacities and demands, such steps reset a polynomially bounded rational
value for fij .

Every Aggregate Steps iteration either leaves fij unchanged, or modifies it to fij/αi, or to
fijαj/αi. We claim that αi and αj are both integer multiples of 1/q. Indeed, either αi = bδicq and
thus this property is straightforward; or αi = µp/γ(P) for some p− i path P with p ∈ T0; note that
µi is an integer multiple of B̄/q by Claim 6.1, and B̄ is an integer multiple of γ(P). Further, it is
easy to verify that αi, αj ≤ B̄2. Consequently, fij is multiplied in Aggregate steps(T0, f, µ,∆)
by a number Q that is the quotient of two integers ≤ qB̄2.

During a path augmentation, fij is modified by adding or subtracting ∆µi, that is an integer
multiple of B̄/q2. Since Aggregate Steps is executed O(n2m) times, these arguments show that
all fij ’s remain polynomially bounded.

7 Problem transformations

7.1 Transformation to an uncapacitated instance

Consider an instance (V ′, E′, t′, u′, γ′) of the standard formulation (Pu) with |V ′| = n′, |E′| = m′,
and encoding parameter B. We now show how it can be transformed to an equivalent instance
(V,E, t, b, γ) of the uncapacitated formulation (P) with |V | ≤ n′ + m′, |E| ≤ 2m′, and B̄ ≤ 2B4m′

satisfying assumptions (?), (??), (???), and all assumptions on the encoding size in Section 2.1. The
transformation proceeds in three steps. First, we remove all arc capacities by introducing new nodes
for arcs with finite capacities. In the second step, the boundedness condition (? ? ?) is checked; if
the problem turns out to be unbounded, we terminate by returning the optimum value ∞. Finally,
new auxiliary arcs are added in order to satisfy (?).

Removing arc capacities

Let us divide the arc set as E′ = E′u ∪ E′∞, where e ∈ E′u if the capacity u′e is finite, and e ∈ E′∞ if
u′e = ∞. Let the node set V consist of the original node set V ′ and a new node corresponding to
every arc e ∈ E′u; let t := t′. The original nodes are called primary nodes, and those corresponding to

36

arcs secondary nodes. Let k = aij be the node corresponding to arc ij ∈ E′u. The transformed graph
contains two corresponding arcs, ik and jk. We leave all arcs in ij ∈ E′∞ unchanged between the
primary nodes i and j. Let us define B̄ to be twice the product of the numerators and denominators
of all rational numbers γ′ij for every ij ∈ E′ and u′ij for every ij ∈ E′u; clearly, B̄ ≤ 2B4m′ .

For a primary node i ∈ V , let us set the node demand bi = −
∑

j:ji∈E′u γ
′
jiu
′
ji. For the secondary

node k = aij , let bk := γ′iju
′
ij . Furthermore, let us define the gain factors by γik := γ′ij , γjk := 1. For

ij ∈ E′∞, we let γij := γ′ij .

The transformed instance satisfies (??), since the following f̄ is a feasible solution. For every
secondary node k = aij , let us set f̄jk := γ′iju

′
ij , and let us set f̄pq = 0 for all other arcs pq.

Boundedness

Let us now address the boundedness of the problem. The following lemma gives a simple character-
ization of boundedness of the objective.

Lemma 7.1. Consider a problem instance (V,E, t, b, γ) in the uncapacitated formulation (P) that
is feasible. The objective in (P) is bounded if and only if there is no cycle C ⊆ E with γ(C) > 1 and
a path P ⊆ E between a node incident to C and t.

Proof. If such a cycle exists, then we can increase the flow value in t arbitrarily by generating flow
on C and sending it to t via P . For the converse direction, consider the dual program (D); recall
that the labels µi are simply the inverses of the dual variables. Since (P) is feasible according to
(??), the objective is bounded if and only if (D) is feasible. Assume C ⊆ E is a cycle such that a
path P ⊆ E connects a node incident to C to t. Using the condition γpqµp/µq ≤ 1 on every arc
pq ∈ P , it follows that in every feasible labeling, µi is finite for every node i incident to C. Therefore
γ(C) = γµ(C) ≤ 1, completing the proof.

Let V ′ denote the set of nodes i such that there exists an i − t path in E. This set V ′ can be
found by a simple search algorithm. Boundedness can be decided by checking for a flow generating
cycle in the restriction of G to V ′. This is equivalent to finding a negative cycle for the cost function
cij = − log γij and can be solved by any negative cycle detection algorithm, see e.g. [2, Chapter
5.5]. Computations with logarithms can be avoided by devising a multiplicative analogue of these
algorithms working directly with the γij ’s.

After removing the arc capacities, we run this algorithm to decide boundedness. If the problem
is unbounded, we terminate with optimum value∞. Otherwise, we can assume the validity of (???).
(Note that since all secondary nodes have only two incoming arcs incident, all arcs used in C and
P are necessarily from E∞. Therefore, the same subroutine could also be performed before the
transformation.)

Auxiliary arcs

To satisfy (?), for every node i ∈ V − t for which it /∈ E, let us further add an arc it to E with
γit := 1/B̄. Let us call these auxiliary arcs.

The following lemma justifies our transformation.

Lemma 7.2. The transformed instance satisfies assumptions (?), (??) and (? ? ?), and B̄ satisfies
the assumptions on the encoding sizes in Section 2.1. An optimal solution f to the modified problem
can be transformed to an optimal solution f ′ to the original problem in O(m′) time.

37

Proof. The first part is straightforward. For the second statement, let f be an optimal solution to
the modified problem with an optimal labeling µ as in Theorem 2.3(i). For a secondary node k = aij ,
let us set f ′ij := fik. Let S0 ⊆ V denote the set of nodes i ∈ V for which γµit = 1, that is µi = B̄. Let
S ⊆ V denote the set of nodes that can be reached from S0 on a residual path P ⊆ Ef .

Let S′ ⊆ V ′ denote the set of primary nodes in S. Let us set µ′i := µi if i ∈ V ′ \ S′ and µ′i :=∞
if i ∈ S′. In what follows, we shall verify the optimality conditions in Theorem 2.3(ii) for f ′ and µ′.

We first claim that f ′ij ≤ u′ij for all arcs ij ∈ E′u. This follows since for the secondary node
k = aij we have bk = γ′iju

′
ij , and ek(f) = 0 due to the optimality of f . Next, we claim that t /∈ S

and therefore µ′t = 1. Indeed, assume for a contradiction there exists a path P ⊆ Ef from a node
i ∈ S0 to t. Then µi ≤ 1/γ(P) < B̄ by the definition of B̄, a contradiction to µi = B̄.

The condition on arcs ij ∈ E′[S′] is straightforward since µ′i = µ′j =∞. Consider an arc ij ∈ E′
with i ∈ S′, j ∈ V ′ \ S′. If ij ∈ E′∞, then ij ∈ Ef , contradicting the definition of S. Hence ij ∈ E′u;
let k = aij be the corresponding secondary node. By definition, ik ∈ E ⊆ Ef . By the definition of
S′, we must have kj /∈ Ef , that is, fjk = 0 and therefore f ′ij = u′ij due to the constraint ek(f) = bk.
Then γijµi = ∞ > µj , as required. It follows similarly that fij = 0 for all arcs ij ∈ E′ with
i ∈ V ′ \ S′, j ∈ S′, and they satisfy γijµi <∞ = µj .

Let us focus on arcs ij ∈ E′[V ′ \ S′]; assume ij ∈ E′u and 0 < f ′ij < u′ij . This means that for
the corresponding secondary node k = aij , we had fik, fjk > 0, and thus γijµi = µk, and µk = µj ,
implying γijµ

′
i = µ′j . Note that k /∈ S0 and ek(f) = 0 implies that fij ≤ u′ij , therefore f ′ij = fij on

all such arcs. The other cases, including the case of arcs in E′∞, follow similarly.
It is left to prove that ei(f

′) = 0 whenever i ∈ V ′ \ S′. By definition, i /∈ S0 and hence fit = 0.
For every incoming arc ji with secondary node k = aji, we have fjk = γ′ji(u

′
ji − f ′ji). Together with

ei(f) = 0 and the definition of bi, this implies ei(f
′) = 0.

7.2 Linear programs with two nonzeros per column

In this Section, we show how our algorithm can be used to solve arbitrary linear feasibility problems
of the form (LP2).

The main part of this argument was given by Hochbaum [17], showing how an arbitrary instance
of (LP2) can be transformed to another one where every column of the matrix A contains exactly
one positive entry and a −1 entry. With the rows corresponding to nodes and the columns to arcs,
let us use γij > 0 to denote the positive entry in row j and column ij. (The construction creates
two copies of the vertex set, and columns with two positive or two negative entries are represented
by two arcs crossing between the copies, whereas columns with two different signs are represented
by two arcs, one in each copy.) The transformed version may contain upper capacities on the arcs.
These can be removed using the same construction as in Section 7.1, at the cost of increasing the
number of nodes to O(m). After removing the arc capacities, we can write the system in the form∑

j:ji∈E
γjifji −

∑
j:ij∈E

fij = bi ∀i ∈ V (LP2M)

f ≥ 0.

Given an instance of (LP2M), let the value B̄ be chosen as an integer multiple of the products of
all numerators and denominators of the γij values, and furthermore, assume |bi| ≤ B̄ and bi is an
integer multiple of 1/B̄ for all i ∈ V .

(LP2M) is an uncapacitated generalized flow feasibility problem, where all node demands must
be exactly met (M stands for monotone, following Hochbaum’s terminology.) Compared to the
formulation (P), the differences are as follows: (i) (LP2M) is a feasibility problem and does not
have a distinguished sink node, in contrast to the optimization problem (P); (ii) the node demands

38

must be exactly met in (LP2M), whereas in (P), nodes are allowed to have excess. For this reason,
we introduce two relaxations of (LP2M) with inequalities.∑

j:ji∈E
γjifji −

∑
j:ij∈E

fij ≥ bi ∀i ∈ V (LP2M≥)

f ≥ 0

∑
j:ji∈E

γjifji −
∑
j:ij∈E

fij ≤ bi ∀i ∈ V (LP2M≤)

f ≥ 0

Our main insight (Lemma 7.4 below) is that if both these relaxations are feasible, then (LP2M) is
also feasible, and a solution can be found efficiently provided the solutions to the relaxed instances.

The second relaxation (LP2M≤) can be reduced to (LP2M≥) by reversing all arcs in E, setting
γji = 1/γij on the reverse arc ji of ij ∈ E, and changing the node demands to −bi. We show that
(LP2M≥) – and consequently, (LP2M≤) – can be solved using our algorithm for (P).

Solving (LP2M≥)

As a preprocessing step, we identify the set Z of nodes that can be reached via a path in E from
a flow generating cycle in E. That is, i ∈ Z if there exists a cycle C ⊆ E, γ(C) > 1, and a path
P ⊆ E connecting a node of C to i. This set Z can be found efficiently using algorithms for negative
cycle detection, similarly as in Section 7.1. Using the flow generating cycles, arbitrary demands bi
for i ∈ Z can be met. This solves (LP2M≥) if Z = V ; in the sequel let us assume V \ Z 6= ∅. By
the definition of Z, there is no arc in E between Z and V \Z. If (LP2M≥) is feasible, then there is
a feasible solution with no arc carrying flow from V \ Z to Z.

Thus we can reduce the problem to solving (LP2M≥) on V \ Z. Let us add an artifical sink
node t to V . For every i ∈ V \ Z with bi > 0, add a new arc ti with gain factor γti = 1. For every
i ∈ V \ Z, add an it arc with γit = 1/B̄. This gives an instance of (P) with sink t. The condition
(?) is guaranteed by the it arcs; for (??), we have a simple feasible solution: send bi units of flow on
γti for every i with bi > 0, and set the flow to 0 on all other arcs. The boundedness condition (? ? ?)
is guaranteed by Lemma 7.1; note that by the definition of Z, there are no flow generating cycles in
E[V \ Z].

Lemma 7.3. Let f be an optimal solution to the (P) instance as constructed above. Then (LP2M≥)
is feasible if and only if fti = 0 for all i ∈ V \ Z.

Proof. Consider an optimal solution f to the instance of (P) with an optimal labeling µ. If fti = 0
for i ∈ V \Z, then f restricted to V \Z is a feasible solution (LP2M≥). Conversely, assume ftj > 0
for a certain node j ∈ V \ Z; we show that (LP2M≥) is infeasible.

As in the proof of Lemma 7.2, we let S0 denote the set of nodes i ∈ V \ Z with µi = B̄, and let
S be the set of nodes that can be reached from S0 on a residual path in Ef . We claim that j /∈ S.
To see this, first observe that µj = 1 because of ftj > 0. If there were a path P ⊆ Ef from a node
i ∈ S to j, then 1 ≥ γµ(P) = γ(P)µi/µj = γ(P)B̄ gives a contradiction to the choice of B̄.

Therefore X = V \ (Z ∪ S) contains j, and there is no arc entering this set. Further, ei(f) = 0
and fit = 0 for every i ∈ X. Then yi := 1/µi for i ∈ X and yi := 0 for i /∈ X gives a Farkas
certificate of infeasibility for (LP2M≥).3 Indeed, y ≥ 0, yi − yjγij ≥ 0 holds for every arc ij ∈ E,

3The Farkas certificate is described after the proof of Lemma 7.4.

39

and
∑

i∈V biyi > 0 because∑
i∈V

biyi =
∑
i∈X

bµi =
∑
i∈X

∑
j∈V ∪{t}:ji∈E

γµjif
µ
ji −

∑
j∈V :ji∈E

fµji =
∑
i∈V

fµti > 0,

completing the proof. Here we used that γµji = 1 whenever fji > 0.

Solving (LP2M)

We solve (LP2M≥) as described above, and (LP2M≤) the same way, after reversing the arcs. If
either of the two problems is infeasible, then (LP2M) is also infeasible. Assume now that f is a
feasible solution to (LP2M≥), and g is a feasible solution to (LP2M≤). We show that in this case
the equality version (LP2M) is also feasible. To prove this, we use a flow decomposition of the
difference of the two solutions f and g to transform g to a solution of (LP2M≤).

Lemma 7.4. Given feasible solutions to (LP2M≥) and (LP2M≤), a feasible solution to (LP2M)
can be found in strongly polynomial time.

Proof. Let f be a feasible solution to (LP2M≥), and g a feasible solution to (LP2M≤). Then for
every i ∈ V , ei(f) ≥ 0 ≥ ei(g) holds. Let us define the flow h as

hij :=

{
fij − gij if ij ∈ E, fij > gij

γji(fji − gji) if ji ∈ E, fji > gji.

Let H ⊆
←→
E denote the support of h; clearly, hij > 0 for every ij ∈ H. With the convention

hij = −γjihji, we have f = g+h. Since ei(f) ≥ 0 ≥ ei(g), the inequality
∑

j:ji∈H γjihji ≥
∑

j:ij∈H hij
holds for every i ∈ V.

We apply the standard generalized flow decomposition for h as in e.g. [15, 9]: every generalized
flow can be written as the sum of five types of elementary flows. Such a decomposition can be found
in O(nm) time, and the number of terms is at most the number of arcs with positive flow.

Among the five types of elementary flows listed in [9], Types I and III cannot be present the
decomposition of h, as there are no deficit nodes (more outgoing than incoming flow). Type IV are
unit gain cycles, and Type V are pairs of flow generating and flow absorbing cycles connected by a
path (“bicycles”); these do not generate any excess or deficit and are not needed for out argument.
The important one is Type II: a flow generating cycle and a path connecting it to an excess node
(more incoming than outgoing flow).

We now describe how to modify g to a feasible solution g′ to (LP2M) using the decomposition of
h. Consider a node i with ei(f) > ei(g); this is an excess node for h. We could add all Type II flows
in the decomposition terminating at i to increase ei(g) to ei(f). Since we want achieve the equality
ei(g

′) = 0, we only use some of the Type II flows. We add them one-by-one until ei(g
′) becomes

nonnegative. Then for the last flow, we add only a fractional amount to set precisely ei(g
′) = 0.

Repeating this for every i with ei(f) > ei(g), we obtain a feasible solution g′ to (LP2M).

We also present a second proof of the claim that if both (LP2M≥) and (LP2M≤) are feasible,
then (LP2M) is also feasible. The proof is based on Farkas’s lemma and is not algorithmic, but may
contribute to a better understanding of the claim.

We show that if (LP2M) is infeasible, then either (LP2M≥) or (LP2M≤) is also infeasible. A
Farkas-certificate to the infeasibility of (LP2M) can be written as

yi − yjγij ≥ 0 ∀ij ∈ E∑
i∈V

biyi > 0

40

A Farkas-certificate to the infeasibility (LP2M≥) is the same with the additional constraint y ≥ 0,
whereas the certificate to the infeasibility of (LP2M≤) is with y ≤ 0. In the case of (LP2M≥),
µi = 1/yi gives the usual labeling.

Let us define the sets Y + := {i ∈ V : yi > 0} and Y − := {i ∈ V : yi < 0}. Further, let y+
i := yi

if i ∈ Y + and y+
i := 0 otherwise; similarly, let y−i := yi if i ∈ Y − and 0 outside Y −.

We claim that the y+
i − y

+
j γij ≥ 0 and y−i − y

−
j γij ≥ 0 hold for every ij ∈ E. We only verify

this for y+; the proof is the same for y−. If i, j ∈ Y +, then this holds because y+ is identical to y
inside Y +. If i, j ∈ V \ Y +, then y+

i = y+
j = 0 and thus the claim is trivial. Next, let i ∈ Y + and

j ∈ V \ Y +. The claim follows by y+
i > 0, and y+

j = 0. Finally, we claim that there is no ij ∈ E
with i ∈ V \ Y +, j ∈ Y +. Indeed, this would mean yi − yjγij < 0, contradicting the choice of y.

Since 0 <
∑

i∈V biyi =
∑

i∈V biy
+
i +

∑
i∈V biy

−
i , either

∑
i∈V biy

+
i > 0 or

∑
i∈V biy

−
i > 0. In the

first case, y+ is an infeasibility certificate for (LP2M≥), and in the second case, y− is an infeasibility
certificate for (LP2M≤).

8 Conclusion

We have given a strongly polynomial algorithm for the generalized flow maximization problem, and
also for solving feasibility LPs with at most two nonzero entries in every column of the constraint
matrix. A natural next question is to address the minimum cost generalized flows, or equivalently,
finding optimal solutions to LPs with two nonzero entries per column.

In contrast to the vast literature on the flow maximization problem, there is only one weakly
polynomial combinatorial algorithm known for this setting, the one by Wayne [35]. This setting
is more challenging since the dual structure cannot be characterized via the convenient relabeling
framework, and thereby most tools for minimum cost circulations, including the scaling approach
also used in this paper, become difficult if not impossible to apply.

Another possible line of research would be to extend the flow maximization algorithm to nonlinear
settings. The paper [34] gave a simple scaling algorithm for concave generalized flows, where instead
of the gain factors γe, there is a concave increasing function Γe(.) associated to every arc e. In [33], a
strongly polynomial algorithm is given to the analogous problem of minimum cost circulations with
separable convex cost functions satisfying certain assumptions. One could combine the techniques of
[34] and [33] with the ideas of the current paper to obtain strongly polynomial algorithms for some
special classes of concave generalized flow problems. This could also lead to strongly polynomial
algorithms for certain market equilibrium computation problems, see [34].

Acknowledgment

The author is grateful to Joseph Cheriyan, Ian Post, and the anonymous referees for several sugges-
tions that helped to improve the presentation.

References

[1] I. Adler and S. Cosares. A strongly polynomial algorithm for a special class of linear programs.
Operations Research, 39(6):955–960, 1991.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Inc., feb 1993.

41

[3] E. Cohen and N. Megiddo. New algorithms for generalized network flows. Mathematical Pro-
gramming, 64(1):325–336, 1994.

[4] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton,
1963.

[5] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network
flow problems. Journal of the ACM (JACM), 19(2):248–264, 1972.

[6] L. K. Fleischer and K. D. Wayne. Fast and simple approximation schemes for generalized flow.
Mathematical Programming, 91(2):215–238, 2002.

[7] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network opti-
mization algorithms. Journal of the ACM (JACM), 34(3):596–615, 1987.

[8] F. Glover and D. Klingman. On the equivalence of some generalized network problems to pure
network problems. Mathematical Programming, 4(1):269–278, 1973.

[9] A. V. Goldberg, S. A. Plotkin, and É. Tardos. Combinatorial algorithms for the generalized
circulation problem. Mathematics of Operations Research, 16(2):351, 1991.

[10] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by canceling negative
cycles. Journal of the ACM (JACM), 36(4):873–886, 1989.

[11] D. Goldfarb and Z. Jin. A faster combinatorial algorithm for the generalized circulation problem.
Mathematics of Operations Research, 21(3):529–539, 1996.

[12] D. Goldfarb, Z. Jin, and Y. Lin. A polynomial dual simplex algorithm for the generalized
circulation problem. Mathematical Programming, 91(2):271–288, 2002.

[13] D. Goldfarb, Z. Jin, and J. B. Orlin. Polynomial-time highest-gain augmenting path algorithms
for the generalized circulation problem. Mathematics of Operations Research, 22(4):793–802,
1997.

[14] D. Goldfarb and Y. Lin. Combinatorial interior point methods for generalized network flow
problems. Mathematical Programming, 93(2):227–246, 2002.

[15] M. Gondran and M. Minoux. Graphs and Algorithms. John Wiley and Sons, NY, USA, 1984.

[16] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimiza-
tion. Springer-Verlag, 1993.

[17] D. S. Hochbaum. Monotonizing linear programs with up to two nonzeroes per column. Opera-
tions Research Letters, 32(1):49–58, 2004.

[18] W. S. Jewell. Optimal flow through networks. Operations Research, 10:476–499, 1962.

[19] L. V. Kantorovich. Mathematical methods of organizing and planning production. Publication
House of the Leningrad State University, page 68, 1939. English translation in Management
Science 6(4):366-422, 1960.

[20] S. Kapoor and P. M. Vaidya. Speeding up Karmarkar’s algorithm for multicommodity flows.
Mathematical Programming, 73(1):111–127, 1996.

42

[21] N. Megiddo. Towards a genuinely polynomial algorithm for linear programming. SIAM Journal
on Computing, 12(2):347–353, 1983.

[22] K. Onaga. Optimum flows in general communication networks. Journal of the Franklin Institute,
283(4):308–327, 1967.

[23] J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations Research,
41(2):338–350, 1993.

[24] J. B. Orlin. Max flows in O(nm) time or better. In Proceedings of STOC, 2013.

[25] T. Radzik. Approximate generalized circulation. Technical Report93-2, Cornell Computational
Optimization Project, Cornell University, 1993.

[26] T. Radzik. Improving time bounds on maximum generalised flow computations by contracting
the network. Theoretical Computer Science, 312(1):75–97, 2004.

[27] M. Restrepo and D. P. Williamson. A simple GAP-canceling algorithm for the generalized
maximum flow problem. Mathematical Programming, 118(1):47–74, 2009.

[28] M. Shigeno. A survey of combinatorial maximum flow algorithms on a network with gains.
Journal of the Operations Research Society of Japan, 47:244–264, 2004.

[29] É. Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica, 5(3):247–
255, 1985.

[30] É. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs. Operations
Research, pages 250–256, 1986.

[31] É. Tardos and K. D. Wayne. Simple maximum flow algorithms in lossy networks. In Proceedings
of IPCO, Lecture Notes in Computer Science, volume 1412, pages 310–324, 1998.

[32] K. Truemper. On max flows with gains and pure min-cost flows. SIAM Journal on Applied
Mathematics, 32(2):450–456, 1977.

[33] L. A. Végh. Strongly polynomial algorithm for a class of minimum-cost flow problems with
separable convex objectives. In Proceedings of STOC, pages 27–40. ACM, 2012.

[34] L. A. Végh. Concave generalized flows with applications to market equilibria. Mathematics of
Operations Research, 39(2):573–596, 2014.

[35] K. D. Wayne. A polynomial combinatorial algorithm for generalized minimum cost flow. Math-
ematics of Operations Research, pages 445–459, 2002.

Appendix

Theorem 4.1. Let (f, µ) be a ∆-feasible pair. Then there exists an optimal solution f∗ such that

||fµ − f∗µ||∞ ≤ Exµ(f) + (|Fµ|+ 1)∆.

43

Proof. First, let us modify (f, µ) to a conservative pair (f̃ , µ) by setting the flow values on non-tight
arcs to 0, as in Lemma 2.4. We shall prove the existence of an optimal f∗ such that

||f̃µ − f∗µ||∞ ≤ Exµ(f̃). (12)

This implies the claim, since Lemma 2.4 asserts Exµ(f̃) ≤ Exµ(f) + |Fµf |∆, and ||f̃µ − fµ||∞ ≤ ∆
as the two flows differ only on non-tight arcs.

Let us pick an optimal solution f∗ to (P) such that ||f̃ − f∗||1 is minimal, and let µ∗ be an
optimal solution to (D). Note that because of (?), all values of µ and µ∗ are finite. We use a similar
argument as in the proof of Lemma 7.4. Let us define

hij :=

{
f∗ij − f̃ij if ij ∈ E, f∗ij > f̃ij

γji(f
∗
ji − f̃ji) if ji ∈ E, f∗ji > f̃ji.

Let H ⊆
←→
E denote the support of h; clearly, h > 0 and H ⊆ Ef̃ whereas

←−
H ⊆ Ef∗ . Again, with the

convention hij = −γjihji, we have f∗ = f̃ + h.

Claim 8.1. The arc set H does not contain any directed cycles.

Proof. First, let C ⊆ H be a cycle. Since µ is a conservative labeling for f̃ and C ⊆ Ef̃ , we

have γ(C) = γµ(C) ≤ 1. On the other hand, µ∗ is conservative for f∗ and
←−
C ⊆ Ef∗ . Therefore

γ(
←−
C) = 1/γ(C) = 1/γµ

∗
(C) ≤ 1. These together give γ(C) = γ(

←−
C) = 1, and also γµ

∗
e = 1 for

every e ∈ C. Hence we can modify f∗ to another optimal solution by decreasing every f∗e
µ∗ value

by a small ε > 0. This gives a contradiction to our extremal choice of f∗ as the optimal solution
minimizing ||f̃ − f∗||1.

Observe that
ei(f̃)− ei(f∗) =

∑
j:ij∈H

hij −
∑
j:ji∈H

γjihji

By the optimality of f∗, the left hand side is ≤ 0 for i = t and is equal to ei(f̃) ≥ 0 otherwise. The
above claim guarantees that H, the support of h, is acyclic. Consequently, we can easily decompose
h to the form

h =
∑

1≤`≤k
h`,

where each h` is a path flow with support P ` from a node p` with ep`(f̃) > 0 to t, and k ≤ m.
Such a decomposition is easy to construct by using a topological order of the nodes for H. It

is also a special case of the flow decomposition argument used in Lemma 7.4, see also [15, 9]. (The
difference is that according to Claim 8.1, four out of the five types of elementary flows, Types II-V
cannot exist as they contain cycles.)

Let λ` denote the value of h` on the first arc of P `. Since µ is a conservative labeling and
P ` ⊆ H ⊆ Ef̃ , we have γµij ≤ 1 for all arcs of P ` and therefore the relabeled flow (h`)µ is monotone

decreasing along P `. Hence it follows that for every arc ij,

hµij =
∑

1≤`≤k
(h`ij)

µ ≤
∑

1≤`≤k

λ`

µp`
=
∑
i:V−t

eµi (f̃) = Exµ(f̃).

This completes the proof, since ||f̃µ − f∗µ||∞ = maxij∈E h
µ
ij (note that if f∗ij < fij , then γµij = 1

must hold).

44

	Vegh_Strongly polynomial_cover
	Vegh_Strongly polynomial_author
	Introduction
	Preliminaries
	Encoding size
	Labelings and optimality conditions
	Delta-feasible labels
	Overview of the algorithms
	The maximum flow subroutine
	The Initialization subroutine
	The Elementary step subroutine

	Analysis of the Continuous Scaling algorithm
	Bounding the number of iterations
	The termination of the algorithm
	Running time analysis

	The strongly polynomial algorithm
	Abundant arcs and contractions
	The Filtration subroutine
	The Enhanced Continuous Scaling Algorithm

	Analysis of the strongly polynomial algorithm
	Properties of dual solutions
	Bounding the number of iterations
	Running time analysis

	Bounding the encoding size
	Analysis

	Problem transformations
	Transformation to an uncapacitated instance
	Linear programs with two nonzeros per column

	Conclusion

