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Abstract

We consider a continuous-review inventory system in which the setup cost of each order is a
general function of the order quantity and the demand process is modeled as a Brownian motion
with a positive drift. Assuming the holding and shortage cost to be a convex function of the
inventory level, we obtain the optimal ordering policy that minimizes the long-run average cost
by a lower bound approach. To tackle some technical issues in the lower bound approach under
the quantity-dependent setup cost assumption, we establish a comparison theorem that enables
one to prove the global optimality of a policy by examining a tractable subset of admissible
policies. Since the smooth pasting technique does not apply to our Brownian inventory model,
we also propose a selection procedure for computing the optimal policy parameters when the
setup cost is a step function.

1 Introduction

Classical inventory models usually assume a setup cost when an order is placed or a production
run is started to replenish the inventory. It is well known that an ordering policy of the (s, .S) type
is optimal for the backlogging inventory problem when the setup cost is constant for any order or
production quantity; see [Scarf (1960)), Iglehart| (1963)), and [Veinott| (1966). Arising from various
activities, order setup costs are more complex in practical inventory systems and often depend
on order quantities. In this paper, we take quantity-dependent setup costs into consideration and
investigate the optimal ordering policy that minimizes the long-run average cost.

Setup costs may grow as order quantities increase. For example, if an order is shipped to the
buyer by multiple vehicles, a shipping fee may be charged for each of them. If a vehicle’s capacity
is @ and the shipping fee is F', the total shipping cost is a nondecreasing step function of order
quantity &, given by

K() =F- Eﬂ (1.1)

The study of stochastic inventory models with such a setup cost can be traced back to |[Lippman
(1969), where the ordering cost is assumed to be a nondecreasing, subadditive function of the
order quantity. Lippman considered a periodic-review model and proved the existence of optimal
ordering policies for both the finite-horizon problem and the discounted, infinite-horizon problem.
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It is pointed out that at the beginning of each period, it is optimal to replenish the inventory
when it drops below a certain level and not to order when it is above another level. The optimal
ordering decisions, however, are not specified for inventory falling in other regions. With the setup
cost in , Iwaniec| (1979) identified a set of conditions under which a full-batch-ordering policy
is optimal. |Alp et al| (2014) allowed orders with partial batches in their policies and partially
characterized the optimal ordering policy that minimizes the long-run average cost. |Chao and
Zipkin (2008)) considered a simple quantity-dependent setup cost

K(ﬁ) =F- 1(R,oo)(€)7 (1'2)

where 14 denotes the indicator function of A C R. This formulation describes the administra-
tive cost under a supply contract with a capacity constraint: No extra cost is incurred if the
order quantity does not exceed the contract volume R; otherwise, the buyer is required to pay
an administrative fee . The authors partially characterized the optimal ordering policy for the
periodic-review model and developed a heuristic policy. |Caliskan-Demirag et al. (2012)) investi-
gated several simple forms of nondecreasing, piecewise constant setup costs, including both
and . They also provided partial characterization for the optimal ordering policies.

As opposed to the increasing fee structure, setup costs may also decrease for large orders. To
achieve economies of scale in production and distribution, suppliers in e-commerce often provide
shipping discounts or free shipping for large orders. Such promotions are useful in generating
additional sales. As pointed out by |Lewis et al.| (2006), the shipping policies that provide incentives
for large orders may bring more profits to suppliers than standard increasing shipping fees and free
shipping promotions. Zhou et al.| (2009) analyzed a periodic-review inventory model with a free
shipping option from a buyer’s perspective. The setup cost in their paper is

K(&) = F - 1o,r)(&), (1.3)

i.e., the supplier imposes a shipping fee F' when the order quantity is less than R, but waives this
charge if the order quantity exceeds R. They found the optimal ordering policy for the single-period
problem and proposed a heuristic policy for the multiple-period model.

In practical inventory systems, order setup costs may arise from multiple activities in admin-
istration and transportation. The costs incurred by some activities may increase with the order
quantity while others may decrease. As a result, the total setup cost of an order may not be mono-
tone with respect to the order quantity. The setup cost function in this paper takes a very general
form, where K : R; — R is assumed to satisfy the following conditions:

(S1) K is nonnegative with K(0) = 0;

(S2) K is bounded;

(S3) K has a right limit at zero, and if K(0+) = 0, K has a finite right derivative at zero;
(54)

K is lower semicontinuous, i.e.,

K(€) < liminf K (¢) for € > 0.
€€

Both the setup cost in ([1.2) and that in (1.3) satisfy (S1)—(S4). As a technical requirement,
condition (S4)) ensures that the optimal average cost is attainable. The practical interpretation of

this condition is as follows: If the setup cost function has a jump at &, condition 1’ implies that



the buyer is allowed to pay the lower fee of K (f —) and K (§+), which essentially takes account of
the possibility that the buyer may adjust the order by a small quantity so as to pay a less setup fee.
Conditions f are similar to the assumptions in |Perera et al.| (2015), where the optimality of
(s,.5) policies is proved for economic order quantity (EOQ) models under a general cost structure.

Besides the setup cost, each order incurs a proportional cost with rate k& > 0. To place an order
of quantity & > 0, the manager is required to pay an ordering cost of

C(&) = K(&) + k¢. (1.4)

We do not allow multiple simultaneous orders, i.e., the ordering cost must follow as long as
the total order quantity at an ordering time is equal to £. In , it would be more appropriate
to interpret K(§) as the non-proportional part of the ordering cost, instead of the fized cost in
the usual sense. Accordingly, k€ represents the proportional part, and k should be understood
as the increasing rate rather than the unit price of inventory. By decomposing the ordering cost
into proportional and non-proportional parts, this formulation allows for unbounded setup cost
functions. For example, although the setup cost in does not satisfy , we may decompose

it into Fe ¢ ¢
Ko - r([5]-£)

where the first and second terms are proportional and non-proportional terms, respectively. Since
the non-proportional term satisfies 7, we may take it as the non-proportional part of the
ordering cost and (k + F/Q){ as the proportional part. Thanks to the general form of the non-
proportional cost, the ordering cost function given by includes most ordering cost structures
in the literature, such as ordering costs with incremental or all-unit quantity discounts; see |Porteus
(1971} 11972) and |Altintas et al. (2008)). For the sake of convenience, we still refer to the non-
proportional part of the ordering cost as the setup cost.

Stochastic inventory models with a general setup cost function are analytically challenging.
Since the ordering cost function may be neither convex nor concave, it is difficult to identify the
cost structures that can be preserved through dynamic programming. As we mentioned, the optimal
ordering policy for the periodic-review model has not been fully characterized, even if the setup
cost function takes the simplest form as in or . The partial characterization also suggests
that the optimal periodic-review policy would be complicated.

In this paper, we assume that the inventory is constantly monitored and an order can be
placed at any time. To the best of our knowledge, this is the first attempt to explore optimal
ordering policies for continuous-review inventory systems with quantity-dependent setup costs. In
the literature on periodic-review inventory models, it is a common practice to approximate customer
demand within each period by a normally distributed random variable; see, e.g., Chapter 1 in
Porteus| (2002) and Chapter 6 in |Zipkin (2000). Brownian motion is thus a reasonable model
for demand processes in continuous-time inventory systems; see, e.g., Bather| (1966]) and |Gallego
(1990)). With a Brownian demand process, the optimal ordering policy can be obtained by solving
a Brownian control problem, which turns out to be more tractable than solving a dynamic program
when the setup cost is quantity-dependent. This is because with a continuous demand process,
the manager is able to place an order at any inventory level as he wishes. Since future demands
are independent of the history, finding the optimal ordering policy is reduced to finding constant
reorder and order-up-to levels that jointly minimize the long-run average cost. In periodic-review



models, by contrast, the manager is allowed to place an order only at the beginning of a period. As
the inventory level varies from period to period, the optimal order decision at each period depends
on both the current inventory level and the prediction of the future inventory level. The resulting
dynamic program is difficult to solve when the setup cost function takes a general form; see |Chao
and Zipkin (2008) and |Caliskan-Demirag et al.| (2012) for more discussion.

In our model, inventory continuously incurs a holding and shortage cost that is a convex function
of the inventory level. With the aforementioned assumptions, we prove that an (s, S) policy can
minimize the long-run average cost, and that (s*, S*), the optimal reorder and order-up-to levels,
can be obtained by solving a nonlinear optimization problem. When the setup cost function satisfies
K(0+) = 0, we prove that s* = S* < 0 holds under certain conditions, in which case the optimal
ordering policy becomes a base stock policy that maintains inventory above a fixed shortage level.

Brownian inventory models were first introduced by Bather| (1966]). In his pioneering work,
Bather studied the impulse control of Brownian motion that allows upward adjustments. Assuming
a constant setup cost and a convex holding and shortage cost, he obtained the (s, S) policy that
minimizes the long-run average cost. Bather’s results have been extended to more general settings
by a number of studies under the constant setup cost assumption. Among them, the (s,.S) policy
that minimizes the discounted cost was obtained by |Sulem| (1986)) with a piecewise linear holding
and shortage cost, and by Benkherouf (2007) with a convex holding and shortage cost. Bar-Ilan
and Sulem! (1995]) obtained the optimal (s, .S) policy for a Brownian inventory model that allows for
constant lead times, and |Muthuraman et al. (2015) extended their results to a Brownian model with
stochastic lead times. |Bensoussan et al.| (2005) and Benkherouf and Bensoussan (2009) studied a
stochastic inventory model where the demand is a mixture of a Brownian motion and a compound
Poisson process; the optimal policy for this model is of the (s, S) type again. Using the fluctuation
theory of Lévy processes, [Yamazaki (2013) generalized their results to spectrally positive Lévy
demand processes. In the above papers, the optimal ordering policies are obtained by solving a
set of quasi-variational inequalities (QVIs) deduced from the Bellman equation. For computing
the optimal parameters, one needs to impose additional smoothness conditions at the reorder and
order-up-to levels. This technique, widely known as smooth pasting, is essential to solve a Brownian
control problem by the QVI approach. See Dixit| (1993) for a comprehensive account of smooth
pasting and its applications.

Harrison et al.| (1983)) studied the impulse control of Brownian motion allowing both upward and
downward adjustments, for which a control band policy is proved optimal under the discounted cost
criterion. In that paper, the authors adopted a two-step procedure which has become a widely used
approach to solving Brownian control problems: In the first step, one establishes a lower bound for
the cost incurred by an arbitrary admissible policy; such a result is often referred to as a verification
theorem. In the second step, one searches for an admissible policy to achieve this lower bound; the
obtained policy, if any, must be optimal. The technique of smooth pasting is also a standard
component of the lower bound approach. By imposing additional smoothness conditions at the
boundary of a control policy, one may obtain the optimal control parameters through solving a
free boundary problem. Following this approach, Ormeci et al.| (2008) obtained the optimal control
band policy under the long-run average cost criterion. Both Harrison et al. (1983) and Ormeci
et al.| (2008) assumed a constant setup cost and a piecewise linear holding and shortage cost. Their
results were extended by Dai and Yao (2013ayb)), who allowed for a convex holding and shortage
cost and obtained the optimal control band policies under both the average and discounted cost



criteria. Using the lower bound approach, Harrison and Taksar| (1983) and [Taksar| (1985) studied
the two-sided instantaneous control of Brownian motion, where double barrier policies are proved
optimal under different cost criteria. Baurdoux and Yamazaki (2015) extended the optimality of
double barrier policies to spectrally positive Lévy demand processes. The lower bound approach
was also adopted by (Wu and Chao| (2014)), who studied optimal production policies for a Brownian
inventory system with finite production capacity, and by Yao et al| (2015), who studied optimal
ordering policies with a concave ordering cost. The optimal policies in these two papers are of the
(s,5) type.

We follow the lower bound approach in this paper, while new issues arise from our Brown-
ian model. We establish a verification theorem in Proposition [2| It states that if there exists a
continuously differentiable function f and a positive number v such that they jointly satisfy some
differential inequalities, the long-run average cost under any admissible policy must be at least v.
We derive this lower bound using It6’s formula, as in the previous studies by Harrison et al. (1983)),
Ormeci et al.| (2008), and Dai and Yao (2013ayb)). The Brownian model in those papers allows both
upward and downward adjustments, so a control band policy is expected to be optimal. Under such
a policy, the inventory level is confined within a finite interval and the associated relative value
function is Lipschitz continuous. This fact allows them to assume f to be Lipschitz continuous in
the verification theorems. With this assumption, one can prove the lower bound by relying solely
on It6’s formula. In our model, however, only upward adjustments are allowed. The optimal policy
is expected to be an (s, .S) policy whose relative value function is not Lipschitz continuous. Without
the Lipschitz assumption, it is difficult to prove the verification theorem in a direct manner. This
problem was also encountered by Wu and Chao (2014) and Yao et al.| (2015)). In their papers, the
lower bound results are established for a subset, rather than all of admissible policies; accordingly,
the proposed (s, S) policies are proved optimal within the same subset of policies.

We prove a comparison theorem to tackle this issue. Theorem [2| in this paper states that for
any admissible policy, we can always find an admissible policy that has a finite order-up-to bound
and whose long-run average cost is either less than or arbitrarily close to the average cost incurred
by the given policy. In other words, if an ordering policy can be proved optimal within the set of
policies having order-up-to bounds, it must be optimal among all admissible policies. This result
allows us to prove the verification theorem by examining an arbitrary admissible policy that is
subject to a finite order-up-to bound. With an order-up-to bound, we no longer require f to be
Lipschitz continuous for establishing the verification theorem by It6’s formula.

For an (s, S) policy, the associated relative value function and the resulting long-run average cost
jointly satisfy a second-order ordinary differential equation along with some boundary conditions;
see Proposition [3|for the solution to this equation. We use this relationship to compute the optimal
reorder and order-up-to levels. In the literature, the optimal (s, S) policies for Brownian models
with a constant setup cost are obtained by imposing smooth pasting conditions on the ordinary
differential equations; see Bather| (1966), Sulem| (1986), Bar-Ilan and Sulem| (1995), and [Wu and
Chao| (2014)). Unfortunately, our Brownian model does not preserve this property because the
general setup cost function has imposed a quantity constraint on each setup cost value. With
these constraints, the smooth pasting conditions may no longer hold at the optimal reorder and
order-up-to levels. Without definite boundary conditions, we can neither define a free boundary
problem nor solve the QVI problem for the optimal (s,.S) policy. To obtain the optimal ordering
policy, we need to minimize the long-run average cost by solving a nonlinear optimization problem.



When the setup cost is a step function, we develop a policy selection algorithm for computing the
optimal policy parameters.

The contribution of this paper is twofold. First, by assuming a Brownian demand process,
we obtain the optimal ordering policy for inventory systems with quantity-dependent setup costs,
filling a long-standing research gap. The optimality of (s,.S) policies is extended to a significantly
more general cost structure. Although the optimal policy is obtained using a continuous-review
model, it will shed light on periodic-review models, presumably serving as a simple and near-
optimal solution. Second, the comparison theorem and the policy selection algorithm complement
the well-established lower bound approach to solving Brownian control problems. Theorem [2|in this
paper enables one to prove the optimality of a policy by examining a tractable subset, instead of all
admissible policies. The constructive proof of this theorem can be extended to similar comparison
results with minor modification. Using modified comparison theorems, we expect that both the
production policy proposed by Wu and Chao| (2014) and the ordering policy proposed by [Yao et al.
(2015) will be proved globally optimal. Besides inventory control, our approach may also be used
for solving Brownian control problems arising from financial management (see, e.g., Constantinides
1976/ and [Paulsen [2008)), production systems (Wein| /1992, Veatch and Wein!/ 1996, and |Ata et al.
2005)), and queueing control (Ata/ 2006 and [Rubino and Atal2009)).

The rest of this paper is organized as follows. We introduce the Brownian inventory model in
and present the main results in §3] A lower bound is derived in for the long-run average
cost under an arbitrary admissible policy. The relative value function and the average cost under
an (s,5) policy are analyzed in Using these results, we prove the optimality of the proposed
policy in Section [7] is dedicated to the proof of Theorem [2] which enables us to investigate an
optimal policy within a subset of admissible policies. We introduce a policy selection algorithm in
for obtaining the optimal ordering policy when the setup cost is a step function. The paper is
concluded in and we leave the proofs of technical lemmas to the appendix.

Let us close this section with frequently used notation. Let ¢ be a real-valued function defined
on R. We use Ap(t) to denote its increment at t, i.e., Ap(t) = p(t+) — @(t—), if the one-sided
limits exist. We use ¢(t) and ¢”(t) to denote its first and second derivatives at t, respectively.

2 Brownian inventory model

Consider a continuous-time inventory system whose inventory level at time ¢ > 0 is denoted by
Z(t). We allow Z(t) to be less than zero, in which case |Z(t)| is interpreted as the back order or
shortage level. We assume that all unsatisfied demands will be back-ordered and that the lead time
of each order is zero. Let D(t) and Y (¢) be the cumulative demand quantity and the cumulative
order quantity during [0, ¢], respectively. The inventory level at time ¢ > 0 is given by

Z(t) =z — D(t) + Y (t),

where z is a real number. We refer to Z = {Z(t) : t > 0} as the inventory process, and put
Z(0—) = z which is interpreted as the initial inventory level. We assume that the cumulative
demand process D = {D(t) : t > 0} is a Brownian motion that starts from D(0) = 0 and has drift
u > 0 and variance o2 > 0. In other words, D has the representation

D(t) = :U’t - UB(t)a



where B = {B(t) : t > 0} is a standard Brownian motion defined on a filtered probability space
(Q, F,F,P) with filtration F = {F(¢) : ¢ > 0}. Then, the inventory level at time ¢ can be written as

Z(t) = X(t) + Y (t), (2.1)

where

X(t) =z — pt + o B(t). (2.2)

We refer to X = {X(¢) : t > 0} as the uncontrolled inventory process. The system manager
replenishes the inventory according to a non-anticipating ordering policy, which is specified by the
cumulative order process Y = {Y'(t) : ¢ > 0}. More specifically, an ordering policy is said to be
admissible if Y satisfies the following three conditions. First, for each sample path w € Q, Y (w, -)
is a nondecreasing function that is right-continuous on [0, c0) and has left limits on (0, 00). Second,
Y (t) > 0 for all t > 0. Third, Y is adapted to F, i.e., Y (¢) is F(t)-measurable for all ¢ > 0. We use
U to denote the set of all admissible ordering policies, or equivalently, the set of all cumulative order
processes that satisfy the above three conditions. With the convention Y (0—) = 0, an admissible
policy Y is said to increase at time ¢t > 0 if Y (u) — Y (t—) > 0 for all u > ¢. We call ¢t an ordering
time if Y increases at ¢. Let Z(t) be the cardinality of the set {u € [0,¢] : Y increases at u}, which
is interpreted as the number of orders placed by time t. Moreover, t is said to be a jump time if
AY (t) > 0. Let
Yet)=Y(t)— > AY(u). (2.3)
0<u<t
Then, Y = {Y“(t) : t > 0} is the continuous part of Y.

Each order incurs an ordering cost given by , with k£ > 0 and K satisfying 7. If
K(0+) > 0, we only need to consider the policies that place finitely many orders over a finite time
interval, i.e., Z(t) < oo almost surely for ¢ > 0, because otherwise, either the cumulative ordering
cost or the cumulative holding and shortage cost will be infinite by time ¢. In other words, when
K(0+) > 0, we consider Y that is a piecewise constant function on almost all sample paths, which
implies that Y¢(¢) = 0 for all ¢t > 0 almost surely. Therefore, the cumulative ordering cost during
[0,¢] is given by

Cy(t) = ) K(AY(u))+ kY (t). (2.4)
0<u<t
When K(0+4) = 0, the manager may also exert inventory control through the continuous part of
Y, which may no longer be a zero process. To analyze the setup cost incurred by Y, let us put

(= lirg%nf K§§> (2.5)

By (S3), ¢ is the right derivative of K at zero if K(04) = 0. We would thus interpret ¢ as the unit
setup cost when the order quantity is infinitesimal. Besides a proportional cost of k, every unit
increment of Y incurs a setup cost of £. Hence, the cumulative ordering cost during [0, ¢] is

Cy(t)= > K(AY(u))+ kY (t) + Y°(t). (2.6)
0<u<t

Note that ¢ = oo if K(04) > 0. Following the convention that 0 - oo = 0, we may take (2.4) as a



special case of the cumulative ordering cost given by .

In addition to the ordering cost, the system incurs a holding and shortage cost that is charged
at rate h(z) when the inventory level is z. More specifically, h(z) is the inventory holding cost per
unit of time for z > 0, and is the shortage cost of back orders per unit of time for z < 0. The
cumulative holding and shortage cost by time ¢ is thus given by

'Hy(t)—/o h(Z(u)) du, (2.7)

which depends on the ordering policy through the inventory process. We assume that h satisfies
the following conditions:

(H1) h(0) =

(H2) h is a convex function;

(H3) h is continuously differentiable except at z = 0;

(H4) h'(z) > 0 for 2 > 0 and h/(2) <0 for z < 0;

(H5) h is polynomially bounded, i.e., there exists a positive integer a and two positive numbers by

and by such that h(z) < by + b1|z|a for all z € R.

In particular, with 51, 82,8 > 0, both the piecewise linear cost

h(z):{ﬁlz for >0

—Boz for z <0

and the quadratic cost h(z) = 322 satisfy (H1)—(H5).
Given the initial inventory level x and the ordering policy Y € U, the long-run average cost is

defined as
AC(z,Y) = hmsup IE [Cy (t) + Hy (1)],

t—o00
where E,[-] is the expectation conditioning on the initial inventory level Z(0—) = z. By . .,
the long-run average cost is given by
1
AC(z,Y) = limsup - E, [/ WZw)dut Y K )+ kY () + EYC(t)} .28
too 1 0<u<t

When K (0+) > 0, we only need to consider ordering policies having piecewise constant sample
paths. Such a policy can be specified by a sequence of pairs {(7;,&;) : j =0,1,...} where 7; is the
jth ordering time and &; is the quantity of the jth order. By convention, we set 79 = 0 and let &
be the quantity of the order placed at time zero ({n = 0 if no order is placed). With this sequence,
the ordering policy Y can be specified by Y (¢) = Z‘ﬂt &;, where J(t) = max{j > 0:7; <t}. On
the other hand, if the ordering policy Y is given, we can obtain each ordering time by

7y =inf{t > 71 :Y(t) >Y(t—)} forj=1,2,...
and each order quantity by

fj :Y(Tj) —Y(Tj—) fOI"j :0,1,....



Therefore, finding an optimal ordering policy when K (0+) > 0 is equivalent to specifying a sequence
of optimal ordering times and order quantities {(7;,&;) : j = 0,1,...}, which turns out to be an
impulse control problem for the Brownian model. For the ordering policy Y to be adapted to F,
we require each 7; to be an F-stopping time and &; to be F(7;)-measurable.

When the setup cost has K(0+) = 0, the manager may adjust the inventory level using the
continuous part of Y without incurring infinite costs. If Y¢ is not a zero process, we will have
Z(t) = oo for some ¢t > 0 with a positive probability. It may happen that the optimal ordering
policy has continuous sample paths except for a possible jump at time zero. In this case, the
ordering problem becomes an instantaneous control problem for the Brownian model.

3 Main results

The main results of this paper are presented in this section. Theorem [I| states that with a setup
cost that satisfies f and a holding and shortage cost that satisfies 7, the optimal
ordering policy for the Brownian inventory model is an (s, S) policy with s < S. In addition, the
optimal reorder and order-up-to levels (s*,S*) satisfy s* < S* if K(0+) > 0, and satisfy s* < S*
if K(0+) = 0. As a special case, the optimal ordering policy becomes a base stock policy when
s* = 5*. We also provide a comparison result in Theorem [2| which is a technical tool for proving
the first theorem by the lower bound approach.

Under an (s,S) policy, as long as the inventory level drops below s, the manager places an
order that replenishes the inventory to level S immediately. We use U (s, S) to denote this policy.
Clearly, U(s,S) € U for s < S. An (s,S) policy with s < S can be specified by the sequence of
pairs {(75,&;) : 7 =0,1,...} as follows. With 79 = 0 and

S—z ifx<s,
& = '
0 if x> s,

the jth order is placed at time 7; = inf{t > 7;_1 : Z(t—) < s} with a constant quantity {; = S — s.
If the reorder and order-up-to levels are equal, the (s,.S) policy becomes a base stock policy.
Under the base stock policy, if the initial inventory level x is below the base stock level s, the
manager places an order of quantity s — x at time zero that replenishes the inventory to Z(0) = s;
otherwise, the manager does not order at time zero. After that, whenever the inventory level drops
below s, the manager brings it back to s immediately. Such a policy is well defined for our Brownian
model, and the inventory process under that has an analytic expression—see the lemma below.

Lemma 1. Let s be a real number and C[0, 00) the set of real-valued continuous functions on [0, 00).
Then for each ¢ € C[0,00), there exists a unique pair of functions (n,¢) € C[0,00) x C[0,00) such
that (i) n is nondecreasing with n(0) = (s — ¢(0))*; (ii) ¢(t) = ¢(t) +n(t) > s for t > 0; (iii) n
increases only when ((t) = s, i.e.,

/0 (¢t — ) dn(t) = o.

Specifically,

n(t) = sup (s —¢(u))™ fort>0.
0<u<t



This lemma is a modified version of Proposition 2.1 in Harrison| (2013). The proof is similar and
thus omitted. Under the base stock policy, the inventory process in our Brownian model becomes
a reflected Brownian motion with lower reflecting barrier at s. By Lemma [I| the cumulative order
quantity during [0, ] is

Y(t) = sup (s — X(u)*,
0<u<t
where X (u) is given by . Clearly, Y is admissible for each s € R. Because Y has continuous
sample paths, for each t > 0, there are infinite ordering times in [0, ¢] with a positive probability.

Before stating the main theorem, let us introduce a proposition that characterizes the optimal
policy of the (s,S) type. In particular, the long-run average cost under an (s,S) policy has an
analytic expression, which is given by below and will be proved in §5| (see Proposition .

Proposition 1. Assume that the setup cost K satisfies f and that the holding and shortage
cost h satisfies (H1)—(H5). Let

K _ S proo
ki + (5 S, SA / / hiu+y)e M dudy if s < S,
v(s, 8) = T e DT (3.1)
(k+€)u+)\/ h(u + s)e™ " du ifs =S,
0
where X\ = 2p1/0%. Then, there exists (s*,S*) € R? such that
v(s*,8) = inf{~(s,S) : s < S}. (3.2)

If K(0+) > 0, the minimizer (s*,5*) satisfies s* < z* < S*, where z* is the unique solution to
)\/ h(u + 2*)e” du = h(z*) (3.3)
0

and satisfies z* < 0; if K(0+) = 0, the minimizer satisfies either s* < z* < S* or s* = z* = S*.

Remark 3.1. The long-run average cost under the (s, S) policy is given by ~(s,S) in . When
s < S, the first expression in can be interpreted as follows. Since the quantity of each order is
S — s, the long-run average proportional and setup costs are ky and K (S —s)u/(S—s), respectively.
The inventory process under the (s, S) policy is regenerative. Within each cycle, the trajectory of
Z is identical to that of a Brownian motion starting from S with drift —p and variance o2, so a
cycle length has the same distribution as the first hitting time of s by X in (2.2)) with X(0) = S.

More specifically, assuming X (0) = z, let us put
T(y)
T(y) =inf{t >0: X(t) =y} and H,(y) = Egg[ / h(X(u))du] (3.4)
0

Then with X (0) = S, the length of a cycle can be represented by T(s) and the expected holding
and shortage cost during a cycle is Hg(s). The long-run average holding and shortage cost is thus
equal to Hg(s)/Eg[T'(s)] (see, e.g., Theorem VI.3.1 in /Asmussen 2003). By Theorem 5.32 in Serfozo
(2009)), Eg[T'(s)] = (S — s)/u. The formula of H,(y) can be found in §15.3 in |[Karlin and Taylor
(1981)), where

b S  roo
Hg(s) = . / / h(u +y)e M dudy.
s 0
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Hence, the third term on the right side is the long-run average holding and shortage cost. When
K(0+)=0in , by taking S — s — 0, the long-run average cost of the (s,.S) policy converges to

v(s,8) = (k+0)p+ )\/ h(u + s)e ™ du.
0

Since the (s,.S) policy turns out to be a base stock policy when s = S, the second expression in
(3.1)) is the long-run average cost under the base stock policy with base stock level s.

Remark 3.2. The pair (s*, S*) that satisfies (3.2]) specifies the reorder and order-up-to levels (which
may not be unique) for the optimal (s,.S) policy. When K (0+) = 0, the optimal (s, S) policy may
be a base stock policy whose base stock level z* is specified by . Since z* < 0, the inventory
under the optimal base stock policy is maintained above a fixed shortage level. Regulated by the
(slightly) negative base stock level, the inventory will fluctuate in a neighborhood of zero. By
and , the minimum long-run average cost is equal to

(2, 2*) = (k+ Op + h(=").

The optimal base stock level can be interpreted as follows. As discussed in the long-run average
ordering cost must be (k + ¢)p under any base stock policy. The optimal base stock policy should
thus minimize the average holding and shortage cost. As a reflected Brownian motion with a
negative drift, Z will reach a steady state as time goes by. Let Z(o0) be the steady-state inventory
level. If the base stock level is s, Z(co0) — s follows an exponential distribution with rate A\ = 2u/0?
(see, e.g., Proposition 6.6 in |Harrison 2013). The resulting long-run average holding and shortage
cost is given by

H(s) = /000 h(u+s) - Ae ™ du.

By setting the first derivative of H equal to zero, the optimal base stock level can be obtained by
solving (3.3), from which we also have H(z*) = h(z*). Therefore, (k + £)p + h(z*) is the long-run
average cost under the optimal base stock policy.

Remark 3.3. Although the optimal base stock policy incurs less holding and shortage cost than
any (s,S) policy with s < S, there may exist some s < S such that the (s,.5) policy with these
parameters incurs less setup cost, i.e., K(S—s)/(S—s) < £. When K(0+) = 0, the optimal reorder
and order-up-to levels may either satisfy s* < z* < S* or satisfy s* = 2* = S™.
Let
v =inf{AC(z,Y):xz € R, Y e U},

where AC(z,Y) is the long-run average cost given by (2.8)). Theorem [l| states the optimality of
(s,5) policies among all admissible policies. Under the average cost criterion, neither the optimal
ordering policy nor the minimum long-run average cost depend on the initial inventory level.

Theorem 1. Assume that the setup cost K satisfies — and that the holding and shortage
cost h satisfies (H1)—(H5)). Then, with (s*,S*) determined by (3.2)), U(s*, S*) is an optimal ordering
policy that minimizes the long-run average cost, i.e., v* = ~y(s*,S*) with v given by (3.1).

The second theorem is a critical result for proving Theorem I]by the lower bound approach, play-
ing an important role in establishing the verification theorem (see Proposition [2| in . It implies
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that an ordering policy that is optimal within the set of policies having order-up-to bounds must
be optimal in all admissible policies. Since policies subject to order-up-to bounds are analytically
tractable, it is more convenient to prove the optimality within these policies.

Form=1,2,..., let

U ={Y €U : Z(t) < m for all ordering time ¢},

which is the set of admissible policies with an order-up-to bound at m. Clearly, U(s,S) € Uy, if
s <5 < m. Because of the Brownian demand process, it is possible that Z(t) > m under a policy
in Uy, if t is not an ordering time.

Theorem 2. Assume that the setup cost K satisfies f and that the holding and shortage
cost h is nondecreasing on [0,00). Then, for any admissible policy Y, there exists a sequence of
admissible policies {Yy, € Uy, : m =1,2,...} such that

lim AC(z,Y,,) < AC(z,Y). (3.5)

m—r0o0

Let U = Uro—1 Unm be the set of admissible policies subject to order-up-to bounds. Theorem
implies that a policy that is optimal in &/ must be optimal in /. We will prove this theorem in
4 A lower bound for long-run average costs

In this section, we establish a lower bound for the long-run average cost under an arbitrary ad-
missible policy. This lower bound is specified by differential inequalities with respect to a relative
value function. In the lower bound approach, such a result is referred to as a verification theorem.

Proposition 2. Assume that K satisfies f and that h satisfies (H1)—(H5). Let f: R — R

be a continuously differentiable function with f' absolutely continuous. Assume that
f(z1) = f(z2) > =K (21 — 22) — k(21 — z2) for z1 > z9, (4.1)
and that there exists a positive integer d and two positive numbers ag and ay such that
I (2)] <ap forz<0 (4.2)

and
If'(2)| < ap + a1z for z > 0. (4.3)

Let T be the generator of X in (2.2)), i.e.,

1
Df(2) = 502" (2) - uf' ().
Assume that there exists a positive number v that satisfies

Lf(z)+h(z) >v forz € R such that f"(z) emists. (4.4)

Then, AC(z,Y) > v forz € R and Y € U, where AC(z,Y) is given by (2.8).

12



If we can find an ordering policy whose relative value function satisfies all the assumptions on f
and whose long-run average cost v satisfies , then by Proposition this policy must be optimal
in all admissible policies. To prove Proposition [2, we need two technical lemmas about inventory
processes subject to an order-up-to bound.

For a given positive integer m, let

Y™(t) = Os<111£t(m — X(u))t and Z™(t) = X(t) + Y™ (t). (4.5)

By Lemma |1}, Y™ = {Y"™(t) : t > 0} is the base stock policy with base stock level m, under which
Z™ = {Z™(t) : t > 0} is a reflected Brownian motion starting from Z™(0) = = V m with lower
reflecting barrier at m. The next lemma states that Z dominates all inventory processes that
have an order-up-to bound at m.

Lemma 2. For a positive integer m, let Z be the inventory process given by (2.1) with Y € Uy,
and Z™ the inventory process given by (4.5) with X defined by (2.2)). Then, Z(t) < Z™(t) on each
sample path for allt > 0.

The marginal distribution of Z™ can be specified as follows. Let
P (v,t) =P[Z™(t) > v| X(0) =2] fort>0andv>0.

Then by (3.63) in [Harrison| (2013)), ¢7*(v,t) =1 for 0 < v < m and

m v+ (xVvVm)—put “AMo—m —v—(rVvVm)+ put
yr (v,t):<I>< (at1/2) )+e A )<I>< (at1/2) ) forv>m,  (4.6)

where @ is the standard Gaussian cumulative distribution function. Because Z™ dominates all
inventory processes that have an order-up-to bound at m, we may use its marginal distribution to
establish boundedness results for policies in U.

Lemma 3. Let f: R — R be a differentiable function and Z the inventory process given by (12.1))
with Y € U. Assume that there exists a positive integer d and two positive numbers ag and a, such
that

| (2)] < ao+ai|z]® forz €R. (4.7)
Then,
E.[[f(Z()|] <oo fort >0, (4.8)
and .
E, [/0 f'(Z(u))? du} < oo fort>0. (4.9)
Moreover,
Jim LB [|F(Z(1) - 1po(Z(1)]] =0 (4.10)

The proof of Proposition [2| relies on Theorem [2] and Lemma [3] which enable us to establish a
lower bound for long-run average costs by examining policies in I/, instead of all admissible policies.

Proof of Proposition [ By Theorem [2] it suffices to consider Y € U, in which case (4.8)—(4.10)
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hold. By ([2.1)), (2.3), and It&’s formula (see, e.g., Lemma 3.1 in Dai and Yao|2013al),

F(2(1) = fla) + /0 Pf(Z(u)du+ o /0 F(Zw)d / Fz@) A + S Af(Z

0<u<t

for ¢ > 0. Then by ,
F(2(1) > f(z) + vt — / M(Z(u)) du+ o / F1(Z(w)) dB(u
/ F(Zw)dY(u)+ Y Af(Z (4.11)

0<u<t
Byand ), f'(z) > —(k +¢) for z € R, where ¢ = oo if K(0+) > 0. Then by (4.1) and
(@11,
F20) > )+t [ Wz o [ (2
—(k+0Y°(t)— > (K(AZ(u) +kAZ(u)).

0<u<t
Since AZ(t) = AY (t) and Y (t) = > g<,<; AY (u) + Y(t), the above inequality can be written as

f(Z(t))+/0 WZ(w)du+ Y K(AY () +kY (1) +£Y(t) 2 f(x )+Vt+0/ f'(Z(u)) dB(u).

0<u<t

(4.12)
By (4.9) and Theorem 3.2.1 in Oksendal| (2003)),

EI[/; f/(Z(u))dB(u)} ~0.

Since (4.8)) holds, we can take expectation on both sides of (4.12]), which yields

E. [f(Z(1))] + Ea [/0 Ddu+ 3 K )+ RY (1) + ()] > o) 4

0<u<t

Dividing both sides by t and letting ¢ go to infinity, we have

li inf %Ex [£(Z(®))] + lim inf %Ex [ /0 h(Z(u)) du + O<Zu:<tK(AY(u)) FRY (1) + éYc(t)} >

Then, it follows from (2.8) that
1
lim inf —E, [f(Z1))] + AC(z,Y) > v. (4.13)
—00
By (4.13] - AC(z,Y) > v holds when

lim inf E [f(Z(t)] <o. (4.14)

t—o00
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Otherwise, there exists ¢ > 0 such that
liminf L& [f(Z@)] > e (4.15)
t—oo ¢ v

We next show that AC(z,Y) = oo if inequality (4.15) holds. Hence, AC(x,Y’) > v must be true.
It follows from (4.10) and (4.15]) that

liminf SE, [F(Z(1) - 1(oo0)(Z(0)] > c.

and thus
ct

B [f(Z(t)) - 1(—oo0)(Z(t))] > D)

for ¢ sufficiently large. By (4.2)), there is some ¢ > 0 such that |f(2)| < ag|z| + ¢ for z < 0. Then,

E,[|Z(1)]) > 200

4.16
S (4.16)
for t sufficiently large. Since h is convex with 2/(z) > 0 for z > 0 and h'(z) < 0 for z < 0, we can
find ¢1,co > 0 such that h(z) > ¢1|z| — c2 for all z € R. Therefore,

. 1 ! . c1 !
lim sup ;Ex[ ; h(Z(u)) du} > lim sup —Ew[ ; |Z(u)|du} — ¢,

t—o00 t—o00 t

where, by (4.16)), the right side must be infinite. Hence, we must have AC(z,Y) = co. O

Remark 4.1. The boundedness conditions and are essential to prove Proposition [2| by
1t6’s formula. More specifically, condition ensures that holds, condition ensures
that holds as long as the long-run average cost is finite, and the lower bound result follows
from these two inequalities. Since conditions and do not hold for all admissible policies,
Theorem [2]is the critical tool for establishing a lower bound for all of them. In the Brownian model
studied by Harrison et al.| (1983), Ormeci et al.| (2008]), and Dai and Yao (2013a.b), inventory
is allowed to be adjusted both upwards and downwards. The optimal policy in that setting is a
control band policy under which the inventory level is confined within a finite interval. Because the
relative value function under a control band policy is Lipschitz continuous, these authors imposed
a Lipschitz assumption on f in their verification theorems. This assumption ensures that condition
holds for all admissible policies (which yields (4.13])) and that condition holds when
the long-run average cost is finite, so one can obtain a lower bound for all admissible policies
immediately. In our Brownian model, however, only upward adjustments are allowed and the
optimal policy is an (s,S) policy whose relative value function is not Lipschitz continuous (see
Remark in . Without the Lipschitz assumption, conditions and may no longer
hold for a general admissible policy, even if we assume the associated long-run average cost to be
finite. In this case, Wu and Chao| (2014)) and Yao et al.| (2015)) restricted their scope to the subset
of policies that satisfy and . Their lower bounds are established within this subset, and
consequently, their proposed policies are proved optimal within the same subset. Theorem [2]in the
present paper enables us to establish a lower bound for all admissible policies. We can thus prove
the proposed policy to be globally optimal.
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5 Relative value function and long-run average cost

In order to prove the proposed policy to be optimal, let us first analyze the long-run average cost
under an arbitrary (s,.S) policy. An important notion for the analysis is the relative value function
under the (s, S) policy. The relative value function and the associated long-run average cost jointly
satisfy an ordinary differential equation with some boundary conditions.

Proposition 3. Assume that h satisfies (H1)—(H5). For any pair (s,S) with s < S, there exists a

positive number v and a twice continuously differentiable function V : R — R that jointly satisfy
I'V(z)+h(z)=v forzeR (5.1)

with boundary conditions

V(S)—V(s)=—K(S—3s)—k(S—s) ifs<S, (5.2)
V'(s) = —(k +¢) if s =28, '
and
ILm e V'(2) =0 for a>0. (5.3)
Specifically, the solution to (5.1))—(5.3)) is v = (s, ), where v(s,S) is given by , and
V(z) = _Lzsv + )\/ / h(u +y)e M dudy, (5.4)
2 mJs 0

where V' is unique up to addition by a constant. Assume that K satisfies if s = S. Then,
AC(z,U(s,S)) =7(s,9), i.e., v(s,S) is the long-run average cost under the (s, S) policy.

Remark 5.1. For z > s, V(z) can be interpreted as the cost disadvantage of inventory level z relative
to the reorder level s. Under the (s,.S) policy, T'(s) defined by can be interpreted as the first
ordering time, given that Z(0—) = z, and H,(s) is the expected holding and shortage cost during
[0,T(s)]. Following the arguments in Remark we have

zZ— S8

E.[T(s)] = . and H,(s) = 2/Z /000 h(u+ y)e M dudy.

By (5.4), V(2) can be decomposed into
V(z) = Hy(s) — v -E,[T(s)].

In this equation, H,(s) is the cost disadvantage of a system starting from time zero with initial
level Z(0—) = z compared with a system starting from time 7'(s) with initial level Z(T'(s)—) = s,
while v - E,[T'(s)] represents the cost disadvantage of a system starting from time zero compared
with the delayed system starting from time 7'(s). As the difference between these two costs, V(z)
represents the relative cost disadvantage of inventory level z compared with the reorder level s.

Proof of Proposition[3. We obtain the explicit solution (v, V') to the boundary value problem (5.1])-
(5.3) as follows. If such a solution exists, write g(z) = V'(2) for z € R. By (5.1]) and (5.3), g satisfies
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the following linear first-order ordinary differential equation,

RUCIRY

9(z) = Ag(z) = =— .

with boundary condition
lim e”**g(z) =0 for a > 0.

Z—00

Since h is polynomially bounded, for each v € R, the above equation has a unique solution

)\ oo
o) = =242 [T hy+ e,
B Jo

which yields (5.4). By the boundary condition (5.2)), we obtain v = (s, S).
It remains to show AC(z,U(s,S)) =~(s,S). By (2.1), (2.3)), (5.1), and 1t6’s formula,

t t
V(Z(1) = V(Z(0)) + vt — /0 h(Z(w)) du + o /0 o(Z(u)) dB(u)
t
+ / 9(Z(u) Y (u) + > AV(Z(u)). (5.5)
0 o<u<t

Under the (s, S) policy with s < S, it follows from (5.2) that AV (Z(u)) = —K(S — s) — k(S — s)
whenever AZ(u) > 0 and u > 0. Since Y¢(¢t) = 0 for ¢t > 0, equation (5.5 turns out to be

V(2E) = V#O) +vi— [ WZ@)duto [ oZ)aB) - K(S = )36~ KY©) - Y0),
where 7 (t) is the cardinality of {u € (0,#] : AY (u) > 0}. By (&9),

E,[V(Z(t))] = E.[V(Z(0)) + kY (0)] + vt — E, [ /O t h(Z(w)) du + K(S — 8)J(t) + ky@)} . (5.6)
When s = S, by Lemma [T} both Y and Z have continuous sample paths. By and (5.5),

V(Z(t) = V(Z(0) + vt — /Ot h(Z(u)) du + o /Ot 9(Z(w)) dB(u) — (k + £)Y°(t).
Since Y¢(t) = Y () — Y(0), taking expectation on both sides, we obtain
E.[V(Z(1))] = Eo[V(Z(0)) + kY (0)] + vt — Eq [ /0 t h(Z(u)) du + kY (t) + EYC(t)] . (5.7)
Under the (s, S) policy with s < S, Y/(0) < |S —z| and 2 A S < Z(0) < 2 v S. It follows that
lim TE,[V(Z(0)) + kY (0)] = 0.

Because [V (Z(£))] < [V(Z(£)) - 1jg,00) (Z(1))] + max{|V(2)] : (s A0) < z < 0}, we obtain

lim LR, [V(Z(£))] = 0

t—oo t
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by (4.10). Then, it follows from (2.8 and (5.6)—(5.7)) that AC(x,U(s,S)) = v(s,5). O

Remark 5.2. When the setup cost is constant for any order quantity, the optimal reorder and
order-up-to levels can be obtained by adding a smooth pasting condition

V/(s*) = V'(S*) = —k, (5.8)

where, with slight abuse of notation, V' should be understood as the relative value function under
U(s*, S*); see Bather| (1966]), [Taksar (1985), and [Sulem| (1986 for the interpretation of the smooth
pasting condition. This condition, together with 7, defines a free boundary problem by
which (s*,.5*) can be uniquely determined. In our Brownian model, however, the general setup cost
function has imposed a quantity constraint on each setup cost value. With these constraints, the
smoothness condition may no longer hold at the free boundary. In other words, the smooth
pasting method cannot be used for our problem.

6 Optimal ordering policy

The optimality result is proved in this section. We first confine ordering policies to the (s, .S) type,
proving the existence of the optimal (s,.S) policy. Then, we show that the relative value function
associated with the optimal (s,.S) policy and the resulting long-run average cost jointly satisfy the
conditions in the verification theorem, thus proving Theorem [I| by the lower bound approach.

We establish a series of lemmas to prove Proposition [I| and Theorem In particular, the
following function gg : R — R, defined by

golz) = 2 /0 T by + 2)e M dy, (6.1)

is frequently used in the analysis. The first derivative of gq is
/ A > Y
ah(2) =5 (A | by e ay - b)), (6:2)
0

and gg is a solution to the linear first-order ordinary differential equation

12/

59°90(2) = pgo(2) + h(z) = 0. (6.3)

Using the derivative, we specify the monotone intervals of gy in the following lemma.

Lemma 4. Assume that h satisfies (H1)—(H5). Then,

lim go(z) = o0 (6.4)

z—+o0

and
96(2) <0 for z < z*,

/
0
go(2) =0 for z = 2", (6.5)
g90(z) >0 for z > z*,

where z* is uniquely determined by (3.3) and is less than zero.
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Remark 6.1. The relative value function V' given by (5.4]) satisfies V'(z) = —v/u + go(2), so by
(6.4), V" is unbounded. This implies that the relative value function for an (s,S) policy is not
Lipschitz continuous.

If each order quantity is fixed at £ > 0, the optimal reorder and order-up-to levels will be
determined by minimizing the holding and shortage cost. We use §(£) to denote the optimal
reorder level, and the corresponding order-up-to level is S(€) = 5(€) + &. If a base stock policy is
used, we use 5(0) to denote the optimal base stock level, in which case S(0) = 5(0). For & > 0, 5(¢)
is specified in Lemmas

Lemma 5. Assume that h satisfies (H1)—(H5). Then for each & > 0, there exists a unique
(5(£),5(£€)) € R? such that

90(5(6)) = go(S(€)) and  S(€) =3(¢) +&. (6.6)

This solution satisfies
5(6) <z < 8(€) for& >0, (6.7)
gliﬁm 5(§) = —o0 and éliﬁm S(¢) = 0. (6.8)

Moreover, both § and S are differentiable on (0,00), with
§€) <0 and S'(&) >0 foré>0. (6.9)

The value of 5(§) is determined by for £ > 0. Taking 5(0) = z*, we extend the domain of
5 to [0,00). For notational convenience, let us write

¥(s,&) =~(s,s+&) for s € Rand & >0, (6.10)

which is the long-run average cost with the reorder level fixed at s and the order-up-to level fixed

at s+ €. By (1) and (6.1),

K@p  p [

Ep+ go(y)dy if £ >0,

3(s,6) = 3 & Js (6.11)
(k+O)p+ pgo(s) if £ = 0.
For € > 0, let
0(&) = inf{7(s,€) : s € R}, (6.12)

which is the minimum long-run average cost when the quantity of each order is fixed at £ (a base
stock policy is used if £ = 0). The next lemma says that this minimum cost can be attained by
setting the reorder level at 5(§). In addition, 6 is lower semicontinuous.

Lemma 6. Assume that K satisfies , , and , and that h satisfies (H1))—(H5). Then,
0(&) =7(3(€),8) for&=0, (6.13)

where 5(0) = z* and §(&) is determined by for & > 0. Moreover, 0 is lower semicontinuous

19



on [0,00) and satisfies

lim 0(&) = co. (6.14)

£—00

Proof of Proposition[1. By (6.10) and (6.12),

inf{y(s,S) : s < S} =inf{H(§) : £ > 0}.

To prove (3.2), we need to show that there exists £* > 0 such that §(¢*) = inf{6(£) : £ > 0}.

By , if £* exists, there must be some M < oo such that £ < M. Because 6 is lower
semicontinuous on [0,00), by the extreme value theorem (see, e.g., Theorem B.2 in [Puterman
1994)), there exists £ € [0, M] such that 0(€) < () for all £ € [0, M]. Hence, £* = ¢ must be a
minimizer of §. Taking s* = §(¢*) and S* = S(£*), we deduce that holds.

Lemma [4] provides the properties of z*. If K(0+) > 0, we obtain #(0) = 4(z*,0) = oo because
£ = oco. This implies that £ > 0, and by , we obtain s* < z* < S*. If K(0+) = 0, it may
happen that £&* = 0, in which case s* = z* = S* since §(0) = z*. If K(0+) = 0 and &* > 0, we have
§* < z* < §* again by . O

It remains to prove the global optimality of U(s*, S*) using the verification theorem. Under
this policy, the long-run average cost in and the relative value function in satisfy all
conditions specified in Proposition [2| except for . The relative value function should thus be
modified to fulfill this condition. To this end, we establish the following lemma.

Lemma 7. Assume that K satisfies f and that h satisfies (H1)—(H5)). Then, there exists
s € (—o0,2*) such that

(s,6) > v(s*,8%) for s €R and £ >0, (6.15)
where oyt
s, = bt S [ oy v )y (6.16)

The modified relative value function is defined by

V*(z) = —’Y(S’;’S*)(z —3s)+ /z go(y VvV s)dy for z € R, (6.17)

with which we are ready to present the proof of Theorem

Proof of Theorem[1. Let us show that (’y(s*, S, V*) satisfies all conditions specified in Proposi-
tion 2, so U(s*,S*) is an optimal ordering policy. Clearly, V* is twice differentiable except at s.

V(s,€) =

Then by (6-15),

(k& + K(&) +V*(s+&) —V*(s)) +(s*,5%) for s€Rand & > 0.

m\‘:

Vi(s+6) = V7(s) = =K (&) — k¢,

which implies that V* satisfies . By . 90(2*) < go(2V s) < (go(s) V g0(0)) for z < 0, from
which condition (4.2)) follows. Condltlon ) holds because h is polynomially bounded. For z > s,

20



it follows from (6.3)) and (6.17) that

TV*(2) + h(z) = 30296(2) — pngo(2) + h(z) + ~(s*,8%) = ~(s%,5%).

For z < s, g((zVs) = 0. Since s < z*, it follows from (6.5]) that gj(z) < 0 and go(z) > go(s). Then,

IV*(2) + h(z) = —pgo(s) + h(z) +(s7,57) > %0296(2) — ngo(z) + h(z) +7(s%,57) = 7(s", 57).

Hence, ('y(s*,S*),V*) satisfies condition (|4.4)). O

7 Policies subject to order-up-to bounds

This section is devoted to the proof of Theorem [2] Let Y be an admissible policy. We first modify
this policy to construct a policy Y,, € U,,, where m is a fixed positive integer. Then, we prove that
{Y, € Up : m =1,2,...} has a subsequence that satisfies (3.5).

For each Y, we would construct a policy Y, € U,, that incurs less holding and shortage cost and
less proportional cost. As m goes large, the average setup cost under Y,, should be asymptotically
dominated by that under Y. Although by imposing an order-up-to bound, we can easily construct
a policy that maintains a lower inventory level, we must make additional adjustments to ensure
that the shortage level under Y,, will not be higher. Such a policy is constructed as follows.

Let Y,%, be the continuous part of Y,,,. Under Y,,, the inventory level at time ¢ is

Zm(t) = X(t) + Ym(1), (7.1)
where X (t) is given by and

Yolt) = Y5 () + > AV (u).

0<u<t

The continuous part of Y,, is constructed by

YE (1) = /0 1 (oo (Zm (1)) dY<(u), (7.2)

where Y ¢ is the continuous part of Y. On each sample path, Y,,, may have a jump either at a jump
time of Y or at a hitting time of zero by Z,,. Let J,, = {t > 0 : AY,,(¢£) > 0} be the set of jump
times of Yy, J = {t > 0: AY(¢t) > 0} the set of jump times of Y, and I,,, = {t > 0: Z,,,(t—) = 0}
the set of hitting times of zero by Z,,,. Then, J,,, C JUI,,. The size of each jump of Y, is specified

as follows:

(J1) AYu(t) = 0 for t € J, if Zn(t—) > m/2;

(J2) AY,,(t) =AY (¢t) for t € J, if Z,,,(t—) <m/2 and Z,,(t—) + AY (t) < m;

(J3) AY,,(t) =m — Zp(t—) for t € J, if Z,,(t—) < m/2 and Z,,(t—) + AY (t) > m;

(J4) AY,,(t) = (Z(t) Am)T for t € I,,, \ J, where Z is the inventory process under policy Y.

In other words, Y,, does not make jumps when the inventory level is above m/2. If the inven-
tory level is below m/2, Y, has simultaneous jumps with Y. Each simultaneous jump takes the
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Z=1,

Figure 1: A sample path of the inventory process under policy Y and the corresponding sample
path under the modified policy Y;,, with Z given by (2.1) and Z,, given by ([7.1)).

corresponding jump size of Y, as long as the inventory level will not exceed m after that jump;
otherwise, the simultaneous jump will replenish the inventory level to m. In addition, Y;, may have
jumps when the inventory level reaches zero. In this case, it will replenish the inventory level to
Z(t) A'm, if the inventory level of the system under policy Y satisfies Z(t) > 0; otherwise, Y;,, does
not make a jump.

The above policy construction procedure is illustrated in Figure [l We plot a sample path of
the inventory process under policy Y and the corresponding sample path under policy Y,,. We use
the blue curve for the inventory process under Y, the dashed red curve for that under Y;,, and the
black curve for their identical parts. The type of each jump is indicated beside the jump point. In
addition to these jumps, we assume that Y¢ increases over time intervals (C1) and (C2). As Z,, is
below m over (C1), Y¢ and Y,$ have the same increments during the time; however, Y, does not
increase over (C2) while Z,, is above m.

The following lemma states that compared with policy Y, the modified policy Y,,, maintains a
lower inventory level and the same shortage level.

Lemma 8. Let Y be an admissible policy. For a fixed positive integer m, let Yy, be the policy
constructed according to and (JI)-([4). Then, Zn(t) < Z(t) for all t > 0 on each sample
path, where Z is the mventory process under policy Y. In partzcular, Zm(t) = Z(t) when Z,(t) < 0.

Lemma [8] implies that the modified policy Y, incurs less holding and shortage cost and less
proportional cost than policy Y. To prove the comparison theorem, we should also establish
asymptotic dominance between the average setup costs incurred by these two policies.

Proof of Theorem[J. Because h is nondecreasing on [0, c0), it follows from Lemma [§] that
t t
/ h(Zon (1)) du < / WZ(w)du for t > 0,
0 0
i.e., Yy, incurs less holding and shortage cost than Y. Since Z,,(t) < Z(t), we have Y,,,(t) < Y (), so
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Yy, incurs less proportional cost, too. By (7.2), Y5 (t) < Y(t) for all t > 0. Then, if K(04) = 0, we
obtain £Y,% (t) < LY “(t), i.e., VS incurs less setup cost than Y. If K(04) > 0 and there exists some
t > 0 for which Y(t) > 0, the cumulative setup cost incurred by Y must be infinite. Therefore,
we only need to consider the setup costs incurred by jumps.

When a jump of type is made by Y, the setup cost is equal to the cost incurred by the
simultaneous jump of Y.

Consider two consecutive jumps of type . Let t; and t2 be their respective jump times with
0 < t; < to. Because X has continuous sample paths and Y, is nondecreasing, it follows from
that X(tl) — X(tg) > Zm(tl) — Zm(tg—) > m/2. Let

t3 :inf{ue (O,tg—tl] :X(t1+u) :X(t1> — %}

By the strong Markov property of Brownian motion, 3 has the same distribution as

T = inf{u >0:—pu+oB(u) = —%}
where B is a standard Brownian motion starting with B(0) = 0. Because 7 is the first hitting time
of —m/2 by a Brownian motion with drift —pu, we obtain E,[ts] = m/(2u). Let Ny, 1(t) be the
number of jumps of type made by Z,, up to time ¢. Because to — t1 > t3, it follows that

2ut
Ei:|Npa(t)] < — + 1.
[Nm,1(8)] = ==+

Now consider two consecutive positive jumps of type . Let ¢; and t3 be their respective
jump times with 0 < #; < £5. We would like to show that there exists some Zy € [t1, %) for which
Zm(to) > m/2. Since AY,,(t2) > 0, Zp(ta—) # Z(ta—). If Z(t1) = Z(11), to must exist because
otherwise, Y, can only have jumps of type during (f1,%2) and this yields Z,,(ta—) = Z(t2—),
a contradiction. If Z,,(t1) # Z(t1), we have Z, (1) = m and thus set fy = #;. Therefore,
Zm(to) > m/2 holds for some tg € [t1,%2). Let

t~3 :inf{UE (0,7?2—50] :X(fo—i—u) :X(t~0> — %}7

which also satisfies E[ts] = m/(2u). Let Ny, 2(t) be the number of positive jumps of type (J4)
made by Z,, up to time t. Because t3 < ty — t;, we have

2ut
Eqo[ N2 (t)] < % 41

Put K = sup{K(£) : £ > 0}, which is finite by . By the discussion above,

AC(r, ) ~ AC(z, Y) < limsup - Ey[N (1) + N2 (1] <

t—00 m

from which we deduce that
limsup AC(z,Y,,) < AC(z,Y).

m—00

By the Bolzano—Weierstrass theorem, {AC(x,Y,,) : m = 1,2,...} has a convergent subsequence, so
inequality (3.5 holds. O
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8 Optimal ordering policy with a step setup cost function

By Proposition [I] and Theorem [I} we need to solve the following nonlinear optimization problem
to obtain the optimal ordering policy,

min (s, S)

1
st s< S, (8.1)

where v(s,.5), given by , is the long-run average cost under the (s, S) policy. With a setup
cost function that satisfies 7, one may solve numerically by a standard grid search or
a random search (see, e.g., Chapter 4 in Hendrix and G.-T6th/2010). When the setup cost function
takes certain forms, it is possible to obtain the optimal solution in a more efficient way. In this
section, we consider the optimal ordering policy when the setup cost is a step function satisfying

ED-ED. ie.

N N-1
&)= Kn Lqu 100+ > (EnAKnj1) - 1ig,3(&) for £>0, (8.2)
n=1

n=1

where N is a positive integer, 0 = Qp < Q1 < - < Qn_1 < Qn = 00, and Ki,...,Ky are
nonnegative real numbers with K,, # K, 1 forn =1,..., N —1. The setup cost is K,, for any order
quantity within the open interval (Q,—1,@y). When the order quantity is @, forn=1,...,N —1,
we assume that the buyer is required to pay the lower fee of K, and K,;. This step function
encompasses most setup cost structures in the literature and in practice, e.g., those in f.

When the step setup cost function in has K; = 0, by placing small orders, the inventory
system can be exempt from setup fees without incurring additional holding and shortage cost. In
this case, we may assume the setup cost to be a zero function. As we discussed in Remark the
optimal policy will be a base stock policy whose base stock level is fixed at z*. When the setup cost
function in has K7 > 0, by Theorem and Proposition the optimal reorder and order-up-to
levels must satisfy s* < S*. We may follow a five-step procedure to obtain the optimal parameters.

Step 1: Obtain z* by solving the integral equation . If K1 =0in , taking s* = §* = 2*,
we obtain an optimal ordering policy, which is a base stock policy with base stock level z*.
The minimum long-run average cost is v* = ~(2*, 2*) = ku + h(z*). Proceed to steps if
and only if K7 > 0.

Step 2: Let .
Aly) = / 1oy (90(w)) s, (3.3)

—00

where gg is given by (6.1)). For n =1,..., N, obtain ,, by solving the integral equation

/ A(u)du = K.
h(z*)/

Then, obtain (&,,5,) by solving
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Put én = Sn — 8.
Step 3: Define three index sets
N< :{nzla'-'aN:énSanl}a

N::{nzlan-aN:Qn—l<én<Qn}7
No={n=1,...,N:& > Qu}.

Put
Qn—l ifn e N<7
§=1<&  ifnel, (8.4)
Qn if ne N>.
Then, define the candidate index set by
N={n=1,...,N: K(&) =Ky} (8.5)
Step 4: For n € N_, let
Sp = 8p, Sp= An, Uy, = Uy, (8.6)

For n € N'\ N_, obtain (s,,S,) by solving the system of equations

{Sn — Spn = 512’ (87)
gO(Sn) = gO(Sn)7

and put
K& pw [
Vp = ku + (‘fﬁ) + 52/5 go(u) du. (8.8)
Step 5: Let
n* =min{n € N : v, <y, for all i € N'}. (8.9)
Taking
s =8y and S* = Sy, (8.10)

we obtain the optimal ordering policy, which is an (s, S) policy with reorder level s* and
order-up-to level S*. The minimum long-run average cost is v* = y(s*, 5*) = v+, where vy«

is given by f.

The following corollary of Theorem [I] states the optimality of the obtained ordering policy.

Corollary 1. Assume that the setup cost K is given by and that the holding and shortage
cost h satisfies 7. If K1 =0, the base stock policy U(z*,z*) is an optimal ordering policy
that minimizes the long-run average cost, i.e., v* = v(z*,2%) = ku + h(z*), where v is given by
. If K1 > 0, with (s*,5*) uniquely determined by steps ﬁ of the above algorithm, U(s*,S*)

is an optimal ordering policy that minimizes the long-run average cost, i.e., v* = y(s*,S%).

Let us illustrate how the five-step algorithm yields the optimal policy. We obtain z*, the
minimizer of gg, at step By Proposition [I] and Theorem [1} the optimal policy is a base stock

25



policy if K7 = 0, with 2* being the optimal base stock level. If K7 > 0, the optimal policy is of the
(s,5) type with s < S, and we obtain the optimal reorder and order-up-to levels by steps
Assuming the setup cost is a constant K, for any order quantity, we find the optimal reorder

N

and order-up-to levels (§,,Sy) for n = 1,..., N in step [2| Under this policy, the quantity of each
order is &, and the long-run average cost is 7,,. The uniqueness and optimality of the obtained
policy can be deduced from the following lemma.

Lemma 9. Let k be a nonnegative number. Assume that K(§) = k for all§ > 0 and that h satisfies

1)(’ Then, there exists a unique é > 0 such that
(&) = inf{y(s,S) : s < S}, (8.11)

where 7y is given by (3.1) and 0 is given by (6.13)). In particular, € =0 if and only if kK = 0. Write

A~ ~

p=06(), §=3(), S=5(9), (8.12)
where § and S are defined by . Then, U is the unique solution to
—k+0/p
/ A(w)du=k and 0> ku+ h(z¥), (8.13)
h(z*)/u

where A is given by (8.3)) and (8, 5') is the unique solution to
90(3) = go(8) = -k + =. (8.14)

Moreover, £, S, and U are strictly increasing in k, whereas § is strictly decreasing in k.

Remark 8.1. With a constant setup cost, Bather| (1966)) identified a set of necessary and sufficient
conditions for the optimal (s, S) policy that minimizes the long-run average cost. Those conditions
are equivalent to (8.13)—(8.14) in Lemma [0} see (4.2)-(4.4) and (5.4)—(5.5) in [Bather| (1966). In
particular, our Brownian control problem is reduced to Bather’s problem when N =1 in (8.2).

The next lemma is a technical result for proving Lemma [9] and Corollary It specifies how
f, the minimum average cost function, changes with the order quantity when the setup cost is
assumed to be constant.

Lemma 10. Let k be a positive number. Assume that K(§) = K for all £ > 0 and that h satisfies
1)(’ Then, there exists a unique £ > 0 such that L(é) = Kk where

S(8) R
LO = [ (l5(€) - 90(w)
Moreover, the first derivative of 0 satisfies

0'(&) <0 for0<&<E,
0'() =0 for&=¢, (8.15)
0'(&) >0 for€>¢.
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Let K; be the smallest one of K, ..., Ky. By Lemma[J] 2; is the smallest one of i,...,0y. If
K(é) = K; happens to hold, U(3;, S”l) must be the optimal (s, S) policy. The setup cost function
in , however, has imposed a constraint on order quantities for each setup cost value. When
the setup cost is K,,, the quantity of an order is confined to an interval from @, to @, (which,
by ,Amay be (Qn—1,Qn); (@n-1,Qnl; [@n—1,Qn), or [@n-1,Qu]). 1f & < Qi—1 or & > Qi we
have K (&;) # K;, and in either case, U($;,.S;) may not be optimal.

With a quantity-dependent setup cost, it is necessary to examine whether each é’n falls into
the interval (Qn—1, @yn); if not, we should adjust the order quantity to make it conform with .
At step 3, based on the relative position of én to the interval (Qn—1,Qn), we define & as the
point in [Qn—1,Qy] that is the closest to én By Lemma &) is the optimal quantity when each
order is confined in [Qn—1,@y] with setup cost K,. Consequently, one of £}, ..., & must be the
optimal order quantity for the setup cost given by . We may thus seek the optimal policy by
examining the policies that fix order quantities at 5 for n = 1,..., N. In this procedure, rather
than examining all of £F, ..., &%, we may just investigate those in the candidate index set A/ defined
by . We will discuss the candidate index set shortly.

For n € N/, we obtain the optimal (s,.S) policy with the quantity of each order fixed at &. This
task is carried out at step 4}, where the reorder and order-up-to levels are given by (s, Sy,) and the
resulting long-run average cost is given by v,,. When the quantity of each order is fixed at £} with
setup cost K, U(8,, 5'”) must be the optimal policy for n € N—, and the long-run average cost is
equal to 7. We may thus define (s, Sp,v) for n € N= by . By Lemmas we can obtain
(Sny Sn, V) by solving f for n € N\ W=. Note that not all of £},..., &} are considered at
step[ The next lemma implies that it suffices to search for the optimal policy within the candidate
index set . To state this lemma, let us define

x(n) =max{j e N :j<n} forneN\N (8.16)
and
X(n)=min{j e N :j>n} forneNs\N. (8.17)
Forn=1,...,N, put
Un = 0n(&)) (8.18)
where .
b S()

Kpu
(&) =ku e el

go(y)dy for £ > 0. (8.19)

Note that v,, = ,, for n € N.

Lemma 11. Assume that the setup cost function in (8.2) has K1 > 0 and that h satisfies (HI|)—
1) Then, for each n € Nc \ N, x(n) defined by (8.16) exists and satisfies Vy(n) < Vn; for each
n € Ns \N, Xn defined by [B.17) exists and satisfies vg(ny < V.

It follows from Lemma (11| that v* < 1, for all n = 1,..., N, where v* is given by (8.10) at
step [5| Hence, U(s*, S*) is the best candidate of the policies obtained by steps Now let us
prove the optimality of the obtained ordering policy.

Proof of Corollary[1]. It suffices to show that (s*, S*) obtained by steps satisfies (3.2]). Then,
the corollary follows from Theorem [T}
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Without loss of generality, we may assume K (£) = 0 for £ > 0 if K1 = 0. Then, it follows from
Lemma@tha‘c € = 0 and thus 5(0) = S(0) = 2* is the optimal base stock level. Hence, s* = S* = 2*
and by (3.1) and (3.3), v* = ku + h(z*).

Consider the case K7 > 0. If s = S, it follows from that v(s, S) = oo because £ = oo by
(2.5). If s < S, put £ =S — s and assume that K(¢) = K, forn=1,...,N. By (8.4), (8.11)), and

(8.15)), we obtain 6,,(§) > 0,(£), where 6,, is given by (8.19). If n € N,
7(37 S) = 9n(§) > gn(f;;) = Up 2 Unr,

where the first inequality follows from (6.10) and (6.12)), the first equality follows from and
(8.7)—(8.8]), and the last inequality follows from . If n ¢ N, we obtain

Y(8,8) 2 0,(§) > 0n(&) = U0 > v

where the equality follows from (8.18) and the last inequality follows from Lemma O

9 Conclusion

The optimality of (s,.S) policies for inventory systems with constant setup costs is a fundamental
result in inventory theory. Assuming a Brownian demand process, we have extended the optimality
of (s,95) policies to stochastic inventory models with a general setup cost structure. To achieve
this, we proved a comparison theorem that allows one to investigate the optimal policy within
a tractable subset of admissible policies. When the setup cost is a step function, we proposed
a policy selection procedure for obtaining the optimal control parameters. These results have
improved the widely used lower bound approach for solving Brownian control problems and may
apply to inventory models with even more general stochastic demand process, e.g., mean-reverting
diffusions (see (Cadenillas et al.|2010) and spectrally positive Lévy processes (see Kyprianou 2006
and [Kuznetsov et al.|2012). We look forward to exploring these extensions in future work.

Technical proofs

Proof of Lemma[3 By Lemmall] Z™(t) > m for t > 0, so Z(t) < Z™(t) whenever Z(t) < m. For
a fixed t > 0, if Z(u) > m for all u € [0,¢], we must have Y(t) = 0 and thus X (u) > m for all

€ [0,t]. It follows that Y (¢) = 0 and thus Z(t) = Z™(t) = X(t). If Z(t) > m but there exits
some u € [0,¢) such that Z(u) < m, we put to = sup{u € [0,t) : Z(u) < m}. We deduce that
Z(to) < m because otherwise, Z(tg) > m and Z(tp—) < m, which contradicts the assumption that
Y € U,,. Hence, Z(to) < Z™(tp) and to < t. Because Z(u) > m for u € (to,t], Y(t) — Y(to) = 0.
By (2.1] . 22), z Z(to) + X (t) — X(to). Because Y™ has nondecreasing sample paths,

Z™M(t) =ZM(to) + X(t) — X(to) + Y™ (t) — Y™ (to) > Z(2).
Therefore, Z(t) < Z™(t) for all ¢ > 0. O

Proof of Lemmal3 It suffices to consider Y € U, for a fixed positive integer m. Let Z™ be the
inventory process given by (|4.5)), which is a reflected Brownian motion with lower reflecting barrier
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at m. Let a be a positive number. By (4.6),

o] vVm o]
E.[Z™(t)*] = a/ v L (v, t) dv < a/ v* 1 dv + a/ v 1™ (v, t) dv
0 0 zVm
< (me)a+a/ UO‘_1<D<_U+ (zvm) —,ut) dv—i—a/ v e ATm) gy,
Nvm Otl/Q vm

For t > 0 and v > x V m, we obtain

—v+(xVm)—put (v—(me) Mtl/Q) - 2u1/2(v—(me))l/2
otl/? N otl/? o )~ o
using the inequality of arithmetic and geometric means. Therefore,

) dv + a/ @ L= Av=m) gy
x

vm

2u2 (v — (z vV m))

E,[Z™(t)%] < (z V m)® + a/

xVm

v 1D ( —
for ¢t > 0. All terms on the right side are finite and none of them depend on ¢, so

supE,[Z™(t)Y] < 00 for a > 0. (A1)
>0

Because X (t) < Z(t) < Z™(t) for t > 0,
[Z()]* < [X (@) + 2™ ()" (A.2)

Since X (t) follows a Gaussian distribution with mean z — ut and variance o2,

sup E[| X (u)|*] <oo fort>0. (A.3)

0<u<t

By (4.7), there exist ¢y > 0 and ¢; > 0 such that

1f(2)] < co+ cr|z|4Tt for z € R. (A4)

Then, we deduce that (4.8) holds from (A.1)—(A.4) and that (4.9) holds from (4.7), (A.1))—(A.3),
and Tonelli’s theorem. Since Z(t) < Z™(t) and Z™(t) > m, it follows from (A.4) that

[F(Z(1)) - 1pee)(Z(t)] < co+erZ™ (),

which, along with (A.1]), implies that (4.10]) holds. O

Proof of Lemma[fl By (H2)—(H4), lim, .+ h(y + 2) = oo, from which (6.4) follows. By (6.2),

" A? > —A A2 A /
g0 (2) = — h(y+ z)e Ydy — —h(z) — =h'(z) for z #0.
o 7 [

We would show that

g6(z) >0 for 2 >0, (A.5)
go(2) >0 for z <0, (A.6)
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and
lim sup gg(2) < 0. (A.7)

Z—r—00

By these conditions and the continuity of g(,, we obtain (6.5) with z* < 0. Moreover, z* is unique.
Write (6.2) into
)\2 0o B
h2) = 5 [Ty 2) = hE)e (A%)

Then, condition (A.5)) follows from (H4)). By (HI|) and integration by parts,

/ h(y + 2)e M dy = ()\) )\/ B(y+2)eMdy for z < 0.
0
It follows that
A3 [F A2 A A2 A
(2 >/ h(y+2)e Mdy — =—h(z) — ZH (2 / B (y+2)e Mdy — Zh/(2).
gO()uo( ) M()M()Mo( ) u()

Since h is convex, h'(y) > h/(z) for y > 2. By (H4),
A2 - —-A A / A / A
g > / b (z)e Y dy — =h'(z) = —=h/(2)e™* > 0,
0(2) = (2) . (2) . (2)

so (A.6) holds. By (H2)) and (H4)), there exist zp < 0 and ¢y > 0 such that h'(z) < —¢y for all
z < z9. Because h is polynomially bounded,

lim (h(y 4 z) — h(z))e™ dy = 0.
z=—00 J.
Then by (&3),
) , ) A2 20—2 Y ) )\200 20—2 Y o
lim sup gy(z) = lim sup — (h(y+2) —h(2)eYdy < — lim — e Mydy = ——,
2—+—00 z——o0 M Jo Z==00 [k 0 19
which leads to (A.7)). O

Proof of Lemma[j. For £ > 0 and s € R, put

s+¢&
G(s,€) = gols +€) — gols) = / ab(y) dy.

By (6.1), (6.2), and (H3), G is continuously differentiable on R x (0,00). If G(s,£) = 0, we must
have s < 2" < s+¢& by . Let £ > 0 be fixed. Then, G(s, &) is continuous and strictly increasing
in s on [z — ¢, 2*], with G(z* — &,£) < 0 and G(2*,£) > 0. Hence, there exists a unique s = 5(§)
such that G(s f) =0, by which we deduce that both and hold. The limits in

follows from (/6.4]) and ( . Using (6.5)) again, we obtain

9 G(5(6).€) = gh(5(6)) — gh(3(6)) > 0 for £ > 0.

By the implicit function theorem (see, e.g., Theorem 11.1 in Protter(1998), § must be a differentiable
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function on (0,00). By (6.5)—(6.7)),

§£G< (6),) = gh(3(6) +6) = gh(3(6)) > 0.

The implicit function theorem also implies that

YO = "56G©.0/0s ~ gdie

O]

= 9(2*,0) = 4(5(0),0), so (6.13]) holds for £ = 0. For

Proof of Lemmal[@ By (6.5) and (6.11), 6(0
575)/85 =0. By "‘ )

¢ > 0, Lemma |5| implies that s=35(&) is the unique solution to 97(

2 ~
S (56,9 = £ah(3(0) ~ £65(5(0) >0,

o (6.13)) also holds for £ > 0.
By (2.5) and (6.11)),
1 o) =(k+0)p+1 f— 5O d
imin = imin .
€10 ©)=( ) o ¢ /g(g) 90ly) dy
= 6(0), so 6 is lower semicontinuous

Since (6.7)) implies that 5(0+) = 2z*, we obtain liminf¢ o 6(&)
at zero. For 5 > 0, since K is lower semicontinuous, by Proposition B.1 in Puterman| (1994)

@ < liminf@.

§ E—E

By Lemma |5, § is continuous on [0, c0), by which we obtain
5(6) ' S(&)
/ _ 9o(y)dy = lim g0(y) dy.
5(¢) §—=¢J3(¢)

It follows that 6(¢) < lim inf ¢£0(€), and thus 6 is lower semicontinuous on [0, c0)

By and L’Hopital’s rule,

Jlim ¢ / ) dy = lim (3(€) + Do( () — Jim 3(©an(3(©))

Then using (6.4)), , and , we obtain

() N
¢ /(g) y)dy = hm go(S(f)) = o0.

lim —
E—o0
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Because the setup cost is nonnegative, the above limit implies that limg¢_,o 0() = oo. O
Proof of Lemma[]. Put K = sup{K(£) : £ > 0}, which is finite by . By (6.14)), there exists
0 < £ < oo such that ~
o Kp x o
0(¢) > ? + (8", 57). (A.9)

Take s = 3(€). If s > s, 7(s,€) = (s,€) by (6.11). Then, ) follows from (3.2)) and ( -

It remains to prove ((6.15)) for s < 8, Wthh rehes on the followmg 1nequaht1es below deduced

from (53559,

+§) fors<y<s+§,
9o(y) > go(s) = go(s+&) fory<sory>s+&.

Ifs<s—¢&,
1 s+& 1 s+¢&
§/8 go(y V s)dy = go(s) > ) 90(y) dy. (A.10)
Then by and (A.9),
i KE@©up  p [ Ca KO K@u
7@®>kw+§+gl aoly) dy = 0(E) + = > (5.5,

Ifs—¢(<s<sA(s+{—9),

s+€ s+E€ s+&
/ go(y V s)dy = / 90(y) dy + (s — 8)go(s) > / 90(y) dy,

which implies that 5(s, &) > (s, £), and thus (6.15)) follows. If s + & — € < s < s,

s+€ s+E€ B
/ go(y V s)dy > (§—S)go(§)+/ go(y)dy + (s + & — 5 —&)go(s + &)

s+&
— [ ml)dy+ (€~ Oanlo)
s
where the last equality follows from . Then,

é/fggo(y 5 5/ o(s) 5/ y)dy,

where the last inequality follows from (A.10]). Since the above inequality is identical to (A.10]), we
deduce that (6.15) holds. O

Proof of Lemma @ Clearly, Y, € U . Both from Z,,(0—) = Z(0—) = x, these two inventory levels
satisfy Z,,,(0) < Z(0) by (J1] . . Fort >0, let

to =sup{u € [0,t] s u € I, \ J, AY,,(u) > 0},

with the convention sup @ = 0. Then, Z,,(to) < Z(to) by . If there is some u € (to, t] for which
AY,,(u) > 0, it is of type or and thus AY,,(u) < AY (u). Because Y ¢ is nondecreasing, it
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follows from that Y5 (t) — Y,S(tg) < YE(t) — Y¢(to). Hence, Z,,(t) < Z(t) for t > 0.

Consider some ¢ > 0 for which Z,,(t) < 0. If z < m/2 and Z,,(u) < m/2 for all u € [0,t], we
have Y,¢(t) = Y(¢) by and AY,,(u) = AY (u) for all u € [0,¢] by (J2). Hence, Z,(t) = Z(t).
If there exists some ¢; € [0,t) such that Z,,(t1) > m/2, let us consider the time

to = sup{u € [t1,t) : Zp(u) > 0}.

Since Z,, does not have downward jumps, we have Z,,(t2—) = 0 and AY,,(t2) = 0, which yields
Zm(t2) = 0. Then, Z(t2) > 0 because Z,,(t2) < Z(t2). If Z(t2) > 0, we can deduce from (J2)—
that AY,,(t2) > 0, a contradiction. Hence, Z,,(t2) = Z(t2) = 0. Because Z,,(u) < 0 for all
u € [ta,t], we have Y5 (t) = Y,S (t2) = Y(t) — Y“(t2) by and AY,,(u) = AY (u) for all u € [ta, ]
by (J2). It follows that Z,,(t) = Z(t) < 0 holds. O

Proof of Lemma[9 Let us first prove the uniqueness and monotonicity of the solutions to (8.13))—

(8.14). By (6.5, go has the minimum value at z*. Put

I(u) = / A(y)dy for u > go(z*).
go(z*)

Then, I(u) is a continuous function of u, with I(go(z*)) = 0. Because A(y) is nondecreasing in y
and A(y) > 0 for y > go(2*), I(u) is strictly increasing in u when u > go(2*) and I(u) — oo as
u — o0o. Hence, for each x > 0, there is a unique 4 > go(z*) such that I(a) = . In addition, @ is
strictly increasing in k. By and , go(z*) = h(z*)/u, so the solution to (8.13]) is unique
and ﬁ is strictly increasing in k. Note that go(z*) < —k + /u. The uniqueness of the solution to
also follows from . Moreover, § is strictly decreasing in © and S is strictly increasing in
D. Then their monotonlclty in x follows from that of . The monotonicity of 5 in k follows from
the fact that 5 S—s.
Next, let us prove the optimality of (3,5). When x = 0, by (6.11) and (6.13)),

5(¢)

hu+ 2 go(y) dy for £ >0,

0(¢) = € Jae
kp + pgo(z ) for £ = 0.

By (6.5), 6(0) < 9(§) for € > 0, so & = 0 is the unique solution to (8:11). If x > 0, we obtain

0(0) = oo by (6.11)) since ¢ = oo. Hence, £ = O 1f and only if Kk = 0. By (3.3) and (6.1)),
U=ku+ h(z*) and § =5 =z* and they satisfy (8.13]) and ( -, respectively.
When k > 0, the uniqueness of £ follows from Lemma It remains to show o satisfies (8.13))

and (3, 5) satisfies . By (6.6), (6.11), (6.13), and the faet that L(€) = x, we obtain
0(€) = kp + pgo(3(6)).

Then, (8.14) follows from and (8.12). By Tonelli’s theorem and (6.5|),

0(3(¢)) poo
/ ( / ool (g0(u)) dudy = / ’ / 1oy (90(u)) dudy = I(g0(3(€))-
QOZ g —0o0

o0(2z*)
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Using (8.14) and the fact that L(§) = , we obtain I(—k 4+ 0/u) = , so ¥ satisfies (8.13). O

Proof of Lemma[10 By (6.5)-(6-6), 90(y) < 90(3(€)) = go(S(€)) for é(&) <y< 5(5) Then by
and (| -, L is continuous and strictly increasing, with L(O) =0. By (6.4) and , L(&) — oo as
€ = oo. It follows that for each x > 0, there is a unique £ > 0 such that L(§) K.

By (9). (1D, and 13,

5(¢)
0&) =hkp+ 242 90(y) dy,
§ & s
the first derivative of which is
5(¢)
ve) =% -5 / o W £ EEEE) + 1) - 0O )

) (L(§) — k)
o :_w_u/ du+ P oo (a6 = # .
Then, (8.15) follows from the fact that L(§) =  and the monotonicity of L. O]

Proof of Lemma[I1, Suppose that there exists some n € N\ N such that x(n) does not exist,
Le., K(§) # Kj for j=1,...,n—1. Since K; > 0, Lemma@implies that él >0=0Qp,s01¢ N
and n > 2. Because £ = @Q,—1 and K(g;) # Kp, K(€) = K(Qn-1) = K,—1. f n —1 € N5, we
should have K (¢}_;) = K(Qn—1) = K,,—1, contradicting the hypothesis that K (§f_;) # Kp—1. It
follows that n — 1 € N \ N. By induction, we obtain {1,...,n — 1} C N\ NV, which contradicts
the fact that 1 ¢ N.. Hence, x(n) must exist.

For n € N\ NV, the above arguments also imply that {x(n)+1,...,n} C N\ N, which yields
x(n) < - < Kn. By Lemma@ ézc(n) < ézc(n)ﬂ < QX(")’ so x(n) € No UNC. Tt follows that

Up = Hn(anl) > 0 (Qn 1) > ex(n)(f (n)) X(n)a

where the first equality is due to the fact that £ = @Q,—1, the first inequality is due to the fact
that Kx(n) < K, and the second inequality is due to (8.15)) and the fact that

éx(n) < g;(n) < Qx(n) < Qn—l-

Since ; = v; for j € N, we obtain 7, > vy (y,).
Using the fact that £y < Qn = oo, we can follow similar arguments to prove that X(n) exists
and that vg(,y < ¥ for n € N5 \ V. The details are thus omitted. O

Acknowledgments

The work of S. He was supported in part by MOE AcRF under grant R266000086112 and by NUS
Global Asia Institute under grant R716000006133. The work of D. Yao was supported in part by
the National Natural Science Foundation of China under grant 11401566.

34



References

Alp, O., W. T. Huh, T. Tan. 2014. Inventory control with multiple setup costs. Manufacturing &
Service Operations Management 16(1) 89-103.

Altintas, N., F. Erhun, S. Tayur. 2008. Quantity discounts under demand uncertainty. Management
Science 54(4) 777-792.

Asmussen, S. 2003. Applied Probability and Queues. 2nd ed. Springer—Verlag, New York.

Ata, B. 2006. Dynamic control of a multiclass queue with thin arrival streams. Operations Research
54(5) 876-892.

Ata, B., J. M. Harrison, L. A. Shepp. 2005. Drift rate control of a Brownian processing system.
Annals of Applied Probability 15(2) 1145-1160.

Bar-Ilan, A., A. Sulem. 1995. Explicit solution of inventory problems with delivery lags. Mathe-
matics of Operations Research 20(3) 709-720.

Bather, J. A. 1966. A continuous time inventory model. Journal of Applied Probability 3(2)
538-549.

Baurdoux, E. J., K. Yamazaki. 2015. Optimality of doubly reflected Lévy processes in singular
control. Stochastic Processes and Their Applications 125(7) 2727-2751.

Benkherouf, L. 2007. On a stochastic inventory model with a generalized holding costs. Furopean
Journal of Operational Research 182(2) 730-737.

Benkherouf, L., A. Bensoussan. 2009. Optimality of an (s,.S) policy with compound Poisson and
diffusion demands: A quasi-variational inequalities approach. SIAM Journal on Control and
Optimization 48(2) 756-762.

Bensoussan, A., R. H. Liu, S. P. Sethi. 2005. Optimality of an (s, .S) policy with compound Poisson
and diffusion demands: A quasi-variational inequalities approach. SIAM Journal on Control and
Optimization 44(5) 1650-1676.

Cadenillas, A., P. Lakner, M. Pinedo. 2010. Optimal control of a mean-reverting inventory. Oper-
ations Research 58(6) 1697-1710.

Caliskan-Demirag, O., Y. Chen, Y. Yang. 2012. Ordering policies for periodic-review inventory
systems with quantity-dependent fixed costs. Operations Research 60(4) 785-796.

Chao, X., P. H. Zipkin. 2008. Optimal policy for a periodic-review inventory system under a supply
capacity contract. Operations Research 56(1) 59-68.

Constantinides, G. M. 1976. Stochastic cash management with fixed and proportional transaction
costs. Management Science 22(12) 1320-1331.

Dai, J. G., D. Yao. 2013a. Brownian inventory models with convex holding cost, part 1: Average-
optimal controls. Stochastic Systems 3(2) 442-499.

35



Dai, J. G., D. Yao. 2013b. Brownian inventory models with convex holding cost, part 2: Discount-
optimal controls. Stochastic Systems 3(2) 500-573.

Dixit, A. 1993. The Art of Smooth Pasting. Harwood Academic Publishers, Chur, Switzerland.

Gallego, G. 1990. Scheduling the production of several items with random demands in a single
facility. Management Science 36(12) 1579-1592.

Harrison, J. M. 2013. Brownian Models of Performance and Control. Cambridge University Press,
Cambridge, UK.

Harrison, J. M., T. M. Sellke, A. J. Taylor. 1983. Impulse control of Brownian motion. Mathematics
of Operations Research 8(3) 454-466.

Harrison, J. M., M. . Taksar. 1983. Instantaneous control of Brownian motion. Mathematics of
Operations Research 8(3) 439-453.

Hendrix, E. M. T., B. G.-Téth. 2010. Introduction to Nonlinear and Global Optimization. Springer,
New York.

Iglehart, D. L. 1963. Optimality of (s, S) policies in the infinite horizon dynamic inventory problem.
Management Science 9(2) 259-267.

Iwaniec, K. 1979. An inventory model with full load ordering. Management Science 25(4) 374-384.

Karlin, S., H. M. Taylor. 1981. A Second Course in Stochastic Processes. Academic Press, New
York.

Kuznetsov, A., A. E. Kyprianou, V. Rivero. 2012. The theory of scale functions for spectrally
negative Lévy processes. Lévy Matters II. Springer, Heidelberg, 97-186.

Kyprianou, A. E. 2006. Introductory Lectures on Fluctuations of Lévy Processes with Applications.
Springer—Verlag, Berlin.

Lewis, M., V. Singh, S. Fay. 2006. An empirical study of the impact of nonlinear shipping and
handling fees on purchase incidence and expenditure decisions. Marketing Science 25(1) 51-64.

Lippman, S. A. 1969. Optimal inventory policy with subadditive ordering costs and stochastic
demands. STAM Journal on Applied Mathematics 17 543-559.

Muthuraman, K., S. Seshadri, Q. Wu. 2015. Inventory management with stochastic lead times.
Mathematics of Operations Research 40(2) 302-327.

Oksendal, B. 2003. Stochastic Differential Equations: An Introduction with Applications. 6th ed.
Springer—Verlag, Berlin.

Ormeci, M., J. G. Dai, J. Vande Vate. 2008. Impulse control of Brownian motion: The constrained
average cost case. Operations Research 56(3) 618-629.

Paulsen, J. 2008. Optimal dividend payments and reinvestments of diffusion processes with both
fixed and proportional costs. SIAM Journal on Control and Optimization 47(5) 2201-2226.

36



Perera, S., G. Janakiraman, S. Niu. 2015. Optimality of (s, .S) policies in EOQ models with general
cost structures. Preprint.

Porteus, E. L. 1971. On the optimality of generalized (s, S) policies. Management Science 17(7)
411-426.

Porteus, E. L. 1972. The optimality of generalized (s, S) policies under uniform demand densities.
Management Science 18(11) 644-646.

Porteus, E. L. 2002. Foundations of Stochastic Inventory Theory. Stanford University Press,
Stanford, CA.

Protter, M. H. 1998. Basic Elements of Real Analysis. Springer—Verlag, New York.

Puterman, M. L. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, New York.

Rubino, M., B. Ata. 2009. Dynamic control of a make-to-order, parallel-server system with cancel-
lations. Operations Research 57(1) 94-108.

Scarf, H. 1960. The optimality of (S, s) policies in the dynamic inventory problem. Mathematical
Methods in the Social Sciences, 1959. Stanford University Press, Stanford, CA, 196-202.

Serfozo, R. 2009. Basics of Applied Stochastic Processes. Springer—Verlag, Berlin.

Sulem, A. 1986. A solvable one-dimensional model of a diffusion inventory system. Mathematics
of Operations Research 11(1) 125-133.

Taksar, M. I. 1985. Average optimal singular control and a related stopping problem. Mathematics
of Operations Research 10(1) 63-81.

Veatch, M. H., L. M. Wein. 1996. Scheduling a make-to-stock queue: Index policies and hedging
points. Operations Research 44(4) 634-647.

Veinott, A. F., Jr. 1966. On the optimality of (s, S) inventory policies: New conditions and a new
proof. SIAM Journal on Applied Mathematics 14 1067-1083.

Wein, L. M. 1992. Dynamic scheduling of a multiclass make-to-stock queue. Operations Research
40(4) 724-735.

Wu, J., X. Chao. 2014. Optimal control of a Brownian production/inventory system with average
cost criterion. Mathematics of Operations Research 39(1) 163-189.

Yamazaki, K. 2013. Inventory control for spectrally positive Lévy demand processes. URL http:
//arxiv.org/abs/1303.5163.

Yao, D., X. Chao, J. Wu. 2015. Optimal control policy for a Brownian inventory system with
concave ordering cost. Journal of Applied Probability 52(4) 909-925.

Zhou, B, M. N. Katehakis, Y. Zhao. 2009. Managing stochastic inventory systems with free shipping
option. European Journal of Operational Research 196(1) 186-197.

Zipkin, P. H. 2000. Foundations of Inventory Management. McGraw—Hill, New York.

37


http://arxiv.org/abs/1303.5163
http://arxiv.org/abs/1303.5163

	1 Introduction
	2 Brownian inventory model
	3 Main results
	4 A lower bound for long-run average costs
	5 Relative value function and long-run average cost
	6 Optimal ordering policy
	7 Policies subject to order-up-to bounds
	8 Optimal ordering policy with a step setup cost function
	9 Conclusion

