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Abstract

We present for the first time an asymptotic convergence analysis of two time-scale stochastic approximation

driven by ‘controlled’ Markov noise. In particular, both the faster and slower recursions have non-additive con-

trolled Markov noise components in addition to martingale difference noise. We analyze the asymptotic behavior

of our framework by relating it to limiting differential inclusions in both time-scales that are defined in terms of

the ergodic occupation measures associated with the controlled Markov processes. Finally, we present a solution

to the off-policy convergence problem for temporal difference learning with linear function approximation, using

our results.

1 Introduction

Stochastic approximation algorithms are sequential non-parametric methods for finding a zero or minimum of a func-
tion in the situation where only the noisy observations of the function values are available. Two time-scale stochastic
approximation algorithms represent one of the most general subclasses of stochastic approximation methods. These
algorithms consist of two coupled recursions which are updated with different (one is considerably smaller than the
other) step sizes which in turn facilitate convergence for such algorithms.

Two time-scale stochastic approximation algorithms [19] have successfully been applied to several complex prob-
lems arising in the areas of reinforcement learning, signal processing and admission control in communication net-
works. There are many reinforcement learning applications (precisely those where parameterization of value function
is implemented) where non-additive Markov noise is present in one or both iterates thus requiring the current two
time-scale framework to be extended to include Markov noise (for example, in [13, p. 5] it is mentioned that in order
to generalize the analysis to Markov noise, the theory of two time-scale stochastic approximation needs to include
the latter).

Here we present a more general framework of two time-scale stochastic approximation with “controlled” Markov
noise, i.e., the noise is not simply Markov; rather it is driven by the iterates and an additional control process as
well. We analyze the asymptotic behaviour of our framework by relating it to limiting differential inclusions in
both timescales that are defined in terms of the ergodic occupation measures associated with the controlled Markov
processes. Next, using these results for the special case of our framework where the random processes are irreducible
Markov chains, we present a solution to the off-policy convergence problem for temporal difference learning with
linear function approximation. While the off-policy convergence problem for reinforcement learning (RL) with linear
function approximation has been one of the most interesting problems, there are very few solutions available in
the current literature. One such work [4] shows the convergence of the least squares temporal difference learning
algorithm with eligibility traces (LSTD(λ)) as well as the TD(λ) algorithm. While the LSTD methods are not feasible
when the dimension of the feature vector is large, off-policy TD(λ) is shown to converge only when the eligibility
function λ ∈ [0, 1] is very close to 1. Another recent work [5] proves weak convergence of several emphatic temporal
difference learning algorithms which is also designed to solve the off-policy convergence problem. In [11, 12, 3] the
gradient temporal difference learning (GTD) algorithms were proposed to solve this problem. However, the authors
make the assumption that the data is available in the “off-policy” setting (i.e. the off-policy issue is incorporated
into the data rather than in the algorithm) whereas, in reality, one has only the “on-policy” Markov trajectory
corresponding to a given behaviour policy and we are interested in designing an online learning algorithm. We use
one of the algorithms from [3] called TDC with “importance-weighting” which takes the “on-policy” data as input
and show its convergence using the results we develop. Our convergence analysis can also be extended for the same
algorithm with eligibility traces for a sufficiently large range of values of λ. Our results can be used to provide a
convergence analysis for reinforcement learning algorithms such as those in [6] for which convergence proofs have not
been provided.

To the best of our knowledge there are related works such as [14, 16, 17, 15] where two time-scale stochastic
approximation algorithms with algorithm iterate dependent non-additive Markov noise is analyzed. In all of them
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the Markov noise in the recursion is handled using the classic Poisson equation based approach of [1, 10] and applied
to the asymptotic analysis of many algorithms used in machine learning, system identification, signal processing,
image analysis and automatic control. However, we show that our method also works if there is another additional
control process as well and if the underlying Markov process has non-unique stationary distributions. Further, the
mentioned application does not require strong assumption such as aperiodicity for the underlying Markov chain
which is a sufficient condition if we use Poisson equation based approach [2, 14]. Additionally, our assumptions are
quite different from the assumptions made in the mentioned literature and we give a detailed comparison in Section
2.2.

The organization of the paper is as follows: Section 2 formally defines the problem and provides background and
assumptions. Section 3 shows the main results. Section 4 discusses how one of our assumptions of Section 2 can be
relaxed. Section 5 presents an application of our results to the off-policy convergence problem for temporal difference
learning with linear function approximation. Finally, we conclude by providing some future research directions.

2 Background, Problem Definition, and Assumptions

In the following we describe the preliminaries and notation used in our proofs. Most of the definitions and notation
are from [9, 21, 7].

2.1 Definition and Notation

Let F denote a set-valued function mapping each point θ ∈ R
m to a set F (θ) ⊂ R

m. F is called a Marchaud map if
the following hold:

(i) F is upper-semicontinuous in the sense that if θn → θ and wn → w with wn ∈ F (θn) for all n ≥ 1, then
w ∈ F (θ). In order words, the graph of F defined as {(θ, w) : w ∈ F (θ)} is closed.

(ii) F (θ) is a non-empty compact convex subset of Rm for all θ ∈ R
m.

(iii) ∃c > 0 such that for all θ ∈ R
m,

sup
z∈F (θ)

‖z‖ ≤ c(1 + ‖θ‖),

where ‖.‖ denotes any norm on R
m.

A solution for the differential inclusion (d.i.)

θ̇(t) ∈ F (θ(t)) (1)

with initial point θ0 ∈ R
m is an absolutely continuous (on compacts) mapping θ : R → R

m such that θ(0) = θ0 and

θ̇(t) ∈ F (θ(t))

for almost every t ∈ R. If F is a Marchaud map, it is well-known that (1) has solutions (possibly non-unique) through
every initial point. The differential inclusion (1) induces a set-valued dynamical system {Φt}t∈R defined by

Φt(θ0) = {θ(t) : θ(·) is a solution to (1) with θ(0) = θ0}.

Consider the autonomous ordinary differential equation (o.d.e.)

θ̇(t) = h(θ(t)), (2)

where h is Lipschitz continuous. One can write (2) in the format of (1) by taking F (θ) = {h(θ)}. It is well-known
that (2) is well-posed, i.e., it has a unique solution for every initial point. Hence the set-valued dynamical system
induced by the o.d.e. or flow is {Φt}t∈R with

Φt(θ0) = {θ(t)},

where θ(·) is the solution to (2) with θ(0) = θ0. It is also well-known that Φt(.) is a continuous function for all t ∈ R.
A set A ⊂ R

m is said to be invariant (for F ) if for all θ0 ∈ A there exists a solution θ(·) of (1) with θ(0) = θ0
such that θ(R) ⊂ A.

Given a set A ⊂ R
m and θ′′, w′′ ∈ A, we write θ′′ →֒A w′′ if for every ǫ > 0 and T > 0 ∃n ∈ N, solutions

θ1(·), . . . , θn(·) to (1) and real numbers t1, t2, . . . , tn greater than T such that

(i) θi(s) ∈ A for all 0 ≤ s ≤ ti and for all i = 1, . . . , n,
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(ii) ‖θi(ti)− θi+1(0)‖ ≤ ǫ for all i = 1, . . . , n− 1,

(iii) ‖θ1(0)− θ′′‖ ≤ ǫ and ‖θn(tn)− w′′‖ ≤ ǫ.

The sequence (θ1(·), . . . , θn(·)) is called an (ǫ, T ) chain (in A from θ′′ to w′′) for F . A set A ⊂ R
m is said to be

internally chain transitive, provided that A is compact and θ′′ →֒A w′′ for all θ′′, w′′ ∈ A. It can be proved that in
the above case, A is an invariant set.

A compact invariant set A is called an attractor for Φ, provided that there is a neighbourhood U of A (i.e., for
the induced topology) with the property that d(Φt(θ

′′), A) → 0 as t → ∞ uniformly in θ′′ ∈ U . Here d(X,Y ) =
supθ′′∈X infw′′∈Y ‖θ′′ − w′′‖ for X,Y ⊂ R

m. Such a U is called a fundamental neighbourhood of the attractor A. An
attractor of a well-posed o.d.e. is an attractor for the set-valued dynamical system induced by the o.d.e.

The set
ωΦ(θ

′′) =
⋂

t≥0

Φ[t,∞)(θ′′)

is called the ω-limit set of a point θ′′ ∈ R
m. If A is a set, then

B(A) = {θ′′ ∈ R
m : ωΦ(θ

′′) ⊂ A}

denotes its basin of attraction. A global attractor for Φ is an attractor A whose basin of attraction consists of all
R

m. Then the following lemma will be useful for our proofs, see [9] for a proof.

Lemma 2.1. Suppose Φ has a global attractor A. Then every internally chain transitive set lies in A.

We also require another result which will be useful to apply our results to the RL application we mention. Before
stating it we recall some definitions from Appendix 11.2.3 of [21]:

A point θ∗ ∈ R
m is called Lyapunov stable for the o.d.e (2) if for all ǫ > 0, there exists a δ > 0 such that

every trajectory of (2) initiated in the δ-neighbourhood of θ∗ remains in its ǫ-neighbourhood. θ∗ is called globally
asymptotically stable if θ∗ is Lyapunov stable and all trajectories of the o.d.e. converge to it.

Lemma 2.2. Consider the autonomous o.d.e. θ̇(t) = h(θ(t)) where h is Lipschitz continuous. Let θ∗ be globally
asymptotically stable. Then θ∗ is the global attractor of the o.d.e.

Proof 1. We refer the readers to Lemma 1 of [21, Chapter 3] for a proof.

We end this subsection with a notation which will be used frequently in the convergence statements in the
following sections.

Definition 2.1. For function θ(.) defined on [0,∞), the notation “θ(t) → A as t → ∞” means that ∩t≥0{θ(s) : s ≥ t} ⊂
A. Similar definition applies for a sequence {θn}.

2.2 Problem Definition

Our goal is to perform an asymptotic analysis of the following coupled recursions:

θn+1 = θn + a(n)
[

h(θn, wn, Z
(1)
n ) +M

(1)
n+1

]

, (3)

wn+1 = wn + b(n)
[

g(θn, wn, Z
(2)
n ) +M

(2)
n+1

]

, (4)

where θn ∈ R
d, wn ∈ R

k, n ≥ 0 and {Z(i)
n }, {M (i)

n }, i = 1, 2 are random processes that we describe below.
We make the following assumptions:

(A1) {Z(i)
n } takes values in a compact metric space S(i), i = 1, 2. Additionally, the processes {Z(i)

n }, i = 1, 2 are
controlled Markov processes that are controlled by three different control processes: the iterate sequences

{θm}, {wm} and a random process {A(i)
n } taking values in a compact metric space U (i) respectively with their

individual dynamics specified by

P (Z
(i)
n+1 ∈ B(i)|Z(i)

m , A(i)
m , θm, wm,m ≤ n) =

∫

B(i)

p(i)(dy|Z(i)
n , A(i)

n , θn, wn), n ≥ 0,

for B(i) Borel in S(i), i = 1, 2, respectively.

Remark 1. In this context one should note that [1, 10] require the Markov process to take values in a normed
Polish space.
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Remark 2. In [20] it is assumed that the state space where the controlled Markov Process takes values is
Polish. This space is then compactified using the fact that a Polish space can be homeomorphically embedded
into a dense subset of a compact metric space. The vector field h(., .) : Rd × S → R

d is considered bounded
when the first component lies in a compact set. This would, however, require a continuous extension of h′ :
R

d × φ(S) → R
d defined by h′(x, s′) = h(x, φ−1(s′)) to R

d × φ(S). Here φ(·) is the homeomorphism defined
by φ(s) = (ρ(s, s1), ρ(s, s2), . . . ) ∈ [0, 1]∞, and {si} and ρ is a countable dense subset and metric of the Polish
space respectively. A sufficient condition for the above is h′ to be uniformly continuous [22, Ex:13, p. 99].
However, this is hard to verify. This is the main motivation for us to take the range of the Markov process as
compact for our problem. However, there are other reasons for taking compact state space which will be clear
in the proofs of this section and the next.

(A2) h : Rd+k × S(1) → R
d is jointly continuous as well as Lipschitz in its first two arguments uniformly w.r.t the

third. The latter condition means that

∀z(1) ∈ S(1), ‖h(θ, w, z(1))− h(θ′, w′, z(1))‖ ≤ L(1)(‖θ − θ′‖+ ‖w − w′‖).

Same thing is also true for g where the Lipschitz constant is L(2). Note that the Lipschitz constant L(i) does
not depend on z(i) for i = 1, 2.

Remark 3. We later relax the uniformity of the Lipschitz constant w.r.t the Markov process state space by
putting suitable moment assumptions on the Markov process.

(A3) {M (i)
n }, i = 1, 2 are martingale difference sequences w.r.t increasing σ-fields

Fn = σ(θm, wm,M (i)
m , Z(i)

m ,m ≤ n, i = 1, 2), n ≥ 0,

satisfying

E[‖M (i)
n+1‖2|Fn] ≤ K(1 + ‖θn‖2 + ‖wn‖2), i = 1, 2,

for n ≥ 0 and a given constant K > 0.

(A4) The stepsizes {a(n)}, {b(n)} are positive scalars satisfying

∑

n

a(n) =
∑

n

b(n) = ∞,
∑

n

(a(n)2 + b(n)2) < ∞,
a(n)

b(n)
→ 0.

Moreover, a(n), b(n), n ≥ 0 are non-increasing.

Before stating the assumption on the transition kernel p(i), i = 1, 2 we need to define the metric in the space of
probability measures P(S). Here we mention the definitions and main theorems on the spaces of probability
measures that we use in our proofs (details can be found in Chapter 2 of [18]). We denote the metric by d and
is defined as

d(µ, ν) =
∑

j

2−j |
∫

fjdµ−
∫

fjdν|, µ, ν ∈ P(S),

where {fj} are countable dense in the unit ball of C(S). Then the following are equivalent:

(i) d(µn, µ) → 0,

(ii) for all bounded f in C(S),
∫

S

fdµn →
∫

S

fdµ, (5)

(iii) for all f bounded and uniformly continuous,

∫

S

fdµn →
∫

S

fdµ.

Hence we see that d(µn, µ) → 0 iff
∫

S fjdµn →
∫

S fjdµ for all j. Any such sequence of functions {fj} is called
a convergence determining class in P(S). Sometimes we also denote d(µn, µ) → 0 using the notation µn ⇒ µ.
Also, we recall the characterization of relative compactness in P(S) that relies on the definition of tightness.
A ⊂ P(S) is a tight set if for any ǫ > 0, there exists a compact Kǫ ⊂ S such that µ(Kǫ) > 1− ǫ for all µ ∈ A.
Clearly, if S is compact then any A ⊂ P(S) is tight. By Prohorov’s theorem, A ⊂ P(S) is relatively compact
if and only if it is tight.
With the above definitions we assume the following:
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(A5) The map S(i) × U (i) × R
d+k ∋ (z(i), a(i), θ, w) → p(i)(dy|z(i), a(i), θ, w) ∈ P(S(i)) is continuous.

Remark 4. (A5) is much simpler than the assumptions on n-step transition kernel in [1, Part II,Chap. 2,
Theorem 6].

Additionally, unlike [20, p 140 line 13], we do not require the extra assumption of the continuity in the θ
variable of p(dy|z, a, θ) to be uniform on compacts w.r.t the other variables.

For θn = θ, wn = w for all n with a fixed deterministic (θ, w) ∈ R
d+k and under any stationary randomized

control π(i), it follows from Lemma 2.1 and Lemma 3.1 of [20] that the time-homogeneous Markov processes

Z
(i)
n , i = 1, 2 have (possibly non-unique) invariant distributions Ψ

(i)

θ,w,π(i), i = 1, 2. .

Now, it is well-known that the ergodic occupation measure defined as

Ψ
(i)

θ,w,π(i)(dz, da) := Ψ
(i)

θ,w,π(i)(dz)π
(i)(z, da) ∈ P(S(i) × U (i))

satisfies the following:
∫

S(i)

f (i)(z)Ψ
(i)

θ,w,π(i)(dz, U
(i)) =

∫

S(i)×U(i)

∫

S(i)

f (i)(y)p(i)(dy|z, a, θ, w)Ψ(i)

θ,w,π(i)(dz, da) (6)

for f (i) : S(i) → R ∈ Cb(S
(i)).

We denote by D(i)(θ, w), i = 1, 2 the set of all such ergodic occupation measures for the prescribed θ and w. In the
following we prove some properties of the map (θ, w) → D(i)(θ, w).

Lemma 2.3. For all (θ, w), D(i)(θ, w) is convex and compact.

Proof 2. The proof trivially follows from (A1), (A5) and (6).

Lemma 2.4. The map (θ, w) → D(i)(θ, w) is upper-semi-continuous.

Proof 3. Let θn → θ, wn → w and Ψ
(i)
n ⇒ Ψ(i) ∈ P(S(i) × U (i)) such that Ψ

(i)
n ∈ D(i)(θn, wn). Let g

(i)
n (z, a) =

∫

S(i) f
(i)(y)p(i)(dy|z, a, θn, wn) and g(i)(z, a) =

∫

S(i) f
(i)(y)p(i)(dy|z, a, θ, w). From (6) we get that

∫

S(i)

f (i)(z)Ψ(i)(dz, U (i)) = lim
n→∞

∫

S(i)

f (i)(z)Ψ(i)
n (dz, U (i))

= lim
n→∞

∫

S(i)×U(i)

∫

S(i)

f (i)(y)p(i)(dy|z, a, θn, wn)Ψ
(i)
n (dz, da)

= lim
n→∞

∫

S(i)×U(i)

g(i)n (z, a)Ψ(i)
n (dz, da).

Now, p(i)(dy|z, a, θn, wn) ⇒ p(i)(dy|z, a, θ, w) implies g
(i)
n (·, ·) → g(i)(·, ·) pointwise. We prove that the convergence

is indeed uniform. It is enough to prove that this sequence of functions is equicontinuous. Then along with pointwise
convergence it will imply uniform convergence on compacts [22, p. 168, Ex: 16]. This is also a place where (A1) is
used.

Define g′ : S(i) × U (i) × R
d+k → R by g′(z′, a′, θ′, w′) =

∫

S(i) f
(i)(y)p(i)(dy|z, a′, θ′, w′). Then g′ is continuous.

Let A = S(i) × U (i) × ({θn} ∪ θ) × ({wn} ∪ w). So, A is compact and g′|A is uniformly continuous. This implies
that for all ǫ > 0, there exists δ > 0 such that if ρ′(s1, s2) < δ, µ′(a1, a2) < δ, ‖θ1 − θ2‖ < δ, ‖w1 − w2‖ < δ, then
|g′(s1, a1, θ1, w1)− g′(s2, a2, θ2, w2)| < ǫ where s1, s2 ∈ S(i), a1, a2 ∈ U (i), θ1, θ2 ∈ ({θn}∪ θ), w1, w2 ∈ ({wn}∪w) and

ρ′ and µ′ denote the metrics in S(i) and U (i) respectively. Now use this same δ for the {g(i)n (·, ·)} to get for all n the
following for ρ′(z1, z2) < δ, µ′(a1, a2) < δ:

|g(i)n (z1, a1)− g(i)n (z2, a2)| = |g′(z1, a1, θn, wn)− g′(z2, a2, θn, wn)| < ǫ.

Hence {g(i)n (·, ·)} is equicontinuous. For large n, sup(z,a)∈S(i)×U(i) |g(i)n (z, a) − g(i)(z, a)| < ǫ/2 because of uniform

convergence of {g(i)n (·, ·)}, hence
∫

S(i)×U(i) |g(i)n (z, a)− g(i)(z, a)|Ψ(i)
n (dz, da) < ǫ/2. Now (for n large),

|
∫

S(i)×U(i)

g(i)n (z, a)Ψ(i)
n (dz, da)−

∫

S(i)×U(i)

g(i)(z, a)Ψ(i)(dz, da)|

= |
∫

S(i)×U(i)

[g(i)n (z, a)− g(i)(z, a)]Ψ(i)
n (dz, da) +

∫

S(i)×U(i)

g(i)(z, a)Ψ(i)
n (dz, da)−

∫

S(i)×U(i)

g(i)(z, a)Ψ(i)(dz, da)|

< ǫ/2 + |
∫

S(i)×U(i)

g(i)(z, a)Ψ(i)
n (dz, da)−

∫

S(i)×U(i)

g(i)(z, a)Ψ(i)(dz, da)|

< ǫ. (7)
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The last inequality follows the fact that Ψ
(i)
n ⇒ Ψ(i). Hence from (7) we get,

∫

S(i)

f (i)(z)Ψ(i)(dz, U (i)) =

∫

S(i)×U(i)

∫

S(i)

f (i)(y)p(i)(dy|z, a, θ, w)Ψ(i)(dz, da)

proving that the map is upper-semi-continuous.

Define g̃(θ, w, ν) =
∫

g(θ, w, z)ν(dz, U (2)) for ν ∈ P (S(2) × U (2)) and ĝ(θ, w) = {g̃(θ, w, ν) : ν ∈ D(2)(θ, w)}.

Lemma 2.5. ĝ(·, ·) is a Marchaud map.

Proof 4. (i) Convexity and compactness follow trivially from the same for the map (θ, w) → D(2)(θ, w).

(ii)

‖g̃(θ, w, ν)‖

= ‖
∫

g(θ, w, z)ν(dz, U (2))‖

≤
∫

‖g(θ, w, z)‖ν(dz, U (2))

≤
∫

L(2)(‖θ‖+ ‖w‖+ ‖g(0, 0, z)‖)ν(dz, U (2))

≤ max(L(2), L(2)

∫

‖g(0, 0, z)‖ν(dz, U (2)))(1 + ‖θ‖+ ‖w‖).

Clearly, K(θ) = max(L(2), L(2)
∫

‖g(0, 0, z)‖ν(dz, U (2))) > 0. The above is true for all g̃(θ, w, ν) ∈ ĝ(θ, w), ν ∈
D(2)(θ, w).

(iii) Let (θn, wn) → (θ, w), g̃(θn, wn, νn) → m, νn ∈ D(2)(θn, wn). Now, {νn} is tight, hence has a convergent sub-
sequence {νnk

} with ν being the limit. Then using the arguments similar to the proof of Lemma 2.4 one can
show that m = g̃(θ, w, ν) whereas ν ∈ D(2)(θ, w) follows directly from the upper-semi-continuity of the map
(θ, w) → D(2)(θ, w) for all θ.

Note that the map ĥ(·, ·) can be defined similarly and can be shown to be a Marchaud map using the exact same
technique.

2.3 Other assumptions needed for two time-scale convergence analysis

We now list the other assumptions required for two time-scale convergence analysis:

(A6) for all θ ∈ R
d, the differential inclusion

ẇ(t) ∈ ĝ(θ, w(t)) (8)

has a singleton global attractor λ(θ) where λ : Rd → R
k is a Lipschitz map with constant K. Additionally,

there exists a continuous function V : Rd+k → [0,∞) satisfying the hypothesis of Corollary 3.28 of [9] with
Λ = {(θ, λ(θ)) : θ ∈ R

d}. This is the most important assumption as it links the fast and slow iterates.

(A7) Stability of the iterates: supn(‖θn‖+ ‖wn‖) < ∞ a.s.

Let θ̄(.), t ≥ 0 be the continuous, piecewise linear trajectory defined by θ̄(t(n)) = θn, n ≥ 0, with linear interpo-
lation on each interval [t(n), t(n+ 1)), i.e.,

θ̄(t) = θn + (θn+1 − θn)
t− t(n)

t(n+ 1)− t(n)
, t ∈ [t(n), t(n+ 1)).

The following theorem is our main result:

Theorem 2.6 (Slower timescale result). Under assumptions (A1)-(A7),

(θn, wn) → ∪θ∗∈A0(θ
∗, λ(θ∗))a.s. as n → ∞.,

where A0 = ∩t≥0{θ̄(s) : s ≥ t} is almost everywhere an internally chain transitive set of the differential inclusion

θ̇(t) ∈ ĥ(θ(t)), (9)

where ĥ(θ) = {h̃(θ, λ(θ), ν) : ν ∈ D(1)(θ, λ(θ))}. We call (8) and (9) as the faster and slower d.i. to correspond with
faster and slower recursions, respectively.
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Corollary 1. Under the additional assumption that the inclusion

θ̇(t) ∈ ĥ(θ(t))),

has a global attractor set A1,
(θn, wn) → ∪θ∗∈A1(θ

∗, λ(θ∗))a.s. as n → ∞.

Remark 5. In case where the set D(2)(θ, w) is singleton, we can relax (A6) to local attractors also. The relaxed
assumption will be

(A6)’ The function ĝ(θ, w) =
∫

g(θ, w, z)Γ
(2)
θ,w(dz) is Lipschitz continuous where Γ

(2)
θ,w is the only element of D(2)(θ, w).

Further, for all θ ∈ R
d, the o.d.e

ẇ(t) = ĝ(θ, w(t)) (10)

has an asymptotically stable equilibrium λ(θ) with domain of attraction Gθ where λ : Rd → R
k is a Lipschitz

map with constant K. Also, assume that
⋂

θ Gθ is non-empty. Moreover, the function V ′ : G → [0,∞) defined
by V ′(θ, w) = Vθ(w) is continuously differentiable where Vθ(.) is the Lyapunov function (for definition see [21,
Chapter 11.2.3]) for the o.d.e. (10) with λ(θ) as its attractor, and G =

⋃

θ∈Rd{{θ}×Gθ}. This extra condition

is needed so that the set graph(λ):={(θ, λ(θ)) : θ ∈ R
d} becomes an asymptotically stable set of the coupled o.d.e

ẇ(t) = ĝ(θ(t), w(t)), θ̇(t) = 0.

Note that (A6)’ allows multiple attractors (at least one of them have to be a point, others can be sets) for the faster
o.d.e for every θ.

Then the statement of Theorem 2.6 will be modified as in the following:

Theorem 2.7 (Slower timescale result when λ(θ) is a local attractor). Under assumptions (A1)-(A5), (A6)’ and
(A7), on the event “{wn} belongs to a compact subset B (depending on the sample point) of

⋂

θ∈Rd Gθ eventually”,

(θn, wn) → ∪θ∗∈A0(θ
∗, λ(θ∗))a.s. as n → ∞.

The requirement on {wn} is much stronger than the usual local attractor statement for Kushner-Clarke lemma
[10, Section II.C] which requires the iterates to enter a compact set in the domain for attraction of the local attractor
infinitely often only. The reason for imposing this strong assumption is that graph(λ) is not a subset of any compact
set in R

d+k, and hence the usual tracking lemma kind of arguments do not go through directly. One has to relate the
limit set of the coupled iterate (θn, wn) to graph(λ) (See the proof of Lemma 3.6).

We present the proof of our main results in the next section.

3 Main Results

We first discuss an extension of the single time-scale controlled Markov noise framework of [20] under our assumptions
to prove our main results. Note that the results of [20] assume that the state space of the controlled Markov process
is Polish which may impose additional conditions that are hard to verify. In this section, other than proving our two
time-scale results, we prove many of the results in [20] (which were only stated there) assuming the state space to
be compact.

We begin by describing the intuition behind the proof techniques in [20].
The space C([0,∞);Rd) of continuous functions from [0,∞) to R

d is topologized with the coarsest topology such
that the map that takes any f ∈ C([0,∞);Rd) to its restriction to [0, T ] when viewed as an element of the space
C([0, T ];Rd), is continuous for all T > 0. In other words, fn → f in this space iff fn|[0,T ] → f |[0,T ]. The other
notations used below are the same as those in [20, 21]. We present a few for easy reference.

Consider the single time-scale stochastic approximation recursion with controlled Markov noise:

xn+1 = xn + a(n) [h(xn, Yn) +Mn+1] . (11)

Define time instants t(0) = 0, t(n) =
∑n−1

m=0 a(m), n ≥ 1. Let x̄(t), t ≥ 0 be the continuous, piecewise linear trajectory
defined by x̄(t(n)) = xn, n ≥ 0, with linear interpolation on each interval [t(n), t(n+ 1)), i.e.,

x̄(t) = xn + (xn+1 − xn)
t− t(n)

t(n+ 1)− t(n)
, t ∈ [t(n), t(n+ 1)).

Now, define h̃(x, ν) =
∫

h(x, z)ν(dz, U) for ν ∈ P (S × U). Let µ(t), t ≥ 0 be the random process defined by
µ(t) = δ(Yn,Zn) for t ∈ [t(n), t(n+ 1)), n ≥ 0, where δ(y,a) is the Dirac measure corresponding to (y, a). Consider the
non-autonomous o.d.e.

ẋ(t) = h̃(x(t), µ(t)). (12)
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Let xs(t), t ≥ s, denote the solution to (12) with xs(s) = x̄(s), for s ≥ 0. Note that xs(t), t ∈ [s, s+T ] and xs(t), t ≥ s
can be viewed as elements of C([0, T ];Rd) and C([0,∞);Rd) respectively. With this abuse of notation, it is easy to
see that {xs(.)|[s,s+T ], s ≥ 0} is a pointwise bounded and equicontinuous family of functions in C([0, T ];Rd) ∀T > 0.
By Arzela-Ascoli theorem, it is relatively compact. From Lemma 2.2 of [20] one can see that for all s(n) ↑ ∞, {x̄(s(n)+
.)|[s(n),s(n)+T ],

n ≥ 1} has a limit point in C([0, T ];Rd) ∀T > 0. With the above topology for C([0,∞);Rd), {xs(.), s ≥ 0} is
also relatively compact in C([0,∞);Rd) and for all s(n) ↑ ∞, {x̄(s(n) + .), n ≥ 1} has a limit point in C([0,∞);Rd).

One can write from (11) the following:

x̄(u(n) + t) = x̄(u(n)) +

∫ t

0

h(x̄(u(n) + τ), ν(u(n) + τ))dτ +Wn(t),

where u(n) ↑ ∞, x̄(u(n) + .) → x̃(·), ν(t) = (Yn, Zn) for t ∈ [t(n), t(n + 1)), n ≥ 0 and Wn(t) = W (t + u(n)) −
W (u(n)),W (t) = Wn + (Wn+1 −Wn)

t−t(n)
t(n+1)−t(n) ,Wn =

∑n−1
k=0 a(k)Mk+1, n ≥ 0. From here one cannot directly take

limit on both sides as finding limit points of ν(s+.) as s → ∞ is not meaningful. Now, h(x, y) =
∫

h(x, z)δ(y,a)(dz×U).

Hence by defining h̃(x, ρ) =
∫

h(x, z)ρ(dz) and µ(t) = δν(t) one can write the above as

x̄(u(n) + t) = x̄(u(n)) +

∫ t

0

h̃(x̄(u(n) + τ), µ(u(n) + τ))dτ +Wn(t). (13)

The advantage is that the space U of measurable functions from [0,∞) to P(S × U) is compact metrizable, so sub-
sequential limits exist. Note that µ(·) is not a member of U , rather we need to fix a sample point, i.e., µ(., ω) ∈ U .
For ease of understanding, we abuse the terminology and talk about the limit points µ̃(·) of µ(s+ .).

From (13) one can infer that the limit x̃(·) of x̄(u(n)+ .) satisfies the o.d.e. ẋ(t) = h̃(x(t), µ(t)) with µ(·) replaced
by µ̃(·). Here each µ̃(t), t ∈ R in µ̃(·) is generated through different limiting processes each one associated with the
compact metrizable space Ut = space of measurable functions from [0, t] to P(S × U). This will be problematic if
we want to further explore the process µ̃(·) and convert the non-autonomous o.d.e. into an autonomous one.

Hence the main result is proved using an auxiliary lemma [20, Lemma 2.3] other than the tracking lemma
(Lemma 2.2 of [20]). Let u(n(k)) ↑ ∞ be such that x̄(u(n(k)) + .) → x̃(·) and µ(u(n(k)) + .) → µ̃(·), then using
Lemma 2.2 of [20] one can show that xu(n(k))(·) → x̃(·). Then the auxiliary lemma shows that the o.d.e. trajectory
xu(n(k))(·) associated with µ(u(n(k)) + .) tracks (in the limit) the o.d.e. trajectory associated with µ̃(·). Hence
Lemma 2.3 of [20] links the two limiting processes x̃(·) and µ̃(·) in some sense. Note that Lemma 2.3 of [20] involves
only the o.d.e. trajectories, not the interpolated trajectory of the algorithm.

Consider the iteration
θn+1 = θn + a(n) [h(θn, Yn) + ǫn +Mn+1] , (14)

where ǫn → 0 and the rest of the notations are same as [20]. Specifically, {Yn} is the controlled Markov process
driven by {θn} and Mn+1, n ≥ 0 is a martingale difference sequence. Let θ̄(t), t ≥ 0 be the continuous, piecewise
linear trajectory of (14) defined by θ̄(t(n)) = θn, n ≥ 0, with linear interpolation on each interval [t(n), t(n + 1)).
Also, let θs(t), t ≥ s, denote the solution to (12) with θs(s) = θ̄(s), for s ≥ 0.

The convergence analysis of (14) requires some changes in Lemma 2.2 and 3.1 of [20]. The modified versions of
them are precisely the following two lemmas.

Lemma 3.1. For any T > 0, supt∈[s,s+T ] ‖θ̄(t)− θs(t)‖ → 0, a.s. as s → ∞.

Proof 5. The proof follows from the Lemma 2.2 and the remark 3 thereof (p. 144) of [20].

Now, µ can be viewed as a random variable taking values in U = the space of measurable functions from [0,∞)
to P(S × U). This space is topologized with the coarsest topology such that the map

ν(·) ∈ U →
∫ T

0

g(t)

∫

fdν(t)dt ∈ R

is continuous for all f ∈ C(S), T > 0, g ∈ L2[0, T ]. Note that U is compact metrizable.

Lemma 3.2. Almost surely every limit point of (µ(s + .), θ̄(s + .)) as s → ∞ is of the form (µ̃(·), θ̃(·)) where µ̃(·)
satisfies µ̃(t) ∈ D(θ̃(t)) a.e. t.

Proof 6. Suppose that u(n) ↑ ∞, µ(u(n) + .) → µ̃(·) and θ̄(u(n) + .) → θ̃(·). Let {fi} be countable dense in the unit
ball of C(S), hence a separating class, i.e., ∀i,

∫

fidµ =
∫

fidν implies µ = ν. For each i,

ζin =

n−1
∑

m=1

a(m)(fi(Ym+1)−
∫

fi(y)p(dy|Ym, Zm, θm)), n ≥ 1,
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is a zero-mean martingale with Fn = σ(θm, Ym, Zm,m ≤ n). Moreover, it is a square integrable martingale due to
the fact that fi’s are bounded and each ζin is a finite sum. Its quadratic variation process

An =

n−1
∑

m=0

a(m)2E[(fi(Ym+1)−
∫

fi(y)p(dy|Ym, Zm, θm))2|Fm] + E[(ζi0)
2]

is almost surely convergent. By the martingale convergence theorem, ζin, n ≥ 0 converges a.s. for all i. As before let
τ(n, t) = min{m ≥ n : t(m) ≥ t(n) + t} for t ≥ 0, n ≥ 0. Then as n → ∞,

τ(n,t)
∑

m=n

a(m)(fi(Ym+1)−
∫

fi(y)p(dy|Ym, Zm, θm)) → 0, a.s.

for t > 0. By our choice of {fi} and the fact that {a(n)} is an eventually non-increasing sequence (the latter property
is used only here and in Lemma 3.9), we have

τ(n,t)
∑

m=n

(a(m)− a(m+ 1))fi(Ym+1) → 0, a.s.

From the foregoing,

τ(n,t)
∑

m=n

(a(m+ 1)fi(Ym+1)− a(m)

∫

fi(y)p(dy|Ym, Zm, θm)) → 0, a.s.

for all t > 0, which implies

τ(n,t)
∑

m=n

a(m)(fi(Ym)−
∫

fi(y)p(dy|Ym, Zm, θm)) → 0, a.s.

for all t > 0 due to the fact that a(n) → 0 and fi(.) are bounded. This implies

∫ t(n)+t

t(n)

(

∫

(fi(z)−
∫

fi(y)p(dy|z, a, θ̂(s)))µ(s, dzda))ds → 0, a.s.

and that in turn implies

∫ u(n)+t

u(n)

(

∫

(fi(z)−
∫

fi(y)p(dy|z, a, θ̂(s)))µ(s, dzda))ds → 0, a.s.

(this is true because a(n) → 0 and fi(·) is bounded) where θ̂(s) = θn when s ∈ [t(n), t(n + 1)) for n ≥ 0. Now, one
can claim from the above that

∫ u(n)+t

u(n)

(

∫

(fi(z)−
∫

fi(y)p(dy|z, a, θ̄(s)))µ(s, dzda))ds → 0, a.s.

This is due to the fact that the map S × U × R
d ∋ (z, a, θ) →

∫

f(y)p(dy|z, a, θ) is continuous and hence uniformly
continuous on the compact set A = S × U ×M where M is the compact set s.t. θn ∈ M for all n. Here we also use
the fact that ‖θ̄(s)− θm‖ = ‖h(θm, Ym) + ǫm +Mm+1‖(s− sm) → 0, s ∈ [tm, tm+1) as the first two terms inside the
norm in the R.H.S are bounded. The above convergence is equivalent to

∫ t

0

(

∫

(fi(z)−
∫

fi(y)p(dy|z, a, θ̄(s+ u(n)))µ(s+ u(n), dzda))ds → 0, a.s.

Fix a sample point in the probability one set on which the convergence above holds for all i. Then the convergence
above leads to

∫ t

0

(

∫

fi(z)−
∫

fi(y)p(dy|z, a, θ̃(s)))µ̃(s, dzda)ds = 0 ∀i. (15)

Here we use one part of the proof from Lemma 2.3 of [20] that if µn(·) → µ∞(·) ∈ U then for any t > 0,

∫ t

0

∫

f̃(s, z, a)µn(s, dzda)ds−
∫ t

0

∫

f̃(s, z, a)µ∞(s, dzda)ds → 0,
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for all f̃ ∈ C([0, t] × S × A) and the fact that f̃n(s, z, a) =
∫

fi(y)p(dy|z, a, θ̄(s + u(n))) converges uniformly to

f̃(s, z, a) =
∫

fi(y)p(dy|z, a, θ̃(s)). To prove the latter, define g : C([0, t]) × [0, t] × S × A → R by g(θ(·), s, z, a) =
∫

fi(y)p(dy|z, a, θ(s))). To see that g is continuous we need to check that if θn(·) → θ(·) uniformly and s(n) → s,
then θn(s(n)) → θ(s). This is because ‖θn(s(n)) − θ(s)‖ = ‖θn(s(n)) − θ(s(n)) + θ(s(n)) − θ(s)‖ ≤ ‖θn(s(n)) −
θ(s(n))‖+ ‖θ(s(n))− θ(s)‖. The first and second terms go to zero due to the uniform convergence of θn(·), n ≥ 0 and
continuity of θ(·) respectively. Let A = {θ̄(u(n) + .)|[u(n),u(n)+t], n ≥ 1} ∪ θ̃(·)|[0,t]. A is compact as it is the union of
a sequence of functions and their limit. So, g|(A×[0,t]×S×U) is uniformly continuous. Then using the same arguments

as in Lemma 2.4 we can show equicontinuity of {f̃n(., .)}, that results in uniform convergence and thereby (15). An
application of Lebesgue’s theorem in conjunction with (15) shows that

∫

(fi(z)−
∫

fi(y)p(dy|z, a, θ̃(t)))µ̃(t, dzda) = 0 ∀i

for a.e. t. By our choice of {fi}, this leads to

µ̃(t, dy × U) =

∫

p(dy|z, a, θ̃(t))µ̃(t, dzda)

a.e. t. Therefore the conclusion follows by disintegrating such measure as the product of marginal on S and the
regular conditional law on U ([20, p 140]).

Remark 6. Note that the above invariant distribution does not come “naturally”; rather it arises from the assumption
made to match the natural timescale intuition for the controlled Markov noise component, i.e., the slower iterate
should see the average effect of the Markov component.

The proof of the following lemma, in this case, will be unchanged from its original version, so we just mention it
for completeness and refer the reader to Lemma 2.3 of [20] for its proof.

Lemma 3.3. Let µn(·) → µ∞(·) ∈ U . Let θn(·), n = 1, 2, . . . ,∞ denote solutions to (12) corresponding to the case
where µ(·) is replaced by µn(·), for n = 1, 2, . . .∞. Suppose θn(0) → θ∞(0). Then

lim
n→∞

sup
t∈[0,T ]

‖θn(t)− θ∞(t)‖ = 0

for every T > 0.

Lemma 3.4. Almost surely, {θn} converges to an internally chain transitive set of the differential inclusion

θ̇(t) ∈ ĥ(θ(t)), (16)

where ĥ(θ) = {h̃(θ, ν) : ν ∈ D(θ)}.

Proof 7. Lemma 3.3 shows that every limit point (µ̃(·), θ̃(·)) of (µ(s+ .), θ̄(s+ .)) as s → ∞ is such that θ̃(·) satisfies
(12) with µ(·) = µ̃(·). Hence, θ̃(·) is absolutely continuous. Moreover, using Lemma 3.2, one can see that it satisfies
(16) a.e. t, hence is a solution to the differential inclusion (16). Hence the proof follows.

Lemma 3.5 (Faster timescale result). (θn, wn) → {(θ, λ(θ)) : θ ∈ R
d} a.s.

Proof 8. We first rewrite (3) as

θn+1 = θn + b(n)
[

ǫn +M
(3)
n+1

]

,

where ǫn = a(n)
b(n)h(θn, wn, Z

(1)
n ) → 0 as n → ∞ a.s. and M

(3)
n+1 = a(n)

b(n)M
(1)
n+1 for n ≥ 0. Let αn = (θn, wn), α =

(θ, w) ∈ R
d+k, G(α, z) = (0, g(α, z)), ǫ′n = (ǫn, 0),M

(4)
n+1 = (M

(3)
n+1,M

(2)
n+1). Then one can write (3) and (4) in the

framework of (14) as

αn+1 = αn + b(n)
[

G(αn, Z
(2)
n ) + ǫ′n +M

(4)
n+1

]

, (17)

with ǫ′n → 0 as n → ∞. αn, n ≥ 0 converges almost surely to an internally chain transitive set of the differential
inclusion

α̇(t) ∈ Ĝ(α(t)),

where Ĝ(α) = {G̃(α, ν) : ν ∈ D(2)(θ, w)} with G̃(α, ν) = (0, g̃(θ, w, ν)). In other words, (θn, wn), n ≥ 0 converges to
an internally chain transitive set of the differential inclusion

ẇ(t) ∈ ĝ(θ(t), w(t)), θ̇(t) = 0.

The rest follows from the second part of (A6).
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Remark 7. Under the conditions mentioned in Remark 4 the above faster timescale result should be modified as
follows:

Lemma 3.6 (Faster timescale result when λ(θ) is a local attractor). Under assumptions (A1) - (A5), (A6)’ and
(A7), on the event “{wn} belongs to a compact subset B (depending on the sample point) of

⋂

θ∈Rd Gθ eventually”,

(θn, wn) → {(θ, λ(θ)) : θ ∈ R
d} a.s.

Proof 9. Fix a sample point ω. The proof follows from these observations:

1. continuity of flow for the coupled o.d.e around the initial point,

2. supn ‖θn‖ = M1 < ∞,

3. the fact that the set graph(λ) is Lyapunov stable (V ′(.) as mentioned in (A6)’ will be a Lyapunov function for
this set), and

4. the fact that
⋂

t≥0 ᾱ(s) : s ≥ t is an internally chain transitive set of the coupled o.d.e

ẇ(t) = ĝ(θ(t), w(t)), θ̇(t) = 0, (18)

where ᾱ(.) is the interpolated trajectory of the coupled iterate {αn}.

As {θ : ‖θ‖ ≤ M1} × B ⊂ ⋃

θ∈Rd{{θ} × Gθ}, the first three observations show that for all ǫ > 0, there exists a
Tǫ > 0 such that any o.d.e trajectory for (18) with starting point on the compact set {θ : ‖θ‖ ≤ M1} ×B reaches the
ǫ-neighbourhood of graph(λ) after time Tǫ. Further,

⋂

t≥0

ᾱ(s) : s ≥ t ⊂ {θ : ‖θ‖ ≤ M1} ×B.

Then one can use the last observation by choosing T > Tǫ to show the required convergence to the set graph(λ).

Remark 8. One interesting question in this context is to analyze whether one can extend the single timescale local
attractor convergence statements to the two timescale setting under some verifiable conditions. More specifically, if
there is a global attractor A1 for

θ̇(t) ∈ ĥ(θ(t)),

then can one provide verifiable conditions to show

P [(θn, wn) → ∪θ∈A1(θ, λ(θ))] > 0.

Here λ(θ) is a local attractor as mentioned in (A6)’.
There are two ways in which this could possibly be tried:

1. Use Theorem 2.7 where we show that on the event {wn} belongs to a compact subset B (depending on the
sample point) of

⋂

θ∈Rd Gθ “eventually”,

(θn, wn) → ∪θ∗∈A1(θ
∗, λ(θ∗))a.s. as n → ∞,

which is an extension of Kushner-Clarke Lemma to the two timescale case. Therefore the task would be to
impose verifiable assumptions so that P ({wn} belongs to a compact subset B (depending on the sample point)
of
⋂

θ∈Rd Gθ “eventually”) > 0. In a stochastic approximation scenario it is not immediately clear how one
could possibly impose verifiable assumptions so that such a probabilistic statement becomes true.

2. The second approach would be to extend the analysis of [8, 9] to the two timescale case. In our opinion this is
very hard as this analysis is based on the attractor introduced by Benaim et al. whereas the coupled o.d.e (18)
which tracks the coupled iterate (θn, wn) (therefore the interpolated trajectory of the coupled iterate will be an
asymptotic pseudo-trajectory [8] for (18)) has no attractor. The reason is that one cannot obtain a fundamental
neighbourhood for sets like ∪θ∈A1(θ, λ(θ)) as the θ component will remain constant for any trajectory of the
above coupled o.d.e.

Thus it is immediately not clear as to how this question can be addressed and this will be an interesting future
direction.
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From the faster timescale results we get, ‖wn − λ(θn)‖ → 0 a.s., i.e, {wn} asymptotically tracks {λ(θn)} a.s.
Now, consider the non-autonomous o.d.e.

θ̇(t) = h̃(θ(t), λ(θ(t)), µ(t)), (19)

where µ(t) = δ
Z

(1)
n ,A

(1)
n

when t ∈ [t(n), t(n + 1)) for n ≥ 0 and h̃(θ, w, ν) =
∫

h(θ, w, z)ν(dz). Let θs(t), t ≥ s denote

the solution to (19) with θs(s) = θ̄(s), for s ≥ 0. Then

Lemma 3.7. For any T > 0, supt∈[s,s+T ] ‖θ̄(t)− θs(t)‖ → 0, a.s.

Proof 10. The slower recursion corresponds to

θn+1 = θn + a(n)
[

h(θn, wn, Z
(1)
n ) +M

(1)
n+1

]

.

Let t(n+m) ∈ [t(n), t(n) + T ]. Let [t] = max{t(k) : t(k) ≤ t}. Then by construction,

θ̄(t(n+m)) = θ̄(t(n)) +

m−1
∑

k=0

a(n+ k)h(θ̄(t(n+ k)), wn+k, Z
(1)
n+k) + δn,n+m

= θ̄(t(n)) +
m−1
∑

k=0

a(n+ k)h(θ̄(t(n+ k)), λ(θ̄(t(n+ k))), Z
(1)
n+k)

+
m−1
∑

k=0

a(n+ k)(h(θ̄(t(n+ k)), wn+k, Z
(1)
n+k)− h(θ̄(t(n+ k)), λ(θn+k), Z

(1)
n+k))

+ δn,n+m,

where δn,n+m = ζn+m − ζn with ζn =
∑n−1

m=0 a(m)M
(1)
m+1, n ≥ 1.

θt(n)(t(m+ n)) = θ̄(t(n)) +

∫ t(n+m)

t(n)

h̃(θt(n)(t), λ(θt(n)(t)), µ(t))dt

= θ̄(t(n)) +
m−1
∑

k=0

a(n+ k)h(θt(n)(t(n+ k)), λ(θt(n)(t(n+ k))), Z
(1)
n+k)

+

∫ t(n+m)

t(n)

(h(θt(n)(t), λ(θt(n)(t), µ(t))) − h(θt(n)([t]), λ(θt(n)([t]), µ([t]))))dt.

Let t(n) ≤ t ≤ t(n+m). Now, if 0 ≤ k ≤ (m− 1) and t ∈ (t(n+ k), t(n+ k + 1)],

‖θt(n)(t)‖ ≤ ‖θ̄(t(n)‖ + ‖
∫ t

t(n)

h̃(θt(n)(τ), λ(θt(n)(τ)), µ(τ))dτ‖

≤ ‖θn‖+
k−1
∑

l=0

∫ t(n+l+1)

t(n+l)

(‖h(0, 0, Z(1)
n+l)‖ + L(1)(‖λ(0)‖+ (K + 1)‖θt(n)(τ)‖))dτ

+

∫ t

t(n+k)

(‖h(0, 0, Z(1)
n+k)‖+ L(1)(‖λ(0)‖+ (K + 1)‖θt(n)(τ)‖))dτ

≤ C0 + (M + L(1)‖λ(0)‖)T + L(1)(K + 1)

∫ t

t(n)

‖θt(n)(τ)‖dτ,

where C0 = supn ‖θn‖ < ∞, supz∈S(1) ‖h(0, 0, z)‖ = M . By Gronwall’s inequality, it follows that

‖θt(n)(t)‖ ≤ (C0 + (M + L(1)‖λ(0)‖)T )eL(1)(K+1)T .

‖θt(n)(t)− θt(n)(t(n+ k))‖ ≤
∫ t

t(n+k)

‖h(θt(n)(s), λ(θt(n)(s)), Z(1)
n+k)‖ds

≤ (‖h(0, 0, Z(1)
n+k)‖+ L(1)‖λ(0)‖)(t− t(n+ k))

+ L(1)(K + 1)

∫ t

t(n+k)

‖θt(n)(s)‖ds

≤ CT a(n+ k),
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where CT = (M + L(1)‖λ(0)‖) + L(1)(K + 1)(C0 + (M + L(1)‖λ(0)‖)T )eL(1)(K+1)T . Thus,

‖
∫ t(n+m)

t(n)

(h(θt(n)(t), λ(θt(n)(t)), µ(t)) − h(θt(n)([t]), λ(θt(n)([t])), µ([t])))dt‖

≤
m−1
∑

k=0

∫ t(n+k+1)

t(n+k)

‖h(θt(n)(t), λ(θt(n)(t)), Z(1)
n+k)− h(θt(n)([t]), λ(θt(n)([t])), Z

(1)
n+k)‖dt

≤ L

m−1
∑

k=0

∫ t(n+k+1)

t(n+k)

‖θt(n)(t)− θt(n)(t(n+ k))‖dt

≤ CTL
m−1
∑

k=0

a(n+ k)2

≤ CTL

∞
∑

k=0

a(n+ k)2 → 0 as n → ∞,where L = L(1)(K + 1).

Hence

‖θ̄(t(n+m))− θt(n)(t(n+m)) ≤ L

m−1
∑

k=0

a(n+ k)‖θ̄(t(n+ k))− θt(n)(t(n+ k))‖

+ CTL
∞
∑

k=0

a(n+ k)2 + sup
k≥0

‖δn,n+k‖

+ L(1)
m−1
∑

k=0

a(n+ k)‖wn+k − λ(θn+k)‖

≤ L
m−1
∑

k=0

a(n+ k)‖θ̄(t(n+ k))− θt(n)(t(n+ k))‖

+ CTL

∞
∑

k=0

a(n+ k)2 + sup
k≥0

‖δn,n+k‖

+ L(1)T sup
k≥0

‖wn+k − λ(θn+k)‖, a.s.

Define

KT,n = CTL

∞
∑

k=0

a(n+ k)2 + sup
k≥0

‖δn,n+k‖+ L(1)T sup
k≥0

‖wn+k − λ(θn+k)‖.

Note that KT,n → 0 a.s. The remainder of the proof follows in the exact same manner as the tracking lemma, see
Lemma 1, Chapter 2 of [21].

Lemma 3.8. Suppose, µn(·) → µ∞(·) ∈ U (1). Let θn(·), n = 1, 2, . . . ,∞ denote solutions to (19) corresponding to
the case where µ(·) is replaced by µn(·), for n = 1, 2, . . . ,∞. Suppose θn(0) → θ∞(0). Then

lim
n→∞

sup
t∈[0,T ]

‖θn(t)− θ∞(t)‖ → 0

for every T > 0.

Proof 11. It is shown in Lemma 2.3 of [20] that

∫ t

0

∫

f̃(s, z)µn(s, dz)ds−
∫ t

0

∫

f̃(s, z)µ∞(s, dz)ds → 0

for any f̃ ∈ C([0, T ]× S). Using this, one can see that

‖
∫ t

0

(h̃(θ∞(s), λ(θ∞(s)), µn(s)) − h̃(θ∞(s), λ(θ∞(s)), µ∞(s)))ds‖ → 0.

This follows because λ is continuous and h is jointly continuous in its arguments. As a function of t, the integral
on the left is equicontinuous and pointwise bounded. By the Arzela-Ascoli theorem, this convergence must in fact be

13



uniform for t in a compact set. Now for t > 0,

‖θn(t)− θ∞(t)‖

≤ ‖θn(0)− θ∞(0)‖+
∫ t

0

‖h̃(θn(s), λ(θn(s)), µn(s))− h̃(θ∞(s), λ(θ∞(s)), µ∞(s))‖ds

≤ ‖θn(0)− θ∞(0)‖+
∫ t

0

(‖h̃(θn(s), λ(θn(s)), µn(s))− h̃(θ∞(s), λ(θ∞(s)), µn(s))‖)ds

+

∫ t

0

(‖h̃(θ∞(s), λ(θ∞(s)), µn(s))− h̃(θ∞(s), λ(θ∞(s)), µ∞(s))‖)ds.

Now, using the fact that λ is Lipschitz with constant K the remaining part of the proof follows in the same manner
as Lemma 2.3 of [20].

Note that Lemma 3.8 shows that every limit point (µ̃(·), θ̃(·)) of (µ(s + .), θ̄(s + .)) as s → ∞ is such that θ̃(·)
satisfies (19) with µ(·) = µ̃(·).

Lemma 3.9. Almost surely every limit point of (µ(s + .), θ̄(s + .)) as s → ∞ is of the form (µ̃(·), θ̃(·)), where µ̃(·)
satisfies µ̃(t) ∈ D(1)(θ̃(t), λ(θ̃(t))).

Proof 12. Suppose that u(n) ↑ ∞, µ(u(n) + .) → µ̃(·) and θ̄(u(n) + .) → θ̃(·). Let {fi} be countable dense in the
unit ball of C(S), hence it is a separating class, i.e., for all i,

∫

fidµ =
∫

fidν implies µ = ν. For each i,

ζin =

n−1
∑

m=1

a(m)(fi(Z
(1)
m+1)−

∫

fi(y)p(dy|Z(1)
m , A(1)

m , θm, wm)),

is a zero-mean martingale with Fn = σ(θm, wm, Z
(1)
m , A

(1)
m ,m ≤ n), n ≥ 1. Moreover, it is a square-integrable

martingale due to the fact that fi’s are bounded and each ζin is a finite sum. Its quadratic variation process

An =

n−1
∑

m=0

a(m)2E[(fi(Z
(1)
m+1)−

∫

fi(y)p(dy|Z(1)
m , A(1)

m , θm, wm))2|Fm] + E[(ζi0)
2]

is almost surely convergent. By the martingale convergence theorem, {ζin} converges a.s. Let τ(n, t) = min{m ≥ n :
t(m) ≥ t(n) + t} for t ≥ 0, n ≥ 0. Then as n → ∞,

τ(n,t)
∑

m=n

a(m)(fi(Z
(1)
m+1)−

∫

fi(y)p(dy|Z(1)
m , A(1)

m , θm, wm)) → 0, a.s.,

for t > 0. By our choice of {fi} and the fact that {a(n)} are eventually non-increasing,

τ(n,t)
∑

m=n

(a(m)− a(m+ 1))fi(Z
(1)
m+1) → 0, a.s.

Thus,
τ(n,t)
∑

m=n

a(m)(fi(Z
(1)
m )−

∫

fi(y)p(dy|Z(1)
m , A(1)

m , θm, wm)) → 0, a.s.

which implies
∫ t(n)+t

t(n)

(

∫

(fi(z)−
∫

fi(y)p(dy|z, a, θ̂(s), ŵ(s)))µ(s, dzda))ds → 0, a.s.

Recall that u(n) can be any general sequence other than t(n). Therefore

∫ u(n)+t

u(n)

(

∫

(fi(z)−
∫

fi(y)p(dy|z, a, θ̂(s), ŵ(s)))µ(s, dzda))ds → 0, a.s.,

(this follows from the fact that a(n) → 0 and fi’s are bounded) where θ̂(s) = θn and ŵ(s) = wn when s ∈ [t(n), t(n+
1)), n ≥ 0. Now, one can claim from the above that

∫ u(n)+t

u(n)

(

∫

(fi(z)−
∫

fi(y)p(dy|z, a, θ̄(s), λ(θ̄(s))))µ(s, dzda))ds → 0, a.s.
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This is due to the fact that the map S(1)×U (1)×R
d+k ∋ (z, a, θ, w) →

∫

fi(y)p(dy|z, a, θ, w) is continuous and hence
uniformly continuous on the compact set A =
S(1) × U (1) × M1 × M2 where M1 is the compact set s.t. θn ∈ M1 for all n and M2 =
{w : ‖w‖ ≤ max(sup ‖wn‖,K ′)} where K ′ is the bound for the compact set λ(M1). Here we also use the fact
that ‖wm − λ(θ̄(s))‖ → 0 for s ∈ [tm, tm+1) as λ is Lipschitz and ‖wm − λ(θm)‖ → 0. The above convergence is
equivalent to

∫ t

0

(

∫

(fi(z)−
∫

fi(y)p(dy|z, a, θ̄(s+ u(n)), λ(θ̄(s+ u(n)))))µ(s + u(n), dzda))ds → 0 a.s.

Fix a sample point in the probability one set on which the convergence above holds for all i. Then the convergence
above leads to

∫ t

0

(

∫

fi(z)−
∫

fi(y)p(dy|z, a, θ̃(s), λ(θ̃(s))))µ̃(s, dzda)ds = 0 ∀i. (20)

For showing the above, we use one part of the proof from Lemma 2.3 of [20] that if µn(·) → µ∞(·) ∈ U then for any
t,

∫ t

0

∫

f̃(s, z, a)µn(s, dzda)ds−
∫ t

0

∫

f̃(s, z, a)µ∞(s, dzda)ds → 0

for all f̃ ∈ C([0, t] × S(1) × U (1)). In addition, we make use of the fact that f̃n(s, z, a) =
∫

fi(y)p(dy|z, a, θ̄(s + u(n)), λ(θ̄(s + u(n)))) converges uniformly to f̃(s, z, a) =
∫

fi(y)p(dy|z, a, θ̃(s), λ(θ̃(s))). To
prove this, define g : C([0, t]) × [0, t] × S(1) × U (1) → R by g(θ(·), s, z, a) =

∫

fi(y)p(dy|z, a, θ(s), λ(θ(s))). Let

A′ = {θ̄(u(n)+ .)|[u(n),u(n)+t], n ≥ 1}∪ θ̃(·)|[0,t]. Using the same argument as in Lemma 3.2 and (A6), i.e., λ is Lip-
schitz (the latter helps to claim that if θn(·) → θ(·) uniformly then λ(θn(·)) → λ(θ(·)) uniformly), it can be seen that
g is continuous. Then A′ is compact as it is a union of a sequence of functions and its limit. So, g|(A′×[0,t]×S(1)×U(1))

is uniformly continuous. Then a similar argument as in Lemma 2.4 shows equicontinuity of {f̃n(., .)} that results in
uniform convergence and thereby (20). An application of Lebesgue’s theorem in conjunction with (20) shows that

∫

(fi(z)−
∫

fi(y)p(dy|z, a, θ̃(t), λ(θ̃(t)))µ̃(t, dzda) = 0 ∀i

for a.e. t. By our choice of {fi}, this leads to

µ̃(t, dy × U (1)) =

∫

p(dy|z, a, θ̃(t), λ(θ̃(t)))µ̃(t, dzda),

a.e. t.

Lemma 3.8 shows that every limit point (µ̃(·), θ̃(·)) of (µ(s+ .), θ̄(s+ .)) as s → ∞ is such that θ̃(·) satisfies (19)
with µ(·) = µ̃(·). Hence, θ̃(·) is absolutely continuous. Moreover, using Lemma 3.9, one can see that it satisfies (9)
a.e. t, hence is a solution to the differential inclusion (9).

Proof 13 (Proof of Theorem 2.6 and 2.7). From the previous three lemmas it is easy to see that A0 = ∩t≥0{θ̄(s) : s ≥ t}
is almost everywhere an internally chain transitive set of (9).

Proof 14 (Proof of Corollary 1). Follows directly from Theorem 2.6 and Lemma 2.1.

4 Discussion on the assumptions: Relaxation of (A2)

We discuss relaxation of the uniformity of the Lipschitz constant w.r.t state of the controlled Markov process for the
vector field. The modified assumption here is

(A2)’ h : Rd+k×S(1) → R
d is jointly continuous as well as Lipschitz in its first two arguments with the third argument

fixed to same value and Lipschitz constant is a function of this value. The latter condition means that

∀z(1) ∈ S(1), ‖h(θ, w, z(1))− h(θ′, w′, z(1))‖ ≤ L(1)(z(1))(‖θ − θ′‖+ ‖w − w′‖).

A similar condition holds for g where the Lipschitz constant is L(2) : S(2) → R
+.

Note that this allows L(i)(.) to be an unbounded measurable function making it discontinuous due to (A1). The
straightforward solution for implementing this is to additionally assume the following:

(A8) supn L
(i)(Z

(i)
n ) < ∞ a.s.
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still allowing L(i)(.) to be an unbounded function. As all our proofs in Section 3 are shown for every sample point
of a probability 1 set, our proofs will go through. In the following we give such an example for the case where the
Markov process is uncontrolled.

It is enough to consider examples with locally compact S(i) (because then we can take the standard one-point
compactification and define L(i) arbitrarily at the extra point).

Let S(i) = Z and let Z
(i)
n , n ≥ 0 be the Markov Chain on Z starting at 0 with transition probabilities p(n, n+1) = p

and p(n, n− 1) = 1− p. We assume 1/2 < p < 1. Let L(i)(n) =
(

1−p
p

)n
.

Note that Z
(i)
n , n ≥ 0 is a transient Markov Chain with Z

(i)
n → +∞ a.s. From this it follows that infn Z

(i)
n > −∞,

and thus supn L
(i)(Z

(i)
n ) < ∞ almost surely. It follows that (L(i)(Z

(i)
n ))n∈N is a bounded sequence with probability

1, but this bound is clearly not deterministic since there is a non-zero probability that the sample path reaches large
negative values.

However in the following we discuss on the idea of using moment assumptions to analyze the convergence of single
timescale controlled Markov noise framework of [20]. We show that the iterates (14) (with ǫn = 0) converge to an
internally chain transitive set of the o.d.e. (12). For this we prove Lemma 3.1 under the following assumptions: For
all T > 2, i = 1, 2,

(S1) The controlled Markov process Yn as described in [20] takes values in a compact metric space.

(S2) For all n > 0, 0 < a(n) ≤ 1,
∑

n a(n) = ∞,
∑

n a(n)
2 < ∞ and a(n+ 1) ≤ a(n), n ≥ 0.

(S3) h : Rd × S → R
d Lipschitz in its first argument w.r.t the second. The condition means that

∀z ∈ S, ‖h(θ, z)− h(θ′, z)‖ ≤ L(z)(‖θ − θ′‖).

(S4) Let φ(n, T ) = max(m : a(n) + a(n+ 1) + · · ·+ a(n+m) ≤ T ) with the bound depending on T . Then

sup
n

E





(

sup
0≤m≤φ(n,T )

L(Yn+m)

)16


 < ∞.

(S5)

sup
n

E
[

e8
∑φ(n,T )

m=0 a(n+m)L(Yn+m)
]

< ∞.

Note that (S4) and (S5) are trivially satisfied in the case when L(z) = L for all z ∈ S i.e. the case of Section
2.

Remark 9. As long as one can prove Lemma 3.1 for all T > 2 it will hold for all T > 0, thus one can combine
(S4) and (S5) into the following assumption:

sup
n

E
[

e8T sup0≤m≤φ(n,T ) L(Yn+m)
]

< ∞.

As an instance where such an assumption is verified, consider the Markov process of [10, Eqn. (3.4)] defined
by

Yn+1 = A(θn)Yn +B(θn)Wn+1

where A(θ), B(θ), θ ∈ R
d, are k×k-matrices and (Wn)n≥O are independent and identically distributed R

k-valued
random variables. Assume that the following conditions hold true for all x, y ∈ S:

(a) L(Yn) is a non-decreasing sequence.

(b) For r > 0, R > 0,
sup

‖θ‖≤R

erL(A(θ)x+B(θ)y) ≤ LRαR
rerL(x) +MRe

CRL(y)

for some CR,MR, LR > 0 and αR < 1.

Then

E
[

erL(Yn)|Yn−1 = x, θn−1 = θ
]

≤
∫

erL(A(θ)x+B(θ)y)µn(dy)

≤ LRαR
rerL(x) +MRE

[

eCRL(Wn)
]

= LRαR
rerL(x) +KR,

16



with KR = MRE
[

eCRL(Wn)
]

(this follows from the fact that Wn are i.i.d if we assume that E
[

eCRL(W1)
]

< ∞).
Choosing large values of r, one can show that

E
[

erL(Yn)|Yn−1 = x, θn−1 = θ
]

≤ βRe
rL(x) +KR

where βR = LRαR
r < 1. Using the above, for large r

E
[

erL(Yn)
]

= E
[

E
[

erL(Yn)|Yn−1, θn−1

]]

≤ βRE
[

erL(Yn−1)
]

+KR,

which shows that
sup
n

E
[

erL(Yn)
]

< ∞.

Choosing r > 8T ,

sup
n

E
[

e8TL(Yn)
]

< ∞.

Note that this is a much weaker assumption that (A8).

(S6) The noise sequence Mn, n ≥ 0 (need not be a martingale difference sequence) satisfies the following condition

sup
n

E











φ(n,T )
∑

m=0

‖Mn+m+1‖





4





< ∞.

(S7) supn ‖θn‖ < ∞.

With the above assumptions we prove the following tracking lemma:

Lemma 4.1. For any T > 0, supt∈[s,s+T ] ‖θ̄(t)− θs(t)‖ → 0, a.s.

Proof 15. Let t(n) ≤ t ≤ t(n+m). Now, if 0 ≤ k ≤ (m− 1) and t ∈ (t(n+ k), t(n+ k + 1)],

‖θt(n)(t)‖ ≤ ‖θ̄(t(n)‖ + ‖
∫ t

t(n)

h̃(θt(n)(τ), µ(τ))dτ‖

≤ ‖θn‖+
k−1
∑

l=0

∫ t(n+l+1)

t(n+l)

(‖h(0, Yn+l)‖+ L(Yn+l)‖θt(n)(τ)‖))dτ

+

∫ t

t(n+k)

(‖h(0, Yn+k)‖ + L(Yn+k)‖θt(n)(τ)‖))dτ

≤ C0 +MT +

∫ t

t(n)

L(Y (τ))‖θt(n)(τ)‖dτ

where Y (τ) = Yn if τ ∈ [t(n), t(n+ 1)). Then it follows from an application of Gronwall inequality that

‖θt(n)(t)‖ ≤ Ce
∫

t

t(n)
L(Y (τ))dτ a.e. t

where C = C0 +MT . Next,

‖θt(n)(t)− θt(n)(t(n+ k))‖ ≤
∫ t

t(n+k)

‖h(θt(n)(s), Yn+k)‖ds

≤ ‖h(0, Yn+k)‖(t− t(n+ k)) + L(Yn+k)

∫ t

t(n+k)

‖θt(n)(s)‖ds

≤ Ma(n+ k) + CL(Yn+k)

∫ t

t(n+k)

e
∫

s

t(n)
L(Y (τ))dτ

ds.
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Then

‖
∫ t(n+m)

t(n)

(h(θt(n)(t), µ(t))− h(θt(n)([t]), µ([t])))dt‖

≤
m−1
∑

k=0

∫ t(n+k+1)

t(n+k)

‖h(θt(n)(t), Yn+k)− h(θt(n)([t]), Yn+k)‖dt

≤
m−1
∑

k=0

L(Yn+k)

∫ t(n+k+1)

t(n+k)

‖θt(n)(t)− θt(n)(t(n+ k))‖dt

≤
m−1
∑

k=0

ck

where
ck = L(Yn+k)a(n+ k)2

[

M + CL(Yn+k)e
∑

k
i=0 a(n+i)L(Yn+i)

]

.

‖θ̄(t(n+m))− θt(n)(t(n+m))‖ ≤
m−1
∑

k=0

L(Yn+k)a(n+ k)‖θ̄(t(n+ k))− θt(n)(t(n+ k))‖

+

m−1
∑

k=0

ck + ‖δn,n+m‖,

where δn,n+m =
∑n+m−1

k=n a(k)Mk+1.
Therefore using discrete Gronwall inequality we get

‖θ̄(t(n+m))− θt(n)(t(n+m))‖ ≤ r(m,n)e
∑m−1

k=0 a(n+k)L(Yn+k)

where r(m,n) =
∑m−1

k=0 (ck + a(n+ k)‖Mn+k+1‖).
Now, for some λ ∈ [0, 1],

‖θt(n)(t)− θ̄(t)‖
≤ (1− λ)‖θt(n)(t(n+m+ 1))− θ̄(t(n+m+ 1)) + λ‖θt(n)(t(n+m))− θ̄(t(n+m))‖

+max(λ, 1− λ)

∫ t(n+m+1)

t(n+m)

‖h̃(θt(n)(s), µ(s))‖ds

≤ r(m+ 1, n)e
∑

m
k=0 a(n+k)L(Yn+k) + a(n+m)

[

M + CL(Yn+m)e
∑

m
k=0 a(n+k)L(Yn+k)

]

.

Therefore

ρ(n, T ) := sup
t∈[t(n),t(n)+T ]

‖θt(n)(t)− θ̄(t)‖ ≤ r(φ(n, T + 1), n)e
∑φ(n,T )

k=0 a(n+k)L(Yn+k)

+ a(n)

[

M + C sup
0≤m≤φ(n,T )

L(Yn+m)e
∑φ(n,T )

k=0 a(n+k)L(Yn+k)

]

.

Now to prove the a.s. convergence of the quantity in the left hand side as n → ∞, we have using Cauchy-Schwartz
inequality:

∞
∑

n=1

E[ρ(n, T )
2
] ≤2KT

∞
∑

n=1

(

E
[

(r(φ(n, T + 1), n))
4
])1/2

+ 4M2
∞
∑

n=0

a(n)2+

4C2
∞
∑

n=1

a(n)2E





(

sup
0≤m≤φ(n,T )

L(Yn+m)

)2

e2
∑φ(n,T )

k=0 a(n+k)L(Yn+k)



 ,

where KT =

√

supn E[e4
∑φ(n,T )

k=0 a(n+k)L(Yn+k)] which depends only on T due to (S5). Now, the third term in the
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R.H.S is clearly finite from the assumptions (S4) and (S5). Now we analyze the first term i.e.

∞
∑

n=1

(

E
[

r(φ(n, T + 1), n)
4
])1/2

≤2
√
2

∞
∑

n=1






E











φ(n,T )
∑

k=0

ck





4












1/2

+ 2
√
2

∞
∑

n=1






E











φ(n,T )
∑

k=0

a(n+ k)‖Mn+k+1‖





4












1/2

. (21)

Next we analyze the first term in the R.H.S of (21) again using Cauchy-Schwartz inequality:

∞
∑

n=1






E











φ(n,T )
∑

k=0

ck





4












1/2

≤ 8M2
∞
∑

n=1

φ(n, T )2a(n)4



E





(

sup
0≤k≤φ(n,T )

L(Yn+k)

)4








1/2

+

8C2
∞
∑

n=1

φ(n, T )2a(n)4



E





(

sup
0≤k≤φ(n,T )

L(Yn+k)

)8

e4
∑φ(n,T )

i=0 a(n+i)L(Yn+i)









1/2

.

Therefore the the R.H.S will be finite if we can show that
∑∞

n=1 φ(n, T )
2a(n)4 is finite. For common step-size sequence

a(n) = 1
n , φ(n, T ) = O(n) thus the above series converges clearly. One can make the series converge for all a(n) = 1

nk

with 1
2 < k ≤ 1 by putting assumptions on higher moments in (S4) and (S5) .

In the above we have used the following inequality repeatedly for non-negative random variables X and Y :

√

E
[

(X + Y )
2n
]

≤ 2
2n−1

2

[

√

E[X2n ] +
√

E[Y 2n ]
]

with n ∈ N.
Now,

∞
∑

n=1






E











φ(n,T )
∑

k=0

a(n+ k)‖Mn+k+1‖





4












1/2

≤
∞
∑

n=1

a(n)2






E











φ(n,T )
∑

k=0

‖Mn+k+1‖





4












1/2

which is finite under assumption (S5) and the fact that a(n) are non-increasing.

5 Application : Off-policy temporal difference learning with linear
function approximation

In this section, we present an application of our results in the setting of off-policy temporal difference learning with
linear function approximation. In this framework, we need to estimate the value function for a target policy π given
the continuing evolution of the underlying MDP (with finite state and action spaces S and A respectively, specified
by expected reward r(·, ·, ·) and transition probability kernel p(·|·, ·)) for a behaviour policy πb with π 6= πb. The
authors of [11, 12, 3] have proposed two approaches to solve the problem:

(i) Sub-sampling: In this approach, the transitions which are relevant to deterministic target policy are kept
and the rest of the data is discarded from the given “on-policy” trajectory. We use the triplet (S,R, S′) to
represent (current state, reward, next state). Therefore one has “off-policy” data (X ′

n, Rn,Wn), n ≥ 0 where
E[Rn|X ′

n = s,Wn = s′] = r(s, a, s′), P (Wn = s′|X ′
n = s) = p(s′|s, a) with π(s) = a, π being the target policy

and X ′
n, n ≥ 0 is a random process generated by sampling the “on-policy” trajectory at increasing stopping

times.

19



(ii) Importance-weighting: In this approach, unlike sub-sampling, all the data from the given “on-policy” trajectory
is used. One advantage of this method is that we can allow the policy to be randomized in case of both behaviour
and target policies unlike the sub-sampling scenario where one can use only deterministic policy as a target
policy.

Then they introduce gradient temporal difference learning algorithms (GTD) [11, 12, 3] for both the approaches.
Currently, all GTD algorithms make the assumption that data is available in the “off-policy” setting i.e. of the

form (X ′
n, Rn,Wn), n ≥ 0 where {X ′

n} are i.i.d, E[Rn|X ′
n = s,Wn = s′] = r(s, a, s′) and P (Wn = s′|X ′

n = s) =
p(s′|s, a) with π(s) = a, π being the deterministic target policy. Additionally, the distribution of {X ′

n} is assumed
to be sampled according to the stationary distribution of the Markov chain corresponding to the behaviour policy.
However, such data cannot be generated from sub-sampling given only the “on-policy” trajectory. The reason is
that a Markov chain sampled at increasing stopping times cannot be i.i.d. In the following, we show how gradient
temporal-difference learning along with importance weighting can be used to solve the off-policy convergence problem
stated above for TD when only the “on-policy” trajectory is available.

5.1 Problem Definition

Suppose we are given an on-policy trajectory (Xn, An, Rn, Xn+1), n ≥ 0 where {Xn} is a time-homogeneous irre-
ducible Markov chain with unique stationary distribution ν and generated from a behavior policy πb 6= π. Here the
quadruplet (S,A,R, S′) represents (current state, action, reward, next state). Also, assume that πb(a|s) > 0 for all
s ∈ S, a ∈ A. We need to find the solution θ∗ for the following:

0 =
∑

s,a,s′

ν(s)π(a|s)p(s′|s, a)δ(θ; s, a, s′)φ(s)

= E[ρX,An
δX,Rn,Xn+1(θ)φ(X)]

= b−Aθ, (22)

where

(i) θ ∈ R
d is the parameter for value function,

(ii) φ : S → R
d is a vector of state features,

(iii) X ∼ ν,

(iv) 0 < γ < 1 is the discount factor,

(v) E[Rn|Xn = s,Xn+1 = s′] =
∑

a∈A πb(a|s)r(s, a, s′),

(vi) P (Xn+1 = s′|X = s) =
∑

a∈A πb(a|s)p(s′|s, a),

(vii) δ(θ; s, a, s′) = r(s, a, s′) + γθTφ(s′)− θTφ(s) is the temporal difference term with expected reward,

(viii) ρX,An
= π(An|X)

πb(An|X) ,

(ix) δX,Rn,Xn+1 = Rn + γθTφ(Xn+1)− θTφ(X) is the online temporal difference,

(x) A = E[ρX,An
φ(X)(φ(X)− γφ(Xn+1))

T ],

(xi) b = E[ρX,An
Rnφ(X)].

Hence the desired approximate value function under the target policy π is V ∗
π = θ∗Tφ. Let Vθ = θTφ. It is well-known

([3]) that θ∗ satisfies the projected fixed point equation namely

Vθ = ΠG,νT
πVθ,

where
ΠG,ν V̂ = argmin

f∈G
(‖V̂ − f‖ν),

with G = {Vθ|θ ∈ R
d} and the Bellman operator

T πVθ(i) =
∑

j∈S

∑

a∈A

π(a|i)p(j|i, a) [γVθ(i) + r(i, a, j)] .

Therefore to find θ∗, the idea is to minimize the mean square projected Bellman error J(θ) = ‖Vθ − ΠG,νT
πVθ‖2ν

using stochastic gradient descent. It can be shown that the expression of gradient contains product of multiple
expectations. Such framework can be modelled by two time-scale stochastic approximation where one iterate stores
the quasi-stationary estimates of some of the expectations and the other iterate is used for sampling.

20



5.2 The TDC Algorithm with importance-weighting

We consider the TDC (Temporal Difference with Correction) algorithm with importance-weighting from Sections 4.2
and 5.2 of [3]. The gradient in this case can be shown to satisfy

−1

2
∇J(θ) = E[ρX,Rn

δX,Rn,Xn+1(θ)φ(X)] − γE[ρX,Rn
φ(Xn+1)φ(X)T ]w(θ),

w(θ) = E[φ(X)φ(X)T ]−1E[ρX,Rn
δX,Rn,Xn+1(θ)φ(X)].

Define φn = φ(Xn), φ
′
n = φ(Xn+1), δn(θ) = δXn,Rn,Xn+1(θ) and ρn = ρXn,An

. Therefore the associated iterations in
this algorithm are:

θn+1 = θn + a(n)ρn
[

δn(θn)φn − γφ′
nφ

T
nwn

]

,

wn+1 = wn + b(n)
[

(ρnδn(θn)− φT
nwn)φn

]

,
(23)

with {a(n)}, {b(n)} satisfying (A4).

5.3 Convergence Proof

Theorem 5.1 (Convergence of TDC with importance-weighting). Consider the iterations (23) of the TDC. Assume
the following:

(i) {a(n)}, {b(n)} satisfy (A4).

(ii) {(Xn, Rn, Xn+1), n ≥ 0} is such that {Xn} is a time-homogeneous finite state irreducible Markov chain
generated from the behavior policy πb with unique stationary distribution ν. E[Rn|Xn = s,Xn+1 = s′] =
∑

a∈A πb(a|s)r(s, a, s′) and P (Xn+1 = s′|Xn = s) =
∑

a∈A πb(a|s)p(s′|s, a) where πb is the behaviour policy,
π 6= πb. Also, E[R2

n|Xn, Xn+1] < ∞ for all n almost surely, and

(iii) C = E[φ(X)φ(X)T ] and A = E[ρX,Rn
φ(X)(φ(X)− γφ(Xn+1))

T ] are non-singular where X ∼ ν.

(iv) πb(a|s) > 0 for all s ∈ S, a ∈ A.

(v) supn(‖θn‖+ ‖wn‖) < ∞ w.p. 1.

Then the parameter vector θn converges with probability one as n → ∞ to the TD(0) solution (22).

Proof 16. The iterations (23) can be cast into the framework of Section 2.2 with

(i) Z
(i)
n = Xn−1,

(ii) h(θ, w, z) = E[(ρn(δn(θ)φn − γφ′
nφ

T
nw))|Xn−1 = z, θn = θ, wn = w],

(iii) g(θ, w, z) = E[((ρnδn(θ)− φT
nw)φn)|Xn−1 = z, θn = θ, wn = w],

(iv) M
(1)
n+1 = ρn(δn(θn)φn − γφ′

nφ
T
nwn)− E[ρn(δn(θn)φn − γφ′

nφ
T
nwn)|Xn−1, θn, wn],

(v) M
(2)
n+1 = (ρnδn(θn)− φT

nwn)φn − E[(ρnδn(θn)− φn
Twn)φn|Xn−1, θn, wn],

(vi) Fn = σ(θm, wm, Rm−1, Xm−1, Am−1,m ≤ n, i = 1, 2), n ≥ 0.

Note that in (ii) and (iii) we can define h and g independent of n due to time-homogeneity of {Xn}.
Now, we verify the assumptions (A1)-(A7) (mentioned in Sections 2.2 and 2.3) for our application:

(i) (A1): Z
(i)
n , ∀n, i = 1, 2 takes values in compact metric space as {Xn} is a finite state Markov chain.

(ii) (A5): Continuity of transition kernel follows trivially from the fact that we have a finite state MDP.

Remark 10. In fact we don’t have to verify this assumption for the special case when the Markov chain is
uncontrolled and has unique stationary distribution. The reason is that in such case (A5) will be used only in
the proof of Lemma 2.3. However, if the Markov chain has unique stationary distribution Lemma 2.3 trivially
follows.

(iii) (A2)
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(a)

‖h(θ, w, z)− h(θ′, w′, z)‖
= ‖E[ρn(θ − θ′)T (γφ(Xn+1)− φ(Xn))φ(Xn)− γρnφ(Xn+1)φ(Xn)

T (w − w′)|Xn−1 = z]‖
≤ L(2‖θ− θ′‖M2 + ‖w − w′‖M2),

where M = maxs∈S ‖φ(s)‖ with S being the state space of the MDP and L = max(s,a)∈(S×A)
π(a|s)
πb(a|s)

. Hence

h is Lipschitz continuous in the first two arguments uniformly w.r.t the third. In the last inequality above,
we use the Cauchy-Schwarz inequality.

(b) As with the case of h, g can be shown to be Lipschitz continuous in the first two arguments uniformly w.r.t
the third.

(c) Joint continuity of h and g follows from (iii)(a) and (b) respectively as well as the finiteness of S.

(iv) (A3): Clearly, {M (i)
n+1}, i = 1, 2 are martingale difference sequences w.r.t. increasing σ-fields Fn. Note that

E[‖M (i)
n+1‖2|Fn] ≤ K(1 + ‖θn‖2 + ‖wn‖2) a.s., n ≥ 0 since E[R2

n|Xn, Xn+1] < ∞ for all n almost surely and S
is finite.

(v) (A4): This follows from the conditions (i) in the statement of Theorem 5.1.

Now, one can see that the faster o.d.e. becomes

ẇ(t) = E[ρX,An
δX,Rn,Xn+1(θ)φ(X)] − E[φ(X)φ(X)T ]w(t).

Clearly, C−1E[ρX,An
δX,Rn,Xn+1(θ)φ(X)] is the globally asymptotically stable equilibrium of the o.d.e. Moreover,

V ′(θ, w) = 1
2‖Cw−E[ρX,An

δX,Rn,Xn+1(θ)φ(X)]‖2 is continuously differentiable. Additionally, λ(θ) = C−1E[ρX,An
δX,Rn,Xn+1(θ)φ(X)]

and it is Lipschitz continuous in θ, verifying (A6)’. For the slower o.d.e., the global attractor is A−1E[ρX,An
Rnφ(X)]

verifying the additional assumption in Corollary 1. The attractor set here is a singleton. Also, (A7) is (v) in the
statement of Theorem 5.1. Therefore the assumptions (A1)− (A5), (A6′), (A7) are verified. The proof would then
follow from Corollary 1.

Remark 11. The reason for using two time-scale framework for the TDC algorithm is to make sure that the o.d.e’s
have globally asymptotically stable equilibrium.

Remark 12. Because of the fact that the gradient is a product of two expectations the scheme is a “pseudo”-gradient
descent which helps to find the global minimum here.

Remark 13. Here we assume the stability of the iterates (23). Certain sufficient conditions have been sketched for
showing stability of single timescale stochastic recursions with controlled Markov noise [21, p. 75, Theorem 9]. This
subsequently needs to be extended to the case of two time-scale recursions.

Another way to ensure boundedness of the iterates is to use a projection operator. However, projection may
introduce spurious fixed points on the boundary of the projection region and finding globally asymptotically stable
equilibrium of a projected o.d.e. is hard. Therefore we do not use projection in our algorithm.

Remark 14. Convergence analysis for TDC with importance weighting along with eligibility traces cf. [3, p. 74]
where it is called GTD(λ)can be done similarly using our results. The main advantage is that it works for λ < 1

Lγ

(λ ∈ [0, 1] being the eligibility function) whereas the analysis in [4] is shown only for λ very close to 1.

Remark 15. One can analyze this algorithm when the state space is infinite by imposing assumptions on φ as well
as the target and behavior policies.

6 Conclusion

We presented a general framework for two time-scale stochastic approximation with controlled Markov noise. More-
over, using a special case of our results, i.e., when the random process is a finite state irreducible time-homogeneous
Markov chain (hence has a unique stationary distribution) and uncontrolled (i.e, does not depend on iterates), we
provided a rigorous proof of convergence for off-policy temporal difference learning algorithm that is also extendible
to eligibility traces (for a sufficiently large range of λ) with linear function approximation under the assumption
that the “on-policy” trajectory for a behaviour policy is only available. This has previously not been done to our
knowledge.
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