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1. Introduction We study risk-sensitive nonzero-sum stochastic games on the infinite time

horizon on a countable state space. Risk-sensitive cost criterion plays an important role in many

applications including mathematical finance (see, e.g., Bilelecki and Pliska [8], Nagai [32]). In this

criterion one investigates ‘exponential of integral’ cost which takes into account the attitude of

the controller with respect to risk. The study of this kind of cost criteria was first initiated by

Bellman [6], p. 329 for the finite-state space case. Howard and Matheson [26] did an in-depth

analysis for the first time in the finite-state space case where each controlled chain is irreducible

and aperiodic. Rothblum [33] extended it to the general non-irreducible finite-state space case.

In the past two decades, there has been a renewed interest in this type of cost criteria as, when

the ‘risk factor’ is strictly positive, i.e., in the risk-averse case, the use of the exponential reduces

the possibility of rare but devastating large excursions of the state process. Though this criterion

has been studied extensively in the literature of Markov decision processes (see, e.g., Borkar and

Meyn [13], Cavazos-Cadena and Fernandez-Gaucherand [14], Di Masi and Stettner [15, 16, 17],

Fleming and Hernández-Hernández [21], Fleming and McEneaney [22], Hernández-Hernández and
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Marcus [24], Whittle [35, 36]), the corresponding results on stochastic games seem to be limited

(see e.g., Basar [3], El-Karoui and Hamadene [18], Jacobson [27], James et. al. [28], and, Klomp-

stra [30]). The general Linear-Exponential-Gaussian (LEG) control problem for discrete time with

perfect state observation is treated in Jacobson [27] where an equivalence of this with determin-

istic zero-sum quadratic-cost games was shown. Whereas this paper addresses the undiscounted

case, the corresponding discounted case was addressed by Hansen and Sargent [23]. This was fur-

ther extended to studying the Nash equilibrium for a two-person discrete-time nonzero-sum game

with quadratic-exponential cost criteria in Klompstra [30], the analogue of the Linear-Exponential-

Quadratic-Gaussian (LEQG) control problem studied in Whittle [34, 35]. The papers of Basar [3]

and El-Karoui et. al. [18] deal with stochastic differential games on the finite time horizon. In James

et. al. [28], the finite-horizon risk-sensitive stochastic optimal control problem for discrete-time

nonlinear systems was studied and its relation to a deterministic partially observed dynamic game

was established. To the best of our knowledge, the general case of infinite-horizon risk-sensitive

stochastic zero-sum games for both discounted as well as ergodic cost criteria was first addressed by

the current authors for the differential games setup in Basu and Ghosh [4] and for the discrete-time

countable state space case in Basu and Ghosh [5]. The case of nonzero-sum games in such setups

still remains open. In this work, we address this novel problem and analyze the generic nonzero-

sum case for the discrete-time countable state space setup using totally different mathematical

techniques for its solution as compared to the corresponding zero-sum case. We study this problem

with two players as the analysis can be routinely extended to three or more player case without

introducing any technical novelty but at the cost of further notational complication.

We use the results of Balaji and Meyn [2] to extend the work of Borkar and Meyn [13] from

one-controller case to two-controller case in a fully competitive setup. In other words we study

nonzero-sum risk-sensitive stochastic games on the infinite planning horizon with both discounted

and ergodic cost criteria. We would like to elucidate that both Balaji and Meyn [2] as well as Borkar

and Meyn [13] have obtained the desired results under a “norm-like” or “near-monotone” condition

on the running cost and a Lyapunov-type stability condition. This “norm-like” condition has been

crucially used in the proofs therein as to ensure that the ‘relative value functions’ are bounded from

below. However, for our case, we have performed the analysis without this “norm-like” condition

on the running cost since it would not be suitable for our purpose as it would invariably favour one

of the competing players. This change makes our analysis totally novel and substantially different

from those in the existing literature. Also, in most of the existing literature in this domain see, e.g.,

Balaji and Meyn [2], Borkar and Meyn [13], Cavazos-Cadena and Fernandez-Gaucherand [14], Di
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Masi and Stettner [16], and, Hernández-Hernández and Marcus [24], the ‘risk factor’ is assumed to

be sufficiently small. We make an assumption, for the ergodic game only, on the smallness of the

cost function as in Basu and Ghosh [4] which essentially implies that the ‘risk factor’ cannot be

too large.

Under certain assumptions, we have established the existence of Nash equilibria for both crite-

ria. We obtain our results by studying the corresponding Bellman equations. Note that if player

I announces that he is using a stationary/Markov strategy then for player II the game problem

reduces to a Markov decision problem (MDP). Then by the results of Borkar and Meyn [13], Di

Masi and Stettner [15] and Hernández-Hernández and Marcus [24], player II has optimal station-

ary/Markov strategies. Such a strategy of player II is called an ‘optimal response’ of player II

corresponding to the announced strategy of player I. Optimal responses of player I to the announced

strategies of player II are obtained analogously. Thus, for a given pair of strategies of the two play-

ers, there exists a set of optimal responses. This defines a point-to-set map. Any fixed point of this

map is clearly a Nash equilibrium. In this paper, we establish the existence of such a fixed point

thereby establishing the existence of Nash equilibria for relevant cases. For the sake of notational

simplicity, we consider two-player games only. All our results extends to multi-player games in a

routine manner.

The rest of our paper is structured as follows. Section 2 deals with the description of the problem.

The discounted cost criterion is studied in Section 3. Section 4 deals with the ergodic cost criterion.

We conclude our paper in Section 5 with a summary and possible future directions of work.

2. Problem Description A two-person stochastic game is determined by six objects

(X,U,V, r1, r2, q) where X
def
= {0,1,2, . . .} is a countable state space; U and V are action spaces

of players I and II, resp., assumed to be compact metric spaces; r1(resp. r2) :X ×U × V 7→ R is

the one-stage cost function for player I (resp. II) assumed to be bounded and jointly continuous

in (u, v) ∈ U × V for each k ∈X. Let P(X) be the space of probability measures on X endowed

with the Prohorov topology (see, e.g., Borkar [12]). Let q :X ×U × V 7→ P(X) be the transition

stochastic kernel which is assumed to be jointly continuous in (u, v) ∈ U × V in the topology of

weak convergence for each k ∈X. The game is played is as follows: At each stage (time instant)

players observe the current state k ∈ X of the system and then players I and II independently

choose actions u∈U , v ∈ V , resp. As a result of this, two things happen:

(i) the player I (resp. II) pays an immediate cost r1(k,u, v)(resp. r2(k,u, v)),

(ii) the system moves to a new state k′ ∈X with distribution q(·|k,u, v).
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The whole process then repeats from the new state k′. Cost accumulates throughout the course

of the game. The planning horizon or total number of stages is infinite, and each player wants to

minimize his infinite-horizon multiplicative expected cost to be described shortly. At each stage

the players choose their actions independently on the basis of past information. The available

information for decision making at time t∈N0
def
= {0,1,2 . . .} is given by the history of the process

up to that time

ht
def
= (k0, (u0, v0), k1, (u1, v1), . . . , (ut−1, vt−1), kt)∈Ht,

where H0 = X, Ht = Ht−1 × (U × V × X), . . . ,H∞ = (U × V × X)∞ are the history spaces. A

strategy for player I is a sequence µ
def
= {µt :Ht 7→ P(U)}t∈N of stochastic kernels. The set of all such

strategies for player I is denoted by Π1. Given any t, T ∈ N0 with T ≥ t+ 1, the set of strategies

{µs :Hs 7→ P(U)}t≤s≤T played from time t to time T is denoted by Πt,T
1 . Hence, Π0,∞

1 ≡Π1.

Definition 1. A strategy µ for player I is called a Markov strategy if

µt(ht−1, u, v, k)(·) = µt(h
′
t−1, u

′, v′, k)(·)

for all ht−1, h
′
t−1 ∈Ht−1, u,u

′ ∈U , v, v′ ∈ V , k ∈X, t∈N0. Thus a Markov strategy for player I can

be identified with a sequence of measurable maps, denoted by µ≡ {µt :X 7→ P(U)}t∈N. A Markov

strategy {µt} is called stationary Markov if µt = µ : X 7→ P(U) for all t. A stationary Markov

strategy is called pure or deterministic if µ :X 7→U .

Let M1,S1,D1 denote the set of Markov, stationary Markov and deterministic strategies strate-

gies for player I. The strategy sets Π2,Π
t,T
2 ,M2,S2,D2 for player II are defined analogously. The

spacesMi,Si, i= 1,2 are endowed with the product topologies derived from the Prohorov topology

on the underlying spaces P(U) (resp. P(V )) respectively. Since U,V are compact metric spaces, it

follows that Mi,Si, i= 1,2 are also compact metric spaces. Note that going forward we sometimes

use barbarism of notation and denote a stationary strategy {µ,µ, . . .} as {µ} or only µ when the

context is clear.

Given an initial distribution π0 ∈P(X) and a pair of strategies (µ,ν)∈Π1×Π2, the corresponding

state and action processes {Xt},{Ut},{Vt} are stochastic processes defined on the canonical space

(H∞,B(H∞), P µ,ν
π0

) (B(H∞) = Borel σ-field on H∞) via the projections Xt(h∞) = kt,Ut(h∞) =

ut, Vt(h∞) = vt, where P
µ,ν
π0

is uniquely determined by µ,ν and π0 by Ionescu Tulcea’s Theorem

(see, e.g., Proposition 7.28 of Bertsekas and Shreve [10]). When π0 = δk, k ∈X, we simply write

P µ,ν
k .

Let (µ,ν) ∈ Π1 ×Π2 and let (X(t)
s ,U (t)

s , V (t)
s : s ≥ t) be the corresponding process starting from

X
(t)
t = k ∈X for given t≥ 0. We omit the superscript when t= 0 for notational convenience.
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Definition 2. The risk-sensitive discounted cost for player I (i= 1) and II (i= 2) is defined

by

ρµ,νi (θ, (k, t))=
1

θ
lnEµ,ν

k,t

[

eθ
∑

∞

s=t α
s−tri(X

(t)
s ,U

(t)
s ,V

(t)
s )
]

, (1)

where θ ∈ (0,Θ], Θ> 0 is the ‘risk-sensitive’ parameter, α∈ [0,1] is the ‘discount factor’ and Eµ,ν
k,t

denotes the expectation with respect to P µ,ν
k,t . When t= 0, we omit this subscript ‘t’ for notational

convenience. The corresponding risk-sensitive ergodic cost for player i, i= 1,2 is defined by

β
µ,ν
i (θ, k)= limsupT→∞

1

θT
lnEµ,ν

k

[

eθ
∑T−1

t=0 ri(Xt,Ut,Vs)
]

. (2)

Definition 3. Given a (θ, k) ∈ (0,Θ]×X, a pair of strategies (µ∗, ν∗) ∈ Π1 × Π2 is called a

Nash equilibrium (for the cost criteria above) if

L
µ∗,ν∗

1 (θ, k)≤L
µ,ν∗

1 (θ, k), µ∈Π1,

and

L
µ∗,ν∗

2 (θ, k)≤L
µ∗,ν
2 (θ, k), ν ∈Π2, (3)

where for i= 1,2, Li = ρi or Li = βi as the case may be.

For a given θ ∈ (0,Θ], a pair (µ∗(θ, ·), ν∗(θ, ·)) of stationary/Markov strategies (depending on θ)

is said to be Nash equilibrium strategies if these measurable maps constitute a Nash equilibrium

for any initial k ∈X.

We shall first establish the existence of Nash equilibria in the class of Markov strategies for

cost criterion (1). Under additional ergodicity and smallness of cost conditions, we establish the

existence of Nash equilibria in the class of stationary Markov strategies for cost criterion (2).

Given a topological space Y , we denote by B(Y ) and Cb(Y ) the Banach spaces of bounded

measurable and bounded continuous functions on Y respectively, each equipped with the sup-norm

metric.

The following result established in Section II.3, Chapter II (pp. 25-30) of Borkar [11] plays a cru-

cial role in Sections 3 and 4. Given any set of stochastic process {Y
(1)
t },{Y

(2)
t }, . . . on (H∞,B(H∞))

driven by (µ,ν)∈Π1 ×Π2 we denote their joint law by Lµ,ν{(Y
(1)
t , Y

(2)
t , . . .), t≥ 0}.

Proposition 1. For a fixed initial distribution π0 ∈ P(X), and given (µ,ν) ∈M1 ×M2, the

map

M1 ×M2 ∋ (µ,ν) 7→ Lµ,ν{(Xt,Ut, Vt), t≥ 0}

is jointly continuous in (µ,ν), where {Xt, t≥ 0} denotes the state process with initial law π0 and

{Ut, t≥ 0}, {Vt, t≥ 0} are the corresponding control processes.
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3. Discounted Game In this section, we study the cost criterion (1). To this end, we first

consider the risk-sensitive exponential cost criterion for player I (i= 1) and II (i= 2) given by:

ζ
µ,ν
i (θ, (k, t))

def
= eθρ

µ,ν
i

(θ,(k,t)) =E
µ,ν
k,t

[

eθ
∑

∞

s=t α
s−tri(X

(t)
s ,U

(t)
s ,V

(t)
s )
]

, (4)

where {X(t)
s : s≥ t} is the state process and {(U (t)

s , V (t)
s ) : s≥ t} are the control processes under

(µ,ν)∈Πt,∞
1 ×Πt,∞

2 starting from k ∈X.

Given strategies (µ,ν)∈Πt,∞
1 ×Πt,∞

2 , consider the following Bellman equations for the exponen-

tial cost (4) for players I and II (resp.):

φ1(θ, (k, t))= inf
ξ∈P(U)

[

∫

U

∫

V

eθr1(k,u,v)

(

∑

j∈X

φ1(θα, (j, t+1))q(j|k,u, v)

)

ξ(du)νt[ht](dv)

]

, (5)

with

lim
θ→0

φ1(θ, (k, t))= 1, ∀k ∈X, ∀t, (6)

and

φ2(θ, (k, t))= inf
χ∈P(V )

[

∫

U

∫

V

eθr2(k,u,v)

(

∑

j∈X

φ2(θα, (j, t+1))q(j|k,u, v)

)

µt[ht](du)χ(dv))

]

, (7)

with a boundary condition analogous to (6).

Note that under (µ,ν) ∈Πt,∞
1 ×Πt,∞

2 , the corresponding chain {Xt} is inhomogeneous. Hence,

we consider the transformed chain {X̃t} on X ×N0 with the transition kernel q̃ defined by

q̃((k, t′)|(j, t), u, v) = q̂(k|j, u, v)δt′,t+1, u∈U, v ∈ V, (8)

where δs′,s = 1 if s′ = s and 0 otherwise. Now, replacing q by q̃ and using the arguments used in

the proof of Proposition 3.1 of Di Masi and Stettner [15], we get the following result. We omit the

routine details.

Proposition 2. Given (µ,ν) ∈ Πt,∞
1 ×Πt,∞

2 , there exist unique bounded solutions φ̂1[ν], φ̂2[µ]

to (5) and (7) (resp.) satisfying the boundary condition (6) such that

φ̂1[ν](θ, (k, t))= inf
µ̃∈Πt,∞

1

ζ
µ̃,ν
1 (θ, (k, t)), (9)

and

φ̂2[µ](θ, (k, t))= inf
ν̃∈Π

t,∞
2

ζµ,ν̃2 (θ, (k, t)). (10)
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Moreover, by Remark 3.2 of Di Masi and Stettner [15], given (µ,ν)∈Πt,∞
1 ×Πt,∞

2 and θ ∈ (0,Θ],

the minimizing strategies {µ∗
t [ν]}, {ν

∗
t [µ]} in (9) and (10) (resp.) are given by

µ∗
t [ν] = µ̂[ν](θαt, (Xt, t))∈M1 (11)

and

ν∗t [µ] = ν̂[µ](θαt, (Xt, t))∈M2 (12)

where (µ̂[ν], ν̂[µ]) : (0,Θ]× (X × N0) 7→ P(U) × P(V ) are measurable (minimizing) selectors (see

Beneš [9]) such that

inf
ξ∈P(U)

[

∫

U

∫

V

eθr1(k,u,v)

(

∑

j∈X

φ̂1[ν](θα, (j, t+1))q(j|k,u, v)

)

ξ(du)νt[ht](dv)

]

=

∫

U

∫

V

eθr1(k,u,v)

(

∑

j∈X

φ̂1[ν](θα, (j, t+1))q(j|k,u, v)

)

µ̂[ν](θ, (k, t))(du)νt[ht](dv), (13)

and

inf
χ∈P(V )

[

∫

U

∫

V

eθr2(k,u,v)

(

∑

j∈X

φ̂2[µ](θα, (j, t+1))q(j|k,u, v)

)

µt[ht](du)χ(dv)

]

=

∫

U

∫

V

eθr2(k,u,v)

(

∑

j∈X

φ̂2[µ](θα, (j, t+1))q(j|k,u, v)

)

µt[ht](du)ν̂[µ](θ, (k, t))(dv). (14)

Thus, µ∗
t [ν] ∈M1 (resp. ν∗t [µ] ∈M2) is an optimal response of player I (resp. player II) corre-

sponding to ν ∈Πt,∞
2 (resp. µ∈Πt,∞

1 ). Hence, without loss of generality, we can effectively consider

the strategy pair (µ,ν)∈M1 ×M2 for further analysis of this game.

Considering the minimizing selectors (µ̂[ν], ν̂[µ]) in (13) and (14) (resp.), we now define the

following point-to-set maps Hi :Mj 7→ 2Mi , i, j = 1,2, i 6= j as follows:

H1(ν)
def
= {{µ∗

t [ν]} : µ
∗
t [ν] satisfies (11)}, (15)

and

H2(µ)
def
= {{ν∗t [µ]} : ν

∗
t [µ] satisfies (12)}. (16)

Define the map H≡H1 ⊗H2 :M1 ×M2 7→ 2M1×M2 as

H(µ,ν)
def
= {({µ∗

t [ν]},{ν
∗
t [µ]}) : µ

∗
t [ν] satisfies (11) and ν

∗
t [µ] satisfies (12)}. (17)

We now prove the existence of Nash equilibria in the class of Markov strategies for the exponential

cost criterion (4).
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Theorem 1. Given θ ∈ (0,Θ], there exists a pair of Nash equilibrium strategy in M1×M2 for

the game corresponding to the cost criterion (4).

Proof: Given θ ∈ (0,Θ], (µ,ν) ∈ M1 ×M2, both H1(ν) and H2(µ) are non-empty and convex

implying H(µ,ν) is also non-empty and convex. Let {({µ∗
t,k[ν]}t,{ν

∗
t,k[µ]}t)}k∈N be a sequence of

distinct points ofH(µ,ν) converging to ({µt,∞[ν]}t,{νt,∞[µ]}t), i.e., ({µt,∞[ν]}t,{νt,∞[µ]}t) is a limit

point of H(µ,ν). Since, for each k ∈ N, µ∗
t,k[ν] = µ̂k[ν](θα

t, (Xt, t)) and ν∗t,k[µ] = ν̂k[µ](θα
t, (Xt, t))

satisfy (13) and (14) resp., it follows (by linearity) that so do µt,∞[ν] and νt,∞[µ] resp. implying that

they satisfy (11) and (12) resp. The closure property ofH(µ,ν) thus follows. Hence,H is a map with

non-empty, closed and convex values. Now, by Proposition 1, Lµ,ν{Xt, t≥ 0} is jointly continuous

in (µ,ν) ∈M1 ×M2. Note that φ̂1[ν] as obtained in (9) has a minimizing Markov strategy (11)

and φ̂2[µ] as obtained in (10) has a minimizing Markov strategy (12), i.e., the minimizations in

(9) and (10) can be effectively considered over M1 and M2 (resp.) which are compact sets. Also,

ri, i = 1,2 are bounded functions. Hence, by Berge Maximum Theorem (see Theorem 17.31 of

Aliprantis and Border [7]), φ̂1[ν] and φ̂2[µ] are continuous in ν and µ respectively. Now consider a

sequence {(µk, νk)}k∈N in M1×M2 converging to (µ∞, ν∞) ∈M1×M2. Let H(µk, νk)∋ (µ̃k, ν̃k)→

(µ̃∞, ν̃∞) ∈ M1 × M2. From the continuity of q(·|·, u, v), φ̂1[ν] and φ̂2[µ] in µ,ν, it follows that

(µ̃∞, ν̃∞) ∈ H(µ∞, ν∞). Hence the map H is upper semi-continuous. Then, by Theorem 1 of Fan

[19], there exists a fixed point (µ∗, ν∗) :N0 ×X 7→ P(U)×P(V ) of the map H defined as

(µ∗(t, k), ν∗(t, k))
def
= (µ̂[ν∗](θαt, (k, t)), ν̂[µ∗](θαt, (k, t))) (18)

where µ̂[ν∗] (resp. ν̂[µ∗]) is any minimizing selector in (13) (resp. (14)). Then (µ∗, ν∗) ∈M1 ×M2

is a Nash equilibrium strategy for the cost criterion (4), i.e.,

φ̂1[ν
∗](θ, (k, t))= ζµ

∗,ν∗

1 (θ, (k, t))≤ ζµ,ν
∗

1 (θ, k), ∀µ∈Πt,∞
1 ,

and

φ̂2[µ
∗](θ, (k, t))= ζ

µ∗,ν∗

2 (θ, (k, t))≤ ζ
µ∗,ν
2 (θ, k), ∀ν ∈Πt,∞

2 .

✷

Now we prove the existence of Nash equilibria in the class of Markov strategies for the cost

criterion (1).

Given definition (4), the Bellman equations for the discounted cost (1) are:

eθψ1(θ,(k,t)) = inf
ξ∈P(U)

[

∫

U

∫

V

eθr1(k,u,v)

(

∑

j∈X

eθαψ1(θα,(j,t+1))q(j|k,u, v)

)

ξ(du)νt[ht](dv)

]

, (19)



Basu and Ghosh: Nonzero-sum Risk-sensitive Games with Countable States

Article submitted to Mathematics of Operations Research; manuscript no. MOR-2015-241 9

for player 1 with the boundary condition

lim
θ→0

ψ1(θ, (k, t))= inf
µ∈Πt,∞

1

E
µ,ν
k,t

[

∞
∑

s=t

αs−tr1(X
(t)
s ,U (t)

s , V (t)
s )

]

, ∀k ∈X, ∀t, (20)

and

eθψ2(θ,(k,t)) = inf
χ∈P(V )

[

∫

U

∫

V

eθr2(k,u,v)

(

∑

j∈X

eθαψ2(θα,(j,t+1))q(j|k,u, v)

)

µt[ht](du)χ(dv)

]

, (21)

for player 2 with the boundary condition

lim
θ→0

ψ2(θ, (k, t))= inf
ν∈Π

t,∞
2

E
µ,ν
k,t

[

∞
∑

s=t

αs−tr2(X
(t)
s ,U (t)

s , V (t)
s )

]

, ∀k ∈X, ∀t. (22)

Theorem 2. Given θ ∈ (0,Θ], consider the fixed point Markov strategies (µ∗, ν∗) of H as in

(18) in Theorem 1. Then (µ∗, ν∗) is also a pair of Nash equilibrium strategy for the cost criterion

(1), i.e.,

ψ̂1[ν
∗](θ, (k, t))= ρµ

∗,ν∗

1 (θ, (k, t))≤ ρµ,ν
∗

1 (θ, (k, t)), ∀µ∈Πt,∞
1 ,

and

ψ̂2[µ
∗](θ, (k, t))= ρ

µ∗,ν∗

2 (θ, (k, t))≤ ρ
µ∗,ν
2 (θ, (k, t)), ∀ν ∈Πt,∞

2 ,

where ψ̂1[ν
∗] and ψ̂2[µ

∗] are unique bounded solutions to (19) and (21) (resp.) satisfying the bound-

ary conditions (20) and (22) respectively.

Proof: The result follows directly from (4), Proposition 2, Theorem 1 and the fact that log is an

increasing function. ✷

4. Ergodic Game In this section, we study the cost criterion (2). To this end, we make the

following assumption:

(A1) The process {Xt}t∈N0
is an irreducible, aperiodic Markov chain under any pair of stationary

Markov strategies (µ,ν)∈ S1 ×S2.

We also assume the following condition which guarantees uniform ergodicity of controlled Markov

processes and is used to study additive average cost problems (see, e.g., Hernández-Lerma [25],

Section 3.3 or an equivalent assumption (A1) in Di Masi and Stettner [15] or (3.2) in Hernández-

Hernández and Marcus [24]):

(A2) There exists a number 0< δ < 1 such that for all i, j ∈X, u,u′ ∈U and v, v′ ∈ V ,

||q(·|i, u, v)− q(·|j, u′, v′)||TV ≤ 2δ,

where || · ||TV denotes the total variation norm (see, e.g., Hernández-Lerma [25], Appendix B).
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In our further analysis of this problem, the above assumptions always hold.

Under (A1)-(A2), it follows from the Lemma 3.3 of Hernández-Lerma [25] that for any (µ,ν)∈

S1 ×S2, the corresponding Markov chain {Xt} is uniformly ergodic with a unique invariant prob-

ability measure η[µ,ν] ∈P(X), i.e.,

||q̂t(·|k,µ, ν)− η[µ,ν](·)||TV ≤ 2δt, ∀k ∈X, ∀t∈N, (23)

where q̂t(·|k,µ, ν) denotes the t-step transition kernel under (µ,ν) starting from k ∈X.

Remark 1. It is important to note here that the quantity δ on the r.h.s. of the above inequality

(23) is independent of the strategy pair (µ,ν) and (23) holds uniformly across all (µ,ν)∈ S1×S2 (see

also condition C4 of Theorem 4(ii) in Federgruen et. al. [20]). Note that an assumption equivalent

to (A2) was also necessary for the corresponding zero-sum case as analyzed in Basu and Ghosh

[5]. Equivalent assumptions are quite common in the corresponding literature for the one-controller

case (see, e.g., Di Masi and Stettner [15],[16] and [17], Hernández-Hernández and Marcus [24]).

Definition 4. For any B ⊆X, define the hitting time of the set B by {Xt} as

τB
def
= inf{t≥ 0 :Xt ∈B}. (24)

Denote τB = τj if B = {j}. Similarly, define the first return time to B by {Xt} as

σB
def
= inf{t≥ 1 :Xt ∈B}. (25)

Denote σB = σj if B = {j}.

Now, Theorem 2.1 of Balaji and Meyn [2], Theorem 16.0.2 of Meyn and Tweedie [31] and Remark

1 together imply the following result:

Proposition 3. Assume (A1)-(A2). Then the following three equivalent statements hold.

(a) For every A ∈ 2X , the chain {Xt} is geometrically recurrent uniformly over all (µ,ν) ∈

S1 × S2, i.e., there exists some RA > 1 such that sup(µ,ν)∈S1×S2
supk∈X E

µ,ν
k [RσA

A ] ≤ BA <∞. In

particular, if A = {j}, j ∈X we write the constants above as Rj and Bj respectively. Note that

BA,Bj > 1 by definition.

(b) For every A ∈ 2X , there exists some LA > 0 such that sup(µ,ν)∈S1×S2
supk∈X E

µ,ν
k [σA]≤LA <

∞. In particular, if A= {j}, j ∈X we write the constant above as Lj.

(c) There exist η < 1, b <∞, a finite subset C ⊂X and a bounded function V :X→ [1,∞) such

that
∑

j

V (j)q(j|i, µ(i), ν(i))≤ ηV (i)+ bIC(i)

where η, b,C and V are all independent of (µ,ν)∈ S1 ×S2.
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Remark 2. Note that stochastic Lyapunov-type stability assumptions as in Proposition 3(c)

was also necessary for the corresponding zero-sum stochastic differential game case as analyzed

in Basu and Ghosh [4]. See also Remark 1 for reference to the corresponding literature where

equivalent assumptions are used. We also refer the reader to Altman et. al. [1] for examples of such

games on countable spaces with additive cost criteria where equivalent stability assumptions were

made.

Henceforth we fix θ ∈ (0,Θ]. Given strategies (µ,ν) ∈ Π1 ×Π2, consider the following dynamic

programming (HJB) equations for the ergodic cost (2) for players I and II (resp.):

eθλ1+V1(θ,k) = inf
ξ∈P(U)

[

∫

U

∫

V

eθr1(k,u,v)

(

∑

j∈X

eV1(θ,j)q(j|k,u, v)

)

ξ(du)νt[ht](dv)

]

, (26)

and

eθλ2+V2(θ,k) = inf
χ∈P(V )

[

∫

U

∫

V

eθr2(k,u,v)

(

∑

j∈X

eV2(θ,j)q(j|k,u, v)

)

µt[ht](du)χ(dv)

]

, (27)

where λ1, λ2 are scalars.

Under (A1)-(A2), by Corollary 2.3 of Di Masi and Stettner [15], there exists at most one (up

to an additive constant) bounded function V̂1[ν] and a unique constant λ̂1[ν] for which (26) is

satisfied. If it does then, by Proposition 1.1 of Di Masi and Stettner [15] (see also Theorem 2.1 of

Hernández-Hernández and Marcus [24]), we have

λ̂1[ν] = inf
µ∈Π1

βµ,ν1 (θ, k) = inf
µ∈S1

limsupT→∞

1

θT
lnEµ,ν

k

[

eθ
∑T−1

t=0 r1(Xt,Ut,Vt)
]

(28)

and similarly, there exists at most one bounded V̂2[µ] (modulo an additive constant) and a unique

λ̂2[µ] satisfying (27) such that

λ̂2[µ] = inf
ν∈Π2

β
µ,ν
2 (θ, k)= inf

ν∈S2

limsupT→∞

1

θT
lnEµ,ν

k

[

eθ
∑T−1

t=0 r2(Xt,Ut,Vt)
]

. (29)

Hence there exist measurable (minimizing) selectors (see Beneš [9])

(µ̂[ν], ν̂[µ]) :X 7→ P(U)×P(V )

satisfying

inf
ξ∈P(U)

[

∫

U

∫

V

eθr1(k,u,v)

(

∑

j∈X

eV̂1[ν](θ,j)q(j|k,u, v)

)

ξ(du)νt[ht](dv)

]

=

∫

U

∫

V

eθr1(k,u,v)

(

∑

j∈X

eV̂1[ν](θ,j)q(j|k,u, v)

)

µ̂[ν] [du|k]νt[ht](dv), (30)
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and

inf
χ∈P(V )

[

∫

U

∫

V

eθr2(k,u,v)

(

∑

j∈X

eV̂2[µ](θ,j)q(j|k,u, v)

)

µt[ht](du)χ(dv)

]

=

∫

U

∫

V

eθr2(k,u,v)

(

∑

j∈X

eV̂2[µ](θ,j)q(j|k,u, v)

)

µt[ht](du)ν̂[µ] [dv|k] . (31)

Hence, by Proposition 1.1 of Di Masi and Stettner [15] (see also Theorem 2.1 of Hernández-

Hernández and Marcus [24]), given (µ,ν) ∈Π1 ×Π2, if there exist bounded solutions to (26) and

(27) then the minimizing selector µ̂[ν] and ν̂[µ] in (30) and (31) resp. generates stationary (see (28)

and (29)) optimal response strategy of player I (resp. player II) when the other’s strategy fixed.

Hence, without loss of generality, we can effectively consider the strategy pairs (µ,ν)∈ S1 ×S2 for

further analysis of this game. Thus if we consider the minimizing selectors µ̂[ν] and ν̂[µ] in (30)

and (31) respectively, we can define the following point-to-set maps Hi : Sj 7→ 2Si , i, j = 1,2, i 6= j

as follows:

H1(ν)
def
= {{µ∗[ν]} : µ∗[ν] satisfies (30)}, (32)

and

H2(µ)
def
= {{ν∗[µ]} : ν∗[µ] satisfies (31)}. (33)

Define the map H≡H1 ⊗H2 : S1 ×S2 7→ 2S1×S2 as

H(µ,ν)
def
= {({µ∗[ν]},{ν∗[µ]}) : µ∗[ν] satisfies (30) and ν∗[µ] satisfies (31)}. (34)

A priori, it is not clear that the sets H1,H2 and hence H are nonempty. We now proceed to prove

the existence of unique bounded solutions to (26) and (27). Once this result is established, the

nonemptyness of the above sets follow automatically. Then, using arguments similar to Theorem

1, we prove the existence of Nash equilibria by showing that the map H has a fixed point (µ̃, ν̃). To

this end, we make the following definitions (see Balaji and Meyn [2] and Borkar and Meyn [13]).

Definition 5. Given an arbitrarily fixed state 0∈X and any strategy (µ,ν)∈ S1 ×S2, let

Λ1[ν](µ)
def
= inf

{

Λ∈R :Eµ,ν
0

[

eθ
∑σ0−1

t=0 (r1(Xt,Ut,Vt)−Λ)
]

≤ 1
}

, (35)

and

Λ2[µ](ν)
def
= inf

{

Λ∈R :Eµ,ν
0

[

eθ
∑σ0−1

t=0 (r2(Xt,Ut,Vt)−Λ)
]

≤ 1
}

. (36)

Also define

Λ∗
1[ν]

def
= inf

µ∈S1

Λ1[ν](µ), (37)
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h∗
1[ν](k)

def
= inf

µ∈S1

Eµ,ν
k

[

eθ
∑τ0

t=0(r1(Xt,Ut,Vt)−Λ∗

1[ν])
]

, (38)

w∗
1 [ν](k)

def
= argminξ∈P(U)

[

∫

U

∫

V

eθr1(k,u,v)

(

∑

j∈X

h∗
1[ν](j)q(j|k,u, v)

)

ξ(du)ν [dv|k]

]

, (39)

where w∗
1 [ν] is any minimizer in (39). Similarly, let

Λ∗
2[µ]

def
= inf

ν∈S2

Λ2[µ](ν), (40)

h∗
2[µ](k)

def
= inf

ν∈S2

Eµ,ν
k

[

eθ
∑τ0

t=0(r2(Xt,Ut,Vt)−Λ∗

2[µ])
]

, (41)

w∗
2 [µ](k)

def
= argminχ∈P(V )

[

∫

U

∫

V

eθr2(k,u,v)

(

∑

j∈X

h∗
2[µ](j)q(j|k,u, v)

)

µ [du|k]χ(dv)

]

(42)

where w∗
2 [µ] is any minimizer in (42).

Note that since θ is fixed we have suppressed the explicit dependence on θ in these definitions

for notational convenience. A priori, it is not obvious that the quantities defined above are finite.

The following Proposition 4 and Lemmata 1 and 2 settle this issue.

First, we make a “small cost” assumption which shall hold for the rest of this paper.

(A3) ||ri||∞ ≤ lnR0
3Θ

, i= 1,2,

where R0 > 1 is as in part (a) of Proposition 3.

Remark 3. Note that a similar assumption was also necessary for the corresponding zero-sum

stochastic differential game case as analyzed in Basu and Ghosh [4].

Now we state and prove the following important proposition.

Proposition 4. Under (A1)-(A3) and for any (µ,ν)∈ S1 ×S2,

||r1||∞ ≥ |Λ∗
1[ν]|, (43)

and

||r2||∞ ≥ |Λ∗
2[µ]|. (44)

Moreover, Λ∗
1[ν] (resp. Λ

∗
2[µ]) is continuous in ν (resp. µ).

Proof: We prove it for player I. The result for player II follows analogously. From (35) we obtain,

by Jensen’s inequality

1 ≥Eµ,ν
0

[

eθ
∑σ0−1

t=0 (r1(Xt,Ut,Vt)−Λ1[ν](µ))
]

≥ e−θΛ1[ν](µ)E
µ,ν
0 [σ0]e

θE
µ,ν
0

[

∑σ0−1
t=0 (r1(Xt,Ut,Vt)

]

≥ e−θΛ1[ν](µ)E
µ,ν
0 [σ0]e−θ||r1||∞E

µ,ν
0 [σ0]

which implies

eθ||r1||∞E
µ,ν
0 [σ0] ≥ e−θΛ1[ν](µ)E

µ,ν
0 [σ0].
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Under (A1)-(A2), 0<Eµ,ν
0 [σ0]≤L0 <∞ (see part (b) of Proposition 3) and hence, by taking log

on both sides of the last inequality, we get

−||r1||∞ ≤Λ1[ν](µ).

Now, by (35), for any ǫ > 0, we have

Eµ,ν
0

[

eθ
∑σ0−1

t=0 (r1(Xt,Ut,Vt)−Λ1[ν](µ)+ǫ)
]

> 1

implying

E
µ,ν
0

[

eθ
∑σ0−1

t=0 (||r1||∞−Λ1[ν](µ)+ǫ)
]

> 1

which, in turn, implies

Eµ,ν
0

[

eθ(||r1||∞−Λ1[ν](µ)+ǫ)σ0
]

> 1.

Since this is true for any ǫ > 0, we have in the limit ǫ ↓ 0,

E
µ,ν
0

[

eθ(||r1||∞−Λ1[ν](µ))σ0
]

≥ 1

implying

||r1||∞ −Λ1[ν](µ)≥ 0.

Hence we have

− ||r1||∞ ≤Λ1[ν](µ)≤ ||r1||∞. (45)

The inequality (43) follows by taking the inf over µ ∈ S1. We now prove the joint continuity in

(µ,ν) of Λ1[ν](µ). Consider a sequence {(µ(n), ν(n))}
n→∞
−→ (µ(∞), ν(∞)) in S1 × S2. Let {Xt, t ≥ 0}

denote the chain starting at 0. By Proposition 1,

Lµ
(n),ν(n)

{Xt, t≥ 0}
n→∞
−→ Lµ

(∞),ν(∞)

{Xt, t≥ 0}.

Then, by Skorohod’s Theorem (see Theorem 2.2.2 of Borkar [12]), there exists some augmentation

(H̃∞,B(H̃∞), P̃) of the canonical space (H∞,B(H∞)) on which

{Xµ(n),ν(n)

t , t≥ 0}
P̃-a.s
−→ {Xµ(∞),ν(∞)

t , t≥ 0}

where {Xµ(n) ,ν(n)

t , t ≥ 0}, n = 1,2, . . . ,∞ denotes the Markov chain under (µ(n), ν(n)) on this aug-

mented space starting at 0. Following (25), let σ
(n)
0

def
= inf{t ≥ 1 :Xµ(n),ν(n)

t = 0}, n = 1,2, . . . ,∞.

Then, obviously P̃ -a.s.

σ
(n)
0

n→∞
−→ σ

(∞)
0 .
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Hence we get the joint continuity under (µ,ν) of σ0. Hence, for any 0 < ǫ ≤ ||r1||∞ and along

a subsequence {nk} ⊂ {n} with {(µ(nk), ν(nk))}
nk→∞
−→ (µ(∞), ν(∞)), we have by (45) and the joint

continuity of σ0 under (µ,ν)

fnk ≡ e
θ
∑σ

(nk)
0 −1

t=0

(

r1(X
µ(nk),ν(nk)

t ,U
µ(nk),ν(nk)

t ,V
µ(nk),ν(nk)

t )−Λ1[ν
(nk)](µ(nk))+ǫ

)

P̃-a.s.
−→ e

θ
∑σ

(∞)
0

−1

t=0

(

r1(X
µ(∞),ν(∞)

t ,U
µ(∞),ν(∞)

t ,V
µ(∞),ν(∞)

t )−Λ+ǫ

)

≡ f∞, (46)

where |Λ| ≤ ||r1||∞ and U
µ(n),ν(n)

t , V
µ(n),ν(n)

t are the corresponding control sequences under

(µ(n), ν(n)), n= 1,2, . . . ,∞ on this augmented space. Then

0<fnk = |fnk | ≤ gnk
def
= eθ(2||r1||∞+ǫ)σ

(nk)
0

P̃ -a.s.
−→ eθ(2||r1||∞+ǫ)σ

(∞)
0

def
= g∞ ≥ |f∞|= f∞. (47)

Moreover, by (A3) and part (a) of Proposition 3, we have

sup
nk

Ẽ
[

gnk
]

≤ sup
nk

Ẽ
[

e3Θ||r1||∞σ
(nk)
0

]

≤ sup
nk

Ẽ

[

R
σ
(nk)
0

0

]

≤B0 <∞, (48)

which, in particular, implies that {σ
(nk)
0 } are uniformly integrable. Given any ε > 0 it follows from

(48) that there exists some large enough constant K ≡K(ε,B0)> 0 such that

sup
nk

Ẽ
[

gnkI{gnk
≥K}

]

≤ ε (49)

implying {gnk} are uniformly integrable.

It follows by Theorem 6.18(iii) of Klenke [29] and (47) that {fnk} is uniformly integrable.

Also, by (A3) and part (a) of Proposition 3, we have

Ẽ [g∞]≤ Ẽ
[

e3Θ||r1||∞σ
(∞)
0

]

≤ Ẽ

[

R
σ
(∞)
0

0

]

≤B0 <∞. (50)

Hence, by Corollary 1.3.1 of Borkar [12], we get

lim
nk→∞

Ẽ



e
θ
∑σ

(nk)
0

−1

t=0

(

r1(X
µ(nk),ν(nk)

t ,U
µ(nk),ν(nk)

t ,V
µ(nk),ν(nk)

t )−Λ1[ν
(nk)](µ(nk))+ǫ

)





= Ẽ



e
θ
∑σ

(∞)
0

−1

t=0

(

r1(X
µ(∞),ν(∞)

t ,U
µ(∞),ν(∞)

t ,V
µ(∞),ν(∞)

t )−Λ+ǫ

)



 . (51)

Similarly we can show that

lim
nk→∞

Ẽ



e
θ
∑σ

(nk)
0 −1

t=0

(

r1(X
µ(nk),ν(nk)

t ,U
µ(nk),ν(nk)

t ,V
µ(nk),ν(nk)

t )−Λ1[ν
(nk)](µ(nk))

)





= Ẽ



e
θ
∑σ

(∞)
0

−1

t=0

(

r1(X
µ(∞),ν(∞)

t ,U
µ(∞),ν(∞)

t ,V
µ(∞),ν(∞)

t )−Λ

)



 . (52)
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Now from (35) we get that for any 0< ǫ≤ ||r1||∞,

Ẽ



e
θ
∑σ

(n)
0

−1

t=0

(

r1(X
µ(n),ν(n)

t ,U
µ(n),ν(n)

t ,V
µ(n),ν(n)

t )−Λ1[ν
(n)](µ(n))+ǫ

)



≥ 1

≥ Ẽ



e
θ
∑σ

(n)
0

−1

t=0

(

r1(X
µ(n),ν(n)

t ,U
µ(n),ν(n)

t ,V
µ(n),ν(n)

t )−Λ1[ν
(n)](µ(n))

)



 . (53)

Hence, taking limnk→∞ on both sides of (53), we have by (52) and (53)

Ẽ



e
θ
∑σ

(∞)
0

−1

t=0

(

r1(X
µ(∞),ν(∞)

t ,U
µ(∞),ν(∞)

t ,V
µ(∞),ν(∞)

t )−Λ+ǫ

)



≥ 1

≥ Ẽ



e
θ
∑σ

(∞)
0

−1

t=0

(

r1(X
µ(∞),ν(∞)

t ,U
µ(∞),ν(∞)

t ,V
µ(∞),ν(∞)

t )−Λ

)



 , (54)

for some Λ satisfying (45) and all 0< ǫ≤ ||r1||∞. This implies, by (35), that Λ = Λ1[ν
(∞)](µ(∞)).

Hence Λ1[ν](µ) is jointly continuous under (µ,ν). The continuity of Λ∗
1[ν] with respect to ν now

follows from (45) since S1 is compact. ✷

Remark 4. Note that by (45) above the quantities Λ1[ν](µ) and Λ2[µ](ν) defined in (35) and

(36) respectively are uniformly bounded for all θ ∈ (0,Θ]. This fact shall be implicitly used in the

proof of Theorem 3.

Now we state and prove two useful lemmata.

Lemma 1. Under (A1)-(A2) and for any (µ,ν)∈ S1 ×S2,

1. The multiplicative Poisson inequalities holds for all k ∈X, i.e.,

∫

U

∫

V

eθr1(k,u,v)

(

∑

j∈X

h∗
1[ν](j)q(j|k,u, v)

)

w∗
1 [ν](k)(du)ν [dv|k]≤ eθΛ

∗

1[ν]h∗
1[ν](k), (55)

∫

U

∫

V

eθr2(k,u,v)

(

∑

j∈X

h∗
2[µ](j)q(j|k,u, v)

)

µ [du|k]w∗
2 [µ](k)(dv)≤ eθΛ

∗

2[µ]h∗
2[µ](k). (56)

2. h∗
1[ν](k)<∞, h∗

2[µ](k)<∞, ∀k ∈X.

Proof: We prove it for player I when player II uses ν ∈ S2. The other case is analogous. For each

k 6= 0,

e−θΛ
∗

1[ν]

∫

V

∫

U

eθr1(k,u,v)

(

∑

j∈X

h∗
1[ν](j)q(j|k,u, v)

)

w∗
1 [ν](k)(du)ν [dv|k] =

inf
ξ∈P(U)

∫

V

∫

U

eθ(r1(k,u,v)−Λ∗

1 [ν])

(

∑

j∈X

q(j|k,u, v)

{

inf
µ∈S1

Eµ,ν
j

[

eθ
∑τ0−1

t=0 (r1(Xt,Ut,Vt)−Λ∗

1 [ν])
]

}

)

ξ(du)ν [dv|k]

= h∗
1[ν](k) (by one-step backward recursion),
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while for k= 0, we have

∫

V

∫

U

(

∑

j∈X

h∗
1[ν](j)q(j|0, u, v)

)

w∗
1 [ν](0)(du)ν [dv|0] = inf

µ∈S1

Eµ,ν
0

[

eθ
∑σ0−1

t=0 (r1(Xt,Ut,Vt)−Λ∗

1[ν])
]

≤ 1,

(57)

where the inequality follows from (35). It follows that (55) holds. From (55) it follows exactly as in

the proof of Lemma 15.2.2(i) of Meyn and Tweedie [31] that the set S
def
= {k ∈X : h∗

1[ν](k)<∞}

absorbing, i.e.,
∑

j∈S

∫

V

∫

U
q(j|k,u, v)w∗

1[ν](k)(du)ν [dv|k] = 1 for all k ∈ S. Since it is non-empty

as 0 ∈ S and the chain {Xt} is irreducible under the stationary strategy (w∗
1 [ν], ν) by assumption

(A1), we get by Proposition 4.2.3 of Meyn and Tweedie [31] that it is full, i.e. S =X establishing

part 2. ✷

Note that, under the additional assumption (A3), we can actually show a tighter result than

part 2 of Lemma 1 as given below.

Lemma 2. Under (A1) - (A3) and for any (µ,ν)∈ S1 ×S2,

1

R0B0

≤ h∗
1[ν](k)≤R0B0,

1

R0B0

≤ h∗
2[µ](k)≤R0B0, ∀k ∈X. (58)

Moreover, h∗
1[ν](k) (resp. h

∗
2[µ](k)) is continuous in ν (resp. µ) for all k ∈X.

Proof: We prove it for h∗
1[ν]. The proof is exactly similar for h∗

2[µ]. Under the assumptions of this

lemma, we have by (38) and part (a) of Proposition 3

0 <Eµ,ν
k

[

eθ
∑τ0

t=0(r1(Xt,Ut,Vt)−Λ∗

1[ν])
]

=Eµ,ν
k

[

eθ
∑σ0

t=0(r1(Xt,Ut,Vt)−Λ∗

1[ν])
]

≤Eµ,ν
k

[

e2θ||r1||∞(σ0+1)
]

≤Eµ,ν
k

[

e3Θ||r1||∞(σ0+1)
]

≤R0 sup
k∈X

Eµ,ν
k [Rσ0

0 ]≤R0B0, ∀k 6=0, (59)

where the equality follows from Proposition 3.4.5(ii) of Meyn and Tweedie [31]. Hence we get

0<h∗
1[ν](k) = inf

µ̃∈S1

E
µ̃,ν
k

[

eθ
∑τ0

t=0(r1(Xt,Ut,Vt)−Λ∗

1[ν])
]

≤R0B0, ∀k 6= 0. (60)

Let µ̃[ν] ∈ S1 be any minimizer in (38). Such a minimizer always exists by (59), Proposition 1

and the compactness of S1. Hence, for all k 6=0, we have using Jensen’s inequality and part (a) of

Proposition 3

h∗
1[ν](k) =E

µ̃[ν],ν
k

[

eθ
∑τ0

t=0(r1(Xt,Ut,Vt)−Λ∗

1[ν])
]

=E
µ̃[ν],ν
k

[

eθ
∑σ0

t=0(r1(Xt,Ut,Vt)−Λ∗

1 [ν])
]

≥E
µ̃[ν],ν
k

[

e−2θ||r1||∞(σ0+1)
]

≥E
µ̃[ν],ν
k

[

e−3Θ||r1||∞(σ0+1)
]

≥
1

R0

E
µ̃[ν],ν
k

[

1

R
σ0
0

]

≥
1

R
E

µ̃[ν],ν
k

[σ0]+1

0

≥
1

R0E
µ̃[ν],ν
k [Rσ0

0 ]
≥

1

R0 supj∈X E
µ̃[ν],ν
j [Rσ0

0 ]
≥

1

R0B0

. (61)
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Note that h∗
1[ν](0) = infξ∈P(U)

∫

V

∫

U
eθr1(0,u,v)−θΛ

∗

1[ν]ξ(du)ν [dv|0] obviously obeys the bound. The

joint continuity of Eµ,ν
k

[

eθ
∑τ0

t=0(r1(Xt,Ut,Vt)−Λ∗

1 [ν])
]

under (µ,ν) can be proved as in the proof of

Proposition 4. Hence the continuity of h∗
1[ν] in ν follows from (59) and the compactness of S1. ✷

Now we state and prove following theorem which is a key step for proving the existence of Nash

equilibria.

Theorem 3. Under (A1) - (A3) and for (µ,ν) ∈ S1 × S2, (lnh∗
1[ν], λ̂1[ν]) with h∗

1[ν](0) =
∫

V

∫

U
eθr1(0,u,v)−θΛ

∗

1[ν]w∗
1 [ν](0)(du)ν [dv|0], where w

∗
1 [ν] is defined in (39), is the unique solution in

B(X)×R+ to (26). Similarly, (lnh∗
2[µ], λ̂2[µ]) with h

∗
2[µ](0) =

∫

U

∫

V
eθr2(0,u,v)−θΛ

∗

2[µ]µ [du|0]w∗
2 [µ](0)(dv),

where w∗
2 [µ] is defined in (42), is the unique solution to (27) again in B(X)×R+.

Proof: We shall prove this for player I when player II plays the strategy ν. The other case is

proved analogously. We first prove that (lnh∗
1[ν], λ̂1[ν]) is a solution to (26). By Lemma 1, h∗

1[ν] as

defined in (38) is finite. Consider w∗
1 [ν] defined in (39) with this h∗

1[ν]. Let

f ∗
1 [ν](k)

def
= E

w∗

1 [ν],ν

k

[

eθ
∑τ0

t=0(r1(Xt,Ut,Vt)−Λ1[ν](w
∗

1 [ν]))
]

(62)

under the stationary strategy w∗
1 [ν]. Note that, for k 6=0, we can get as in (60) of Lemma 2,

0< f ∗
1 [ν](k)≤R0B0 <∞. (63)

It follows from the Markov property that

∫

V

∫

U

(

∑

j∈X

f ∗
1 [ν](j)q(j|k,u, v)

)

w∗
1 [ν](k)(du)ν [dv|k] =E

w∗

1 [ν],ν

k

[

eθ
∑σ0

t=1(r1(Xt,Ut,Vt)−Λ1[ν](w
∗

1 [ν]))
]

=

∫

V

∫

U

e−θr1(k,u,v)+θΛ1[ν](w
∗

1 [ν])f ∗
1 [ν](k)w

∗
1[ν](k)(du)ν [dv|k] , k 6= 0. (64)

Since, f ∗
1 [ν](0) =

∫

V

∫

U
eθr1(0,u,v)−θΛ1[ν](w

∗

1 [ν])w∗
1 [ν](0)(du)ν [dv|0], it follows that the following multi-

plicative Poisson equation holds:

∫

V

∫

U

(

∑

j∈X

f ∗
1 [ν](j)q(j|k,u, v)

)

w∗
1 [ν](k)(du)ν [dv|k]

=

∫

V

∫

U

e−θr1(k,u,v)+θΛ1[ν](w
∗

1 [ν])f ∗
1 [ν](k)w

∗
1[ν](k)(du)ν [dv|k] ,∀k. (65)

Since by (45) in Proposition 4 Λ1[ν]({w
∗
1 [ν]})<∞ and by (63) 0< f ∗

1 [ν](k)<∞, under the tran-

sition kernel q(·|k,u, v), we can define the “twisted kernel” q̆1(·|k,w
∗
1[ν](k), ν(k)) as follows:

q̆1(j|k,w
∗
1[ν](k), ν(k))

def
=

∫

U

∫

V

eθr1(k,u,v)−θΛ1[ν](w
∗

1 [ν])

f ∗
1 [ν](k)

f ∗
1 [ν](j)q(j|k,u, v)w

∗
1[ν](k)(du)ν [dv|k] , j ∈X.

(66)
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Note that the kernel q̆1 is indeed stochastic i.e.,
∑

j∈X q̆1(j|k,w
∗
1[ν](k), ν(k)) = 1, ∀k since (65)

holds. Hence, q̆1 is the transition kernel for some Markov chain {X̆t}. Since, by (45), for any

−||r1||∞ ≤Λ<Λ1[ν](w
∗
1 [ν]),

0<E
w∗

1 [ν],ν
0

[

eθ
∑σ0−1

t=0 (r1(Xt,Ut,Vt)−Λ)
]

≤E
w∗

1 [ν],ν
0

[

e3Θ||r1||∞σ0
]

≤ sup
k∈X

E
w∗

1 [ν],ν

k [Rσ0
0 ]≤B0 <∞,

it follows from Theorem 4.1(i)-(ii) of Balaji and Meyn [2] that the chain {X̆t} under q̆1 is

geometrically recurrent. Hence it follows from Theorem 4.2(i) of Balaji and Meyn [2] that

(f ∗
1 [ν],Λ1[ν]({w

∗
1 [ν]})) is a solution to the multiplicative Poisson equation:

eθλψ(k) =

∫

U

∫

V

eθr1(k,u,v)

(

∑

j∈X

ψ(j)q(j|k,u, v)

)

w∗
1 [ν](k)(du)ν [dv|k] . (67)

It follows from (39), the fact that h∗
1[ν]> 0 by definition and (55) in Lemma 1 that, for all k ∈X,

inf
ξ∈P(U)

∫

V

∫

U

eθr1(k,u,v)

(

∑

j∈X

h∗
1[ν](j)q(j|k,u, v)

)

ξ(du)ν [dv|k]

=

∫

V

∫

U

eθr1(k,u,v)

(

∑

j∈X

h∗
1[ν](j)q(j|k,u, v)

)

w∗
1 [ν](k)(du)ν [dv|k]

≤ eθΛ
∗

1[ν]h∗
1[ν](k)≤ eθΛ1[ν](w

∗

1 [ν])h∗
1[ν](k), (68)

as Λ∗
1[ν]≤ Λ1[ν](w

∗
1 [ν]) (see (35) and (37)). Hence, by Theorem 4.2(i)-(ii) of Balaji and Meyn [2],

we obtain
h∗
1[ν](k)

h∗
1[ν](0)

=
f ∗
1 [ν](k)

f ∗
1 [ν](0)

, (69)

and

inf
ξ∈P(U)

∫

U

∫

V

eθr1(k,u,v)

(

∑

j∈X

h∗
1[ν](j)q(j|k,u, v)

)

ξ(du)ν [dv|k]

= eθΛ
∗

1[ν]h∗
1[ν](k) = eθΛ1[ν](w

∗

1 [ν])h∗
1[ν](k), ∀k ∈X. (70)

Hence Λ∗
1[ν] = Λ1[ν](w

∗
1 [ν]). Since, by Lemma 2, 0 < supk∈X | lnh∗

1[ν](k)| ≤ ln(R0B0) <∞ as by

definition both R0,B0 > 1, uniqueness follows from Corollary 2.3 of Di Masi and Stettner [15]

and the condition h∗
1[ν](0) = f ∗

1 [ν](0) = infξ∈P(U)

∫

U

∫

V
eθr1(0,u,v)−θΛ

∗

1[ν]ξ(du)ν [dv|0]. It follows from

Proposition 1.1 of Di Masi and Stettner [15] (see also Theorem 2.1 of Hernández-Hernández and

Marcus [24]) that

Λ∗
1[ν] = λ̂1[ν] (71)

and hence,

h∗
1[ν](k) =E

{w∗

1 [ν]},ν

k

[

eθ
∑τ0

t=0(r1(Xt,Ut,Vt)−λ̂1[ν])
]

,∀k ∈X. (72)
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Similarly, it can be shown for player II that

Λ∗
2[µ] = λ̂2[µ] (73)

and

h∗
2[µ](k) =E

µ,{w∗

2 [µ]}

k

[

eθ
∑τ0

t=0(r2(Xt,Ut,Vt)−λ̂2[µ])
]

,∀k ∈X, (74)

under the stationary strategy w∗
2 [µ] as defined in (42) with h∗

2[µ] as defined in (41). ✷

Hence, by (30) and (31), for any (µ,ν)∈ S1 ×S2, there exists measurable (minimizing) selectors

(see Beneš [9])

(µ̂[ν], ν̂[µ]) :X 7→ P(U)×P(V )

satisfying

inf
ξ∈P(U)

∫

V

∫

U

eθr1(k,u,v)

(

∑

j∈X

elnh
∗

1[ν](j)q(j|k,u, v)

)

ξ(du)ν [dv|k]

=

∫

V

∫

U

eθr1(k,u,v)

(

∑

j∈X

elnh
∗

1[ν](j)q(j|k,u, v)

)

µ̂[ν](k)(du)ν [dv|k] , (75)

implying, by Theorem 3 and (26),

eθλ̂1[ν]+lnh∗1[ν](k) =

∫

V

∫

U

eθr1(k,u,v)

(

∑

j∈X

elnh
∗

1[ν](j)q(j|k,u, v)

)

µ̂[ν](k)(du)ν [dv|k] , (76)

and similarly

inf
χ∈P(V )

∫

U

∫

V

eθr2(k,u,v)

(

∑

j∈X

elnh
∗

2[µ](j)q(j|k,u, v)

)

µ [du|k]χ(dv)

=

∫

U

∫

V

eθr2(k,u,v)

(

∑

j∈X

elnh
∗

2[µ](j)

)

q(j|k,u, v)µ [du|k] ν̂[µ](k)(dv), (77)

implying, by Theorem 3 and (27),

eθλ̂2[µ]+lnh∗2[µ](k) =

∫

U

∫

V

eθr2(k,u,v)

(

∑

j∈X

elnh
∗

2[µ](j)q(j|k,u, v)

)

µ [du|k] ν̂[µ](k)(dv). (78)

Using the minimizing selectors µ̂[ν] and ν̂[µ] in (75) and (77) as our optimal responses for given

(µ,ν) ∈ S1 ×S2, we now prove the existence of Nash equilibria in the class of stationary Markov

strategies for the ergodic cost criterion (2).

Theorem 4. Given θ ∈ (0,Θ], there exists a pair of Nash equilibrium strategy in S1 ×S2 for

the game corresponding to the cost criterion (2).
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Proof: Given (µ,ν) ∈ S1 ×S2, H as defined in (34) can be proved to be a map with non-empty,

closed and convex values as in Theorem 1. Now, by Proposition 1, Lµ,ν{Xt, t≥ 0} is jointly contin-

uous in (µ,ν) ∈ S1 ×S2. Note that λ̂1[ν] as obtained in (28) has a minimizing stationary strategy

(30) and λ̂2[µ] as obtained in (29) has a minimizing stationary strategy (31), i.e., the minimiza-

tions in (28) and (29) can be effectively considered over S1 and S2 (resp.) which are compact sets.

Also, ri, i= 1,2 are bounded functions. Hence, by Berge Maximum Theorem (see Theorem 17.31

of Aliprantis and Border [7]), λ̂1[ν] and λ̂2[µ] are continuous in ν and µ respectively. Similarly,

the continuity of h∗
1[ν] (resp. h

∗
2[µ]) follows from (72) (resp. (74)) and Lemma 2. Now consider

a sequence {(µk, νk)}k∈N in S1 × S2 converging to (µ∞, ν∞) ∈ S1 × S2. Let H(µk, νk) ∋ (µ̃k, ν̃k)→

(µ̃∞, ν̃∞) ∈ S1 ×S2. From the continuity of q(·|·, u, v), (h∗
1[ν], λ̂1[ν]) and (h∗

2[µ], λ̂2[µ]) in µ,ν, it fol-

lows that (µ̃∞, ν̃∞) ∈H(µ∞, ν∞). Hence the map H is upper semi-continuous. Then, by Theorem

1 of Fan [19], there exists a fixed point (µ∗, ν∗) :X 7→ P(U)×P(V ) of the map H defined as

(µ∗(k), ν∗(k))
def
= (µ̂[ν∗](k), ν̂[µ∗](k)) (79)

where µ̂[ν∗] (resp. ν̂[µ∗]) is any minimizing selector in (75) (resp. (77)). Then (µ∗, ν∗) ∈ S1 ×S2 is

a Nash equilibrium strategy for the cost criterion (2), i.e., for all k ∈X

λ̂1[ν
∗] = β

µ∗,ν∗

1 (θ, k)≤ β
µ,ν∗

1 (θ, k), ∀µ∈Π1,

and

λ̂2[µ
∗] = βµ

∗,ν∗

2 (θ, k)≤ βµ
∗,ν

2 (θ, k), ∀ν ∈Π2.

✷

5. Conclusions. We have established Nash equilibria for nonzero-sum discrete-time stochas-

tic games on a countable state space with risk-sensitive cost criteria. We have studied both dis-

counted and ergodic cost criteria on the infinite time horizon. For discounted cost criterion, we

have established Nash equilibria under fairly general conditions. For ergodic cost criterion, how-

ever, we have established our results under additional criteria of irreducibility (A1), stability (A2)

and smallness of cost (A3) all of which are standard in the corresponding literature. A natural

continuation of this work is to analyze such discrete-time games on general state spaces. Another

direction is to investigate such games in continuous time in the set-up of stochastic differential

games.
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