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Abstract. We provide a characterization of subgame-perfect equilibrium plays in a class
of perfect information games where each player’s payoff function is Borel measurable
and has finite range. The set of subgame-perfect equilibrium plays is obtained through
a process of iterative elimination of plays. Extensions to games with bounded Borel
measurable payoff functions are discussed. As an application of our results, we show that
if every player’s payoff function is bounded and upper semicontinuous, then, for every
positive epsilon, the game admits a subgame-perfect epsilon-equilibrium. As we do not
assume that the number of players is finite, this result generalizes the corresponding
result of Purves and Sudderth [24] [Purves RA, Sudderth WD (2011) Perfect information
games with upper semicontinuous payoffs. Math. Oper. Res. 36(3):468–473].

Keywords: perfect information games • subgame-perfect equilibrium • semicontinuity

1. Introduction
The setup. Considered are perfect information games played over a game tree of infinite depth. A single active
player is assigned to every history in the tree. The play begins at the empty history, called the root of the
tree. Once a given history is reached, the corresponding active player chooses an action leading to one of the
successor histories. This generates an infinite sequence of actions, called a play, which determines the payoffs.

We allow for an arbitrary set of players. Without loss of generality we require that each history has at least one
successor, and we impose no further restrictions on the game tree. We assume that each player’s payoff function is
bounded and Borel measurable with respect to the topology generated by the cylinder sets, as e.g., in Martin [20].
This is a very mild assumption. Games with semicontinuous payoffs (Purves and Sudderth [24], Flesch et al. [7]),
perfect information stoppinggames (e.g., Solan [25],Mashiah–Yaakovi [21]), recursive stochastic gameswithperfect
information (e.g., Flesch et al. [8], Kuipers et al. [16]) are all examples of gameswith Borel measurable payoffs.

Parts of the paper are written under an additional assumption that each player’s payoff function only takes
finitely many distinct values. The main reason to focus on payoff functions with finite range is that they serve
as natural approximations of bounded payoff functions.

This paper concentrates on the concept of subgame-perfect (ε--)equilibrium in pure strategies. The main
contribution of the paper is twofold. We discuss each contribution, and the additional results, in turn.
Contribution I. Our first contribution is a characterization of subgame-perfect equilibrium plays, in games

where the payoff functions are Borel measurable and have finite range. The stated characterization is obtained
using an algorithm of iterative elimination of plays.
The algorithm proceeds as follows. At each step of the algorithm and for each history of the game tree we

determine a certain payoff level, called the security level, for the player who is active at the given history. This
is the highest payoff level that the active player can be sure to attain when playing against any strategy profile
that only prescribes plays that have survived the elimination thus far. We then eliminate all plays with a payoff
lower than the active player’s security level. The algorithm terminates when no more plays can be eliminated.
The plays that remain are exactly those that are supported by some subgame-perfect equilibrium of the game. If
no plays remain, the game admits no subgame-perfect equilibrium. In general, the algorithm takes a transfinite
number of steps to terminate.

The main technical novelty of our work is in the definition of the security payoff level. The definition relies
on an auxiliary zero-sum game played by the deviator (Player I) against the strategy builder (Player II). Player I
effectively represents the active player at the given history in the original game, while Player II acts as his
artificial adversary.
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The game begins with Player I choosing an action. Player II then proposes a play that respects Player I’s
move. Player I then chooses to accept the proposed play or to deviate. In the former case, the game ends. In the
latter case, Player I also announces a deviation, and Player II proposes a new play that accommodates Player I’s
deviation. This process continues ad infinitum. Player II is restricted to propose plays that have survived the
elimination thus far. The value of this auxiliary zero-sum game is defined to be the active player’s security level.

We believe that the characterization established here could yield useful insights into the nature of subgame
perfection. Our second contribution on upper semicontinuous games, obtained as an application of this charac-
terization, serves as an illustration.

Contribution II. As an application of the characterization result, we address an open question raised by Purves
andSudderth [24]. Purves and Sudderthwork in a setup that is identical to ours, except for their assumption that the
number of players is finite. They show that if each player’s payoff function is bounded and upper semicontinuous,
then for each positive ε, the game admits a subgame-perfect ε-equilibrium. The authors further pose the question
of whether the assumption that the number of players be finite could be dispensedwith.
The technique that Purves and Sudderth use is an induction on the number of distinct payoff vectors in the

game. Because of this feature of their proof, extending it beyond the case of finitely many players seems to be
difficult. We take a different approach. We show that in games where each player’s payoff function has a finite
range and is upper semicontinuous, our algorithm returns a nonempty set of plays at each step of the iteration.
This allows us to deduce that any such game has a subgame-perfect equilibrium. The result for games with
bounded upper semicontinuous payoff functions then follows by discretizing the payoff functions, exactly as is
done by Purves and Sudderth.

Additional results. For games with bounded Borel measurable payoffs we obtain the following result:
subgame-perfect equilibrium plays survive all stages of the elimination. Conversely, a play that survives all
stages of elimination could be supported as a subgame-perfect ε-equilibrium play for each positive ε. We show
by means of an example that this result cannot be strengthened: there might be plays that survive all stages
of elimination and yet that are not supportable by any subgame-perfect equilibrium. We argue that such a
discrepancy arises because Player II might not have an optimal strategy in the auxiliary zero-sum game.
Our final result is motivated by the frequent use of the technique of discretizing payoff functions: approxi-

mating a given bounded payoff function by a function with finite range, as is done, for instance, by Mertens
and Neyman (see Mertens [22]), Flesch et al. [7], Purves and Sudderth [24], Flesch and Predtetchinski [10, 11].
The technique allows one to reduce the problem of existence of (subgame-perfect) ε-equilibrium for a game
with bounded payoff functions to the problem of existence of (subgame-perfect) 0-equilibrium for a game where
the payoff functions have finite range. We show that a game with bounded Borel measurable payoff functions
admits a subgame-perfect ε-equilibrium for each ε > 0 if and only if, for each ε > 0, there exists a Borel measur-
able ε-discretization of its payoff functions that admits a subgame-perfect 0-equilibrium. Our result could be
interpreted as saying that passing to discretizations is without loss of generality, at least if one is only interested
in the question of existence of subgame-perfect ε-equilibrium for every positive ε.

Related literature. Closely related to the algorithm developed here are recursive algorithms in Harris [14]
and in Flesch et al. [7]. Both algorithms terminate with the set of subgame-perfect equilibrium plays. Harris
considers the class of continuous games, whereas Flesch et al. assume that the payoff functions are lower
semicontinuous. For general payoff functions having finite range, the algorithm in Flesch et al. outputs the set
of plays that could be supported by a one-deviation immune strategy profile, that is, a strategy profile such
that no player could improve his payoff by deviating at a single history only.
Our algorithm shares a number of features with those in Harris and Flesch et al.: all three algorithms prescribe

iterative elimination of plays. At each step of the algorithm one determines a certain payoff level that a player
could, in some sense, guarantee for himself. What distinguishes the algorithm presented here is the way the
security payoff level is determined.

Harris and Flesch et al. only take into account deviations at a single history. More precisely, each of the
player’s actions is evaluated, assuming that the ensuing play will be the worst possible among those plays that
survived the elimination thus far. Equivalently, one could see this as a value of a “short” zero-sum game, where
the deviator is only allowed to deviate once, and is forced to accept the first proposal of the strategy builder.
In contrast, the “full” auxiliary zero-sum game employed here allows the deviator to deviate finitely or even
infinitely many times. Unlike the algorithms of Harris and Flesch et al., the algorithm proposed here does not
require the game to satisfy the one-shot deviation principle: indeed, the security payoffs capture the possibility
of infinite as well as finite deviations.

Flesch et al. [12] consider the class of free transition games and proves the existence of subgame-perfect
ε-equilibrium in mixed strategies using an algorithm of iterative elimination of plays. This algorithm operates
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with pairs of plays, rather than individual plays. In the construction of subgame-perfect ε-equilibria, the primary
play is to be followed with a high probability, and the secondary play, which acts as a threat, is to be followed
with a small probability. Kuipers et al. [16] refine this algorithm to establish the result for perfect information
stochastic games with the crucial feature that every player controls only one state. Alós-Ferrer and Ritzberger [1]
consider an algorithm very different from ours to obtain an existence of subgame-perfect equilibrium in a class
of continuous games.
Fudenberg and Levine [13] and Harris [15] develop a characterization of subgame-perfect equilibrium strate-

gies (rather than plays) by means of convergent sequences of subgame-perfect ε-equilibria in the truncated
games. Carmona [5] provides a characterization in terms of approximations of the game by payoff functions
with finite range. Alós-Ferrer and Ritzberger [2] derive a condition on the topology of the set of plays that is
both necessary and sufficient for the existence of a subgame-perfect equilibrium.
Brihaye et al. [4] obtain a characterization of one-deviation immune strategy profiles (called very weak

subgame-perfect equilibria there) for quantitative games played on finite graphs, using an algorithm motivated
by the one in Flesch et al. (2010a).

Le Roux [18] provides an intriguing analysis of games with ∆0
2–payoff functions. Essentially, he shows that,

in the two-player case, the game by Solan and Vieille [26] is the only payoff pattern that could rule out the
existence of subgame-perfect equilibrium.
Le Roux and Pauly [19] derive a number of existence results for subgame-perfect ε-equilibrium with infinitely

many players. These results are transfer results, i.e., starting with the existence of some type of equilibria for a
small class of games, they allow one to conclude the existence of some type of equilibria for a larger class. Our
result on discretization could also be seen as such a transfer result.
T. Brihaye, V. Bruyère, N. Meunier, and J.-F. Raskin (reported in Meunier [23]) provide a characterization of

games that admit a subgame-perfect equilibrium. With each perfect information game, they associate a two-
player zero-sum game, called the prover game. They show that the original perfect information game has a
subgame-perfect equilibrium if and only if player I has a winning strategy in the corresponding prover game.
They also give a similar characterization for one-deviation immune strategy profiles (called very weak subgame-
perfect equilibria there).

As we allow the player set to be infinite, our setup encompasses some classes of intergenerational games:
perfect information games where a player represents a generation and thus acts exactly once in the course of
the game. For a thorough review of such games, we refer to Balbus et al. [3]. In a related work, Cingiz et al. [6]
consider infinite centipede games where each player acts exactly once. Using truncations of the game tree, the
authors show the existence of subgame-perfect equilibrium under the assumption that the payoff functions are
upper semicontinuous.

The organization of the paper. In Section 2 we describe the class of perfect information games. In Section 3
we provide an informal overview of the algorithm, describe a formal definition, and discuss two illustrating
examples. Section 4 provides an overview of the main results. Proofs of the main results are carried out in
Sections 5 and 6. Section 7 is dedicated to the discussion of interesting special classes of games. Section 8
contains additional results.

2. The Model and Preliminaries
Finite and infinite sequences. Let � � {0, 1, 2, . . .} and let A be a nonempty set. We denote by A<� the set of
all finite sequences of elements of A, including the empty sequence �. A finite sequence of length t + 1, where
t ∈�, is denoted by (a0 , . . . , at). However, with a slight abuse of notation, we write a to denote the sequence (a)
of length 1. For h ∈ H we write (h , a) to denote the concatenation of h by a. We let A� denote the set of all
infinite sequences of elements of A. A typical element of A� is denoted p � (a0 , a1 , . . . ).

For a finite sequence h � (a0 , . . . , at) ∈A<�, sequences �, (a0), (a0 , a1), . . . , (a0 , . . . , at), are called prefixes of h. By
definition, the only prefix of � is �. We write g � h to mean that g is a prefix of a finite sequence h, and we
write g ≺ h if g is a prefix of h and g , h. For an infinite sequence p � (a0 , a1 , . . . ) ∈ A�, finite sequences �, (a0),
(a0 , a1), (a0 , a1 , a2), . . . , are called prefixes of p. We write h ≺ p to mean that h is a prefix of p.
Given h , e ∈ A<� and p ∈ A� we let (h , e) and (h , p) denote concatenations defined in an obvious way.
The game Ω. Let A be an arbitrary nonempty set. Elements of A are called actions. Let H be a subset of A<�

such that (1) � ∈ H, (2) if h ∈ H, then every prefix of h is an element of H, and (3) if h ∈ H, then there is a ∈ A
such that (h , a) ∈H. Elements of H are called histories. A play p is an element of A� such that every prefix of p
is an element of H. The set of all plays is denoted1 by P.

Let I denote an arbitrary nonempty set of players. Let ι: H→ I be a function that assigns an active player
to each history. Further, each player i ∈ I is given a so-called payoff function ui : P→ �. Thus a game Ω is
characterized by the sets I, A, H, and the functions ι and ui for each i ∈ I.
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The game Ω is played as follows: let h0 � �. Suppose a history ht ∈ H has been determined for some t ∈ �.
Player ι(ht) then chooses an action at such that (ht , at) ∈H. The players thus generate a play p � (a0 , a1 , . . . ), and
each player i ∈ I receives payoff ui(p).
This setup encompasses all games of finite duration. Another important special case is the situation when the

players receive instantaneous payoffs at every period of the game and then aggregate them into one payoff, for
example, by taking the discounted sum.

The topological structure. We endow the set A with the discrete topology, the set A� with the product
topology, and the set P with the topology as a subspace of A�. Denote this topology by T. A basis for (P,T) is
formed by the cylinder sets P(h)� {p ∈ P: h ≺ p} for h ∈ H.
The space (P,T) is completely metrizable. One can take, for example, the metric d: P × P → � given by

d(p , q) � 2−k(p , q) if p , q, where k(p , q) ∈ � is the length of the longest common prefix of p and q. A sequence
of plays (pn)n∈� converges to a play p precisely when for every k ∈ � there exists an Nk ∈ � such that for every
n ≥ Nk the plays pn and p have a common prefix of length k. The space (P,T) is separable (and hence Polish) if
and only if H is a countable set.2 This is clearly equivalent to the condition that for every h ∈ H there are only
countably many a ∈ A such that (h , a) ∈ H.
A function f : P→� is said to be upper semicontinuous if for each x ∈�, the set {p ∈ P: f (p) ≥ x} is closed. It is

easy to see that the following conditions are equivalent: (A) f is upper semicontinuous, (B) for every sequence
of plays (pn)n∈� converging to a play p, we have limsupn→∞ f (pn) ≤ f (p), and (C) for every p ∈ P and every δ > 0
there is a prefix h of p such that f (p) ≥ f (q) − δ for every q ∈ P(h). Intuitively, condition (C) means that any
play p has a prefix h such that p is maximal, or at least almost maximal, within P(h).
A function f : P→� is said to be lower semicontinuous if the function − f is upper semicontinuous. A function f

is continuous if and only if it is both upper and lower semicontinuous.
Strategies. In this paper, we only consider pure strategies, unless specified otherwise. A (pure) strategy for

player i is a function σi assigning to each history h ∈H with ι(h)� i an element σi(h) of A such that (h , σi(h)) ∈H.
The interpretation is that if a history h as above arises, then σi tells player i to choose the action σi(h). A strategy
profile is a tuple σ � (σi)i∈I where σi is a strategy for player i. Given a strategy profile σ and a strategy ηi for
player i, we write σ/ηi to denote the strategy profile obtained from σ by replacing σi with ηi .
A strategy profile σ induces a unique play at a history h ∈ H, denoted π(σ, h). It is an element of P(h). In

particular, the induced play at the root is π(σ,�).
Subgame-perfect ε-equilibrium. Let ε ≥ 0 be an error term. A strategy profile σ is called an ε-equilibrium if

no player can gain more than ε by a unilateral deviation, i.e., if for each player i ∈ I and for each strategy σ′i of
player i it holds that

ui(π(σ,�)) ≥ ui(π(σ/σ′i ,�)) − ε.
Mertens and Neyman (see Mertens [22]) showed that an ε-equilibrium exists for every ε > 0, provided that
the payoff functions are bounded and Borel measurable. Their proof is for finitely many players, but it can be
extended to infinitely many players along the same lines (see also Le Roux and Pauly [19]).
Subgame-perfect ε-equilibrium is a refinement of ε-equilibrium. A strategy profile σ is called a subgame-perfect

ε-equilibrium, or ε-SPE for brevity, if no player can gain more than ε by a unilateral deviation conditional on
any history. Formally σ is an ε-SPE if for each history h ∈ H, each player i ∈ I, and each strategy σ′i of player i
it holds that

ui(π(σ, h)) ≥ ui(π(σ/σ′i , h)) − ε.
A 0-SPE is simply called an SPE. For every h ∈ H define

P∗(h)� {π(σ, h): σ is an SPE in Ω}. (1)

The set P∗(h) consists of all plays that are induced by an SPE of the game Ω at history h. The set P∗(h) is a
subset of P(h). We refer to elements of the set P∗(�) as SPE plays.
Flesch et al. [9] provided a two-player game in which each player’s payoff function is bounded and Borel

measurable, yet the game admits no ε-SPE for small ε > 0, not even in randomized strategies.
Zero-sum games. We make use of the following lemma due to Mertens and Neyman (see Mertens [22],

p. 1567). The result ultimately rests on Borel determinacy by Martin [20].

Lemma 2.1. Let Ω be a two-player zero-sum perfect information game having a bounded and Borel measurable payoff
function. Then the game Ω has a value. Moreover, for each ε > 0, each player has a strategy that is ε-optimal in every
subgame (and, consequently, the game has an ε-SPE). If, in addition, the payoff function has finite range, then each player
has a strategy that is optimal in every subgame (and, consequently, the game Ω has an SPE).
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3. The Algorithm
In this section we discuss the algorithm of iterative elimination of plays that outputs the collection of sets P∗(h)
for h ∈H. We split this section into three sections. In Section 3.1, which is not intended to be rigorous, we give
a nontechnical overview and a motivation for the algorithm. In Section 3.2 we give a formal definition of the
algorithm. In Section 3.3 we illustrate the algorithm by means of two examples.
Throughout this section, we assume that the payoff function of each player has finite range and is Borel

measurable.

3.1. An Overview
We recursively define, for each history h, the sequence Pξ(h) of sets, and sequences βξ(h) and αξ(h) of payoffs,
indexed by an ordinal number ξ. The set Pξ(h) contains the plays that have survived the elimination up to
step ξ of the algorithm. Naturally, the sequence Pξ(h) is nested: as the algorithm proceeds, fewer and fewer
plays remain. The number αξ(h) is the security level for the player active at the history h. This is the payoff
level that the active player can be sure to guarantee for himself when playing against any strategy profile that
only prescribes plays that have survived the elimination process up to stage ξ. The number βξ(h), which is only
interesting when ξ is a limit ordinal, is the maximum of the security payoff levels αλ(h) over the ordinals λ
smaller than ξ.

Initialization. We initialize the recursion by letting P0(h) be the set of all plays having h as a prefix, and letting
β0(h)� α0(h) be the worst payoff for the player ι(h) in the subgame starting at the history h.

Step 1. At step 1 of the algorithm, we set β1(h) � α0(h) and P1(h) � P0(h), and we let the security level α1(h)
be the value of the following zero-sum game, denoted G1(h).
Player I of the game G1(h) is called the deviator, and Player II is called the strategy builder. Player I effectively

represents player ι(h) in the original game, while Player II acts as his artificial opponent. The game starts with
Player I taking an action a0 at the history h0 � h. Player II responds by proposing a play p0 extending the prefix
(h0 , a0). Player I now has a choice of either to accept p0, or to deviate. If Player I accepts, the game ends. If
Player I chooses to deviate, he announces a prefix h1 of p0 extending (h0 , a0) such that ι(h1) � ι(h0), and an
action a1 that is incompatible with p0. Player II responds by proposing a new play, p1, that extends the history
(h1 , a1). This process continues ad infinitum. In this way, the players generate the outcome play q: if Player I
accepts Player II’s proposal pk , then q � pk , while if Player I never accepts any proposal, then q is defined to be
the play extending the histories h0 , h1 , . . . . Player I’s payoff is given by uι(h)(q).

Thus α1(h) is the highest payoff player ι(h) can be sure to attain when playing against an arbitrary strategy
profile of his opponents. It is clear that in an SPE, player ι(h)’s payoff cannot be smaller than α1(h). Indeed, if it
were smaller than α1(h), player ι(h) could “beat” the assumed equilibrium and gain at least α1(h), by adopting
Player I’s optimal strategy in the game G1(h). This means that, at the next step of the algorithm, we can safely
eliminate any play p having h as a prefix that gives player ι(h) a payoff of less than α1(h).

Step 2. At the second step of the iteration, we let β2(h) � α1(h), and we let P2(h) consist of plays p having h
as a prefix, such that for each prefix g of p extending h, player ι(g)’s payoff on p is at least β2(g). In view
of the above discussion, P2(h) includes P∗(h). The security payoff level α2(h) is defined to be the value of the
game G2(h). The rules of the game G2(h) are similar to those of G1(h), but Player II is now restricted to propose
a play that is an element of the set P2(hk , ak), after a move (hk , ak) of Player I.
Thus α2(h) is the highest payoff level player ι(h) could be sure to get against any strategy profile that only

prescribes plays that survived the first round of elimination. It is also clear that player ι(h)’s payoff at history h
in any SPE is not smaller than α2(h).

General step. At a general step ξ of the iteration, we let βξ(h) denote the highest security level αλ(h) over all
iterations λ < ξ, and we define Pξ(h) as the set consisting of all plays p extending h that give a payoff of at
least βξ(g) for the player active at a prefix g of p. By a reasoning similar to that above we can see that Pξ(h)
includes P∗(h). The security level αξ(h) is defined as the value of the game Gξ(h) where Player II is restricted
to propose plays from the set Pξ(hk , ak).

Limit properties. For every history h the sequences thus defined enjoy the obvious monotonicity properties:
the sequence Pξ(h) is nonincreasing by inclusion, and the sequences αξ(h) and βξ(h) are nondecreasing. For a
sufficiently large ordinal number ξ∗, we have Pξ∗(h)�P∗(h) for every history h ∈H. Whenever Ω has an SPE, the
sets P∗(h) are nonempty. In this case αξ∗(h)� βξ∗(h) is the minimum of ι(h)’s payoff function on the set P∗(h).

This algorithm shares a number of features with that in Flesch et al. [7]. In particular, it produces a nested
sequence of sets of plays Pξ(h), and a nondecreasing sequence of security payoff levels αξ(h). The novelty of
our approach lies in the way the security payoff levels αξ(h) are determined.
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The definition of the payoff levels αξ(h) in Flesch et al. could be interpreted as being the value of the “short”
auxiliary zero-sum game in which Player I chooses action a0, Player II chooses a play p0 extending the history
(h0 , a0), and Player I has no choice but to accept p0. In contrast, in the “full” zero-sum game used here, Player I
is allowed to deviate arbitrarily often from the proposed plays.
This explains why our algorithm enjoys very different limit properties than the algorithm in Flesch et al.

The limit of the algorithm in Flesch et al. is the set of plays that could be supported by strategy profiles that
are immune to one-shot deviations. It is typically a superset of plays that could be supported by an SPE. Our
algorithm outputs the latter set. The two sets coincide if the game satisfies the one-shot deviation principle. For
a more elaborate discussion of one-deviation immunity we refer to Section 7.

Similar remarks apply to the comparison between our algorithm and that in Harris [14]. The essential differ-
ence (apart from the obvious differences in the setup) is the definition of the security levels.

3.2. The Formal Definition
For the ordinal 0 we define

P0(h)� P(h),
α0(h)� β0(h)� min

p∈P0(h)
uι(h)(p).

Let Φ(0) denote the statement that P0(h) is nonempty for each h ∈ H. The statement Φ(0) is obviously true.
For each ordinal ξ > 0 define

βξ(h)�max
λ<ξ

αλ(h), (2)

Pξ(h)�
{

p ∈ P(h): for each g ∈ H with h � g ≺ p
uι(g)(p) ≥ βξ(g)

}
. (3)

We also define Φ(ξ) to be the following statement:

“Pλ(h),� for each λ ≤ ξ and h ∈ H.” (4)

If Φ(ξ) is false, the algorithm terminates. In that case, for the sake of completeness we adopt the convention
that Pλ(h)�� for each λ > ξ and each history h ∈ H.
Assuming that the statement Φ(ξ) is true, consider an auxiliary perfect information game Gξ(h). This is a

zero-sum game where Player3 I essentially represents player ι(h). Players I and II move alternately, starting
with Player I, who makes an initial move of the form (h0 , a0) ∈ H, where h0 � h. Suppose that, at period k of
the game, Player I chooses a move (hk , ak) ∈ H. Then, Player II chooses a play pk ∈ Pξ(hk , ak). Subsequently, at
period k +1, Player I chooses either to accept pk , or to make a move (hk+1 , ak+1) ∈H, where (1) (hk , ak) � hk+1 ≺ pk
and ι(hk+1) � ι(h), and (2) the sequence (hk+1 , ak+1) is not a prefix of pk . In the latter case we say that Player I
deviates from pk at the prefix hk+1 with the action ak+1. If there is no move (hk+1 , ak+1) with the stated properties,
Player I has no choice but to accept pk . The outcome of the game is the unique play q extending the histories
h � h0 ≺ h1 ≺ · · · if Player I never accepts, or the play q � pk if Player I accepts pk at period k +1. Player I’s payoff
is then uι(h)(q), which is to be paid by Player II.
Finally, we define the security level as

αξ(h)� val(Gξ(h)),
the value of the game Gξ(h). The existence of the value is shown below in Lemma 3.1. This completes the
recursive definition.
Lemma 3.1. Let ξ be an ordinal such that the statement Φ(ξ) is true. Let h ∈H. The payoff function of the game Gξ(h) is
Borel measurable and has finite range. Consequently, the game has a value, and each player has a strategy that is optimal
in every subgame.
Proof. Take such an ordinal ξ and a history h ∈ H. The game Gξ(h) is a game in the sense of Section 2, once
we adopt the following convention: once Player I accepts a proposal by Player II (let us denote this action by
a∗), the game continues, Player I being the active player henceforth, and the only available action being a∗. With
this convention, a play in Gξ(h) has either the form

((h0 , a0), p0 , (h1 , a1), p1 , . . . ) (5)

or the form
((h0 , a0), p0 , . . . , (hk , ak), pk , a

∗ , a∗ , . . .), (6)
where the actions (hm , am) and pm of Gξ(h) obey the rules of the game as described above.
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Let Z denote the set of plays in Gξ(h). For each z ∈ Z let f (z) denote the outcome of the game Gξ(h). Thus
f (z) is the unique play that extends the histories h � h0 ≺ h1 ≺ · · · if z is of the form (5), or f (z) � pk if z is of
the form (6) for some k ∈�. Then Player I’s payoff function v in the game Gξ(h) is given by v(z)� uι(h)( f (z)) for
each z ∈ Z, that is, v is a composition of f and uι(h).
We endow Z with the topology as in Section 2. Then f : Z→ P is a continuous function: indeed, it is easy

to see that if a sequence (zn)n∈� converges to z then the sequence ( f (zn))n∈� converges to f (z). It follows that
f is Borel measurable. Now recall that the function uι(h) is assumed to be Borel measurable. It follows that v
is Borel measurable, being a composition of Borel measurable functions. Since uι(h) is further assumed to have
finite range, the function v has finite range. Now the result follows by Lemma 2.1. �

Notice that if the statement Φ(ξ) is true, then the game Gξ(h), the quantities αξ(h), βξ+1(h), and the sets
Pξ+1(h) are all well defined for each h ∈ H.

Lemma 3.2 (Monotonicity of the Sequences). Let ξ be an ordinal such that the statement Φ(ξ) is true. Then, for each
history h ∈ H it holds that
(a) Pλ(h) ⊇ Pξ(h) for every ordinal λ ≤ ξ,
(b) αλ(h) ≤ αξ(h) for every ordinal λ ≤ ξ,
(c) βξ(h) ≤ αξ(h)� βξ+1(h).

Proof. We first prove claims (a) and (b). Both claims are obvious if λ � 0. Thus, suppose that λ > 0. As λ ≤ ξ,
we have

βλ(h)�max
η<λ

αη(h) ≤max
η<ξ

αη(h)� βξ(h)

for each h ∈ H. Therefore, (a) follows. Now consider an optimal strategy for Player I in the game Gλ(h). By (a),
this same strategy can also be used in the game Gξ(h), while at the same time any strategy for Player II in the
game Gξ(h) is also a legal strategy in the game Gλ(h). It follows that Player I can guarantee a payoff of at least
αλ(h) in the game Gξ(h). Therefore, (b) holds. The claim (c) follows directly from (b). �

We argue that there exists an ordinal ξ∗ such that

Pξ∗(h)� Pλ(h) for all h ∈ H and all λ > ξ∗. (7)

Now, if Pξ(h) �� for some h ∈ H and some ordinal ξ, then by our convention Pλ(h) �� for all histories h and
all λ > ξ. Suppose that Pξ(h),� for all h and all ξ. Then in view of Lemma 3.2 there exists4 an ordinal ξ∗ such
that Pξ∗(h) � Pξ∗+1(h) for every h ∈ H. Finally the definitions imply that ξ∗ satisfies (7). Henceforth we let ξ∗ be
the least ordinal satisfying (7).

3.3. Examples
We illustrate the algorithm by means of two examples. The first example comes from Flesch et al. [9]. The game
has no SPE,5 and the algorithm of Section 3.2 outputs a collection of empty sets. The second example, which
admits a unique SPE, demonstrates that the algorithm might take more than ω steps to terminate.

Example 3.3 (Flesch et al. [9]). Consider the following two-player game. The action set is A � {1, 2}. Player 1
starts the game. The active player decides who the next active player is by choosing the corresponding action.
Let S0 denote the set of plays where both actions 1 and 2 are played infinitely many times, S1 the set of plays
of the form h1∞ � (h , 1, 1, 1, . . . ) for h ∈H, and S2 the set of plays of the form h2∞ � (h , 2, 2, 2, . . . ) for h ∈H. The
payoffs are (0, 0) for any play in S0, (−1, 2) for any play in S1, and (−2, 1) for any play in S2.
The values Pξ(h) and αξ(h) are given by the Table 1, where S1(h) � S1 ∩ P(h). The algorithm terminates after

four rounds with an empty set of plays at each history. Corollary 4.2 thus implies that the game has no SPE.
The entries of the table are obtained as follows. In view of item (3) of Lemma 3.2, the calculation of βξ(h) is

straightforward, so we focus on the computation of Pξ(h) and αξ(h).
Step 0. By definition.
Step 1. We have P1(h) � P(h) by definition. Consider player 1’s history h. In the game G1(h) Player I, who

represents player 1 of the original game, “realizes” that he can guarantee the payoff of −1 by always taking
action 1. Player II makes sure that Player I’s payoff is not greater than −1 by proposing, after each move (hk , ak)
of Player I, the play (hk , ak)2∞. This implies α1(h)�−1.
Consider player 2’s history h. In the game G1(h) Player I (who is essentially representing player 2 of the

original game) can guarantee the payoff of 1 since he can induce the play h2∞. Player II makes sure that I’s
payoff is not greater than 1 by proposing the play (hk , ak)2∞ after each move of Player I. We obtain α1(h)� 1.
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Table 1. The iterations in Example 3.3.

βξ(h) Pξ(h) αξ(h)

ξ ι(h)� 1 ι(h)� 2 ι(h)� 1 ι(h)� 2 ι(h)� 1 ι(h)� 2

0 −2 0 P(h) P(h) −2 0
1 −2 0 P(h) P(h) −1 1
2 −1 1 S1(h) {h2∞} ∪ S1(h) −1 2
3 −1 2 S1(h) S1(h) 0 2
4 0 2 � � ∗ ∗

Step 2. For each player 1’s history h we obtain P2(h) � S1(h). Consider player 2’s history h. The set P2(h)
consists of the play h2∞ and all plays of the set S1(h). Notice that h2∞ is an element of P2(h) since only player 2
is active along this play after history h.

Consider player 1’s history h. We have α2(h)�−1 as in Step 1.
Consider player 2’s history h and the corresponding auxiliary game G2(h). Player I realizes that, if he plays

action 1, he is proposed a play in the set S1(h , 1). Accepting such a proposal yields him the payoff of 2. This
leads to α2(h)� 2.

Step 3. For a player 1’s history h we obtain P3(h) � S1(h). Consider player 2’s history h. The play h2∞ is not
in P3(h) since it violates the beta value for player 2, which has been updated to 2. Consequently we have
P3(h)� S1(h).
Consider player 1’s history h and the corresponding auxiliary game G3(h). Suppose Player I’s makes the first

move (h0 , a0)� (h , 2). He is then offered a play p0, an element of the set P3(h , 2)� S1(h , 2). The play p0 could be
written in the form h11∞ for some player 1’s history h1 extending (h0 , a0). Consequently Player I could deviate
from p0 by playing (h1 , a1) � (h1 , 2). He is then offered a play p1 ∈ S1(h1 , 2). He could likewise deviate from p1.
Continuing this way, Player I induces a play in which both actions 1 and 2 appear infinitely often, yielding him
the payoff of 0. Thus α3(h)� 0.

For player 2’s history h we have α3(h)� 2, since α2(h)� 2.
Step 4. It is clear that there are no plays satisfying the beta levels of 0 and 2 for players 1 and 2, res-

pectively. C

Example 3.4. Consider an infinite centipede game with infinitely many players in which player 0 plays once,
and all other players move infinitely many times. All payoff functions are binary and are upper semicontinuous.
The set of players is I � �. Let �+

� �\{0}. Take any infinite partition {Si : i ∈ �+} of �+ such that each Si is
infinite. Player 0 is active in period 0 and each player i ∈ �+ is active at the infinitely many periods belonging
to Si . The action set is A � {s , c}, where s stands for stopping the game, and c for continuing. Player 0’s payoff
is 0 if any player stops, and 1 if no one stops. Player i ∈ �+ gets a payoff of 0 if a player j ≤ i stops the game,
and his payoff is 1 otherwise.
The algorithm is illustrated by the table below. The rows correspond to the iteration steps. The first column

shows the complement of Pξ(�), and the numbers in the remaining columns show the security levels αξ(h) for
the respective players, for nonterminal histories h, that is, histories where no one yet has stopped the game. We
let Bi be the set of plays where player i is the first player to stop.
The calculation of the values in Table 2 is straightforward. Consider iteration step ξ � 1. Take a player 1’s

history h. Then Player I (who represents player 1 of the original game) can guarantee the payoff of 1 in the
game G1(h) by never stopping. Thus α1(h)� 1. Take a player i’s history h where i > 1. Now Player I (representing

Table 2. The iterations in Example 3.4.

P\Pξ(�) ι(h)� 0 ι(h)� 1 ι(h)� 2 ι(h)� 3 · · ·

ξ � 0 � 0 0 0 0 · · ·
ξ � 1 � 0 1 0 0 · · ·
ξ � 2 B1 0 1 1 0 · · ·
ξ � 3 B1 ∪ B2 0 1 1 1 · · ·
...

...
...

...
...

...
...

ξ � ω B1 ∪ B2 ∪ · · · 1 1 1 1 · · ·
ξ � ω+ 1 B0 ∪ B1 ∪ B2 ∪ · · · 1 1 1 1 · · ·
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player i of the original game) cannot guarantee 1, since after any period where player i is active, eventually
there comes a period where player 1 is active, and if player 1 stops, player i gets payoff 0. Thus α1(h) � 0.
Likewise, α1(�)� 0.
At iteration step ξ � 2, player 1 never stops. Starting with player 2, the analysis is similar to that of the

previous paragraph. That is, for any history h of player 2 we have α2(h)� 1, and for any history h of player i > 2
we have α2(h)� 0. Likewise, α2(�)� 0.

A similar argument holds for each ξ < ω.
At iteration step ξ � ω, we obtain βω(�) � 0 and βω(h) � 1 for any history h other than �. As a consequence,

no player i ∈ �+ stops. Player 0, on the other hand, is still allowed to stop since βω(�)� 0.
At ξ � ω + 1, player 0 can guarantee 1 by playing continue. The iteration reaches a fixed point at ξ∗ � ω + 1.

Note that Pξ∗(�) is the singleton consisting of the play (c , c , c , . . . ). And indeed, in the unique SPE, each player
plays continue at each of his histories. C

It is not difficult to show, by means of examples like the one above, that the ordinal ξ∗ can be arbitrarily large.
Examples of this sort have been previously constructed in Flesch et al. [7] and Flesch and Predtetchinski [11].

4. Overview of the Main Results
In this section we provide an overview of the main findings of the paper. We first state two main results, and
then turn to the discussion of various additional results.
Our first result is a characterization of SPE plays in terms of the limit of the recursive sequence as defined in

the previous section. The proof is delegated to Section 5.

Theorem 4.1 (A Characterization of SPE Plays). Consider a perfect information game Ω. Assume that the payoff function
of each player has finite range and is Borel measurable. Then P∗(h)�Pξ∗(h) for every h ∈H. In particular, for a play p ∈ P,
there exists an SPE σ such that p � π(σ,�) if and only if p ∈ Pξ∗(�).
Corollary 4.2. Consider a perfect information game Ω. Assume that the payoff function of each player has finite range
and is Borel measurable. Then the game has an SPE if and only if Pξ∗(�) ,�, or equivalently, if and only if Pξ(h) ,�
for each history h ∈ H and each ordinal ξ.

We now turn to our second contribution, the existence theorems for games with upper semicontinuous
payoffs, which is from a technical point of view more demanding than the first. We apply Corollary 4.2 to
address an open problem raised in Purves and Suddeth [24]. The authors show that there is an SPE provided
that each player’s payoff function has finite range and is upper semicontinuous, and that the number of players is
finite. They further raise the question of whether one could dispense with the second assumption, the finiteness
of the player set. We answer the question affirmatively.

The technique employed by Purves and Sudderth is based on the induction on the number of distinct payoff
vectors in the game. This feature of the proof makes it difficult to extend it beyond the case of finitely many
players. Instead, we show that in games where each player’s payoff function has a finite range and is upper
semicontinuous, our algorithm returns a nonempty set of plays at each step of the iteration. This is Theorem 4.3.
Corollary 4.4 then follows by discretizing the payoff functions, exactly as is done in Purves and Sudderth [24].

Theorem 4.3 (Existence of SPE in Upper Semicontinuous Games). Consider a perfect information game. Assume that
the payoff function of each player has finite range and is upper semicontinuous. Then, Pξ(h) ,� for each history h ∈ H
and each ordinal ξ. Consequently, the game admits an SPE.

Corollary 4.4. Consider a perfect information game. Assume that the payoff function of each player is bounded and upper
semicontinuous. Then, for every ε > 0, the game admits an ε-SPE.

The assumption of upper semicontinuity implies that the sets Pξ(h) are all closed. This observation plays a
crucial role in the proof of Theorem 4.3. The proof is delegated to Section 6.
We presently turn to additional results. Our goal is to evaluate to what extent our results depend on the

assumption that every player’s payoff function only takes finitely many values. Therefore in the final section
of the paper we consider a richer class of games, games where the payoff functions are only required to be
bounded and Borel measurable.

In this larger class of games one can still show that Pξ∗(�) contains all SPE plays. The converse is no longer
true. However, we are able to show that each play in Pξ∗(�) could be induced as an ε-SPE for every ε > 0
(Theorem 8.1). This discrepancy arises because in the auxiliary zero-sum game Player II might not have an
optimal strategy. We refer the reader to Section 8.1 for a more thorough discussion of this point.
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Our final result concerns the technique of “discretizing” payoff functions, that is, approximating a bounded
payoff function by a payoff function having finite range. As mentioned in the introduction, the technique has
been used frequently to reduce the problem of existence of ε-SPE in games with bounded payoff functions to
the problem of existence of SPE in a game where the payoff functions have finite range. Also in this paper, it
is by means of a discretization of payoff functions that we pass from Theorem 4.3 to Corollary 4.4. Our result
could be interpreted as saying that passing to discretizations is without loss of generality, at least if one is only
interested in the question of existence of ε-SPE for every ε > 0. We refer to Theorem 8.3 for a rigorous statement
of the result.

5. The Proof of Theorem 4.1
The proof of the inclusion P∗(h) ⊆ Pξ∗(h) is straightforward: we show by induction on ξ that if σ is an SPE, then
π(σ, h) ∈ Pξ(h) for every history h ∈ H.

Proof that P∗(h) ⊆ Pξ∗(h) for each h ∈ H. Let σ be an SPE of Ω. Let Λ(ξ) be the following statement: π(σ, h) ∈
Pξ(h) for every history h ∈ H. We prove that Λ(ξ) is true for each ξ by transfinite induction on ξ.
For ξ � 0, the statement Λ(ξ) is true by the definition of P0(h). Now, for an ordinal ξ > 0, suppose that Λ(λ)

is true for all λ < ξ. We need to show that Λ(ξ) is also true.
Consider a history h ∈H. Take any history g ∈H such that h � g ≺ π(σ, h). We need to show that uι(g)(π(σ, h))
≥ βξ(g). Notice that π(σ, h)� π(σ, g). Thus, in view of (2) it is sufficient to show that

uι(g)(π(σ, g)) ≥ αλ(g) (8)

for every for every ordinal λ < ξ.
Take an ordinal λ < ξ and consider the game Gλ(g). The strategy profile σ induces a strategy ∆II for Player II

in the game Gλ(g), as follows: after Player I’s move (hk , ak) ∈H, let Player II propose the play pk � π(σ, (hk , ak)).
This is a legal strategy for Payer II since π(σ, (hk , ak)) ∈ Pλ(hk , ak) by the induction hypothesis. Let ∆I be a strategy
of Player I in the game Gλ(g) that makes the initial move (h0 , a0), where h0 � g and a0 � σι(g)(g), and then accepts
the first proposal of Player II. Clearly, using ∆I against the strategy ∆II results in the play π(σ, g) being proposed
and accepted. Since under the strategy ∆II Player II essentially proposes to follow the SPE strategy profile σ,
Player I can gain no more than uι(g)(π(σ, g)) by playing against ∆II. Hence, ∆I is a best response to ∆II. The
inequality (8) follows.
This proves that the statement Λ(ξ) is true. �

The intuition behind the proof of the inclusions P∗(h) ⊇ Pξ∗(h) is as follows. We first prove the inclusion for
h �� and then generalize to an arbitrary history h.
If p ∈ Pξ∗(�), we can define an SPE σ thus: from the root of the game Ω, follow the play p, as long as no

player deviates. If a player i deviates from p at a history h0 by playing action a0, choose some strategy Σh0
II

for Player II in the auxiliary game Gξ∗(h0) that is optimal in every subgame (recall that such a strategy exists
by Lemma 2.1). Then σ prescribes to follow the play p0 proposed by Player II under the strategy Σh0

II after the
history (h0 , a0). Suppose that some player deviates from p0 at a history h1 with an action a1. If it is player i
again, then σ prescribes to follow the play p1 proposed by Player II still under the strategy Σh0

II , after the history
((h0 , a0), p0 , (h1 , a1)). If the deviating player is other than i, choose some strategy Σh1

II for Player II in the auxiliary
game Gξ∗(h1) that is optimal in every subgame. Then σ prescribes to follow the play p1 proposed by Player II
under his strategy Σh1

II after the history (h1 , a1). The process thus continues ad infinitum.
Before we proceed to the proof, we recall that the set Pξ∗(h) is nonempty for some history h if and only if

Pξ∗(h) is nonempty for every h. We can thus assume that Pξ∗(h) , � for every h ∈ H, for otherwise there is
nothing to prove.

Proof that P∗(�) ⊇ Pξ∗(�). Take a p ∈ Pξ∗(�). We construct an SPE σ in Ω such that p � π(σ,�).
For each history g ∈H, fix a strategy Σg

II for Player II in the game Gξ∗(g) as in Lemma 3.1, i.e., a strategy that
is optimal in every subgame of Gξ∗(g).

Define a strategy profile σ in Ω as follows. The players are to follow the play p. Suppose that the players fol-
low p until history h0, with h0 ≺ p, where the first deviation occurs, by player ι(h0) taking action a0 incompatible
with p. Let p0 �Σ

h0
II (h0 , a0). Starting with the history (h0 , a0), the players are to follow the play p0.

Consider a sequence ((h0 , a0), p0 , . . . , (hk , ak), pk), where (h0 , a0), . . . , (hk , ak) are successive deviations and for
each m, the play pm is the play that σ prescribes the players to follow starting with the history (hm , am). Suppose
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that the next deviation occurs at a history hk+1, with (hk , ak) � hk+1 ≺ pk , and let ak+1 be player ι(hk+1)’s action
at hk+1 not compatible with pk . Let ` be the least element of {0, . . . , k + 1} such that ι(h`) � · · · � ι(hk+1). Define
pk+1 � Σ

h`
II ((h` , a`), p` , . . . , (hk , ak), pk , (hk+1 , ak+1)). Then, the players are to follow the play pk+1 starting with the

history (hk+1 , ak+1). This completes the definition of the strategy profile σ.
By construction, π(σ,�)� p. We argue that σ is an SPE in Ω.
First notice that for every history g ∈ H we have π(σ, g) ∈ Pξ∗(g). To see this, first suppose that g is a prefix

of p. Then π(σ, g)� p. Since p is an element of Pξ∗(�) and g is its prefix, p is also an element of Pξ∗(g), as desired.
Suppose now that g is not a prefix of p. Then to g there corresponds a sequence ((h0 , a0), p0 , . . . , (hk , ak), pk) as
above such that (hk , ak) is a prefix of g and π(σ, g)� pk . Since pk is an element of Pξ∗(hk , ak) and g is its prefix,
pk is also an element of Pξ∗(g), as desired.
Now, take any g ∈H. As Pξ∗(g)� Pξ∗+1(g), we have uι(g)(π(σ, g)) ≥ βξ∗+1(g)� αξ∗(g). Thus player ι(g) obtains at

least αξ∗(g) by playing in accordance with σ in the subgame of Ω starting with g. On the other hand, following
a deviation by player ι(g) at g, the strategy σ essentially replicates the behavior of Player II in the game Gξ∗(g),
so that the deviation yields no more than αξ∗(g). We conclude that σ is an SPE. �

Proof that P∗(h) ⊇ Pξ∗(h) for each h ∈ H. Now take a history h ∈H of length t and a play p ∈ Pξ∗(h). We construct
an SPE σ such that π(σ, h)� p.

An argument similar to that above could be used to show that the subgame of Ω starting at history h has
an SPE σh that induces the play p. Likewise, for each history h′ ∈ H of length t, the subgame of Ω starting
at history h′ has an SPE σh′ . Finally, we can use backward induction starting at period t to build a strategy
profile σ that is an SPE of Ω and that agrees with the strategy profiles σh′ for every h′ of length t in the subgame
following h′. In particular, π(σ, h)� p. �

6. The Proof of Theorem 4.3
Throughout this section, we assume that for each i ∈ I the function ui has finite range and is upper semicontin-
uous. The crucial consequence of this assumption is that the sets Pξ(h) are closed.

Lemma 6.1 (Closedness). Let ξ be an ordinal such that the statement Φ(ξ) is true. Then, for each history h ∈ H, the
set Pξ(h) is closed.
Proof. The set Pξ(h) can be expressed as an intersection of the set P0(h) and sets of the form {p ∈ P: ui(p) ≥ x}
where i is a player and x a real number. Since the functions ui are upper semicontinuous, all of such sets are
closed. As the intersection of closed sets is closed, the result follows. �

For an ordinal ξ let Ψ(ξ) denote the statement that for each h ∈ H there exists an action σξ(h) such that
(h , σξ(h)) ∈ H and

Pξ(h) ⊇ Pξ(h , σξ(h)). (9)

We shall prove that the statements Φ(ξ) and Ψ(ξ) are true for every ordinal ξ simultaneously by transfinite
induction. As remarked earlier, Φ(0) is true. Clearly Ψ(0) is also true. As σ0(h) one could take an arbitrary
action a such that (h , a) ∈ H.

Lemma 6.2. Let ξ be an ordinal such that the statements Φ(ξ) and Ψ(ξ) are both true. Then, for each h ∈ H, the play
π(σξ , h) is an element of Pξ(h).
Proof. Take a history h ∈H. Let p � π(σξ , h) and let h0 , h1 , . . . be the enumeration of the successive prefixes of p
starting with h0 � h. By Φ(ξ), the set Pξ(ht) is nonempty for each t ∈�. By (9), we know that Pξ(h0) ⊇ Pξ(h1) ⊇ · · · .
Now take any pt ∈ Pξ(ht) for every t ∈ �. Then pt ∈ Pξ(h). Clearly, the sequence {pt} converges to the play p.
Since Pξ(h) is a closed set by Lemma 6.1, we conclude that p ∈ Pξ(h), as desired. �

Lemma 6.3. Let ξ be a limit ordinal such that the statements Φ(λ) and Ψ(λ) are both true for each λ < ξ. Then, Φ(ξ)
and Ψ(ξ) are also true.

Proof. Take a history h ∈H. Define recursively the sequence h0 , h1 , . . . of histories and the sequence of ordinals
λ0 , λ1 , . . . as follows. Let h0 � h. Suppose that the history hk has been defined. Let λk < ξ be a successor ordinal
such that

βλk
(hk)� βξ(hk).

If k > 0, we require in addition that λk−1 ≤ λk . To see that such an ordinal exists, notice that by (2), the sequence
(βλ(hk))λ<ξ is nondecreasing, and maxλ<ξ βλ(hk) � βξ(hk). Hence, there is an ordinal λ∗ < ξ such that βλ(hk) �
βξ(hk) for each λ with λ∗ ≤ λ < ξ. This implies that there does exist an ordinal λ with the desired properties.
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Let hk+1 � (hk , σλk
(hk)). This completes the recursive definition.

Now for each k ∈ �, we have the inclusions

Pλk
(hk) ⊇ Pλk

(hk+1) ⊇ Pλk+1
(hk+1), (10)

where the first inclusion is by (9), and the second inclusion holds by λk ≤ λk+1 and by Lemma 3.2. Hence,
for k , ` ∈ �

Pλk
(hk) ⊇ Pλ` (h`), whenever k ≤ `. (11)

Let p be the unique play extending the histories h0 ≺ h1 ≺ · · · . We argue that p ∈ Pξ(h).
For each ` ∈ �, let p` be an arbitrary element of the set Pλ` (h`). Since h` is prefix of p` , the sequence {p`}`∈�

of plays converges to the play p. Now fix a k ∈ �. We know by (11) that p` ∈ Pλk
(hk) for all ` ≥ k. As Pλk

(hk) is
a closed set by Lemma 6.1, we conclude that p ∈ Pλk

(hk). Thus uι(hk )(p) ≥ βλk
(hk) � βξ(hk). Since this is true for

each k ∈ �, we conclude that p ∈ Pξ(h).
This proves the statement Φ(ξ).
To prove the statement Ψ(ξ), let σξ(h0)� σλ0

(h0). We show that Pξ(h0) ⊇ Pξ(h0 , σξ(h0)). Take a q ∈ Pξ(h0 , σξ(h0)).
To prove q ∈ Pξ(h0), it suffices to show that uι(h0)(q) ≥ βξ(h0). We have Pλ0

(h0) ⊇ Pλ0
(h1) ⊇ Pξ(h1) � Pξ(h0 , σξ(h0)),

where the first inclusion comes from (10), and the second one is by monotonicity. So q ∈ Pλ0
(h0) and hence

uι(h0)(q) ≥ βλ0
(h0)� βξ(h0), as desired.

This proves the statement Ψ(ξ). �

We now proceed with the more challenging part of the proof: showing that if Φ(ξ) and Ψ(ξ) are both true
for some ordinal ξ, then Φ(ξ + 1) and Ψ(ξ + 1) are also true.

Let ξ be an ordinal such that the statements Φ(ξ) and Ψ(ξ) are true. Take an h ∈ H. Fix some σξ(h) satisfy-
ing (9). Also fix some optimal strategy Σh

ξ for Player I in the game Gξ(h). Suppose that (h , a) is the first move
Player I makes under the strategy Σh

ξ . Define σξ+1(h)� a.
Given a set F ⊆ I of players, let σF

ξ (h) denote σξ(h) if ι(h) < F and denote σξ+1(h) if ι(h) ∈ F. Thus, in particular,
σ�ξ (h)� σξ(h) and σI

ξ(h)� σξ+1(h). Define also

PF
ξ (h)�

p ∈ P(h):
for every g ∈ H with h � g ≺ p
if ι(g) ∈ F then uι(g)(p) ≥ αξ(g)
if ι(g) < F then uι(g)(p) ≥ βξ(g)

 .
Thus, in particular, P�ξ (h) � Pξ(h). In view of Claim (3) of Lemma 3.2, PI

ξ(h) � Pξ+1(h). By the same claim, if
F ⊆ E ⊆ I then PF

ξ (h) ⊇ PE
ξ (h). As in Lemma 6.1 the sets PF

ξ (h) can be shown to be closed.

Lemma 6.4. Let ξ be an ordinal such that the statements Φ(ξ) and Ψ(ξ) are true. Then, for each h ∈ H and each F ⊆ I,
it holds that PF

ξ (h) ⊇ PF
ξ (h , σF

ξ (h)).

Proof. Take a p ∈ PF
ξ (h , σF

ξ (h)). We distinguish two cases, depending on whether ι(h) is an element of F or not.
Suppose first that ι(h) < F. In order to show that p ∈ PF

ξ (h), it suffices to prove that uι(h)(p) ≥ βξ(h). We have
σF
ξ (h) � σξ(h). Moreover, Pξ(h) ⊇ Pξ(h , σξ(h)) ⊇ PF

ξ (h , σξ(h)), where the first inclusion is (9). Hence p ∈ Pξ(h) and
thus uι(h)(p) ≥ βξ(h).

Suppose now that ι(h) ∈ F. In order to show that p ∈ PF
ξ (h), it suffices to prove that uι(h)(p) ≥ αξ(h). We

have σF
ξ (h) � σξ+1(h). Now recall that Σh

ξ is an optimal strategy for Player I in Gξ(h) such that its first move is
(h , σξ+1(h)).

Suppose that, following Player I’s move (h0 , a0) � (h , σξ+1(h)), Player II proposes the play p0 � p. This is a
legitimate move by Player II since p0 ∈ PF

ξ (h0 , a0) ⊆ Pξ(h0 , a0). Consider Player I’s reaction to p0.
If, under the strategy Σh

ξ , Player I accepts p0, we must have uι(h)(p0) ≥ αξ(h), for otherwise Σh
ξ would not be

optimal. Now suppose that, under the strategy Σh
ξ , Player I responds to p0 by making a move (h1 , a1) ∈H. From

Player II’s point of view, what follows then is strategically equivalent to what happens in the game Gξ(h1) after
Player I makes the move (h1 , a1). Hence, following (h1 , a1), Player II can make sure that I’s payoff is not greater
than αξ(h1). Since Σh

ξ is optimal, we must then have αξ(h1) ≥ αξ(h). Since (h0 , a0) � h1 and since p0 ∈ PF
ξ (h0 , a0),

we also have uι(h)(p0) ≥ αξ(h1). It follows that uι(h)(p0) ≥ αξ(h), as desired. �

Lemma 6.5. Let ξ be an ordinal such that the statements Φ(ξ) and Ψ(ξ) are true. Let F ⊆ I be a finite set. Then, for each
h ∈ H, the play π(σF

ξ , h) is an element of PF
ξ (h).
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Proof. The proof is inductive on the cardinality of F. Lemma 6.2 implies that the result holds for the set F ��.
Suppose that the statement has been proven for each set F ⊆ I of cardinality n. Consider a set E ⊆ I of cardinality
n + 1. We prove that for each h ∈ H the play π(σE

ξ , h) is an element of PE
ξ (h).

Take a history h ∈ H. Let p � π(σE
ξ , h) and let h0 , h1 , . . . be the enumeration of the successive prefixes of p

starting with h0 � h. In view of Lemma 6.4, we have the inclusions PE
ξ (h0) ⊇ PE

ξ (h1) ⊇ · · · . Therefore, it suffices to
show that there is a t ∈ � such that p ∈ PE

ξ (ht).
Take an arbitrary player i ∈ E. We consider two cases, depending on whether player i controls finitely or

infinitely many prefixes of the play p.
Suppose first that player i controls only finitely many prefixes of the play p. Let K ∈� be such that none of the

prefixes hK , hK+1 , . . . are controlled by player i. Then p � π(σE
ξ , hK)� π(σF

ξ , hK), where F �E\{i}. By the induction
hypothesis the play p � π(σF

ξ , hK) is an element of PF
ξ (hK). Again using the fact that none of the prefixes of p

after time K are controlled by player i, we conclude that p ∈ PE
ξ (hK).

Suppose now that player i controls infinitely many prefixes of the play p. Let ht0
, ht1

, . . . be the subsequence
of the sequence h0 , h1 , . . . of the prefixes of p that are controlled by player i. We let gk � htk

for each k ∈ � and
we let ak denote the action of p following the prefix gk , that is, (gk , ak)� (htk

, ak)� htk+1. Define

α∗ � limsup
k→∞

αξ(gk) and β∗ � limsup
k→∞

βξ(gk).

Since the sequences αξ(gk) and βξ(gk) only assume finitely many values, there exists a K ∈� such that α∗ ≥ αξ(gk)
and β∗ ≥ βξ(gk) for each k ≥ K.
We show that p ∈ PE

ξ (gK).
It holds that ui(p) ≥ αξ(gk) for every k ≥ K. To see this, notice that for each k there is a play qk � gk such that

ui(qk) ≥ αξ(gk). Such a play can be obtained as an outcome in the game Gξ(gk) where Player I follows an optimal
strategy. Notice that the sequence {qk} converges to p as k tends to infinity, and that upper semicontinuity of
the function ui implies that ui(p) ≥ α∗. The claim follows.
Thus, it remains to be shown that p ∈ PF

ξ (gK) with F � E\{i}.
Notice that for each k ∈ �, we have

PF
ξ (gk , ak) ⊇ PF

ξ (gk+1). (12)
To see this, recall that (gk , ak) � htk+1 and that gk+1 � htk+1

. Among the histories htk+1 , . . . , htk+1−1, none belongs to
player i. Hence, for each t ∈ {tk + 1, . . . , tk+1 − 1}, it holds that ht+1 � (ht , σ

E
ξ (ht)) � (ht , σ

F
ξ (ht)). Thus, Lemma 6.4

implies that PF
ξ (ht) ⊇ PF

ξ (ht+1). By unraveling the inclusions we obtain PF
ξ (htk+1) ⊇ PF

ξ (htk+1
), which is exactly (12).

Define
B � {q ∈ P: ui(q) ≥ β∗}.

Notice that the set B is closed since ui is upper semicontinuous. We next argue that

PF
ξ (gk) ∩ B ⊇ PF

ξ (gk , ak) ∩ B, for each k ≥ K. (13)

To see this, take a k ≥ K and a q ∈ PF
ξ (gk , ak)∩B. As ui(q) ≥ β∗ ≥ βξ(gk), and since ι(gk)� i is not an element of F,

we have q ∈ PF
ξ (gk), as desired.

Combining (12) and (13), we obtain the inclusions

PF
ξ (gk) ∩ B ⊇ PF

ξ (gk+1) ∩ B, for each k ≥ K. (14)

Finally, observe that βξ(gk) � β∗ for infinitely many k, and that for each such k it holds that PF
ξ (gk) ⊆ B.

As PF
ξ (gk) is nonempty by the induction hypothesis, we conclude that PF

ξ (gk) ∩ B is nonempty for infinitely
many k ≥ K, and hence in view of (14) for each k ≥ K. For each k ≥ K, take an arbitrary element qk ∈ PF

ξ (gk) ∩B.
Then qk ∈ PF

ξ (gK) ∩B by (14). Since both PF
ξ (gK) and B are closed sets and the sequence {qk} converges to p, we

conclude that p ∈ PF
ξ (gK) ∩ B. This completes the proof of the induction step. �

Lemma 6.6. Let ξ be an ordinal such that the statements Φ(ξ) and Ψ(ξ) are true. Then, for each h ∈H, the play π(σI
ξ , h)

is an element of PI
ξ(h).

Proof. Let p � π(σI
ξ , h) and let h0 , h1 , . . . be the enumeration of the successive prefixes of p starting with h0 � h.

For k ∈�, let Ik � {ι(h0), . . . , ι(hk)} and let pk � π(σ
Ik
ξ , h). By Lemma 6.5, pk ∈ PIk

ξ (h). Notice moreover that hk ≺ pk
for each k ∈�. Hence, the sequence {pk} converges to the play p. Now fix an m ∈�. For each k ≥ m it holds that
Ik ⊇ Im , and hence PIk

ξ (h) ⊆ PIm
ξ (h), so that pk ∈ PIm

ξ (h). As PIm
ξ (h) is a closed set, we conclude that p ∈ PIm

ξ (h). In
particular, uι(hm )(p) ≥ αξ(hm). Since this is true for each m ∈ �, it follows that p ∈ PI

ξ(h). �
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Lemma 6.7. Let ξ be an ordinal such that the statements Φ(ξ) and Ψ(ξ) are true. Then, Φ(ξ + 1) and Ψ(ξ + 1) are
also true.

Proof. Recall that PI
ξ(h) � Pξ+1(h) for each h ∈ H. Now the statement Φ(ξ + 1) follows by Lemma 6.6 and the

statement Ψ(ξ + 1) by Lemma 6.4. �

Combining Lemmata 6.3 and 6.7, and the fact that Φ(0) and Ψ(0) are true, we obtain the following result.

Lemma 6.8. For each ordinal ξ, the statements Φ(ξ) and Ψ(ξ) are true.
Thus, in particular Pξ∗(�),�. Theorem 4.3 now follows from Theorem 4.1.

7. Special Cases
In this section we discuss a number of interesting special cases of our model. We assume throughout that each
player’s payoff function has finite range.
Games satisfying the one-deviation principle. We say that a strategy profile is one-deviation immune (ODI)

if no player can improve his payoff by deviating at a single history. Formally, the strategy profile σ is ODI if for
each (h , a) ∈H it holds that uι(h)(σ, h) ≥ uι(h)(σ, (h , a)). Each SPE is clearly an ODI strategy profile, but in general
the converse is false. A game is said to satisfy the one-deviation principle if the set of its SPE equals the set of
ODI strategy profiles.
The importance of ODI strategy profiles for our work stems from the results of Flesch et al. [7], where the

authors define an algorithm terminating with the set of plays that could be supported by an ODI strategy profile.
This result thus provides a characterization of SPE plays in any game satisfying the one-deviation principle.
Furthermore Flesch et al. prove6 existence of an ODI strategy profile under the assumption that the number of
players is finite, and show, by means of an example in Section 4.3, that this assumption cannot be dropped.
The one-deviation principle is satisfied if each player i’s payoff function is lower semicontinuous in player i’s

own actions. This means that lim infn→∞ ui(pn) ≥ ui(p) whenever {pn} is a sequence converging to p such that for
each n ∈ � either pn � pn+1 or the longest common prefix of pn and pn+1 is controlled by player i. In particular,
player i’s payoff function is lower semicontinuous in player i’s own actions if (1) it is lower semicontinuous
in the sense of Section 2, or (2) if for each play p the set of prefixes of p where i is active is finite. Thus the
one-deviation principle is satisfied in a game where the player set is I ��, and player t is active at each history
of length t.
We presently turn to two important subclasses of games satisfying the one-shot deviation principle: the class

of games with continuous payoff functions (falling under condition (1) above), and the class of centipede games
where each player acts exactly once (falling under (2) above).

Games with continuous payoffs. Of particular importance for economic applications are games where the
payoff functions are continuous. Any such game satisfies the one-deviation property. Notice that a function
having a finite range is continuous if and only if each play p has a prefix h such that the function is constant
of P(h). Consequently, when the number of players is finite, one could prove existence of SPE by backward
induction starting with subgames where every player’s payoff function is constant.7 This technique runs into
difficulties when the number of players is not finite, since then there might be no such subgame. However,
whether the player set is finite or not, a slight modification of the algorithm in Flesch et al. [7] lends itself to a
proof of the existence of SPE (see Flesch and Predtetchinski [11]).
We remark that payoff continuity, as defined here, is weaker8 than the condition of continuity at infinity

as defined in Fudenberg and Levine [13] and in Carmona [5]. The two conditions are equivalent if the set of
actions is finite.
Infinite centipede games. Cingiz et al. [6] consider infinite centipede games where each player acts exactly

once. Assuming that the payoff functions are upper semicontinuous, the authors show that the game admits an
SPE. In this setup the method of finite truncations of the game tree suffices.
Games with upper semicontinuous payoffs and finitely many actions. Finally, we consider the class of

games where each player’s payoff function is upper semicontinuous and the set of actions is finite. In this class,
one could give an alternative proof of the existence of SPE, taking the concept of ODI as a starting point. While
this result is subsumed by Theorem 4.3, we believe that the proof warrants some attention. The main idea is to
consider ODI strategy profiles with respect to a certain refinement of the original payoff functions.
For simplicity, we assume that each player’s payoff function takes integer values (recall our assumption that

the range of the payoff function is finite). For each m ∈ �, let Vi(m)� {p ∈ P: ui(p) ≥ m}. We use the metric d on
the set of plays as defined in Section 2. For a play p ∈ P and a nonempty subset of plays Q ⊆ P we let d(p ,Q)
denote the distance from p to a set Q, i.e., the infimum of d(p , q) over q ∈Q and we let d(p ,�)� 0.
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For a player i ∈ I define
vi(p)� ui(p) − 1

2 d(p ,Vi(ui(p)+ 1)). (15)

The payoff function vi could be thought of as a “refinement” of ui that breaks indifferences by assigning a
higher rank to plays that are closer to the set of plays with the higher utility. Indeed, notice that vi(p) < vi(q)
precisely when either (A) ui(p) < ui(q) or (b) ui(p)� ui(q)� m and d(p ,Vi(m + 1)) > d(q ,Vi(m + 1)).

Furthermore, vi attains a minimum over any nonempty subset of plays, since ui has a finite range of integer
numbers, while d takes values in the set {0} ∪ {2−n : n ∈ �}. Finally, vi is upper semicontinuous. This follows
from the upper semicontinuity of ui and from the continuity of d(p ,Q) in p.
It is easy to prove that, in the game Ω′ with the payoff functions (vi)i∈I, the algorithm in Flesch et al. [7] is

well defined, and returns a nonempty subset of plays at every step. It is at this step of the proof that we need
to assume the set of actions to be finite. Consequently, the game admits an ODI strategy profile. Moreover, each
ODI strategy profile in Ω′ is an SPE in the original game Ω, with the additional term involving the distance in
Equation (15) making sure that deviations at infinitely many histories are not profitable.

8. On the Assumption of Finite Range
Until now we have performed our analysis under the assumption that every player’s payoff function only takes
finitely many values. In this section, we turn to a richer class of games, the games where the payoff function
is only required to be bounded and Borel measurable. In Section 8.1 we reconsider the characterization of SPE
plays, and in Section 8.2 we study discretizations of the payoff functions.

8.1. Extending the Characterization of SPE Plays
To accommodate for the payoff functions taking infinitely many values, we need a slight modification to our
definitions in Section 3: replace the formula (2) by

βξ(h)� sup
λ<ξ

αλ(h).

Theorem 8.1. Consider a perfect information game Ω. Assume that the payoff function of each player is bounded and
Borel measurable. Then P∗(�) ⊆ Pξ∗(�). Conversely, for each p ∈ Pξ∗(�) and each ε > 0 there exists an ε-SPE σ such that
p � π(σ,�).

The proof of the first claim of the theorem is similar to the first part of the proof of Theorem 4.1 in Section 5.
The proof of the second claim is similar to the second part of the proof of Theorem 4.1, with the difference that
one lets Σg

II be any Player II’s strategy that is ε-optimal in every subgame of Gξ∗(g), where ε > 0. Such a strategy
exists in view of Lemma 2.1.
Theorem 8.1 asserts that Pξ∗(�) contains all SPE plays and is contained in the set of ε-SPE plays for each

ε > 0. The discrepancy between Pξ∗(�) and P∗(�) stems from the fact that in the game Gξ∗(g) Player II might
have no optimal strategy. This point is further illustrated by the example below. The game considered in the
example has no SPE, so that P∗(�)��, whereas Pξ∗(h) is not empty for each history h.

Example 8.2. This is a modification of Example 3.3. There are two players, and the action set is A � {1, 2}.
Player 1 starts the game. The active player decides who the next active player is by choosing the corresponding
action. Let S0 denote the set of plays where both actions 1 and 2 are played infinitely many times, S1 the set of
plays of the form h1∞ � (h , 1, 1, 1, . . . ) for h ∈H, and S2 the set of plays of the form h2∞ � (h , 2, 2, 2, . . . ) for h ∈H.
The payoffs are (−1, 2) for any play in S1, and (−2, 1) for any play in S2. Player 2’s payoff on S0 is identically 0.

Player 1’s payoff function on S0 is defined as follows. For a play p � (a0 , a1 , . . . ) in S0 consider all blocks of consec-
utive 2’s, and denote the lengths of these blocks by m0 ,m1 , . . . . Thus for instance, if p � (1, 2, 2, 2, 2, 1, 2, 2, 1, . . . )
then m0 � 4, m1 � 2, etc. If the sequence {mn}n∈� is not eventually constant we let u1(p) � 0. If it is eventually
constant we let u1(p)�−1+ 2−m where mn � m for n large.
The essential feature of this game is that within the set S0 player 2 can force player 1’s payoff arbitrarily

close to −1. To do so, every time that player 2 becomes active, he should take action 2 exactly m times before
playing action 1, where m is sufficiently large. Notice however that player 2 cannot make sure that 1’s payoff is
exactly −1.

The values Pξ(h) and αξ(h) are given by the table below, where S1(h) � S1 ∩ P(h), and h2∞ denotes the play
(h , 2, 2, . . . ). The algorithm terminates after three rounds, with Pξ∗(h)� S1(h) for each history h.

For Steps 0, 1, and 2 the computation is similar to that in Example 3.3.
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Table 3. The iterations in Example 8.2.

Pξ(h) αξ(h)

ξ ι(h)� 1 ι(h)� 2 ι(h)� 1 ι(h)� 2

0 P(h) P(h) −2 0
1 P(h) P(h) −1 1
2 S1(h) {h2∞} ∪ S1(h) −1 2
3 S1(h) S1(h) −1 2

Step 3. We obtain P3(h) exactly as in Example 3.3. Consider player 1’s history h and the corresponding
game G3(h). Player II, for every m ∈ �, has a strategy that ensures that Player I’s payoff is not greater than
−1+2−m : namely, proposing at stage k the play pk � (hk , ak)2m1∞, i.e., the play where after (hk , ak) there follows m
times action 2, after which only action 1 is played. Consequently α3(h)�−1. Notice that Player II has no optimal
strategy.
We thus conclude that ξ∗ � 3 and Pξ∗(h)� S1(h) for all h ∈ H.
The game has no SPE. For suppose to the contrary and let σ be an SPE. Applying Theorem 8.1 to the subgame

of Ω starting at history h, we deduce that π(σ, h) is an element of Pξ∗(h)� S1(h) for each history h. This implies
that under the strategy σ2, player 2 eventually plays action 1. Let η1 be player 1’s strategy whereby action 2
is played at each of player 1’s histories. The profile of strategies (η1 , σ2) induces a play in S0, and hence gives
player 1 a payoff strictly greater than −1. We conclude that a deviation to η1 from σ1 is profitable, contradicting
the equilibrium hypothesis. C

8.2. On Discretizations of Payoff Functions
This section is motivated by the technique of discretizing payoff functions: approximating a given bounded
payoff function by a function with finite range.
Let ε > 0. Consider a payoff function ui : P→�. A function vi : P→� is said to be an ε-discretization of ui if the

function vi only takes finitely many values and for each p ∈ P we have |ui(p) − vi(p)| ≤ ε. A family v � (vi)i∈I of
payoff functions is an ε--discretization of the family u � (ui)i∈I if for each i ∈ I the function vi is an ε-discretization
of ui . We let Ω(u) and Ω(v) be the games with the family of payoff functions u, respectively v.
The result below could be interpreted as saying that passing to discretizations is without loss of generality, at

least if one is only interested in the question of existence of subgame-perfect ε-equilibrium for every positive ε.

Theorem 8.3. Consider a family of bounded Borel measurable payoff functions u � (ui)i∈I. The following conditions are
equivalent:
(a) For each ε > 0 the game Ω(u) has an ε-SPE.
(b) For each ε > 0 there exists a Borel measurable ε-discretization v of u such that the game Ω(v) has an SPE.

The fact that condition (a) implies condition (b) is straightforward: if v is an ε-discretization of u, each SPE
of Ω(v) is 2ε–SPE of Ω(u). We prove the converse implication.

Proof. Fix a subgame-perfect ε/2-equilibrium σ of the game Ω(u). We construct a Borel measurable ε-discreti-
zation v of u such that σ is an SPE of the game Ω(v).
For a player i ∈ I define the binary relation Ci on P as follows: p Ci q if there exists a history h ∈H with ι(h)� i

and a strategy ηi for player i such that σi(h) , ηi(h), p � π(σ, h), and q � π(σ/ηi , h). Roughly speaking p Ci q
means that player i can induce a deviation from p to q.

Claim 1. The binary relation C is transitive and well founded.

Proof of Claim 1. We omit the subscript i for simplicity.
To prove transitivity of C, take the plays p , q , r ∈ P such that p C q and q C r. It is clear that p , q and q , r.

Let the history h and the strategy ηi witness the relation p C q, and let the history h′ and the strategy η′i witness
q C r. Both h and h′ are then prefixes of the play q. Hence either h′ � h or h ≺ h′. If h′ � h ≺ q � π(σ, h′), we
have π(σ, h′)� π(σ, h), implying that q � p, a contradiction. Hence h ≺ h′. Now let η′′i be the strategy that agrees
with ηi on each history g such that g ≺ h′, and agrees with η′i on all other histories. Then r � π(σ/η′′i , h) and
η′′i (h)� η′i(h), σi(h), implying that p C r.
Suppose that there is an infinite C-descending sequence of plays, that is, a sequence {pn}n∈� such that pn+1C pn

for each n ∈ �. For each n ∈ � let hn be the history and ηn
i be player i’s strategy that witness the relation

pn+1 C pn . Using the fact that pn+2 C pn+1 and pn+1 C pn , one can argue exactly as in the previous paragraph
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that hn+1 ≺ hn . Since this holds for each n ∈ �, we obtain a ≺-decreasing sequence of histories {hn}n∈�, which is
clearly impossible. �

Define the functions

u−i (p) � max{nε: n ∈ �, nε ≤ ui(p)}
u+

i (p) � min{nε: n ∈ �, ui(p) ≤ nε}.

It is not difficult to see that u−i and u+

i are both Borel measurable ε-discretizations of ui . In particular, they take
only finitely many values because the function ui is bounded.

We define the function vi . Let S � {π(σ, h): h ∈ H, ι(h) � i}. On the complement of the set S we let vi be
identically equal to u−i . On the set S we define vi by recursion on the relation C (see Kunen [17], p. 103,
Theorem 5.6), as follows:

vi(q)�
{

u−i (q) if there exists a p ∈ S with p Ci q , such that vi(p) < u+

i (q),
u+

i (q) otherwise.
(16)

Claim 2. The function vi is a Borel measurable ε-discretization of ui .

Proof of Claim 2. The fact that vi is an ε-discretization of ui follows since both u−i and u+

i are ε-discretizations
of ui . We show that vi is Borel measurable.

Recall that a subset D of P is said to be discrete if each point of D is isolated, or equivalently, if each point
p ∈ D has a prefix h such that P(h) ∩D � {p}. A subset D of P is said to be sigma-discrete if it is a countable
union of discrete sets. Each discrete set and consequently each sigma-discrete set is Borel. Moreover, each subset
of a sigma-discrete set is sigma-discrete. It follows that any function on a sigma-discrete set is Borel measurable.
We argue that S is a sigma-discrete set. To see this, for each k ∈ � let Sk � {π(σ, h): h ∈ H, ι(h) �

i , h has length k}. The set Sk is discrete. Indeed, if h is the prefix of a play p ∈ Sk of length k, then P(h)∩Sk � {p}.
It follows that S �

⋃
k∈� Sk is a sigma-discrete set.

Thus, the restriction of vi to S is automatically Borel measurable. The restriction of vi to the complement
of S is Borel measurable since it coincides with the function u−i on that set. We conclude that vi is Borel
measurable. �

Since σ is a subgame-perfect ε/2-equilibrium of the game Ω(u), we know that for every p , q ∈ P and every i ∈ I
if p Ci q then ui(q) ≤ ui(p)+ ε/2. Similarly, to show that σ is a subgame-perfect 0–equilibrium of the game Ω(v),
it suffices to prove that for every p , q ∈ P and every i ∈ I if p Ci q then vi(q) ≤ vi(p).

Claim 3. The strategy profile σ is an SPE of the game Ω(v).

Proof of Claim 3. Fix a player i ∈ I and a play q ∈ P. Let E � {p ∈ P: p Ci q}. Notice that E ⊆ S. For a play p ∈ E
let Θ(p) denote the formula vi(q) ≤ vi(p). We prove that Θ(p) holds for each p ∈ E by induction on Ci .
Take a play p ∈ E. Suppose that Θ(r) holds for every r ∈ E with r Ci p. We now show that Θ(p) also holds.

Suppose Θ(p) is false, that is, vi(p)< vi(q). Since both vi(p) and vi(q) are multiples of ε, we have vi(p) ≤ vi(q)− ε.
We have vi(q) � u−i (q). Indeed, if q ∈ P\S, this follows automatically by the definition of vi , and if q ∈ S, this

follows by (16) since vi(p) < vi(q) implies that vi(p) < u+

i (q).
Furthermore, vi(p)� u+

i (p). To prove the equality, we have to argue that u+

i (p) ≤ vi(r) for each r ∈ S with r Ci p.
Thus take any such r. We have r ∈ E, and Θ(r) implies that vi(q) ≤ vi(r). Since by assumption vi(p) < vi(q), we
have vi(p) < vi(r) and consequently u+

i (p) ≤ vi(r), as desired.
We obtain the inequalities

ui(p) ≤ u+

i (p)� vi(p) ≤ vi(q) − ε � u−i (q) − ε ≤ ui(q) − ε,

contradicting the fact that σ is a subgame-perfect ε/2-equilibrium of Ω(u). �

This completes the proof of Theorem 8.3. �
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Endnotes
1Thus H is a pruned tree and P is the set of branches of H.
2Suppose first that H is uncountable. Let Hk denote the set of histories h ∈ H of length k. Since H �

⋃
k∈� Hk , there is some k ∈ � such that

Hk is uncountable. Consider the cylinder sets P(h), for h ∈ Hk . They are nonempty, mutually disjoint, and there are uncountably many of
them, so (P,T) is not separable. Now suppose that H is countable. For every history h ∈ H, take an arbitrary play ph ∈ P(h). Then, the set
{ph | h ∈ H} is countable and dense in (P,T).
3Throughout the paper we maintain the following convention: The players of the original game Ω are referred to as players with a lower
case p. The two players of the auxiliary zero-sum games Gξ(h) are referred to as Player I and Player II with a capital P.
4Consider Pξ as a function from H to 2P and take any ordinal ξ∗ with cardinality larger than that of the set of such functions.
5We remark that a much stronger result is proven in Flesch et al.: for small but positive ε, the game has no ε-SPE, even if one allows for
mixed strategies.
6The result is not explicitly stated in the paper. However, most of the proof of Theorem 2.3 is in fact the proof of the existence of an ODI
strategy profile.
7More precisely, consider the set E of nonterminal histories h, i.e., histories h for which at least one player’s payoff function is not constant
on P(h). The usual ≺ relation on E is well founded. Backward induction could therefore be formalized as a recursion on the relation ≺.
8For instance consider a game with the action set A ��. Fix an action a∗ ∈ A and let the function ui be given by ui(a0 , a1 , . . . )� 1 if aa0 � a∗

and 0 otherwise. Then ui is continuous but is not continuous at infinity.
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