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CONVEX DUALITY WITH TRANSACTION COSTS

YAN DOLINSKY AND H.METE SONER

HEBREW UNIVERSITY OF JERUSALEM AND ETH ZURICH

Abstract. Convex duality for two two different super–replication problems
in a continuous time financial market with proportional transaction cost is
proved. In this market, static hedging in a finite number of options, in addition
to usual dynamic hedging with the underlying stock, are allowed. The first
one of the problems considered is the model–independent hedging that requires
the super–replication to hold for every continuous path. In the second one the
market model is given through a probability measure P and the inequalities
are understood P almost surely. The main result, using the convex duality,
proves that the two super–replication problems have the same value provided
that P satisfies the conditional full support property. Hence, the transaction
costs prevents one from using the structure of a specific model to reduce the
super–replication cost.

1. Introduction

The problem of super-replication is a convex optimization problem in which
the investor minimizes the cost of a portfolio among those satisfying the hedging
constraints. In the classical case the financial market is frictionless and the investors
can buy or sell any quantity of the stocks and other financial instruments at the same
price. Then, the corresponding problem is linear and the optimization problem is in
fact an infinite dimensional linear program. In the quantitative finance literature,
this problem is well studied and is known to be related to arbitrage. One central
result is a convex duality result, which contains deep financial insights including
the fundamental theorem of asset pricing.

In the celebrated papers [9, 10, 18] the financial market is modelled through a
probability measure P that describes the future movements of the stock prices in
the time interval [0, T ]. The stock price process S and the measure P are defined
on a probability space Ω and a filtration F = {Ft}{t∈[0,T ]}. The main object of
study is an uncertain liability that will be revealed in the future. It is usually
modelled through a FT measurable random variable ξ and the main goal is to
reduce the risk related to ξ by appropriately trading in the financial market. The
investment opportunities is given abstractly through a linear set Â denoting the set
of all admissible portfolios π with a final portfolio value Zπ

T at time T . Then, the
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2 Y.Dolinsky and H.M.Soner

super-replication problem is to minimize the cost among all portfolios that reduces
the risk related to the liability ξ to zero. Mathematically,

(1.1) V (ξ) := inf
{

L(π) : ∃π ∈ Â such that Zπ
T ≥ ξ, P− a.s.

}

,

where L(π) ∈ R is the cost of the portfolio π. Once a market model is fixed through
a probability measure P, then all statements are supposed to be understood P-
almost surely. Hence, the only role of the probability measure P is to describe
the null sets or equivalently all impossible future scenarios. Any other probability
measure that is equivalent to P (i.e., any measure with the same null sets) would
yield the same super-replication cost. This problem is studied extensively when
the market is frictionless or equivalently L is linear and when only the adapted
dynamic trading of the stock without constraints is considered. Under no-arbitrage
type assumptions and mild technical integrability conditions, the convex dual is the
following maximization problem,

D(ξ) := sup
Q∈Q

EQ [ξ] ,

where Q is the set of all “martingale” measures that are equivalent to P. Precise
statements in continuous time are technical and we refer the reader to the seminal
paper of Delbaen & Schachermayer [10].

These classical results were then extended to markets with trading frictions. It
is shown that super-replication in markets with (proportional) transaction costs
is prohibitively costly as first proved in Soner Shreve & Cvitanic [23] and later
generalized in Leventhal & Skorohod [19], Cvitanic, Pham & Touzi [8], Bouchard &
Touzi [6], Jakubenas, Levental, & Ryznar [17], Guasoni, Rasonyi & Schachermayer
[15], Blum [4] and for the game options in Dolinsky [11]. In all of these examples,
the super-replication cost is minimized among all “trivial” strategies. Hence, the
investor does not benefit from dynamic hedging when the objective is to super
replicate with certainty. Also in all of these examples not the null sets of P but
rather the support of it is important. The related question of fundamental theorem
of asset pricing and super-heding duality with a given P is studied by Schachermayer
[20, 21] and the references therein.

One may reduce the hedging cost by including liquid derivatives in the super-
replicating portfolio. In particular, this might be the case for semi-static hedging
which is detailed in the next section. Namely, the investor is allowed to take
static positions in a finite number of options (written on the underlying asset) with
initially known prices. In addition to these static option positions, the stock is also
traded dynamically and all of these trades are subject to proportional transaction
costs. In terms of the above notation, the set Â of admissible portfolios is enlarged
by static option trades but the transaction costs make the cost functional L to be
convex rather than to be linear as in the classical papers. We refer the reader to
the survey of Hobson [16], a recent paper of the authors [14] and the references
therein for information on semi-static hedging in continuous time.

While the model-independent approach with semi-static hedging received con-
siderable attention in recent years, there are only few results for such markets with
friction. Indeed, recently the authors proved a model independent duality result for
semi–static hedging with transaction costs in discrete time [13]. Again in discrete
time a fundamental theorem asset pricing was studied in Bayraktar & Zhang [2]
and in Bouchard & Nutz [5] in markets with transaction costs. These later papers
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consider the quasi-sure criterion given by a set of probabilistic models. To the best
of our knowledge, in continuous time semi–static hedging with transaction costs
under model uncertainty has not yet been studied.

In this paper, we consider a continuous time financial market which consists of
one risky asset with continuous paths. In such a financial market we study two
super–replication problems of a given (path dependent) European option. We as-
sume that the dynamic hedging of the stock as well as the static option trading
are subject to transaction fees. In the first problem, the market model is given
through a probability measure P. Then, the optimization problem corresponds to a
straightforward extension of (1.1). The second one is the model–independent prob-
lem referring to super–replication for all continuous stock price processes. Namely,
in (1.1) we require the inequality Zπ

T ≥ ξ to hold not P-almost surely but rather
for every possible stock price path. These definitions are given in the subsection
2.5 below.

Our main result Theorem 2.7 states that these two problems described above
have the same value provided that the distribution P of the stock price process
satisfies the conditional full support property, see Definition 2.6 below. Hence, in
the presence of transaction costs the knowledge of the model does not reduce the
super–replication cost. This explains the earlier results on super-replication with
friction and why the optimal hedge in these examples are the trivial ones.

Theorem 2.7 is proved under regularity Assumptions 2.1, 2.2 and a no-arbitrage
type of condition Assumption 2.3, below. However, we do not assume any admis-
sibility conditions on the portfolio. Furthermore, we provide a duality result for
the mutual value in terms of consistent price systems on the space of continuous
functions that are consistent with the option prices. This duality is very similar to
the one proved in discrete time in [13].

The proof of Theorem 2.7 is completed in four major steps. First, we reduce
the problem to bounded payoffs by applying the pathwise inequalities which were
obtained in Acciaio et.al. [1] and earlier by Burkholder [7]. In the second step, we
obtain a lower bound for the super–replication cost in the case where the model is
given. This bound is expressed in terms of modified model–free super–replication
problems with appropriately lowered rate of transaction costs. The third step is to
derive an upper bound for the model–free problem. This step is done by applying
the recent results of Schachermayer [21] together with a lifting procedure similar
to the one developed in our earlier work [12]. The last step is a probabilistic proof
for the equality between (the asymptotic behaviour of) the lower and the upper
bounds.

The paper is organised as follows. Main results are formulated in the next
section. In Section 3, we reduce the problem to bounded claims. A lower bound
for the super–replication price in a given model is obtained in Section 4. Section 5
derives an upper bound for the model–free super–replication price. The last section
is devoted to the proof of the equality between the lower and the upper bounds.
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2. Preliminaries and main results

2.1. Market and Notation. The financial market consists of a savings account
which is normalized to unity Bt ≡ 1 by discounting and of a risky asset St, t ∈ [0, T ],
where T < ∞ is the maturity date. Let s := S0 > 0 be the initial stock price and
without loss of generality set s = 1. We assume that the risky asset could be any
continuous process with this initial data.

In the sequel, we use the following notations. For s ≥ 0, t ∈ [0, T ), we set

C+
s [t, T ] := { f : [t, T ] → [0,∞) | f is continuous, f(t) = s } ,

C+[t, T ] :=
⋃

s≥0

C+
s [t, T ]

and for s > 0,

C++
s [t, T ] :=

{

f ∈ C+
s [t, T ] | f(u) > 0, ∀u ∈ [t, T ]

}

,

C++[t, T ] :=
⋃

s>0

C++
s [t, T ].

Then,
Ω := C++

1 [0, T ]

represents the set of all possible stock prices or the probability space. We let
S = (St)0≤t≤T be the canonical process given by St(ω) := ωt, for all ω ∈ Ω and
Ft := σ(Ss, 0 ≤ s ≤ t) be the canonical filtration (which is not right continuous).
We say that a probability measure Q on the space (Ω,F) is a martingale measure,
if the canonical process (St)

T
t=0 is a martingale with respect to Q.

Further we let

D[0, T ] := { f : [t, T ] → [0,∞) | f is càdlàg } ,
be the Skorokhod space of càdlàg functions with the usual sup-norm

‖υ‖ := sup
0≤t≤T

|υt|.

2.2. The claim and its regularity. We model the liability of the claim through a
deterministic map of the whole stock price process. Indeed, for a given deterministic
map

G : D[0, T ] → R+,

a general path dependent European option has the payoff ξ = G(S). Hence, al-
though we consider only continuous stock price processes, we implicitly assume that
the option is defined for all bounded measurable maps.

Our regularity assumption on the payoff is the same as the one used in [12].
For the convenience of the reader we briefly review this assumption, but refer to
[12] for an extended discussion and its connection with the Skorokhod metric. In
particular, all options on the running maximum and Asian type options satisfy it.
We make the following standing assumption on G.

Assumption 2.1. We assume that there exists a constant L > 0 satisfying,
i.

|G(ω)−G(ω̃)| ≤ L‖ω − ω̃‖, ω, ω̃ ∈ D[0, T ],

ii. and

|G(υ)−G(υ̃)| ≤ L‖υ‖
n
∑

k=1

|∆tk −∆t̃k|,
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for every piecewise constant functions υ, υ̃ ∈ D[0, T ] of the form

υt =

n−1
∑

i=0

viχ[ti,ti+1)(t) + vnχ[tn,T ](t) and υ̃t =

n−1
∑

i=0

viχ[t̃i,t̃i+1)(t) + vnχ[t̃n,T ](t),

where t0 = 0 < t1 < ... < tn < T , t̃0 = 0 < t̃1 < ... < t̃n < T are two partitions and
as usual ∆tk := tk − tk−1, ∆t̃k := t̃k − t̃k−1, χA is the characteristic function.

2.3. Static Positions. Next we describe the assumptions on the static options.
We assume that there are N many options

f1, ..., fN : D[0, T ] → R

that are initially available for static hedging. These options may be path dependent.
We assume that their prices L1, ...,LN ∈ R are known and that we can take static
long positions on these options. In this context, short positions can also be allowed
by including the negative of the options, but the prices of these two (option and
its negative) should add up to a positive value equaling the bid-ask spread on this
option. Set

F(S) := (1, f1(S), ..., fN (S)) and L := (1,L1, ...,LN ),

where the first function which is identically equal to one stands for investment in
the non risky asset and we assume that the investor can take long or short positions
only in this option. But as discussed before, we allow only long positions in the other
options. Thus, a static position in the these options is represented by c ∈ R× RN

+

indicating an investment of a European option with the payoff c ·F(S) for the price

(2.1) L(c) := c · L,
where · denotes the standard inner product of RN+1.

We assume that the static options satisfy some regularity assumptions and one
of the static options has a super quadratic growth. More precisely, we assume the
following.

Assumption 2.2. Functions f1, ..., fN−1 satisfy Assumption 2.1. We also assume
that if fi is path dependent (i.e. do not depend only on the value of the stock at
the maturity) then it is bounded. For i = N , we assume that fN (ω) = q(ωT ) where
q : R+ → R+ is a convex function satisfying

|q(x) − q(y)| ≤ L|x− y|
(

1 +
q(x)

x
+
q(y)

y

)

, ∀x, y > 0

and

(2.2) lim inf
x→∞

q(x)

x2
> 0.

�

Since we consider hedging under proportional transaction costs, it is reasonable
to assume that the options f1(S), ..., fN (S) are also subject to transaction costs.
This together with no-arbitrage considerations (see also [2, 5]) leads us to the
following assumption.
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Assumption 2.3. There exists a martingale measure Q on the canonical space
(Ω,F) such that

EQ [fi(S)] < Li, ∀i = 1, . . .N,

where EQ denotes the expectation with respect to the probability measure Q.
�

Remark 2.4 (Comments on the assumptions). In this paper we assume that
there are only finitely many static options. This setup is different from the one in
[12, 13, 14] where we assumed that the set of static options equals to {f(ST ) : f :
R+ → R} (and includes power options). The present assumptions seem to be more
realistic. We still assume that we have an option with super quadratic payoff fN .
This is needed for reducing the problem to bounded claims and for dealing with
the hedging and the pricing error estimates arising in our discretization procedure.
In fact, it is sufficient to include an option with super linear payoff, however for
the simplicity of computations we assume super–quadratic growth. Since the
main focus of this paper is the equivalence between two different super-replication
problems, we do not seek the most general assumptions on the static options. It is
plausible that the main result holds under weaker assumptions. In particular, for
bounded claims one might be able to avoid the use of the quadratic option as in
[13].

The second assumption states that there exist a linear pricing rule that is consis-
tent with the observed option data. This implies in particular no-arbitrage in this
market. Also the strict inequality implies that the options are subject to propor-
tional transaction costs. The equivalence of no-arbitrage and the existence of such
measures is in fact a difficult question. Only recently several discrete time results
in this direction were proved in [2, 5].

�

2.4. Hedging with transaction costs. We continue by describing the continuous
time trading with proportional transaction costs, in the underlying asset S. Let
κ ∈ (0, 1) be the proportional transaction cost rate. Denote by γt the number of
shares of the risky asset in the portfolio π at moment of time t before the transaction
at this time. Due to transaction costs it has to be of bounded variation. Hence, we

assume that the process γ = {γt}Tt=0 is an adapted process (to the raw filtration
generated by the stock price process) of bounded variation with left continuous
paths with γ0 = 0. Let

γt = γ+t − γ−t

be a decomposition of γ into positive and negative variations. Namely, γ+t denotes
the cumulative number of stocks purchased up to time t not including the transfers
made at time t and respectively, γ−t , denotes the cumulative number of stocks, sold
up to time t again not including the transfers made at time t. Let A be the set of
all such processes.

In this financial market, a hedge is a pair π = (c, γ) ∈ Â := R×RN
+ ×A and the

corresponding portfolio liquidation value at the maturity date T is given by

Zπ
T (S) := c · F(S) + [γT − κ|γT |] ST

+(1− κ)

∫

[0,T ]

Su dγ
−
u − (1 + κ)

∫

[0,T ]

Su dγ
+
u ,
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where the above integrals are the standard Stieltjes integrals and F(S) is as in
subsection 2.3. Notice that the term −κ|γT | ST in the first line is due to liquidation
cost at maturity. The cost of this portfolio π = (c, γ) is equal to L(c) as defined in
(2.1).

2.5. Super–replication problems. In this subsection, we introduce two super–
replication problems. For the liability ξ = G(S), the model–free super–replication
cost is defined by

Vκ(G) := inf
{

L(c) : ∃π ∈ Â = R× RN
+ ×A so that Zπ

T (S) ≥ G(S) ∀S ∈ Ω
}

.

For the second problem, we assume that a probability measure P on the canonical
space Ω is given. Then, the corresponding problem is

V P
κ (G) := inf

{

L(c) : ∃π ∈ Â = R× RN
+ ×A so that Zπ

T (S) ≥ G(S) P− a.s
}

.

The main goal of this paper is to obtain the convex duality for these functionals
and prove that they are equal if the measure P has conditional full support as
defined in the next subsection.

2.6. Main Results. In order to formulate our results we need the following defi-
nitions. Recall that C++[t, T ] and the canonical space Ω = C++

1 [t, T ] are defined in
subsection 2.1.

Definition 2.5. Consider the sample space Ω̂ := Ω×C++[0, T ]. Let Ŝ = (S(1), S(2))

be the canonical process on Ω̂ and F̂t := σ(Ŝs, 0 ≤ s ≤ t) be the canonical filtration.

A (κ,L) consistent price system is a probability measure Q̂ on Ω̂ satisfying,

(1) S(2) is a Q̂ martingale with respect to F̂;

(2) (1 − κ)S
(1)
t ≤ S

(2)
t ≤ (1 + κ)S

(1)
t , Q̂–a.s.

(3) E
Q̂

[

fi(S
(1))
]

≤ Li, for all i = 1, . . . , N.

The set of all (κ,L) consistent price systems is denoted by Mκ,L. �

Next we recall the notion of conditional full support. As usual, the support of a
a probability measure P on a separable space, denoted by supp P, is defined as the
minimal closed set of full measure.

Definition 2.6. We say that a probability measure P has the conditional full
support property if for all t ∈ [0, T )

supp P(S|[t,T ]|Ft) = C+
St
[t, T ] a.s.

where P(S|[t,T ]|Ft) denotes the Ft–conditional distribution of the C+[t, T ] valued
random variable S|[t,T ] which is the restriction of the canonical process to [t, T ].

We are ready to state our main result.

Theorem 2.7. Suppose Assumptions 2.1, 2.2, 2.3 hold. Assume 0 < κ < 1/8 and
let P be a probability measure which satisfies the conditional full support property.
Then,

V P
κ (G) = Vκ(G) = sup

Q̂∈Mκ,L

E
Q̂
[G(S(1))].
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Clearly, V P
κ (G) ≤ Vκ(G). Therefore, in order to prove Theorem 2.7 it suffices to

prove the following two inequalities,

(2.3) V P
κ (G) ≥ sup

Q̂∈Mκ,L

E
Q̂
[G(S(1))]

and

(2.4) Vκ(G) ≤ sup
Q̂∈Mκ,L

E
Q̂
[G(S(1))].

The lower bound (2.3) is proved in Lemma 6.2 and the upper bound (2.4) is estab-
lished in Lemma 6.3.

In the sequel, we always assume, without explicitly stating, that 0 < κ < 1/8.

3. Reduction to Bounded Claims

The following result shows that in this market one can hedge certain claims in
the tails with small cost. Similarly, to [12, 13], the proof is done by combining
assumption (2.2) and the results of [1].

Lemma 3.1. For any K > 0 consider the European claim

αK(S) :=
||S||
K

+ ||S||χ{||S||≥K}(S), S ∈ Ω,

where as before χA is the characteristic function. Under Assumption 2.2,

lim
K→∞

Vκ(αK) = 0.

Proof. Let

θ0 := θ0(S) = 0

and for a positive integer k we recursively define the stopping times by,

θk := θk(S) = T ∧ inf{t > θk−1 : |St − Sθk−1
| = 1}.

Let K := K(S) = min{k : θk = T }. Clearly, K < ∞ for every S ∈ Ω. By (2.2), it
follows that there exists cq > 1 such that

(3.1) q(x) ≥ x2

cq
, ∀x ≥ cq.

Consider the portfolio π = (c, γ) where

γt = −
K−1
∑

i=0

max
0≤j≤i

Sθj χ(θi,θi+1](t), t ∈ [0, T ],

and

c = (c2q, 0, ..., 0, cq),

i.e., we buy cq many options q(ST ) and invest in the riskless asset c2q dollars. By
summation by parts, Proposition 2.1 in Acciaio et.al [1] (see also Burkholder [7])
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and (3.1), it follows that

Zπ
T (S) = c2q + cqq(ST )−

K−1
∑

i=0

[

max
0≤j≤i

Sθj

]

(Sθi+1 − Sθi)

−κ
K−1
∑

i=1

Sθi

[

max
0≤j≤i

Sθj − max
0≤j≤i−1

Sθj

]

−κS2
0 − κST

[

max
0≤j≤K−1

Sθj

]

≥ (1− 8κ)

4
max
0≤j≤K

S2
θj .

Observe that
||S|| ≤ 1 + max

0≤j≤K
Sθj ≤ 2 max

0≤j≤K
Sθj .

Also, since for any S ∈ Ω, S0 = 1, ‖S‖ ≥ 1. Hence,

KαK(S) ≤ ‖S‖+ ‖S‖2 ≤ 2‖S‖2 ≤ 8 max
0≤j≤K

S2
θj .

Thus, (recall that κ < 1
8 )

Zπ
T (S) ≥

(1− 8κ)

4

(

max
0≤j≤K

S2
θj

)

≥ K(1− 8κ)

32
αK(S).

We conclude that the super-replication cost of [K(1− 8κ)/32] αK is no more than
the cost of this portfolio. Hence,

(3.2) Vκ(αK) ≤ 32

(1− 8κ)

c2q + cqLN

K

and the result follows after taking K to infinity. �

Next, we establish the reduction to bounded claims.

Lemma 3.2. Under the assumptions of Theorem 2.7,, it sufficient to prove Theo-
rem 2.7 for bounded claims.

Proof. Let L be the Lispschitz constant in Assumption 2.1. For any K ≥ 1 set

GK(S) := G(S) ∧ [LK +G(0)], S ∈ Ω.

From Assumption 2.1, it follows that G(S) ≤ G(0) + L‖S‖. Therefore, for all
K ≥ 1,

G(S) ≤ GK(S) + (G(0) + L)αK(S).

Consequently,

Vκ(G) ≤ Vκ(GK) + (G(0) + L)Vκ(αK), V P
κ (G) ≤ V P

κ (GK) + (G(0) + L)Vκ(αK).

Since GK is bounded, if Theorem 2.7 holds for such claim, by the monotone con-
vergence theorem we would have

Vκ(G) = lim
K→∞

Vκ(GK) = lim
K→∞

sup
Q∈Mκ,L

EQ[GK(S(1))] = sup
Q∈Mκ,L

EQ[G(S
(1))].

Similar identities hold for V P
κ (G) as well, proving the main theorem for all claims

satisfying the Assumption 2.1. �

From now on, we will assume (without loss of generality) that there exists a
constant K > 0 such that 0 ≤ G ≤ K.
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4. Lower Bound

In this section we establish estimates for the lower bound (2.3), under the as-
sumptions of Theorem 2.7. We start with several definitions.

Recall that D[0, T ] is the set of all càdlàgfunctions f : [0, T ] → R+. Denote by S̃t

the canonical process (i.e., S̃t(ω) := ωt) on D[0, T ]. As usual, we consider the Borel
σ–algebra with respect to the sup norm (this Borel σ–algebra coincides with the

one generated by the Skorohod topology). Let F̃t = σ{S̃u|u ≤ t} be the canonical
filtration.

Let ǫ > 0, n ∈ N and T := {T1, ..., Tn, T } be a partition of the interval [0, T ], i.e.,
0 < T1 < ... < Tn < T . In the sequel we shall always assume that ǫ < ln(1 + 1/L)
and ǫ < Ti+1 − Ti, i = 0, 1, ..., n− 1.

Definition 4.1. For any 0 < κ̃ < κ, let MT ,ǫ
κ̃,L be the set of all probability measures

Q̃ on the space D[0, T ] satisfying,

(1) The canonical process S̃ is of the form

S̃t =

n−1
∑

i=0

S̃
τ̃
(ǫ)
k

χ
[τ̃

(ǫ)
k

,τ̃
(ǫ)
k+1)

+ S̃
τ̃
(ǫ)
n
χ
[τ̃

(ǫ)
k

,τ̃
(ǫ)
n+1]

,

where 0 = τ̃
(ǫ)
0 ≤ τ̃

(ǫ)
1 ≤ ... ≤ τ̃

(ǫ)
n+1 = T and S̃0 = 1.

(2) For any k ≤ n, on the event τ̃
(ǫ)
k+1 < T we have

| ln S̃
τ̃
(ǫ)
k+1

− ln S̃
τ̃
(ǫ)
k

| = ǫ.

(3) For any 1 ≤ k ≤ n+ 1, τ̃
(ǫ)
k ∈ T , Q̃-a.s.

(4) There exists a (Q̃, F̃) càdlàg martingale {M̃t}
T

t=0 such that

(1− κ̃)S̃t ≤ M̃t ≤ (1 + κ̃)S̃t Q̃-a.s.;

(5) Finally,

E
Q̃
[fi(S̃)] ≤ Li − LĈ(e4ǫ + ǫ− 1), i = 1, ..., N − 1,

EQ̃[fN(S̃)] ≤ LN (1− L(eǫ − 1))− LĈ(eǫ − 1)

1 + L(eǫ − 1)
,

where Ĉ := 8
√

c2q + cqLN , and cq is given in (3.1).

�

The following result provides a lower bound on the super–replication price V P
κ (G).

Lemma 4.2. Let P be a probability measure on Ω which satisfies the conditional
full support property. Assume that

(4.1) min

(

1 + κ

1 + κ̃
,
1− κ̃

1− κ

)

≥ e2ǫ.

Then, for every partition T = {T1, . . . , Tn, T },
V P
κ (G) ≥ sup

Q̃∈MT ,ǫ
κ̃,L

E
Q̃
[G(S̃)]− LĈ(e4ǫ + ǫ− 1).

We always use the standard convention that the supremum over the empty set is
minus infinity.
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Proof. Fix, ǫ > 0 κ̃, T as above. If MT ,ǫ
κ̃,L = ∅ then the statement is trivial. Thus

without loss of generality we assume that MT ,ǫ
κ̃,L 6= ∅. We fix an arbitrary measure

Q̃ ∈ MT ,ǫ
κ̃,L and we will show that

(4.2) V P
κ (G) ≥ EQ̃[G(S̃)]− LĈ(e4ǫ + ǫ− 1).

The proof of the above inequality is completed in two steps. In the first step we use
the conditional full support property of P and construct a consistent price system
which is ”close” to Q̃. In the second step we use the super–replication property
and the constructed consistent price system in order to obtain a lower bound on
the price.

First step: In this step, we use the conditional full support property of P in a
similar way to Guasoni, Rasonyi and Schachermayer [15].

Set τ
(ǫ)
0 := τ

(ǫ)
0 (S) = 0, and for any positive integer k > 0, recursively define

τ
(ǫ)
k := τ

(ǫ)
k (S) = T ∧ inf

{

t > τ
(ǫ)
k−1 : | lnSt − ln S

τ
(ǫ)
k−1

| = ǫ
}

where as before we denote by S the canonical process on Ω. Define a random integer
by,

K := K(S) = min{k : τ
(ǫ)
k = T } − 1.

Then, it is clear that 0 ≤ K <∞. We also set,

Sk := S
τ
(ǫ)
k∧K

, 1 ≤ k ≤ n+ 1,

and

(4.3) σk = min{t ∈ T : t ≥ τ
(ǫ)
k }.

Recall that the positive integer n is the number of points in the fixed partition
T = {T1, . . . , Tn, T }.

For δ > 0, i = 1, ..., n and j = ±1, let gi,j : [0, Ti] → R+, be the linear functions
satisfying

gi,j0 = 1, and gi,jTi
= eǫj + 2δj.

We assume that δ is sufficiently small so that gi,j is strictly positive. Next, on Ω
we define the events

A
(j)
i := { sup

0≤t≤Ti

|St − gi,jt | < δ}, i = 1, ..., n, j = ±1

A
(0)
T := { sup

0≤t≤T
| St − 1| < δ}.

In view of the conditional full support property, all of these events have non-zero
P probability. Also, observe that for sufficiently small δ, for i = 1, . . . , n, j = ±1

A
(j)
i ⊆ B

(j)
i := {τ (ǫ)1 ∈ [Ti − ǫ/n, Ti], Sτ (ǫ)

1
= exp(±ǫ)}.

Also A
(0)
T ⊂ B

(0)
T := {τ (ǫ)1 = T }. Thus, we conclude that the events B

(0)
T , B

(j)
i ,

i = 1, ..., n, j = ±1 have non-zero P probabilities as well.
We proceed by induction. Assume that for a given k ≥ 1 and any j1, ..., jk = ±1,

1 ≤ i1 < ... < ik ≤ n, we have proved that the probability of the sets

B
(j1,...,jk)
i1,...,ik

:=

k
⋂

m=1

{

τ (ǫ)m ∈ [Tim − ǫ/n, Tim ], S
τ
(ǫ)
m

= exp(ǫ

m
∑

r=1

jr)

}
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and

B
(j1,...,jk−1,0)
i1,...,ik−1,T

:=

k−1
⋂

m=1

{

τ (ǫ)m ∈ [Tim − ǫ/n, Tim ], S
τ
(ǫ)
m

= exp(ǫ

m
∑

r=1

jr)

}

⋂

{τ (ǫ)k = T }

have non-zero P probabilities.

Let j1, ..., jk+1 = ±1, 1 ≤ i1 < ... < ik+1 ≤ n. On the event τ
(ǫ)
k ≤ Tik define the

random, linear function gik+1,jk+1 : [τ
(ǫ)
k , Tik+1

] → R+ by

g
ik+1,jk+1

τ
(ǫ)
k

= exp(ǫ
k
∑

r=1

jr) and g
ik+1,jk+1

Tik+1
= exp(ǫ

k+1
∑

r=1

jr) + 2δjk+1.

From the conditional full support property and Lemma 2.9 in Guasoni, Rasonyi
and Schachermayer (2008), it follows that for any event B ∈ F

τ
(ǫ)
k

the conditional

probabilities

P



 sup
τ
(ǫ)
k

≤t≤Tik+1

| St − g
ik+1,jk+1

t | < δ | B(j1,...,jk)
i1,...,ik

∩B



 > 0,

and

P



 sup
τ
(ǫ)
k

≤t≤T

| St − exp(ǫ

k
∑

r=1

jr) | < δ | B(j1,...,jk)
i1,...,ik

∩B



 > 0,

provided that P(B
(j1,...,jk)
i1,...,ik

∩ B) > 0. Thus, similarly to the case k = 1, for suffi-
ciently small δ we conclude that the P probabilities of the following events

B
(j1,...,jk+1)
i1,...,ik+1

:=

k+1
⋂

m=1

{

τ (ǫ)m ∈ [Tim − ǫ/n, Tim ], S
τ
(ǫ)
m

= exp(ǫ

m
∑

r=1

jr)

}

and

B
(j1,...,jk,0)
i1,...,ik,T

:=

k
⋂

m=1

{

τ (ǫ)m ∈ [Tim − ǫ/n, Tim ], S
τ
(ǫ)
m

= exp(ǫ

m
∑

r=1

jr)

}

⋂

{τ (ǫ)k+1 = T }

are positive. This holds true for any k ≤ n+ 1.

Recall the measure Q̃ ∈ MT ,ǫ
κ̃,L that was fixed at the start of the proof and

the σk’s defined by (4.3). In view of the above discussion, and by using simi-
lar arguments as in Lemma 2.4 in Guasoni, Rasonyi and Schachermayer (2008),

it follows that there exists another probability measure Q̂ ≪ P such that the

distribution of (S1, ..., Sn+1, σ1, ..., σn+1) under Q̂ is equal to the distribution of

(S̃
τ̃
(ǫ)
1
, . . . , S̃

τ̃
(ǫ)
n+1

, τ̃
(ǫ)
1 , ..., τ̃

(ǫ)
n+1) under Q̃, and in addition for any i ≤ n, we have

(4.4) Q̂(Si+1, σi+1|Fτ
(ǫ)
i

) = Q̂(Si+1, σi+1|S1, ..., Si, σ1, ..., σi), Q̂ a.s.

Also observe that from our construction it follows that for any k,

(4.5) |σk − τ
(ǫ)
k | ≤ ǫ

n
, Q̂ a.s.

and

(4.6) Sk+1e
−2ǫ ≤ St ≤ Sk+1e

2ǫ, ∀t ∈ [τ
(ǫ)
k , τ

(ǫ)
k+1] Q̂ a.s.

Now, we arrive to the second step of the proof.
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Second step: Since Q̃ ∈ MT ,ǫ
κ̃,L, the definition of this set implies that there

exists an associated martingale {M̃t}
T

t=0 which satisfies

(1− κ̃)S̃t ≤ M̃t ≤ (1 + κ̃)S̃t, t ∈ [0, T ] Q̃ a.s.

Then, for any k ≤ n+ 1 there exists a measurable function

ψk : Rk × T → R+

such that

M̃
τ̃
(ǫ)
k

= ψk(S̃τ̃ (ǫ)
1
, . . . , S̃

τ̃
(ǫ)
k

, τ̃
(ǫ)
1 , ..., τ̃

(ǫ)
k ).

Moreover,

(4.7) (1− κ̃)S̃
τ̃
(ǫ)
k

≤ M̃
τ̃
(ǫ)
k

≤ (1 + κ̃)S̃
τ̃
(ǫ)
k

, k ≤ n+ 1 Q̃ a.s.

Then, on Ω we define the stochastic process M simply by

Mk = ψk(S1, ..., Sk, σ1, ..., σk).

In view of (4.4) anf (4.7), it follows that for any k,

(4.8) E
Q̂
(Mk+1 | F

τ
(ǫ)
k

) =Mk

and

(4.9) (1− κ̃)Sk ≤Mk ≤ (1 + κ̃)Sk Q̂ a.s.

Now, let π = (c, γ) be a P almost-surely super-replicating portfolio. By (4.1),
(4.6)–(4.9) and by summation by parts, it follows that

E
Q̂

(

γTST − κ|γT |ST + (1− κ)

∫

[0,T ]

Sudγ
−
u − (1 + κ)

∫

[0,T ]

Sudγ
+
u

)

(4.10)

≤ E
Q̂

(

γTMn+1 + (1− κ̃)

n
∑

k=0

Sk+1

∫

[τ
(ǫ)
k

,τ
(ǫ)
k+1

]

dγ−u

)

−E
Q̂

(

(1 + κ̃)

n
∑

k=0

Sk+1

∫

[τ
(ǫ)
k

,τ
(ǫ)
k+1]

dγ+u

)

≤ E
Q̂

(

γTMn+1 +

n
∑

k=0

Mk+1

(

∫

[τ
(ǫ)
k

,τ
(ǫ)
k+1]

dγ−u −
∫

[τ
(ǫ)
k

,τ
(ǫ)
k+1]

dγ+u

))

= E
Q̂
(

n
∑

k=1

γ
τ
(ǫ)
k

(Mk+1 −Mk)) = 0.

Next, we introduce the stochastic process {S̃t}
T

t=0 by,

S̃t :=

n−1
∑

k=0

Skχ[σk,σk+1)(t) + Snχ[σn,T ](t),

where we set σ0 = 0. From our construction, it follows that the distribution (on the

space D[0, T ]) of {S̃t}
T

t=0 under Q̂ is equal to the distribution of S̃ under Q̃. Thus,

(4.11) E
Q̂
G(S̃) = E

Q̃
G(S̃) and E

Q̂
fi(S̃) = E

Q̃
fi(S̃), i ≤ N.
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We next use the Assumption 2.1 and the properties (4.5)–(4.6). The result is the

following inequalities that hold Q̂ a.s.,

|G(S̃)−G(S)| ≤ L(e4ǫ + ǫ− 1)‖S̃‖,(4.12)

|fi(S̃)− fi(S)| ≤ L(e4ǫ + ǫ− 1)‖S̃‖, for i ≤ N − 1.

From Assumption 2.2 it follows that (recall that eǫ < L+1
L ) for any positive real

numbers x, y

| lnx− ln y| ≤ ǫ⇒ q(y) ≤ q(x)(1 + L(eǫ − 1)) + L(eǫ − 1)x

1− L(eǫ − 1)
.

We conclude that

(4.13) fN(S) ≤ fN(S̃)(1 + L(eǫ − 1)) + L(eǫ − 1)||S̃||
1− L(eǫ − 1)

Q̂ a.s.

From (3.1), Assumption 2.2 and the Doob inequality, it follows that

E
Q̂
[‖S̃‖2] = EQ̃[‖S̃‖2] ≤ 4EQ̃[‖M̃‖2] ≤ 16EQ̃[M̃

2
T ]

≤ 64E
Q̃
[S̃2T ] ≤ 64[c2q + cqLN ] = Ĉ2,

where the constants Ĉ and cq are as in Definition 4.1. Also, the Holder inequality
yields that

(4.14) E
Q̂
[‖S̃‖] ≤ Ĉ.

Finally (4.11)–(4.14) and the fact that Q̃ ∈ MT ,ǫ
κ̃,L implies that E

Q̂
fi(S) ≤ Li, for

every i ≤ N . Therefore, using (4.10)–(4.14) and the relation Q̂ ≪ P , we arrive at

L(c) ≥ E
Q̂
[c · f(S)] ≥ E

Q̂
[G(S)] ≥ E

Q̃
G[(S̃)]− LĈ(e4ǫ + ǫ − 1).

Since the above inequality holds for every P almost-surely super-replicating strategy
π = (c, γ), this proves the inequality (4.2) and completes the proof of this lemma.

�

5. Estimates for the Upper Bound

In this section we establish estimates that will be used in the proof of the upper
bound, under the assumptions of Theorem 2.7.

We fix ǫ ∈ (0, ln(1 + 1/L)) and start with two definitions.

Definition 5.1. A function F ∈ D[0, T ] belongs to D(ǫ), if it satisfies the followings,

(1) F0 = 1.
(2) F is piecewise constant with jumps at times t1, ..., tn, where

t0 = 0 < t1 < t2 < ... < tn < T.

(3) For any k = 1, ..., n, | lnFtk − lnFtk−1
| = ǫ.

(4) For any k = 1, ..., n, tk − tk−1 ∈ U
(ǫ)
k , where

U
(ǫ)
k :=

{

iǫ/(2k) : i = 1, 2, . . . ,
}

∪
{

ǫ/(i2k) : i = 1, 2, . . . ,
}

,

are the sets of possible differences between two consecutive jump times. We

emphasise, in the fourth condition, the dependence of the set U
(ǫ)
k on k. So

as k gets larger, jump times take values in a finer grid.

�
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Definition 5.2. For κ̃,Λ > 0, let Mǫ,Λ
κ̃,L be the set of all probability measures Q̃

on the space D[0, T ] such that the following holds,

(1) The probability measure Q̃ is supported on the set D(ǫ).

(2) There exists a càdlàg (Q̃, F̃) martingale {M̃t}
T

t=0 such that

(1 − κ̃)S̃t ≤ M̃t ≤ (1 + κ̃)S̃t Q̃ a.s.

(3) Let Ĉ be as in Definition 4.1 and L be as in Assumption 2.1. Set

B := L(e2ǫ + ǫ− 1)
Ĉ2

2(1− 8κ)
+ 2L(eǫ − 1)LN + ǫ

For any i < N ,

EQ̃[fi(S̃)] ≤ Li +B,

and

EQ̃[fN (S̃) ∧ Λ(S̃T + 1)] ≤ LN +B.

�

The following result provides an upper bound on the model–free super–replication
price Vκ(G).

Lemma 5.3. Assume that

(5.1) min

(

1 + κ̃

1 + κ
,
1− κ

1− κ̃

)

≥ e4ǫ.

Then

Vκ(G) ≤



 sup
Q̃∈Mǫ,Λ

κ̃,L

EQ̃[G(S̃)]





+

+ L(e2ǫ + ǫ− 1)
Ĉ2

2(1− 8κ)
.

Again, we use the standard convention that the supremum over the empty set is

minus infinity. In particular, if Mǫ,Λ
κ̃,L is empty, then the above lemma states that

Vκ(G) ≤ L(e2ǫ + ǫ − 1) Ĉ2

2(1−8κ) .

Proof. The proof is completed in two steps. In the first step, we apply the results
that deal with the “classical” super–replication with proportional transaction costs.

First step: Since D(ǫ) is countable, there exists a probability measure P̃ satisfying
P̃(D(ǫ)) = 1 and P̃({F}) > 0 for all F ∈ D(ǫ). Consider the filtered probability space

(D[0, T ], {F̃t}
T

t=0, F̃T , P̃). Denote by Mκ̃ the set of all consistent price systems in

D(ǫ). Namely, Q̃ ∈ Mκ̃ if Q̃ is equivalent to P̃ and there exists a càdlàg martingale

{M̃t}
T

t=0 (with respect to Q̃ and F̃) such that

(1− κ̃)S̃t ≤ M̃t ≤ (1 + κ̃)S̃t P̃ a.s.

Let X := X(S̃) be random variable which is F̃T measurable and bounded from

below by a multiple of 1 + S̃T . Set

(5.2) c0 := sup
Q̃∈Mκ̃

EQ̃[X ].
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From Theorem 1.5 in Schachermayer [21], it follows that there exists a predictable

stochastic process of bounded variation {γ̃t}Tt=0 such that γ̃0 = γ̃T = 0 and

c0 + (1− κ̃)

∫

[0,T ]

S̃udγ̃
−
u − (1 + κ̃)

∫

[0,T ]

S̃udγ̃
+
u ≥ X, P̃ a.s.

Thus, there exists a predictable map γ̃ : D(ǫ) → L∞[0, T ] such that for any F ∈ D(ǫ)

γ̃0(F ) = γ̃T (F ) = 0 and

(5.3) c0 + (1− κ̃)

∫

[0,T ]

Fudγ̃
−
u (F )− (1 + κ̃)

∫

[0,T ]

Fudγ̃
+
u (F ) ≥ X(F ),

where L∞[0, T ] is the set of all bounded functions on the interval [0, T ]. Next,
choose (c1, ..., cN ) ∈ RN

+ and consider the random variable

X = X(S̃) = G(S̃)−
N−1
∑

i=1

cifi(S̃)− cN(fN (S̃) ∧ Λ(S̃T + 1)).

Recall, that in Assumption 2.2 we assumed that if fi is path dependent then it is
bounded. This together with the Lipschitz continuity of fi, i = 1, ..., N − 1 yields
that f1(S̃), ..., fN−1(S̃) are bounded by a multiple of 1 + S̃T , and so X is bounded

by a multiple of 1 + S̃T as well.
Let (c0, γ̃) be such that (5.2) and (5.3) hold true.
Next, we lift the trading strategy γ̃ to a trading strategy on the space Ω. We start

with some preparations. Recall the definition of the stopping times τ
(ǫ)
k := τ

(ǫ)
k (S),

k ≥ 0, and K := K(S) = min{k : τ
(ǫ)
k = T } − 1.

Set,

τ̂
(ǫ)
k :=

k
∑

i=1

∆τ̂
(ǫ)
i , where

∆τ̂
(ǫ)
i = max{∆t ∈ U

(ǫ)
i : ∆t < ∆τ

(ǫ)
i := τ

(ǫ)
i − τ

(ǫ)
i−1}.

It is clear that 0 = τ̂
(ǫ)
0 < τ̂

(ǫ)
1 < ... < τ̂

(ǫ)
K < T and τ̂

(ǫ)
k < τ

(ǫ)
k for all k = 0, . . . ,K.

We now define Ψ : Ω → D(ǫ) by

Ψt(S) :=

K−1
∑

k=0

S
τ
(ǫ)
k

χ
[τ̂

(ǫ)
k

,τ̂
(ǫ)
k+1

)
(t) + S

τ
(ǫ)
K

χ
[τ̂

(ǫ)
K

,T ]
(t).

Finally, define the hedge π = (c, γ) where c = (c0, c1, ..., cN ) and

γ(S) :=

K
∑

k=1

γ̃
τ̂
(ǫ)
k

(Ψ(S))χ
(τ

(ǫ)
k

,τ
(ǫ)
k+1]

(t).

We continue by estimating the portfolio value Zπ
T (S). Set

I := I(S) = γTST − κ|γT |ST + (1− κ)

∫

[0,T ]

Sudγ
−
u − (1 + κ)

∫

[0,T ]

Sudγ
+
u

−(1− κ̃)

∫

[0,T ]

Ψu(S)dγ̃
−
u (Ψ(S)) + (1 + κ̃)

∫

[0,T ]

Ψu(S)dγ̃
+
u (Ψ(S)).

From Assumption 2.2 it follows that for any x, y > 0

| lnx− ln y| < ǫ⇒ q(x) ≥ (1− L(eǫ − 1))q(y)− L(eǫ − 1)y

1 + L(eǫ − 1)
.
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Thus, from Assumptions 2.1, 2.2 and (5.3), it follows that

Zπ
T (S)−G(S) ≥ I − (G(S) −G(Ψ(S)))−

N
∑

i=1

ci(fi(Ψ(S)) − fi(S))(5.4)

≥ I − L

(

1 +
N−1
∑

i=1

ci

)



e2ǫ +
∞
∑

j=1

ǫ2−j − 1



 ‖S‖ − LcN (eǫ − 1)
2fN(S) + ‖S‖
1 + L(eǫ − 1)

≥ I − L

(

1 +

N−1
∑

i=1

ci

)

(

e2ǫ + ǫ− 1)‖S‖ − LcN (eǫ − 1
)

(2fN (S) + ‖S‖).

It remains to estimate the term I. To simplify the calculations, we use the notation
γ = γ(S) and γ̃ = γ̃(Ψ(S)). Then, in view of (5.1),

γT ST − κ|γT |ST + (1− κ)

∫

[0,T ]

Sudγ
−
u − (1 + κ)

∫

[0,T ]

Sudγ
+
u

≥ γT ST − κ|γT |ST +

K
∑

k=1

S
τ
(ǫ)
k−1

∫

[τ
(ǫ)
k

,τ
(ǫ)
k+1]

[(1− κ̃)dγ−u − (1 + κ̃)dγ+u ]

= γT ST − κ|γT |ST +
K
∑

k=1

S
τ
(ǫ)
k−1

∫

[τ
(ǫ)
k

,τ
(ǫ)
k+1]

[−dγu − κ̃|dγu|]

≥ γT ST − κ|γT |ST +

K−1
∑

k=0

Ψ
τ̂
(ǫ)
k

(S)

∫

[τ̂
(ǫ)
k

,τ̂
(ǫ)
k+1]

[−dγ̃u − κ̃|dγ̃u|]

= γT ST − κ|γT |ST + (1− κ̃)

∫

[0,τ̂
(ǫ)
K

]

Ψu(S)dγ̃
−
u − (1 + κ̃)

∫

[0,τ̂
(ǫ)
K

]

Ψu(S)dγ̃
+
u

≥ (1 − κ̃)

∫

[0,T ]

Ψu(S)dγ̃
−
u − (1 + κ̃)

∫

[0,T ]

Ψu(S)dγ̃
+
u .

Hence, we conclude that I ≥ 0. We use this inequality together with (3.2) and
(5.4). The result is,

Vκ(G) ≤ L(c) + L(e2ǫ + ǫ− 1)(1 +

N
∑

i=1

ci)Vκ(‖S‖) + 2L(eǫ − 1)cNVκ(fN (S))

≤ L(c) + L(e2ǫ + ǫ− 1)
Ĉ2

2(1− 8κ)
(1 +

N
∑

i=1

ci) + 2L(eǫ − 1)cNLN .

This together with (5.2) yields

(5.5) Vκ(G) ≤ inf
c1,...,cN≥0

sup
Q̃∈Mκ̃

(

E
Q̃
[ ξ ] +

N
∑

i=1

ciAi

)

+ L(e2ǫ + ǫ − 1)
Ĉ2

2(1− 8κ)
,

where

ξ := G(S̃)−
N−1
∑

i=1

cifi(S̃)− cN (fN (S̃) ∧ Λ(S̃T + 1)),

Ai := Li + L(e2ǫ + ǫ− 1)
Ĉ2

2(1− 8κ)
+ 2L(eǫ − 1)LN = Li +B − ǫ, i ≤ N.
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Second Step: The next step is to interchange the order of the infimum and
supremum in (5.5). Consider the compact set H := [0,K/ǫ]N , where recall K is
satisfying G ≤ K. Define the function G : H ×Mκ̃ → R by

G(h, Q̃) = EQ̃

[

G(S̃)−
N−1
∑

i=1

hifi(S̃)− hN(fN (S̃) ∧ Λ(S̃T + 1))

]

+

N
∑

i=1

hiAi,

where h = (h1, ..., hN ). Notice that G is affine in each of the variables, and contin-
uous in the first variable. The set Mκ̃ can be naturally considered as a subset of

the vector space RD(ǫ)

. Let us show that Mκ̃ is a convex set. Let Q̃1, Q̃2 ∈ Mκ̃

and let λ ∈ (0, 1). Consider the measure Q̃ = λQ̃1 + (1 − λ)Q̃2. For i = 1, 2 let

{M̃ (i)
t }

T

t=0 be a martingale with respect to Q̃i and F̃, such that

(1− κ̃)S̃t ≤ M̃
(i)
t ≤ (1 + κ̃)S̃t P̃ a.s.

Define the stochastic process

M̃t = λM̃
(1)
t

[

dQ̃1

dQ̃
|F̃t

]

+ (1− λ)M̃
(2)
t

[

dQ̃2

dQ̃
|F̃t

]

, t ∈ [0, T ].

Clearly, {M̃t}
T

t=0 is a martingale with respect to Q̃ and F̃. Also, since M̃t is a

(random) convex combination of M̃
(1)
t and M̃

(2)
t ,

(1− κ̃)S̃t ≤ M̃t ≤ (1 + κ̃)S̃t P̃ a.s.

Hence, Q̃ ∈ Mκ̃,. This proves that Mκ̃ is a convex set. Next, we apply the min–
max theorem, Theorem 2, in Beiglböck, Henry-Labordère and Penkner [3] to G.
The result is,

inf
h∈H

sup
Q̃∈Mκ̃

G(h, Q̃) = sup
Q̃∈Mκ̃

inf
h∈H

G(h, Q̃) ≤ sup
Q̃∈Mκ̃

G(hQ̃, Q̃),

where

hQ̃i =
K

ǫ
χ{EQ̃

[fi(S̃)]≥Li+B}, i ≤ N − 1, hQ̃N =
K

ǫ
χ{EQ̃

[fN (S̃)∧Λ(S̃T+1)]≥LN+B}.

The definitions of hQ̃, the set Mǫ,Λ
κ̃,L and the fact that G ≤ K implies that

G(hQ̃, Q̃) ≤ 0, ∀ Q̃ ∈ Mκ̃ but Q̃ 6∈ Mǫ,Λ
κ̃,L.

In particular, sup
Q̃∈Mκ̃

G(hQ̃, Q̃) ≤ 0, if the set Mǫ,Λ
κ̃,L is empty. These together

with (5.5) implies that

Vκ(G) ≤ sup
Q̃∈Mκ̃

G(hQ̃, Q̃) + L(e2ǫ + ǫ− 1)
Ĉ2

2(1− 8κ)

≤



 sup
Q̃∈Mǫ,Λ

κ̃,L

E
Q̃
[G(S̃)]





+

+ L(e2ǫ + ǫ− 1)
Ĉ2

2(1− 8κ)
.

�
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6. Asymptotical Analysis of the Bounds

In this section. we complete the proof of Theorem 2.7. This is achieved by prov-
ing that the lower and the upper bounds from Sections 4 and 5 are asymptotically
equal to each other.

Recall the probability measure Q from Assumption 2.3. Set, Di = EQ[fi(S)],

i ≤ N . Denote D =
∏N

i=1(Di,∞). Let H = (H1, ..., HN ) ∈ D and let κ̃ ∈ (0, 1).

Define Mκ̃,H to be the set of all probability measures on Ω̂ := Ω × C++
[0,T ] which

satisfy the conditions of Definition 2.5, with κ,L1, ...,LN replaced by κ̃, H1, ..., HN .
Observe that Q ∈ Mκ̃,H and so, the set Mκ̃,H is not empty. Define the function
Γ : D× (0, 1) → R by

Γ(H, κ̃) := sup
Q̂∈Mκ̃,H

E
Q̂
[G(S(1))],

where, recall the canonical process Ŝ = (S
(1)
t , S

(2)
t )0≤t≤T given in Definition 2.5.

The following lemma is central in the analysis of the asymptotic behaviour of the
bounds.

Lemma 6.1. The function Γ : D× (0, 1) → R is continuous.

Proof. It suffices to prove that for any compact set J ⊂ D× (0, 1) there exists a a
continuous function mJ : R+ → R+ (modulus of continuity) with mJ(0) = 0 such
that for any (H(i), κ̃i) ∈ J , i = 1, 2

Γ(H(1), κ̃1)− Γ(H(2), κ̃2) ≤ mJ

(

N
∑

k=1

|H(1)
k −H

(2)
k |+ |κ̃1 − κ̃2|

)

.

Choose ǫ > 0. There exists Q̂1 ∈ Mκ̃1,H(1) such that

(6.1) Γ(H(1), κ̃1) < ǫ+ E
Q̂1
[G(S(1))].

On the space Ω̂, define the stochastic processes ρ and ρ̇ by,

ρt :=
S
(2)
t

S
(1)
t

and ρ̇t := (1− κ̃2) ∨ (ρt ∧ (1 + κ̃2)), t ∈ [0, T ].

Next, introduce the stochastic process Ṡ = (Ṡ
(1)
t , Ṡ

(2)
t )0≤t≤T by

Ṡ
(1)
t :=

S
(2)
t

ρ̇t

ρ̇0
ρ0

=
ρt
ρ̇t

ρ̇0
ρ0

S
(1)
t and Ṡ

(2)
t :=

ρ̇0
ρ0

S
(2)
t , t ∈ [0, T ].

Observe that there exists a constant C
(1)
J such that

(6.2) sup
0≤t≤T

| ln Ṡ(1)t − ln S
(1)
t | = sup

0≤t≤T
| ln ρt + ln ρ̇0 − ln ρ̇t − ln ρ0| ≤ C

(1)
J |κ̃1 − κ̃2|.

Without loss of generality we assume that C
(1)
J |κ̃1 − κ̃2| < ln(1 + 1/L).

The idea behind the definition of the process Ṡ is to construct a stochastic process
which is ”close” to S and satisfy properties (1) and (2) of Definition 2.5, for κ̃2

instead of κ̃1. In addition we require that Ṡ
(1)
0 = 1. Indeed, observe that Ṡ : Ω̂ → Ω̂.

Thus, define the probability measure Q̂2 to be the distribution of Ṡ under the
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probability measure Q̂1. Namely, Q̂2 is a probability measure on Ω̂ which is given

by Q̂2(A) = Q̂1(Ṡ
−1(A)) for any Borel set A ⊂ Ω̂. Clearly, for any t ∈ [0, T ]

(1− κ̃2)Ṡ
(1)
t ≤ Ṡ

(2)
t ≤ (1 + κ̃2)Ṡ

(1)
t , Q̂1 a.s.

and

E
Q̂1
(Ṡ

(2)
T |Ṡu, u ≤ t) = Ṡ

(2)
t .

Thus, for any t ∈ [0, T ],

(6.3) (1− κ̃2)S
(1)
t ≤ S

(2)
t ≤ (1 + κ̃2)S

(1)
t , Q̂2 a.s.

and

(6.4) E
Q̂2
(S

(2)
T |F̂t) = S

(2)
t .

Next, similarly to (4.14) we obtain that there exists a constant C
(2)
J such that

E
Q̂1
[||S(1)||] ≤ C

(2)
J .

By applying Assumptions 2.1–2.2 in a similar way to (4.12)–(4.13), and using

(6.2) we obtain that we can construct another constant C
(3)
J satisfying,

|E
Q̂2
[G(S(1))]− E

Q̂1
[G(S(1))]| = |E

Q̂1
[G(Ṡ(1))]− E

Q̂1
[G(S(1))]|

≤ LC
(2)
J (exp(C

(1)
J |κ̃1 − κ̃2|)− 1)(6.5)

≤ C
(3)
J |κ̃1 − κ̃2|

|E
Q̂2
[fi(S

(1))]− E
Q̂1
[fi(S

(1))]| = |E
Q̂1
[fi(Ṡ

(1))]− E
Q̂1
[fi(S

(1))]|
≤ LC

(2)
J (exp(C

(1)
J |κ̃1 − κ̃2|)− 1)(6.6)

≤ C
(3)
J |κ̃1 − κ̃2|, i ≤ N − 1,

and for i = N

|E
Q̂2
[fN(S(1))] = E

Q̂1
[fN (Ṡ(1))]|(6.7)

≤
E
Q̂1
[fN (S(1))](1 + L(exp(C

(1)
J |κ̃1 − κ̃2|)− 1))]

1− L(exp(C
(1)
J |κ̃1 − κ̃2|)− 1)

+
L(exp(C

(1)
J |κ̃1 − κ̃2|)− 1)E

Q̂1
[||S(1)||]

1− L(exp(C
(1)
J |κ̃1 − κ̃2|)− 1)

≤ E
Q̂1
[fN (S(1))] + C

(3)
J |κ̃1 − κ̃2|.

Next, we modify the probability measure Q̂2 so it will satisfy property (3) of Defi-

nition 2.5 for H
(2)
1 , ..., H

(2)
N . Clearly, the measure Q⊗Q is a probability measure on

Ω̂, where the probability measure Q is given in Assumption 2.3. For any λ ∈ (0, 1)
consider the probability measure

Q̂λ =
√
λ[Q⊗Q] + (1 −

√
λ)Q̂2.

Observe that

EQ⊗Q[fi(S
(1))] = EQ[fi(S)] = Di, i ≤ N.
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Set Λ =
∑N

k=1 |H
(1)
k −H(2)

k |+|κ̃1−κ̃2|. From (6.6)–(6.7) and the fact thatDi < H
(1)
i

it follows that for Λ sufficiently small

|E
Q̂Λ

[fi(S
(1))] ≤

√
ΛDi + (1−

√
Λ)(H

(1)
i + C

(3)
J |κ̃1 − κ̃2|) ≤

H
(1)
i −

√
Λ(H

(1)
i −Di) + C

(3)
J Λ < H

(1)
i − Λ ≤ H

(2)
i .

This together with (6.3)–(6.4) yields that Q̂Λ ∈ Mκ̃2,H(2) . Finally, from (6.1) and
(6.5) we obtain

Γ(H(1), κ̃1)− Γ(H(2), κ̃2) ≤ ǫ+ E
Q̂1
[G(S(1))]− (1−

√
Λ)E

Q̂2
[G(S(1))]

≤ ǫ+ C
(3)
J |κ̃1 − κ̃2|+

√
ΛK.

Since ǫ > 0 was arbitrary, this completes the proof. �

Now, we are ready to prove the lower bound of Theorem 2.7.

Lemma 6.2.

V P
κ (G) ≥ sup

Q̂∈Mκ,L

E
Q̂
[G(S(1))].

Proof. In view of Lemma 6.1, it is sufficient to prove that

(6.8) V P
κ (G) ≥ E

Q̂
[G(S(1))],

for every Q̂ ∈ Mκ̃,L̃ with κ̃ < κ and L̃i < Li, i ≤ N .

We proceed in two steps. In the first step, we modify the process S(1). In the
second step, we apply Lemma 4.2 to the modified process.

First step: Let ǫ > 0. Define the stopping times, τ
(ǫ)
0 := τ

(ǫ)
0 (S(1)) = 0 and for

k > 0,

τ
(ǫ)
k := τ

(ǫ)
k (S(1)) = T ∧ inf

{

t > τ
(ǫ)
k−1 : S

(1)
t = exp(±ǫ)S(1)

τ
(ǫ)
k−1

}

,

and the random variable K := min{k : τ
(ǫ)
k = T } − 1 < ∞. Let n ∈ N. Introduce

the stochastic process

S̃
(n)
t =

n−1
∑

i=0

S
(1)

τ
(ǫ)
i

χ
[τ

(ǫ)
i

,τ
(ǫ)
i+1)

(t) + S
(1)

τ
(ǫ)
K∧n

χ
[τ

(ǫ)
n ,T ]

(t), t ∈ [0, T ].

The stochastic process S̃(n) is a pure jump process which agrees with S(1) at the

jump times τ
(ǫ)
1 , ..., τ

(ǫ)
n∧K and remains constant afterwards.

We argue that for sufficiently large n the terms E
Q̂
|fi(S̃(n))−fi(S(1))|, i = 1, ..., N

and E
Q̂
|G(S̃(n))−G(S(1))| are small. Indeed, as before the fact Q̂ ∈ Mκ̃,L̃ implies

that E
Q̂
[‖S(1))‖] ≤ Ĉ (where, recall the constant Ĉ from Definition 4.1) and so

limn→∞ E
Q̂
[‖S(1)‖χ{K≥n}] = 0. From Assumption 2.1 we get

lim sup
n→∞

∣

∣

∣EQ̂
[fi(S

(1))]− E
Q̂
[fi(S̃

(n))]
∣

∣

∣ ≤ lim sup
n→∞

E
Q̂
[|fi(S(1))− fi(S̃

(n))|χ{K<n}]

+ 2L lim
n→∞

E
Q̂
[‖S(1)‖χ{K≥n}]

≤ L(eǫ − 1)E
Q̂
[‖S(1))‖]

≤ L(eǫ − 1)Ĉ.
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Similarly,

(6.9) lim sup
n→∞

∣

∣

∣EQ̂
[G(S(1))]− E

Q̂
[G(S̃(n))]

∣

∣

∣ ≤ L(eǫ − 1)Ĉ.

It remains to treat the case i = N . From Assumption 2.2 it follows that there
exists δ > 0 such that

| lnx− ln y| < δ ⇒ q(y) < 2(q(x) + x).

We conclude that there exists a constant C4 such that or any x, y > 0 we have

(1 − κ̃)x ≤ y ≤ 1

1− κ̃
x⇒ q(y) ≤ C4(q(x) + x).

This together with property (2) of Definition 2.5 yields

E
Q̂
[q(S

(1)

τ
(ǫ)
n

)χ{K≥n}] ≤ C4EQ̂

[(

q(S
(2)

τ
(ǫ)
n

) + S
(2)

τ
(ǫ)
n

)

χ{K≥n}
]

.

Since S(2) is a martingale and {K ≥ n} = {τ (ǫ)n < T } ∈ F̂
τ
(ǫ)
n

, then from the Jensen

inequality (for the convex function q(x) + x) we obtain,

E
Q̂
[q(S

(1)

τ
(ǫ)
n

)χ{K≥n}] ≤ C4EQ̂

[(

q(S
(2)
T ) + S

(2)
T

)

χ{K≥n}
]

≤ C4EQ̂

[(

C4q(S
(1)
T ) + (1 + κ̃)S

(1)
T

)

χ{K≥n}
]

.

Thus the inequality E
Q̂
[(q(S

(2)
T )] <∞ implies

lim sup
n→∞

∣

∣

∣EQ̂
[fN(S(1))]− E

Q̂
[fN (S̃(n))]

∣

∣

∣

≤ lim sup
n→∞

E
Q̂

[(

fN(S(1)) + fN(S̃(n))
)

χ{K≥n}
]

≤ lim sup
n→∞

C4EQ̂

[

(C4 + 1/C4)
(

q(S
(1)
T ) + (1 + κ̃)S

(1)
T

)

χ{K≥n}
]

= 0.

We conclude that for sufficiently large n
∣

∣

∣EQ̂
[G(S(1))]− E

Q̂
[G(S̃(n))]

∣

∣

∣ ≤ 2L(eǫ − 1)Ĉ and(6.10)
∣

∣

∣EQ̂
[fi(S

(1))]− E
Q̂
[fi(S̃

(n))]
∣

∣

∣ ≤ 2L(eǫ − 1)Ĉ i ≤ N.

We fix n sufficiently large that the above inequalities hold and set S̃ := S̃(n).
Next, we modify the jump times so they will lie on a grid. Let m ∈ N. Define

by recursion the following sequence of random variables,

τ̂
(ǫ)
k :=

k
∑

i=1

∆τ̂
(ǫ)
i , where

∆τ̂
(ǫ)
i = min{∆t ∈ {T/m, 2T/m, ..., T } : ∆t ≥ ∆τ

(ǫ)
i := τ

(ǫ)
i − τ

(ǫ)
i−1},

and

σk = Tχ{τ (ǫ)
k

=T} + τ̂
(ǫ)
k ∧ (T (1− 2−k/m))χ{τ (ǫ)

k
<T}, k = 0, 1, ..., n.
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Observe that for any i, σi+1 ≥ σi and σi+1 = σi if and only if σi = T . Notice that

σ1, ..., σn are not (in general) stopping times with respect to the filtration F̂. Define
the stochastic process

Ṡt := Ṡ
(m)
t =

n−1
∑

i=0

S
(1)

τ
(ǫ)
i

χ[σi,σi+1)(t) + S
(1)

τ
(ǫ)
K∧n

χ[σn,T ](t), t ∈ [0, T ].

Second step: The process Ṡt is a piecewise constant process, and the jump
times are lying on a finite grid. Thus the natural filtration which is generated by
Ṡ is right continuous, and so the martingale

M̂t := E
Q̂
(S

(2)
T |Ṡu, u ≤ t)

is a càdlàg martingale. Let k ≤ n. Clearly, σk is a stopping time with respect
to the natural filtration generated by Ṡ. Furthermore Ṡ[0,σk] is measurable with

respect to F̂
τ
(ǫ)
k

. This together with the fact that

e−ǫ ≤ Ṡσk

S
(1)

τ
(ǫ)
k

≤ eǫ

and properties (1)–(2) in Definition 2.5, imply that

|M̂σk
− Ṡσk

| =
∣

∣

∣EQ̂

(

E
Q̂
[S

(2)
T | F̂

τ
(ǫ)
k

] | Ṡu, u ≤ σk

)

− Ṡσk

∣

∣

∣

≤ Ṡσk
((1 + κ̃)eǫ − 1) ≤ Ṡσk

(κ̃+ 2ǫ),

where in the last equality we assume that ǫ is sufficiently small. Let σn+1 = T .
Then, for any k ≤ n and t ∈ [σk, σk+1], we conclude that

e−2ǫ(1 − κ̃− 2ǫ)Ṡt ≤ M̂σk+1
≤ e2ǫ(1 + κ̃+ 2ǫ)Ṡt.

Since M̂ is a martingale with respect to the natural filtration of Ṡ, we conclude
that for sufficiently small ǫ,

(6.11) |M̂t − Ṡt| ≤ (1 + κ̃+ 5ǫ)Ṡt.

Clearly,

lim
m→∞

‖S̃ − Ṡ(m)‖ = 0, Q̂ a.s.

Observe that the above processes are uniformly bounded. Hence, by Assumptions
2.1–2.2,

E
Q̂
[G(S̃)] = lim

m→∞
E
Q̂
[G(Ṡ(m))] and(6.12)

E
Q̂
[fi(S̃)] = lim

m→∞
E
Q̂
[fi(Ṡ

(m))], i ≤ N.

Denote by Q̇m the distribution of Ṡ(m) on the space D[0, T ]. Let us choose ǫ such
that κ̂ := κ̃+ 6ǫ is satisfies

min

(

1 + κ

1 + κ̂
,
1− κ̂

1− κ

)

≥ e2ǫ,

and

Li − L(Ĉ + LN )(e4ǫ + ǫ− 1) > 3L(eǫ − 1)Ĉ + L̃i, i < N,

LN (1 − L(eǫ − 1))− LĈ(eǫ − 1)

1 + L(eǫ − 1)
> 3L(eǫ − 1)Ĉ + L̃N .
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From (6.10)–(6.12), it follows that for sufficiently large m the measure Q̇m ∈ MT ,ǫ
κ̂,L

with the choice T := {kT 2−n/m}2nmk=0 . Thus, in view of Lemma 4.2, we have

V P
κ (G) ≥ E

Q̂
[G(Ṡ(m))]− LĈ(e4ǫ + ǫ − 1).

We now apply (6.10), (6.12) and take the limit as m tends to infinity. The result is

V P
κ (G) ≥ E

Q̂
[G(S(1))]− 2L(eǫ − 1)Ĉ − LĈ(e4ǫ + ǫ− 1).

Now, (6.8) follows after taking the limit as ǫ tends to zero. �

Next, we establish the upper bound (2.4).

Lemma 6.3.
Vκ(G) ≤ sup

Q̂∈Mκ,L

E
Q̂
[G(S(1))].

Proof. Let Q be the probability measure from Assumption 2.3. Then, Q ⊗ Q ∈
Mκ,(L1,...,LN). Therefore, if Vκ(G) ≤ 0, then (2.4) is trivial. So we may assume
without loss of generality that Vκ(G) > 0. Choose ǫ > 0, Λ > 1, κ̂ > κ̃ > κ and

L̃i > Li, i ≤ N . Assume that ǫ is sufficiently small so L(e2ǫ+ǫ−1) Ĉ2

2(1−8κ) < Vκ(G)

and κ̃ satisfies (5.1). This together with Lemma 5.3 yields that there exists a

probability measure Q̃ ∈ Mǫ,Λ
κ̃,L such that

(6.13) Vκ(G) < E
Q̃
[G(S̃)] + L(e2ǫ + ǫ− 1)

Ĉ2

(1− 8κ)
.

Next, we proceed in three steps. In the first step (similarly to Lemma 6.2), we

modify the stochastic process S̃. In the second step, we use the Wiener space in
order to construct a continuous consistent price system with (almost) the required
properties. In the last step, we modify again the constructed continuous consistent

price system in order to get rid of the truncation in the term fN (S(1)) ∧ ΛS
(1)
T .

Finally, we Apply Lemma 6.1.
First step: Let

(1− κ̃)S̃t ≤ M̃t ≤ (1 + κ̃)S̃t, t ∈ [0, T ],

be the associated martingale corresponding to the probability measure Q̃ ∈ Mǫ,Λ
κ̃,L.

Let τ̃
(ǫ)
0 := τ̃

(ǫ)
0 (S̃) = 0, and for k > 0 set,

τ̃
(ǫ)
k := τ̃

(ǫ)
k (S̃) = T ∧ inf

{

t > τ̃
(ǫ)
k−1 : | ln S̃

τ̃
(ǫ)
k+1

− ln S̃
τ̃
(ǫ)
k

| = ǫ
}

and K̃ = min{k : τ̃
(ǫ)
k = T } − 1 < ∞. Observe that the probability measure Q̃

supported on D(ǫ) and so τ̃k, k ≥ 0 are indeed stopping times.
Let n ∈ N. Set,

S̃
(n)
t :=

n−1
∑

i=0

S̃
τ̃
(ǫ)
i

χ
[τ̃

(ǫ)
i

,τ̃
(ǫ)
i+1)

(t) + S̃
τ̃
(ǫ)

K̃∧n

χ
[τ̃

(ǫ)
n ,T ]

(t), t ∈ [0, T ].

From the definition of the set Mǫ,Λ
κ̃,L it follows that EQ̃[q(S̃T )∧Λ(S̃T +1)] <∞, and

so and EQ̃[S̃T ] <∞, as well. Moreover,

EQ̃[S̃τ̃ (ǫ)
n
χ{K̃≥n}] ≤ (1 + κ̃)EQ̃[M̃τ̃

(ǫ)
n
χ{K̃≥n}] = (1 + κ̃)EQ̃[M̃Tχ{K̃≥n}]

≤ (1 + κ̃)2EQ̃[S̃Tχ{K̃≥n}].
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We conclude that

(6.14) lim
n→∞

E
Q̃
[(S̃

τ̃
(ǫ)
n

+ S̃T )χ{K̃≥n}] = 0.

As in the proof of Lemma 5.3, we will use the fact that fi(S), i < N are bounded
(from both sides) by a multiply of 1 + ST . This together with (6.14) and the fact

that S̃(n) = S̃ on the event {n > K̃} yields that for sufficiently large n,
∣

∣

∣
E
Q̃
[G(S̃)]− E

Q̃
[G(S̃(n))]

∣

∣

∣
≤ ǫ,(6.15)

∣

∣

∣EQ̃
[fi(S̃)]− E

Q̃
[fi(S̃

(n))]
∣

∣

∣ ≤ ǫ, i ≤ N − 1,
∣

∣

∣EQ̃[q(S̃T ) ∧ Λ(S̃T + 1)]− EQ̃[q(S̃
(n)
T ) ∧ Λ(S̃

(n)
T + 1)]

∣

∣

∣ ≤ ǫ.

We choose n sufficiently large and set S̃ := S̃(n).
Next, letm ∈ N. Define by recursion the following sequence of random variables,

τ̂
(ǫ)
k :=

k
∑

i=1

∆τ̂
(ǫ)
i , where

∆τ̂
(ǫ)
i = min{∆t ∈ {T/m, 2T/m, ..., T } : ∆t ≥ ∆τ̃

(ǫ)
i := τ̃

(ǫ)
i − τ̃

(ǫ)
i−1},

and

σk = Tχ{τ̃ (ǫ)
k

=T} + τ̂
(ǫ)
k ∧ (T (1− 2−k/m))χ{τ̃ (ǫ)

k
<T}, k = 0, 1, ..., n.

Similarly, to Lemma 6.2 we have that for any i, σi+1 ≥ σi and σi+1 = σi if and
only if σi = T . Define the stochastic process

Ṡt := Ṡ
(m)
t =

n−1
∑

i=0

S̃
τ̃
(ǫ)
i

χ[σi,σi+1)(t) + S̃
τ̃
(ǫ)

K̃∧n

χ[σn,T ](t), t ∈ [0, T ].

Again, as in Lemma 6.2 the process Ṡt is a piecewise constant process, and the
jump times are lying on a finite grid. Introduce the (càdlàg) martingale

M̂t := E
Q̂
(M̃T |Ṡu, u ≤ t).

By using the same arguments as in (6.11)–(6.12) we get

(6.16) |M̂t − Ṡt| ≤ (1 + κ̃+ 5ǫ)Ṡt,

and

EQ̃[G(S̃)] = lim
m→∞

EQ̃[G(Ṡ
(m))],(6.17)

E
Q̃
[fi(S̃)] = lim

m→∞
E
Q̃
[fi(Ṡ

(m))], i ≤ N − 1

E
Q̃
[q(S̃T ) ∧ Λ(S̃T + 1)] = lim

m→∞
E
Q̃
[q(Ṡ

(m)
T ) ∧ Λ(Ṡ

(m)
T + 1)].

From (6.15) and (6.17), it follows that we can choose m sufficiently large such that
∣

∣

∣EQ̃[G(S̃)]− EQ̃[G(Ṡ
(m))]

∣

∣

∣ ≤ 2ǫ,(6.18)
∣

∣

∣EQ̃
[fi(S̃)]− E

Q̃
[fi(Ṡ

(m))]
∣

∣

∣ ≤ 2ǫ, i ≤ N − 1,
∣

∣

∣EQ̃[q(S̃T ) ∧ Λ(S̃T + 1)]− EQ̃[q(Ṡ
(m)
T ) ∧ Λ(Ṡ

(m)
T + 1)]

∣

∣

∣ ≤ 2ǫ.
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Choose such m and denote Ṡ = Ṡ(m). The stochastic process {Ṡt}
T

t=0 is a piecewise
constant process, and the jump times are lying on a finite grid. Denote the grid by
T = {t1, ..., tr, T }, where 0 = t0 < t1 < ... < tr < T .

Second step: Let (ΩW ,FW ,PW ) be a complete probability space together with
a standard Brownian motion and the natural filtration FW

t = σ{Ws|s ≤ t}.
From Theorem 1 in Skorokhod (1976) and the fact that the random variables

Wti+1 −Wti , i = 0, .., r − 1 are independent, it follows that we can find a sequence

of measurable function g
(1)
i , g

(2)
i : R2i−1 → R, i = 1, ..., r with the following prop-

erty. The stochastic processes (adapted to the Brownian filtration) {ṠW
ti }

r

i=0
and

{M̂W
ti }r

i=0
which are given by the recursion relations

ṠW
t0 = 1, M̂W

t0 = M̂0

and for i > 0

ṠW
ti = g

(1)
i (Wti+1 −Wti , Ṡ

W
t0 , ..., Ṡ

W
ti−1

, M̂W
t0 , ..., M̂

W
ti−1

),

M̂W
ti = g

(2)
i (Wti+1 −Wti , Ṡ

W
t0 , ..., Ṡ

W
ti−1

, M̂W
t0 , ..., M̂

W
ti−1

)

have the same joint distribution as the processes {Ṡti}
r

i=0 and {M̂ti}
r

i=0. Namely,
the distribution of

(ṠW
t0 , ..., Ṡ

W
tr , M̂

W
t0 , ..., M̂

W
tr )

under the probability measure PW is equals to the distribution of

(Ṡt0 , ..., Ṡtr , M̂t0 , ..., M̂tr)

under the probability measure Q̃.
Since the Brownian motion increments are independent, for any i < r,

EPW (M̂W
ti+1

|FW
ti ) = EPW (M̂W

ti+1
|ṠW

t1 , ..., Ṡ
W
ti , M̂

W
t1 , ..., M̂

W
ti ) = M̂W

ti .

Thus, we can extend the martingale {M̂W
ti }r

i=0
to a continuous time martingale

(Brownian martingale)

M̂W
t = EPW (M̂W

tr |FW
t ), t ∈ [0, T ].

Next, we define the stochastic process {SW
t }Tt=0 by the following linear interpo-

lation,

SW
t = χ[0,t1](t) +

r
∑

i=1

(t− ti)Ṡ
W
ti + (ti+1 − t)ṠW

ti−1

ti+1 − ti
χ(ti,ti+1](t),

where we set tr+1 = T . Observe that the stochastic process SW is continuous and
adapted to the Brownian filtration. Since

ṠW
ti+1

ṠW
ti

∈ {1, eǫ, e−ǫ},

it follows from (6.16) that (for ǫ sufficiently small)

(6.19)
∣

∣

∣M̂W
t − SW

t

∣

∣

∣ ≤ (κ̃+ 10ǫ)SW
t , t ∈ [0, T ].

Set,

ṠW
t =

r−1
∑

i=0

ṠW
ti χ[ti,ti+1)(t) + ṠW

tr χ[tr,T ](t), t ∈ [0, T ].
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Clearly, the processes ṠW and Ṡ have the same distribution and and consequently,

EPW [G(ṠW )] = E
Q̃
[G(Ṡ)],(6.20)

EPW [fi(Ṡ
W )] = E

Q̃
[fi(Ṡ)], i ≤ N − 1,

EPW [q(ṠW
T ) ∧ Λ(ṠW

T + 1)] = E
Q̃
[q(ṠT ) ∧ Λ(ṠT + 1)].

Also, (6.18) and (6.20) imply that

EPW [q(ṠW
T ) ∧ Λ(ṠW

T + 1)] ≤ 2ǫ+ LN +B,

where B is given in Definition 5.2. Therefore, there exists a constant C (which does

not depend on ǫ > 0 and Λ > 1) such that EPW ṠW
T ≤ C. This together with the

Kolmogorov inequality for the martingale M̂W yield that

PW
(

‖SW ‖ > 1√
ǫ

)

≤ PW
(

‖M̂W ‖ > 1
(1+κ̃+10ǫ)

√
ǫ

)

≤

EPW [M̂W
T (1 + κ̃+ 10ǫ)

√
ǫ] ≤ C(1 + κ̃+ 10ǫ)2

√
ǫ.

Observe that by construction ‖SW − ṠW ‖ ≤ 4ǫ||SW ||. Thus from Assumption 2.1
it follows that

EPW [|G(SW )−G(ṠW )|] ≤ EPW [Kχ{|SW‖>1/
√
ǫ} + 4L

√
ǫχ{|SW ‖≤1/

√
ǫ}]

≤ (KC(1 + κ̃+ 10ǫ)2 + 4L)
√
ǫ.

Similarly for path dependent fi we have

EPW [|fi(SW )− fi(Ṡ
W )|] ≤ (2‖fi‖∞C(1 + κ̃+ 10ǫ)2 + 4L)

√
ǫ

where ‖fi‖∞ is the uniform bound of the path dependent claim |fi|. Since SW
T = ṠW

T

then for non path dependent fi we have a trivial estimate. We now use these
inequalities together with (6.18) and (6.20), to construct a constant C̃ satisfying,

∣

∣

∣EPW [G(SW )]− EQ̃[G(S̃)]
∣

∣

∣ ≤ C̃
√
ǫ,(6.21)

∣

∣

∣EPW [fi(S
W )]− E

Q̃
[fi(S̃)]

∣

∣

∣ ≤ C̃
√
ǫ, i ≤ N − 1,

∣

∣

∣EQ̃

[

q(SW
T ) ∧ Λ(SW

T + 1)
]

− EQ̃

[

q(S̃T ) ∧ Λ(S̃T + 1)
]∣

∣

∣ ≤ C̃
√
ǫ.

Third step: Let xΛ be the solution of the equation q(x) = Λ(x + 1) where
we assume that Λ > q(0) so the equation has exactly one solution. Indeed (if by
contradiction) we have two solutions 0 < x < y then

q(y)− q(x)

y − x
= Λ <

q(x)− q(0)

x

and we get contradiction to convexity. Define the stochastic processes by,

ρt :=
M̂W

t

SW
t

, Mt := EPW (M̂W
T ∧ ρTxΛ|FW

t ),

and

St :=
Mt

ρt

t+ (T − t)ρ0/M0

T
, t ∈ [0, T ].
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In view of (6.21),

EPW

[

M̂W
T χM̂W

T
>ρT xΛ

]

≤ 2EPW

[

SW
T χSW

T
>xΛ

]

(6.22)

≤ 2

Λ
EQ̃

[

q(SW
T ) ∧ Λ(SW

T + 1)
]

≤ 2(C̃
√
ǫ+ LN +B)

Λ
.

Thus |M0 − ρ0| = |M0 − M̂W
0 | ≤ C1/Λ for some constant C1. This together with

(6.19) implies that for sufficiently large Λ we have the following inequality,

(6.23) |Mt − St| ≤
(

κ̃+ 10ǫ+
1√
Λ

)

St, t ∈ [0, T ].

Next, consider the martingale

mt := EPW

[

M̂W
T χ{M̂W

T
>ρT xΛ} |FW

t

]

, t ∈ [0, T ].

Observe that 0 ≤ M̂W
t −Mt ≤ mt, t ∈ [0, T ]. Thus we obtain that there exists a

constant C2 such that

‖SW − S‖ ≤ |MW −M‖ sup
0≤t≤T

1

ρt
+ ‖M‖ sup

0≤t≤T

∣

∣

∣

∣

1

ρt
− t+ (T − t)ρ0/M0

Tρt

∣

∣

∣

∣

(6.24)

≤ 2‖m‖+ C2

Λ
‖MW‖.

The Kolmogorov inequality and (6.22) imply that

PW
(

‖m‖ > 1/
√
Λ
)

≤ C3/
√
Λ

for some constant C3. Moreover,

PW
(

‖MW ‖ >
√
Λ
)

≤ MW
0√
Λ

≤ 2√
Λ
.

From (6.24) we conclude that

PW

(

‖SW − S‖ > 2 + C2√
Λ

)

≤ 2 + C3√
Λ

.

Thus from Assumption 2.2 it follows that

EPW [|G(SW )−G(S)|] ≤(6.25)

EPW [Kχ{|SW−S‖> 2+C2√
Λ

} + L 2+C2√
Λ
χ{|SW ‖≤ 2+C2√

Λ
}] ≤

C4√
Λ

for some constant C4. Similarly for path–dependent fi we get

(6.26) EPW [|fi(SW )− fi(S)|] ≤
C4√
Λ
.

For non path–dependent fi, i < N we have

EPW [|fi(SW )− fi(S)|] ≤ LEPW [|SW
T − ST |](6.27)

≤ LEPW

[

SW
T χSW

T
>xΛ

]

≤ L(C̃
√
ǫ+ LN +B)

Λ
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where the last inequality follows from (6.22). The only remanning delicate point is
i = N . From the fact that ST = SW

T ∧ xΛ we get

EPW [q(ST )] ≤ EPW [q(SW
T ) ∧ Λ(SW

T + 1)].

This together with (6.21), (6.23) and (6.25)–(6.27) yields that for sufficiently large

Λ and small ǫ > 0 the distribution of (S,M) on the space Ω̂ := Ω × C++
[0,T ] is an

element in Mκ̂,(L̃1,...,L̃N). Furthermore,

∣

∣

∣EPW [G(S)]− E
Q̃
[G(S̃)]

∣

∣

∣ ≤ C̃
√
ǫ +

C4√
Λ
.

We now use (6.13), to obtain

Vκ(G) < L(e2ǫ + ǫ− 1)
Ĉ2

(1− 8κ)
+ C̃

√
ǫ+

C4√
Λ

+ sup
Q̂∈M

κ̂,(L̃1,...,L̃N )

E
Q̂
[G(S(1))].

Finally we apply Lemma 6.1 and take the limits Λ → ∞, ǫ ↓ 0, κ̂ ↓ κ, L̃i ↓ Li,
i ≤ N . The result is

Vκ(G) ≤ sup
Q̂∈Mκ,L

E
Q̂
[G(S(1))].

This concludes the proof of the lemma as well as the proof of the main result. �
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