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Abstract

We consider the problem of locating a single facility on the real line. This facility serves

a set of agents, each of whom is located on the line, and incurs a cost equal to his distance

from the facility. An agent’s location is private information that is known only to him. Agents

report their location to a central planner who decides where to locate the facility. The planner’s

objective is to minimize a ”social” cost function that depends on the agent-costs. However,

agents might not report truthfully; to address this issue, the planner must restrict himself to

strategyproof mechanisms, in which truthful reporting is a dominant strategy for each agent.

A mechanism that simply chooses the optimal solution is generally not strategyproof, and so

the planner aspires to to use a mechanism that effectively approximates his objective function.

This general class of problems was first studied by Procaccia and Tennenholtz and has been

the subject of much research since then.

In our paper, we study the problem described above with the social cost function being the

Lp norm of the vector of agent-costs. We show that the median mechanism (which is known to

be strategyproof) provides a 21−
1

p approximation ratio, and that is the optimal approximation

ratio among all deterministic strategyproof mechanisms. For randomized mechanisms, we

present two results. First, we present a negative result: we show that for integer ∞ > p > 2,

no mechanism—from a rather large class of randomized mechanisms— has an approximation

ratio better than that of the median mechanism. This is in contrast to the case of p = 2 and

p = ∞ where a randomized mechanism provably helps improve the worst case approximation

ratio. Second, for the case of 2 agents, we show that a mechanism called LRM, first designed

by Procaccia and Tennenholtz for the special case of L∞, provides the optimal approximation

ratio among all randomized mechanisms.
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1 Introduction

We consider the problem of locating a single facility on the real line. This facility serves a set

of n agents, each of whom is located somewhere on the line as well. Each agent cares about his

distance to the facility, and incurs a disutility (equivalently, cost) that is equal to his distance

to access the facility. An agent’s location is assumed to be private information that is known

only to him. Agents report their locations to a central planner who decides where to locate the

facility based on the reports of the agents. The planner’s objective is to minimize a “social”

cost function that depends on the vector of distances that the agents need to travel to access the

facility. It is natural for the planner to consider locating the facility at a point that minimizes her

objective function, but in that case the agents may not have an incentive to report their locations

truthfully. As an example, consider the case of 2 agents located at x1 and x2 respectively, and

suppose the location that optimizes the planner’s objective is the mid-point (x1 + x2)/2. Then,

assuming x1 < x2, agent 1 has an incentive to report a location x′1 < x1 so that the planner’s

decision results in the facility being located closer to his true location. The planner can address

this issue by restricting herself to a strategyproof mechanism: by this we mean that it should be a

(weakly) dominant strategy for each agent to report his location truthfully to the central planner.

This, of course, is an attractive property, but it comes at a cost: based on the earlier example, it

is clear that the planner cannot hope to optimize her objective. One way to avoid this difficulty

is to assume an environment in which agents (and the planner) can make or receive payments;

in such a case, the planner selects the location of the facility, and also a payment scheme, which

specifies the amount of money an agent pays (or receives) as a function of the reported locations

of the agents as well as the location of the facility. This option gives the planner the ability to

support the “optimal” solution as the outcome of a strategy-proof mechanism by constructing a

carefully designed payment scheme in which any potential benefit for a misreporting agent from

a change in the location of the facility is offset by an increase in his payment.

There are many settings, however, in which such monetary compensations are either not

possible or are undesirable. This motivated Procaccia and Tennenholtz [6] to formulate the notion

of Approximate Mechanism Design without Money. In this model the planner restricts herself to

strategy-proof mechanisms, but is willing to settle for one that does not necessarily optimize

her objective. Instead, the planner’s goal is to find a mechanism that effectively approximates

her objective function. This is captured by the standard notion of approximation that is widely

used in the CS literature: for a minimization problem, an algorithm is an α-approximation if the

solution it finds is guaranteed to have cost at most α times that of the optimal cost (α ≥ 1).

Procaccia and Tennenholtz [6] apply the notion of approximate mechanism design without

money to the facility location problem considered here for two different objectives: (i) minisum,
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where the goal is to minimize the sum of the costs of the agents; and (ii) minimax, where the

goal is to minimize the maximum agent cost. They show that for the minimax objective choosing

any k-th median—picking the kth largest reported location—is a strategyproof, 2-approximate

mechanism. They design a randomized mechanism called LRM (Left-Right-Middle) and show

that it is a strategyproof, 3/2-approximate mechanism; futhermore, they show that those mecha-

nisms provide the optimal worst-case approximation ratio possible (among all deterministic and

randomized strategyproof mechanisms, respectively). For the minisum objective, it is known that

choosing the median reported location is optimal and strategyproof [5]. Feldman and Wilf [4]

consider the same facility location problem on a line but with the social cost function being the

L2 norm of the agents’ costs1. They show that the median is a
√
2-approximate strategyproof

mechanism for this objective function, and provide a randomized (1+
√
2)/2-approximate strate-

gyproof mechanism. In addition, facility location on other topologies such as circles and trees are

considered by Alon et al. [1, 2, 3] as well as by Feldman and Wilf [4].

In our paper, we follow the suggestion of Feldman and Wilf [4] and study the problem of

locating a single facility on a line, but with the objective function being the Lp norm of the vector

of agent-costs (for general p ≥ 1). We define the problem formally in section 2. In section 3, we

show that the median mechanism (which is strategyproof) provides a 21−
1
p approximation ratio,

and that is the optimal approximation ratio among all deterministic strategyproof mechanisms.

We move onto randomized mechanisms in section 4. First, we present a negative result: we show

that for integer ∞ > p > 2, nomechanism—from a rather large class of randomized mechanisms—

has an approximation ratio better than that of the median mechanism, as the number of agents

goes to infinity. It is worth noting that all the mechanisms proposed in literature so far— for

minimax, minisum, as well as quadratic mean social cost functions— belong to this class of

mechanisms. Next, we consider the case of 2 agents, and show that the LRM mechanism provides

the optimal approximation ratio among all randomized mechanisms (that satisfy certain mild

assumptions) for this special case, for every p ≥ 1. Our result for the special case of 2 agents

also gives a lower bound on the approximation ratio for all randomized mechanisms. We briefly

discuss some directions for further research in section 5.

2 Model

Let N = {1, 2, . . . , n}, n ≥ 2, be the set of agents. Each agent i ∈ N reports a location xi ∈ R. A

deterministic mechanism is a collection of functions f = {fn| n ∈ N, n ≥ 2} such that each fn :

R
n → R maps each location profile x = (x1, x2, . . . , xn) to the location of a facility. We will abuse

1Feldman and Wilf actually used the sum of squares of the agents’ costs, but most of their results can be easily

converted to the L2 norm. Of course, the approximation ratios they report need to be adjusted as well.
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notation and let f(x) denote fn(x). Under a similar notational abuse, a randomized mechanism

is a collection of functions f that maps each location profile to a probability distribution over R:

if f(x1, x2, . . . , xn) is the distribution π, then the facility is located by drawing a single sample

from π.

Our focus will be on deterministic and randomized mechanisms for the problem of locating

a single facility when the location of any agent is private information to that agent and cannot

be observed or otherwise verified. It is therefore critical that the mechanism be strategyproof—it

should be optimal for each agent i to report his true location xi rather than something else. To

that end we assume that if the facility is located at y, an agent’s disutility, equivalently cost, is

simply his distance to y. Thus, an agent whose true location is xi incurs a cost C(xi, y) = |xi−y|.
If the location of the facility is random and according to a distribution π, then the cost of agent

i is simply C(xi, π) = Ey∼π|xi − y|, where y is a random variable with distribution π. The formal

definition of strategyproofness is now:

Definition 1. A mechanism f is strategyproof if for each i ∈ N , each xi, x
′
i ∈ R, and for each

x−i = (x1, x2, . . . , xi−1, xi+1, . . . xn) ∈ R
n−1,

C(xi, f(xi,x−i)) ≤ C(xi, f(x
′
i,x−i)),

where (α,x−i) denotes a vector with the i-th component being α and the j-th component being xj

for all j 6= i.

The class of strategyproof mechanisms is quite large: for example, locating the facility at

agent 1’s reported location is strategyproof, but is not particularly appealing because it fails

almost every reasonable notion of fairness and could also be highly “inefficient”. To address these

issues, and to winnow the class of acceptable mechanisms, we impose additional requirements that

stem from efficiency or fairness considerations. In this paper we assume that locating a facility

at y for the location profile is x = (x1, x2, . . . , xn) incurs the social cost

sc(x, y) =

(

∑

i∈N
|xi − y|p

)1/p

, p ≥ 1.

For a randomized mechanism f that maps x to a distribution π, we define the social cost to be

sc(x, π) = Ey∼π

(

∑

i∈N
|xi − y|p

)1/p

.

For this definition of social cost, our goal now is to find a strategyproof mechanism that does well

with respect to minimizing the social cost. A natural mechanism (and this is the approach taken
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in the classical literature on facility location) is the “optimal” mechanism: each location profile

x = (x1, x2, . . . , xn) is mapped to OPT (x), defined as2

OPT (x) ∈ argmin
y∈R

sc(x, y).

This optimal mechanism is not strategyproof as shown in the following example.

Example. Suppose there are two agents located at the points 0 and 1 respectively on the real

line. If they report their locations truthfully, the optimal mechanism will locate the facility at

y = 0.5, for any p > 1. Assuming agent 2 reports x2 = 1, if agent 1 reports x′1 = −1 instead, the

facility will be located at 0, which is best for agent 1.

Given that strategyproofness and optimality cannot be achieved simultaneously, it is necessary

to find a tradeoff. In this paper we shall restrict ourselves to strategyproof mechanisms that

approximate the optimal social cost as best as possible. The notion of approxmation that we

use is standard in computer science: an α-approximation algorithm is one that is guaranteed to

have cost no more than α times the optimal social cost. Formally, the approximation ratio of an

algorithm A is supI{A(I)/OPT (I)}, where the supremum is taken over all possible instances I

of the problem; and A(I) and OPT (I) are, respectively, the costs incurred by algorithm A and

the optimal algorithm on the instance I.

Our goal then is to design strategyproof (deterministic or randomized) mechanisms whose

approximation ratio is as close to 1 as possible.

3 The Median Mechanism

For the location profile x = (x1, x2, . . . , xn), the median mechanism is a deterministic mechanism

that locates the facility at the “median” of the reported locations. The median is unique if n is

odd, but not when n is even, so we need to be more specific in describing the mechanism. For

odd n, say n = 2k − 1 for some k ≥ 1, the facility is located at x[k], where x[k] is the kth largest

component of the location profile. For even n, say n = 2k, the “median” can be any point in the

interval [x[k], x[k+1]]; to ensure strategyproofness, we need to pick either x[k] or x[k+1], and as a

matter of convention we take the median to be x[k]. It is well known that the median mechanism

is strategyproof 3. Furthermore, the median mechanism is anonymous4. Thus we may assume,

2 Strictly speaking, the mechanism is not well defined in cases where the social cost at x is minimized by multiple

locations y, but we could pick an exogenous tie-braking rule to deal with such cases.
3A classical paper of Moulin [5] for a closely related model shows that all deterministic strategyproof mechanisms

are essentially generalized median mechanisms.
4In an anonymous mechanism, the facility location is the same for two location profiles that are permutations

of each other.
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without loss of generality, that each agent reports her location truthfully.

Our main result in this section is that, for any p ≥ 1, the median mechanism uniformly achieves

the best possible approximation ratio among all deterministic strategyproof mechanisms. We start

with two simple observations, which will be used repeatedly in the proof of this main result.

Lemma 1. For any real numbers a, b, c with a ≤ b ≤ c, and any p ≥ 1,

(c− a)p ≤ 2p−1[(c− b)p + (b− a)p].

Proof. For any p ≥ 1, f(x) = xp is a convex function on [0,∞), and so for any λ ∈ [0, 1] and

x, y ≥ 0,

f(λx+ (1− λ)y)) ≤ λf(x) + (1− λ)f(y). (1)

Setting λ = 1/2, x = c− b, and y = b−a, and multiplying both sides of the inequality by 2p gives

the result.

Lemma 2. For any non-negative real numbers a and b, and any p ≥ 1,

(a+ b)p ≥ ap + bp.

Proof. For integer p, the result is a direct consequence of the binomial theorem; the same argument

covers the case of rational p as well. Continuity implies the result for all p.

Theorem 1. Suppose there are n agents with the location profile x = (x1, x2, . . . , xn). Define the

social cost of locating a facility at y as (
∑n

i=1 |y − xi|p)
1
p for p ≥ 1. The social cost incurred by

the median mechanism is at most 21−
1
p times the optimal social cost 5.

Proof. We may assume that x1 ≤ ... ≤ xn. Let OPT be a facility location that minimizes the

social cost, and let m be the median. The inequality we need to prove is

n
∑

i=1

|m− xi|p ≤ 2p−1
n
∑

i=1

|OPT − xi|p.

We do this by pairing each location xi with its “symmetric” location xn+1−i and arguing that the

total cost of these two locations in the median mechanism is within the required bound of their

total cost in an optimal solution. For even n, this completes the argument; for odd n the only

location without such a pair is the median itself, which incurs zero cost in the median mechanism,

and so the argument is complete. Formally, the result follows if we can show

|m− xi|p + |xn+1−i −m|p ≤ 2p−1(|OPT − xi|p + |OPT − xn+1−i|p), forall i ≤ ⌊n/2⌋.
5When p = ∞, the median mechanism provides a 2-approximation, as shown in Procaccia and Tennenholtz [6].
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We consider two cases, depending on whether OPT is in the interval [xi, xn+1−i] or not. In

each of these cases, OPT may be above the median or below, but the proof remains identical in

each subcase, so we give only one.

1. xi ≤ m ≤ OPT ≤ xn+1−i or xi ≤ OPT ≤ m ≤ xn+1−i. We will prove the first of

these subcases; the proof of the second is identical. Applying Lemma 1 by setting a = m,

b = OPT , and c = xn+1−i, we get

|xn+1−i −m|p ≤ 2p−1(|xn+1−i −OPT |p + |OPT −m|p).

Thus,

|m− xi|p + |xn+1−i −m|p ≤ |m− xi|p + 2p−1(|xn+1−i −OPT |p + |OPT −m|p)
≤ 2p−1(|m− xi|p + |xn+1−i −OPT |p + |OPT −m|p)
≤ 2p−1(|xn+1−i −OPT |p + |OPT − xi|p),

where the last inequality is obtained by applying Lemma 2 to the terms |m − xi|p and

|OPT −m|p.

2. OPT ≤ xi ≤ m ≤ xn+1−i or xi ≤ m ≤ xn+1−i ≤ OPT . Again, we prove only the first

subcase. Note that

|xn+1−i −m|p + |m− xi|p ≤ |xn+1−i − xi|p

≤ |OPT − xn+1−i|p

≤ 2p−1(|OPT − xi|p + |OPT − xn+1−i|p)
where the first inequality follows from Lemma 2. (Note that Lemma 1 is not used in the

proof of this case.)

We end this section by showing that no deterministic and strategyproof mechanism can give

a better approximation to the social cost.

Lemma 3. Consider the case of two agents and suppose the location profile is (x1, x2) with

x1 < x2. For p ≥ 1, suppose the social cost of locating a facility at y is (|x1 − y|p + |x2 − y|p)1/p.
Any determinstic mechanism whose approximation ratio is better than 21−

1
p for p > 1 must locate

the facility at y for some y ∈ (x1, x2).

Proof. The function f(y) = |y − x1|p + |y − x2|p is strictly convex, and its unique minimizer

is y∗ = (x1 + x2)/2, with the corresponding value f(y∗) = |x2 − x1|p/2p−1. Moreover f(x1) =

f(x2) = |x2 − x1|p = 2p−1f(y∗). It follows that for the deterministic mechanism to do strictly

better than the stated ratio, the facility cannot be located at the reported locations; locating the

facility to the left of x1 or to the right of x2 only increases the cost of the mechanism, so the only

option left for a mechanism to do better is to locate the facility in the interior, i.e., in (x1, x2).
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Theorem 2. Any strategyproof deterministic mechanism has an approximation ratio of at least

2
1− 1

p for the Lp social cost function for any p ≥ 16.

Proof. The bound holds trivially for p = 1. Suppose p > 1, and suppose a deterministic strate-

gyproof mechanism yields an approximation ratio strictly better than 2
1− 1

p to the Lp social cost.

For the two-agent location profile x1 = 0, x2 = 1, Lemma 3 implies the facility is located at some

y ∈ (0, 1). Now consider the location profile x1 = 0, x2 = y. Again, by Lemma 3, the mechanism

locate the facility at y′ ∈ (0, y) to guarantee the improved approximation. But if agent 2 is located

at y < 1, he can misreport his location as 1, forcing the mechanism to locate the facility at y, his

true location; this violates strategyproofness.

4 Randomized Mechanisms

Recall that when the social cost is measured by the L2 norm or the L∞ norm, randomization

provably improves the approximation ratio. In the former case, Feldman and Wilf [4] describe an

algorithm whose approximation ratio is (
√
2+ 1)/2; for the latter, Procaccia and Tennenholtz [6]

design an algorithm with an approximation ratio of 3/2. The mechanisms in both cases are

simple and somewhat similar, placing non-negative probabilities only on the optimal and reported

locations, where these probabilities are independent of the reported location profile. There are

two reasonable ways of choosing the reported locations: one is via dictatorships and the other is

via generalized medians. In this section we show that neither is enough; namely, randomizing over

dictatorships, generalized medians and the optimal location does not improve the approximation

ratio of the median mechanism for any integer p ∈ (2,∞). For the case of 2 agents we show that the

best approximation ratio is given by the LRM mechanism among all strategyproof mechanisms.

Extending this analysis even to the case of 3 agents appears to be non-trivial.

4.1 Mixing Dictatorships and Generalized Medians with the Optimal Location

Theorem 3. Suppose we are given non-negative numbers pnj
′, pnj

′′, and pnOPT with pnOPT +
∑

j∈N pnj
′ +

∑

j∈N pnj
′′ = 1 for each n. For the problem with n agents and reported profile

(x1, x2, . . . , xn) let f be the strategyproof randomized mechanism that locates the facility at OPT

with probability pnOPT , at xj with probability pnj
′, and at x[j] with probability pnj

′′7, where OPT

is the optimal location for the profile (x1, x2, . . . , xn). Then, for any finite integer p > 2, the

approximation ratio of f is at least 2
1− 1

p .

6The lower bound of 2 on the approximation ratio also holds when p = ∞, see Procaccia and Tennenholtz [6].
7When a location appears more than once in x1, . . . , xn, x[1], . . . , x[n], OPT , the probabilities add up.
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Proof. Fix n = 2k, with k ∈ N. For notational convenience, let pnj = pnj
′+ pnj

′′ (we will use this to

analyze profiles where xj = x[j]). For j = 1, . . . , k, define the profile xj as follows (where aj is a

parameter to be defined shortly): agents 1 through j are located at −aj; agents j + 1 through k

are located at 0; agents k + 1 through 2k − j + 1 are located at 1; and agents 2k − j + 2 through

2k are located at 1+ aj . (Note the slight asymmetry in the location of the agents: while k agents

are at or below zero, and k agents are at or above 1, there is an additional agent at 1 compared

to zero and so one less agent at 1 + aj compared to −aj .) Now, aj is chosen to be the smallest

positive root of the function gj(α) = jαp−1 − (k − j + 1) − (j − 1)(1 + α)p−1; such an aj must

exist by the intermediate value theorem, as gj(0) < 0 and gj(α) is a continuous function of α with

gj(α) → ∞ as α → ∞.

We show that the optimal mechanism locates the facility at zero for the profile xj , i.e., OPT =

0. Note that the social cost for this profile, when locating the facility at z ∈ [0, 1], is j(z + aj)
p +

(k− j)zp+(k− j+1)(1− z)p+(j−1)(1+aj − z)p, and when z ∈ (−aj , 0) the social cost becomes

j(z + aj)
p + (k − j)(−z)p + (k − j + 1)(1 − z)p + (j − 1)(1 + aj − z)p. Note that the social cost

function is differentiable for z ∈ (0, 1) and for z ∈ (−aj , 0). The left and right derivatives at 0 are

both pjap−1
j −p(k−j+1)−p(j−1)(1+aj)

p−1, and thus the social cost function is differentiable on

(−aj , 1) with its derivative at z = 0 equal to zero (by our choice of aj). The social cost function

can also easily be verified to be twice differentiable on (−aj, 1), with a positive second derivative

at z = 0, and thus we have a local minimum at z = 0. The fact that this is a global minimum

now follows from strict convexity of the social cost function ||xj − z(1, . . . , 1)||p (for all z ∈ R).

Thus, indeed, OPT = 0.

We now attempt to bound pOPT . For each profile xj , consider the profile xj ′ that differs only

in the location of agent j: namely, xjj
′
= 0 instead of −aj. Note that on this profile, OPT = 0.5

by symmetry. Strategyproofness implies that a deviation from profile xj ′ to profile xj should not

be beneficial for agent j, namely ajp
n
j − 1

2p
n
OPT ≥ 0 (where aj is the increase in agent j’s cost

caused by that deviation when the facility is built in his reported location, and 1
2 is the decrease in

his cost caused by that deviation when the facility is located at OPT ), which implies pnj ≥ pn
OPT

2aj
.

Defining aj for j = k + 1, . . . , 2k in a symmetric fashion, we see that the same inequality holds

for j in that range, and that aj = a2k−j+1. Summing those inequalities up, we get:

1− pnOPT =

2k
∑

j=1

pnj ≥
2k
∑

j=1

pnOPT

2aj
= 2

k
∑

j=1

pnOPT

2aj
=

k
∑

j=1

pnOPT

aj

pnOPT ≤ 1

1 +
∑k

j=1
1
aj

Now, we claim it is enough to show that as n → ∞ (or equivalently, as k → ∞),
∑k

j=1
1
aj

→ ∞.

The inequality then implies that pnOPT → 0. Consider the profile which locates k agents at 0 and
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k agents at 1. The social cost of locating the facility at OPT on this profile is p
√
n/2, while the

social cost of locating the facility at an agent’s location is p
√
n2

− 1
p ; thus, the approximation ratio

of f on this profile is
pnOPT

p
√
n/2+(1−pnOPT ) p

√
n2

− 1
p

p
√
n/2

= 2
1− 1

p − (2
1− 1

p − 1)pnOPT . Thus, as n → ∞, the

approximation ratio on these profiles approaches 2
1− 1

p , completing the proof.

We are left with the task of showing that limk→∞
∑k

j=1
1
aj

= ∞ . To do so, we first show

that for j ≥ k
1

p−1 + 1, 2p−1(j − 1) > aj. Recall that aj was defined as the smallest positive root

of gj(α), and that gj(0) < 0. Thus, it is enough to show that for j in the appropriate range,

gj(2
p−1(j − 1)) > 0. For notational convenience, we denote Q = 2p−1.

gj(Q(j − 1)) = jQp−1(j − 1)p−1 − (k − j + 1)− (j − 1)(1 +Q(j − 1))p−1

= Qp−1(j − 1)p−1 − k − (j − 1)

p−2
∑

i=1

(

p− 1

i

)

(Q(j − 1))p−1−i

≥ Qp−1(j − 1)p−1 − (j − 1)p−1 − (j − 1)

p−2
∑

i=1

(

p− 1

i

)

(Q(j − 1))p−1−i

> Qp−1(j − 1)p−1 − (j − 1)p−1 − (j − 1)

p−2
∑

i=1

(

p− 1

i

)

(Q(j − 1))p−2

> Qp−1(j − 1)p−1 − (j − 1)

p−1
∑

i=1

(

p− 1

i

)

(Q(j − 1))p−2

= Qp−1(j − 1)p−1 − (j − 1)(Q(j − 1))p−2
p−1
∑

i=1

(

p− 1

i

)

> Qp−1(j − 1)p−1 − (j − 1)(Q(j − 1))p−22p−1 = 0.

Now,
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lim
k→∞

k
∑

j=1

1

aj
> lim

k→∞

k
∑

j=⌈k
1

p−1 +1⌉

1

2p−1j

=
1

2p−1
lim
k→∞

k
∑

j=⌈k
1

p−1+1⌉

1

j

≥ 1

2p−1
lim
k→∞

∫ k

k
1

p−1+2

1

t
dt

=
1

2p−1
( lim
k→∞

∫ k

k
1

p−1

1

t
dt− lim

k→∞

∫ k
1

p−1+2

k
1

p−1

1

t
dt)

=
1

2p−1
(( lim

k→∞
(1− 1

p− 1
) ln k)− 0) = ∞

which completes our proof.

4.2 Optimality of the LRM Mechanism for 2 Agents

Our next result shows that the LRM mechanism provides the best possible approximation ratio

among all shift and scale invariant (defined below) startegyproof mechanisms for the case of 2

agents for all Lp social cost functions for p ≥ 1.

We begin with some definitions: we say that a mechanism f is shift and scale invariant if for

every location profile x = {x1, x2} s.t. x1 ≤ x2 and every c ∈ R, the following two properties are

satisfied:

1. f({x1 + c, x2 + c}) = f(x) + c.

2. When c ≥ 0, we have f({cx1, cx2}) = cf(x), and when c < 0, we have f({cx1, cx2}) =

−cf({−x2,−x1}).

A convenient notation for a given location profile x is to denote its midpoint as mx = x1+x2
2 . We

say that a mechanism f is symmetric if for any location profile x and for any y ∈ R, P(f(x) ≥
mx + y) = P(f(x) ≤ mx − y).

The following lemma allows us to convert any strategyproof mechanism into a symmetric

mechanism.

Lemma 4. Given any strategyproof mechanism, there exists another symmetric strategyproof

mechanism with the same approximation ratio.

11



Proof. Given a mechanism f , we define the mirror mechanism of f , fmirror, to be such that for

any profile x, we have that P(fmirror(x) ≥ mx+ b) = P(f(x) ≤ mx− b) for all b ∈ R and location

profiles x.

Assume f is a strategyproof mechanism. Symmetry dictates that fmirror must also be strate-

gyproof, since any misreport of the right agent with respect to f induces the same cost as that

of an equivalent a misreport of the left agent with respect to fmirror and vice versa. Moreover,

since composing two strategproof mechanisms yields a strategyproof mechanism, the mechanism

g that picks f with probability 1/2 and fmirror with probability 1/2 is a strategyproof mechanism

that is also symmetric. Finally, note that g has the same approximation ratio as f for all location

profiles, since fmirror has the same approximation ratio as f .

From now on, whenever we talk about a shift and scale invariant mechanism, we will also

assume that it is symmetric. To simplify our proof of the main result, we will assume in addition

that given a reported profile x = {x1, x2}, the mechanism will only assign a facility location that

lies in between x1 and x2, i.e. P(y ∈ [x1, x2]) = 1, where y is a random variable representing the

facility location assigned by the mechanism. It is worth noting that the main result remains true

even without this assumption, although the complete proof is somewhat long and cumbersome,

so we will omit it. The next lemma deals with an equivalent condition for strategyproofness with

respect to a shift, scale invariant and symmetric mechanism.

Lemma 5. A shift, scale invariant, and symmetric mechanism f is strategyproof if and only if

for any profile x = {x1, x2} with x1 = 0 < x2, the following condition holds:

-
∫

(−∞,x2)
ydF (y) +

∫

(x2,∞)
ydF (y) + x2P(Y = x2) ≥ 0,

where Y = f(x) with c.d.f. F .

Proof. By shift invariance, it suffices to check strategyproofness for profiles where x1 = 0 and

by symmetry, we can assume without lost of generality that x2 ≥ 0. Moreover, any shift, scale

invariant mechanism is trivially strategyproof with respect to the profile {0, 0} since by definition,

the mechanism would place all of the probability mass on 0, which means that no agent has

incentive to misreport his location. Thus, we can assume that x2 > 0.

Since the mechanism is symmetric, it suffices to show that agent 2 cannot benefit by deviating

from his true location if and only if the aforementioned condition hold. Since x2 > 0, we can

denote agent 2’s deviation x′2 as cx2 for some c ∈ R. Moreover, since P(Y ∈ [x1, x2]) = 1 by

assumption, we can further restrict ourselves to the case where c > 1 because agent 2 has no

incentive to deviate to a location cx2 where cx2 < x2 as the mechanism is scale invariant.

12



When agent 2 reports his location to be cx2, where c > 1, the change in cost incurred by agent

2 is:

Cdev − Corig = −(c− 1)

∫

(−∞,
x2
c
)
ydF (y) +

∫

[
x2
c
,x2)

((c+ 1)y − 2x2)dF (y) + (c− 1)

∫

(x2,∞)
ydF (y)

+ (c− 1)x2P(Y = x2)

= −(c− 1)

∫

(−∞,x2)
ydF (y) +

∫

[
x2
c
,x2)

(2cy − 2x2)dF (y) + (c− 1)

∫

(x2,∞)
ydF (y)+

(c− 1)x2P(Y = x2)

≥ −(c− 1)

∫

(−∞,x2)
ydF (y) + (c− 1)

∫

(x2,∞)
ydF (y) + (c− 1)x2P(Y = x2)

Hence, when condition 1 holds, we have that −(c − 1)
∫

(−∞,x2)
ydF (y) + (c − 1)

∫

(x2,∞) yF (y) +

(c− 1)x2P(Y = x2) ≥ 0, which means that Cdev − Corig ≥ 0.

To prove the other direction, suppose the condition does not hold, then there exists ǫ > 0

small enough such that −
∫

(−∞,x2)
ydF (y)+

∫

(x2,∞) ydF (y) + x2P(Y = x2) ≤ −ǫ for some x2 > 0.

We choose c > 1 s.t. P(Y ∈ [x2
c , x2)) <

ǫ
4x2

, then we have that

Cdev − Corig = −(c− 1)

∫

(−∞,x2)
ydF (y) +

∫

[
x2
c
,x2)

(2cy − 2x2)dF (y) + (c− 1)

∫

(x2,∞)
ydF (y)

+ (c− 1)x2P(Y = x2)

≤ (c− 1)(−
∫

(−∞,x2)
ydF (y) +

∫

[
x2
c
,x2)

(2x2)dF (y) +

∫

(x2,∞)
ydF (y) + x2P(Y = x2))

< −(c− 1)
ǫ

2
< 0

which contradicts strategyproofness of the mechanism. 8

8Notice that given any shift, scale invariant, and symmetric mechanism f , in order to check whether f is a

strategyproof mechanism, it suffices to check whether f is strateyproof for one particular profile. Without lost of

generality, we can assume that x1 = 0 and x2 = 1. Here is a short proof of the claim. By the same argument as

before, it suffices to check strategyproofness for all profiles {x1, x2}, where x2 > x1 = 0. Let Y = f({0, 1}), then

f({0, x2}) = x2Y . The mechanism is strategyproof with respective to the profile {x1, x2} if and only if for all c ∈ R,

we have that

E[|cx2Y − x2|] ≥ E[|x2Y − x2|].

Since x2 > 0, this follows directly from the strategyproofness condition for the profile {0, 1}:

E[|cY − 1|] ≥ E[|Y − 1|] ∀c ∈ R.
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Given a strategyproof, shift, scale invariant and symmetric mechanism, the next lemma demon-

strates how to find another strategyproof, shift, scale invariant and symmetric mechanism that

restricts the probability assignment to x1, x2, and mx for all profile x and simultaneously gives a

better approximation than the original mechanism.

Lemma 6. Let f be a strategyproof shift, scale invariant and symmetric mechanism, where

P(f(x) ∈ [x1, x2]) = 1 for location profile x = {x1, x2} with x2 > x1, then there exists an-

other strategyproof mechanism g such that P(g(x) ∈ {x1, x2,mx}) = 1 for the (and thus every)

location profile x and that E[sc(g(x),x)] ≤ E[sc(g(x),x)]. Furthermore, g satisfies shift, scale

invariance and symmetry.

Proof. Now, let g be the mechanism that satisfies P(g(x) = x1) = P(f(x) = x1), P(g(x) = x2) =

P(f(x) = x2), P(g(x) = mx) = 1− P(g(x) = x1)− P(g(x) = x2). Note that since mx minimizes

the social cost function for the profile x, g certainly provides a weakly better approximation ratio

than f . By shift invariance, we can assume wlog that 0 = x1 ≤ x2, then an alternative way to

show strategyproofness is to check to see that the condition of the lemma 1 is satisfied by g. Since

f is a strategyproof mechanism, the condition implies that

0 ≤ −
∫

(0,x2)
yd(F (y)) + x2P(f(x) = x2)

= −
∫

(−x2−x1
2

,
x2−x1

2
)
(mx + u)d(F (mx + u)) + x2P(f(x) = x2)

= −mxP(f(x) ∈ (x1, x2)) +−
∫

(−x2−x1
2

,
x2−x1

2
)
ud(F (mx + u)) + x2P(f(x) = x2)

= −mx(1− P(g(x) = x1)− P(g(x) = x2)) + x2P(g(x) = x2)

Note, −
∫

(−x2−x1
2

,
x2−x1

2
)
ud(F (mx + u)) = 0 because the distribution is symmetric around mx.

Hence, the condition is satisfied for the mechanism g.

Thus, g is a symmetric strategyproof mechanism that provides a weakly better approximation

ratio than f and which satisfies P(g(x) ∈ {x1, x2,mx}) = 1 for every location profile x.

Now we are ready to prove the main theorem.

Theorem 4. The LRM mechanism gives the best approximation ratio among all strategyproof

mechanisms that are shift and scale invariant.

Proof. By the previous lemma, it suffices to search among the class of strategyproof shift, scale

invariant and symmetric mechanisms where any element f of the class satisfies the property that

P(f(x) ∈ {x1, x2,mx}) = 1. It is not difficult to see that in order to enforce strategyproofness, we
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must have that P(f(x) ∈ {x1, x2}) ≥ 0.5, which implies that among all such mechanisms, LRM

provides the best approximation ratio of 0.5(2
1− 1

p + 1).

An immediate consequence of Theorem 4 is the following corollary.

Corollary 1. Any strategyproof shift and scale invariant mechanism has an approximation of at

least 0.5(2
1− 1

p + 1) in the worst case.

5 Discussion

The most important open question in our view is whether or not randomization can help improve

the worst-case approximation ratio for general Lp norm cost functions. The case of p = 1 is

uninteresting because there is an optimal deterministic mechanism; for p = 2 and p = ∞ we

already saw that randomization improves the worst-case approximation ratio, but we do not

know if this is simply a happy coincidence, or if one can obtain similar results for all p > 2.

Our negative result in Section 4 implies that any improvement by randomization would require a

different approach than the existing mechanisms.

There are many other natural questions as well: for instance, what happens for more general

topologies such as trees or cycles? Is it possible to characterize all randomized strategy-proof

mechanisms on specific topologies?

Finally, we believe it is of interest to consider more general cost functions for the individual

agents. The properties established for the LRM and many other randomized mechanisms depend

on the assumption that agents incur costs that are exactly equal to the distance to access the

facility. Clearly, this is a very restrictive assumption, and working with more general individual

agent costs is a promising direction to broaden the applicability of this class of models.9
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