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satisfy remarkable incentive guarantees: in addition to being dominant-strategy incentive-compatible, they
are weakly group-strategyproof and can be implemented by ascending-clock auctions. Neither forward greedy
mechanisms nor the VCG mechanism generally possess any of these additional incentive properties. The
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1. Introduction. Algorithmic mechanism design studies the conflict between incentives and
computation. For a canonical example, consider a knapsack auction where there are m identical
items and each of n bidders has a valuation (i.e., willingness-to-pay) vi for si of the items. In such
an auction, bidder i has no value for fewer than si items. The objective is to identify a set A
of accepted bidders, with

∑

i∈A si ≤m, that maximizes the welfare
∑

i∈A vi. This problem is well
understood from a purely algorithmic perspective.

The problem potentially becomes harder when we assume that valuations are private — a priori
unknown to the seller — and that the bidders are strategic. Is there a protocol — a mechanism
— that solicits the private valuations from the bidders, computes a near-optimal allocation with
respect to the reported valuations, and charges payments to incentivize bidders to report truthfully?
For example, when m and all of the si’s equal 1, the Vickrey (second-price) auction provides a
satisfying solution: it is dominant-strategy incentive-compatible (DSIC), meaning that for every

*A preliminary version of this article appeared in the Proceedings of the 15th ACM Conference on Economics and
Computation.
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bidder it is a dominant strategy to report its true valuation, and assuming all bidders comply,
the allocation is optimal — the item goes to the bidder with the highest valuation. The VCG
mechanism (see, e.g., [47, Chapter 9]) is the analog of the Vickrey auction for multiple items — it is
DSIC and maximizes welfare, but cannot be implemented for knapsack auctions in polynomial time
(assuming P 6=NP ). Is there a good DSIC and polynomial-time mechanism for knapsack auctions?
Previous work gives an affirmative answer: Mu’alem and Nisan [45] showed that combining two
greedy algorithms yields a 2-approximate DSIC mechanism, and Briest et al. [11] provided a way
to design a (1+ǫ)-approximate DSIC mechanism for any constant ǫ > 0.1

For a second example, consider the problem introduced by Lehmann et al. [37] of maximizing
welfare with single-minded bidders. There are n bidders and m distinct items. Each bidder i wants
a specific bundle Si of items and it has a valuation vi for it. The objective is to identify a set
A of accepted bidders, with Si ∩ Sj = ∅ for every i, j ∈ A, that maximizes the welfare

∑

i∈A vi.
Lehmann et al. [37] studied polynomial-time approximation mechanisms for this problem. They
noted that, under mild complexity-theoretic assumptions, there is no polynomial-time algorithm
that has an approximation factor significantly better than min{d,√m}, where d=maxi |Si| is the
maximum bundle size [26, 25, 37]. These negative results of course limit the best-case scenario
of any approximation mechanism that runs in polynomial time, since it is solving an only harder
problem (with private valuations). Lehmann et al. [37] gave two mechanisms, based on appealingly
simple greedy heuristics, that are DSIC and achieve approximation factors of d and

√
m.2

There are many more examples; see [47, Chapters 11-12] for an incomplete list. While many
different algorithmic techniques have been used to design DSIC approximation mechanisms, greedy
algorithms continue to play a starring role (see [10, 9] and the references therein).

Deferred-Acceptance Auctions — Even Better Than DSIC. Milgrom and Segal [42]
recently introduced a remarkable class of mechanisms called deferred-acceptance (DA) auctions.3

They defined these mechanisms for binary single-parameter problems, i.e., for problems comprising
bidders that can either be accepted or rejected, and each bidder holds a single parameter as private
information. A computer scientist might call them “adaptive backward greedy mechanisms” (cf.,
[10, 9]): unlike common greedy algorithms that greedily accept the most promising candidate, these
algorithms greedily reject the least promising candidate.

Milgrom and Segal [42] were motivated by design challenges posed by the upcoming Federal
Communications Commission (FCC) double auction, a.k.a. the FCC “Incentive Auction”,4 and
introduced DA auctions for two reasons. The first reason is the computational intractability of the
underlying welfare-maximization problem, the same raison d’être of algorithmic mechanism design.
The second reason is that the incentive properties of DA auctions are superior to those of both
forward greedy mechanisms and the VCG mechanism.

But wait, isn’t the DSIC property, possessed by the VCG mechanism and many forward greedy
auctions, the “holy grail” of incentive properties in mechanism design? Not necessarily. The VCG
mechanism, for example, is almost never deployed in real-world applications with distinct items.
One obvious reason for this in settings with at least a modest number of items is that the commu-
nication and computational demands of the mechanism — generally exponential in the number of
items — are a nonstarter. This cannot be the whole story, however: the VCG mechanism is almost
never used even in settings where the number of distinct items is so small that the communication

1 This mechanism uses a fully polynomial-time approximation scheme (FPTAS) which, given an input parameter
ǫ > 0, computes a (1+ ǫ)-approximate solution in time polynomial in 1

ǫ
and in the input size.

2 The results in Lehmann et al. [37] hold even if the bidders’ bundles are private as well.

3 The name is due to some similarities to the Gale-Shapley DA algorithm [22].

4 See https://www.fcc.gov/about-fcc/fcc-initiatives/incentive-auctions for details.
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Figure 1. Single-minded combinatorial auction with four bidders and four items.

and computational requirements are almost trivial (see, e.g., [3]). Evidently, the VCG mechanism
also suffers from flaws that are not complexity-theoretic; one example is vulnerability to coalitional
deviations, even by groups of bidders that have no real stake in the market.

Example 1 (Incentive Issues of the VCG Mechanism). Consider two items (A and B)
and three single-minded bidders: the first has value 1 for the bundle AB, the second and third have a
very small value ǫ for A and B, respectively. If all bidders bid truthfully, then the VCG mechanism
gives both items to bidder 1 at a price of 2ǫ; this is the welfare-maximizing outcome. If bidders 2
and 3 collude and they both report the same false valuation which is greater than 1, however, the
VCG mechanism allocates each of these bidders the item that it wants, and for free!

In fact, mechanisms using greedy algorithms may also suffer from group deviations. One example
of such a mechanism is the forward greedy mechanism of Lehmann et al. [37] that ranks bidders
by bid, possibly normalized by bundle size. Using this ranking, the mechanism greedily accepts the
highest-ranking bidders that do not cause a conflict with previously accepted ones; it then charges
each accepted bidder the smallest bid that would still make it win.

Example 2 (Incentive Issues of Forward Greedy Algorithms). Figure 1 provides an
instance with four items (the black dots) and four single-minded bidders, whose bundles (the blobs)
are labeled with their valuation. If the bidders reported their valuations truthfully, the forward greedy
algorithm would accept bids 5 and 1, and the corresponding bidders would be charged 3 and 0. If
the two losing bidders were to instead both outbid the highest bid, they would both win, and pay
nothing! In general, the impact of group deviations on social welfare can be arbitrarily large.

Milgrom and Segal [42] prove that every DA auction possesses an impressive list of incentive
guarantees beyond the basic DSIC guarantee.

(1) Every DA auction is weakly group-strategyproof: there is no way for a coalition to submit a
coordinated false bid that increases the utility of every bidder in the coalition (cf., Examples 1,2).

(2) Every DA auction can be implemented by an ascending-clock auction. Ascending implemen-
tations are appreciated in practical applications for a number of reasons: bidders have an oppor-
tunity to implicitly share information and coordinate through price discovery; bidders can focus
on determining their valuation only for bundles of items that are likely to be relevant, rather than
for all bundles as in a direct-revelation mechanism; and, empirically, bidders bid more accurately
in ascending auctions than in sealed-bid auctions (see [14] for further discussion).

(3) The dominant-strategy outcome of a DA auction is the same as the unique Nash equilibrium
that survives the iterated deletion of dominated strategies in the full-information game based on the
same allocation rule and with the pay-as-bid payment rule. This can be interpreted as a robustness
result for the prediction that bidders will play their dominant strategies in a DA auction.

Neither the VCG mechanism nor forward greedy algorithms generally possess any of these three
properties. We conclude that — at least for binary single-parameter problems — DA auctions offer
superior incentive properties to VCG and forward greedy auctions.
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How Good Are DA Auctions? The goal of this paper is to initiate the study of DA auctions
from an approximation standpoint.

Can DA auctions achieve welfare guarantees comparable to those of (forward) greedy
mechanisms? More generally, can we attain the best of both worlds — optimal
polynomial-time approximation guarantees and strong incentive guarantees — or is
there an intrinsic trade-off between the strength of the incentive guarantees and the
quality of approximation?

Reverse greedy algorithms have made sporadic cameos in the design of exact as well as approxi-
mation algorithms (e.g., [52, 23, 12, 51, 13]) but, as far as we know, DA auctions provide the first
reason to study their performance systematically. Indeed, for many problems, reverse greedy algo-
rithms seem like unlikely candidates for good approximation algorithms — they generally don’t
even return maximal solutions (see discussion in Section 2).

Our Results. We study the power and limitations of DA auctions through the lens of the two
canonical single-parameter mechanism design problems described above. Our first set of results
concerns knapsack auctions, which can be interpreted as a special type of multi-unit auction.
For these auctions we prove a separation between the welfare approximation guarantee achievable
by DA auctions and by arbitrary DSIC mechanisms. Our main lower bound states that no DA
auction obtains an approximation sub-logarithmic in the number of items m. This lower bound is
information-theoretic and applies to computationally unbounded DA auctions. Recall that forward
greedy algorithms lead to a DSIC mechanism with an approximation guarantee of 2, and that
general DSIC mechanisms can compute an arbitrarily close constant approximation in polynomial
time and an optimal allocation in pseudo-polynomial time. We also give a polynomial-time DA
auction with an approximation guarantee of O(logm).

Second, we consider welfare-maximization problems with single-minded bidders — the original
application of greedy algorithms to algorithmic mechanism design. Recall that the forward greedy
mechanisms in [37] achieve d- and

√
m-approximations of the optimal welfare, where d is the max-

imum bundle size and m is the number of items. These mechanisms have no incentive guarantees
beyond the basic DSIC guarantee (as shown in [42]), which proves that they are impossible to
simulate in the DA auction framework. Moreover, we show that if the scoring functions in [37]
— rank-by-bid, possibly normalized by a function of the bundle size — are re-deployed in a DA
auction, then the approximation guarantees are very far from optimal. In fact, we prove that a
class of natural DA auctions fails to match the performance guarantees of [37]. The only remaining
approach to matching these guarantees is to design from scratch good approximation algorithms
that can be implemented in the DA auction framework.

Our first DA auction provides an O(d)-approximation when bidders’ desired bundles have size
at most d. Conceptually, this auction has two phases (though it can still be implemented in the DA
auction framework). The first phase is a sequence of “locally greedy” steps, with each step rejecting
all the bids whose bundles contain a given item, except the one with the highest value. We prove
that the sum of valuations of the remaining bidders is a 1/(d− 1) fraction of the optimal welfare,
and that every remaining bidder conflicts with at most two others. Our second phase selects a
feasible subset of these bidders while losing an additional factor of 2.

Our second DA auction has an approximation guarantee of O(
√
m logm), where m is the number

of items. Our algorithm computes two solutions, one involving the bidders with small bundles (at
most

√
m items, say), the other involving the bidders with large bundles; ideally, we would then

like to take the better of these two. The DA auction framework cannot generally accommodate
such “MAX operators,” however. Instead, we identify the highest bidder with a large bundle and
use its bid as a welfare target for the rest — this is analogous to the “profit extractors” used
for prior-free revenue maximization [21]. We show that this idea can be implemented in the DA
auction framework and gives an O(

√
m logm) approximation.
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Related Work. Milgrom and Segal [42] showed that DA auctions satisfy the aforementioned
list of highly desirable properties not only for forward auctions, which are the focus of our work,
but also for reverse, or procurement, auctions. In a procurement auction it is the bidders that
own the items and the auctioneer wishes to buy items from them. In a recent version of their
paper, Milgrom and Segal [43] analyze the social welfare that can be attained by DA auctions in
a procurement setting with near matroid structure. They show that in this setting a DA auction
attains near optimal performance, generalizing well-known results in combinatorial optimization
which show that forward and backward greedy algorithms are optimal on matroids [see, e.g., 36].
The performance of DA auctions in the procurement setting has been subsequently studied further
by Kim [34]. Nguyen and Sandholm [46] provide an experimental evaluation of the performance of
various DA heuristics for the actual interference constraints of the upcoming FCC auction.

There is an extensive literature on ascending auctions for both single-parameter and multi-
parameter settings pre-dating the DA framework. For single-parameter settings, an ascending auc-
tion based on the backward greedy algorithm for matroids is described in Bikhchandani et al. [5].
Babaioff et al. [4] provide a procedure converting any algorithm to a dominant-strategy ascend-
ing auction. For multi-parameter settings, Ausubel [1] describes an ascending auction for identical
items and bidders with decreasing marginal values. Demange et al. [16] give an ascending auction
for non-identical items and unit demand bidders. Ascending auctions for non-identical items and
bidders with gross substitute preferences appear in [33, 24, 41, 2]. Auction mechanisms for even
more general settings with non-substitute preferences are described in [48, 49, 29, 15, 35]. For a
comprehensive study of the computational and informational aspects of iterative auctions see [6, 7].

Group-strategyproof mechanisms have also been studied prior to the DA auctions framework.
For example, the original deferred-acceptance algorithm for the stable marriage problem of Gale
and Shapley [22] is group strategyproof. Group-strategyproof mechanisms have also been studied
in the context of cost-sharing mechanisms [44, 17, 27, 40, 28, 31, 32]. This line of work has also
analyzed the economic efficiency that can be achieved with these mechanisms, and contrasted it
with the best possible economic efficiency that can be achieved with a polynomial-time algorithm.
Often the stronger incentive properties come at a significant cost in terms of economic efficiency
[see, e.g., 50]. Milgrom and Segal [43] identify additional desirable incentive properties of DA auc-
tions, beyond group-strategyproofness. Amongst others they show that DA auctions are “obviously
strategyproof” [38] and also have advantages in preserving privacy.

Going beyond forward and reverse auctions, the DA framework has also been extended to double
auctions by Dütting et al. [19] and to multi-lateral markets by Blumrosen and Zohar [8]. The
application to double auctions is explored further by Marx and Loertscher [39]. These works also
point out advantages of double auctions based on the DA framework in obtaining budget balance.
In a similar spirit, Ensthaler and Giebe [20] and Jarman and Meisner [30] point out the advantages
of the DA auctions in the design of budget-constrained procurement auctions.

2. Preliminaries.

Binary Single-Parameter Problems. The appropriate abstraction for studying the power
and limitations of DA auctions is downward-closed binary single-parameter problems. Such a prob-
lem is described by a set N of bidders and a set system I ⊆ 2N . We assume that I is non-empty
and is downward closed, meaning that if T ∈ I and T ′ ⊆ T , then T ′ ∈ I. Each bidder i has a private
valuation vi for “winning,” and the sets of I are subsets of bidders that can feasibly win simulta-
neously. In a knapsack auction, for example, I is given by all subsets of bidders that collectively
want at most m items. In this paper, we study the welfare maximization problem: compute the set
A∈ I maximizing SW (A), where SW (A) =

∑

i∈A vi.
We focus on direct-revelation mechanisms M= (f, p), which comprise an outcome rule f and a

payment rule p. In our setting, given a vector of bids b= (bi)i∈N ∈ R
n
+, where bi denotes the bid
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reported by bidder i, the outcome rule f computes a feasible solution (a set of I). On the same
input, the payment rule p computes payments p= (pi)i∈N ∈ R

n where pi denotes the payment of
bidder i.

Given a mechanism M= (f, p) and a bid vector b, bidder i’s utility depends on both its value
for winning and the price it is asked to pay. We assume that the bidders have quasi-linear utilities
and hence bidder i’s utility equals uM

i (b) = vi − pi(b) if it is one of the accepted bidders (i.e., if
i∈ f(b)) and uM

i (b) = 0 otherwise.
We assume the bidders are strategic in reporting their bids to the mechanism, aiming to maximize

their utility. A mechanism M is strategyproof if for every bidder i, for all bid vectors b−i = (bj)j 6=i,
and all bids bi of bidder i

uM
i (vi, b−i)≥ uM

i (bi, b−i).

A mechanism with an allocation rule f achieves an approximation ratio of ρ if

max
v

SW (OPT (v))

SW (f(v))
≤ ρ,

where OPT (v) = argmax
B∈I

{SW (B)} denotes a welfare-maximizing outcome.

Knapsack Auctions. Let M denote the set of m items and N denote the set of n bidders.
For each bidder i∈N in this setting there exists a size si such that bidder i’s valuation for a bundle
of items S is vi(S) = vi for all |S| ≥ si and vi(S) = 0 otherwise. We assume that the sizes si are
publicly known, while the valuations are private.

Single-Minded Combinatorial Auctions. For each single-minded bidder i∈N there exists
a bundle of items Si ⊆M such that bidder i’s valuation is vi(S

′
i) = vi for all S

′
i ⊇ Si and vi(S

′
i) = 0

otherwise. We assume that the sets Si are publicly known, while the valuations are private. A
combinatorial auction with single-minded bidders corresponds to a downward-closed binary single-
parameter problem in which I is all subsets of bidders that desire pairwise disjoint bundles of
items. We can assume that for any two bidders i and j, Si 6= Sj. We use si = |Si| to denote the size
of bidder i’s bundle, and let d=maxi{si} denote the size of the largest bundle across all bidders.

Given a problem instance with single-minded bidders, it will be useful to think about two dif-
ferent types of graphs. The bundle hypergraph Hb is an edge-weighted hypergraph whose vertices
correspond to the set of items and whose hyperedges correspond to the n bundles of the single-
minded bidders. The conflict graph Gc is a vertex-weighted graph whose vertices correspond to the
set of bidders, and an edge (i, j) exists if and only if the bundles of bidders i and j are in conflict,
i.e., Si ∩Sj 6= ∅. The weight of a hyperedge in Hb that corresponds to the bundle of bidder i is the
same as the weight of that bidder’s vertex in Gc, and they are both equal to vi. Finally, we let
ci(Gc) denote the degree of vertex i in Gc (the number of conflicts with bidder i’s bundle).

Deferred-Acceptance Auctions. A DA auction is a particular kind of mechanism for a
downward-closed binary single-parameter problem. It begins with all bidders being active, it oper-
ates in a sequence of stages, and after each stage it rejects some active bidder. This process contin-
ues, until the set of active bidders is feasible. At that point it accepts all the remaining bidders and
charges each bidder its threshold price, i.e., its smallest winning bid. Losing bidders pay nothing.

Definition 1. A DA auction operates in stages t≥ 1. In each stage t a set of bidders At ⊆N
is active; initially, A1 =N . The DA auction is fully defined by a collection of deterministic scoring
functions σAt

i (bi, bN\At
) that are non-decreasing in their first argument. Stage t proceeds as follows:

• If At is feasible, accept the bidders in At and charge each bidder i ∈ At its threshold price
pi(bi) = inf{b′i | i ∈ A(b′i, b−i)}, where A(b′i, b−i) denotes the set of bidders that would have been
accepted if the reported bids were (b′i, b−i) instead of (bi, b−i).



Dütting, Gkatzelis, and Roughgarden: The Performance of Deferred-Acceptance Auctions
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 7

• Otherwise, set At+1 =At \ {i} where bidder i ∈ argmini∈At{σAt
i (bi, bN\At

)} is an active bidder

with the lowest score.5

Note that each player i could be facing a very different scoring function, and the score of i at stage
t can depend arbitrarily on public information regarding the set At of bidders that remain active.
For instance, in the single-minded bidders setting, the scoring function can change arbitrarily as
a function of the set of bundles of the bidders in At. On the other hand, the score of i at stage t
cannot in any way depend on the bid values of bidders in At, though it can depend on the values
of previously rejected bids (something our DA auctions in this paper do not take advantage of).

At each stage t of the DA auction the mechanism computes the minimum score over all bidders.
If this score is σmin, then the threshold price for each bidder i that survived this stage is at least
the minimum b′it such that σAt

i (b′it, bN\At
) ≥ σmin. This can be computed via the inverse of the

scoring function σAt
i (·). In general, neither the scoring function nor its inverse function need to

be computationally tractable, but they are both easy to compute for all the DA auctions that we
study in this paper. Having computed b′it for each bidder i and stage t, the final price that bidder
i needs to pay is then equal to maxt{b′it}.

We conclude this section with two examples. The first is an example of a setting in which forward
greedy algorithms and DA auctions coincide. The second shows that we cannot implement the for-
ward greedy algorithm of Lehmann et al. [37] with a DA auction; and also that DA auctions unlike
forward greedy algorithms are not guaranteed to produce a maximal solution. Non-maximality is
a challenge to designing DA auctions, and for proving good approximation factors for them.

Example 3 (Matroid Settings). Suppose the set system I is a matroid, meaning that it also
satisfies the exchange property — whenever S,T ∈ I with |S|< |T |, there is a bidder i∈ T \S with
S∪{i} ∈ I. Then the forward and reverse greedy allocation rules coincide, for any scoring function
that is an increasing function of value only [36]. Indeed, this fact together with the properties
established in [42] give a novel perspective on previous results stating that the VCG mechanism
enjoys additional incentive properties in matroid environments (e.g.,[5]).

Example 4 (Separation and Non-Maximality). Recall the instance of a single-minded
combinatorial auction described in Figure 1. On this input the forward greedy algorithm that uses
the scoring function σAt

i (bi) = bi/si accepts bids 5 and 1. The same scoring function deployed in
a DA auction leads to a rejection of all the bids except bid 5 — a non-maximal solution. Note
further that, since the input is completely symmetric, every (anonymous) DA auction must start by
rejecting the lowest bid and its solution can therefore not coincide with that of this forward greedy
algorithm.

3. Knapsack Auctions. We begin this section by showing that, unlike forward greedy algo-
rithms, DA auctions fail to achieve a constant factor approximation of the optimal social welfare
in knapsack auctions; in particular, we show that DA auctions cannot implement a simple type of
MAX operator. We then present a DA scoring function that implements an approximate version
of this operator, which we leverage in order to design a DA knapsack auction.

3.1. Inapproximability Using DA Auctions. In proving the inapproximability result of
this section we identify the following class of problem instances which, as we show, poses a signifi-
cant obstacle to DA auctions.

Definition 2. An asymmetric set system comprises two disjoint feasible sets of bidders
G1,G2 ∈ I such that G2 contains a single bidder, i.e., |G2|= 1.

5 Ties can be broken arbitrarily but, for notational simplicity, we assume no two bidders have the same score.
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The fact that G1 is feasible and that G2 contains only a single bid means that, if the DA auction
were to reject the bid of G2, then it could accept all the remaining bids of G1. Nevertheless,
Theorem 1 shows that there exist problem instances based on a simple asymmetric set system
for which no DA auction can guarantee a good approximation ratio. In particular, given any DA
auction, we choose the values of the bids in G1 in such a way that the auction is forced to keep
rejecting bids in G1 instead of rejecting only the bid in G2. In order to achieve this, we ensure
that the auction rejects the bids of G1 in non-decreasing order of their bid values. In other words,
the auction starts by rejecting the least valuable bid in G1 and then gradually moves on to also
reject more valuable bids in G1. The following lemma shows that for any given DA auction and any
multiset of |G1| bid values, we can match these values to the bidders of G1 in a way that ensures
these bidders may only be rejected in a smallest-bid-first order.

Lemma 1. Given any DA auction, any asymmetric set system, and any multiset of bid values
b1 ≤ · · · ≤ b|G1|, there exists a way to match these bid values to bidders in G1 so that:

(1) The DA auction never rejects bidder i∈G1 before bidder j ∈G1 when bi > bj.
(2) The order of rejection of bids b1, . . . , bk does not depend on the values of higher value bids.

Proof. In order to guarantee Property (1), we construct an assignment such that for every t≤
|G1|, if i is the bidder who is assigned the t-th smallest bid value bt and j ∈At is any other active
bidder who is assigned bid value bt′ for t

′ > t, then

σAt
i (bt, bN\At) < σAt

j (bt′ , bN\At). (1)

For t = 1, since N \At is empty, Inequality (1) becomes σN
i (b1) < σN

j (bt′). In order to satisfy
this inequality, we assign b1 to the bidder i that yields the minimum score at this value, i.e.,
σN
i (b1)<σN

j (b1) for all other bidders j ∈G1. Since every bidder’s DA scoring function needs to be
non-decreasing with respect to its bid value, and using the fact that every other bidder j ∈G1 will
be assigned a value that is greater or equal to b1, we conclude that the score σ

N
j (bt′) of every other

bidder j ∈G1 at stage t= 1 will be at least σN
j (b1), so Inequality (1) is satisfied.

For t > 1 we assume that Inequality (1) holds up to stage t−1, which implies that the first t−1
rejected bidders have bid values b1 to bt−1. Therefore, we know what bN\At is and we can use it
in assigning the next value. We assign bid value bt to the bidder i ∈At that yields the minimum
score at this value, i.e.,

σAt
i (bt, bN\At) < σAt

j (bt, bN\At). (2)

Finally, using the fact that σAt
j (·) is a non-decreasing function of its first argument, Inequality (2)

implies that Inequality (1) holds at stage t as well.
To verify that Property (2) is satisfied, note that the assignment of any bid value does not depend

on bid values that have not yet been assigned. �

Using this lemma, we can now prove an inapproximability result regarding DA knapsack auctions.
In particular, the following theorem shows that no such auction can guarantee an approximation
factor significantly better than logm. Note that we prove this inapproximability result using only
the limitations implied by the definition of a DA auction. Therefore, this result holds even if
we disregard any computational constraints and assume that the auctioneer possesses unbounded
computational power.

Theorem 1. No DA knapsack auction can guarantee an approximation ratio of lnτ m for a
positive constant τ < 1, even if we disregard any computational constraints.

Proof. Consider the problem instance induced by an asymmetric set system when G1 contains
m bidders of size 1, and group G2 contains a single bidder of size m. The only maximal solutions
for this instance correspond to either accepting all the bids of G1 and rejecting the bid of G2, or
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accepting the bid of G2 and rejecting all the bids of G1. We prove that no DA scoring function can
always extract a 1/ lnτ m fraction of max{SW (G1), SW (G2)}.

To match the bid values (provided below) to the bidders of G1 we use the method described in
Lemma 1. Thus, at each stage of the DA auction, the decision of the auction amounts to either
rejecting the active bid of G1 with the smallest bid value, or rejecting the bid of G2. Let ct = |At\G2|
denote the number of remaining active bids in G1 at stage t of the DA auction, e.g., c1 =m. We
partition the bidders of G1 into κ sub-groups, where κ= ⌈1/(1− τ)⌉ is a constant. In defining which
sub-group each bidder belongs to we use the value of ct at which the bidder would be considered
for rejection. Sub-group β ∈ {1,2, . . . , κ} includes the bids of G1 for which ct ∈ C(β), where

C(β) =
(

κ
√
m

β−1
, κ
√
m

β
]

.

The highest value bid, i.e., the bid for which ct = 1 belongs to sub-group β = 1. Therefore, while
the DA auction does not reject the bid of G2, it rejects bids of G1 starting from sub-group κ and
gradually moving down to sub-group 1.

We restrict m to be a power of κ, thus ensuring that the endpoints of C(β) are integral for every
β. Also, for simplicity, the rest of this proof treats the κ

√
m

β
-th harmonic number as if it were

equal to β
κ
lnm for every sub-group β; this is without loss of generality.6 Using this assumption,

and according to the definition of the interval C(β), for every sub-group β

∑

ct∈C(β)

1

ct
≈ lnmβ/κ − lnm(β−1)/κ =

β

κ
lnm− β− 1

κ
lnm =

lnm

κ
. (3)

Let L= 1
κ
ln1−τ m and, for some very small positive constant ǫ < 1, let the value of the bidder of

group β that is considered for rejection in stage t be

(1− ǫβ)Lκ−β

ct · lnτ m
. (4)

Using Equation (3), the total value of the bids in sub-group β is equal to

∑

ct∈C(β)

(1− ǫβ)Lκ−β

ct · lnτ m
≈ lnm

κ
· (1− ǫβ)Lκ−β

lnτ m
= (1− ǫβ)Lκ−β+1, (5)

and the total welfare in G1, even if we only count the value in group β = 1 is

SW (G1) ≥ (1− ǫ)Lκ = (1− ǫ)
lnκ(1−τ)m

κκ
≥ (1− ǫ)

lnm

κκ
. (6)

We now show that, even if we let the value of the bid in G2 be equal to 1, i.e., SW (G2) = 1,
any DA auction that guarantees a lnτ m approximation will have to reject all of the bids in G1. In
order to show this we make repeated use of the fact that the bid values of G1 are assigned in a way
that satisfies Lemma 1. In particular, Property (2) of this lemma implies that, at any stage t, the
decisions of the DA auction up to this stage, as well as its upcoming decision regarding whether
it will reject the smallest-value active bid bi of G1 or the bid of G2 do not depend on the values of
the ct − 1 other active bids. Therefore, if the mechanism chooses to reject the bid of G2 at stage t
when facing the instance described above, then it would do the same even if the remaining ct − 1

6 It is known that limk→∞(Hk− lnk)≈ 0.577, so one can express Hk as (1± ǫ′) lnk where ǫ′ becomes arbitrarily small
as k goes to infinity. The arguments of the proof remain true as long as m, and hence also κ

√
m

β
, is large enough to

make ǫ′ substantially smaller than ǫκ, where ǫ is the constant used in (4).
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active bid values were all equal to bi. As a result, an lnτ m approximation mechanism can reject
the bid of G2 at some stage t only if ct · bi is at least max{SW (G1), SW (G2)}/ lnτ m.

First, assume that at some stage t the mechanism rejects the bid of G2 in favor of a bid i∈G1 that
belongs to sub-group κ. According to (4), the value of bid i is bi = (1− ǫκ)/(ct · lnτ m). Therefore, if
all the ct active bids of G1 also had a value of bi, then the total welfare extracted by the mechanism
would be ct · bi = (1− ǫκ)/ lnτ m. This would not be a lnτ m approximation of SW (G2) = 1 leading
to a contradiction.

Similarly, assume that at some stage t the mechanism rejects the bid of G2 in favor of a bid i∈G1

of any other sub-group β < κ. By the time that any bid of sub-group β is considered for deletion
though, all the bids of sub-group β+1, whose total value according to (5) is (1− ǫβ+1)Lκ−β, have
already been considered and rejected. This implies that, if the mechanism had instead accepted
all of the bids of G1, then the extracted welfare would have been at least (1− ǫβ+1)Lκ−β, and in
order to guarantee the desired approximation factor the mechanism would hence have to extract
a welfare of at least [(1− ǫβ+1)Lκ−β]/ lnτ m. But, similarly to the previous argument, the value of
bidder i in sub-group β is bi = [(1− ǫβ)Lκ−β]/(ct · lnτ m), and if all the other ct active bidders of G1

also had a value of bi the total welfare extracted by the mechanism would be [(1− ǫβ)Lκ−β]/ lnτ m,
which would not be lnτ m approximation.

Since the DA auction rejects all the bids of G1, the welfare that it extracts is SW (G2) = 1. But,
according to (6) the total value of bids in G1 is SW (G1)≥ (1− ǫ) lnm

κκ . Since κ and ǫ are constants,
for large enough values of m the value of SW (G1) is greater than lnτ m, so this mechanism does
not guarantee a lnτ m approximation. �

3.2. Approximate MAX Operator. At the core of the proof of Theorem 1 lies the inabil-
ity of DA auctions to implement a simple MAX operator for asymmetric set systems. Given an
asymmetric set system and some DA auction, let ct denote the number of active bids in G1 at
the beginning of stage t of the auction that are in conflict with the bid of G2. In what follows,
we propose a DA scoring function which implements an approximate MAX operator AM(G1,G2)
that extracts an Ω(1/ logm) fraction of max{SW (G1), SW (G2)} for any asymmetric set system;
we then use this operator in the rest of the paper as a subroutine.

AM(G1,G2) is induced by σAt
i (bi) =

{

bi if i∈G1

bi/ct if i∈G2

(7)

Theorem 2. The AM(G1,G2) operator is guaranteed to extract a welfare that is both
Ω(SW (G1)/ logm), and at least SW (G2) for any asymmetric set system.

Proof. Let V1 = SW (G1) and V2 = SW (G2) denote the welfare generated by the bids in G1 and
G2 respectively.

We begin by showing that the value that AM(G1,G2) extracts will always be at least V2. Clearly,
if the one bid of G2 is never rejected then the value of the accepted bids will be at least V2. If,
on the other hand, the bid of G2 is rejected at some stage t then its score is V2/ct, and hence
there exist at least ct active bids in G1 whose score is at least V2/ct (since they were not rejected
instead). Therefore, since the score of bids in G1 is equal to their value, even if the bid of G2 is
rejected, the total value of the remaining bids (all of which are accepted) is at least ct ·V2/ct = V2.

We now also show the value that AM(G1,G2) extracts will always be Ω(V1/ logm). Note that,
as long as the bid of G2 is not rejected, the score of each bid i∈G1 that was rejected at some stage
t is at most V2/ct. Therefore, the maximum total value that can ever be rejected by this scoring
function is

m
∑

ct=1

V2

ct
∈ O(V2 logm).
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If Ve denotes the welfare extracted by this operator and even if we assume that Ve was extracted

from bids of G1, we still get that V1 =O(Ve+V2 logm). Since we have already shown that Ve ≥ V2,

this proves the desired bound:

Ve

V1

∈ Ω

(

Ve

Ve +V2 logm

)

= Ω

(

V2

V2 +V2 logm

)

= Ω(1/ logm). �

3.3. DA Knapsack Auction. We now propose a DA knapsack auction, which begins by

partitioning the set of bidders into two groups, G1 and G2. Group G1 contains all the bids of size at

most m/2, and group G2 contains all the remaining bids. Then, the DA auction applies a different

scoring function on each one of the two groups. The score for each bid i in G1 is equal to bi/si (rank

by density), and the DA auction keeps rejecting the lowest scoring bid in G1 until the remaining

set of active bids in G1 is feasible. On the other hand, the bids in G2 are all rejected, except the

one with the highest value. Finally, the DA auction combines the remaining active bids G′
1 ⊆G1

and G′
2 ⊆G2 using the AM(G′

1,G
′
2) operator.

Algorithm 1 DA Knapsack Auction

1: Let G1 be the set of bids i for which si ≤m/2 and let G2 =N \G1

2: Use scoring function bi/si on G1, rejecting all but a feasible set of bids G′
1 ⊆G1

3: Reject all but the highest value bid of G2, and place that single bid in G′
2 ⊆G2

4: Use the scoring function of (7) on G′
1 and G′

2 to implement the AM(G′
1,G

′
2) operator

To verify that Algorithm 1 can, in fact, be implemented as a DA auction, consider the following

scoring function σAt
i (bi). If At contains at least two bids of size at most m/2 that are in conflict

with each other, then every such bid i has a score of σAt
i (bi) = bi/si, and all other bids have a

score of ∞. Otherwise, if At contains more than one bid of size greater than m/2, then every such

bid i has a score of σAt
i (bi) = bi and all other bids have a score of ∞. Finally, if neither of these

conditions are met by At, the score of each bidder is implied by the scoring function of (7).

Theorem 3. The DA knapsack auction achieves a O(logm) approximation for aribtrary

instances and a 2-approximation when d≤m/2.

Proof. We first show that max{SW (G′
1), SW (G′

2)} is a 2-approximation.

If the total size of the bids in G′
1, i.e.,

∑

i∈G′
1

si, is at least m/2, then SW (G′
1) is at least half

of the optimal social welfare. To verify this fact, note that the bids in G′
1 are the ones with the

highest value per size density so, even if the optimal solution used up all of the knapsack, it would

be with less or equal value per size and it would therefore lead to at most twice the value.

If on the other hand the total size of the bids in G′
1 is less than m/2, then G′

1 =G1 since any

bid in G1 would fit in the remaining space in the knapsack. Hence, if the optimal solution does not

accept any bids from G2, then SW (G′
1) is equal to the optimal social welfare. If the optimal solution

accepts a bid i∈G2 (clearly it cannot accept more than one due to their size), then SW (G′
2) is at

least as much as the value of i, so it must be the case that max{SW (G′
1), SW (G′

2)} is at least a

1/2 fraction of the optimal social welfare in this case as well.

If d≤m/2, then G2 = ∅, so SW (G′
1) is a 2-approximation, and the DA knapsack auction accepts

G′
1. If, on the other hand d>m/2, then according to Theorem 2, the AM(G′

1,G
′
2) operator always

extracts an Ω(1/ logm) fraction of max{SW (G′
1), SW (G′

2)}, which concludes the proof. �
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Figure 2. Single-minded combinatorial auction with n bidders and n+1 items.

4. Limitations of DA Auctions for Single-Minded Bidders. The rest of the paper
focuses on auctions involving single-minded bidders; in this section we begin by providing some
intuition regarding the limitations that the standard greedy algorithm scoring functions, as well
as many of their natural generalizations face when used for the design of DA auctions. The most
significant restriction that a DA scoring function enforces is that, although the score σAt

i (bi, bN\At
)

of bidder i at stage t may depend on the bundles that the other bidders want, it cannot depend
on the values that the active bidders have reported for their bundles.

We first provide an example showing that no scoring function of the form bi/g(si), where g is a
non-negative function, can guarantee a O(d) or o(m) approximation7. This shows that we cannot
simply cast the forward greedy algorithms of Lehmann et al. [37], which use bi/s

p
i for p≥ 0 as a

scoring function, into the DA auction framework.

Proposition 1. No DA auction with scoring function bi/g(si), where g is a non-negative func-
tion, can achieve an approximation ratio of O(d) or o(m).

Proof. Consider the instance such as the one in Figure 2 involving n bidders and m = n+ 1
items, and assume that the items are numbered from 1 to m from left to right. Also, let bidder i
be the bidder whose bundle consists of items i and i+1 for i∈ {1, . . . , n}, and let the valuation of
that bidder be 1− iǫ for some arbitrarily small constant ǫ > 0. All the bids have the same size so,
starting from bidder n, the DA auction will gradually reject every bidder except bidder 1, achieving
a social welfare of approximately 1. In contrast, the optimal outcome is attained by accepting every
bidder i s.t. i is odd, leading to a welfare of approximately m

2
. The approximation ratio for this

family of instances parameterized by m is therefore Ω(m) and, since d= 2 for any value of m, this
is also not O(d). �

Another natural class of scoring functions uses the number of active conflicts cAt
i of a bid i

at stage t in order to appropriately scale its score. More precisely, cAt
i , which we henceforth also

denote by just ci for simplicity, is the number of active bidders in At that are in conflict with i.
An example of a scoring function using ci to scale the score of i was studied by Sakai et al. [51]. In
particular, they showed that the scoring function σAt

i (bi) = bi/[ci(ci +1)] achieves the following:

Remark 1. The scoring function σAt
i (bi) = bi/[ci(ci + 1)] yields an approximation factor of

∆=maxi{ci1}, i.e., equal to the maximum degree in the conflict graph Gc at stage 1.

On problem instances with few conflicts, such as the one used in order to prove Proposition 1,
Remark 1 implies that this scoring function achieves good approximation guarantees in terms of
the maximum bundle size d and the total number of items m. On the other hand, the following
theorem, for which we provide a proof in the appendix, shows that neither this scoring function
nor generalizations of it can achieve the best known approximation guarantees in general.

Theorem 4. No DA auction with scoring function bi
f(ci)

, where f(x) ∈ Θ(xγ), γ ∈ R≥0 is a

non-negative and non-decreasing function, can guarantee a O(d) or o(m) approximation.

In fact, we also show that no scoring function in a broader class that uses both the size and the
number of conflicts of a bid can achieve the performance guarantees that we manage to get in the
following sections.

7 Note that a function is o(m) if it is O(m) but not Ω(m), i.e., when it grows strictly slower than m. Formally, given
two functions f(x) and g(x), we say f(x) is o(g(x)) if limx→∞ f(x)/g(x) = 0.
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Figure 3. On the left is the bundle graph for the first phase of the LHB mechanism. In this example we have
d= 3 and the bids appear as triangles containing three items each. The mechanism considers the items in the order
{a},{b, c},{d, e},{g,h},{f} and {i, j}. Grey ellipses in the left graph contain items that the mechanism considers
in tandem. Solid triangles correspond to marked bids, while dashed triangles are rejected bids. On the right is the
partition graph Gp induced by the first phase. Bold edges in this graph correspond to the maximum weight matching.

Theorem 5. No DA auction with scoring function bi
f(ci)g(si)

, where f(x) ∈ Θ(xγ) and g(x) ∈
Θ(xδ) (for γ, δ ∈R≥0) are non-negative and non-decreasing functions, can guarantee a O(d) approx-
imation, or O(

√
m · (logm)κ) approximation for any constant κ.

Note that our constructions for proving these general lower bounds, which can be found in the
appendix, are often non-trivial. For instance, the construction we use for proving the ω(

√
m ·

(logm)κ) lower bound when δ= 1/2 combines bidders with a variety of sizes and conflicts.

5. Locally Highest Bid: A O(d) Approximation Mechanism. In this section, we propose
a mechanism that aims to guarantee a good approximation of the optimal social welfare using the
maximum bundle size d as a parameter. We first describe and analyze the mechanism. Afterward we
show that a slightly modified version can be implemented as a DA auction, and achieves (almost)
the same performance guarantee.

5.1. The Locally Highest Bid Mechanism. The Locally Highest Bid (LHB) mechanism
follows two different phases; see Figure 3 for an example. The first phase prunes the bundle graph
by greedily rejecting all but the locally highest bid. The second phase translates the resulting
hypergraph into a bipartite graph such that matchings in this graph correspond to feasible solutions,
and computes a maximum weight matching in this graph. For the special case where d = 2, our
algorithm can be seen as a reverse greedy variant of a maximum weight matching approximation
algorithm by Drake and Hougardy [18].

First Phase. The first phase of the LHB mechanism (see Steps 1-12 of Algorithm 2) begins
by considering some arbitrary item u and, among all the bids that contain this item, it rejects all
but the bid b1 with the highest bid value. The mechanism marks bid b1 to denote that it should
not be considered again for rejection during the first phase. We will refer to bids that are neither
rejected nor marked as candidate bids. The bundle of bid b1 may contain q other items apart from
u, where q ≤ d − 1 since the size of this bundle is at most d. The next step of our mechanism
considers all these q new items in tandem, and it rejects all the candidate bids that contain at
least one of these q items, except the bid b2 with the highest value among them, which is marked
instead. Once again, bid b2 may contain some new items that have not been considered by the
mechanism in the past (i.e., different from the q+1 items that have been considered at this point).
As long as this is the case, the mechanism considers all these new items introduced by the latest
marked bid in tandem, it rejects all but their locally highest bid, and keeps repeating the steps
described above. If, on the other hand, either a marked bid does not introduce any new items or
the new items it introduces are contained in no candidate bids, the mechanism picks an arbitrary
item that has not been considered yet and repeats the same process until all the items have been
considered.
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Algorithm 2 LHB Mechanism

1: Let all the bids be initially unmarked, and let u be a pointer to an arbitrary item
2: if Item u is not contained in any candidate bids then
3: Point u to any other item that has not been pointed to before
4: end if
5: Reject all candidate bids that contain item u except the one with the highest value
6: The bid b that was not rejected contains q≤ d− 1 new items
7: if q > 0 then
8: Contract the q original items into one item and point u to this item8

9: Mark bid b and continue with Step 2
10: else if There exists some item that has not been pointed to then
11: Point u to that item and continue with Step 2
12: end if
13: Let Gp be the partition graph induced by the first phase of the mechanism
14: Accept the bids that correspond to the maximum weight matching of Gp

Second Phase. The first phase of the LHB mechanism quite naturally induces the following
edge-weighted partition graph Gp: items that are considered in tandem are represented by a vertex
and there is an edge of weight w between two vertices x and y if there is a marked bid of value bi =w
that contains items in the sets of both x and y. The second phase (see Steps 13-14 of Algorithm 2)
concludes by computing a maximum weight matching of Gp, and accepting the corresponding set
of bids, which is a feasible solution since, by definition of Gp, no two such bids share an item.

Theorem 6. The LHB mechanism guarantees a 2(d− 1) approximation.

For the proof of this theorem we use the following auxiliary lemma.

Lemma 2. The partition graph Gp is a forest of path graphs.

Proof. Let bk denote the k-th bid to be marked during the first phase. In order to prove this
lemma, we first focus on the first item that the mechanism considers. Since at most one of the bids
that contain this item survives the first phase of the mechanism, the edge corresponding to b1 is
the only one that covers the vertex of this item in Gp. Similarly, the vertex of Gp that corresponds
to the q items that bid b1 introduces may be covered only by b1 and b2. Therefore, among the bids
that survive the first phase of the mechanism, bid b1 will be in conflict only with bid b2. Using the
same arguments one can verify that for k ≥ 2, bid bk may be in conflict only with bids bk−1 and
bk+1, which implies that Gp will be a forest of path graphs. �

Proof of Theorem 6. The first phase of the LHB mechanism proceeds by rejecting and marking
bids until all the bids are either rejected or marked. In order to prove this theorem, whenever some
bid is rejected or marked, we assign this bid to the set of items that were being considered (in
tandem) when this took place. Therefore, after the completion of the first phase of LHB, every bid
has been assigned to one of the sets of up to d− 1 items that were being considered in tandem.

Since the set OPT (v) of bids that maximize the social welfare is non-conflicting, it must be the
case that at most d− 1 such bids have been assigned to the same set of items. To verify this fact
note that each such set consists of at most d− 1 items, and that the bundle of every bid that is
assigned to some set of items has to contain at least one of its items. If d or more bids of OPT (v)
were assigned to the same set of items, this would then mean that the bundles of at least two of
these bids are sharing one of the items, a contradiction.

8 The new item is then contained in all the bids that contained at least one of the original q items.
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Also, note that the mechanism ensures that for every set of items that has rejected bids assigned
to it, there is also a marked bid which has been assigned to it, and whose value is greater than or
equal to that of any one of those rejected bids (as it is the locally highest one). This implies that,
once the first phase is completed, the total value of the marked bids, and hence the total weight
of Gp is at least a 1/(d− 1) fraction of SW (OPT (v)).

Finally, Lemma 2 implies that Gp is a bipartite graph with a maximum degree of 2, and hence
the maximum weight matching will extract at least half of the total weight. Since the total weight
of the edges of Gp is at least a 1/(d− 1) fraction of SW (OPT (v)), the total value of bids that
correspond to the maximum weight matching is at least a 1/[2(d−1)] fraction of SW (OPT (v)). �

5.2. Implementation as a DA Auction. We now show how the mechanism described
above can actually be implemented as a DA auction with an additional loss of a factor of 2 in
the approximation guarantee. For the first phase of this mechanism we show that there exists an
appropriate scoring function that implements exactly the same sequence of steps. For the second
phase we provide a simple scoring function that can be used in order to extract a feasible solution
from the marked bids which is a 2-approximation of the maximum weight matching in the partition
graph.

First Phase. The DA auction implementation of the first phase of the LHB mechanism (see
Algorithm 3) imitates every step of the mechanism: whenever it considers some set of items (in
tandem), the score of any candidate bid that contains none of these items is set to infinity, while
the score of the other candidate bids is equal to their value. This scoring function is used as long
as there exist at least two candidate bids that contain items being considered; once this is not the
case anymore the DA auction has rejected all but the locally highest bid. Using the structure of the
bundle graph, the DA auction can then identify the new items (if any) introduced by the locally
highest bid and the scoring function changes in order to consider these items instead.

The key observation here is that, at any given point, the score of some bidder i essentially
depends only on where its bid is positioned in the bundle graph and on the value bi of that bid
alone. The only step of the LHB mechanism that uses the values of the reported bids is the step
that rejects all but the locally highest bidder and the scoring function described above provides
exactly the same outcome. Given this observation, the only remaining subtle point is to clarify how
the DA auction keeps track of which bids have been marked. The answer is that these bids are the
only non-rejected ones that contain items which have already been considered.

Second Phase. For the second phase of the mechanism we show how to approximately imple-
ment the mechanism using a DA auction. In specific, Lemma 2 implies that the conflict graph Gc

of the bidders that survived the first phase of the mechanism has a maximum degree ∆(Gc) of
at most two. In this much more convenient setting we can now use a DA auction according to
which, the score of bidder i is the ratio bi/[ci(ci +1)], where bi is the value of its bid and ci is the
number of other active bids that it is in conflict with. As we discussed in Section 4 (see Remark 1),
this auction guarantees an approximation factor of ∆(Gc), so it yields a 2-approximation of the
maximum weight matching. This additional loss of a factor of 2 implies the following theorem.

Theorem 7. The DA auction implementation of the LHB mechanism guarantees a 4(d− 1)
approximation.

6. Divide and Weigh: A O(
√
m logm) Approximation Mechanism. In this section we

provide a mechanism which aims to guarantee a good approximation of the optimal social welfare
using the number of items m as a parameter. In order to achieve an approximation factor better
than O(m) which, as we discussed in Section 4, none of the previously considered scoring functions
can achieve, we build upon the LHB mechanism of the previous section.
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Algorithm 3 DA Auction Implementation of the First Phase of the LHB Mechanism

1: Let all the bids be initially unmarked, and let u be a pointer to an arbitrary item
2: if item u is not contained in any candidate bids then
3: Point u to any other item that has not been pointed to before
4: end if
5: while There exist more than one candidate bids containing item u do
6: The score of any candidate bid that does not contain u is equal to infinity
7: The score of any candidate bid that contains u is equal to the value of its bid
8: Reject the bid with the lowest score value
9: end while

10: The bid b that was not rejected contains q≤ d− 1 new items
11: if q > 0 then
12: Contract the q original items into one item and point u to this item
13: Mark bid b and continue with Step 2
14: else if There exists some item that has not been pointed to then
15: Point u to that item and continue with Step 2
16: end if

The Divide and Weigh (DW) mechanism begins by partitioning the set of bids into two groups
G1,G2. Group G1 contains all the bids of size si ≤

√

m/ logm and group G2 contains all the
remaining bids. Then, our mechanism uses three different DA auctions as subroutines. First, it
applies the LHB auction on the bids of group G1; second, it rejects all but the highest bid from
the bids of group G2; finally, it combines the corresponding solutions using the approximate MAX
operator described in Section 3.2.

Algorithm 4 DW Mechanism

1: Let G1 be the set of bids i for which si ≤
√

m/ logm and let G2 =N \G1

2: Run the LHB mechanism on G1, rejecting all but a feasible set of bids G′
1 ⊆G1

3: Reject all but the highest value bid of G2, and place that single bid in G′
2 ⊆G2

4: Use the scoring function of (7) on G′
1 and G′

2 to implement the AM(G′
1,G

′
2) operator

Theorem 8. The DW mechanism guarantees a O(
√
m logm) approximation.

Proof. Let V1, V2 denote the maximum value that one could extract from a feasible subset of bids
of G1, and G2 respectively, and let V ≤ V1 + V2 be the maximum value (OPT (v)) that could be
extracted from G1∪G2. In what follows, we prove that the value extracted by the DW mechanism
is Ω(V/

√
m logm).

We first point out that, since the size of every bid in G1 is at most
√

m/ logm, Theorem 2
implies that the total value of the bids in G′

1, i.e., SW (G′
1) is Ω(V1/

√

m/ logm). Also, since the
size of every bid in G2 is more than

√

m/ logm, any feasible subset of bids in G2 contains less
than

√
m logm bids; otherwise, this subset would have to contain two bids whose bundles intersect.

This implies that, since the bid in G′
2 is the highest value bid of G2, then its value is more than

V2/
√
m logm.

Finally, according to Theorem 2, the value extracted by AM(G′
1,G

′
2) is guaranteed to be an

Ω(1/ logm) fraction of SW (G′
1), i.e., Ω(V1/

√
m logm), and at least SW (G′

2), i.e., Ω(V2/
√
m logm).

Since V1 +V2 ≥ V this completes the proof. �
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Note that, if we were willing to settle for a randomized mechanism, the algorithm that flips a
fair coin and, based on the outcome, either accepts all the bids of G′

1 or accepts the bid of G′
2,

would achieve a 1/2 approximation of max{SW (G′
1), SW (G′

2)} in expectation, while retaining all
the other nice properties that the DA auctions provide. In that case, a O(

√
m)-approximation

could be obtained by adjusting the DW mechanism so that G1 contains all the bids of size at most√
m and G2 contains the rest. The arguments in the proof of Theorem 8 would then imply that

max{SW (G′
1), SW (G′

2)}, which we could approximate within a constant, is an Ω(1/
√
m) fraction

of OPT (v). When it comes to deterministic mechanisms though, Theorem 1 implies that no mech-
anism that requires the MAX operator can guarantee better than a O(

√
m logm) approximation.

We leave the question of whether there exist other types of mechanisms that perform even better
as an interesting open problem.

7. Conclusion. Deferred-acceptance auctions guarantee strong incentive properties beyond
the basic dominant-strategy incentive-compatibility (DSIC) guarantee. This paper proposed the
research agenda of understanding the power and limitations of these auctions from an approxima-
tion perspective. We provided both positive and negative results for welfare-maximization in two
canonical problems: knapsack auctions and combinatorial auctions with single-minded bidders.

Looking forward, one natural direction is to consider other binary single-parameter problems for
which good DSIC mechanisms are known. More generally, what type of problem structure lends
itself to good deferred-acceptance auctions? Are there any approximate “black-box reductions,”
which convert (say) a forward greedy mechanism into a deferred-acceptance auction, with some
loss in the approximation guarantee?

Also, problems that are not binary single-parameter pose an intriguing challenge. Deferred-
acceptance auctions have not been defined for such problems. Even for problems where the defini-
tion may seem “obvious,” such as combinatorial auctions with single-minded bidders with unknown
(private) desired bundles, the present definition does not guarantee a DSIC mechanism, let alone the
stronger incentive properties enjoyed by deferred-acceptance auctions for single-parameter prob-
lems. Finally, it is unclear if non-trivial weakly group-strategyproof mechanisms exist for interesting
multi-parameter problems.
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Ilya Segal. This research is supported in part by NSF Awards CCF-1016885 and CCF-1215965, an
ONR PECASE Award, and an SNF Postdoctoral Fellowship.

Appendix A: Proof of Theorem 4. In this Appendix we consider the DA auction with
scoring function bi/f(ci), where f(x) ∈ Θ(xγ) for some γ ∈ R≥0. Subsection A.1 proves a lower
bound of ω(d), and Subsection A.2 proves a lower bound of Ω(m) for this auction.

A.1. Lower Bound in Terms of d. We distinguish two cases: γ > 1 and γ ≤ 1.
Case 1: γ > 1. Consider the following problem instance with d2 items which we partition into

d rows of d items each. For each row, there are C bidders, where C is some constant that we will
define below, whose bundle consists of exactly its d items;9 each one of these dC bidders has a value
of 1. Also, there are d more bidders, each of which is interested in a distinct column of d items,
and they all have a value of µdγ , where µ is some constant that we will define below. Therefore,
the dC “row bidders” initially have C + d− 1 conflicts each and a score of 1/f(C + d− 1), while
the d “column bidders” have dC conflicts each and a score of µdγ/f(dC).

9 If we wanted to ensure that no two bidders have the exact same bundle, we could just reduce the items per row to
d− 1 and add one distinct item for each one of these dC bidders.
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Since f(x)∈Θ(xγ) there exist constants x0, k1 > 0, k2 > 0 such that for all x≥ x0, k1 ·xγ ≤ f(x)≤
k2 ·xγ . If we choose C such that min(dC,C + d− 1)≥ x0 and C ≥ (d− 1)/(21/γ − 1), then

f(dC)

f(C + d− 1)
≥ k1 · (dC)γ

k2 · (C + d− 1)γ
≥ k1

2k2
· dγ .

If we choose µ< k1/2k2, this implies that the initial score of the row bidders will be greater than
that of the column bidders. As a result, facing such an instance, the DA scoring function bi/f(ci)
would start out by rejecting a column bidder. The removal of this bidder leaves the score of the
non-rejected column bidders unchanged and, since f is non-decreasing, it can only increase the
score of the non-rejected row bidders. Iterating this argument, we see that the DA scoring function
will keep rejecting column bidders until all column bidders are rejected.

Once this happens, the best possible outcome is to accept one bidder from each row, leading to
a social welfare of d. If, on the other hand, all the column bidders had been accepted, the social
welfare would be µdγ+1, so the approximation ratio is at least µdγ ∈ ω(d).

Case 2: γ ≤ 1. Consider the following problem instance whose conflict graph forms a tree.
The root has d children and any other vertex except the leaves has d− 1 children and 1 parent
(i.e., all the internal vertices have degree d). The weights of the vertices are defined recursively
in the following fashion: the weight of the root is 1 and the weight of the k-th of its d children
is (1− ǫ)/f(k), where ǫ > 0 is some constant which is arbitrarily smaller than the smallest vertex
weight. Also the weight of the k-th out of d− 1 children of any other internal vertex with weight
bi is (bi − ǫ)/f(k+1).

To verify that this conflict graph can indeed correspond to a set of bids of maximum size d note
that, since each bid has at most d conflicts, then we can let each conflict in this graph be due to
a distinct item. In other words, each edge of this conflict graph corresponds to a unique item and
the bundle of each bid is the set of items corresponding to the edges adjacent to its vertex.

We now show that, at any stage of the DA auction with scoring function bi/f(ci), the score of
any vertex that has active children is greater than the score of at least one of its active children.
This is initially true for any such vertex since it has some value bi and exactly d conflicts (a score
of bi/f(d)) while one of its children has a value of (bi − ǫ)/f(d) (a score less than bi/f(d) even if
this child has no other conflicts). Hence, the scoring function will begin by rejecting a leaf of the
conflict graph. Also, once a leaf is rejected, the property described above remains true. For this
we need to verify two things: (a) that it remains true for the grandparent of the node (if any) and
(b) that it remains true for the parent of the node if the parent had more than one child. For the
grandparent it remains true because if it had degree k before the removal then it still has degree
k. Hence its score is bi/f(k), while the value and hence the score of its rightmost active child is at
most (bi − ǫ)/f(k). For the parent, assuming it had k ≥ 2, children it remains true because if it is
the root then its degree drops by one to k−1 and its score drops to 1/f(k−1), while its rightmost
child after the removal has a value and hence a score of at most (1− ǫ)/f(k− 1). Similarly, if the
parent is not the root then its degree drops by one to k and its score drops to bi/f(k), while its
rightmost active child after the removal has a value and hence a score of at most (bi− ǫ)/f(k). As
a result, the scoring function will always reject a leaf, until the only bid remaining is that of the
root, leading to a social welfare of 1.

We conclude the proof by showing that for γ ≤ 1 there exist values of d such that the optimal
social welfare of the problem instance described above grows as a function of m, which can be
arbitrarily larger than d.

Since f(x)∈Θ(xγ) there exist constants k1 > 0, k2 > 0, x0 such that for all x≥ x0, k1 ·xγ ≤ f(x)≤
k2 ·xγ . Hence there exists a constant C such that

∞
∑

k=1

1

f(k+1)
≥ (1/k2) ·

∞
∑

k=1

1

(k+1)γ
−C. (8)
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For γ < 1 the series
∑∞

k=1 1/(k+1)γ diverges. So inequality (8) implies that the series
∑∞

k=1 1/f(k+
1) diverges as well. In particular there exists a constant q such that

∑q

k=1 1/f(k + 1) > 2. As
a result, for any fixed value of d ≥ q + 1, the total weight of the d children of the root will be
∑d

k=1(1− ǫ)/f(k)≥∑d−1

k=1(1− ǫ)/f(k+1)> 2(1− ǫ)> 1 and the total weight of the d− 1 children

of each internal node with weight bi will be
∑d−1

k=1(bi− ǫ)/f(k+1)> 2(bi− ǫ)> bi. Hence, since the
weight of the root is 1, the total weight of each level of the tree is at least 1, so the total weight
of the tree is at least logd−1m. Clearly, picking the best of either accepting all the odd or all the
even depth bids will yield a feasible solution whose social welfare is at least half of that.

A.2. Lower Bound in Terms of m. Consider the problem instance that involves m items
and 2m bidders. The first group of m bidders want a single distinct item each; the second group
of m bidders each want m− 1 items, but no two of them have the same bundle. Bidders in the
first group have m−1 conflicts each, while those in the second group have 2(m−1) conflicts each.
Finally, the value of the first group bidders is equal to the largest bi such that

bi
f(m− 1)

<
1

f(2(m− 1))
,

and the value of the second group bidders is 1.
This ensures that the auction begins by rejecting one of the bidders of the first group. The

removal of this bidder does not affect the scores of the other bidders in the first group and, since
f is non-decreasing, it can only increase the score of the bidders in the second group. Hence the
auction will continue rejecting bidders from the first group until it has rejected all of them. At this
stage, all the remaining bids are in conflict with one another so the auction can accept at most
one of them. This leads to a welfare of 1, whereas accepting all the first group bids would lead to
a total welfare of mbi. By definition of bi, we know that

bi + ǫ≥ f(m− 1)

f(2(m− 1))
. (9)

Since f(x) ∈Θ(xγ) there exist constants x0, k1 > 0, k2 > 0 such that for all x≥ x0, k1 · xγ ≤ f(x)≤
k2 ·xγ . Hence for every m such that m−1≥ x0 we have f(m−1)/f(2(m−1))≥ k1/k2 ·2−γ ∈Ω(1).
As a result, Inequality (9) implies that mbi is Ω(m).

Appendix B: Proof of Theorem 5. In this Appendix, we consider DA auctions with a
scoring function of the form bi/(f(ci) · g(si)), where f(x)∈Θ(xγ) and g(x)∈Θ(xδ). Note that, the
proof of subsection A.1 implies that any such scoring function has an approximation of ω(d). To
verify this fact, note that in the γ > 1 case instance all the bidders have the same bundle size, and
in the γ ≤ 1 case instance we can add items to each bidder’s bundle to make all of their sizes equal
to d. The rest of this section proves the ω(

√
m(logm)κ) bound for any constant κ.

We first consider the cases where either δ 6= 1/2 or γ 6= 1, and show that the approximation ratio
in these cases is Ω(mz) for some z > 1/2. This proves the claim as mz ∈ ω(

√
m(logm)κ) for all such

z and κ, because limm→∞mz−1/2/(logm)κ =∞.
Case 1: δ > 1/2. Consider the problem instance with just two bidders and m items. Bidder A’s

bundle contains all the items, while Bidder B’s bundle contains just one item. The value of Bidder
A is g(m), while the value of Bidder B is 1+ ǫ. Since both these bidders have exactly one conflict,
the scoring function will reject Bidder A. Hence the approximation ratio is Ω(mδ).

Case 2: δ < 1/2. Consider the problem instance that involves m items and 2m bidders. The
first group of m bidders want a single distinct item each; the second group of m bidders each want
m− 1 items, but no two of them have the same bundle. Bidders in the first group have m− 1
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conflicts each, while those in the second group have 2(m− 1) conflicts each. Finally, the value of
the first group bidders is equal to the largest bi such that

bi
f(m− 1)g(1)

<
1

f(2(m− 1))g(m− 1)
,

and the value of the second group bidders is 1.
This ensures that the auction begins by rejecting one of the bidders of the first group. The

removal of this bidder does not affect the scores of the other bidders in the first group and, since
f is non-decreasing, it can only increase the score of the bidders in the second group. Hence the
auction will continue rejecting bidders from the first group until it has rejected all of them. At this
stage, all the remaining bids are in conflict with one another so the auction can accept at most
one of them. This leads to a welfare of 1, whereas accepting all the first group bids would lead to
a total welfare of mbi. By definition of bi, we know that for any ǫ > 0

bi + ǫ≥ f(m− 1)g(1)

f(2(m− 1))g(m− 1)
. (10)

Since f(x) ∈Θ(xγ) there exist constants x0, k1 > 0, k2 > 0 such that for all x≥ x0, k1 · xγ ≤ f(x)≤
k2 ·xγ . Hence, for every m such that m−1≥ x0 we have f(m−1)/f(2(m−1))≥ k1/k2 ·2−γ ∈Ω(1).
Similarly, for any constant g(1), if x is large enough we have g(1)/g(m− 1)∈Ω(m−δ). As a result,
Inequality (10) implies that mbi is Ω(m

1−δ).
Case 3: δ= 1/2. If γ > 1 or γ < 1/2 there are simple proofs that provide a bound of Ω(m1/2+ǫ) for

a constant ǫ > 0, but what follows is a construction that works for any constant γ. To simplify the
notation, we assume that f(ci) = cγi , but the arguments can easily be extended to any f(ci)∈Θ(cγi ).

Consider the following conflict graph, parameterized by some value q > 1, which forms a tree of
fan-out at most q− 1. The root-bidder has a value of g(q), and q− 1 children such that the k-th
child has a value of g(q)/(k+ 1)γ , i.e., values g(q)/2γ, g(q)/3γ, . . . , g(q)/qγ. The remaining values
and fan-out is defined recursively as follows: if a vertex has value g(q)/αγ, then it has ⌊q/α⌋ − 1
children, and the k-th child has a value of g(q)/[α(k+ 1)]γ . In other words, the first child of the
root, which has a value of g(q)/2γ, has ⌊q/2⌋ − 1 children. If we assume that q is even, then the
values of these q

2
− 1 children are g(q)/4γ, g(q)/6γ, . . . , g(q)/qγ.

All the edges of the tree that we have defined correspond to unique items, and no bidder has
more than q−1 such items. For simplicity, we assume that every bidder i in this graph has a bundle
of size exactly q, and any of these q items that do not correspond to edges in the graph are part
only of the particular bidder’s bundle.

We now add two more bidders. Bidder A wants only the one item in the root’s bundle that does
not correspond to one of the root’s q− 1 edges. The value of Bidder A is g(1)∈O(1), and it is the
one that the DA auction will accept. Bidder B wants all the items, and its value is in Cg(m), for
some C that we define later.

Note that, after the addition of these two bidders the number of conflicts of every one of the
previous bidders increased by one, except for the root, whose conflicts increased by two. Every one
of the initial bidders i with value g(q)/αγ

i has a number of conflicts equal to ci = ⌊q/αi⌋+ 1 and
size q. Therefore, initially all these bidders have a score of

bi
cγi g(si)

=
g(q)/αγ

i

(⌊q/αi⌋+1)
γ
g(q)

≥ 1

(q+αi)γ
≥ 1

(2q)γ
.

Also, Bidder A, who has one conflict and size 1, has a score of 1, also at least 1/(2q)γ.
Now, let n(q) be the number of the bidders, excluding Bidder B, as a function of the parameter

q. The number of conflicts of Bidder B is equal to n(q), so its score is

bi
cγi g(si)

=
Cg(m)

(n(q))γg(m)
=

C

(n(q))γ
.
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To ensure that Bidder B will be rejected first, it suffices to ensure that

C

(n(q))γ
≤ 1

(2q)γ
⇐⇒ C ≤

(

n(q)

2q

)γ

.

We first show that, for any constant κ, the right hand side of this inequality is ω((logm)κ), which
means that we can let C := (n(q)/(2q))γ ∈ ω((logm)κ). We then show that, after the DA auction
rejects Bidder B, it will reject all of the bidders of the initial tree, and it will accept only Bidder
A, who has a value of O(1). As a result, since the value of accepting Bidder B instead would be
Cg(m)∈ ω(

√
m(logm)κ), this proves the desired bound.

Lemma 3. The number of tree vertices satisfies n(q)/q ∈ ω((log q)κ/γ), for any constant κ.

Proof. Aiming for a proof by contradiction, assume that there exists some constant κ such that
n(q) ∈O(q(log q)κ/γ). In what follows, we show that the number of vertices in level κ of the tree
that we defined is Ω(q(log q)κ−1) as a function of q. Therefore, if we let q be large enough, the
vertices at level ⌈(κ+1)/γ⌉+1 alone are Ω(q(log q)(κ+1)/γ), which is a contradiction.

It is easy to verify that the number of vertices in level κ of the tree is Ω(q(log q)κ−1) for κ= 1,
since the number of vertices at level 1 is exactly q. For the following levels, it is important to point
out that the k-th child of a vertex with ns siblings has Ω(ns/k) children as a function of ns. As a
result, the total number of children of the first q1/2 vertices of the first level as a function of q is

Ω





q1/2
∑

x=2

q

x



 = Ω(q log q1/2) = Ω(q log q),

and every one of these children has Ω(q1/2) siblings. Therefore, these Ω(q log q) vertices of the
second level are partitioned into sets of siblings, of size Ω(q1/2) each. If we let S be the set of sibling
sets in this level, then

∑

V ∈S |V | ∈ Ω(q log q) is the total number of these vertices. Also, the k-th
child of a set with |V | siblings has Ω(|V |/k) children of its own, as a function of |V |, which implies
that the total number of children in the next level whose parents correspond to the k-th child of
the second level is

Ω

(

∑

V ∈S

|V |
k

)

= Ω

(

∑

V ∈S

q log q

k

)

.

Therefore, the total number of children in the next level, even if we consider only the first q1/4

children of each set of siblings is

Ω





q1/4
∑

x=1

q log q

k



 = Ω(q log q log q1/4) = Ω(q(log q)2).

By repeating these arguments for the first q1/2
l
children of each sibling partition in level l, we

conclude that the number of vertices at level κ is Ω(q(log q)κ−1). �

In order to conclude the first part of the proof, the next lemma shows that we can replace log q
for logm in the lower bound of Lemma 3. This implies that (n(q)/q)γ ∈ ω((logm)κ), and thus
Cg(m)∈ ω(

√
m(logm)κ).

Lemma 4. For the family of instances that we have defined, log q ∈Ω(logm).

Proof. The number of items m in this instance is at most n(q)q, since every one of the initial
bidders has a bundle of size q. This implies that logm ≤ log(n(q)q) = logn(q) + log q. Since
we have assumed that n(q)/q ∈ o((logm)κ), this means that logn(q) − log q ∈ o(log logm). This
transforms the previous inequality to logm ≤ 2 log q + o(log logm), from which we can conclude
that log q ∈Ω(logm). �
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To conclude the proof, note that, once Bidder B is rejected, a vertex in the initial tree is only
rejected after all of its children have been rejected. Once the only two remaining bidders are the
root of the initial tree and Bidder A, note that the former has a value of g(q) and a bundle of size
q, while the latter has a value of g(1) and a bundle of size 1, so their scores are both 1. Therefore,
we can assume that the root gets rejected and Bidder A is the only one accepted.10
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