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Scheduling using Interactive Optimization Oracles

for Constrained Queueing Networks∗

Tonghoon Suk† Jinwoo Shin‡

Abstract

Ever since Tassiulas and Ephremides (1992) proposed the maximum weight scheduling algo-
rithm of throughput-optimality for constrained queueing networks that arise in the context of
communication networks, extensive efforts have been devoted to resolving its most important
drawback: high complexity. This paper proposes a generic framework for designing throughput-
optimal and low-complexity scheduling algorithms for constrained queueing networks. Under our
framework, a scheduling algorithm updates current schedules by interacting with a given oracle
system that generates an approximate solution to a related optimization task. One can utilize
our framework to design a variety of scheduling algorithms by choosing an oracle system such
as random search, Markov chain, belief propagation, and primal-dual methods. The complex-
ity of the resulting scheduling algorithm is determined by the number of operations required for
an oracle to process a single query, which is typically small. We provide sufficient conditions
for throughput-optimality of the scheduling algorithm in general constrained queueing network
models. The linear-time algorithm of Tassiulas (1998) and the random access algorithm of Shah
and Shin (2012) correspond to special cases of our framework using random search and Markov
chain oracles, respectively. Our generic framework, however, provides a unified proof with milder
assumptions.

1 Introduction

The dynamic resource allocation problem in modern communication networks such as wireless net-
works and input queued switches, examples of constrained queueing networks in which only certain
sets of queues can be served simultaneously, is often addressed by the maximum-weight scheduling
(MWS) algorithm. As it is throughput-optimal, MWS algorithm yields a stable system under all
possible loads for which it can be made stable and requires information only about current queue
lengths. However, because it requires repeatedly solving computationally hard problems to find
“good” schedules, the MWS algorithm cannot be implemented in practice. Therefore, extensive re-
search has proposed throughput-optimal scheduling algorithms with low complexity. Examples of
such algorithms include simpler implementations of the MWS algorithm [37, 15, 31], greedy algo-
rithms [2, 30, 21, 25], and random access algorithms [16, 17, 29].
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1.1 Our Contribution

This paper introduces a novel framework for designing low-complexity throughput-optimal scheduling
algorithms in constrained queueing networks, by utilizing iterative optimization methods approxi-
mating a “good” schedule (i.e., a maximum-weight schedule). While the standard implementation
of the MWS algorithm entails all iterations of such a method at each service time, the scheduling
algorithm in our framework entails only one iteration of it at each service time, which means that
the computational time required to find a schedule decreases significantly. Furthermore, we show
that the scheduling algorithm preserves throughput-optimality. To build our generic framework, we
view steps of an iterative optimization methods as queries to a black box that we formalize as an
interactive oracle system. The input of the oracle system depends on the current state of network
system, and the output consists of a schedule and “advice”, information used in the next step of
the method. We describe four examples of the oracle system: random search (RS), Markov chain
Monte Carlo (MCMC), belief propagation (BP), and primal-dual methods (PDM). For instance, for
MCMC, the advice given by the oracle consists of the state of the Markov chain and the current
schedule. After formulating an oracle system from any iterative optimization method, one can design
a throughput-optimal and low-complexity scheduling algorithm via interacting with it.

The intuitive reason why one step of an approximation method suffices for throughput-optimality
follows. This method seeks a schedule of maximum weight, which is a function of the queue lengths.
We construct a weight function such that its value remains constant for long stretches of time. There-
fore, although we only use one step of the method at each service time, the schedule automatically ap-
proximates a maximum weight schedule as time passes, which guarantees the throughput-optimality
of the algorithm. This underlying intuition is similar in spirit to that in [32, 35]. The main difference
is that while the authors in [32, 35] force the weight function value “vary slowly” in real numbers,
we let them “vary rarely” in integers. Because we introduce an integer-valued weight function, we
do not need to analyze “time-varying” systems, which simplifies the throughput-optimality proof.
More importantly, our proof is robust in the sense that it is not sensitive to the given oracle systems,
underlying network structures, and arrival processes, as explained in Section 3.

Our generic framework overcomes several limitations of previous work. First, most existing
throughput-optimal algorithms [15, 31, 32, 35] rely on an underlying network structure, and in
principle, they are not easily applied to networks with other structures. In addition, proving their
throughput-optimality requires a unique set of techniques for each algorithm. In contrast, our generic
framework does not rely on a network structure, and it guarantees throughput-optimality by only
checking simple algebraic conditions. Furthermore, the authors of [32, 35] considered only Bernoulli
arrival processes, and their proofs are not easily generalizable to other arrival processes. However,
the algorithm resulting from our framework is throughput-optimal under any arrival processes with
bounded second moments.

One way in which our framework can be used is to select a low-complexity, throughput-optimal
scheduling algorithm with good delay performance. Using our framework, one can establish the
throughput optimality of a family of scheduling algorithms that interact with optimization methods
and measure their delay performance through simulation. Therefore, one can test which algorithm
works best in practice while theoretically guaranteeing throughput-optimality.

1.2 Related Work

Simpler or distributed implementations of the MWS algorithm have been extensively proposed in
the literature. Tassiulas [37] provides the so-called “pick-and-compare” algorithm, which is a linear-
complexity version of the MWS algorithm but suffers from bad delay performance. The work in this
line also includes a variant of the MWS algorithm by Giaccone, Prabhakar, and Shah [15] and a
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gossip-based algorithm by Modiano, Shah, and Zussman [31]. However, these algorithms are specific
to certain network models and still require numerous information (or message) exchanges for each
new scheduling decision. Recently, even fully distributed random access algorithms have been shown
to achieve desired high performance (i.e., throughput-optimality) in both wireless interference and
buffered circuit switched network models [32, 35]. The main intuition underlying these results is that
nodes in a network can adjust their random access parameters dynamically using local information
such as queue lengths so that they can simulate the MWS algorithm asymptotically for throughput-
optimality. From an optimization point of view, under these algorithms, nodes run a Markov chain
Monte Carlo (MCMC) with time-varying parameters depending on queue lengths. If the parameters
change slowly enough, the authors of [35] proved that algorithms sample a maximum-weight sched-
ule (for throughput-optimality). We note that the “pick-and-compare” algorithm and the random
access algorithm can also be understood as special cases of algorithms developed under our generic
framework using RS and MCMC oracles, respectively, and more details appear in Section 4.

Although several greedy algorithms reduce time complexity, they achieve only some fraction of
the maximal throughput region. For example, parallel iterative matching [2] and iSLIP [30] have been
shown to be 50% throughput optimal [9]. In addition, Kumar et al. [24] and Dimakis and Walrand
[10] identified sufficient conditions on the network topology for throughput-optimality. Joo et al. [21]
and Leconte et al. [25] further analyzed these conditions to obtain fractional throughput results for
a class of wireless networks. However, these algorithms are generally not throughput optimal and
require multiple rounds of message exchanges between nodes.

1.3 Organization

Section 2 describes the constrained queueing network model of interest in this study and the perfor-
mance metric (i.e., throughput-optimality) for scheduling algorithms. Section 3 provides the main
results of this paper: a generic framework for designing a throughput-optimal and low-complexity
scheduling algorithm that finds its current schedule via interaction with an oracle system. It also
states the throughput-optimality proof with an associated key lemma. Section 4 introduces several
examples of scheduling algorithms under our framework, and Section 5 presents the formal proof of
the key lemma.

2 Preliminaries

2.1 Network Model

The constrained queueing network, a stochastic network system with service-level constraints, consists
of many buffers that temporarily store packets (jobs) to be served. Packets arrive at each buffer via
an exogenous stochastic process and leave the system after being served. At most one packet in each
nonempty buffer can be served at a time, and all packets have a unit service time. However, because
of service constraints, not all nonempty buffers can transmit their packets simultaneously, and only
certain subsets of the buffers can serve packets at the same time. We call these subsets schedules, and
every constrained queueing network has its own collection of schedules. At each service epoch, any
scheduling algorithm selects a schedule among the collection, and nonempty buffers in the schedule
process their packets. Our goal is to design scheduling algorithms that require little computational
time to choose a schedule at each service epoch while maintaining high performance. Our performance
metric introduced in the next section relates to the number of packets (queue length) in each buffer.
For the next step, we set up a mathematical model that represents the above network system and
describe how the queue length of each buffer changes as time evolves.
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Our model is a constrained queueing network with n buffers in time slotted by service epochs
(i.e., time is denoted by a nonnegative integer variable t ∈ Z+ := {0, 1, . . . , }), and at each time t, a
schedule is selected by a scheduling algorithm. Buffers are indexed by elements in the set I (|I| = n),
and the queue length of buffer i ∈ I is denoted by Qi(t). Now, we show how Qi(t+ 1) changes from
Qi(t) by arrivals and service. During time interval [t, t+1), the queue length of buffer i increases by
the number of (external) arrival packets at buffer i and decreases by 1 if a selected schedule (a subset
of buffers) at time t contains buffer i. For a mathematical illustration of this observation, we denote
the number of arrivals to buffer i during [t, t+1) by Ai(t) and depict a schedule by an n-dimensional
binary vector σ = [σi : i ∈ I] such that σi = 1 if buffer i is in the schedule, and σi = 0 otherwise. We
also let S ⊂ {0, 1}n be the set of all available schedules and σ(t) ∈ S the schedule during [t, t + 1)
for t ∈ Z+. Then, the above observation is expressed as

Qi(t+ 1) = Qi(t) +Ai(t)− σi(t) I{Qi(t)>0}, (1)

where IA is an indicator function of event A. We close this section with key assumptions relating to
the external arrivals of packets:

{
Ai(t) ∈ Z+ : t ∈ Z+, i ∈ I

}
are independent random variables with

E[Ai(t)] = λi, Var[Ai(t)] ≤ µ2,

where λi ∈ [0, 1] is the arrival rate for buffer i, and µ > 0 is a positive (finite) constant.

2.2 Performance Metric

Our goal is to design high-performance scheduling algorithms that find a schedule σ(t) ∈ S at each
time t ∈ Z+ in little computational time. In this paper, a scheduling algorithm has high performance,
called throughput-optimality if it ensures that queues do not blow up as long as the vector of arrival
rates is within the system maximal stability region.

To describe it formally, we define the capacity region as follows:

C :=

{∑

σ∈S

ασ σ :
∑

σ∈S

ασ = 1 and ασ ≥ 0 for all σ ∈ S
}
,

that is, the convex hull of all available schedules in S. The capacity region C essentially contains all
effective service rates induced by any scheduling algorithm. Therefore, if queues in a system with
arrival rate vector λ are stable by any scheduling algorithm, there exists σ ∈ C such that λ ≤ σ

component-wise; we call such λ admissible. Also, when arrival rate vector λ is strictly less than some
σ in C, we say λ is strictly admissible, and the set of all strictly admissible arrival rate vectors is
denoted by Λo:

Λo :=
{
λ ∈ R

n
+ : λ < σ, for some σ ∈ C

}
.

Thus, a throughput-optimal scheduling algorithm is able to make a system stable for any arrival rates
λ ∈ Λo, which is formally stated as follows.

Definition 1. A system is stable if

lim inf
t→∞

∑

i∈I

Qi(t) < ∞ with probability 1,

i.e., the total queue length remains finite with probability 1. A scheduling algorithm is called
throughput-optimal if the system with arrival rates vector λ ∈ Λo is stable under the scheduling
algorithm.

To prove that scheduling algorithms from our framework are throughput optimal, we first define an
appropriate underlying Markov chain and show that a subset of states with bounded total queue
length is positive recurrent utilizing the popular Lyapunov-Foster criteria, which is introduced in the
following section.
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2.3 Stability of a System: Lyapunov-Foster Criterion

This section introduces a method for proving the positive recurrence in a Markov chain and its
relation to the stability of a system, which is proved by the conclusion in Lemma 1. We first recall
the definition of the positive recurrence in Markov chain {X(t) : t ∈ Z+} on state space Ω. A subset
B ⊂ Ω is said to be recurrent if infx∈B P [τB < ∞|X(0) = x] = 1, where τB = inf{t ≥ 1 |X(t) ∈ B} is
a hitting time for B. If supx∈B E [τB |X(0) = x] < ∞, recurrent subset B is called positive recurrent.
One way to show the positive recurrence is to use the following negative drift condition on a Lyapunov
function, also known as the Lyapunov-Foster criterion.

Lemma 1 ([13, Theorem 1]). Let {X(t) : t ∈ Z+} be a Markov chain on state space Ω, and L : Ω →
R+ be a function on Ω such that supx∈Ω L(x) = ∞. For any γ ≥ 0, define Bγ = {x ∈ Ω : L(x) ≤ γ}.
Suppose there exist functions τ, κ : Ω → R+ such that

E[L(X(τ(x))) − L(X(0)) |X(0) = x] ≤ −κ(x), ∀x ∈ Ω, c (2)

and they satisfy the following conditions:

L1. lim infL(x)→∞ κ(x) > 0.

L2. infx∈Ω κ(x) > −∞.

L3. supx∈Bγ
τ(x) < ∞ for all γ ∈ R+.

L4. lim supL(x)→∞ τ(x)/κ(x) < ∞.

Then, there exists constant γ0 > 0 so that for all γ0 < γ, the following holds:

sup
x∈Bγ

E
[
TBγ |X(0) = x

]
< ∞.

Namely, Bγ is positive recurrent.

The above function L is called a Lyapunov function. To show a system is stable, we construct an
underlying network Markov chain and define a Lyapunov function that depends on queue lengths and
goes to infinity as total queue length goes to infinity. If Bγ is positive recurrent for any γ > γ0, then
the system is stable by the following argument: Let the initial state be x ∈ Bγ for some γ > γ0. Since
Bγ is positive recurrent, the Markov chain hits Bγ infinitely often with probability 1, which implies
that the system is stable because the total queue length of any state in Bγ is bounded. Therefore,
to guarantee throughput-optimality of our scheduling algorithm, for any arrival rate vector λ ∈ Λo,
we need to find τ and κ, which satisfies (2) and conditions L1–L4.

3 Scheduling using Interactive Oracles

This section presents our main results, a general framework for designing low-complexity scheduling
algorithms for constrained queueing networks and the sufficient conditions for throughput-optimality
of the algorithms. As introduced in Section 2.1, a constrained queueing network is represented
by (I,S): I is an index set for buffers (|I| = n), and S is the set of all schedules that are n
dimensional binary vectors. For such system, a well-known throughput-optimal scheduling algorithm
is the maximum-weight scheduling (MWS) algorithm [38], which selects a solution (schedule) to the
following optimization problem:

max

{
ρ ·W :=

∑

i∈I

ρiWi : ρ ∈ S
}
, (3)
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whereW is an n-dimensional vector called a weight vector and ρ·W is called the weight of schedule ρ.
Namely, the optimization problem (3) finds a maximum-weight schedule in S. Weight vector W de-
pends on queue length vector Q(t) := [Qi(t) : i ∈ I] and at every service epoch, the MWS algorithm
requires solving the above optimization problem. For weight vector W , a solution to optimization
problem (3) can be obtained by various methods according to the structure of network system (I,S).
Such a method usually consists of many steps (iterations) that induce a long computation time at
each service epoch in the MWS algorithm. As the MWS algorithm, the scheduling algorithm in our
framework utilizes an iterative method for optimization problem (3), but uses only one step per a
service epoch instead of all steps in the method. Thus, the algorithm takes little computational time
to find a schedule at each service epoch. In addition, proper choices of weight vector W at each ser-
vice epoch guarantees the throughput-optimality of the algorithm. In the remainder of this section,
we describe the algorithm in detail: Section 3.1 introduces a general (abstract) concept of one step
(iteration) of the method that solves problem (3), Section 3.2 describes our scheduling algorithm and
conditions that guarantee the throughput-optimality of the algorithm, and Section 3.3 presents the
proof outline of our main theorem.

3.1 Oracle System

To develop throughput-optimal, low-complexity scheduling algorithms for a constrained queueing
network represented by (I,S), this paper proposes an algorithm that finds a schedule in S at each
service epoch by utilizing a black box called an oracle system. The oracle system is motivated by one
iteration in (randomized or deterministic) iterative methods for finding an (approximate) optimal
solution to optimization problem (3). Typically, at every iteration, an iterative method updates its
current solution (schedule) using information from the previous iteration (and weight vector W ); we
refer to such information transmitted between two consecutive iterations advice. Thus, an iterative
method can be understood as a process interacting with a black box that receives advice as an input
and outputs an updated schedule and new advice used in the next iteration; that is, the iterative
method maintains advice (and a weight vector), and at each iteration, it sends current advice to the
black box and replaces the current advice and the current schedule with outputs from the black box.
We introduce a generalized definition of the black box in an iterative method, the oracle system,
which has the following input and output:

◦ The oracle system receives advice a and weight vector W = [Wi ∈ Z+ : i ∈ I] as inputs,

◦ The oracle system outputs (or returns) schedule σ ∈ S and updated advice â.

We denote the set of all advice by A. Since the oracle system is similar to one step (iteration)
in an iterative method that finds an (approximate) solution to optimization problem (3), when we
consecutively interact with the oracle system while fixing a weight vector, we obtain an approximate
solution. To state this argument formally, when the oracle system takes advice a and weight vector W
as inputs, we denote outputs by σ = σoracle(a) = σoracle(W ,a) and â = aoracle(a) = aoracle(W ,a),
where the oracle can generate random outputs in general. Then, we assume that the oracle system
satisfies the following condition:

C0. For any η, δ ∈ (0, 1), if Wmax := maxi∈I Wi is large enough, there exists h = h(Wmax, η, δ) such
that for any t ≥ h and advice a ∈ A,

(
σoracle(a

(t)
oracle

(a))
)
·W ≥ (1− η)max

ρ∈S
ρ ·W with probability at least 1− δ,

where a
(t)
oracle

is the function composing aoracle “t times” (i.e., a
(t)
oracle

= a
(t−1)
oracle

◦ aoracle).
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Condition C0 implies that after h interactions, the oracle system generates schedule σ that is an
approximate solution to (3).

3.2 Scheduling Algorithm

This section describes how our scheduling algorithm interacts with an oracle system that corresponds
to one step (iteration) in an iterative method for optimization problem (3). The oracle system receives
advice and a weight vector as inputs. Our scheduling algorithm maintains advice a(t) and weight
vector W (t) along with queue length vector Q(t). Then, at service epoch t, current advice a(t) and
current weight vector W (t) are sent to the oracle system, which returns updated advice a(t + 1)
and schedule σ(t). Then, schedule σ(t) and arrival vector A(t) := [Ai(t) : i ∈ I] during [t, t + 1)
determine queue length vector Q(t+ 1) at time t+ 1 by (1). Therefore, the time-complexity of the
scheduling algorithm is precisely depends on how long the oracle system takes to process a query
(i.e., the time-complexity of one step of an iterative algorithm), which is typically very small, as
we see examples in Section 4. That is, the algorithm has low complexity. In addition, throughput-
optimality is achieved by a proper choice of weight vector W (t) as a function of queue length vector
Q(t). We ensure that when Q(t) is large, W (t) does not change for sufficient amount of time so that
the oracle system returns a maximum-weight schedule with respect to W (t). This guarantees that
our scheduling algorithms are throughput optimal.

Oracle 
System

(a(t),W (t))

(a(t+ 1),σ(t+ 1))

(a(t+ 1),W (t+ 1),Q(t+ 1))

(a(t),W (t),Q(t))

Figure 1: Scheduling with an interactive oracle system. At each service epoch, a query consisting of current
advice a(t) and weight W (t) is sent to the oracle system. The oracle returns updated advice a(t + 1) and
schedule σ(t+ 1).

Next, we explain how to define W (t). For each i ∈ I, we let Wi(t) be an integers in the interval
[Ui(t)− 2, Ui(t) + 2] for i ∈ [n], where

Ui(t) := max{f(Qi(t)), g(Qmax(t))}

for positive real-valued functions f, g : R+ → R+ and Qmax(t) = maxi∈I Qi(t). At t = 0, we define
Wi(0) be the closest integer to Ui(0) and renew Wi(t + 1) for t ≥ 0 as follows: For i ∈ I such that
the distance between previous weight Wi(t) and Ui(t+1) is at least 2, Wi(t+1) becomes the closest
integer to Ui(t + 1), and Wi(t+ 1) is the same as Wi(t) for the other i’s. The following is a formal
description of the procedure at each service time.
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◦ σ(t+ 1) = σoracle(W (t),a(t)),

◦ a(t+ 1) = aoracle(W (t),a(t)),

◦ Wi(t+ 1) is the closest integer to Ui(t+ 1) if

|Wi(t)− Ui(t+ 1)| > 2,

and Wi(t+ 1) = Wi(t) otherwise.

Now, we are ready to state our main theorem, which introduces the sufficient condition for
functions f and g to guarantee throughput-optimality of the algorithms.

Theorem 2. The above scheduling algorithm is throughput-optimal if functions f, g, h satisfy condi-
tion C0 in addition to the following conditions:

C1. f and g are increasing, differentiable, and concave.

C2. limx→∞
g(x)
f(x) = 0, and limx→∞ g(x) = ∞.

C3. f(0) = 0.

C4. limx→∞ f ′(x) = limn→∞ g′(x) = 0.

C5. For any fixed η, δ > 0,

lim
x→∞

h(f(x), η, δ)

x
= 0.

C6. There exists c ∈ (0, 1) such that for any fixed η, δ > 0,

lim
x→∞

f ′
(
f−1 (g ((1− c)x))

)
h (f((1 + c)x), η, δ) = 0.

We provide some intuitions underlying the above conditions. Conditions C1, C3 and C4 are techni-
cal conditions that make our analysis using a Lyapunov function easier. Condition C2 implies that
f should grow faster than g. Therefore, weight Wi(t) ≈ Ui(t) = max{f(Qi(t)), g(Qmax(t))} is deter-
mined by f and g for large and small queue Qi(t), respectively. To establish throughput-optimality,
we prove that if the maximum queue length Qmax(t) is large, weight function Wi(t) remains constant
for long enough stretches of time so that the interactive oracle produces an approximation solution of
(3), i.e., achieves the maximum weight schedule. To this end, we need the property that Ui(t) changes
slowly, where conditions C5 and C6 ensure it for maximum and non-maximum queues, respectively,
as explained in what follows. From Condition C5, f should grow slowly with respect to h, i.e.,
Ui(t) = f(Qmax(t)) for maximum queues change slowly. The change of Ui(t) for other non-maximum
queues is larger than that for maximum queues, but the term f ′

(
f−1 (g ((1− c)x))

)
in condition

C6 will be used to bound the change of Ui(t) for non-maximum queues. Namely, condition C6 is
necessary to guarantee that Ui(t) for non-maximum queues changes slowly with respect to h. Note
that due to condition C6, g should grow “not too slowly”.

Our proof formalizes the above intuitions. The proof outline of the above theorem is presented
in the following section, and detailed proofs of key lemmas are given in Section 5. In Section 4, we
present several specific examples of throughput-optimal and low-complexity scheduling algorithms
under Theorem 2.
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3.3 Proof Outline of Theorem 2

We will utilize Lemma 1 to show the desired throughput-optimality. To this end, we first define a
Markov chain describing the evolution of the network system. Under our scheduling algorithm, at
time t, we retain advice a(t), weight vector W (t), and queue length vector Q(t), all of which depend
on only the previous ones: a(t− 1), W (t− 1), and Q(t− 1). Therefore,

{X(t) := (a(t),W (t),Q(t)) : t ∈ Z+}

is a Markov chain on the state space

Ω :=

{
(a,W ,Q) ∈ A× Z

n
+ × Z

n
+ : |Wi − Ui| ≤ 2,where Ui = max{f(Qi), g(Qmax)}

}
.

For x = (a,W ,Q) ∈ Ω, we consider the following Lyapunov function:

L(x) :=

n∑

i=1

∫ Qi

0
f(s)ds.

Since limx→∞ f(x) = ∞ (i.e., condition C2), we have that supx∈Ω L(x) = ∞ and L is bounded if and
only if queue lengths are bounded. Therefore, the positive recurrence of Bγ = {x ∈ Ω : L(x) ≤ γ} for
large enough γ guarantees the stability of the system, i.e., queue lengths remain finite with probability
1.

To establish the positive recurrence of Bγ , we define functions τ, κ : Ω → R+ that satisfy (2) and
conditions L1–L4 in Lemma 1 when λ ∈ Λo. First, observe that for any λ ∈ Λo, there exists ε > 0
and [αρ : ρ ∈ S] ∈ [0, 1]|S| so that

∑

ρ∈S

αρ = 1− ε < 1 and λ <
∑

ρ∈S

αρρ. (4)

For state x = (a,W ,Q) ∈ Ω, we define

τ(x) =

⌊
1

(n + µ
√
n) + 1

min

{
1

f ′ (f−1(g((1 − c)Qmax))))
, cQmax

}⌋
, (5)

κ(x)

τ(x)
=

(
ε

2
(1− α)(1− β) +

2n

1− c

(
(1− β)α+ β

))
f((1− c)Qmax)

− n

(
f(Qmax)

τ(x)
+ (µ2 + 2)f ′(0) + n+ µ

√
n+ 1

)
, (6)

where µ2 is an upper bound of variance of Ai(t), c is the constant appearing in condition C6, ⌊x⌋
the largest integer not greater than x, and α, β ∈ (0, 1) constants satisfying

ε

2
(1− β)(1 − α)− 2n(β + (1− β)α)

1− c
> 0.

For example, one can choose α = β = ε(1−c)
32n . Using the above functions, we establish the following

lemma, the proof of which is presented in Section 5.

Lemma 3. Given arrival rate vector λ ∈ Λo and initial state x = (a,W ,Q) ∈ Ω with large enough
Qmax := maxi∈I Qi, we have

E
[
L(X(τ(x))) − L(0) |X(0) = x

]
≤ − κ(x). (7)
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We explain why we define τ(x) and κ(x) as in (5) and (6), respectively, in Section 5. In essence, we
define τ(x) large enough so that the weights of schedules are close to the maximum weight mostly
in the time interval [0, τ(x)]. The definition (6) of κ(x)/τ(x) consists of the first positive and second
negative terms. If the weights of schedules are close to the maximum weight, the negative draft of L
occurs, which contributes the first positive term of (6). The second negative term of (6) bounds the
possible positive draft of L for other cases. Moreover, from Lemma 3, without loss of generality, one
can assume that (7) holds for every x ∈ Ω (i.e., (2) of Lemma 1 holds): if it does not hold for x with
small Qmax, one can redefine τ(x) = κ(x) = 0 for those cases, and this redefining does not affect the
following arguments that verify Bγ is positive recurrent.

Now, we check that τ and κ satisfy conditions L1–L4 of Lemma 1. Toward this, we investigate
limits of τ(x) and κ(x)/τ(x) as L(x) → ∞:

lim
L(x)→∞

τ(x) = ∞ (8)

lim
L(x)→∞

κ(x)/τ(x) = ∞, (9)

the proof of which are elementary and given in Appendix A for completeness. The above two equations
imply that

lim
L(x)→∞

κ(x) = ∞ (10)

which verifies condition L1 (i.e., infL(x)→∞ κ(x) > 0). In addition, since κ, τ are bounded as long
as L is bounded, condition L3 (i.e., supx∈Bγ

τ(x) < ∞) follows and (10) implies condition L2 (i.e.,
infx∈Ω κ(x) > −∞). Finally, (9) implies condition L4 (i.e., lim supL(x)→∞ τ(x)/κ(x) < ∞). This
completes the proof of Theorem 2.

4 Applications

This section shows the wide applicability of our framework by illustrating several throughput-optimal
and low-complexity scheduling algorithms interacting with various oracle systems. As we mentioned
in Section 3.1, oracle systems are derived from iterative methods for solving optimization problem
(3):

max

{
ρ ·W :=

∑

i∈I

ρiWi : ρ ∈ S
}

and such methods depend on the underlying structure of constrained queueing network (I,S). Thus,
to illustrate an oracle system from an iterative method, we begin by introducing specific network
systems in which the method finds an approximate solution to (3) with high probability. Then, we
construct the oracle system by identifying advice space A, inputs, and outputs, in addition to finding
function h that satisfies condition C0. Finally, we provide explicit functions f and g and prove that
they satisfy conditions C1–C6 of Theorem 2, from which the throughput-optimality of the scheduling
algorithm immediately follows as a corollary.

4.1 Random Search (RS): Pick-and-Compare

The first oracle system that we introduce utilizes the naive random search (RS) method, which
maintains a current schedule σ ∈ S. At each iteration, the method picks a new schedule ρ ∈ {0, 1}n
uniformly at random and, if ρ is in S and the weight of ρ is greater than that of σ, σ is replaced by
ρ. Now, we formally describe the oracle system called RS oracle system.
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RS oracle system. The advice space of the RS oracle system is S (i.e., A = S). When the oracle
system receives advice a = σ ∈ A and weight vector W ∈ Z+ as inputs, it returns σoracle(W ,a) = σ̂

and aoracle(W ,a) = σ̂ obtained as follows:

1. Pick ρ ∈ {0, 1}n uniformly at random.

2. Set σ̂ =

{
ρ if ρ ∈ S and ρ ·W > σ ·W
σ otherwise

.

At each query, the oracle system returns a maximum-weight schedule with a probability of at least

1/2n, so function h in condition C0 can be defined as

h(Wmax, η, δ) :=
log δ

log (1− 1/2n)
, (11)

which is independent of weight W . The following corollary shows how we choose functions f and g
to guarantee the throughput-optimality of the scheduling algorithm with the RS oracle system.

Corollary 4. The scheduling algorithm described in Section 3.2 using the RS oracle system is
throughput-optimal if

f(x) = xa, g(x) = xb, and 0 < b < a < 1.

Proof. It is elementary to check conditions C1–C5 of Theorem 2 for h(Wmax, η, δ) in (11). Condition
C6 of Theorem 2 can be derived as follows: for 0 < c < 1,

lim
x→∞

f ′
(
f−1 (g ((1− c)x))

)
h (f((1 + c)x), η, δ) = lim

x→∞

log δ

log (1− 1/2n)
a ((1− c))

b(a−1)
a x

b(a−1)
a = 0.

Since functions f and g satisfy conditions C1–C6, the scheduling algorithm with the RS oracle
system is throughput optimal according to Theorem 2.

4.2 Markov Chain Monte Carlo (MCMC)

The second oracle system comes from the Markov chain Monte Carlo (MCMC) method, which solves
the optimization problem (3) for the following interference model in wireless networks.

Wireless network model. An interference model in a wireless network is represented by an
undirected graph G = (V, E) with |V| = n (e.g., see [32, 35]). V represents the set of links or
queues (i.e., I = V), and they share an edge if they cannot transmit their packets simultaneously.
Therefore, the set of all available schedules S is defined as

S =
{
σ ∈ {0, 1}n : σi + σj ≤ 1, ∀ (i, j) ∈ E

}
. (12)

For buffer i ∈ I, we define neighborhood N (i) as the set of buffers, which cannot transmit packets
when buffer i processes a packet: N (i) := {j ∈ I : (i, j) ∈ E}. Figure 2 illustrates a wireless network
in a grid interference topology with nine buffers.

MCMC oracle system. In the MCMC oracle system, the advice space is A = S. If the oracle
system receives advice a = σ and weight vector W as inputs, it returns σoracle(W ,a) = σ̂ and
aoracle(W ,a) = σ̂, obtained from the following procedure:

11
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Figure 2: Wireless network with n = 9 queues in a grid interference topology. Available schedules are
{1, 3, 5, 7, 9}, {1, 3, 8}, {2, 4, 6, 8}, {2, 4, 9}, {2, 6, 7}, {2, 7, 9}, and so on. In this example, N (4) = {1, 5, 7}.

1. Choose buffer i ∈ I uniformly at random, and set

σ̂j = σj , for all j 6= i.

2. If σj = 1 for some j ∈ N (i), then set σ̂i = 0.

3. Otherwise, set

σ̂i =

{
1 with probability exp(Wi)

1+exp(Wi)

0 otherwise
.

Then, existing results relating to the mixing time of MCMC show that condition C0 holds with

h(Wmax, η, δ) = eC1 Wmax

(
C2 + log

(
1

ηδ

))
, (13)

where C1 = C1(n), C2 = C2(n) are some (“n-dependent”) constants independent of Wmax. The
proof of (13) is a direct consequence of Lemmas 3 and 7 in [35], and we omit the details because of
space constraints. We can select functions f and g according to the following corollary so that the
scheduling algorithm with the MCMC oracle system is throughput optimal.

Corollary 5. The scheduling algorithm described in Section 3.2 using the MCMC oracle system is
throughput-optimal if

f(x) = (log(x+ e))a − 1 and g(x) = (log(x+ e))b − 1,

where 0 < a2 < b < a < 1.

Proof. It is elementary to check conditions C1–C4 of Theorem 2. Condition C5 is from (13) and
f(x) = (log(x+ e))a − 1:

h(f(x), η, δ)

x
=

(
C2 + log

(
1

ηδ

))
× eC1(log(x+e))a−log x−C1 x→∞→ 0.
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Furthermore, condition C6 can be derived as follows:

f ′(f−1(g((1 − c)x)))h(f((1 + c)x))

=
a (C2 + log (1/(ηδ)))(
log((1− c)x+ e)

(1−a)b
a

) × eC1(log((1+c)x+e))a−log((1−c)x+e)
b
a−C1 x→∞→ 0.

This completes the proof of Corollary 5.

We note that the scheduling algorithm described in Section 3.2 using the MCMC oracle system is a
discrete-time version of the CSMA algorithm in [32, 35].

4.3 Belief Propagation (BP)

We derive the third oracle system from the belief propagation (BP) method, a popular heuristic
iterative method for solving inference problems arising in probabilistic graphical models [22]. For the
provable throughput-optimality of the scheduling algorithm with the BP oracle system, we introduce
a special constrained queueing network, called input-queued switch model [24].

Input-queued switch model. An input-queued switch consists of m input ports and m output
ports. An input port has m buffers each of which stores packets to an output port. Thus, the total
number of buffers in the system is n = m2. Scheduling constraints in the input-queued switch as
follows:

1. Every input port can transmit at most one packet.

2. Every output port can receive at most one packet.

When an output port receives a packet, the packet leaves the system. We represent the above input-
queue switch as an undirected complete bipartite graph of left vertices L, right vertices R, and edges
E = {(i, j) : i ∈ L, j ∈ R}, where |L| = |R| = m. Then, each buffer is dented by (i, j) ∈ E , so I = E .
The set of all possible schedules is

S =

{
σ ∈ {0, 1}E :

∑
j:(i,j)∈E σij ≤ 1 ∀i ∈ R,∑
i:(i,j)∈E σij ≤ 1 ∀j ∈ L

}
. (14)

One can observe that this model is a special case of the wireless network model described in the

previous section.

BP oracle system. In the BP oracle system, the advice space is A = Z
2|E|
+ × S. For the inputs

of weight vector W and advice a = (m,σ) ∈ A, where m = [mi→j,mj→i : (i, j) ∈ E ], the oracle
system outputs σoracle(W ,a) = σ̂ and aoracle(W ,a) = (m̂, σ̂) calculated as follows:

1. For each (i, j) ∈ E , set

σ̂(i,j) =

{
0 if mi→j +mj→i > W ′

(i,j)

1 otherwise

m̂i→j = max
k 6=j:(i,k)∈E

(
W ′

(i,k) −mk→i

)
+
,

where

W ′
(i,j) := W(i,j) + r(i,j) and (x)+ :=

{
x if x ≥ 0

0 otherwise
.
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Figure 3: Input-queued switch with m = 3 input ports, m = 3 output ports, and m2 = 9 buffers. Available
schedules are {1, 5, 9}, {1, 6, 8}, {2, 4, 9}, {2, 6, 7}, {3, 4, 8}, and {3, 5, 7}.

2. If σ̂ /∈ S, reset σ̂ = σ.

In the above procedure, we need to choose [r(i,j)] ∈ [0, 1]|E| such that σ∗ ∈ argmaxσ σ · W ′ =

argmaxσ σ ·W is unique, and ξ ≤ σ∗ ·W ′ −maxσ 6=σ∗ σ ·W ′ for some constant ξ > 0. For example,
we can set

r(i,j) =
1

2i2m+j , where i, j ∈ {1, . . . ,m}.
Then, from work by Bayati et al. [5] and Sanghavi et al. [33], condition C0 holds with

h = h(Wmax, η, δ) = O(Wmax/ξ).

The following corollary suggests to the choice of functions f and g so that the scheduling algorithm
with the BP oracle system is throughput optimal.

Corollary 6. The scheduling algorithm described in Section 3.2 using the BP oracle system is
throughput-optimal if

f(x) = xa, g(x) = xb, and 0 <
a2

1− a
< b < a <

1

2
.

Proof. It is elementary to check conditions C1–C5 of Theorem 2, where h(Wmax, η, δ) = O(Wmax/ξ).
Condition C6 of Theorem 2 can be derived as follows: for c > 0,

lim
x→∞

f ′
(
f−1 (g ((1− c)x))

)
h (f((1 + c)x), η, δ)

= lim
x→∞

C · x
b(a−1)

a ((1 + c)axa + 1) = 0,

where C is some constant depending on ξ, c, a, b and the last equality is from 0 < b, a < 1 and
b > a2

1−a . This completes the proof of Corollary 6.

We also note that one can design the BP oracle in various ways, one of which is the following:
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1. For each (i, j) ∈ E , set

σ̂(i,j) = 0

b(i,j) = W ′
(i,j) −mi→j −mj→i

m̂i→j = max
k 6=j:(i,k)∈E

(
W ′

(i,k) −mk→i

)
+
.

2. Choose (i, j) ∈ E so that b(i,j) is the largest among those which σ̂ ∈ S after resetting σ̂(i,j) = 1.
Reset σ̂(i,j) = 1, and keep this “greedy” procedure until no edge is found.

While the first BP oracle system simply checks whether the “belief”, b(i,j), is positive or not, the
second BP oracle system determines schedule σ̂(t) greedily based on [b(i,j)]. When we use the same
set of functions f and g in Corollary 6, the scheduling algorithm with the above second BP oracle
system is also throughput optimal, and the proof is identical to that of the first BP oracle system.
We note that a similar version of the scheduling algorithm using the second oracle system was first
studied in [4] heuristically, but our results (Theorem 2) provide its formal throughput-optimality
proof, which is missing in [4].

4.4 Primal-Dual Method (PDM)

We introduce the fourth oracle system, called the primal-dual method (PDM). For a detailed de-
scription of the oracle, we first introduce a primary interference constrained wireless model.

Primary interference constrained wireless network model. This network model is represented
by a directed graph, G = (V, E) with |E| = n, and the set of available schedules S is defined as

S =



σ ∈ {0, 1}E :

∑

j:(j,i)∈E

σji ≤ 1,
∑

j:(i,j)∈E

σij ≤ 1, ∀ i ∈ V



 . (15)

The above “matching” scheduling constraint has been popularly used for modeling primary interfer-
ence in wireless networks [7], which is also a special case of the wireless network model in Section
4.2.

PDM oracle system. The PDM method is an iterative mechanism introduced by Edmonds [11, 12]
which maintains primal and dual variables of a Linear Programming (LP), and updates them until
the primal solution x ∈ S reaches the maximum weight schedule (i.e., matching). At each iteration,
the primal solution always forms a matching and the dual solution y is feasible, where each edge
in the primal matching should be ‘tight’ with respect to the dual solution (see the most recent
implementation of the Edmonds’ algorithm by Kolmogorov [23] for more details). Formally, in
the PDM oracle system, advice space A is the set of primal and dual variables, and for advice
a = (x,y) ∈ A, the oracle outputs σoracle(W ,a) = σ̂ and aoracle(W ,a) = â, which are chosen as
follows:

1. If the dual solution y is not feasible, make it feasible by re-normalizing.

2. If some edge in the primal solution x is not tight with respect to the dual solution, remove it.

3. Obtain new primal and dual solutions x̂, ŷ, as described in [23].
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Figure 4: Primary wireless network. Available schedules are {1 → 2, 3 → 4}, {1 → 4}, {2 → 4, 3 → 1}, and so
on.

4. Set â = (x̂, ŷ) and σ̂ = x̂.

It is well known that condition C0 holds with h = h(Wmax, η, δ) = O(n). Then, the following theorem

suggests how to select functions f and g so that the scheduling algorithm with the PDM oracle system
is throughput optimal.

Corollary 7. The scheduling algorithm described in Section 3.2 using the PDM oracle system is
throughput-optimal if

f(x) = xa, g(x) = xb, and 0 < b < a < 1.

Proof. It is elementary to check conditions C1–C5 of Theorem 2, for h(Wmax, η, δ) = O(n). Condi-
tion C6 of Theorem 2 can be derived as follows: for 0 < c < 1, since h is independent on Wmax,

lim
x→∞

f ′
(
f−1 (g ((1− c)x))

)
h (f((1 + c)x), η, δ)

= lim
x→∞

h(x, η, δ) a ((1− c))
b(a−1)

a x
b(a−1)

a = 0.

Because f and g satisfy all conditions in Theorem 2, the scheduling algorithm with the PDM oracle
system is throughput optimal.

5 Proof of Lemma 3

In this section, we show the following negative drift property of L:

E
[
L(X(τ(x))) − L(0) |X(0) = x

]
≤ − κ(x), (16)

for arrival rate vector λ ∈ Λo and initial state x = (a,W ,Q) ∈ Ω with large enough Qmax :=
maxi∈I Qi.

Proof outline. The proof consists of several steps with associated lemmas and propositions. Before
we detail the proof, we summarize our high-level strategy to prove Lemma 3.
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First, we introduce a random variable ∆(x) such that

E
[
L(X(τ(x))) − L(0) |X(0) = x

]
≤ E

[
∆(x) |X(0) = x

]
+O(1).

Then, we define an event E1 that occurs with high probability, and on the event, we obtain an upper
bound of E

[
∆(x) |X(0) = x

]
, which is formally stated in Lemma 9. This leads to the proof of the

desired inequality (16), where the definition (6) of κ(x) is used. To prove Lemma 9, we show that
the weight W (t) ≈ f(Q(t)) does not change many times on [0, τ(x)] for large enough Qmax under
E1, which is formally stated in Proposition 10, and in its proof, we define τ(x) appropriately as in
(5). Since W (t) remains fixed for long enough time on [0, τ(x)], the oracle satisfying condition C0
returns schedules with weights close to the maximum weight mostly in the time interval, which is
formally stated in Proposition 11. This leads to the proof of Lemma 9.

We provide the proofs of Lemma 9, Proposition 10, and Proposition 11 in Section 5.2, Section 5.3,
and Section 5.4, respectively.

5.1 Proof of Lemma 3

In this subsection, we provide the proof of Lemma 3 apart from a key lemma, Lemma 9. For
notational simplicity, we use L(t) to denote L(X(t)). We start with the following proposition, the
proof of which is quite standard in the literature (e.g., see [38]).

Proposition 8. For the Markov chain {X(t) : t ∈ Z+} defined in Section 3.3, we have

L(t+ 1)− L(t) =

n∑

i=1

∫ Qi(t+1)

Qi(t)
f(s)ds

≤ A(t) · f(Q(t))− σ(t) · f(Q(t)) + f ′(0)

(
n∑

i=1

Ai(t)
2 + n

)
, (17)

where A(t) = [Ai(t) : i ∈ I] and f(Q(t)) = [f(Qi(t)) : i ∈ I].

Proof. It is sufficient to show that

∫ Qi(t+1)

Qi(t)
f(s)ds ≤ f(Qi(t))Ai(t)− f(Qi(t))σi(t) + f ′(0)(A2

i (t) + 1), ∀i ∈ I. (18)

We verify (18) in cases: Qi(t+ 1) ≥ Qi(t) and Qi(t+ 1) < Qi(t).

First, assume that Qi(t+ 1) ≥ Qi(t). Since f is convex and f ′ is non-increasing, we obtain

f(s) ≤ f(Qi(t)) + f ′(Qi(t))(s −Qi(t)) ≤ f(Qi(t)) + f ′(0)(s −Qi(t)) ≤ f(Qi(t)) + f ′(0)Ai(t),

for all Qi(t) ≤ s ≤ Qi(t+ 1). Therefore, we conclude that

∫ Qi(t+1)

Qi(t)
f(s)ds ≤

(
f(Qi(t)) + f ′(0)Ai(t)

)(
Qi(t+ 1)−Qi(t)

)

≤ f(Qi(t))Ai(t)− f(Qi(t))σi(t) + f ′(0)Ai(t)
2,

which shows (18) holds when Qi(t+ 1) ≥ Qi(t).

Second, suppose that Qi(t+ 1) < Qi(t). Then, because f is convex and f ′ is non-increasing, we
have

f(Qi(t)) ≤ f(s) + f ′(s)(Qi(t)− s) ≤ f(s) + f ′(0)(Qi(t)− s), ∀s ∈ [Qi+1(t), Qi(t)],
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so we obtain

−f(s) ≤ − f(Qi(t)) + f ′(0)(Qi(t)− s) ≤ − f(Qi(t)) + f ′(0), ∀s ∈ [Qi+1(t), Qi(t)],

where we use Qi+1(t) ≥ Qi(t)− 1 for the last inequality. This inequality implies that

∫ Qi(t+1)

Qi(t)
f(s)ds =

∫ Qi(t)

Qi(t+1)
−f(s)ds

≤
∫ Qi(t)

Qi(t+1)
−f(Qi(t)) + f ′(0)ds

=

∫ Qi(t+1)

Qi(t)
f(Qi(t)) − f ′(0)ds

≤ f(Qi(t))Ai(t)− f(Qi(t))σi(t) + f ′(0)

where the last inequality follows from Qi(t + 1) − Qi(t) ≥ −1. This inequality verifies (18) for the
case of Qi(t+ 1) < Qi(t).

When one takes expectation of (17), the first term of right hand side becomes

Ex[A(t) · f(Q(t))] := E[A(t) · f(Q(t)) |X(0) = x]

= Ex[A(t)] · Ex[f(Q(t))]

≤
∑

ρ∈S

αρρ · Ex[f(Q(t))] ≤ (1− ε) Ex

[
max
ρ∈S

{
ρ · f(Q(t))

}]
, (19)

where the inequalities come from (4). Here, to simplify notation, we use Ex[Y ] to denote the
conditional expectation of random variable Y under the initial state {X(0) = x}. Note that
E[Ai(t)

2] = Var(Ai(t)) + E[Ai(t)]
2 ≤ µ2 + 1. Then, by summing (17) from t = 0 to t = τ(x)− 1 and

applying (19), we obtain

Ex[L(τ(x)) − L(0)] = Ex



τ(x)−1∑

t=0

L(t+ 1)− L(t)




≤
τ(x)−1∑

t=0

Ex[A(t) · f(Q(t))− σ(t) · f(Q(t))] + n
(
µ2 + 2

)
f ′(0)τ(x)

≤ Ex[∆(x)] + n
(
µ2 + 2

)
f ′(0) τ(x), (20)

where

∆(x) :=

τ(x)−1∑

t=0

(
(1− ε) max

ρ∈S

{
ρ · f(Q(t)

}
− σ(t) · f(Q(t))

)
.

This inequality shows that if σ(t) · f(Q(t)) is close to maxρ∈S
{
ρ · f(Q(t)

}
for most of time, ∆(x) is

negative, i.e., L has the desired negative drift property.
Next, we aim for bounding Ex[∆(x)]. To this end, we consider the following event

E1 :=
{
Amax(0) + · · ·+Amax(τ(x)− 1) ≤ (n+ µ

√
n+ 1) τ(x)

}
,

where Amax(t) := max{1, A1(t), . . . , An(t)}. The following lemma establishes the conditional expec-
tation of ∆(x) given E1, which will be used later for bounding Ex[∆(x)]. Here, to simplify notation,
we use Px[A] to denote the conditional probability of event A under the initial state {X(0) = x}.
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Lemma 9. For any α, β ∈ (0, 1) and initial state x = (a,W ,Q) ∈ Ω with large enough Qmax, it
follows that

Ex[∆(x) | E1] ≤
(
−ε

2
(1− α)(1 − β) +

2n

1− c

(
(1− β)α+ β

))
f((1− c)Qmax)τ(x), (21)

Px[Ec
1 ] Ex[∆(x) | Ec

1 ] ≤
(
n f(Qmax)

τ(x)
+ n(n+ 1) + nµ

√
n

)
τ(x). (22)

The proof of the above lemma is given in Section 5.2. A high level intuition for event E1 and above
lemma is as follows. Amax(t) is at least the maximum change of queue length for each queue during
[t, t+1); that is, |Qi(t+1)−Qi(t)| ≤ Amax(t), for every i ∈ I. In other words, on E1, Qi(t) in [0, τ(x)]
does not change too much. Namely, W (t) ≈ f(Q(t)) does not change many times in [0, τ(x)] for
x = (a,W ,Q) with large enough Qmax. From condition C0 of the oracle system, the schedule σ(t)
is close to a max-weight one with respect to f(Q(t)) ‘mostly’ in the time interval [0, τ(x))], which
guarantees the negative drift of ∆(x) on E1, i.e., (21). On the other hand, (22) holds essentially
because the event E1 occurs with high probability. Now, we are ready to complete the proof of
Lemma 3 using upper bounds (21) and (22). For any x = (a,W ,Q) ∈ Ω with large enough Qmax,
from (20), we have

Ex[L(τ(x)) − L(0)] ≤ Px[E1] Ex[∆(x) | E1] + Px[Ec
1 ] Ex[∆(x) | Ec

1 ] + n
(
µ2 + 2

)
f ′(0)τ(x)

≤
(
−ε

2
(1− α)(1− β) +

2n

1− c

(
(1− β)α + β

))
f((1− c)Qmax)τ(x)

+

(
n f(Qmax)

τ(x)
+ n(n+ 1) + nµ

√
n

)
τ(x)

+ n
(
µ2 + 2

)
f ′(0)τ(x)

≤
(
−ε

2
(1− α)(1− β) +

2n

1− c

(
(1− β)α + β

))
f((1− c)Qmax)τ(x)

+ n

(
f(Qmax)

τ(x)
+ (µ2 + 2)f ′(0) + n+ µ

√
n+ 1

)
τ(x)

= −κ(x),

which completes the proof of Lemma 3.

5.2 Proof of Lemma 9

This subsection presents the proof of Lemma 9, thus completing the proof of Lemma 3. In the proof
of Lemma 9, we need two auxiliary results: Propositions 10 and 11. We prove theses propositions in
Section 5.3 and 5.4.

The following proposition states that Qmax(t) is bounded, and W (t) changes at most n times on
E1.

Proposition 10. For any initial state x = (a,W ,Q) ∈ Ω with large enough Qmax, given that event
E1 occurs, W (t) changes at most n times during [0, τ(x)] and

(1− c) ≤ Qmax(t)

Qmax
≤ (1 + c), for all t ∈ [0, τ(x)], (23)

where c is the constant in condition C6 of Theorem 2.
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The proof of the above proposition is given in Section 5.3. Let Tm be the time at which the m-th
change of weight vector W (t) occurs, i.e., W (t) remains fixed during the time interval [Tm, Tm+1).
Formally, let T0 = 0 and for m ≥ 1, iteratively define

Tm := inf{t ∈ Z+ : W (t− 1) 6= W (t), t > Tm−1}.

Since W (t) remains fixed for t ∈ [Tm, Tm+1), condition C0 implies that that with high probability,
σ(t) is close to the max-weight schedule with respect to W (t) for Tm + h ≤ t ≤ Tm+1. Using this
observation with Proposition 10, we obtain the following proposition, which states that with high
probability, schedule σ(t) is close to a max-weight schedule with respect to f(Q(t)) ‘mostly’ in time
interval [0, τ(x))], on the event E1.

Proposition 11. For any η, α, β ∈ (0, 1) and initial state x = (a,W ,Q) ∈ Ω with large enough
Qmax, it follows that

Px

[
|T (x, η)| ≥ (1− α) τ(x) | E1

]
≥ 1− β,

where

T (x, η) :=

{
t ∈ [0, τ(x)] : σ(t) · f(Q(t)) ≥ (1− η) max

ρ∈S

{
ρ · f(Q(t))

}}
. (24)

The proof of the above proposition is given in Section 5.4. In the remainder of this section, we derive
(21) and (22) utilizing Propositions 10 and 11.

First, from (23), we have the following upper bound for any summand in ∆(x): for all t ∈ [0, τ(x)],

(1− ε) max
ρ∈S

{
ρ · f(Q(t)

}
− σ(t) · f(Q(t)) ≤ max

ρ∈S

{
ρ · f(Q(t)

}

≤ n f(Qmax(t))

≤ n f((1 + c)Qmax). (25)

Furthermore, we have a tighter bound for t ∈ T (x, η). From the definition (24) of T (x, η) with
η = ε/2, we obtain that for all t ∈ T (x, η),

(1− ε) max
ρ∈S

{
ρ · f(Q(t)

}
− σ(t) · f(Q(t)) ≤ −ε

2
max
ρ∈S

{
ρ · f(Q(t))

}

≤ −ε

2
f(Qmax(t))

≤ −ε

2
f((1− c)Qmax), (26)

where the last inequality comes from (23). Now, under η = ε/2 in Proposition 11, define the following
event

E2 :=

{ ∣∣∣∣
{
t ∈ [0, τ(x)] : σ(t) · f(Q(t)) ≥ (1− ε/2) max

ρ∈S

{
ρ · f(Q(t))

}}∣∣∣∣ ≥ (1− α)τ(x)

}
.

Then, according to Proposition 11, we have Px[E2 | E1] ≥ 1 − β for x = (a,W ,Q) ∈ Ω with large
enough Qmax. From upper bounds (25) and (26), and the definition of the event E2, we conclude that

Ex[∆(x) | E1 ∩ E2] ≤ Ex

[
−ε

2
f((1− c)Qmax)T (x, η) + n f((1 + c)Qmax)(τ(x)− T (x, η))

∣∣∣∣ E1 ∩ E2
]

≤
(
−ε

2
(1− α)f((1 − c)Qmax) + αn f((1 + c)Qmax)

)
τ(x). (27)
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From (25), we also have

Ex[∆(x) | Ec
2 ∩ E1] ≤ Ex



τ(x)−1∑

t=0

n f((1 + c)Qmax)

∣∣∣∣ Ec
2 ∩ E1


 = (n f((1 + c)Qmax)) τ(x). (28)

Using (27) and (28), we derive (21) as follows:

Ex[∆(x) | E1] = Px[E2 | E1] Ex[∆(x) | E1 ∩ E2] + Px[Ec
2 | E1] Ex[∆(x) | E1 ∩ Ec

2 ]

≤ (1− β)
(
−ε

2
(1− α)f((1 − c)Qmax) + αn f((1 + c)Qmax)

)
τ(x)

+ β (n f((1 + c)Qmax)) τ(x)

≤
(
−ε

2
(1− α)(1 − β) +

2n

1− c

(
(1− β)α + β

))
f((1− c)Qmax)τ(x),

where, in the last inequality, we use the following property for concave functions f with f(0) = 0:

f((1 + c)x)

f((1− c)x)
≤ 2

1− c

f((1 + c)x)

f(2x)
≤ 2

1− c
.

Next, for proving (22), we introduce the following Chebyshev-type inequality involving conditional
expectations in [28]:

Lemma 12 ([28, Theorem 2.1]). If X is a random variable with mean λ and variance µ2 then we
have

(E[X|A]− λ)2 ≤ µ2 1− p

p
,

for any event A with P[A] = p.

From conditions C1, C2 and C4, we have

max
ρ∈S

ρ · f(Q(t)) ≤ nf(Qmax(t)) ≤ nf(Qmax +Amax(1) + · · · +Amax(τ(x)))

≤ nf(Qmax) + nAmax(1) + · · · + nAmax(τ(x)), (29)

for x ∈ Ω with large enoughQmax. Since E[Amax(1)+· · ·+Amax(τ(x))] ≤ (n+1)τ(x) and Var[Amax(1)+
· · ·+Amax(τ(x))] ≤ nµ2 τ(x), we have

E [Amax(1) + · · · +Amax(τ(x)) | Ec
1 ] ≤ (n+ 1)τ(x) + µ

√
n
√

τ(x)

√
1− P[Ec

1]

P[Ec
1]

(30)

from Lemma 12. Also, according to the definition of event E1, we have

Px[Ec
1 ] ≤ 1

τ(x)
, (31)

the proof of which is elementary and given in Appendix B for completeness. Combining (29), (30),
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and (31), we derive (22) as follows:

Px[Ec
1 ] Ex[∆(x) | Ec

1 ] ≤ Px[Ec
1 ] Ex



τ(x)−1∑

t=0

max
ρ∈S

ρ · f(Q(t))

∣∣∣∣ Ec




≤ Px[Ec
1 ]

τ(x)−1∑

t=0

(n f(Qmax) + nEx[Amax(1) + · · ·+Amax(τ(x)) | Ec])

≤ n f(Qmax) + n τ(x)Px[Ec
1 ]Ex[Amax(1) + · · · +Amax(τ(x)) | Ec]

≤ n f(Qmax) + n τ(x)Px[Ec
1 ]

(
(n+ 1)τ(x) + µ

√
n
√

τ(x)

√
1− P[Ec

1]

P[Ec
1 ]

)

≤ n f(Qmax) + n(n+ 1) τ(x) + nµ
√
n τ(x)

√
τ(x)

√
P[Ec

1 ]

≤ n f(Qmax) + n(n+ 1) τ(x) + nµ
√
n τ(x).

This completes the proof of Lemma 9.

5.3 Proof of Proposition 10

This subsection presents the proof of Proposition 10. We assume that event E1 occurs throughout
this section. We first note that, for all i ∈ I and t ∈ [1, τ(x)],

Qi(t)−Qi(0) ≤ Amax(0) + · · ·+Amax(τ(x)− 1) ≤ (n + µ
√
n+ 1)τ(x),

Qi(t)−Qi(t− 1) ≥ − 1,

τ(x) ≤ c

n+ µ
√
n+ 1

Qmax,

where the right hand side of the last inequality is the second term of the minimum in the definition
of τ(x). Then, we obtain

−cQmax ≤ τ(x) ≤ Qi(t)−Qi(0) ≤ (n+ µ
√
n+ 1)τ(x) ≤ cQmax, for all t ∈ [0, τ(x)],

which implies that (23) in Proposition 10 holds.
Now, we prove that for x = (a,W ,Q) with large enough Qmax, Tn+1 > τ(x), i.e., W (t) changes

at most n times during [0, τ(x)]. Toward this, we claim that we need only to show that given initial
state X(0) = x = (a,W ,Q) with large enough Qmax, the following holds:

|Ui(t+ 1)− Ui(t)| ≤ f ′(f−1(g((1 − c) Qmax))) ·Amax(t), for all t ∈ [0, τ(x)]. (32)

Under assuming (32), one can obtain that for all t ∈ [0, τ(x)],

|Ui(t)− Ui(0)| ≤ f ′(f−1(g((1 − c) Qmax))) (Amax(1) + · · ·+Amax(τ(x)))

≤ f ′(f−1(g((1 − c) Qmax)))
((
n+ µ

√
n+ 1

)
τ(x)

)
≤ 1,

where the second inequality is from the definition of event E1 and the last inequality from the definition
of τ(x). In other words, Ui(t) varies by at most 1 for all i ∈ I during [0, τ(x)]. Then, since Wi(t) is
updated only if Ui(t) varies by at least 2, Wi(t) changes at most once, and W (t) changes at most
n times, which implies Tn+1 > τ(x). To verify (32), we investigate the variation of Ui(t) by the
following cases:
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1. Suppose that f(Qi(t)) > g(Qmax(t)). Because Ui(t) = f(Qi(t)) (from the definition of Ui),
Qi(t) > f−1(g(Qmax(t))) (from the previous assumption), f ′ is decreasing (from condition C1),
and Qmax(t) ≥ (1− c)Qmax (from (23)), we obtain an upper bound of f ′(Qi(t)) as:

f ′(Qi(t)) ≤ f ′(f−1(g(Qmax(t)))) ≤ f ′(f−1(g((1 − c) Qmax))).

2. Now, suppose that f(Qi(t)) ≤ g(Qmax(t)). Because g′(x) < f ′(x) for large enough x (from
condition C2), Qmax(t) ≥ (1 − c)Qmax (from (23)), and f ′ is decreasing (from condition C1),
we obtain an upper bound of g′(Qmax(t)) as:

g′(Qmax(t)) ≤ f ′(Qmax(t)) ≤ f ′((1− c)Qmax) ≤ f ′(f−1(g((1 − c) Qmax)))

for large enough Qmax.

Then, (32) follows from the definitions of Ui and Amax(t) and the above upper bounds of f ′(Qi(t))
and g′(Qmax(t)). This completes the proof of Proposition 10.

5.4 Proof of Proposition 11

This subsection presents the proof of Proposition 11. Without loss of generality, assume that η ≤ 7
8

and let

η′ = 1− (1− η)1/3 ≤ 1

2
, α′ = 1−

√
1− α, γ =

β

n+ 1
, and δ = α′γ.

To simplify notation, we use h(x) instead of h(x, η′, δ). From conditions C1-C6, for large enough x,
we have

2n

f ((1− c)x)
≤ η′, (33)

n g((1 + c)x) + 2n
1
2 (f((1− c)x) − 2)

≤ η′, (34)

(n+ 1) h(f((1 + c)x+ 2))

cx
≤ α′, (35)

(n+ 1) f ′(f−1(g((1 − c)x))) h(f((1 + c)x+ 2)) ≤ α′, (36)

where their detailed proofs are given in Appendix C.
In the rest of this section, we assume that E1 occurs. Then, we claim that the following conditions

are sufficient to prove Proposition 11:

(a) For all t ∈ [0, τ(x)],

(1− η′)

[
max
ρ∈S

ρ · f(Q(t))

]
≤ max

ρ∈S
ρ ·W (t).

(b) With probability at least 1−β, at least (1−α)τ(x) number of time instance t ∈ [0, τ(x)] satisfy

(1− η′)

[
max
ρ∈S

ρ ·W (t)

]
≤ σ(t) ·W (t). (37)

(c) For all t ∈ [0, τ(x)] at which (37) is satisfied,

(1− η′) (σ(t) ·W (t)) ≤ σ(t) · f(Q(t)).

23



The proof of Proposition 11 comes immediately from (a), (b) and (c):

(1− η)

[
max
ρ∈S

ρ · f(Q(t))

]
= (1− η′)3

[
max
ρ∈S

ρ · f(Q(t))

]

≤ (1− η′)2
[
max
ρ∈S

ρ ·W (t)

]

≤ (1− η′) (σ(t) ·W (t))

≤ σ(t) · f(Q(t)),

where with probability at least 1−β, at least (1−α)τ(x) number of time instance t ∈ [0, τ(x)] satisfy
the second last and last inequalities. Hence, we proceed toward proving (a), (b) and (c).

Proof of (a). Recall that our scheduling algorithm in Section 3.2 maintains |Ui(t) − Wi(t)| ≤ 2,
where Ui(t) = max{f(Qi(t)), g(Qmax(t))}. Thus, for t ∈ Z+ and i ∈ I, we have f(Qi(t))−2 ≤ Wi(t),
and hence

max
ρ∈S

ρ · f(Q(t))− 2n ≤ max
ρ∈S

ρ ·W (t). (38)

In addition, from Proposition 10, we have

f((1− c)Qmax) ≤ f(Qmax(t)) ≤ max
ρ∈S

ρ · f(Q(t)). (39)

Therefore, we conclude that, for large enough Qmax,

(1− η′)

[
max
ρ∈S

ρ · f(Q(t))

]
≤

(
1− 2n

f((1− c)Qmax)

)[
max
ρ∈S

ρ · f(Q(t))

]

= max
ρ∈S

ρ · f(Q(t))− 2n

(
maxρ∈S ρ · f(Q(t))

f((1− c)Qmax)

)

≤ max
ρ∈S

ρ · f(Q(t))− 2n

≤ max
ρ∈S

ρ ·W (t),

where the first inequality comes from (33), the second inequality from (39), and the last inequality
from (38).

Proof of (b). Recall that Tm is the time at which the m-th change of weight vector W (t). For
t ∈ [Tm, Tm+1), let W := W (t) and define a binary random variable Zt ∈ {0, 1} by

Zt :=

{
1 if

(
σoracle(a

(t)
oracle

(a))
)
·W < (1− η′)maxρ∈S ρ ·W

0 otherwise
.

Then, from condition C0, for t ∈ [Tm + h′, Tm+1), we have E[Zt] < δ and E

[∑l−1
t=h′ Zt

]
< δ(l − h′),

where h′ ≥ h(Wmax, η
′, δ) and l > h′. Applying the Markov inequality to the random variable∑l−1

t=h Zt, we conclude that
∣∣∣∣
{
t ∈ [h, l) :

(
σoracle(a

(t)
oracle

(a))
)
·W ≥ (1− η)max

ρ∈S
ρ ·W

}∣∣∣∣ ≥ (1− δ/γ)(l − h)

occurs with probability at least 1− γ. In other words, with probability ≥ 1− γ,
∣∣∣∣
{
t ∈ [Ti + h, Ti+1) : σ(t) ·W (t) ≥ (1− η′)max

ρ∈S
ρ ·W (t)

}∣∣∣∣ ≥ (1− α′)(Ti+1 − Ti − h),
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where from Proposition 10, we set

h = h((1 + c)Qmax + 2, η′, δ) ≥ h(W (t), η′, δ).

Since W (t) changes at most n times in [0, τ(x)] from Proposition 10, one can use the union bound
and conclude that with probability ≥ 1− β = 1− (n+ 1)γ,

(1− η′)maxρ ·W (t) ≤ σ(t) ·W (t),

for at least (1 − α′) fraction of times in
⋃n

i=0[Ti + h, Ti+1). Furthermore, from (35), (36), and the
definition of τ , we have

(n+ 1)h = (n+ 1)h(f(1 − c)Qmax + 2)

≤ α′

2
min

{
cQmax,

1

f ′(f−1(g(1 − c)Qmax))

}

≤ α′

2
(τ(x) + 1) ≤ α′τ(x).

Thus, it follows that
∣∣∣∣∣
n⋃

i=0

[Ti + h, Ti+1)

∣∣∣∣∣ ≥ τ(x)− (n+ 1)h ≥ (1− α′)τ(x).

Therefore, with probability ≥ 1− β, for at least (1 − α′)2 = (1 − α) fraction of times in the interval
[0, τ(x)], (37) holds.

Proof of (c). From |Ui(t)−Wi(t)| ≤ 2, where Ui(t) = max{f(Qi(t)), g(Qmax(t))}, we have

f(Qi(t))− 2 ≤ Wi(t) ≤ f(Qi(t)) + g(Qmax(t)) + 2, (40)

Then, for all t ∈ [0, τ(x)] at which (37) is satisfied, we obtain

1

2
(f((1− c)Qmax)− 2) ≤ 1

2
(f(Qmax(t))− 2) ≤ 1

2

[
max
ρ∈S

ρ ·W (t)

]

≤ η′
[
max
ρ∈S

ρ ·W (t)

]
≤ σ(t) ·W (t). (41)

where the first inequality comes from (1−c)Qmax ≤ Qmax(t) in Proposition 10 , the second inequality
from (40), the third inequality from the assumption η′ ≤ 1/2, and the last inequality from (37). We
also have

σ(t) ·W (t) ≤ σ(t) · f(Q(t)) + n g(Qmax(t)) + 2n

≤ σ(t) · f(Q(t)) + n g((1 + c)Qmax) + 2n, (42)

where the first inequality follows from (40) and the second inequality from Qmax(t) ≤ (1+ c)Qmax in
Proposition 10. The last two inequalities with (34) lead to (c): for large enough Qmax, we have

(1− η′)σ(t) ·W (t) ≤
(
1− n g((1 + c)Qmax) + 2n

1
2(f((1− c)Qmax)− 2)

)
σ(t) ·W (t)

≤ σ(t) ·W (t)− n g((1 + c)Qmax) + 2n

≤ σ(t) · f(Q(t)),

where the first inequality comes from (34), the second inequality from (41), and the last inequality
from (42). This completes the proof of Proposition 11.
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6 Conclusion

The problem of dynamic resource allocation among network users contending resources has long
been the subject of significant research in the last four decades. In this paper, we develop a generic
framework for designing resource allocation algorithms of low-complexity and high-performance via
connecting iterative optimization methods and scheduling algorithms. Our work establishes sufficient
conditions on queue-length functions so that a queue-based scheduling algorithm is throughput-
optimal. To our best knowledge, our result is the first that establishes a rigorous connection between
iterative optimization methods and low-complexity scheduling algorithms. We believe that it is of
broader interest to design low-complexity scheduling algorithms with high performance in various
domains.
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A Proof of (8) and (9)

This section verifies two equations

lim
L(x)→∞

τ(x) = ∞ (8 Revisited)

lim
L(x)→∞

κ(x)/τ(x) = ∞, (9 Revisited)

where, for x = (a,W ,Q) ∈ Ω, L(x) =
∑

i∈I

∫ Qi

0 f(s)ds,

τ(x) =

⌊
1

(n+ s
√
n) + 1

min

{
1

f ′ (f−1(g((1 − c)Qmax))))
, cQmax

}⌋
, (5 Revisited)

κ(x)

τ(x)
=

(
ε

2
(1− α)(1 − β) +

2n

1− c

(
(1− β)α+ β

))
f((1− c)Qmax)

− n

(
f(Qmax)

τ(x)
+ (µ2 + 2)f ′(0) + n+ µ

√
n+ 1

)
, (6 Revisited)

and α, β are constants that satisfy

ε

2
(1− β)(1 − α)− 2n(β + (1− β)α)

1− c
> 0. (43)

We first note that L(x) → ∞ if and only if Qmax → ∞ from the definition of L. To show that (8),
we calculate the limit of τ(x) in cases:

(i) If cQmax ≤ 1
f ′(f−1(g((1−c)Qmax))))

, we have

lim
L(x)→∞

⌊
1

(n+ s
√
n) + 1

cQmax

⌋
≥ lim

Qmax→∞

1

(n + s
√
n) + 1

cQmax − 1 = ∞,

(ii) If cQmax > 1
f ′(f−1(g((1−c)Qmax))))

, we have

lim
L(x)→∞

⌊
1

(n+ s
√
n) + 1

1

f ′ (f−1(g((1 − c)Qmax))))

⌋

≥ lim
Qmax→∞

1

(n+ s
√
n) + 1

1

f ′ (f−1(g((1 − c)Qmax))))
− 1 = ∞

since limx→∞ f(x) = g(x) = ∞ and limx→∞ f ′(x) = 0 (conditions C1, C2, and C4).

Therefore, we have limL(x)→∞ τ(x) = ∞.

To prove (9), note that the following property for concave function f with f(0) = 0:

f((1− c)x) ≥ (1− c)f(x) + cf(0) = (1− c)f(x).

Then, we have

lim
L(x)→∞

κ(x)

τ(x)
= lim

Qmax→∞

(
ε

2
(1− α)(1 − β) +

2n

1− c

(
(1− β)α+ β

))
f((1− c)Qmax)

− n

τ(x)
f(Qmax)− n

(
(µ2 + 2)f ′(0) + n+ µ

√
n+ 1

)

≥ lim
Qmax→∞

(
ε

2
(1− α)(1 − β) +

2n

1− c

(
(1− β)α+ β

)
− 1

1− c

n

τ(x)

)
f((1− c)Qmax)

− n
(
(µ2 + 2)f ′(0) + n+ µ

√
n+ 1

)
= ∞,

due to (43), (8), and limx→∞ f(x) = ∞.
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B Proof of (31)

This section proves (31); that is, Px[Ec
1 ] ≤ 1

τ(x) , where E1 = {Amax(0) + · · · + Amax(τ(x) − 1) ≤
(n + µ

√
n + 1) τ(x)}. Recall that Amax(t) = max{1, A1(t), . . . , An(t)}. Then, we have E[Amax(t)] ≤∑n

i=1 λi + 1 ≤ n + 1 and Var [Amax(t)] ≤
∑n

i=1 Var[Ai(t)] ≤ nµ2 for every t ∈ Z+. From these
inequalities and Chebyshev’s inequality, we have

Px [Ec
1 ] = Px

[
Amax(1) + · · · +Amax(τ(x)) ≥

(
n+ µ

√
n+ 1

)
τ(x)

]

= Px

[
Amax(1) + · · · +Amax(τ(x)) ≥ (n+ 1) τ(x) +

√
τ(x)

(
µ
√
n
√

τ(x)
)]

≤ 1

τ(x)
,

which verifies (31).

C Proof of (33)–(36)

Conditions C2 and C5 show that

lim
x→∞

2n

f ((1− c)x)
= 0,

lim
x→∞

h(f((1 + c)x+ 2))

x
= 0,

which implies (33) and (35). Now, from conditions C1 and C2, we obtain

lim
x→∞

g((1 + c)x)

f((1− c)x)
≤ lim

x→∞

2

1− c

g((1 + c)x)

f(1 + c)x
= 0,

where we use the following property for concave function f :

f((1 + c)x)

f((1− c)x)
≤ 1

1− c

f((1 + c)x)

f(2x)
≤ 2

1− c
.

Then, (34) holds. Finally, for (36), we let x′ = x+ 2/(1 + c) > x, and we observe that

f ′(f−1(g((1 − c)x))) h(f((1 + c)x+ 2))

= f ′(f−1(g((1 − c)x))) h(f((1 + c)x′))

=
f ′(f−1(g((1 − c)x)))

f ′(f−1(g((1 − c)x′)))

× f ′(f−1(g((1 − c)x′))) h(f((1 + c)x′))

≤ f ′(f−1(g((1 − c)x′))) h(f((1 + c)x′)) → 0,

as x → ∞ from condition C6. This completes the proof of (36).
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