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Calculating optimal policies is known to be computationally difficult for Markov decision processes (MDPs)
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decision processes with Borel state and action spaces, for both discounted and average costs criteria. The
stationary policies thus obtained are shown to approximate the optimal stationary policy with arbitrary
precision under quite general conditions for discounted cost and more restrictive conditions for average cost.
For compact-state MDPs, we obtain explicit rate of convergence bounds quantifying how the approximation
improves as the size of the approximating finite state space increases. Using information theoretic arguments,
the order optimality of the obtained convergence rates is established for a large class of problems. We also
show that, as a pre-processing step the action space can also be finitely approximated with sufficiently large
number points; thereby, well known algorithms, such as value or policy iteration, Q-learning, etc., can be
used to calculate near optimal policies.
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1. Introduction. In this paper, our goal is to study the finite-state approximation problem
for computing near optimal policies for discrete time Markov decision processes (MDPs) with Borel
state and action spaces, under discounted and average costs criteria. Although the existence and
structural properties of optimal policies have been studied extensively in the literature, computing
such policies is generally a challenging problem for systems with uncountable state spaces. This
situation also arises in the fully observed reduction of a partially observed Markov decision process
even when the original system has finite state and action spaces (see, e.g., Yu and Bertsekas [45]).
As has been extensively studied in the literature (see, e.g., Chow and Tsitsiklis [11] and the

literature review below), one way to compute approximately optimal solutions for such MDPs is
to construct a reduced model with a new transition probability and a one-stage cost function by
quantizing the state/action spaces, i.e., by discretizing them on a finite grid. We exhibit that under
quite general continuity conditions on the one-stage cost function and the transition probability
for the discounted cost and under some additional restrictions on the ergodicity properties of
Markov chains induced by deterministic stationary policies for the average cost, the optimal policy
for the approximating finite model applied to the original model has cost that converges to the
optimal cost, as the discretization becomes finer. Moreover, under additional continuity conditions
on the transition probability and the one stage cost function we also obtain bounds for a rate of
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approximation in terms of the number of points used to discretize the state space, thereby providing
a tradeoff between the computation cost and the performance loss in the system. In particular, we
study the following two problems.
(Q1) Under what conditions on the components of the MDP do the true costs corresponding

to the optimal policies obtained from finite models converge to the optimal value function as the
number of grid points goes to infinity? For this problem, we are only concerned with the convergence
of the approximation; that is, we do not establish bounds for a rate of approximation.
(Q2) Can we obtain explicit bounds on the performance loss due to the discretization in terms

of the number of grid points if we strengthen the conditions sufficient in (Q1)?
Combined with our recent works Saldi et al. [33, 34], where we investigated the asymptotic opti-

mality of the quantization of action sets, the results in this paper lead to a constructive algorithm
for obtaining approximately optimal solutions. First the action space is quantized with small er-
ror, and then the state space is quantized with small error, which results in a finite model that
well approximates the original MDP. When the state space is compact, we also obtain rates of
convergence for both approximations, and using information theoretic tools we establish that the
obtained rates of convergence are order-optimal for a given class of MDPs. Since there exist various
computational algorithms for finite-state Markov decision problems, the analysis in this paper can
be considered to be constructive.
Various methods have been developed to compute approximate value functions and near optimal

policies. A partial list of these techniques is as follows: approximate dynamic programming, ap-
proximate value or policy iteration, simulation-based techniques, neuro-dynamic programming (or
reinforcement learning), state aggregation, etc. For rather complete surveys of these techniques,
we refer the reader to Fox [17], Whitt [42, 43], Langen [28], Bertsekas and Tsitsiklis [6], Ren and
Krogh [32], Ortner [30], White [40, 41], Bertsekas [4], Dufour and Prieto-Rumeau [14, 15] and ref-
erences therein. With the exception of Dufour and Prieto-Rumeau [15], Ortner [30], these papers
in general study either the finite horizon cost or the discounted infinite horizon cost. Also, the
majority of these results are for MDPs with discrete (i.e., finite or countable) state and action
spaces, or a bounded one-stage cost function (e.g., Fox [17], Whitt [42, 43], Van Roy [37], White
[40, 41], Cavazos-Cadena [9], Bertsekas and Tsitsiklis [6], Ren and Krogh [32], Ortner [30], Bert-
sekas [4]). Those that consider general state and action spaces (see, e.g., Dufour and Prieto-Rumeau
[13, 14, 15], Bertsekas [4], Chow and Tsitsiklis [11]) assume in general Lipschitz type continuity
conditions on the components of the control model, in order to provide a rate of convergence
analysis for the approximation error. Some of the results only consider approximating the value
function and do not provide a procedure to compute near optimal policies (e.g., Langen [28], Whitt
[43], Dufour and Prieto-Rumeau [14]).
Our paper differs from these results in the following ways: (i) we consider a general setup, where

the state and action spaces are Borel (with the action space being compact), and the one-stage cost
function is possibly unbounded, (ii) since we do not aim to provide rate of convergence result in the
first problem (Q1), the continuity assumptions we impose on the components of the control model
are weaker than the conditions imposed in prior works that considered general state and action
spaces, (iii) we also consider the challenging average cost criterion under reasonable assumptions.
The price we pay for imposing weaker assumptions in (Q1) is that we do not obtain explicit
performance bounds in terms of the number of grid points used in the approximations. However,
such bounds can be obtained under further assumptions on the transition probability and the
one-stage cost functions; this is considered in problem (Q2) for compact-state MDPs.
Our approach to solve problem (Q1) can be summarized as follows: (i) first, we obtain ap-

proximation results for the compact-state case, (ii) we find conditions under which a compact
representation leads to near optimality for non-compact state MDPs, (iii) we prove the conver-
gence of the finite-state models to non-compact models. As a by-product of this analysis, we obtain
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compact-state-space approximations for an MDP with non-compact Borel state space. In particular,
our findings directly lead to finite models if the state space is countable; similar problems in the
countable context have been studied in the literature for the discounted cost; see Puterman [31,
Section 6.10.2].
We note that the proposed method for solving the approximation problem for compact-state

MDPs with the discounted cost is partly inspired by Van Roy [37]. Specifically, we generalize the
operator proposed for an approximate value iteration algorithm in Van Roy [37] to uncountable
state spaces. Then, unlike in Van Roy [37], we use this operator as a transition step between the
original optimality operator and the optimality operator of the approximate model. In Ortner [30],
a similar construction was given for finite state-action MDPs. Our method to obtain finite-state
MDPs from the compact-state model can be regarded as a generalization of this construction. We
note that a related work of Dufour and Prieto-Rumeau [15] develops a sequence of approxima-
tions using empirical distributions of an underlying probability measure with respect to which the
transition probability of the MDP is absolutely continuous. By imposing Lipschitz type continu-
ity conditions on the components of the control model, Dufour and Prieto-Rumeau [15] obtains
a concentration inequality type upper bound on the accuracy of the approximation based on the
Wasserstein distance of order 1 between the probability measure and its empirical estimate. These
conditions are stronger than what we impose for the problem (Q1). We note that Dufour and
Prieto-Rumeau [15] adopts a simulation based approximation leading to probabilistic guarantees
on the approximation, whereas we adopt a quantization based approach leading to deterministic
approximation guarantees. For a review of further simulation based methods, see e.g., Chang et al.
[10], Jain and Varaiya [25].
The approach developed in the paper is also useful in networked control applications where

transmission of real-valued actions to an actuator is not realistic when there is an information
transmission constraint between a plant, a controller, and an actuator (see, e.g., Yüksel and Başar
[46]). On the other hand, the elements of a finite action set can be transmitted across a finite
capacity information channel. Even though the problem of optimal quantization for information
transmission from a plant/sensor to a controller has been studied extensively (see, e.g. references
in Yüksel and Başar [46]), these type of results appear to be new in the networked control lit-
erature when the problem of transmitting signals from a controller to an actuator is considered.
Furthermore, tools from information theory allow for obtaining lower bounds on the approximation
performance; using such an argument we show that the construction in this paper is order-optimal
for a large class of models.
The rest of the paper is organized as follows. In Section 2 we study the approximation problem

(Q1) for MDPs with compact state space. In Section 3 an analogous approximation result is
obtained for MDPs with non-compact state space. Discretization of the action space is considered in
Section 4 for a general state space. In Section 5 we derive quantitative bounds on the approximation
error in terms of the number of points used to discretize the state space for the compact-state case.
In Section 6 the order optimality of the obtained bounds on the approximation errors is established.
In Section 7 we present an example to numerically illustrate our results. Section 8 concludes the
paper.

1.1. Notation and Conventions. For a metric space E, the Borel σ-algebra (the smallest
σ-algebra that contains the open sets of E) is denoted by B(E). We let B(E) and Cb(E) denote
the set of all bounded Borel measurable and continuous real functions on E, respectively. For any
u ∈ Cb(E) or u ∈ B(E), let ‖u‖ := supe∈E

|u(e)| which turns Cb(E) and B(E) into Banach spaces.
Given any Borel measurable function w : E→ [1,∞) and any real valued Borel measurable function
u on E, we define the w-norm of u as

‖u‖w := sup
e∈E

|u(e)|

w(e)
,
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and let Bw(E) denote the Banach space of all real valued measurable functions u on E with fi-
nite w-norm; see Hernández-Lerma and Lasserre [22]. Let P(E) denote the set of all probability
measures on E. A sequence {µn} of probability measures on E is said to converge weakly (resp.,
setwise) (see Hernández-Lerma and Lasserre [23]) to a probability measure µ if

∫

E
g(e)µn(de)→

∫

E
g(e)µ(de) for all g ∈Cb(E) (resp., for all g ∈B(E)). For any µ,ν ∈P(E), the total variation dis-

tance between µ and ν, denoted as ‖µ− ν‖TV , is equivalently defined as

‖µ− ν‖TV := 2 sup
D∈B(E)

|µ(D)− ν(D)|= sup
‖g‖≤1

∣

∣

∣

∣

∫

E

g(e)µ(de)−

∫

E

g(e)ν(de)

∣

∣

∣

∣

.

Unless otherwise specified, the term ‘measurable’ will refer to Borel measurability in the rest of
the paper.

1.2. Markov Decision Processes. A discrete-time Markov decision process (MDP) can be
described by a five-tuple

(

X,A,{A(x) : x∈ X}, p, c
)

,

where Borel spaces (i.e., Borel subsets of complete and separable metric spaces) X and A denote the
state and action spaces, respectively. The collection {A(x) : x∈X} is a family of nonempty subsets
A(x) of A, which give the admissible actions for the state x ∈ X. The stochastic kernel p( · |x,a)
denotes the transition probability of the next state given that previous state-action pair is (x,a);
see Hernández-Lerma and Lasserre [21]. Hence, it satisfies: (i) p( · |x,a) is an element of P(X) for
all (x,a), and (ii) p(D| · , · ) is a measurable function from X×A to [0,1] for each D ∈ B(X). The
one-stage cost function c is a measurable function from X× A to R. In this paper, it is assumed
that A(x) =A for all x∈X.
Define the history spaces H0 =X and Ht = (X×A)t×X, t= 1,2, . . . endowed with their product

Borel σ-algebras generated by B(X) and B(A). A policy is a sequence π= {πt} of stochastic kernels
on A given Ht. The set of all policies is denoted by Π. Let Φ denote the set of stochastic kernels ϕ on
A given X, and let F denote the set of all measurable functions f from X to A. A randomized Markov
policy is a sequence π= {πt} of stochastic kernels on A given X. A deterministic Markov policy is
a sequence of stochastic kernels π= {πt} on A given X such that πt( · |x) = δft(x)( · ) for some ft ∈ F,
where δz denotes the point mass at z. The set of randomized and deterministic Markov policies
are denoted by RM and M, respectively. A randomized stationary policy is a constant sequence
π = {πt} of stochastic kernels on A given X such that πt( · |x) = ϕ( · |x) for all t for some ϕ ∈ Φ.
A deterministic stationary policy is a constant sequence of stochastic kernels π= {πt} on A given
X such that πt( · |x) = δf(x)( · ) for all t for some f ∈ F. The set of randomized and deterministic
stationary policies are identified with the sets Φ and F, respectively.
According to the Ionescu Tulcea theorem (see Hernández-Lerma and Lasserre [21]), an initial

distribution µ on X and a policy π define a unique probability measure P π
µ on H∞ = (X×A)∞. The

expectation with respect to P π
µ is denoted by Eπµ. If µ= δx, we write P π

x and Eπx instead of P π
δx

and
Eπδx . The cost functions to be minimized in this paper are the β-discounted cost and the average
cost, respectively given by

J(π,x) =Eπx

[ ∞
∑

t=0

βtc(xt, at)

]

,

V (π,x) = limsup
T→∞

1

T
Eπx

[T−1
∑

t=0

c(xt, at)

]

.
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With this notation, the discounted and average value functions of the control problem are defined
as

J∗(x) := inf
π∈Π

J(π,x),

V ∗(x) := inf
π∈Π

V (π,x).

A policy π∗ is said to be optimal if J(π∗, x) = J∗(x) (or V (π∗, x) = V ∗(x) for the average cost) for
all x ∈ X. Under fairly mild conditions, the set F of deterministic stationary policies contains an
optimal policy for discounted cost (see, e.g., Hernández-Lerma and Lasserre [21], Feinberg et al.
[16]) and average cost optimal control problems (under somewhat stronger continuity/recurrence
conditions, see, e.g., Feinberg et al. [16]).
Remark 1.1. We note that the path-wise infinite sum

∑∞

t=0 β
tc(xt, at) may not be well-defined

in the definition of J if c is only assumed to be measurable. However, further assumptions that
will be imposed in later sections ensure that J is a well-defined function.

1.3. Auxiliary Results To avoid measurability problems associated with the operators that
will be defined for the approximation problem in the discounted cost case, it is necessary to enlarge
the set of functions on which these operators can act. To this end, in this section we review the
notion of analytic sets and lower semi-analytic functions, and state the main results that will be
used in the sequel to tackle these measurability problems. For a detailed treatment of analytic sets
and lower semi-analytic functions, we refer the reader to Shreve and Bertsekas [36], Blackwell et al.
[7], Kuratowski [27, Chapter 39], and Bertsekas and Shreve [3, Chapter 7].
Let N∞ be the set of sequences of natural numbers endowed with the product topology. With

this topology, N∞ is a complete and separable metric space. A subset A of a Borel space E is said
to be analytic if it is a continuous image of N∞. Note that Borel sets are always analytic.
A function g : E→ R is said to be universally measurable if for any µ ∈ P(E), there is a Borel

measurable function gµ : E→R such that g = gµ µ almost everywhere. It is said to be lower semi-
analytic if the set {e : g(e)< c} is analytic for any c ∈ R. Any Borel measurable function is lower
semi-analytic and any lower semi-analytic function is universally measurable. The latter property
implies that the integral of any lower semi-analytic function with respect to any probability measure
is well defined. We let Bl(E) and Bl

w(E) denote the set of all bounded lower semi-analytic functions
and lower semi-analytic functions with finite w-norm, respectively. Since any pointwise limit of a
sequence of lower semi-analytic functions is lower semi-analytic (see Kuratowski [27, Theorem 1,
p. 512]), (Bl(E),‖ · ‖) and (Bl

w(E),‖ · ‖w) are Banach spaces.
We now state the results that will be used in the sequel.

Proposition 1.1. (Bertsekas and Shreve [3, Proposition 7.47, p. 179]) Suppose E1 and E2 are
Borel spaces. Let g : E1 × E2 → R be lower semi-analytic. Then, g∗(e1) := infe2∈E2

g(e1, e2) is also
lower semi-analytic.

Proposition 1.2. (Bertsekas and Shreve [3, Proposition 7.48, p. 180]) Suppose E1 and E2 as
in Proposition 1.1. Let g : E1 × E2 →R be lower semi-analytic and q(de2|e1) be a stochastic kernel
on E2 given E1. Then, the function

h(e1) :=

∫

E2

g(e2)q(de2|e1).

is lower semi-analytic.
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2. Finite State Approximations of MDPs with Compact State Space. In this section
we consider (Q1) for the MDPs with compact state space. To distinguish compact-state MDPs
from non-compact ones, the state space of the compact-state MDPs will be denoted by Z instead of
X. We impose the assumptions below on the components of the Markov decision process; additional
new assumptions will be made for the average cost problem in Section 2.2.

Assumption 2.1.

(a) The one-stage cost function c is in Cb(Z×A).
(b) The stochastic kernel p( · |z, a) is weakly continuous in (z, a), i.e., for all z and a,

p( · |zk, ak)→ p( · |z, a) weakly when (zk, ak)→ (z, a).
(c) Z and A are compact.

Before proceeding with the main results, we first describe the procedure used to obtain finite-
state models. Let dZ denote the metric on Z. Since the state space Z is assumed to be compact and
thus totally bounded, one can find a sequence

(

{zn,i}
kn
i=1

)

n≥1
of finite grids in Z such that for all n,

min
i∈{1,...,kn}

dZ(z, zn,i)< 1/n for all z ∈ Z.

The finite grid {zn,i}
kn
i=1 is called an 1/n-net in Z. Let Zn := {zn,1, . . . , zn,kn} and define function Qn

mapping Z to Zn by

Qn(z) := argmin
zn,i∈Zn

dZ(z, zn,i),

where ties are broken so that Qn is measurable. In the literature, Qn is often called a nearest
neighborhood quantizer with respect to distortion measure dZ; see Gray and Neuhoff [19]. For each
n, Qn induces a partition {Sn,i}

kn
i=1 of the state space Z given by

Sn,i = {z ∈ Z :Qn(z) = zn,i},

with diameter diam(Sn,i) := supz,y∈Sn,i
dZ(z, y)< 2/n. Let {νn} be a sequence of probability mea-

sures on Z satisfying

νn(Sn,i)> 0 for all i, n. (2.1)

We let νn,i be the restriction of νn to Sn,i defined by

νn,i( · ) :=
νn( · )

νn(Sn,i)
.

The measures νn,i will be used to define a sequence of finite-state MDPs, denoted as MDPn (n≥ 1),
to approximate the original model. To this end, for each n define the one-stage cost function
cn : Zn×A→R and the transition probability pn on Zn given Zn×A by

cn(zn,i, a) :=

∫

Sn,i

c(z, a)νn,i(dz),

pn( · |zn,i, a) :=

∫

Sn,i

Qn ∗ p( · |z, a)νn,i(dz),

where Qn ∗ p( · |z, a) ∈ P(Zn) is the pushforward of the measure p( · |z, a) with respect to Qn; that
is,

Qn ∗ p(zn,j |z, a) = p
(

Sn,j |z, a
)

,

for all zn,j ∈ Zn. For each n, we define MDPn as a Markov decision process with the following
components: Zn is the state space, A is the action space, pn is the transition probability and cn is
the one-stage cost function. History spaces, policies and cost functions are defined in a similar way
as in the original model.
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2.1. Discounted Cost. Here we consider (Q1) for the discounted cost criterion with a dis-
count factor β ∈ (0,1). Throughout this section, it is assumed that Assumption 2.1 holds.
Define the operator T on B(Z) by

Tu(z) :=min
a∈A

[

c(z, a)+β

∫

Z

u(y)p(dy|z, a)

]

. (2.2)

In the literature T is called the Bellman optimality operator. It can be proved that under As-
sumption 2.1-(a)(b), T is a contraction operator with modulus β mapping Cb(Z) into itself (see
Hernández-Lerma [20, Theorem 2.8, p. 23]); that is, Tu∈Cb(Z) for all u∈Cb(Z) and

‖Tu−Tv‖ ≤ β‖u− v‖ for all u, v ∈Cb(Z).

The following theorem is a widely known result in the theory of Markov decision processes (see again
Hernández-Lerma [20, Theorem 2.8, p. 23]) which also holds without a compactness assumption
on the state space.

Theorem 2.1. The value function J∗ is the unique fixed point in Cb(Z) of the contraction
operator T , i.e.,

J∗ = TJ∗.

Furthermore, a deterministic stationary policy f ∗ is optimal if and only if it satisfies the optimality
equation, i.e.,

J∗(z) = c(z, f ∗(z))+β

∫

Z

J∗(y)p(dy|z, f ∗(z)). (2.3)

Finally, there exists a deterministic stationary policy f ∗ which is optimal, so it satisfies (2.3).

Define, for all n≥ 1, the operator Tn, which is the Bellman optimality operator for MDPn, by

Tnu(zn,i) :=min
a∈A

[

cn(zn,i, a)+β
kn
∑

j=1

u(zn,j)pn(zn,j |zn,i, a)

]

,

or equivalently,

Tnu(zn,i) =min
a∈A

∫

Sn,i

[

c(z, a)+β

∫

Z

û(y)p(dy|z, a)

]

νn,i(dz),

where u : Zn→R and û is the piecewise constant extension of u to Z given by û(z) = u◦Qn(z). For
each n, under Assumption 2.1, Hernández-Lerma [20, Theorem 2.8, p. 23] implies the following: (i)
Tn is a contraction operator with modulus β mapping B(Zn)

(

=Cb(Zn)
)

into itself, (ii) the fixed
point of Tn is the value function J∗

n of MDPn, and (iii) there exists an optimal stationary policy
f ∗
n for MDPn, which therefore satisfies the optimality equation. Hence, we have

J∗
n = TnJ

∗
n = TnJn(f

∗
n, · ) = Jn(f

∗
n, · ),

where Jn denotes the discounted cost for MDPn. Let us extend the optimal policy f ∗
n for MDPn

to X by letting f̂n(z) = f ∗
n ◦Qn(z)∈ F.

The following theorem is the main result of this section. It states that the cost function of the
policy f̂n converges to the value function J∗ as n→∞.
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Theorem 2.2. The discounted cost of the policy f̂n, obtained by extending the optimal policy
f ∗
n of MDPn to Z, converges to the optimal value function J∗ of the original MDP

lim
n→∞

‖J(f̂n, · )− J∗‖= 0.

Hence, to find a near optimal policy for the original MDP, it is sufficient to compute the optimal
policy of MDPn for sufficiently large n, and then extend this policy to the original state space.

To prove Theorem 2.2 we need a series of technical results. We first define an operator T̂n on
Bl(Z) by extending Tn to Bl(Z):

T̂nu(z) := inf
a∈A

∫

Sn,in(z)

[

c(x,a)+β

∫

Z

u(y)p(dy|x,a)

]

νn,in(z)(dx), (2.4)

where in : Z→{1, . . . , kn} maps z to the index of the partition {Sn,i} it belongs to. To see that this
operator is well defined, let the stochastic kernel rn(dx|z) on Z given Z be defined as

rn(dx|z) :=
kn
∑

i=1

νn,i(dx)1Sn,i
(z),

where 1B denotes the indicator function of the set B. Then, we can write the right hand side of
(2.4) as

inf
a∈A

∫

Z

[

c(x,a)+β

∫

Z

u(y)p(dy|x,a)

]

rn(dx|z).

Therefore, by Propositions 1.1 and 1.2, we can conclude that T̂n maps Bl(Z) into Bl(Z). Further-
more, it is a contraction operator with modulus β which can be shown using Hernández-Lerma
[20, Proposition A.2, p. 122]. Hence, it has a unique fixed point Ĵ∗

n that belongs to B(Z), and this
fixed point must be constant over the sets Sn,i because of the averaging operation on each Sn,i.
Furthermore, since T̂n(u ◦Qn) = (Tnu) ◦Qn for all u∈B(Zn), we have

T̂n(J
∗
n ◦Qn) = (TnJ

∗
n) ◦Qn = J∗

n ◦Qn.

Hence, the fixed point of T̂n is the piecewise constant extension of the fixed point of Tn, i.e.,

Ĵ∗
n = J∗

n ◦Qn.

Remark 2.1. In the rest of this paper, when we take the integral of any function with respect
to νn,in(z), it is tacitly assumed that the integral is taken over all set Sn,in(z). Hence, we can drop
Sn,in(z) in the integral for the ease of notation.
We now define another operator Fn on Bl(Z) by simply interchanging the order of the infimum

and the integral in (2.4), i.e.,

Fnu(z) :=

∫

inf
a∈A

[

c(x,a)+β

∫

Z

u(y)p(dy|x,a)

]

νn,in(z)(dx)

= ΓnTu(z),

where

Γnu(z) :=

∫

u(x)νn,in(z)(dx).
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We note that Fn is the extension (to infinite state spaces) of the operator defined in Van Roy
[37, p. 236] for the proposed approximate value iteration algorithm. However, unlike in Van Roy
[37], Fn will serve here as an intermediate point between T and T̂n (or Tn) to solve (Q1) for the
discounted cost. To this end, we first note that Fn is a contraction operator on Bl(Z) with modulus
β. Indeed it is clear that Fn maps Bl(Z) into itself by Propositions 1.1 and 1.2. Furthermore, for
any u, v ∈Bl(Z), we clearly have ‖Γnu−Γnv‖ ≤ ‖u− v‖. Hence, since T is a contraction operator
on Bl(Z) with modulus β, Fn is also a contraction operator on Bl(Z) with modulus β.
Remark 2.2. Since we only assume that the stochastic kernel p is weakly continuous, it is not

true that T̂n and Fn map B(Z) into itself (see Hernández-Lerma and Lasserre [21, Proposition D.5,
p. 182]). This is the point where we need to enlarge the set of functions on which these operators
act.
The following theorem states that the fixed point, say u∗

n, of Fn converges to the fixed point J∗

(i.e., the value function) of T as n goes to infinity. Note that although T is originally defined on
Cb(Z), it can be proved that T , when acting on Bl(Z), maps Bl(Z) into itself.

Theorem 2.3. If u∗
n is the unique fixed point of Fn, then limn→∞ ‖u∗

n− J∗‖= 0.

The proof of Theorem 2.3 requires two lemmas.

Lemma 2.1. For any u∈Bl(Z), we have

‖u−Γnu‖ ≤ 2 inf
r∈Zkn

‖u−Φr‖,

where Φr(z) = Σkni=1ri1Sn,i
(z), r= (r1, · · · , rkn).

Proof. Fix any r ∈ Z
kn . Then, using the identity ΓnΦr =Φr, we obtain

‖u−Γnu‖ ≤ ‖u−Φr‖+ ‖Φr −Γnu‖
= ‖u−Φr‖+ ‖ΓnΦr −Γnu‖
≤ ‖u−Φr‖+ ‖Φr −u‖.

Since r is arbitrary, this completes the proof. �

Notice that because of the operator Γn, the fixed point u∗
n of Fn must be constant over the sets

Sn,i. We use this property to prove the next lemma.

Lemma 2.2. We have

‖u∗
n− J∗‖ ≤

2

1−β
inf
r∈Zkn

‖J∗ −Φr‖.

Proof. Note that Γnu
∗
n = u∗

n since u∗
n is constant over the sets Sn,i. Then, we have

‖u∗
n− J∗‖ ≤ ‖u∗

n−ΓnJ
∗‖+ ‖ΓnJ

∗ − J∗‖
= ‖Fnu

∗
n−ΓnTJ

∗‖+ ‖ΓnJ
∗− J∗‖

= ‖ΓnTu
∗
n−ΓnTJ

∗‖+ ‖ΓnJ
∗ − J∗‖ (by the definition of Fn)

≤‖Tu∗
n−TJ∗‖+ ‖ΓnJ

∗ − J∗‖ (since ‖Γnu−Γnv‖ ≤ ‖u− v‖)
≤ β‖u∗

n− J∗‖+ ‖ΓnJ
∗ − J∗‖.

Hence, we obtain ‖u∗
n− J∗‖ ≤ 1

1−β
‖ΓnJ

∗− J∗‖. The result now follows from Lemma 2.1. �

Proof of Theorem 2.3. Recall that since Z is compact, the function J∗ is uniformly continuous
and diam(Sn,i) < 2/n for all i = 1, . . . , kn. Hence, limn→∞ infr∈Zkn ‖J

∗ −Φr‖ = 0 which completes
the proof in view of Lemma 2.2. �

The next step is to show that the fixed point Ĵ∗
n of T̂n converges to the fixed point J∗ of T . To

this end, we first prove the following result.
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Lemma 2.3. For any u∈Cb(Z), ‖T̂nu−Fnu‖→ 0 as n→∞.

Proof. Note that since
∫

Z
u(x)p(dx|y, a) is continuous as a function of (y, a) by Assumption 2.1-

(b), it is sufficient to prove that for any l ∈Cb(Z×A)
∥

∥

∥

∥

min
a

∫

l(y, a)νn,in(z)(dy)−

∫

min
a
l(y, a)νn,in(z)(dy)

∥

∥

∥

∥

:= sup
z∈Z

∣

∣

∣

∣

min
a

∫

l(y, a)νn,in(z)(dy)−

∫

min
a
l(y, a)νn,in(z)(dy)

∣

∣

∣

∣

→ 0

as n→ ∞. Fix any ε > 0. Define {zi}
∞
i=1 :=

⋃

n Zn and let {ai}
∞
i=1 be a sequence in A such that

mina∈A l(zi, a) = l(zi, ai); such ai exists for each zi because l(zi, · ) is continuous and A is com-
pact. Define g(y) :=mina∈A l(y, a), which can be proved to be continuous, and therefore uniformly
continuous since Z is compact. Thus by the uniform continuity of l, there exists δ > 0 such that
dZ×A

(

(y, a), (y′, a′)
)

< δ implies |g(y)−g(y′)|< ε/2 and |l(y, a)− l(y′, a′)|< ε/2. Choose n0 such that
2/n0 < δ. Then for all n ≥ n0, maxi∈{1,...,kn} diam(Sn,i) < 2/n < δ. Hence, for all y ∈ Sn,i we have
|l(y, ai)−mina∈A l(y, a)| ≤ |l(y, ai)− l(zi, ai)|+ |mina∈A l(zi, a)−mina∈A l(y, a)|= |l(y, ai)− l(zi, ai)|+
|g(zi)− g(y)|< ε. This implies

∥

∥

∥

∥

min
a

∫

l(y, a)νn,in(z)(dy)−

∫

min
a
l(y, a)νn,in(z)(dy)

∥

∥

∥

∥

≤

∥

∥

∥

∥

∫

l(y, ai)νn,in(z)(dy)−

∫

min
a
l(y, a)νn,in(z)(dy)

∥

∥

∥

∥

≤ sup
z∈Z

∫

sup
y∈Sn,in(z)

∣

∣l(y, ai)−min
a
l(y, a)

∣

∣νn,in(z)(dy)< ε.

This completes the proof. �

Theorem 2.4. The fixed point Ĵ∗
n of T̂n converges to the fixed point J∗ of T .

Proof. We have

‖Ĵ∗
n− J∗‖ ≤ ‖T̂nĴ

∗
n− T̂nJ

∗‖+ ‖T̂nJ
∗−FnJ

∗‖+ ‖FnJ
∗ −Fnu

∗
n‖

+ ‖Fnu
∗
n− J∗‖

≤ β‖Ĵ∗
n− J∗‖+ ‖T̂nJ

∗ −FnJ
∗‖+β‖J∗ −u∗

n‖+ ‖u∗
n− J∗‖.

Hence

‖Ĵ∗
n− J∗‖ ≤

‖T̂nJ
∗−FnJ

∗‖+(1+β)‖J∗−u∗
n‖

1−β
.

The theorem now follows from Theorem 2.3 and Lemma 2.3. �

Recall the optimal stationary policy f ∗
n for MDPn and its extension f̂n(z) = f ∗

n ◦Qn(z) to Z.
Since Ĵ∗

n = J∗
n ◦Qn, it is straightforward to prove that f̂n is the optimal selector of T̂nĴ

∗
n; that is,

T̂nĴ
∗
n = Ĵ∗

n = T̂f̂n Ĵ
∗
n,

where T̂f̂n is defined as

T̂f̂nu(z) :=

∫
[

c(x, f̂n(x))+β

∫

Z

u(y)p(dy|x, f̂n(x))

]

νn,in(z)(dx).

Define analogously

Tf̂nu(z) := c(z, f̂n(z))+β

∫

Z

u(y)p(dy|z, f̂n(z)).
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It can be proved that both T̂f̂n and Tf̂n are contraction operators on Bl(Z) with modulus β, and

it is known that the fixed point of Tf̂n is the true cost function of the stationary policy f̂n (i.e.,

J(f̂n, z)).

Lemma 2.4. ‖T̂f̂nu−Tf̂nu‖→ 0 as n→∞, for any u∈Cb(Z).

Proof. The statement follows from the uniform continuity of the function c(z, a) +
β
∫

Z
u(y)p(dy|z, a) and the fact that f̂n is constant over the sets Sn,i. �

Now, we prove the main result of this section.
Proof of Theorem 2.2. We have

‖J(f̂n, · )− J∗‖ ≤ ‖Tf̂nJ(f̂n, · )−Tf̂nJ
∗‖+ ‖Tf̂nJ

∗− T̂f̂nJ
∗‖+ ‖T̂f̂nJ

∗− T̂f̂n Ĵ
∗
n‖+ ‖Ĵ∗

n − J∗‖

≤ β‖J(f̂n, · )− J∗‖+ ‖Tf̂nJ
∗ − T̂f̂nJ

∗‖+β‖J∗ − Ĵ∗
n‖+ ‖Ĵ∗

n − J∗‖.

Hence, we obtain

‖J(f̂n, · )− J∗‖ ≤
‖Tf̂nJ

∗− T̂f̂nJ
∗‖+(1+β)‖Ĵ∗

n− J∗‖

1−β
.

The result follows from Lemma 2.4 and Theorem 2.4. �

2.2. Average Cost. In this section we impose some new conditions on the components of
the original MDP in addition to Assumption 2.1 to solve (Q1) for the average cost. A version
of the first two conditions was imposed in Vega-Amaya [38], Jaśkiewicz and Nowak [26] to show
the existence of the solution to the Average Cost Optimality Equation (ACOE) and the optimal
stationary policy.

Assumption 2.2. Suppose Assumption 2.1 holds with item (b) replaced by condition (f) below.
In addition, there exist a non-trivial finite measure ζ on Z, a nonnegative measurable function θ
on Z×A, and a constant λ∈ (0,1) such that for all (z, a) ∈ Z×A

(d) p(B|z, a)≥ ζ(B)θ(z, a) for all B ∈B(Z),
(e) 1−λ

ζ(Z)
≤ θ(z, a),

(f) The stochastic kernel p( · |z, a) is continuous in (z, a) with respect to the total variation dis-
tance.

Throughout this section, it is assumed that Assumption 2.2 holds. Observe that any deterministic
stationary policy f defines a stochastic kernel p( · |z, f(z)) on Z given Z which is the transition
probability of the Markov chain {zt}

∞
t=1 (state process) induced by f . For any t≥ 1, let us write

pt( · |z, f(z)) to denote the t-step transition probability of this Markov chain given the initial point
z; that is, pt( · |z, f(z)) is recursively defined as

pt+1( · |z, f(z)) =

∫

Z

p( · |x, f(x))pt(dx|z, f(z)).

To study average cost optimal control problems, it is in general assumed that there exists an in-
variant distribution under any stationary control policy, so that the average cost of any stationary
policy can be written as an integral of the one-stage cost function with respect to this invariant
distribution. With this representation, one can then deduce the optimality of stationary policies
using the linear programming or the convex analytic methods (see Hernández-Lerma and Lasserre
[21], Borkar [8]). However, to solve the approximation problem for the average cost, we need, in
addition to the existence of an invariant distribution, the convergence of t-step transition proba-
bilities to the invariant distribution, at some rate, for both the original and the reduced problems.
Therefore, it is crucial to impose proper conditions on the original model so that, on the one hand,
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they guarantee the convergence of t-step transition probabilities to the invariant distribution for
all stationary policies for the original system and, on the other hand, one is able to show that
similar conditions are satisfied by the reduced problems. Conditions (d) and (e) in Assumption 2.2
are examples of such conditions which were also used in the literature extensively. Indeed, if we
define the weight function w≡ 1, then condition (e) corresponds to the so-called ‘drift inequality’:
for all (z, a)∈ Z×A

∫

Z

w(y)p(dy|z, a)≤ λw(z)+ ζ(w)θ(z, a),

and condition (d) corresponds to the so-called ‘minorization’ condition, both of which were used in
literature for studying geometric ergodicity of Markov chains (see Hernández-Lerma and Lasserre
[22], Meyn and Tweedie [29], and references therein).
The following theorem is a consequence of Vega-Amaya [38, Theorem 3.3], Gordienko and

Hernandez-Lerma [18, Lemma 3.4], and Jaśkiewicz and Nowak [26, Theorem 3], which also holds
with Assumption 2.2-(f) replaced by Assumption 2.1-(b).

Theorem 2.5. For any f ∈ F, the stochastic kernel p( · |z, f(z)) is positive Harris recurrent
with unique invariant probability measure µf . Therefore, we have

V (f, z) =

∫

Z

c(z, f(z))µf(dz) =: ρf .

The Markov chain {zt}
∞
t=1 induced by f is geometrically ergodic; that is, there exist positive real

numbers R and κ< 1 such that for every z ∈ Z

sup
f∈F

‖pt( · |z, f(z))−µf‖TV ≤Rκt,

where R and κ continuously depend on ζ(Z) and λ. Finally, there exist f ∗ ∈ F and h∗ ∈B(Z) such
that the triplet (h∗, f ∗, ρf∗) satisfies the average cost optimality equality (ACOE), i.e.,

ρf∗ +h∗(z) =min
a∈A

[

c(z, a)+

∫

Z

h∗(y)p(dy|z, a)

]

= c(z, f ∗(z))+

∫

Z

h∗(y)p(dy|z, f ∗(z)),

and therefore,

inf
π∈Π

V (π, z) =: V ∗(z) = ρf∗ .

For each n, define the one-stage cost function bn : Z×A→ [0,∞) and the stochastic kernel qn on
Z given Z×A as

bn(z, a) :=

∫

c(x,a)νn,in(z)(dx),

qn( · |z, a) :=

∫

p( · |x,a)νn,in(z)(dx).

Observe that cn (i.e., the one stage cost function of MDPn) is the restriction of bn to Zn, and pn
(i.e., the stochastic kernel of MDPn) is the pushforward of the measure qn with respect to Qn; that
is, cn(zn,i, a) = bn(zn,i, a) for all i= 1, . . . , kn and pn( · |zn,i, a) =Qn ∗ qn( · |zn,i, a).

For each n, let M̂DPn be defined as a Markov decision process with the following components:
Z is the state space, A is the action space, qn is the transition probability, and c is the one-stage
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cost function. Similarly, let M̃DPn be defined as a Markov decision process with the following
components: Z is the state space, A is the action space, qn is the transition probability, and bn
is the one-stage cost function. History spaces, policies and cost functions are defined in a similar

way as before. The models M̂DPn and M̃DPn are used as transitions between the original MDP
and MDPn in a similar way as the operators Fn and T̂n were used as transitions between T and
Tn for the discounted cost. We note that a similar technique was used in the proof of Ortner [30,
Theorem 2], which studied the approximation problem for finite state-action MDPs. In Ortner [30]
the one-stage cost function is first perturbed and then the transition probability is perturbed. We
first perturb the transition probability and then the cost function. However, our proof method is
otherwise quite different from that of Ortner [30, Theorem 2] since Ortner [30] assumes finite state
and action spaces.

We note that a careful analysis of M̃DPn reveals that its Bellman optimality operator is essen-

tially the operator T̂n. Hence, the value function of M̃DPn is the piecewise constant extension of
the value function of MDPn for the discounted cost. A similar conclusion will be made for the
average cost in Lemma 2.5.
First, notice that if we define

θn(z, a) :=

∫

θ(y, a)νn,in(z)(dy),

ζn :=Qn ∗ ζ (i.e., pushforward of ζ with respect to Qn),

then it is straightforward to prove that for all n, both M̂DPn and M̃DPn satisfy Assumption 2.2-
(d),(e) when θ is replaced by θn, and Assumption 2.2-(d),(e) is true for MDPn when θ and ζ are
replaced by the restriction of θn to Zn and ζn, respectively.

Hence, Theorem 2.5 holds (with the same R and κ) for M̂DPn, M̃DPn, and MDPn for all n.

Therefore, we denote by f̂ ∗
n, f̃

∗
n and f ∗

n the optimal stationary policies of M̂DPn, M̃DPn, and MDPn
with the corresponding average costs ρ̂n

f̂∗n
, ρ̃n

f̃∗n
and ρnf∗n , respectively.

Furthermore, we also write ρ̂nf , ρ̃
n
f , and ρ

n
f to denote the average cost of any stationary policy f

for M̂DPn, M̃DPn, and MDPn, respectively. The corresponding invariant probability measures are
also denoted in a similar manner, with µ replacing ρ.

The following lemma essentially says that MDPn and M̃DPn are not very different.

Lemma 2.5. The stationary policy given by the piecewise constant extension of the optimal
policy f ∗

n of MDPn to Z (i.e., f ∗
n ◦Qn) is optimal for M̃DPn with the same cost function ρnf∗n . Hence,

f̃ ∗
n = f ∗

n ◦Qn and ρ̃n
f̃∗n

= ρnf∗n .

Proof. Note that by Theorem 2.5 there exists h∗
n ∈ B(Zn) such that the triplet (h∗

n, f
∗
n, ρ

n
f∗n
)

satisfies the ACOE for MDPn. But it is straightforward to show that the triplet (h∗
n ◦Qn, f

∗
n ◦

Qn, ρ
n
f∗n
) satisfies the ACOE for M̃DPn. By Gordienko and Hernandez-Lerma [18, Lemma 5.2],

this implies that f ∗
n ◦Qn is an optimal stationary policy for M̃DPn with cost function ρnf∗n . Hence

f̃ ∗
n = f ∗

n ◦Qn and ρ̃n
f̃∗n

= ρnf∗n . �

The following theorem is the main result of this section. It states that if one applies the piecewise
constant extension of the optimal stationary policy of MDPn to the original MDP, the resulting
cost function will converge to the value function of the original MDP.

Theorem 2.6. The average cost of the optimal policy f̃ ∗
n for M̃DPn, obtained by extending the

optimal policy f ∗
n of MDPn to Z, converges to the optimal value function J∗ = ρf∗ of the original

MDP, i.e.,

lim
n→∞

|ρf̃∗n − ρf∗ |= 0.
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Hence, to find a near optimal policy for the original MDP, it is sufficient to compute the optimal
policy of MDPn for sufficiently large n, and then extend this policy to the original state space.

To show the statement of Theorem 2.6 we will prove a series of auxiliary results.

Lemma 2.6. For all t≥ 1 we have

lim
n→∞

sup
(y,f)∈Z×F

∥

∥pt( · |y, f(y))− qtn( · |y, f(y))
∥

∥

TV
= 0.

Proof. We will prove the lemma by induction. Note that if one views the stochastic kernel
p( · |z, a) as a mapping from Z×A to P(Z), then Assumption 2.2-(f) implies that this mapping is
continuous, and therefore uniformly continuous, when P(Z) is equipped with the metric induced
by the total variation distance.
For t= 1 the claim holds by the following argument:

sup
(y,f)∈Z×F

∥

∥p( · |y, f(y))− qn( · |y, f(y))
∥

∥

TV
:= 2 sup

(y,f)∈Z×F

sup
D∈B(Z)

∣

∣p(D|y, f(y))− qn(D|y, f(y))
∣

∣

≤ 2 sup
(y,f)∈Z×F

sup
D∈B(Z)

∫

∣

∣p(D|y, f(y))− p(D|z, f(y))
∣

∣ νn,in(y)(dz)

≤ sup
(y,f)∈Z×F

∫

∥

∥p( · |y, f(y))− p( · |z, f(y))
∥

∥

TV
νn,in(y)(dz)

≤ sup
y∈Z

sup
(z,a)∈Sn,in(y)×A

∥

∥p( · |y, a)− p( · |z, a)
∥

∥

TV
.

As the mapping p( · |z, a) : Z×A→P(Z) is uniformly continuous with respect to the total variation
distance and maxn,i diam(Sn,i)→ 0 as n→∞, the result follows. Assume the claim is true for t≥ 1.
Then we have

sup
(y,f)∈Z×F

∥

∥pt+1( · |y, f(y))− qt+1
n ( · |y, f(y))

∥

∥

TV

:= sup
(y,f)∈Z×F

sup
‖g‖≤1

∣

∣

∣

∣

∫

Z

g(x)pt+1(dx|y, f(y))−

∫

Z

g(x)qt+1
n (dx|y, f(y))

∣

∣

∣

∣

≤ sup
(y,f)∈Z×F

(

sup
‖g‖≤1

∣

∣

∣

∣

∫

Z

∫

Z

g(x)p(dx|z, f(z))pt(dz|y, f(y))−

∫

Z

∫

Z

g(x)p(dx|z, f(z))qtn(dz|y, f(y))

∣

∣

∣

∣

+ sup
‖g‖≤1

∣

∣

∣

∣

∫

Z

∫

Z

g(x)p(dx|z, f(z))qtn(dz|y, f(y))−

∫

Z

∫

Z

g(x)qn(dx|z, f(z))q
t
n(dz|y, f(y))

∣

∣

∣

∣

)

≤ sup
(y,f)∈Z×F

∥

∥pt( · |y, f(y))− qtn( · |y, f(y))
∥

∥

TV
+ sup
(z,f)∈Z×F

∥

∥p( · |z, f(z))− qn( · |z, f(z))
∥

∥

TV
(2.5)

where the last inequality follows from the following property of the total variation distance: for
any h ∈ B(Z) and µ,ν ∈ P(Z) we have

∣

∣

∫

Z
h(z)µ(dz)−

∫

Z
h(z)ν(dz)

∣

∣≤ ‖h‖‖µ− ν‖TV . By the first
step of the proof and the induction hypothesis, the last term converges to zero as n→∞. This
completes the proof. �

Remark 2.3. This is the point where we need the continuity of the transition probability p
with respect to the total variation distance. If we assume that the stochastic kernel p is only weakly
or setwise continuous, then it does not seem possible to prove a result similar to Lemma 2.6 for
the weak and the setwise topologies.
Using Lemma 2.6 we prove the following result.

Lemma 2.7. We have supf∈F |ρ̂
n
f −ρf | → 0 as n→∞, where ρ̂nf is the cost function of the policy

f for M̂DPn and ρf is the cost function of the policy f for the original MDP.
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Proof. For any t≥ 1 and y ∈ Z we have

sup
f∈F

|ρ̂nf − ρf |= sup
f∈F

∣

∣

∣

∣

∫

Z

c(z, f(z))µ̂nf (dz)−

∫

Z

c(z, f(z))µf(dz)

∣

∣

∣

∣

≤ sup
f∈F

∣

∣

∣

∣

∫

Z

c(z, f(z))µ̂nf (dz)−

∫

Z

c(z, f(z))qtn(dz|y, f(y))

∣

∣

∣

∣

+sup
f∈F

∣

∣

∣

∣

∫

Z

c(z, f(z))qtn(dz|y, f(y))−

∫

Z

c(z, f(z))pt(dz|y, f(y))

∣

∣

∣

∣

+sup
f∈F

∣

∣

∣

∣

∫

Z

c(z, f(z))pt(dz|y, f(y))−

∫

Z

c(z, f(z))µf(dz)

∣

∣

∣

∣

≤ 2Rκt‖c‖+ ‖c‖ sup
(y,f)∈Z×F

∥

∥qtn( · |y, f(y))− pt( · |y, f(y))
∥

∥

TV
(by Theorem 2.5-(ii)),

where R and κ are the constants in Theorem 2.5. Then, the result follows from Lemma 2.6. �

The following theorem states that the value function of M̂DPn converges to the value function
of the original MDP.

Lemma 2.8. We have |ρ̂n
f̂∗n

− ρf∗ | → 0 as n→∞.

Proof. Notice that

|ρ̂n
f̂∗n

− ρf∗ |=max(ρ̂n
f̂∗n

− ρf∗ , ρf∗ − ρ̂n
f̂∗n
)

≤max(ρ̂nf∗ − ρf∗ , ρf̂∗n − ρ̂n
f̂∗n
)

≤ sup
f

|ρ̂nf − ρf |.

Then, the result follows from Lemma 2.7. �

Lemma 2.9. We have supf∈F |ρ̃
n
f − ρ̂nf | → 0 as n→∞.

Proof. It is straightforward to show that bn → c uniformly. Since the probabilistic structure of

M̃DPn and M̂DPn are the same (i.e., µ̂nf = µ̃nf for all f), we have

sup
f∈F

|ρ̃nf − ρ̂nf |= sup
f∈F

∣

∣

∣

∣

∫

Z

bn(z, f(z))µ̂
n
f (dz)−

∫

Z

c(z, f(z))µ̂nf (dz)

∣

∣

∣

∣

≤ sup
f∈F

∫

Z

|bn(z, f(z))− c(z, f(z))|µ̂nf (dz)

≤ ‖bn− c‖.

This completes the proof. �

The next lemma states that the difference between the value functions of M̃DPn and M̂DPn
converges to zero.

Lemma 2.10. We have |ρ̃n
f̃∗n

− ρ̂n
f̂∗n
| → 0 as n→∞.

Proof. See the proof of Lemma 2.8. �

The following result states that if we apply the optimal policy of M̃DPn to M̂DPn, then the
resulting cost converges to the value function of M̂DPn.

Lemma 2.11. We have |ρ̂n
f̃∗n

− ρ̂n
f̂∗n
| → 0 as n→∞.

Proof. Since |ρ̂n
f̃∗n

− ρ̂n
f̂∗n
| ≤ |ρ̂n

f̃∗n
− ρ̃n

f̃∗n
|+ |ρ̃n

f̃∗n
− ρ̂n

f̂∗n
|, then the result follows from Lemmas 2.9 and

2.10. �

Now, we are ready to prove the main result of this section.
Proof of Theorem 2.6. We have |ρf̃∗n −ρf∗ | ≤ |ρf̃∗n − ρ̂

n
f̃∗n
|+ |ρ̂n

f̃∗n
− ρ̂n

f̂∗n
|+ |ρ̂n

f̂∗n
−ρnf∗ |. The result now

follows from Lemmas 2.7, 2.11 and 2.8. �
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3. Finite State Approximations of MDPs with Non-Compact State Space. In this
section we consider (Q1) for noncompact state MDPs with unbounded one-stage cost. To solve
(Q1), we use the following strategy: (i) first, we define a sequence of compact-state MDPs to
approximate the original MDP, (ii) we use Theorems 2.2 and 2.6 to approximate the compact-state
MDPs by finite-state models, and (iii) we prove the convergence of the finite-state models to the
original model. In fact, steps (ii) and (iii) will be accomplished simultaneously.
We impose the assumptions below on the components of the Markov decision process; additional

assumptions will be imposed for the average cost problem. With the exception of the local com-
pactness of the state space, these are the usual assumptions used in the literature for studying
Markov decision processes with unbounded cost.

Assumption 3.1.

(a) The one-stage cost function c is continuous.
(b) The stochastic kernel p( · |x,a) is weakly continuous in (x,a).
(c) X is locally compact and A is compact.
(d) There exist nonnegative real numbers M and α ∈ [1, 1

β
), and a continuous weight function

w :X→ [1,∞) such that for each x∈ X, we have

sup
a∈A

|c(x,a)| ≤Mw(x), (3.1)

sup
a∈A

∫

X

w(y)p(dy|x,a)≤αw(x), (3.2)

and
∫

X
w(y)p(dy|x,a) is continuous in (x,a).

Since X is locally compact separable metric space, there exists a nested sequence of compact sets
{Kn} such that Kn⊂ intKn+1 and X=

⋃∞

n=1Kn Aliprantis and Border [1, Lemma 2.76, p. 58].

Lemma 3.1. For any compact subset K of X and for any ε > 0, there exists a compact subset
Kε of X such that

sup
(x,a)∈K×A

∫

Kc
ε

w(y)p(dy|x,a)< ε,

where Dc denotes the complement of the set D.

Proof. We prove the lemma by contradiction. Assume the claim is wrong. Since every compact
subset K of X is a subset of Kn for some n, the negation of the above lemma is equivalent to the
following statement: there exists a compact set K ⊂X and ε > 0 such that for all n≥ 1 we have

sup
(x,a)∈K×A

∫

Kc
n

w(y)p(dy|x,a)≥ ε.

Note that w is integrable with respect to the probability measures in the set
{

p( · |x,a) : (x,a) ∈
K ×A

}

since

sup
(x,a)∈K×A

∫

X

w(y)p(dy|x,a)≤α sup
x∈K

w(x)<∞.

For each n, we prove that
∫

(intKn)c
w(y)p(dy|x,a) is an upper semi-continuous function on K ×A.

Recall that
∫

X
w(y)p(dy|x,a) is a continuous function of (x,a). Let (xk, ak)→ (x,a) in K×A. Then

p( · |xk, ak)→ p( · |x,a) weakly and
∫

X
w(y)p(dy|xk, ak)→

∫

X
w(y)p(dy|x,a) by our assumption. If we
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take fk = gk = f = g =w in Serfozo [35, Theorem 3.3], this result implies that νk( · )→ ν( · ) weakly,
where

νk(D) =

∫

D

w(y)p(dy|xk, ak)

ν(D) =

∫

D

w(y)p(dy|x,a),

for all D ∈ B(X). Then, by Bartoszynski [2, Theorem A] we have
∫

(intKn)c
w(y)p(dy|x,a) := ν

(

(intKn)
c
)

≥ limsup
k→∞

νk
(

(intKn)
c
)

:= limsup
k→∞

∫

(intKn)c
w(y)p(dy|xk, ak).

Hence,
∫

(intKn)c
w(y)p(dy|x,a) is upper semi-continuous. Since K × A is compact, there exists

(xn, an) ∈K ×A such that

sup
(x,a)∈K×A

∫

(intKn)c
w(y)p(dy|x,a) =

∫

(intKn)c
w(y)p(dy|xn, an).

The sequence {(xn, an)} (being a sequence in a compact set K×A) has an converging subsequence
{(xnk , ank)} with the limit (x,a)∈K ×A. Then, for all m≥ 2, we have

∫

Kc
m−1

w(y)p(dy|x,a)≥

∫

(intKm)c
w(y)p(dy|x,a)

≥ limsup
k→∞

∫

(intKm)c
w(y)p(dy|xnk , ank)

≥ limsup
k→∞

∫

(intKnk
)c
w(y)p(dy|xnk , ank)≥ ε,

where the third inequality follows from the fact that (intKm)
c ⊃ (intKnk)

c for k sufficiently large.
But this is a contradiction because w is p( · |x,a) integrable. �

Let {νn} be a sequence of probability measures such that for each n≥ 1, νn ∈P(Kc
n) and

γn :=

∫

Kc
n

w(x)νn(dx)<∞, (3.3)

γ = sup
n

τn := sup
n

max

{

0, sup
(x,a)∈X×A

∫

Kc
n

(

γn−w(y)
)

p(dy|x,a)

}

<∞. (3.4)

For example, such probability measures can be constructed by choosing xn ∈K
c
n such that w(xn)<

infx∈Kc
n
w(x)+ 1

n
and letting νn( · ) = δxn( · ).

Similar to the finite-state MDP construction in Section 2, we define a sequence of compact-
state MDPs, denoted as c-MDPn, to approximate the original model. To this end, for each n let
Xn =Kn ∪ {∆n}, where ∆n ∈K

c
n is a so-called pseudo-state. We define the transition probability

pn on Xn given Xn×A and the one-stage cost function cn :Xn×A→ [0,∞) by

pn( · |x,a) =







p
(

· ∩Kn|x,a
)

+ p
(

Kc
n|x,a

)

δ∆n, if x∈Kn

∫

Kc
n

(

p
(

· ∩Kn|z, a
)

+ p
(

Kc
n|z, a

)

δ∆n

)

νn(dz), if x=∆n,

cn(x,a) =

{

c(x,a), if x∈Kn
∫

Kc
n
c(z, a)νn(dz), if x=∆n.
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With these definitions, c-MDPn is defined as a Markov decision process with the components
(

Xn,A, pn, cn
)

. History spaces, policies, and cost functions are defined in a similar way as in the
original model. Let Πn, Φn, and Fn denote the set of all policies, randomized stationary policies
and deterministic stationary policies of c-MDPn, respectively. For each policy π ∈Πn and initial
distribution µ∈P(Xn), we denote the cost functions for c-MDPn by Jn(π,µ) and Vn(π,µ).
To obtain the main result of this section, we introduce, for each n, another MDP, denoted by

MDPn, with the components
(

X,A, qn, bn) where

qn( · |x,a) =

{

p( · |x,a), if x∈Kn
∫

Kc
n
p
(

· |z, a)νn(dz), if x∈Kc
n,

bn(x,a) =

{

c(x,a), if x∈Kn
∫

Kc
n
c(z, a)νn(dz), if x∈Kc

n.

For each policy π ∈Π and initial distribution µ∈P(X), we denote the cost functions for MDPn by
J̄n(π,µ) and V̄n(π,µ).

3.1. Discounted Cost. In this section we consider (Q1) for the discounted cost criterion
with a discount factor β ∈ (0,1). Throughout this section, it is assumed that Assumption 3.1 holds.
The following result states that c-MDPn and MDPn are equivalent for the discounted cost.

Lemma 3.2. We have

J̄∗
n(x) =

{

J∗
n(x), if x∈Kn

J∗
n(∆n), if x∈Kc

n,
(3.5)

where J̄∗
n is the discounted value function of MDPn and J∗

n is the discounted value function of c-
MDPn, provided that there exist optimal deterministic stationary policies for MDPn and c-MDPn.
Furthermore, if, for any deterministic stationary policy f ∈ Fn, we define f̄(x) = f(x) on Kn and
f̄(x) = f(∆n) on Kc

n, then

J̄n(f̄ , x) =

{

Jn(f,x), if x∈Kn

Jn(f,∆n), if x∈Kc
n.

(3.6)

In particular, if the deterministic stationary policy f ∗
n ∈ Fn is optimal for c-MDPn, then its exten-

sion f̄ ∗
n to X is also optimal for MDPn.

Proof. The proof of (3.6) is a consequence of the following facts: bn(x,a) = bn(y, a) and
qn( · |x,a) = qn( · |y, a) for all x, y ∈Kc

n and a ∈ A. In other words, Kc
n in MDPn behaves like the

pseudo state ∆n in c-MDPn when f̄ is applied to MDPn.
Let Fn denote the set of all deterministic stationary policies in F which are obtained by extending

policies in Fn to X. If we can prove that minf∈F J̄n(f,x) =minf∈Fn
J̄n(f,x) for all x∈ X, then (3.5)

follows from (3.6). Let f ∈ F \Fn. We have two cases: (i) J̄n(f, z) = J̄n(f, y) for all z, y ∈K
c
n or (ii)

there exists z, y ∈Kc
n such that J̄n(f, z)< J̄n(f, y).

For the case (i), if we define the deterministic Markov policy π0 as π0 = {f0, f, f, . . .}, where
f0(x) = f(z) on Kc

n for some fixed z ∈Kc
n and f0(x) = f(x) on Kn, then using the expression

J̄n(π
0, x) = bn(x, f0(x))+β

∫

X

J̄n(f,x
′)qn(dx

′|x, f0(x)), (3.7)

it is straightforward to show that J̄n(π
0, x) = J̄n(f,x) on Kn and J̄n(π

0, x) = J̄n(f, z) on K
c
n. There-

fore, J̄n(π
0, x) = J̄n(f,x) for all x ∈ X since J̄n(f,x) = J̄n(f, z) for all x ∈Kc

n. For all t≥ 1 define
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the deterministic Markov policy πt as πt = {f0, π
t−1}. Analogously, one can prove that J̄n(π

t, x) =
J̄n(π

t+1, x) for all x ∈ X. Since J̄n(π
t, x)→ J̄n(f0, x) as t→∞, we have J̄n(f0, x) = J̄n(f,x) for all

x∈X, where f0 ∈ Fn.
For the second case, if we again consider the deterministic Markov policy π0 = {f0, f, f, . . .}, then

by (3.7) we have J̄n(π
0, y) = J̄n(f, z) < J̄n(f, y). Since minf∈F J̄n(f, y) ≤ J̄n(π

0, y), this completes
the proof. �

For each n, let us define wn by letting wn(x) =w(x) on Kn and wn(x) =
∫

Kc
n
w(z)νn(dz) =: γn on

Kc
n. Hence, wn ∈B(X) by (3.3).

Lemma 3.3. For all n and x∈X, the components of MDPn satisfy the following:

sup
a∈A

|bn(x,a)| ≤Mwn(x) (3.8)

sup
a∈A

∫

X

wn(y)qn(dy|x,a)≤αwn(x)+ γ, (3.9)

where γ is the constant in (3.4).

Proof. It is straightforward to prove (3.8) by using the definitions of bn and wn, and the equa-
tion (3.1). To prove (3.9), we have to consider two cases: x ∈Kn and x ∈Kc

n. For the first case,
qn( · |x,a) = p( · |x,a), and therefore, we have

sup
a∈A

∫

X

wn(y)p(dy|x,a) = sup
a∈A

{
∫

X

w(y)p(dy|x,a)+

∫

Kc
n

(

γn−w(y)
)

p(dy|x,a)

}

≤ sup
a∈A

∫

X

w(y)p(dy|x,a)+ γ (by (3.4))

≤αw(x)+ γ = αwn(x)+ γ (as wn =w on Kn).

For x∈Kc
n, we have

sup
a∈A

∫

X

wn(y)qn(dy|x,a) = sup
a∈A

∫

Kc
n

(
∫

X

wn(y)p(dy|z, a)

)

νn(dz)

≤

∫

Kc
n

(

sup
a∈A

∫

X

wn(y)p(dy|z, a)

)

νn(dz)

≤

∫

Kc
n

(

αw(z)+ γ
)

νn(dz) (3.10)

= αwn(x)+ γ,

where (3.10) can be proved following the same arguments as for the case x ∈Kn. This completes
the proof. �

Note that if we define cn,0(x) = 1 + supa∈A
|bn(x,a)| and cn,t(x) = supa∈A

∫

X
cn,t−1(y)qn(dy|x,a),

by (3.8) and (3.9), and an induction argument, we obtain (see Hernández-Lerma and Lasserre [22,
p. 46])

cn,t(x)≤Lwn(x)α
t+Lγ

t−1
∑

j=0

αj for all x∈X, (3.11)

where L= 1+M . Let β0>β be such that αβ0 < 1 and let Cn :X→ [1,∞) be defined by

Cn(x) =
∞
∑

t=0

βt0cn,t(x).
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Then, for all x∈ X, by (3.11) we have

Cn(x) :=
∞
∑

t=0

βt0cn,t(x)≤
L

1−β0α
wn(x)+

Lβ0

(1−β0)(1−β0α)
γ

:=L1wn(x)+L2. (3.12)

Hence Cn ∈B(X) as wn ∈B(X). Moreover, for all (x,a)∈ X×A, Cn satisfies (see Hernández-Lerma
and Lasserre [22, p. 45])

∫

X

Cn(y)qn(dy|x,a) =
∞
∑

t=0

βt0

∫

X

cn,t(y)qn(dy|x,a)

≤

∞
∑

t=0

βt0cn,t+1(x)

≤
1

β0

∞
∑

t=0

βt0cn,t(x) = α0Cn(x),

where α0 :=
1
β0

and α0β < 1 since β0 >β. Therefore, for all x∈ X, components of MDPn satisfy

sup
a∈A

|bn(x,a)| ≤Cn(x) (3.13)

sup
a∈A

∫

X

Cn(y)qn(dy|x,a)≤ α0Cn(x). (3.14)

Since Cn ∈B(X), the Bellman optimality operator T n of MDPn maps Bl(X) into Bl(X) and is
given by

T nu(x) = inf
a∈A

[

bn(x,a)+β

∫

X

u(y)qn(dy|x,a)

]

=

{

infa∈A

[

c(x,a)+β
∫

X
u(y)p(dy|x,a)

]

, if x∈Kn

infa∈A

∫

Kc
n

[

c(z, a)+β
∫

X
u(y)p(dy|z, a)

]

νn(dz), if x∈Kc
n.

Then successive approximations to the discounted value function of MDPn are given by v0n = 0
and vt+1

n = T nv
t
n (t≥ 1). Since α0β < 1, it can be proved as in Hernández-Lerma and Lasserre [22,

Theorem 8.3.6, p. 47] and Hernández-Lerma and Lasserre [22, (8.3.34), p. 52] that

|vtn(x)|, |J̄
∗
n(x)| ≤

Cn(x)

1−σ0

for all x, (3.15)

‖vtn− J̄∗
n‖Cn ≤

σt0
1−σt0

, (3.16)

where σ0 = βα0 < 1.
Similar to vtn, let us define v0 = 0 and vt+1 = Tvt, where T : Bw(X) → Bw(X), the Bellman

optimality operator for the original MDP, is given by

Tu(x) = inf
a∈A

[

c(x,a)+β

∫

X

u(y)p(dy|x,a)

]

.

Then, again by Hernández-Lerma and Lasserre [22, Theorem 8.3.6, p. 47] and Hernández-Lerma
and Lasserre [22, (8.3.34), p. 52] we have

|vt(x)|, |J∗(x)| ≤M
w(x)

1−σ
for all x, (3.17)

‖vt− J∗‖w ≤M
σt

1−σ
, (3.18)

where σ= βα< 1.
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Lemma 3.4. For any compact set K ⊂ X, we have

lim
n→∞

sup
x∈K

|vtn(x)− vt(x)|= 0 (3.19)

for all t≥ 1.

Proof. We prove (3.19) by induction on t. For t=1, the claim trivially holds since any compact
set K ⊂ X is inside Kn for sufficiently large n, and therefore, bn = c on K for sufficiently large n
(recall v0n = v0 = 0). Assume the claim is true for t≥ 1. Fix any compact set K. Recall the definition
of compact subsets Kε of X in Lemma 3.1. By definition of qn, bn, and wn, there exists n0 ≥ 1 such
that for all n≥ n0, qn = p, bn = c, and wn =w on K. With these observations, for each n≥ n0 we
have

sup
x∈K

|vt+1
n (x)− vt+1(x)|= sup

x∈K

∣

∣

∣

∣

inf
A

[

c(x,a)+β

∫

X

vtn(y)p(dy|x,a)

]

−min
A

[

c(x,a)+β

∫

X

vt(y)p(dy|x,a)

]∣

∣

∣

∣

≤ β sup
(x,a)∈K×A

∣

∣

∣

∣

∫

X

vtn(y)p(dy|x,a)−

∫

X

vt(y)p(dy|x,a)

∣

∣

∣

∣

= β sup
(x,a)∈K×A

∣

∣

∣

∣

∫

Kε

(

vtn(y)− vt(y)
)

p(dy|x,a)+

∫

Kc
ε

(

vtn(y)− vt(y)
)

p(dy|x,a)

∣

∣

∣

∣

≤ β

{

sup
x∈Kε

|vtn(x)− vt(x)|+ sup
(x,a)∈K×A

∣

∣

∣

∣

∫

Kc
ε

(

vtn(y)− vt(y)
)

p(dy|x,a)

∣

∣

∣

∣

}

Note that we have |vt| ≤M w
1−σ

by (3.17). Since wn ≤ γmaxw, where γmax :=max{1, γ}, we also have

|vtn| ≤
L1γmaxw+L2

1−σ0
≤ (L1γmax+L2)w

1−σ0
by (3.12) and (3.15) (as w≥ 1). Let us define

R :=
L1γmax +L2

1−σ0

+
M

1−σ
.

Then by Lemma 3.1 we have

sup
x∈K

|vt+1
n (x)− vt+1(x)| ≤ β sup

x∈Kε

|vtn(x)− vt(x)|+βRε.

Since the first term converges to zero as n→∞ by the induction hypothesis, and ε is arbitrary,
the claim is true for t+1. This completes the proof. �

The following theorem states that the discounted value function of MDPn converges to the
discounted value function of the original MDP uniformly on each compact set K ⊂X.

Theorem 3.1. For any compact set K ⊂ X we have

lim
n→∞

sup
x∈K

|J̄∗
n(x)− J∗(x)|= 0. (3.20)

Proof. Fix any compact set K ⊂ X. Since w is continuous and therefore bounded on K, it is
sufficient to prove limn→∞ supx∈K

|J̄∗n(x)−J
∗(x)|

w(x)
. Let n be chosen such that K ⊂Kn, and so, wn =w

on K. Then we have

sup
x∈K

|J̄∗
n(x)− J∗(x)|

w(x)
≤ sup

x∈K

|J̄∗
n(x)− vtn(x)|

w(x)
+ sup
x∈K

|vtn(x)− vt(x)|

w(x)
+ sup
x∈K

|vt(x)− J∗(x)|

w(x)

≤ sup
x∈K

|J̄∗
n(x)− vtn(x)|

Cn(x)

Cn(x)

w(x)
+ sup
x∈K

|vtn(x)− vt(x)|

w(x)
+M

σt

1−σt
(by (3.18))

≤ sup
x∈K

|J̄∗
n(x)− vtn(x)|

Cn(x)

(L1wn(x)+L2)

w(x)
+ sup
x∈K

|vtn(x)− vt(x)|

w(x)
+

Mσt

1−σt
(by (3.12))

≤ (L1 +L2) sup
x∈K

|J̄∗
n(x)− vtn(x)|

Cn(x)
+ sup
x∈K

|vtn(x)− vt(x)|

w(x)
+

Mσt

1−σt
(wn =w on K)

≤ (L1 +L2)
σt0

1−σ0

+ sup
x∈K

|vtn(x)− vt(x)|

w(x)
+

Mσt

1−σt
(by (3.16)).
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Since w ≥ 1 on X, supx∈K
|vtn(x)−vt(x)|

w(x)
→ 0 as n → ∞ for all t by Lemma 3.4. Hence, the last

expression can be made arbitrarily small. This completes the proof. �

In the remainder of this section, we use the above results and Theorem 2.2 to compute a near
optimal policy for the original MDP. It is straightforward to check that for each n, c-MDPn
satisfies the assumptions in Theorem 2.2. Let {εn} be a sequence of positive real numbers such
that limn→∞ εn= 0.
By Theorem 2.2, for each n≥ 1, there exists a deterministic stationary policy fn ∈ Fn, obtained

from the finite state approximations of c-MDPn, such that

sup
x∈Xn

|Jn(fn, x)− J∗
n(x)| ≤ εn,

where for each n, finite-state models are constructed replacing
(

Z,A, p, c
)

with the components
(

Xn,A, pn, cn
)

of c-MDPn in Section 2. By Lemma 3.2, for each n≥ 1 we also have

sup
x∈X

|J̄n(fn, x)− J̄∗
n(x)| ≤ εn, (3.21)

where, with an abuse of notation, we also denote the extended (to X) policy by fn. Let us define
operators R̄n :BCn(X)→BCn(X) and Rn :Bw(X)→Bw(X) by

R̄nu(x) =

{

c(x, fn(x))+β
∫

X
u(y)p(dy|x, fn(x)), if x∈Kn

∫

Kc
n

[

c(z, fn(z))+β
∫

X
u(y)p(dy|z, fn(z))

]

νn(dz), if x∈Kc
n,

Rnu(x) = c(x, fn(x))+β

∫

X

u(y)p(dy|x, fn(x)).

By Hernández-Lerma and Lasserre [22, Remark 8.3.10, p. 54], R̄n is a contraction operator with
modulus σ0 and Rn is a contraction operator with modulus σ. Furthermore, the fixed point of R̄n
is J̄n(fn, x) and the fixed point of Rn is J(fn, x). For each n ≥ 1, let us define ū0

n = u0
n = 0 and

ūt+1
n = R̄nū

t
n, u

t+1
n = Rnu

t
n (t ≥ 1). One can prove that (see the proof of Hernández-Lerma and

Lasserre [22, Theorem 8.3.6, p. 51])

|ūtn(x)|, |J̄n(fn, x)| ≤
Cn(x)

1−σ0

‖ūtn− J̄n(fn, · )‖Cn ≤
σt0

1−σ0

|utn(x)|, |J(fn, x)| ≤M
w(x)

1−σ

‖utn− J(fn, · )‖w ≤M
σt

1−σ
.

Lemma 3.5. For any compact set K ⊂ X, we have

lim
n→∞

sup
x∈K

|ūtn(x)−utn(x)|= 0.

Proof. The lemma can be proved using the same arguments as in the proof of Lemma 3.4 and
so we omit the details. �

Lemma 3.6. For any compact set K ⊂ X, we have

lim
n→∞

sup
x∈K

|J̄n(fn, x)− J(fn, x)|= 0. (3.22)

Indeed, this is true for all sequences of policies in F.
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Proof. The lemma can be proved using the same arguments as in the proof of Theorem 3.1. �

The following theorem is the main result of this section which states that the true cost functions
of the policies obtained from finite state models converge to the value function of the original MDP.
Hence, to obtain a near optimal policy for the original MDP, it is sufficient to compute the optimal
policy for the finite state model that has sufficiently large number of grid points.

Theorem 3.2. For any compact set K ⊂ X, we have

lim
n→∞

sup
x∈K

|J(fn, x)− J∗(x)|= 0.

Therefore,

lim
n→∞

|J(fn, x)− J∗(x)|= 0 for all x∈X.

Proof. The result follows from (3.20), (3.21), and (3.22). �

3.2. Average Cost. In this section we obtain approximation results, analogous to Theo-
rems 3.1 and 3.2, for the average cost criterion. To do this, we impose some new assumptions on
the components of the original MDP in addition to Assumption 3.1. These assumptions are the
unbounded counterpart of Assumption 2.2. With the exception of Assumption 3.2-(j), versions of
these assumptions were imposed in Vega-Amaya [38], Gordienko and Hernandez-Lerma [18], and
Jaśkiewicz and Nowak [26] to study the existence of the solution to the Average Cost Optimality
Equality (ACOE) and Inequality (ACOI). In what follows, for any finite signed measure ϑ and
measurable function h on X, we let ϑ(h) :=

∫

X
h(x)ϑ(dx) and

‖ϑ‖w := sup
‖g‖w≤1

∣

∣

∣

∣

∫

X

g(x)ϑ(dx)

∣

∣

∣

∣

.

Here ‖ϑ‖w is called the w-norm of ϑ.

Assumption 3.2. Suppose Assumption 3.1 holds with item (b) and (3.2) replaced by conditions
(j) and (e) below, respectively. In addition, there exist a probability measure η on X and a positive
measurable function φ :X×A→ (0,∞) such that for all (x,a) ∈X×A

(e)
∫

X
w(y)p(dy|x,a)≤ αw(x)+ η(w)φ(x,a), where α∈ (0,1).

(f) p(D|x,a)≥ η(D)φ(x,a) for all D ∈B(X).
(g) The weight function w is η-integrable, i.e., η(w)<∞.
(h) For each n≥ 1, inf (x,a)∈Kn×Aφ(x,a)> 0.
(j) The stochastic kernel p( · |x,a) is continuous in (x,a) with respect to the w-norm.

Throughout this section, it is assumed that Assumption 3.2 holds. Conditions (e), (f), and (g)
of Assumption 3.2 are unbounded counterparts of conditions (d) and (e) in Assumption 2.2. Recall
that condition (e) corresponds to the so-called ‘drift inequality’ and condition (f) corresponds to
the so-called ‘minorization’ condition which guarantee the geometric ergodicity of Markov chains
induced by stationary policies (see Hernández-Lerma and Lasserre [22], Meyn and Tweedie [29]
and references therein). These assumptions are quite general for studying average cost problems
with unbounded one-stage costs. In addition, they are proper for the approximation problem in
the sense that it can be shown that if the original problem satisfies these, then the reduced models
constructed in the sequel satisfy similar conditions. There is only one minor difference between As-
sumption 3.2-(f) and the standard minorization condition: in the literature φ is in general required
to be nonnegative instead of positive.
Note that although Assumption 3.2-(j) seems to be restrictive, it is weaker than the assumptions

imposed in the literature for studying approximation of average cost problems with unbounded
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cost (see Dufour and Prieto-Rumeau [15]). Indeed, it is assumed in Dufour and Prieto-Rumeau
[15] that the transition probability p is Lipschitz continuous in (x,a) with respect to w-norm. The
reason for imposing such a strong condition on the transition probability is to obtain convergence
rate for the approximation problem. Since we do not aim to provide rate of convergence result
in this section, it is natural to impose continuity instead of Lipschitz continuity of the transition
probability. However, it does not seem possible to replace continuity with respect to the w-norm by
a weaker convergence notion. One reason is that with a weaker continuity notion it is not possible
to prove that the transition probability of c-MDPn is continuous with respect to the total variation
distance, which is needed if one wants to use Theorem 2.6 and cannot be relaxed as explained in
Remark 2.3.
Analogous with Theorem 2.5, the following theorem is a consequence of Vega-Amaya [38, The-

orems 3.3], Gordienko and Hernandez-Lerma [18, Lemma 3.4] (see also Hernández-Lerma and
Lasserre [22, Proposition 10.2.5, p. 126]), and Jaśkiewicz and Nowak [26, Theorem 3], which also
holds with Assumption 3.2-(j) replaced by Assumption 3.1-(b).

Theorem 3.3. For each f ∈ F, the stochastic kernel p( · |x, f(x)) is positive Harris recurrent
with unique invariant probability measure µf . Furthermore, w is µf -integrable, and therefore, ρf :=
∫

X
c(x, f)µf(dx)< ∞. There exist positive real numbers R and κ< 1 such that

sup
f∈F

‖pt( · |x, f(x))−µf‖w ≤Rw(x)κt (3.23)

for all x∈X, where R and κ continuously depend on α, η(w), and inff∈F η(φ(y, f(y))). Finally, there
exist f ∗ ∈ F and h∗ ∈Bw(X) such that the triplet (h∗, f ∗, ρf∗) satisfies the average cost optimality
equality (ACOE), and therefore,

inf
π∈Π

V (π,x) := V ∗(x) = ρf∗ ,

for all x∈ X.

Note that (3.23) implies that for each f ∈ F, the average cost is given by V (f,x) =
∫

X
c(y, f(y))µf(dy) for all x∈X (instead of µf -a.e.); that is, the average cost is independent of the

initial point.
Recall that Vn and V̄n denote the average costs of c-MDPn and MDPn, respectively. The

value functions for average cost are denoted analogously to the discounted cost case. Similar to
Lemma 3.2, the following result states that MDPn and MDPn are not too different for the average
cost.

Lemma 3.7. Suppose Theorem 3.3 holds for MDPn and Theorem 2.5 holds for MDPn. Then
we have

V̄ ∗
n (x) =

{

V ∗
n (x), if x∈Kn

V ∗
n (∆n), if x∈Kc

n.
(3.24)

Furthermore, if, for any deterministic stationary policy f ∈ Fn, we define f̄(x) = f(x) on Kn and
f̄(x) = f(∆n) on Kc

n, then

V̄n(f̄ , x) =

{

Vn(f,x), if x∈Kn

Vn(f,∆n), if x∈Kc
n.

(3.25)

In particular, if the deterministic stationary policy f ∗
n ∈ Fn is optimal for MDPn, then its extension

f̄ ∗
n to X is also optimal for MDPn.
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Proof. Let the triplet (h∗
n, f

∗
n, ρ

n
f∗n
) satisfy the ACOE for c-MDPn, so that f ∗

n is an optimal policy
and ρnf∗n is the average value function for c-MDPn. It is straightforward to show that the triplet

(h̄∗
n, f̄

∗
n, ρ

n
f∗n
) satisfies the ACOE for M̃DPn, where

h̄∗
n(x) =

{

h∗
n(x), if x∈Kn

h∗
n(∆n), if x∈Kc

n,

and

f̄ ∗
n(x) =

{

f ∗
n(x), if x∈Kn

f ∗
n(∆n), if x∈Kc

n.

By Gordienko and Hernandez-Lerma [18, Lemma 5.2] (see also Hernández-Lerma and Lasserre [21,
Section 5.2]), this implies that f̄ ∗

n is an optimal stationary policy for MDPn with cost function ρnf∗n .
This completes the proof of the first part.
For the second part, let f ∈ Fn with an unique invariant probability measure µf ∈P(Xn) and let

f̄ ∈ F denote its extension to X with an unique invariant probability measure µf̄ . It can be proved
that

µf ( · ) = µf̄ ( · ∩Kn)+µf̄ (K
c
n)δ∆n( · ).

Then we have

V̄n(f,x) =

∫

X

bn(x, f̄(x))µf̄(dx)

=

∫

Kn

cn(x, f̄(x))µf̄(dx)+µf̄(K
c
n)cn(∆n, f̄(∆n))

=

∫

Xn

cn(x, f(x))µf(dx)

= Vn(f,x).

This completes the proof. �

By Lemma 3.7, in the remainder of this section we need only consider MDPn in place of MDPn.
Later we will show that Theorem 3.3 holds for MDPn for n sufficiently large and that Theorem 2.5
holds for c-MDPn for all n.
Recall the definition of constants γn and τn from (3.3) and (3.4). For each n ≥ 1, we define

φn :X×A→ (0,∞) and ςn ∈R as

φn(x,a) :=

{

φ(x,a), if x∈Kn
∫

Kc
n
φ(y, a)νn(dy), if x∈Kc

n,

ςn :=

∫

Kc
n

w(y)η(dy).

Since η(w)<∞ and τn can be made arbitrarily small by properly choosing νn, we assume, without
loss of generality, the following.

Assumption 3.3. The sequence of probability measures {νn} is chosen such that the following
holds

lim
n→∞

(τn+ ςn) = 0. (3.26)
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Let αn :=α+ ςn+ τn.

Lemma 3.8. For all n and (x,a)∈ X×A, the components of MDPn satisfy the following:

sup
a∈A

|bn(x,a)| ≤Mwn(x)
∫

X

wn(y)qn(dy|x,a)≤ αnwn(x)+ η(wn)φn(x,a), (3.27)

qn(D|x,a)≥ η(D)φn(x,a) for all D ∈ B(X).

Proof. The proof of the first inequality follows from Assumption 3.2 and definitions of bn and
wn. To prove the remaining two inequalities, we have to consider the cases x ∈ Kn and x ∈Kc

n

separately.
Let x∈Kn, and therefore, qn( · |x,a) = p( · |x,a). The second inequality holds since

∫

X

wn(y)p(dy|x,a) =

∫

X

w(y)p(dy|x,a)+

∫

Kc
n

(

γn−w(y)
)

p(dy|x,a)

≤

∫

X

w(y)p(dy|x,a)+ τn

≤αw(x)+ η(w)φ(x,a)+ τn
≤αwn(x)+ η(wn)φn(x,a)+ ςnφn(x,a)+ τn (as wn =w and φn = φ on Kn)
≤αnwn(x)+ η(wn)φn(x,a), (as φn ≤ 1 and wn ≥ 1).

For the last inequality, for all D ∈B(X), we have

qn(D|x,a) = p(D|x,a)≥ η(D)φ(x,a) = η(D)φn(x,a) (as φn = φ on Kn).

Hence, inequalities hold for x∈Kn.
For x∈Kc

n, we have

∫

X

wn(y)qn(dy|x,a) =

∫

Kc
n

(
∫

X

wn(y)p(dy|z, a)

)

νn(dz)

≤

∫

Kc
n

(

αw(z)+ η(wn)φ(x,a)+ ςnφ(x,a)+ τn
)

νn(dz) (3.28)

= αwn(x)+ η(wn)φn(x,a)+ ςnφn(x,a)+ τn
≤αnwn(x)+ η(wn)φn(x,a), (since φn ≤ 1 and wn ≥ 1)

where (3.28) can be obtained following the same arguments as for the case x ∈ Kn. The last
inequality holds for x∈Kc

n since

qn(D|x,a) =

∫

Kc
n

p(D|z, a)νn(dz)

≥

∫

Kc
n

η(D)φ(z, a)νn(dz)

= η(D)φn(x,a).

This completes the proof. �

We note that by (3.26), there exists n0 ≥ 1 such that αn < 1 for n≥ n0. Hence, for each n≥ n0,
Theorem 3.3 holds for MDPn with w replaced by wn for some Rn > 0 and κn ∈ (0,1), and we have
Rmax := supn≥n0 Rn <∞ and κmax := supn≥n0 κn < 1.
In the remainder of this section, it is assumed that n≥ n0.
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Lemma 3.9. Let g : X×A→R be any measurable function such that supa∈A
|g(x,a)| ≤Mgw(x)

for some Mg ∈R. Then, for all t≥ 1 and any compact set K ⊂X we have

sup
(y,f)∈K×F

∣

∣

∣

∣

∫

X

gn(x, f(x))q
t
n(dx|y, f(y))−

∫

X

g(x, f(x))pt(dx|y, f(y))

∣

∣

∣

∣

→ 0

as n→∞, where gn(x,a) = g(x,a) on Kn×A and gn(x,a) =
∫

Kc
n
g(z, a)νn(dz) on K

c
n×A.

Proof. We will prove the lemma by induction. Fix any compact set K ⊂ X. We note that in
the inequalities below, we repeatedly use the fact φ,φn ≤ 1 without explicitly referring to this
fact. Recall the definition of the compact subsets Kε of X in Lemma 3.1 and the constant γmax =
max{1, γ}. Note that supa∈A

|gn(x,a)| ≤Mgwn(x)≤Mgγmaxw(x) for all x∈X.
The claim holds for t= 1 by the following argument:

sup
(y,f)∈K×F

∣

∣

∣

∣

∫

X

gn(x, f(x))qn(dx|y, f(y))−

∫

X

g(x, f(x))p(dx|y, f(y))

∣

∣

∣

∣

= sup
(y,f)∈K×F

∣

∣

∣

∣

∫

X

gn(x, f(x))p(dx|y, f(y))−

∫

X

g(x, f(x))p(dx|y, f(y))

∣

∣

∣

∣

(for n sufficiently large)

= sup
(y,f)∈K×F

∣

∣

∣

∣

∫

Kc
ε

gn(x, f(x))p(dx|y, f(y))−

∫

Kc
ε

g(x, f(x))p(dx|y, f(y))

∣

∣

∣

∣

(for n sufficiently large)

≤Mg(1+ γmax)ε,

where the last inequality follows from Lemma 3.1. Since ε is arbitrary, the result follows.
Assume the claim is true for t≥ 1. Let us define lf(z) :=

∫

X
g(x, f(x))pt(dx|z, f(z)) and lnf (z) :=

∫

X
gn(x, f(x))q

t
n(dx|z, f(z)). By recursively applying the inequalities in Assumption 3.2-(e) and in

(3.27) we obtain

sup
f∈F

|lf (z)| ≤Mgα
tw(z)+Mgη(w)

t−1
∑

j=0

αj

and

sup
f∈F

|lnf (z)| ≤Mgα
t
nwn(z)+Mgη(wn)

t−1
∑

j=0

αjn

≤Mgα
t
maxγmaxw(z)+Mgη(w)γmax

t−1
∑

j=0

αjmax,

where αmax := supn≥n0 αn < 1. Then we have

sup
(y,f)∈K×F

∣

∣

∣

∣

∫

X

gn(x, f(x))q
t+1
n (dx|y, f(y))−

∫

X

g(x, f(x))pt+1(dx|y, f(y))

∣

∣

∣

∣

= sup
(y,f)∈K×F

∣

∣

∣

∣

∫

X

lnf (z)qn(dz|y, f(y))−

∫

X

lf (z)p(dz|y, f(y))

∣

∣

∣

∣

= sup
(y,f)∈K×F

∣

∣

∣

∣

∫

X

lnf (z)p(dz|y, f(y))−

∫

X

lf (z)p(dz|y, f(y))

∣

∣

∣

∣

(for n sufficiently large)

≤ sup
(y,f)∈K×F

∣

∣

∣

∣

∫

Kc
ε

lnf (z)p(dz|y, f(y))−

∫

Kc
ε

lf (z)p(dz|y, f(y))

∣

∣

∣

∣

+ sup
(z,f)∈Kε×F

|lnf (z)− lf (z)|

≤Rε+ sup
(z,f)∈Kε×F

|lnf (z)− lf(z)|, (3.29)
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where R is given by

R :=Mg

(

αt+αtmaxγmax + η(w)
t−1
∑

j=0

αj + η(w)γmax

t−1
∑

j=0

αjmax

)

and the last inequality follows from Lemma 3.1. Since the claim holds for t and Kε, the second
term in (3.29) goes to zero as n→∞. Since ε is arbitrary, the result follows. �

In the remainder of this section the above results are used to compute a near optimal policy for
the original MDP. Let {εn} be a sequence of positive real numbers converging to zero.
For each f ∈ F, let µnf denote the unique invariant probability measure of the transition

kernel qn( · |x, f(x)) and let ρnf denote the associated average cost; that is, ρnf := V̄n(f,x) =
∫

X
bn(y, f(y))µ

n
f (dy) for all initial points x∈X. Therefore, the value function of MDPn, denoted by

V̄ ∗
n , is given by V ∗

n (x) = inff∈F ρ
n
f , i.e., it is constant on X.

Before making the connection with Theorem 2.6, we prove the following result.

Lemma 3.10. The transition probability pn of c-MDPn is continuous in (x,a) with respect to
the total variation distance.

Proof. To ease the notation, we defineM(Xn),M(X), andMw(X) as the subsets of B(Xn), B(X),
and Bw(X), respectively, whose elements have (corresponding) norm less than one. Let (xk, ak)→
(x,a) in Xn×A. Since the pseudo state ∆n is isolated and Kn is compact, we have two cases: (i)
xk = x=∆n for all k large enough, or (ii) xk → x in Kn.
For the first case we have

‖pn( · |∆n, ak)− pn( · |∆n, a)‖TV = sup
g∈M(Xn)

∣

∣

∣

∣

∫

Xn

g(y)pn(dy|∆n, ak)−

∫

Xn

g(y)pn(dy|∆n, a)

∣

∣

∣

∣

≤ sup
g∈M(X)

∣

∣

∣

∣

∫

X

g(y)qn(dy|∆n, ak)−

∫

X

g(y)qn(dy|∆n, a)

∣

∣

∣

∣

(3.30)

= sup
g∈M(X)

∣

∣

∣

∣

∫

Kc
n

(
∫

X

g(y)p(dy|z, ak)−

∫

X

g(y)p(dy|z, a)

)

νn(dz)

∣

∣

∣

∣

≤

∫

Kc
n

sup
g∈M(X)

∣

∣

∣

∣

∫

X

g(y)p(dy|z, ak)−

∫

X

g(y)p(dy|z, a)

∣

∣

∣

∣

νn(dz)

≤

∫

Kc
n

sup
g∈Mw(X)

∣

∣

∣

∣

∫

X

g(y)p(dy|z, ak)−

∫

X

g(y)p(dy|z, a)

∣

∣

∣

∣

νn(dz)

=

∫

Kc
n

‖p( · |z, ak)− p( · |z, a)‖wνn(dz), (3.31)

where (3.30) follows since if for any g ∈M(Xn) we define ḡ = g on Kn and ḡ = g(∆n) on K
c
n, then

we have ḡ ∈M(X) and
∫

Xn
g(y)pn(dy|x,a) =

∫

X
ḡ(y)qn(dy|x,a) for all (x,a)∈ Xn×A. Note that we

have

sup
g∈Mw(X)

∣

∣

∣

∣

∫

X

g(y)p(dy|z, ak)−

∫

X

g(y)p(dy|z, a)

∣

∣

∣

∣

≤

∫

X

w(y)p(dy|z, ak)+

∫

X

w(y)p(dy|z, a)

≤ 2
(

α+ η(w)
)

w(z)

by Assumption 3.2-(e), φ ≤ 1, and w ≥ 1. Since w (restricted to Kc
n) is νn-integrable, by the

dominated convergence theorem (3.31) goes to zero as k→∞.
For the second case we have

‖pn( · |xk, ak)− pn( · |x,a)‖TV = sup
g∈M(Xn)

∣

∣

∣

∣

∫

Xn

g(y)pn(dy|xk, ak)−

∫

Xn

g(y)pn(dy|x,a)

∣

∣

∣

∣
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≤ sup
g∈M(X)

∣

∣

∣

∣

∫

X

g(y)qn(dy|xk, ak)−

∫

X

g(y)qn(dy|x,a)

∣

∣

∣

∣

= sup
g∈M(X)

∣

∣

∣

∣

∫

X

g(y)p(dy|xk, ak)−

∫

X

g(y)p(dy|x,a)

∣

∣

∣

∣

(since xk, x∈Kn)

≤ sup
g∈Mw(X)

∣

∣

∣

∣

∫

X

g(y)p(dy|xk, ak)−

∫

X

g(y)p(dy|x,a)

∣

∣

∣

∣

= ‖p( · |xk, ak)− p( · |x,a)‖w.

By Assumption 3.2-(j) the last term goes to zero as k→∞. �

Thus we obtain that for each n≥ 1, c-MDPn satisfies the assumption in Theorem 2.6 for

ζ( · ) = η( · ∩Kn)+ η(Kc
n)δ∆n( · ),

θ(x,a) =

{

φ(x,a), if x∈Kn
∫

Kc
n
φ(y, a)νn(dy), if x=∆n,

and some λ ∈ (0,1), where the existence of λ follows from Assumption 3.2-(h) and the fact that
φ> 0.
Consequently, there exists a deterministic stationary policy fn ∈ Fn, obtained from the finite

state approximations of c-MDPn, such that

sup
x∈Xn

|Vn(fn, x)−V ∗
n (x)| ≤ εn, (3.32)

where finite-state models are constructed replacing
(

Z,A, p, c
)

with the components
(

Xn,A, pn, cn
)

of c-MDPn in Section 2. By Lemma 3.7, we also have

|ρnfn − V̄ ∗
n | ≤ εn, (3.33)

where, by an abuse of notation, we also denote the policy extended to X by fn.

Lemma 3.11. We have

sup
f∈F

|ρnf − ρf | → 0 (3.34)

as n→∞.

Proof. Fix any compact set K ⊂ X. For any t≥ 1 and y ∈K, we have

sup
f∈F

|ρnf − ρf |= sup
f∈F

∣

∣

∣

∣

∫

X

bn(x, f(x))µ
n
f(dx)−

∫

X

c(x, f(x))µf(dx)

∣

∣

∣

∣

≤ sup
f∈F

∣

∣

∣

∣

∫

X

bn(x, f(x))µ
n
f(dx)−

∫

X

bn(x, f(x))q
t
n(dx|y, f(y))

∣

∣

∣

∣

+sup
f∈F

∣

∣

∣

∣

∫

X

bn(x, f(x))q
t
n(dx|y, f(y))−

∫

X

c(x, f(x))pt(dx|y, f(y))

∣

∣

∣

∣

+sup
f∈F

∣

∣

∣

∣

∫

X

c(x, f(x))pt(dx|y, f(y))−

∫

X

c(x, f(x))µf(dx)

∣

∣

∣

∣

≤MRmaxw(y)κ
t
max +MRw(y)κt+

sup
(y,f)∈K×F

∣

∣

∣

∣

∫

X

bn(x, f(x))q
t
n(dx|y, f(y))−

∫

X

c(x, f(x))pt(dx|y, f(y))

∣

∣

∣

∣

,

where the last inequality follows from Theorem 3.3-(ii) and (3.1) in Assumption 3.1. The result
follows from Lemma 3.9. �
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Theorem 3.4. The value function of MDPn converges to the value function of the original
MDP, i.e., |V̄ ∗

n −V ∗| → 0, as n→∞.

Proof. Since

|V̄ ∗
n −V ∗|= | inf

f∈F
ρnf − inf

f∈F
ρf | ≤ sup

f∈F

|ρnf − ρf |,

the result follows from Lemma 3.11. �

The following is the main result of this section which states that the true average cost of the
policies fn obtained from finite state approximations of c-MDPn converges to the average value
function V ∗ of the original MDP.

Theorem 3.5. We have |ρfn −V ∗|→ 0, as n→∞.

Proof. We have

|ρfn −V ∗| ≤ |ρfn − ρnfn |+ |ρnfn − V̄ ∗
n |+ |V̄ ∗

n −V ∗|
≤ sup

f∈F

|ρf − ρnf |+ εn+ |V̄ ∗
n −V ∗| (by (3.33))

The result follows from Lemma 3.11 and Theorem 3.4. �

4. Discretization of the Action Space. For computing near optimal policies using well
known algorithms, such as value iteration, policy iteration, and Q-learning, the action space must
be finite. In this section, we show that, as a pre-processing step, the action space can taken to
be finite if it has sufficiently large number of points for accurate approximation. Throughout this
section, it is assumed that Assumption 3.1 holds for the discounted cost and Assumption 3.2 holds
for the average cost.
It was shown in Saldi et al. [33] and Saldi et al. [34] that any MDP with (infinite) compact action

space can be well approximated by an MDP with finite action space under assumptions that are
satisfied by c-MDPn, for both the discounted cost and the average cost cases. Specifically, let dA
denote the metric on A. Since A is compact, one can find a sequence of finite subsets {Λk} of A
such that for all k

min
â∈Λk

dA(a, â)< 1/k for all a∈A.

We define c-MDPn,k as the Markov decision process having the components
{

Xn,Λk, pn, cn
}

and we
let Fn(Λk) denote the set of all deterministic stationary policies for c-MDPn,k. Note that Fn(Λk) is
the set of policies in Fn taking values only in Λk. Therefore, in a sense, c-MDPn,k and c-MDPn can
be viewed as the same MDP, where the former has constraints on the set of policies. For each n and
k, by an abuse of notation, let f ∗

n and f ∗
n,k denote the optimal stationary policies of c-MDPn and

c-MDPn,k, respectively, for both the discounted and average costs. Then Saldi et al. [34, Theorem
3.2] and Saldi et al. [33, Theorem 3.2] show that for all n, we have

lim
k→∞

Jn(f
∗
n,k, x) = Jn(f

∗
n, x) := J∗

n(x)

lim
k→∞

Vn(f
∗
n,k, x) = Vn(f

∗
n, x), := V ∗

n (x)

for all x ∈ Xn. In other words, the discounted and average value functions of c-MDPn,k converge
to the discounted and average value functions of c-MDPn as k→∞. We note that although Saldi
et al. [34, Theorem 3.2] and Saldi et al. [33, Theorem 3.2] are proved for nonnegative one-stage
cost function, it is straightforward to check that these theorems are also valid for any real valued
one-stage cost function.
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Theorem 4.1. For any x∈X, there exists a subsequence {kn} such that

lim
n→∞

J(f ∗
n,kn

, x) = J∗(x)

lim
n→∞

V (f ∗
n,kn

, x) = V ∗(x),

where f ∗
n,kn

∈ F(Λkn) is the optimal stationary policy of c-MDPn,kn.

Proof. Let us fix x∈X. For n sufficiently large (so x∈Kn), we choose kn such that |Jn(f
∗
n,kn

, x)−
Jn(f

∗
n, x)| < 1/n (or |Vn(f

∗
n,kn

, x)− Vn(f
∗
n, x)| < 1/n for the average cost). We note that if A is a

compact subset of a finite dimensional Euclidean space, then by using Saldi et al. [33, Theorems
4.1 and 4.2] one can obtain an explicit expression for kn in terms of n under further continu-
ity conditions on c and p. By Lemmas 3.6 and 3.11, we have |J̄n(f

∗
n,kn

, x)− J(f ∗
n,kn

, x)| → 0 and
|V̄n(f

∗
n,kn

, x)−V (f ∗
n,kn

, x)|→ 0 as n→∞, where again by an abuse of notation, the policies extended
to X are also denoted by f ∗

n,kn
. Since J̄n(f

∗
n,kn

, x) = Jn(f
∗
n,kn

, x) and V̄n(f
∗
n,kn

, x) = Vn(f
∗
n,kn

, x), using
Theorems 3.1 and 3.4 one can immediately obtain

lim
n→∞

J(f ∗
n,kn

, x) = J∗(x)

lim
n→∞

V (f ∗
n,kn

, x) = V ∗(x).

�

Theorem 4.1 implies that before discretizing the state space to compute the near optimal policies,
one can discretize, without loss of generality, the action space A in advance on a finite grid using
sufficiently large number of grid points.

5. Rate of Convergence Analysis for Compact-State MDPs. In this section we consider
(Q2) for MDPs with compact state space; that is, we derive an upper bound on the performance
loss due to discretization in terms of the cardinality of the set Zn (i.e., number of grid points) .
To do this, we will impose some new assumptions on the components of the MDP in addition to
Assumptions 2.1 and 2.2. First, we present some definitions that are needed in the development.
For each g ∈Cb(Z), let

‖g‖Lip := sup
(z,y)∈Z×Z

|g(z)− g(y)|

dZ(z, y)
.

If ‖g‖Lip is finite, then g is called Lipschitz continuous with Lipschitz constant ‖g‖Lip. Lip(Z)
denotes the set of all Lipschitz continuous functions on Z, i.e.,

Lip(Z) := {g ∈Cb(Z) : ‖g‖Lip <∞}

and Lip(Z,K) denotes the set of all g ∈ Lip(Z) with ‖g‖Lip ≤K. The Wasserstein distance of order
1 Villani [39, p. 95] between two probability measures ζ and ξ over Z is defined as

W1(ζ, ξ) := sup

{
∣

∣

∣

∣

∫

Z

gdζ−

∫

Z

gdξ

∣

∣

∣

∣

: g ∈ Lip(Z,1)

}

.

W1 is also called the Kantorovich-Rubinstein distance. It is known that if Z is compact, then
W1(ζ, ξ)≤ diam(Z)‖ζ − ξ‖TV ; see Villani [39, Theorem 6.15, p. 103]. For compact Z, the Wasser-
stein distance of order 1 is weaker than total variation distance. Furthermore, for compact Z, the
Wasserstein distance of order 1 metrizes the weak topology on the set of probability measures P(Z)
(see Villani [39, Corollary 6.13, p. 97]) which also implies that convergence in this sense is weaker
than setwise convergence.
In this section we impose the following supplementary assumptions in addition to Assumption 2.1

and Assumption 2.2.
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Assumption 5.1.

(g) The one-stage cost function c satisfies c( · , a)∈ Lip(Z,K1) for all a∈A for some K1.
(h) The stochastic kernel p satisfies W1

(

p( · |z, a), p( · |y, a)
)

≤K2dZ(z, y) for all a ∈ A for some
K2.

(j) Z is an infinite compact subset of Rd for some d≥ 1, equipped with the Euclidean norm.

We note that Assumption 5.1-(j) implies the existence of a constant α > 0 and finite subsets
Zn ⊂ Z with cardinality n such that

max
z∈Z

min
y∈Zn

dZ(z, y)≤α(1/n)1/d (5.1)

for all n, where dZ is the Euclidean distance on Z. In the remainder of this section, we replace Zn

defined in Section 2 with Zn satisfying (5.1) in order to derive explicit bounds on the approximation
error in terms of the cardinality of Zn.

5.1. Discounted Cost. Assumptions 2.1 and 5.1 are imposed throughout this section. Ad-
ditionally, we assume that K2β < 1. The last assumption is the key to prove the next result which
states that the value function J∗ of the original MDP for the discounted cost is in Lip(Z). Although
this result is known in the literature (see Hinderer [24]), we give a short proof for the sake of
completeness using a simple application of the value iteration algorithm.

Theorem 5.1. The value function J∗ for the discounted cost is in Lip(Z,K), where K =
K1

1
1−βK2

.

Proof. Let u∈ Lip(Z,K) for some K > 1. Then g= u
K
∈ Lip(Z,1) and therefore, for all a∈A and

z, y ∈ Z we have
∣

∣

∣

∣

∫

Z

u(x)p(dx|z, a)−

∫

Z

u(x)p(dx|y, a)

∣

∣

∣

∣

=K

∣

∣

∣

∣

∫

Z

g(x)p(dx|z, a)−

∫

Z

g(x)p(dx|y, a)

∣

∣

∣

∣

≤KW1

(

p( · |z, a), p( · |y, a)
)

≤KK2dZ(z, y),

by Assumption 5.1-(h). Hence, the contraction operator T defined in (2.2) maps u ∈ Lip(Z,K) to
Tu∈ Lip(Z,K1 +βKK2), since, for all z, y ∈ Z

|Tu(z)−Tu(y)| ≤max
a∈A

{

|c(z, a)− c(y, a)|+β

∣

∣

∣

∣

∫

Z

u(x)p(dx|z, a)−

∫

Z

u(x)p(dx|y, a)

∣

∣

∣

∣

}

≤K1dZ(z, y)+βKK2dZ(z, y) =
(

K1+βKK2

)

dZ(z, y).

Now we apply T recursively to obtain the sequence {T nu} by letting T nu = T (T n−1u), which
converges to the value function J∗ by the Banach fixed point theorem. Clearly, by induction we
have for all n≥ 1

T nu∈ Lip(Z,Kn),

where Kn = K1

∑n−1

i=0 (βK2)
i +K(βK2)

n. If we choose K < K1, then Kn ≤ Kn+1 for all n and
therefore, Kn ↑ K1

1
1−βK2

since K2β < 1. Hence, T nu ∈ Lip(Z,K1
1

1−βK2
) for all n, and therefore,

J∗ ∈ Lip(Z,K1
1

1−βK2
) since Lip(Z,K1

1
1−βK2

) is closed with respect to the sup-norm ‖ · ‖. �

The following theorem is the main result of this section. Recall that the policy f̂n ∈ F is obtained
by extending the optimal policy f ∗

n of MDPn to Z.

Theorem 5.2. We have

‖J(f̂n, · )− J∗‖ ≤
τ(β,K2)K1

1
1−βK2

+ 2K1
1−β

1−β
2α(1/n)1/d,

where τ(β,K2) = (2+β)βK2+
β2+4β+2
(1−β)2

and α is the coefficient in (5.1).
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Proof. To prove the theorem, we obtain upper bounds on the expressions derived in Section 2.1
in terms of the cardinality n of Zn. The proof of Theorem 2.2 gives

‖J(f̂n, · )− J∗‖ ≤
‖Tf̂nJ

∗− T̂f̂nJ
∗‖+(1+β)‖Ĵ∗

n− J∗‖

1−β
.

To prove the theorem we upper bound ‖Tf̂nJ
∗ − T̂f̂nJ

∗‖ and ‖Ĵ∗
n − J∗‖ in terms n. For the first

term we have

‖Tf̂nJ
∗ − T̂f̂nJ

∗‖= sup
z∈Z

∣

∣Tf̂nJ
∗(z)− T̂f̂nJ

∗(z)|

≤ sup
z∈Z

∫
∣

∣

∣

∣

c(z, f̂n(z))+β

∫

Z

J∗(y)p(dy|z, f̂n(z))− c(x, f̂n(x))−β

∫

Z

J∗(y)p(dy|x, f̂n(x))

∣

∣

∣

∣

νn,in(z)(dx)

≤ sup
z∈Z

∫
(

K1dZ(x, z)+β

∣

∣

∣

∣

∫

Z

J∗(y)p(dy|z, f̂n(z))−

∫

Z

J∗(y)p(dy|x, f̂n(z))

∣

∣

∣

∣

)

νn,in(z)(dx)

(since f̂n(x) = f̂n(z) for all x∈ Sn,in(z))

≤ sup
z∈Z

∫

(K1 +β‖J∗‖LipK2)dZ(x, z)νn,in(z)(dx)

≤ (K1+β‖J∗‖LipK2) max
i∈{1,...,n}

diam(Sn,i)

≤ (K1+β‖J∗‖LipK2)2α(1/n)
1/d. (5.2)

For the second term, the proof of Theorem 2.4 gives

‖Ĵ∗
n− J∗‖ ≤

‖T̂nJ
∗−FnJ

∗‖+(1+β)‖J∗−u∗
n‖

1−β
.

First consider ‖T̂nJ
∗−FnJ

∗‖. Define

l(z, a) := c(z, a)+β

∫

X

J∗(y)p(dy|z, a),

so that

J∗(z) =min
a∈A

l(z, a).

It is straightforward to show that l( · , a) ∈ Lip(Z,Kl) for all a ∈ A, where Kl =K1 + β‖J∗‖LipK2.
By adapting the proof of Lemma 2.3 to the value function J∗, we obtain

‖T̂nJ
∗−FnJ

∗‖= sup
z∈Z

∣

∣

∣

∣

min
a∈A

∫

l(x,a)νn,in(z)(dx)−

∫

min
a∈A

l(x,a)νn,in(z)(dx)

∣

∣

∣

∣

≤ sup
z∈Z

∫

sup
y∈Sn,in(z)

∣

∣l(y, ai)− J∗(y)
∣

∣νn,in(z)(dy)

≤ max
i∈{1,...,n}

∫

sup
y∈Sn,i

{

|l(y, ai)− l(zi, ai)|+ |J∗(zi)− J∗(y)|
}

νn,i(dy)

≤ max
i∈{1,...,n}

∫

sup
y∈Sn,in

{

KldZ(y, zi)+ ‖J∗‖LipdZ(zi, y)
}

νn,i(dy)

≤ (Kl+ ‖J∗‖Lip) max
i∈{1,...,n}

diam(Sn,i)

≤ (Kl+ ‖J∗‖Lip)2α(1/n)
1/d. (5.3)

For the expression ‖J∗ −u∗
n‖, by Lemma 2.2 we have

‖u∗
n− J∗‖ ≤

2

1−β
inf
r∈Zkn

‖J∗ −Φr‖,
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where Φr(z) = Σkni=1ri1Sn,i
(z), r = (r1, . . . , rkn). Since ‖J∗‖Lip <∞, we have infr∈Zkn ‖J

∗ − Φr‖ ≤
‖J∗‖Lipmaxi∈{1,...,n} diam(Sn,i)≤‖J∗‖Lip2α(1/n)

1/d. Hence

‖u∗
n− J∗‖ ≤

2

1−β
‖J∗‖Lip2α(1/n)

1/d. (5.4)

Hence, by (5.3) and (5.4) we obtain

‖Ĵ∗
n− J∗‖ ≤

(

(

βK2 +
β+3

(1−β)2
)

‖J∗‖Lip +
K1

1−β

)

2α(1/n)1/d. (5.5)

Then, the result follows from (5.2) and (5.5), and the fact ‖J∗‖Lip ≤K1
1

1−βK2
. �

Remark 5.1. It is important to point out that if we replace Assumption 5.1-(h) with the uni-
form Lipschitz continuity of p( · |z, a) in z with respect to total variation distance, then Theorem 5.2
remains valid (with possibly different constants in front of the term (1/n)1/d). However, in this
case, we do not need the assumption K2β < 1.
Remark 5.2. For the average cost case, instead of assuming from the outset the uniform

Lipschitz continuity of c and p in the z variable, we first derive a rate of convergence result in terms
of the moduli of continuity of the functions ωc and ωp in the z variable of c(z, a) and p( · |z, a), where
the total variation distance is used to define ωp. Then, we state that explicit rate of convergence
result can be given if we impose some structural assumptions on ωc and ωp such as linearity, which
corresponds to the uniform Lipschitz continuity of c(z, a) and p( · |z, a) in z. However, this is not the
right approach for the discounted cost case as the modulus of continuity function ωp is calculated
using the Wasserstein distance of order 1. Indeed, to obtain a similar result as in the average cost
case, we must relate ωc and ωp to the modulus of continuity ωJ∗ of the value function J∗. This can
be established if ωc and ωp are affine functions (i.e., ωc(r) =K1r+L1 and ωp(r) =K2r+L2) using
the dual formulation of the Wasserstein distance of order 1 [39, Theorem 5.10]:

W1(µ,ν) = sup
(ψ,ϕ)∈Cb(Z)×Cb(Z)
ψ(x)−ϕ(y)≤dZ(x,y)

∣

∣

∣

∣

∫

Z

ψ(z)µ(dz)−

∫

Z

ϕ(z)ν(dz)

∣

∣

∣

∣

.

However, in this situation we can explicitly compute the convergence rate only if L1 =L2 = 0 which
is the uniform Lipschitz continuity case.

5.2. Average Cost. In this section, we suppose that Assumptions 2.2 and 5.1-(j) hold. We
define the modulus of continuity functions in the z variable of c(z, a) and p( · |z, a) as follows

ωc(r) := sup
a∈A

sup
z,y∈Z:dZ(z,y)≤r

|c(z, a)− c(y, a)|

ωp(r) := sup
a∈A

sup
z,y∈Z:dZ(z,y)≤r

‖p( · |z, a)− p( · |y, a)‖TV .

Since c(z, a) and p( · |z, a) are uniformly continuous, we have limr→0ωc(r) = 0 and limr→0ωp(r) = 0.
Note that when ωc and ωp are linear, c(z, a) and p( · |z, a) are uniformly Lipschitz in z. In the
remainder of this section, we first derive a rate of convergence result in terms of ωc and ωp. Then,
we explicitly compute the convergence rate for the Lipschitz case as a corollary of this result.
To obtain convergence rates for the average cost, we first prove a rate of convergence result for

Lemma 2.6. To this end, for each n≥ 1, let dn := 2α(1/n)1/d, where α is the coefficient in (5.1).

Lemma 5.1. For all t≥ 1, we have

sup
(y,f)∈Z×F

‖pt( · |y, f(y))− qtn( · |y, f(y))‖TV ≤ tωp(dn).
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Proof. Similar to the proof of Lemma 2.6, we use induction. For t = 1, recalling the proof of
Lemma 2.6, the claim holds by the following argument:

sup
(y,f)∈Z×F

‖p( · |y, f(y))− qn( · |y, f(y))‖TV ≤ sup
y∈Z

sup
(x,a)∈Sn,in(y)×A

‖p( · |y, a)− p( · |x,a)‖TV

≤ ωp(dn).

Now, assume the claim is true for t≥ 1. Again recalling the proof of Lemma 2.6, we have

sup
(y,f)∈Z×F

‖pt+1( · |y, f(y))− qt+1
n ( · |y, f(y))‖TV ≤ sup

(y,f)∈Z×F

∥

∥pt( · |y, f(y))− qtn( · |y, f(y))
∥

∥

TV

+ sup
(z,f)∈Z×F

∥

∥p( · |z, f(z))− qn( · |z, f(z))
∥

∥

TV

≤ tωp(dn)+ωp(dn) = (t+1)ωp(dn).

This completes the proof. �

The following theorem is the main result of this section. A somewhat similar result was obtained
in Hernández-Lerma [20, Section 3.5], where identical assumptions are imposed on both the original
model and the approximating model (see Hernández-Lerma [20, Assumption 5.1]). Moreover, the
approximating transition probability and one-stage cost function are assumed to converge to the
original transition probability and one-stage cost function with respect to some rate; that is, ρ(n) :=
sup(x,a)∈X×A

|bn(x,a)−c(x,a)| and π(n) := sup(x,a)∈X×A
‖qn( · |x,a)−p( · |x,a)‖TV with ρ(n), π(n)→ 0

as n→∞. Although our result may appear to be a special case of the results in Hernández-Lerma
[20, Section 3.5], there are several differences: (i) our assumptions are only imposed for the the
original model, and (ii) in Hernández-Lerma [20, Section 3.5] the approximating models do not have
finite state space while our approximating models are obtained by extending finite state models
to the original state space, thereby, allowing for constructive numerical method to calculate near
optimal policies.

Recall that the optimal policy f̃ ∗
n for M̃DPn is obtained by extending the optimal policy f ∗

n for
MDPn to Z, and R and κ are the constants in Theorem 2.5.

Theorem 5.3. For all t≥ 1, we have

|ρf̃∗n − ρf∗ | ≤ 4‖c‖Rκt+2ωc(dn)+ 2‖c‖tωp(dn).

Proof. The proof of Theorem 2.6 gives

|ρf̃∗n − ρf∗ | ≤ |ρf̃∗n − ρ̂n
f̃∗n
|+ |ρ̂n

f̃∗n
− ρ̂n

f̂∗n
|+ |ρ̂n

f̂∗n
− ρf∗ |.

Hence, to prove the theorem we obtain an upper bounds on the three terms in the sum. Consider
the first term (recall the proof of Lemma 2.7)

|ρf̃∗n − ρ̂n
f̃∗n
| ≤ sup

f∈F

|ρ̂nf − ρf |

≤ 2Rκt‖c‖+ ‖c‖ sup
(y,f)∈Z×F

‖qtn( · |y, f(y))− pt( · |y, f(y))‖TV

≤ 2Rκt‖c‖+ ‖c‖tωp(dn) (by Lemma 5.1). (5.6)

For the second term, the proof of Lemma 2.11 gives

|ρ̂n
f̃∗n

− ρ̂n
f̂∗n
| ≤ |ρ̂n

f̃∗n
− ρ̃n

f̃∗n
|+ |ρ̃n

f̃∗n
− ρ̂n

f̂∗n
|

≤ sup
f∈F

|ρ̂nf − ρ̃nf |+ | inf
f∈F

ρ̃nf − inf
f∈F

ρ̂nf |

≤ 2 sup
f∈F

|ρ̂nf − ρ̃nf |

≤ 2‖bn− c‖ (see the proof of Lemma 2.9)

≤ 2 sup
(z,a)∈Z×A

∫

|c(x,a)− c(z, a)|νn,in(z)(dx)

≤ 2ωc(dn). (5.7)
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For the last term, we have

|ρ̂n
f̂∗n

− ρf∗ |= | inf
f∈F

ρ̂nf − inf
f∈F

ρf | ≤ sup
f∈F

|ρ̂nf − ρf |

≤ 2Rκt‖c‖+ ‖c‖tωp(dn) (by (5.6)). (5.8)

Combining (5.6), (5.7), and (5.8) implies the result. �

To explicitly calculate a convergence rate, we need to impose some structural assumptions on ωc
and ωp. One such assumption is linearity, which corresponds to the uniform Lipschitz continuity of
c(z, a) and p( · |z, a) in z. This means that ωc(r) =K1r and ωp(r) =K2r, or equivalently, |c(z, a)−
c(y, a)| ≤K1dZ(z, y) and ‖p( · |z, a)− p( · |y, a)‖ ≤K2dZ(z, y) for all z, y ∈ Z and a ∈ Z. In this case,
by Theorem 5.3, for all t≥ 1 we have

|ρf̃∗n − ρf∗ | ≤ 4‖c‖Rκt+4K1α(1/n)
1/d+4‖c‖K2α(1/n)

1/dt. (5.9)

To obtain a proper rate of convergence result (i.e., an upper bound that only depends on n) the
dependence of the upper bound on t has to be written as a function of n. This can be done by
(approximately) minimizing the upper bound in (5.9) with respect to t for each n. Let us define
the constants I1 := 4‖c‖R, I2 := 4K1α, and I3 := 4‖c‖K2α. Then the upper bound in (5.9) becomes

I1κ
t+ I2(1/n)

1/d+ I3(1/n)
1/dt. (5.10)

For each n, it is straightforward to compute that

t′(n) := ln
(n1/d

I4

) 1

ln( 1
κ
)

is the zero of the derivative of the convex term in (5.10), where I4 :=
I3

I1 ln( 1
κ )
. Letting t= ⌈t′(n)⌉ in

(5.10), we obtain the following result.

Corollary 5.1. Suppose that c(z, a) and p( · |z, a) are uniformly Lipschitz continuous in z in
addition to the assumptions imposed at the beginning of this section. Then, we have

|ρf̃∗n − ρf∗ | ≤ (I1I4 + I2)(1/n)
1/d+

I3
ln(1/κ)

(1/n)1/d ln
(n1/d

I4

)

.

6. Order Optimality for Approximation Errors in the Rate of Quantization. The
following example demonstrates that the order of the performance losses in Theorem 5.2 and
Corollary 5.1 cannot be better than O(( 1

n
)
1
d ). More precisely, we exhibit a simple standard example

where we can lower bound the performance loss by L(1/n)1/d, for some positive constant L. A
similar result was obtained in Saldi et al. [33, Section IV] for the case of quantization of action
space, where the action space was a compact subset of Rm for some m≥ 1. Therefore, when both
state and action spaces are quantized, then the resulting construction is order optimal in the above
sense as the approximation error, in this case, is bounded by the sum of the approximation errors
in quantization of state space and quantization of action space.
In what follows h( · ) and h( · | · ) denote differential and conditional differential entropies, respec-

tively; see Cover and Thomas [12, Chapter 8].
Consider the additive-noise system:

zt+1 = F (zt, at)+ vt, t= 0,1,2, . . . ,

where zt, at, vt ∈ Rd. We assume that sup(z,a)∈Rd×Rd
‖F (z,a)‖

‖z‖+‖a‖
< 1/2. The noise process {vt} is a se-

quence of i.i.d. random vectors whose common distribution has density g supported on some
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compact subset V of Rd. We choose V such that Z = A can be taken to be compact subsets of
Rd. For simplicity suppose that the initial distribution µ has the same density g. It is assumed
that the differential entropy h(g) :=−

∫

Z
g(z) logg(z)dz is finite. Let the one stage cost function be

c(z, a) := ‖z − a‖. Clearly, the optimal stationary policy f ∗ is induced by the identity f ∗(z) = z,
having the optimal cost J(f ∗, µ) = 0 and V (f ∗, µ) = 0. Let f̂n be the piece-wise constant extension
of the optimal policy f ∗

n of the MDPn to the set Z. Fix n≥ 1 and define Dt :=Ef̂n
µ

[

c(zt, at)
]

for all

t. Then, since at = f̂n(zt) can take at most n values in A, by the Shannon lower bound (SLB) (see
Yamada et al. [44, p. 12]) we have for t≥ 1

logn≥R(Dt)≥ h(zt)+ θ(Dt)
= h(F (zt−1, at−1)+ vt−1)+ θ(Dt)
≥ h(F (zt−1, at−1)+ vt−1|zt−1, at−1)+ θ(Dt) (6.1)
= h(vt−1)+ θ(Dt), (6.2)

where θ(Dt) =−d+log

(

1
dVdΓ(d)

(

d
Dt

)d
)

, R(Dt) is the rate-distortion function of zt, Vd is the volume

of the unit sphere Sd = {z : ‖z‖ ≤ 1}, and Γ is the gamma function. Here, (6.1) follows from the fact
that conditioning reduces the entropy (see Cover and Thomas [12, Theorem 2.6.5, p. 29]) and (6.2)
follows from the independence of vt−1 and the pair (zt−1, at−1). Note that h(vt−1) = h(g) for all t.

Thus, Dt ≥ L(1/n)1/d, where L := d
2

(

2h(g)

dVdΓ(d)

)1/d
. Since we have obtained stage-wise error bounds,

these give |J(f ∗, µ)− J(f̂n, µ)| ≥
L

1−β
(1/n)1/d and |V (f ∗, µ)−V (f̂n, µ)| ≥L(1/n)1/d.

Remark 6.1. We note that if h(xt+1|xt, at) can be lower bounded by some constant k for
all t≥ 1, above analysis still holds by replacing h(g) with k. For instance, this is the case if the
transition probability p( · |x,a) admits a density which is bounded from above uniformly in (x,a).

7. Numerical Examples. In this section, we consider two examples, the additive noise model
and fisheries management problem, in order to illustrate our results numerically. Since computing
true costs of the policies obtained from the finite models is intractable, we only compute the value
functions of the finite models and illustrate their converge to the value function of the original
MDP as n→∞.
Before proceeding to the examples, we note that all results in this paper apply with straightfor-

ward modifications for the case of maximizing reward instead of minimizing cost.

7.1. Additive Noise System. In this example, the additive noise system is given by

xt+1 = F (xt, at)+ vt, t= 0,1,2, . . .

where xt, at, vt ∈ R and X = R. The noise process {vt} is a sequence of R-valued i.i.d. random
variables with common density g. Hence, the transition probability p( · |x,a) is given by

p(D|x,a) =

∫

D

g(v−F (x,a))m(dv) for all D ∈ B(R),

wherem is the Lebesgue measure. The one-stage cost function is c(x,a) = (x−a)2, the action space
is A= [−L,L] for some L> 0, and the cost function to be minimized is the discounted cost.
We assume that (i) g is a Gaussian probability density function with zero mean and variance σ2,

(ii) supa∈A
|F (x,a)|2 ≤ k1x

2 + k2 for some k1, k2 ∈ R+, (ii) β < 1/α for some α≥ k1, and (iv) F is

continuous. Hence, Assumption 3.1 holds for this model with w(x) = k+ x2 and M = 4
(

L2

k
+ x2

)

,
for some k ∈R+.
For the numerical results, we use the following parameters: F (x,a) = x+a, β = 0.3, L= 0.5, and

σ= 0.1.
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We selected a sequence
{

[−ln, ln]
}15

n=1
of nested closed intervals, where ln = 0.5 + 0.25n, to ap-

proximate R. Each interval is uniformly discretized using ⌈2k⌈n
3 ⌉ln⌉ grid points, where km = 5m

for m= 1, . . . ,5 and ⌈q⌉ denotes the smallest integer greater than or equal to q ∈R. Therefore, the
discretization is gradually refined. For each n, the finite state space is given by {xn,i}

kn
i=1 ∪ {∆n},

where {xn,i}
kn
i=1 are the representation points in the uniform quantization of the closed interval

[−ln, ln] and ∆n is a pseudo state. We also uniformly discretize the action space A = [−0.5,0.5]
by using 2k⌈n

3 ⌉ grid points. For each n, the finite state models are constructed as in Section 2
by replacing Z with [−ln, ln] and by setting νn( · ) =

1
2
mn( · )+

1
2
δ∆n( · ), where mn is the Lebesgue

measure normalized over [−ln, ln].
We use the value iteration algorithm to compute the value functions of the finite models. Figure 1

displays the graph of these value functions corresponding to the different values for the number of
grid points, when the initial state is x= 0.7. The figure illustrates that the value functions of the
finite models converge to the value function of the original model.
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Figure 1. Optimal costs of the finite models when the initial state is x= 0.7

7.2. Fisheries Management Problem. In this example we consider the following popula-
tion growth model, called a Ricker model, see Hernández-Lerma and Lasserre [21, Section 1.3]:

xt+1 = θ1at exp{−θ2at+ vt}, t= 0,1,2, . . . (7.1)

where θ1, θ2 ∈ R+, xt is the population size in season t, and at is the population to be left for
spawning for the next season, or in other words, xt−at is the amount of fish captured in the season
t. The one-stage ‘reward’ function is u(xt−at), where u is some utility function. In this model, the
goal is to maximize the average reward.
The state and action spaces are X = A= [κmin, κmax], for some κmin, κmax ∈ R+. Since the pop-

ulation left for spawning cannot be greater than the total population, for each x ∈ X, the set of
admissible actions is A(x) = [κmin, x] which is not consistent with our assumptions. However, we
can (equivalently) reformulate above problem so that the admissible actions A(x) will become A

for all x∈ X. In this case, instead of dynamics in equation (7.1) we have

xt+1 = θ1min(at, xt) exp{−θ2min(at, xt)+ vt}, t= 0,1,2, . . .

and A(x) = [κmin, κmax] for all x∈X. The one-stage reward function is u(xt− at)1{xt≥at}.
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Since X is already compact, it is sufficient to discretize [κmin, κmax]. The noise process {vt} is a
sequence of independent and identically distributed (i.i.d.) random variables which have common
density g supported on [0, λ]. Therefore, the transition probability p( · |x,a) is given by

p
(

D|x,a
)

=Pr

{

xt+1 ∈D

∣

∣

∣

∣

xt = x,at = a

}

=Pr

{

θ1min(a,x) exp{−θ2min(a,x)+ v} ∈D

}

=

∫

D

g

(

log(v)− log(θ1min(a,x))+ θ2min(a,x)

)

1

v
m(dv),

for all D ∈B(R). To make the model consistent, we must have θ1y exp{−θ2y+ v} ∈ [κmin, κmax] for
all (y, v)∈ [κmin, κmax]× [0, λ].
We assume that (i) g > ǫ for some ǫ ∈ R+ on [0, λ], (ii) g is continuous on [0, λ], and (iii) the

utility function u is continuous. Define h(v,x, a) := g
(

log(v) − log(θ1min(a,x)) + θ2min(a,x)
)

1
v
,

and for each (x,a) ∈ X×A, let Sx,a denote the support of h( · , x, a). Then, Assumption 2.2 holds
for this model with θ(x,a) = infv∈Sa h(v,x, a) (provided that it is measurable), ζ =mκ (Lebesgue
measure restricted on [κmin, κmax]), and for some λ∈ (0,1).
For the numerical results, we use the following values of the parameters:

θ1 =1.1, θ2 = 0.1, κmax = 7, κmin = 0.005, λ= 0.5.

We assume that the noise process is distributed uniformly over [0,0.5]. Hence, g ≡ 1 on [0,0.5]
and otherwise zero. The utility function u is taken to be the shifted isoelastic utility function (see
Dufour and Prieto-Rumeau [13, Section 4.1])

u(z) = 3
(

(z+0.5)1/3 − (0.5)1/3
)

.

We selected 25 different values for the number n of grid points to discretize the state space:
n = 10,20,30, . . . ,250. The grid points are chosen uniformly over the interval [κmin, κmax]. We
also uniformly discretize the action space A by using the following number of grid points: 5n =
50,100,150, . . . ,1250.
We use the relative value iteration algorithm (see Bertsekas [5, Chapter 4.3.1]) to compute the

value functions of the finite models. For each n, the finite state models are constructed as in
Section 2 by replacing Z with [κmin, κmax] and by setting νn( · ) =mκ( · ).
Figure 2 shows the graph of the value functions of the finite models corresponding to the different

values of n (number of grid points), when the initial state is x= 2. It can be seen that the value
functions converge (to the value function of the original model).

8. Conclusion. The approximation of a discrete time MDP by finite-state MDPs was con-
sidered for discounted and average costs for both compact and non-compact state spaces. Under
usual conditions imposed for studying Markov decision processes, it was shown that if one uses a
sufficiently large number of grid points to discretize the state space, then the resulting finite-state
MDP yields a near optimal policy. Under the Lipschitz continuity of the transition probability and
the one-stage cost function, explicit bounds were derived on the performance loss due to discretiza-
tion in terms of the number of grid points for the compact state case. These results were then
illustrated numerically by considering two different MDP models.
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Figure 2. Optimal rewards of the finite models when the initial state is x= 2
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