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Abstract. Let X be a one-dimensional diffusion and let g : [0, T ] × R → R be a payoff

function depending on time and the value of X . The paper analyzes the inverse optimal

stopping problem of finding a time-dependent function π : [0, T ] → R such that a given

stopping time τ⋆ is a solution of the stopping problem sup
τ

E [g(τ,Xτ ) + π(τ)] .

Under regularity and monotonicity conditions, there exists a solution π if and only if τ⋆ is

the first time when X exceeds a time-dependent barrier b, i.e. τ⋆ = inf {t ≥ 0 |Xt ≥ b(t)} .

We prove uniqueness of the solution π and derive a closed form representation. The rep-

resentation is based on an auxiliary process which is a version of the original diffusion X

reflected at b towards the continuation region. The results lead to a new integral equation

characterizing the stopping boundary b of the stopping problem sup
τ
E [g(τ,Xτ )].

Keywords: Optimal Stopping, Reflected Stochastic Processes, Dynamic Mechanism De-

sign, Dynamic Implementability,
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Introduction

Optimal stopping is omnipresent in applications of dynamic optimization in economics,

statistics, and finance. Examples are the optimal exercise timing of options, when to stop

searching, and the quickest detection problem. One method to solve optimal stopping prob-

lems in a Markovian framework is to identify the stopping region. Optimal stopping times

are then given as first hitting times of the stopping region.

Thomas Kruse, University of Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen, Germany. Email:
thomas.kruse@uni-due.de;

Philipp Strack, University of Califonia, Berkeley, 513 Evans Hall, Berkeley, 94720 California, USA. Web:
http://www.philippstrack.com, Email: philipp.strack@gmail.com.

We would like to thank Stefan Ankirchner, Dirk Bergemann, Paul Heidhues, David Hobson, Monique
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Many applications of optimal stopping naturally lead to the question of how to change

a payoff such that a given stopping rule becomes optimal. Mathematically, this inverse

optimal stopping problem consists of modifying the payoff of a stopping problem in such a

way that it is optimal to stop at the first time when a given set is hit. In many economic

applications informational constraints furthermore restrict the set of admissible modifications

to the addition of a time-dependent function to the original payoff, i.e. transfers which are

independent of the realization of the process.

To fix ideas, consider the continuous-time, finite horizon optimal stopping problem

sup
τ∈T

E [g(τ,Xτ)] ,

where T is the set of stopping times with values in [0, T ], X is a one-dimensional diffusion

and g is a smooth payoff function. A deterministic function π : [0, T ] → R is called a transfer.

We say that a set A ⊂ [0, T ]× R is implemented by a transfer π if the first time τA when X

hits A is optimal in the stopping problem with payoff g + π, i.e. if

(1) τA ∈ arg sup
τ∈T

E [g(τ,Xτ) + π(τ)] .

Inverse optimal stopping problems play an important role in different economic situations.

One example are dynamic principal-agent models: There is an agent who privately observes

the stochastic process X and aims at maximizing her expected payoff supτ∈T E [g(τ,Xτ)]

from stopping the process. The principal observes the stopping decision of the agent, but

not the realization of the process. She aims at inducing the agent to take a particular

stopping decision given by the hitting time τA. In order to influence the agent’s stopping

decision the principal commits to a transfer π – a payment which is due at the moment

when the agent stops. The principal needs to construct the transfer π in such a way that τA

becomes optimal in the modified stopping problem supτ∈T E [g(τ,Xτ) + π(τ)]. For example,

the agent could be a firm that has developed a new technology and now has to decide when

to introduce it to the market place. The firm observes private signals regarding the demand,

and this knowledge changes over time. The principal is a social planner who also takes the

consumer surplus of the new technology into account and hence prefers a different stopping

decision than the firm. The inverse optimal stopping problem analyzes the question how

the planner can align the preferences of the firm by subsidizing the market entry through a

transfer (see Subsection 1.1 for a specific example).

Other economic examples of inverse optimal stopping problems are the design of unemploy-

ment benefits McCall (1970), Hopenhayn and Nicolini (1997), the structuring of management

compensation, the sale of irreversible investment options Board (2007), as well as well as

the inference of deliberation costs in search theory Drugowitsch et al. (2012), Fudenberg
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et al. (2015). Section 1 presents two more specific examples. For further economic examples

and applications to revenue management we refer to Kruse and Strack (2015), where inverse

optimal stopping problems have been introduced in a discrete-time framework.

The main result (Theorem 11) states that all cut-off regions A = {(t, x) | x ≥ b(t)} are

implementable provided that the boundary b is càdlàg and has summable downwards jumps.

Moreover, we suppose that a so-called single crossing condition is satisfied. It requires that

the expected gain of waiting an infinitesimal amount of time is non-increasing in the value

of the process X. Formally, we suppose that the function

(2) x 7→ lim
hց0

1

h
E
[

g(t+ h,X t,x
t+h)− g(t, x)

]

= (∂t + L)g(t, x)

is non-increasing, where L denotes the generator of the diffusion X . Furthermore, we show

that the solution π implementing the cut-off region A = {(t, x)|x ≥ b(t)} admits the following

closed form representation

(3) π(t) = E

[
∫ T

t

(∂t + L)g(s, X̃ t,b(t)
s )ds

]

.

Here (X̃
t,b(t)
s )s≥t denotes the unique process starting on the barrier b(t) at time t which

results from reflecting the original process X at the barrier (b(s))s∈[t,T ] away from A.

As shown in Kotlow (1973), Jacka and Lynn (1992) and Villeneuve (2007) the single

crossing condition (or a weaker version of it) ensures that the stopping region in stopping

problems of the form v(t, x) = supτ∈Tt,T
E [g(τ,X t,x

τ )] is of cut-off type, i.e. there exists a

barrier b : [0, T ] → R such that x ≥ b(t) if and only if v(t, x) = g(t, x). In Proposition 7 we

show that this result translates to implementable regions. We introduce the notion of strict

implementability for sets A ⊂ [0, T ] × R, where we additionally demand that A coincides

with the stopping region of the problem (1). Proposition 7 states that under the single

crossing condition only cut-off regions are strictly implementable. Furthermore, we show

that if the monotonicity in Equation (2) is strict, then cut-off regions with a càdlàg barrier

with summable downward jumps are strictly implementable (Corollary 12). In this way the

following characterization of strictly implementable regions holds up the assumption of right

continuity and summable downward jumps: A region is strictly implementable if and only if

it is of cut-off type.

Furthermore, the transfer implementing a cut-off region is unique up to an additive con-

stant (Theorem 15). This result leads to a new characterization of optimal stopping bound-

aries (Corollary 16). If the first hitting time τA of a set A is optimal in the stopping problem

supτ∈T E [g(τ,Xτ)] then A is implemented by the zero transfer. Uniqueness of the transfer
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implies that

(4) E

[
∫ T

t

(∂t + L)g(s, X̃ t,b(t)
s )ds

]

= 0

for all t ∈ [0, T ]. Remarkably, the nonlinear integral Equation (4) is not only necessary but

also sufficient for optimality. In Section 5 we discuss the relation to the integral equation

derived in Kim (1990), Jacka (1991) and Carr et al. (1992) (see also Peskir and Shiryaev

(2006a)).

The paper is organized as follows. Section 1 presents specific examples of inverse op-

timal stopping problems. In Section 2 we set up the model and introduce the notion of

implementability. In Section 3 we show that only cut-off regions are strictly implementable.

Section 4 is devoted to the converse implication. First we introduce reflected processes and

formally derive the representation (3) of the transfer (Subsection 4.1). Subsection 4.2 con-

tains the main results about implementability of cut-off regions. In Subsection 4.3 we present

the main properties of the transfer and in Subsection 4.4 we provide the uniqueness result.

In Section 5 we derive and discuss the integral equation (4).

1. Motivating Examples

1.1. Providing Incentives for Investment in a Project of Unknown Profitability.

A single agent (or firm) can invest into a project of unknown value θ ∈ R. The value (or

discounted expected future return) of the project θ ∈ R is normally distributed with mean

X0 and variance σ2
0 . The agent learns about the project’s value over time by observing a

signal (or payoff) (Zt) which is a Brownian motion (Wt) (independent of θ) plus drift equal

to the true return of the project

dZt = θ dt+ dWt .

When the agent invests into the project at time τ he receives its value discounted by the

time at which he invested e−r τθ . The agent’s problem is to find a stopping time adapted

to F = (Ft)t≥0 (the natural filtration of Z) which solves supτ E [e−r τθ] . If we denote by

Xt = E [θ | Ft] the posterior expected value that the agent assigns to the project, the law of

iterated expectations implies that this problem is equivalent to

sup
τ

E
[

e−r τXτ

]

.

It is well known (cf. Theorem 10.1 in Liptser and Shiryaev (2013)) that after seeing the signal

(Zs)s≤t the agents posterior belief about the value of the project is normally distributed with

variance σ2
t = 1

σ−2
0 +t

and mean Xt = σ2
t (X0σ

−2
0 + Zt) , and furthermore that there exists a
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Brownian motion Bt (in the filtration F) such that

dXt = σ2
t dBt .

Hence, the agent’s learning and investment problem is equivalent to the problem of stopping

the diffusion X . As the problem is Markovian in (t, X) and the returns from waiting to

invest are decreasing in Xt it follows that the optimal solution is to invest once the expected

value of the project Xt exceeds a time-dependent threshold b01

τ = inf{t : Xt ≥ b0(t)} .

The decision to invest into a project might for example correspond to bringing a new product

to the market. In many such investment situations the incentive of the firm to invest is not

aligned with the incentives of society. For example, a pharmaceutical firm which takes an

investment decision based upon the profitability of a treatment, ignoring consumer surplus

generated from the availability of medicine, will invest too late and in too few treatments.

To mitigate this inefficiency the government could use subsidies (and taxes) on new projects

which depend on the time the firm invests and brings the project to the market. For example,

in Figure 1 the dashed line shows the investment threshold b0 : [0, T ] → R at which the firm

invests without a transfer. Suppose that the government wants the firm to invest earlier, for

example at the first time when the firm’s belief about the investment value X exceeds the

barrier bπ : [0, T ] → R, bπ(t) = 0.5
√
T − t. In Section 4 below we show that this is possible

for the government by using a transfer π : [0, T ] → R. The solid line in the left-hand side of

Figure 1 depicts such a transfer.

1.2. Quickest change point detection in a principal-agent framework. Quickest de-

tection problems play a prominent role in mathematical statistics and are a key ingredient

in a number of models in the applied sciences such as quality control, epidemiology and

geology (see, e.g., Shiryaev (Chapter IV 2007), Peskir and Shiryaev (Chapter IV, Section 22

2006b) and Müller and Siegmund (1994) for historical accounts on the problem formulations

and specific applications). As an economic motivation consider a venture capitalist and an

entrepreneur. The entrepreneur observes an informative signal about whether it is still prof-

itable to run the firm or not. This information is often unobservable to the venture capitalist

as he possesses no knowledge of the specific market. The venture capitalist who finances the

firm wants to stop operations once he is 60% sure that the firm became unprofitable. The

entrepreneur might prefer running the firm much longer as doing so yields private benefits to

him. An important question in the venture capital industry is how to design compensation

schemes which align the interests of the entrepreneur with those of the venture capitalist.

1see also Proposition 7 below.
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We consider here a variant of the quickest detection problem of a Wiener process from

a principal-agent perspective. For the formulation of the single-agent quickest detection

problem we follow closely Gapeev and Peskir (2006). There is an agent observing on the

finite time interval [0, T ] the path of a one-dimensional Brownian motion X which changes

its drift from 0 to µ 6= 0 at some random time θ. The random time θ is independent of X

and is exponentially distributed with parameter λ ∈ (0,∞). The agent does not observe θ,

but has to infer information about θ from the continuous observation of X . The agent’s goal

is to find a stopping time of X that is as close to θ as possible. More formally, for c ∈ (0,∞)

the agent aims at finding a [0, T ]-valued stopping time τ with respect to the filtration FX

generated by X that attains the minimum in

inf
0≤τ≤T

(

P [τ ≤ θ] + cE
[

(τ − θ)+
])

.

As shown in Gapeev and Peskir (2006) this is equivalent to solving the stopping problem

(5) inf
0≤τ≤T

E

[

1− pτ + c

∫ τ

0

ptdt

]

= 1− sup
0≤τ≤T

E

[
∫ τ

0

λ− (c+ λ)ptdt

]

,

where the process p satisfies for all t ∈ [0, T ] that

dpt = λ(1− pt)dt+ µpt(1− pt)dWt, p0 = 0

and where W is a standard Brownian motion. The process p satisfies for all t ∈ [0, T ] that

pt = P
[

θ ≤ t | FX
t

]

and thus describes at each time t ∈ [0, T ] the posterior belief whether

θ already occurred. Now suppose that there is a principal who does neither observe X nor

θ, but is notified at the moment when the agent stops. The principal’s goal is to construct

a transfer π : [0, T ] → R to the agent such that the principal is notified at the first time

before T when the posterior belief p exceeds a threshold level of, say, 60%. It follows from

the results in Section 4 below that this is possible (note in particular that the flow payoff

p 7→ λ − (c + λ)p in (5) is a decreasing function, cf. Condition 4). The right-hand side of

Figure 1 shows such a transfer π.

1.3. Designing American Options. Our third examples considers the design of American

options. An American option gives the holder the right, but not the obligation to receive

stocks of a company at a prespecified price over a given time horizon. The optimal time

at which to exercise such an option depends crucially on the expectations of future stock

prices. American options are often used as managerial compensation. The timing at which a

manager exercises the options given to him, provides information about the managers expec-

tation of future profitability of the firm. Because of this informational value, shareholders

might want to design American options in such a way that they provide the manager with

incentives to exercise the option at a given time. Our results imply which exercise timings
6
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Figure 1. Left: The dashed line depicts the optimal investment threshold (stopping barrier)

b0 in the setting of Example 1.1 when there is no interference by the government. To incentivize

the firm to invest at the first time when the firm’s belief about the investment value X exceeds the

barrier bπ : [0, T ] → R, bπ(t) = 0.5
√
T − t, the government can use the transfer π : [0, T ] → R given

by the solid line. The figure is generated using the parameters r = 1, σ2
0 = 4 and T = 1. Right:

The dashed line shows the optimal stopping barrier b0 of the stopping problem (5) of Example 1.2.

The solid line depicts a transfer π : [0, T ] → R that induces the agent to stop at the first time when

the posterior belief p exceeds the level 60%. For the figure the parameters c = µ = 1 and T = 0.5

are used.

of the manager can be incentivized through stock options where the exercise price is time

dependent.

2. Problem Formulation

2.1. Dynamics. In this paper we consider optimal stopping problems with finite time hori-

zon T < ∞. The underlying probability space (Ω,F ,P) supports a one-dimensional Brow-

nian motion W . Let F = (Ft)t∈[0,T ] be the filtration generated by W satisfying the usual

assumptions. We denote the set of F-stopping times with values in [0, T ] by T . For t < T

we refer to Tt,T as the subset of stopping times which take values in [t, T ]. The process X

follows the time-inhomogeneous diffusion dynamics

(6) dXt = µ(t, Xt)dt+ σ(t, Xt)dWt.

We denote by L = µ∂x + 1
2
σ2∂xx the infinitesimal generator of X . The coefficients µ, σ :

[0, T ]× R → R are Borel measurable functions satisfying the following global Lipschitz and

linear growth assumptions: There exists a positive constant L such that

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ L|x− y|
µ(t, x)2 + σ(t, x)2 ≤ L2(1 + x2)

7



for all t ∈ [0, T ] and x, y ∈ R. Under this assumption there exists a unique strong solution

(X t,x
s )s≥t to (6) for every initial condition X t,x

t = x (see e.g. Karatzas and Shreve (1991;

Theorems 2.5 and 2.9)) . Moreover, it follows that the comparison principle holds true (see

e.g. Karatzas and Shreve (1991; Proposition 2.18)): The path of the process starting at a

lower level x ≤ x′ at time t is smaller than the path of the process starting in x′ at all later

times s > t

(7) X t,x
s ≤ X t,x′

s P − a.s.

2.2. Payoffs and Transfers. As long as the process X is not stopped there is a flow payoff

f and at the time of stopping there is a terminal payoff g. The payoffs f, g : [0, T ]× R → R

depend on time and the value of the signal. Formally, the expected payoff for using a stopping

time τ ∈ Tt,T equals

W (t, x, τ) = E

[
∫ τ

t

f(s,X t,x
s )ds+ g(τ,X t,x

τ )

]

,

given that X starts in x ∈ R at time t ∈ [0, T ]. We assume that the payoff function f is

continuous and Lipschitz continuous in the x variable uniformly in t. Moreover, we suppose

that g ∈ C1,2([0, T ]× R) and that the functions g and (∂t + L)g are Lipschitz continuous in

the x variable uniformly in t.

We will analyze how preferences over stopping times change if there is an additional payoff

which only depends on time.

Definition 1. A measurable, bounded function π : [0, T ] → R is called a transfer.

We define the value function vπ : [0, T ] × R → R of the stopping problem with payoffs f

and g and an additional transfer π by

(8) vπ(t, x) = sup
τ∈Tt,T

(W (t, x, τ) + E [π(τ)]) .

Moreover we introduce for every t ∈ [0, T ] the stopping region

Dπ
t = {x ∈ R | vπ(t, x) = g(t, x) + π(t)} .

2.3. Implementability. A measurable set A ⊂ [0, T ] × R is called time-closed if for each

time t ∈ [0, T ] the slice At = {x ∈ R | (t, x) ∈ A} is a closed subset of R . Let X start in

x ∈ R at time t ∈ [0, T ]. For a time-closed set A we introduce the first time when X hits A

by

τ t,xA = inf
{

s ≥ t |X t,x
s ∈ As

}

∧ T.

We now come to the definition of implementability.
8



Definition 2 (Implementability). A time-closed set A is implemented by a transfer π if the

stopping time τ t,xA is optimal in (8), i.e. for every t ∈ [0, T ] and x ∈ R

vπ(t, x) = W (t, x, τ t,xA ) + E
[

π(τ t,xA )
]

.

For a time-closed set A a necessary condition for implementability is that each slice At is

included in the stopping region Dπ
t . Indeed, let A be implemented by π and let t ∈ [0, T ]

and x ∈ At. Then we have τ t,xA = t. Since τ t,xA is optimal, this implies vπ(t, x) = g(t, x)+π(t)

and hence x ∈ Dπ
t . Consequently, we have At ⊆ Dπ

t .

Observe that the converse inclusion Dπ
t ⊆ At does not necessarily hold true, since optimal

stopping times are in general not unique. At some point (t, x) ∈ [0, T ]×R it might be optimal

to stop immediately (x ∈ Dπ
t ) as well as to wait a positive amount of time until X hits A

(x /∈ At). A particularly simple example is the case where X is a martingale and f(t, x) = 0

and g(t, x) = x. The optional stopping theorem implies that all stopping times τ ∈ Tt,T

generate the same expected payoff W (t, x, τ) = x. Therefore, every set A is implemented by

the zero transfer. The stopping region consists of the whole state space D0
t = R.

We introduce the notion of strict implementability, where ambiguity in optimal strategies

is ruled out: whenever it is optimal to continue a positive amount of time it is not optimal

to stop.

Definition 3 (Strict Implementability). A time-closed set A is strictly implemented by a

transfer π if A is implemented by π and vπ(t, x) > g(t, x) + π(t) for all x /∈ At and t ∈ [0, T ].

In particular, every strictly implementable set A satisfies At = Dπ
t for the transfer π. Since

the stopping regions Dπ
t are closed (see Lemma 6 below) the restriction to time-closed sets

is no loss of generality. Any set which is not time-closed can not be strictly implemented.

Note that the notion of implementability generalizes the notion of optimal stopping times.

If τ t,xA is an optimal stopping time in a stopping problem of the form

sup
τ∈Tt,T

E

[
∫ τ

t

f(s,X t,x
s )ds + g(τ,X t,x

τ )

]

for all (t, x) ∈ [0, T ]× R, then it is implemented by the zero transfer.

2.4. Single Crossing And Cut-Off Regions. Next we introduce the main structural

condition on the payoff functions.

Condition 4 (Single-Crossing). We say that the single crossing condition is satisfied if for

all t ∈ [0, T ] the mapping x 7→ f(t, x)+(∂t+L)g(t, x) is non-increasing. If this monotonicity

is strict, then we say that the strict single crossing condition holds.

Note that the (strict) single crossing condition is satisfied in a number of examples. For

instance it is satisfied in the examples of Subsections 1.1 and 1.2.
9



Moreover, we define a special subclass of time-closed sets.2

Definition 5. A time-closed set A is called a cut-off region if there exists a function b :

[0, T ] → R such that At = [b(t),∞). In this case we call b the associated cut-off and we write

τ t,xA = τ t,xb = inf{s ≥ t |X t,x
s ≥ b(s)} ∧ T

for (t, x) ∈ [0, T ]× R. We call τb a cut-off rule. We say that a cut-off region A is regular, if

the associated cut-off b : [0, T ] → R is càdlàg (i.e. is right continuous and has left limits in

R) and has summable downward jumps, i.e.
∑

0≤s≤t

(∆bs)
− < ∞.

3. strictly Implementable Regions are Cut-Off Regions

For optimal stopping problems it is well-known that under the single crossing condition

(or a weaker version of it) there exists a cut-off rule that is optimal (see e.g. Kotlow (1973),

Jacka and Lynn (1992) or Villeneuve (2007)). In this section we show that the opposite

direction holds more generally for strict implementability: Only cut-off regions can be strictly

implemented.

We first state the following regularity result about vπ.

Lemma 6. For every transfer π and every t ∈ [0, T ] the mapping x 7→ vπ(t, x) is Lipschitz

continuous. In particular, the stopping region Dπ
t is closed.

Proof. Fix t ∈ [0, T ] and x, y ∈ R. By Lipschitz continuity of f and g there exists a constant

C > 0 such that

|vπ(t, x)− vπ(t, y)| ≤ sup
τ∈Tt,T

E

[
∫ τ

t

∣

∣f(s,X t,x
s )− f(s,X t,y

s )
∣

∣ ds+
∣

∣g(τ,X t,x
τ )− g(τ,X t,y

τ )
∣

∣

]

≤ CE

[

sup
s∈[t,T ]

∣

∣X t,x
s −X t,y

s

∣

∣

]

.

By the well-known moment estimate for solutions of stochastic differential equations (see e.g.

Kunita (2004; Theorem 3.2)) there exists a constant C̃ such that E
[

sups∈[t,T ] |X t,x
s −X t,y

s |
]

≤
C̃|x− y|. This yields the claim. �

The next result shows that under the single-crossing condition only cut-off regions are

strictly implementable.

Proposition 7. Assume that the single crossing condition holds true. For every transfer π,

2All our results hold analogously for a lower stopping boundary At = (−∞, b(t)] if we impose instead of our
single crossing condition that x 7→ f(t, x) + (∂t + L)g(t, x) is non-decreasing.
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(i) the stopping region Dπ
t is a cut-off region

(ii) and thus if A is strictly implemented by π then A is a cut-off region.

Proof. Fix t ∈ [0, T ]. First observe that the single crossing condition implies that x 7→
vπ(t, x)− g(t, x) is non-increasing. Indeed, Itô’s formula applied to g(·, X) yields

W (t, x, τ) = E

[
∫ τ

t

(

f(s,X t,x
s ) + (∂t + L)g(s,X t,x

s )
)

ds+ g(t, x) +

∫ τ

t

gx(s,X
t,x
s )σ(s,X t,x

s )dWs

]

for every x ∈ R and τ ∈ Tt,T . Since gx is bounded and σ has linear growth the process
∫ ·

t
gx(s,X

t,x
s )σ(s,X t,x

s )dWs is a martingale. It follows from the comparison principle (7) and

the single crossing condition that for x ≤ y

vπ(t, x)− g(t, x) = sup
τ∈Tt,T

E

[
∫ τ

t

(

f(s,X t,x
s ) + (∂t + L)g(s,X t,x

s )
)

ds + π(τ)

]

≥ sup
τ∈Tt,T

E

[
∫ τ

t

(

f(s,X t,y
s ) + (∂t + L)g(s,X t,y

s )
)

ds + π(τ)

]

= vπ(t, y)− g(t, y).

This implies that y ∈ Dπ
t if y ≥ x and x ∈ Dπ

t . Hence Dπ
t is an interval which is unbounded

on the right. By Lemma 6 the set Dπ
t is closed. Hence there exists some b(t) ∈ R such that

Dπ
t = [b(t),∞). This implies that A is a cut-off region since At = Dπ

t by the definition of

strict implementability. �

We note that if we do not restrict attention to transfers π which depend only on time,

but allow for the transfer to depend on the value of the process X, then any measurable

set A can be implemented. To see this observe that when π(t, x) = −g(x, t) + 1{(x,t)∈A} the

optimal stopping problem becomes

sup
τ∈T

E [g(Xτ , τ) + π(Xτ , τ)] = sup
τ∈T

E
[

1{(Xτ ,τ)∈A}

]

to which τA = inf{t : (Xt, t) ∈ A} is a solution. By not allowing for spatial dependence in

the transfer the inverse problem becomes harder to solve. While the assumption of spatial

independence makes our problem mathematically non-trivial it also has a clear economic

motivation in dynamic principal agent applications in economics where the value of the

process is privately observed by the agent and thus the transfer chosen by the principal can

not condition on it.

4. Implementability of Cut-Off Regions

In this section we prove that the converse implication of Proposition 7 holds true as well:

Every regular cut-off region is implementable. We derive a closed form representation for the

transfer in terms of the reflected version of X in Subsection 4.1. In Subsection 4.2 we verify
11



that this candidate solution to the inverse optimal stopping problem indeed implements

cut-off regions. The main properties of the transfer are presented in Subsection 4.3. In

Subsection 4.4 we provide a uniqueness result for transfers implementing a cut-off region.

4.1. Reflected SDEs and a formal derivation of the candidate transfer. A solution

to a reflected stochastic differential equation (RSDE) is a pair of processes (X̃, l), where the

process X̃ evolves according to the dynamics of the associated SDE (6) below a given barrier

b and is pushed below the barrier by the process l whenever it tries to exceed b. Next we

give a formal definition.

Definition 8. Let b be a càdlàg barrier, t ∈ [0, T ] a fixed point in time and ξ̃ ≤ b(t) a

Ft−measurable square-integrable random variable. A pair (X̃, l) of adapted processes (with

càdlàg trajectories) is called a (strong) solution to the stochastic differential equation (6)

reflected at b with initial condition (t, ξ̃) if it satisfies the following properties.

(i) X̃ is constrained to stay below the barrier, i.e. X̃s ≤ b(s) almost surely for every

s ∈ [t, T ].

(ii) For every s ∈ [t, T ] the following integral equation holds almost surely

(9) X̃s = ξ̃ +

∫ s

t

µ(r, X̃r)dr +

∫ s

t

σ(r, X̃r)dWr − ls .

(iii) The process l is non-decreasing and only increases when X̃t = b(t), i.e.

(10)

∫ T

t

(b(s)− X̃s)dls = 0 .

To stress the dependence of X̃ on the initial value we sometimes write X̃ t,ξ̃.

Remark 9. Consider the situation where b has a downward jump at time t and X̃ is above

b(t) shortly before time t, i.e. X̃t−(ω) ∈ (b(t), b(t−)] for some ω ∈ Ω. Since X̃t ≤ b(t) the

reflected process X̃ has a downward jump at time t as well. Equation (9) implies that l has

an upward jump at time t. Then Equation (10) yields that X̃ is on the barrier at time t, i.e.

X̃t = b(t). Hence, the jump of b is rather absorbed by X̃ than truly reflected (which would

mean X̃t = 2b(t) − X̃t−). In this sense X̃ is the maximal version of X which stays below

b. This property is crucial in the proof of Theorem 11. Existence and uniqueness of X̃ are

established in Rutkowski (1980). We also refer to Slominski and Wojciechowski (2010) who

allow for general modes of reflection. For results about RSDEs with “true” jump reflections

we refer to Chaleyat-Maurel et al. (1980).

A formal derivation. Here we establish the link between inverse optimal stopping problems

and RSDEs and derive the representation of a transfer implementing a cut-off region. To this

end assume that the cut-off region A = [b(t),∞) is implemented by a transfer π. Without
12



loss of generality we assume that π(T ) = 0 (else take π̃(t) = π(t)− π(T )). Since we are only

interested in a formal derivation here, we make some regularity assumptions. We assume

that the value function of the stopping problem (8) is smooth (vπ ∈ C1,2([0, T ] × R)) and

that b is continuous such that X̃ is continuous as well. Then vπ satisfies (see e.g. (Peskir

and Shiryaev 2006a; Chapter IV))

min {−(∂t + L)vπ − f, vπ − (g + π)} = 0

vπ(T, ·) = g(T, ·)

and b is the free boundary of this variational partial differential equation. In particular,

below the cut-off b the value function vπ satisfies the continuation equation

(∂t + L)vπ(t, x) = −f(t, x)

for all x ≤ b(t).On the cut-off, vπ satisfies the boundary condition vπ(t, b(t)) = g(t, b(t))+π(t)

for all t ∈ [0, T ]. Moreover, if b is sufficiently regular the smooth fit principle

vx(t, b(t)) = gx(t, b(t))

holds for all t ∈ [0, T ] (see e.g. Peskir and Shiryaev (2006a; Section 9.1)). Then Itô’s formula

implies

E

[

g(T, X̃
t,b(t)
T )

]

= E

[

vπ(T, X̃
t,b(t)
T )

]

= vπ(t, b(t)) + E

[
∫ T

t

(∂t + L)vπ(s, X̃ t,b(t)
s )ds−

∫ T

t

vx(s, X̃
t,b(t)
s )dls

]

= g(t, b(t)) + π(t)− E

[
∫ T

t

f(s, X̃ t,b(t)
s )ds+

∫ T

t

gx(s, X̃
t,b(t)
s )dls

]

.

A further application of Itô’s formula yields the following representation of π

π(t) = E

[

g(T, X̃
t,b(t)
T ) +

∫ T

t

f(s, X̃ t,b(t)
s )ds+

∫ T

t

gx(s, X̃
t,b(t)
s )dls

]

− g(t, b(t))

= E

[
∫ T

t

f(s, X̃ t,b(t)
s ) + (∂t + L)g(s, X̃ t,b(t)

s )ds

]

.(11)

In Theorem 11 below we verify that Equation (11) indeed leads to a transfer π implementing

A. The proof does neither rely on any analytic methods nor on results from the theory of

partial differential equations. Instead we employ purely probabilistic arguments based on the

single crossing condition and comparison results for SDEs and RSDEs. This methodology

requires weak regularity assumptions on the model parameters. In particular there is no

ellipticity condition on σ.

13



Properties of RSDEs. The next proposition proves auxiliary results about RSDEs which we

will use in the proof of Theorem 11. There is a broad literature on RSDEs including com-

parison results (see e.g. Bo and Yao (2007)). To the best of our knowledge the comparison

principles for RSDE with càdlàg barriers and summable downward jumps as needed for our

result have not been shown before. While all results follow by standard arguments we give

a proof in the Appendix for the convenience of the reader. For the existence and uniqueness

result we refer to Rutkowski (1980).

Proposition 10. For every regular3 cut-off b there exists a unique strong solution X̃ to the

RSDE (9). The process l is given by

(12) ls = sup
t≤r≤s

(ξ̃ +

∫ r

t

µ(u, X̃u)du+

∫ r

t

σ(u, X̃u)dWu − b(r))+.

Moreover, X̃ satisfies

(i) (Square Integrability) E

[

supt≤s≤T (X̃
t,ξ
s )2

]

< ∞ for all t ∈ [0, T ].

(ii) (Minimality) X̃ t,ξ
s 1{s<τb} = X t,ξ

s 1{s<τb} a.s. for all s ∈ [t, T ].

(iii) (Comparison Principle for the Reflected Process)If ξ1 ≤ ξ2 a.s., then for s ∈ [t, T ]

we have X̃ t,ξ1
s ≤ X̃ t,ξ2

s a.s.

(iv) (Moment Estimate) For ξ1, ξ2 ∈ L2(Ft) there exists a constant K > 0 such that

E

[

supt≤r≤s |X̃ t,ξ1
r − X̃ t,ξ2

r |p|Ft

]

≤ K|ξ1 − ξ2|p a.s. for all s ∈ [t, T ] and p = 1, 2.

(v) (Comparison Principle for the Original Process) X̃ t,ξ
s ≤ X t,ξ

s a.s. for all s ∈ [t, T ].

(vi) (Left continuity) Let t ∈ [0, T ] and x ≤ b(t) ∧ b(t−). Then X̃
s,y∧b(s)
t → x in L2 for

s ր t and y → x.

Using similar arguments as in Protter (2005; Chapter V Section 6) one can show that X̃

satisfies the strong Markov property. For s ≥ t we define the transition kernel P̃t,s by

P̃t,sϕ(t, x) = E

[

ϕ(s, X̃ t,x
s )

]

for any Borel measurable, bounded function ϕ : [0, T ] × R → R. Then X̃ satisfies for any

stopping time τ ∈ T and u ≥ 0

(13) E

[

ϕ(τ + u, X̃τ+u) | Fτ

]

= P̃τ,τ+uϕ(τ, X̃τ).

Moreover, uniqueness of strong solutions of RSDEs implies the following flow property of X̃ .

For t ≤ r ≤ s and x ∈ R we have a.s.

(14) X̃ t,x
s = X̃r,X̃

t,x
r

s .

3see Definition 5
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4.2. Regular Cut-Off Regions are Implementable. In this section we prove our main

theorem stating that every regular cut-off region is implemented by the transfer derived in

Subsection 4.1.

Theorem 11. Assume that the single crossing condition is satisfied. Let A be a regular

cut-off region with boundary b. Then it is implemented by the transfer

(15) π(t) = E

[
∫ T

t

f(s, X̃ t,b(t)
s )+(∂t + L)g(s, X̃t,b(t)

s )ds

]

.

Proof. First observe that the cut-off rule τ t,xb is a stopping time for all (t, x) ∈ [0, T ] × R.

Indeed, since X has continuous paths and b is right-continuous, the Début-theorem (see e.g.

Dellacherie and Meyer (1978; Chapter IV, Section 50)) implies τ t,xb ∈ Tt,T .

Let π be given by Equation (15). For the boundedness and measurability of π we refer to

Proposition 13. We set h = f + (∂t + L)g. As in the proof of Proposition 7 we have

W (t, x, τ) = g(t, x) + E

[
∫ τ

t

h(s,X t,x
s )ds

]

.

Note that we can write π in terms of the transition function P̃ of X̃ as follows

π(t) =

∫ T

t

P̃t,sh(t, b(t))ds.

The strong Markov property (Equation (13)) of X̃ implies

P̃τ,τ+uh(τ, b(τ)) = E

[

h(τ + u, X̃
τ,b(τ)
τ+u ) | Fτ

]

for any stopping time τ ∈ T and u ≥ 0. Hence we have

(16) π(τ) = E

[
∫ T

τ

h(s, X̃τ,b(τ)
s )ds|Fτ

]

.

Fix t ∈ [0, T ] and x ≥ b(t). Let τ ∈ Tt,T be an arbitrary stopping time. The compari-

son principle between the original and the reflected process (Property (v)) implies X t,x
s ≥

X
t,b(t)
s ≥ X̃

t,b(t)
s a.s. for every s ∈ [t, T ]. From the flow property (Equation (14)) and the

comparison principle for reflected processes (Property (iii)) follows that X̃
t,b(t)
s = X̃τ,X̃

t,b(t)
τ

s ≤
X̃

τ,b(τ)
s a.s. for every s ∈ [τ, T ]. Therefore the single crossing condition implies

E

[
∫ τ

t

h(s,X t,x
s )ds+ π(τ)

]

= E

[
∫ τ

t

h(s,X t,x
s )ds+

∫ T

τ

h(s, X̃τ,b(τ)
s )ds

]

≤ E

[
∫ τ

t

h(s, X̃ t,b(t)
s )ds+

∫ T

τ

h(s, X̃ t,b(t)
s )ds

]

= π(t).
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This implies W (t, x, τ) + E [π(τ)] ≤ W (t, x, t) + π(t). Hence τ t,xb = t is optimal in (8) as

claimed.

In the second step fix x < b(t) and let τ ∈ Tt,T be an arbitrary stopping time. To shorten

notation we write τb = τ t,xb . First, we prove that the stopping min{τ, τb} performs at least

as well as τ. By (16) we have

E
[

1{τb<τ}π(τ)
]

= E

[

1{τb<τ}E

[
∫ T

τ

h(s, X̃τ,b(τ)
s )ds | Fτ

]]

= E

[

1{τb<τ}

∫ T

τ

h(s, X̃τ,b(τ)
s )ds

]

.

This leads to

E

[

1{τb<τ}

(
∫ τ

t

h(s,X t,x
s )ds+ π(τ)

)]

= E

[

1{τb<τ}

(
∫ τb

t

h(s,X t,x
s )ds +

∫ τ

τb

h(s,X t,x
s )ds +

∫ T

τ

h(s, X̃τ,b(τ)
s )ds

)]

.

By construction of the reflected process X̃ we have X̃ t,x
τb

= b(τb). The comparison princi-

ple between the original and the reflected process (Property (v)) and the flow property of

reflected processes (Equation (14)) imply almost surely

X̃τb,b(τb)
s = X̃

τb,X̃
t,x
τb

s = X̃ t,x
s ≤ X t,x

s

for s ≥ τb. Since X̃
τb,b(τb)
τ ≤ b(τ) we have on the set {τ > τb}

X̃τ,b(τ)
s ≥ X̃τ,X̃

τb,b(τb)
τ

s = X̃τb,b(τb)
s

for all s ≥ τ . These two inequalities combined with the monotonicity of h yield that

E

[

1{τb<τ}

(
∫ τ

t

h(s,X t,x
s )ds + π(τ)

)]

≤ E

[

1{τb<τ}

(
∫ τb

t

h(s,X t,x
s )ds+

∫ τ

τb

h(s, X̃τb,b(τb)
s )ds+

∫ T

τ

h(s, X̃τb,b(τb)
s )ds

)]

= E

[

1{τb<τ}

(
∫ τb

t

h(s,X t,x
s )ds+ π(τb)

)]

.

Consequently using the stopping time min{τ, τb} is at least as good as using τ

W (t, x, τ) + E [π(τ)] = g(t, x) + E

[
∫ τ

t

h(s,X t,x
s )ds+ π(τ)

]

≤ g(t, x) + E

[
∫ τ∧τb

t

h(s,X t,x
s )ds + π(min{τ, τb})

]

= W (t, x,min{τ, τb}) + E [π(min{τ, τb})] .
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Thus it suffices to consider stopping rules τ ≤ τb. In this case we have

E

[
∫ τ

t

h(s,X t,x
s )ds + π(τ)

]

= E

[
∫ τ

t

h(s,X t,x
s )ds+

∫ τb

τ

h(s, X̃τ,b(τ)
s )ds+

∫ T

τb

h(s, X̃τ,b(τ)
s )ds

]

.

From the comparison principle for reflected processes (Property (iii)) and the flow property

Equation (14) follows X̃ t,x
s = X̃τ,X̃

t,x
τ

s ≤ X̃
τ,b(τ)
s for all s ≥ τ. By the minimality property

of reflected processes (Property (ii)) we have that X t,x
s = X̃ t,x

s for all s < τb. Similar

considerations as above yield

X̃τb,b(τb)
s = X̃

τb,X̃
t,x
τb

s = X̃ t,x
s = X̃τ,X̃

t,x
τ

s ≤ X̃τ,b(τ)
s

a.s. for s ≥ τb. The monotonicity of h implies

E

[
∫ τ

t

h(s,X t,x
s )ds+ π(τ)

]

≤ E

[
∫ τ

t

h(s,X t,x
s )ds+

∫ τb

τ

h(s,X t,x
s )ds+

∫ T

τb

h(s, X̃τb,b(τb)
s )ds

]

= E

[
∫ τb

t

h(s,X t,x
s )ds+ π(τb)

]

and hence W (t, x, τ) + E [π(τ)] ≤ W (t, x, τb) + E [π(τb)]. This completes the proof of imple-

mentability. �

Theorem 11 shows that every cut-off stopping time is implementable under the single

crossing condition we imposed. We note that this result does not hold without the single

crossing condition. To see this consider as an example a payoff g(x, t) = h(|x|, t) which

is only a function of the absolute value of x and a symmetric diffusion process µ(x, t) =

−µ(−x, t) and σ(x, t) = σ(−x, t). Note, that such an example never satisfies the single

crossing condition. As for any π : R+ → R the optimal stopping problem

sup
τ∈T

E [g(Xτ , τ) + π(τ)]

is symmetric at zero it follows that the stopping set must be symmetric around zero. Conse-

quently, the agent does not only stop when the process X crosses a threshold from below, but

also when X crosses the negative of this threshold from above. Hence, the optimal stopping

time is never of cut-off form, and no cut-off rule can be implemented.

In Proposition 7 we showed that strictly implementable regions are necessarily of cut-off

type. The next result establishes the converse direction. Under the strict single crossing

condition cut-off regions are strictly implementable.

Corollary 12. If the strict single crossing condition holds true, then a regular cut-off region

with barrier b is strictly implemented by the transfer from Equation (15).
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Proof. We use the same notation as in the proof of Theorem 11. Let t ∈ [0, T ] and x < b(t).

Then the right-continuity of b and X̃ and the strict monotonicity of h imply that

E

[
∫ τb

t

h(s, X̃ t,x
s )ds

]

> E

[
∫ τb

t

h(s, X̃ t,b(t)
s )ds

]

Consequently we have

E

[
∫ τb

t

h(s,X t,x
s )ds+ π(τb)

]

= E

[
∫ τb

t

h(s, X̃ t,x
s )ds+

∫ T

τb

h(s, X̃τb,b(τb)
s )ds

]

> E

[
∫ τb

t

h(s, X̃ t,b(t)
s )ds+

∫ T

τb

h(s, X̃ t,b(t)
s )ds

]

= π(t).

This implies vπ(t, x) > π(t) + g(t, x) and hence A is strictly implemented by π. �

In general the distribution of the reflected process X̃ is not explicitly known. Hence, one

has to fall back to numerical methods to approximate the transfer from Theorem 11. For

example one could use discretization schemes for the RSDE (9) and Monte Carlo simulations

to evaluate the expectation in Equation (15) (see e.g. Saisho (1987), Bossy et al. (2004) or

Önskog and Nyström (2010)). If X evolves according to a Brownian motion, then the

distribution of X̃ is available in closed form.

4.3. Properties of the Transfer. The next proposition summarizes properties of transfer

implementing a cut-off region.

Proposition 13. Let b : [0, T ] → R be a regular cut-off. The transfer π from Equation (15)

satisfies the following properties

(i) π is càdlàg. In particular π is bounded and measurable.

(ii) π is continuous at t ∈ [0, T ] if b is continuous at t or if b has a downward jump at t.

(iii) π has no upward jumps.

(iv) If π has a downward jump at t ∈ [0, T ], then b has an upward jump at t.

(v) π converges to 0 at time T : limtրT π(t) = 0.

Proof. As in the proof of Theorem 11 we introduce the function h(t, x) = f(t, x)+(∂t + L) g(t, x).
By assumption h is Lipschitz continuous and has linear growth in x. The transfer π is given

by

π(t) = E

[
∫ T

t

h(s, X̃ t,b(t)
s )ds

]

.

We first show that π is right-continuous. For t ∈ [0, T ] and ǫ > 0 we have

|π(t)− π(t+ ǫ)| ≤ E

[
∫ t+ǫ

t

∣

∣

∣
h(s, X̃ t,b(t)

s )
∣

∣

∣
ds

]

+ E

[
∫ T

t+ǫ

∣

∣

∣
h(s, X̃ t,b(t)

s )− h(s, X̃ t+ǫ,b(t+ǫ)
s )

∣

∣

∣
ds

]

.
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It follows from the linear growth of h and Property (i) of X̃ from Proposition 10 that

E

[

∫ t+ǫ

t

∣

∣

∣
h(s, X̃

t,b(t)
s )

∣

∣

∣
ds
]

→ 0 as ǫ → 0. Moreover, the Lipschitz continuity of h implies

E

[
∫ T

t+ǫ

∣

∣

∣
h(s, X̃ t,b(t)

s )− h(s, X̃ t+ǫ,b(t+ǫ)
s )

∣

∣

∣
ds

]

≤ CE

[

sup
s∈[t+ǫ,T ]

∣

∣

∣
X̃ t,b(t)

s − X̃ t+ǫ,b(t+ǫ)
s

∣

∣

∣

]

for some constant C > 0. By the flow property (Equation (14)) we have X̃
t,b(t)
s = X̃

t+ǫ,X̃
t,b(t)
t+ǫ

s .

Property (iv) from Proposition 10 yields

E

[

sup
s∈[t+ǫ,T ]

∣

∣

∣
X̃ t,b(t)

s − X̃ t+ǫ,b(t+ǫ)
s

∣

∣

∣

]

≤ C̃E

[
∣

∣

∣
X̃

t,b(t)
t+ǫ − b(t + ǫ)

∣

∣

∣

]

.

Right continuity of X̃ and b then implies π(t+) = π(t).4

Concerning the left-hand limits of π we show that

(17) π(t−) = E

[
∫ T

t

h(s, X̃ t,b(t)∧b(t−)
s )ds

]

.

for all t ∈ (0, T ]. Equation (17) implies all remaining claims of Proposition 13. If b is

continuous at t or has a downward jump (b(t) ≤ b(t−)), then Equation (17) yields continuity

of π at t: π(t−) = π(t). Monotonicity of h and the comparison principle for the reflected

process imply π(t−) ≥ π(t), i.e. π has no upward jumps. If π has a downward jump at

time t (π(t−) > π(t)), then Equation (17) yields that b has necessarily an upward jump

(b(t) > b(t−)). Moreover, it follows from Equation (17) that π(T−) = 0. To prove Equation

(17) let t ∈ (0, T ] and ǫ > 0. Then consider
∣

∣

∣

∣

π(t− ǫ)− E

[
∫ T

t

h(s, X̃ t,b(t)∧b(t−)
s )ds

]
∣

∣

∣

∣

≤ E

[
∫ t

t−ǫ

∣

∣

∣
h(s, X̃ t−ǫ,b(t−ǫ)

s )
∣

∣

∣
ds

]

+E

[
∫ T

t

∣

∣

∣
h(s, X̃ t−ǫ,b(t−ǫ)

s )− h(s, X̃ t,b(t)∧b(t−)
s )

∣

∣

∣
ds

]

.

By Property (vi) from Proposition 10 we have X̃
t−ǫ,b(t−ǫ)
s → X̃

t,b(t)∧b(t−)
s in L2 as ǫ ց 0.

Lipschitz continuity and linear growth of h then imply that E

[

∫ t

t−ǫ

∣

∣

∣
h(s, X̃

t−ǫ,b(t−ǫ)
s )

∣

∣

∣
ds
]

→ 0

and E

[

∫ T

t

∣

∣

∣
h(s, X̃

t−ǫ,b(t−ǫ)
s )− h(s, X̃

t,b(t)∧b(t−)
s )

∣

∣

∣
ds
]

→ 0 for ǫ ց 0. This yields the claim. �

4.4. Uniqueness of the Transfer . To prove a uniqueness result for the transfer from

Theorem 11 we need the following auxiliary result about cut-off stopping times.

Lemma 14. Let b : [0, T ] → R be bounded from below. Then we have τ t,xb ր T a.s. for

x ց −∞ and for every t ∈ [0, T ].

4Here and in the sequel we use the notation π(t+) = limǫց0 π(t + ǫ) and π(t−) = limǫց0 π(t − ǫ) for the
one-sided limits.
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Proof. Fix t ∈ [0, T ]. By Kunita (2004; Lemma 3.7) there exists a constant C > 0 such that

E

[

sup
t≤s≤T

(

1

1 + (X t,x
s )2

)2
]

≤ C

(

1

1 + x2

)2

.

Then Fatou’s Lemma implies

E

[

lim inf
x→−∞

sup
t≤s≤T

(

1

1 + (X t,x
s )2

)2
]

≤ lim inf
x→−∞

E

[

sup
t≤s≤T

(

1

1 + (X t,x
s )2

)2
]

≤ lim inf
x→−∞

C

(

1

1 + x2

)2

= 0.

Consequently we have lim supx→−∞ inft≤s≤T |X t,x
s | = ∞ a.s. Together with the comparison

principle for X this yields lim supx→−∞ supt≤s≤T X t,x
s = −∞ a.s. It follows that τ t,xb ր T for

x ց −∞. �

Theorem 15. Let A be a regular cut-off region with boundary b. Assume that A is imple-

mented by two transfers π and π̂ satisfying limtրT π(t) = limtրT π̂(t). Then π(t) = π̂(t) for

all t ∈ [0, T ).

Proof. Fix t ∈ [0, T ). To shorten notation we set v = vπ and v̂ = vπ̂. By Lemma 6 the

functions v and v̂ are Lipschitz continuous in the x variable. Similar considerations yield

that the function x 7→ W (t, x, τ) is Lipschitz continuous for every τ ∈ Tt,T . In particular,

these functions are absolutely continuous. Appealing to the envelope theorem from Milgrom

and Segal (2002; Theorem 1) yields that

vx(t, x) = Wx(t, x, τ
t,x
b ) = v̂x(t, x)

for Lebesgue almost every x ∈ R. Integrating from x < b(t) to b(t) gives

v(t, b(t))− v(t, x) = v̂(t, b(t))− v̂(t, x)

or equivalently

π(t)− π̂(t) = E
[

π(τ t,xb )− π̂(τ t,xb )
]

.

Since π and π̂ are bounded we can appeal to Lemma 14 to obtain

π(t)− π̂(t) = lim
x→−∞

E
[

π(τ t,xb )− π̂(τ t,xb )
]

= 0,

where we used the dominated convergence theorem. �

5. Application To Optimal Stopping

From Theorem 15 we derive a probabilistic characterization of optimal stopping times for

stopping problems of the form

(18) v(t, x) = sup
τ∈Tt,T

E

[
∫ τ

t

f(s,X t,x
s )ds+ g(τ,X t,x

τ )

]

,
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where f, g and X satisfy the single crossing condition. We say that a stopping time τ ∈ Tt,T

is optimal in (18) for (t, x) ∈ [0, T ]× R if

v(t, x) = E

[
∫ τ

t

f(s,X t,x
s )ds+ g(τ,X t,x

τ )

]

.

Corollary 16. Assume that the single crossing condition is satisfied and let b : [0, T ] → R

be a regular cut-off. The stopping time τ t,xb is optimal in (18) for all (t, x) ∈ [0, T ] × R, if

and only if b satisfies the nonlinear integral equation

(19) E

[
∫ T

t

f(s, X̃ t,b(t)
s ) + (∂t + L)g(s, X̃ t,b(t)

s )ds

]

= 0

for all t ∈ [0, T ].

Proof. First assume that (19) holds true for every t ∈ [0, T ]. Then Theorem 11 implies that

the cut-off region with boundary b is implemented by the zero transfer. This means that τ t,xb

is optimal in (18) for every (t, x) ∈ [0, T ]× R.

For the converse direction assume that τ t,xb is optimal in (18) for every (t, x) ∈ [0, T ]× R.

Then the cut-off region with boundary b is implemented by the zero transfer π̂ = 0. By Theo-

rem 11 it is also implemented by the transfer π(t) = E

[

∫ T

t
f(s, X̃

t,b(t)
s ) + (∂t + L)g(s, X̃ t,b(t)

s )ds
]

.

By Proposition 13 the transfer π satisfies limtրT π(t) = 0. Then Theorem 15 implies that

π(t) = π̂(t) = 0 for all t ∈ [0, T ]. �

In the literature on optimal stopping there is a well known link between optimal stopping

boundaries and a nonlinear integral equation differing from Equation (19). It was indepen-

dently derived by Kim (1990), Jacka (1991) and Carr et al. (1992) who considered the optimal

exercise of an American option. Using the early exercise premium representation of the price

of an American option, the authors arrive at a nonlinear integral equation that is satisfied

by the optimal exercise boundary. The question whether the optimal exercise boundary

is the only solution to the integral equation was left open, until more than a decade later

Peskir (2005b) answered it in the affirmative. Using the change-of-variable formula with

local time on curves derived in Peskir (2005a), allows Peskir (2005b) to characterize the

optimal exercise boundary as the unique solution of the nonlinear integral equation in the

class of continuous functions. The methodology of Peskir (2005b) was subsequently applied

to solve optimal stopping problems with more general diffusion and Markov processes, mul-

tiple stopping boundaries and more general payoff functionals. These problems include for

example the optimal exercise of Russian (Peskir (2005c)) and British options (Peskir and

Samee (2011; 2013)), the Wiener disorder problem (Gapeev and Peskir (2006)), sequential

testing problems (Gapeev and Peskir (2004), Zhitlukhin and Muravlev (2013)), the optimal

stopping problem for maxima in diffusion models (Gapeev et al. (2006)), optimal prediction
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problems (Du Toit and Peskir (2007)), Bayesian disorder problems (Zhitlukhin and Shiryaev

(2013)), optimal liquidation problems (Ekstroem and Vaicenavicius (2016)) and multiple

optimal stopping problems (De Angelis and Kitapbayev (2014)). In the framework of the

present paper this integral equation is given by

(20) E

[
∫ T

t

(

f(s,X t,b(t)
s ) + (∂t + L)g(s,X t,b(t)

s )
)

1
{X

t,b(t)
s ≤b(s)}

ds

]

= 0

(cf. Peskir and Shiryaev (2006a; Chapter IV, Section 14)).

Besides its interpretation in terms of the early exercise premium, Equation (20) is valuable

from a numerical point of view. Indeed, it only requires for every s ∈ [0, T ] the law of Xs

which, when not known explicitly, can be approximated in various ways (e.g. using the

Kolmogorov forward equation or Euler-Maruyama schemes). Once these distributions are

available, (20) is a nonlinear Volterra (or Fredholm) integral equation which can be tackled

using well-established numerical schemes provided in the literature. We also refer to the work

of Belomestny and Gapeev (2010), where an iterative procedure is proposed to approximate

the solution of the integral equation and the value function. In contrast, it is not clear

whether (19) can be numerically solved with high accuracy, since it is path-dependent in

terms of b. In particular, it is not possible to compute the marginal laws of X̃ upfront,

as the unknown boundary b is entangled in the process X̃ (the distribution of the random

variable X̃
t,b(t)
s depends on the whole barrier (b(r))t≤r≤s from time t to s).

We also mention that the change of variables formula of Peskir (2005a), was extended in

Peskir (2007) to the multidimensional setting. This allows to characterize optimal stopping

times as first hitting times also in higher dimensions (see e.g. Glover et al. (2013), Gapeev and

Shiryaev (2013) and Peskir (2014)). Whether an extension of the methodology presented

here to the multidimensional setting is possible is not clear. Already the formulation of

the monotonicity in the single crossing condition (Condition 4) in higher dimensions is not

straightforward. The construction of multivariate reflected processes is also highly nontrivial.

In general, the set of solutions to (19) is included in the set of solutions to (20). Indeed,

if b solves (19) then by Corollary 16 it is an optimal stopping boundary and thus, under

appropriate regularity conditions, it is also a solution to (20). In the cases where uniqueness

holds for (20) (see the list of references above), the converse implication holds true as well.

In the case of a constant barrier b(t) = b ∈ R and X a Brownian motion one can directly

relate the two equations. Indeed, in this case it follows from the reflection principle that for

all x ≤ b

P

[

X̃ t,b(t)
s ≤ x

]

= 2P
[

X t,b(t)
s ≤ x

]
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and thus the constant barrier b solves Equation (20) if and only if it solves Equation (19).

The question whether one can in general relate the two integral equations without taking

the detour via optimal stopping problems is left open for future research.

6. Appendix

Proof of Proposition 10. Existence and uniqueness of (X̃, l) follow from Rutkowski (1980).

See also Slominski and Wojciechowski (2010; Theorem 3.4) for the time-homogeneous case.

By construction of (X̃, l) we also have (i).

We next show (ii). Note that the solution to the unreflected SDE (6) solves the reflected

SDE for s < τb. As the solution to the reflected SDE is unique (ii) follows.

To prove (iii) and (iv) we consider without loss of generality only the case t = 0. For

ξ1, ξ2 ∈ R we write (X̃ i, li) = (X̃0,ξi, l0,ξi), (i = 1, 2) and introduce the processes Dt = X̃1
t −X̃2

t

and Γt = sups≤tmax(0, Ds)
2. Applying the Meyer-Itô formula Protter (2005; Theorem 71,

Chapter 4) to the function x 7→ max(0, x)2 yields

max(0, Ds)
2 =max(0, D0)

2 + 2

∫ s

0

1{Dr−>0}Dr−dDr +

∫ s

0

1{Dr−>0}d [D] cr

+
∑

0<r≤s

(

max(0, Dr)
2 −max(0, Dr−)

2 − 1{Dr−>0}Dr−∆Dr

)

.
(21)

Since D only jumps when b has a downward jump and since X̃ i jumps to the barrier we

have − (∆b(r))− ≤ ∆Dr ≤ 0 on the set {Dr− > 0}. Moreover, D has bounded paths. Since

b has summable downward jumps we have
∑

0<r≤s 1{Dr−>0} |Dr−∆Dr| < ∞ a.s. Hence, we

can rewrite Equation 21 as follows

max(0, Ds)
2 =max(0, D0)

2 + 2

∫ s

0

1{Dr>0}DrdD
c
r +

∫ s

0

1{Dr−>0}d [D] cr

+
∑

0<r≤s

(

max(0, Dr)
2 −max(0, Dr−)

2
)

.
(22)

Regarding the jump terms in Equation (22), assume that there exists r ∈ (0, s] such that

max(0, Dr)
2 > max(0, Dr−)

2. This implies Dr > 0 and Dr > Dr−. Since X̃ i jumps if and

only if li jumps (i = 1, 2) we obtain X̃1
r > X̃2

r and l2r − l2r− > l1r − l1r−. It follows that

l2r − l2r− > 0, since l1 is non-decreasing. Hence, l2 jumps at r, which implies that X̃2
r = b(r).

Thus, we obtain the contradiction X̃1
r > b(r). Therefore we have

∑

0<r≤s

(

max(0, Dr)
2 −max(0, Dr−)

2
)

≤ 0.

For the last integral in Equation (22) the Lipschitz continuity of σ implies
∫ s

0

1{Dr>0}d〈D〉cr =
∫ s

0

1{Dr>0}(σ(r, X̃
1
r )−σ(r, X̃2

r ))
2dr ≤ L2

∫ s

0

max(0, Dr)
2dr ≤ L2

∫ s

0

Γrdr.
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The first integral of Equation (22) decomposes into the following terms, which we will con-

sider successively. By the Lipschitz continuity of µ we have

2

∫ s

0

1{Dr>0}Dr(µ(r, X̃
1
r )− µ(r, X̃2

r ))dr ≤ 2L

∫ s

0

max(0, Dr)
2dr ≤ L

∫ s

0

Γrdr.

Next, we have

−2

∫ s

0

1{Dr>0}Drdl
1,c
r ≤ 0

and

2

∫ s

0

1{Dr>0}Drdl
2,c
r = 2

∫ s

0

1{X̃1
r>b(r)}Drdl

2,c
r = 0.

Moreover, it follows from the Burkholder-Davis-Gundy inequality, the Lipschitz continuity

of σ and Young’s inequality that

E

[

sup
s≤t

∫ s

0

1{Dr>0}Dr(σ(r, X̃
1
r )− σ(r, X̃2

r ))dWr

]

≤ CE





√

∫ t

0

1{Dr>0}D4
rdr





≤ CE





√

Γt

∫ t

0

Γrdr





≤ 1

2
E [Γt] +

1

2
C2

E

[
∫ t

0

Γrdr

]

.

Putting everything together, we obtain

E [Γt] ≤ Γ0 +K

∫ t

0

E [Γr] dr

for some constant K > 0. Then Gronwall’s lemma yields

(23) E

[

sup
s≤t

max(0, X̃1
s − X̃2

s )
2

]

= E[Γt] ≤ CΓ0 = Cmax(0, ξ1 − ξ2)
2

for some constant C > 0. If ξ1 ≤ ξ2 this directly yields (iii). For (iv) observe that we have

E

[

sup
s≤t

(X̃1
s − X̃2

s )
2

]

≤ E

[

sup
s≤t

max(0, X̃1
s − X̃2

s )
2

]

+ E

[

sup
s≤t

max(0, X̃2
s − X̃1

s )
2

]

.

Then Inequality (23) yields E

[

sups≤t(X̃
1
s − X̃2

s )
2
]

≤ C̃(ξ1−ξ2)
2. The case p = 1 follows from

Jensen’s inequality. Claim (v) follows by performing similar arguments with D = X̃ t,ξ−X t,ξ.

In order to prove Equation (12), we set

(24) Ys = Y t,ξ
s =

∫ s

t

µ(u, X̃ t,ξ
u )du+

∫ r

t

σ(u, X̃ t,ξ
u−)dWu, l̂s = sup

t≤r≤s

(ξ + Yr − b(r))+

and X̂ = ξ + Ys − l̂s. Then it is straightforward to show that (X̂, l̂) is a solution to the

Skorokhod problem associated with Y and barrier b (cf. Slominski and Wojciechowski (2010;

24



Definition 2.5)). Since (X̃, l) is also a solution, we obtain Equation (12) by uniqueness of

solutions to the Skorokhod problem (cf. Slominski and Wojciechowski (2010; Proposition

2.4)).

Finally we prove Claim (vi). To this end let x ≤ b(t) ∧ b(t−) and tn ր t and xn → x

as n → ∞. We write X̃n = X̃ tn,xn∧b(tn) and Y n = Y tn,xn∧b(tn) (see Equation (24) for the

definition of Y ). Then we have

|X̃n
t − x| = |xn ∧ b(tn)− x+ Y n

t − sup
tn≤r≤t

(xn ∧ b(tn) + Y n
r − b(r))+|

≤ |xn ∧ b(tn)− x|+ sup
tn≤r≤t

(xn ∧ b(tn)− b(r))+ + 2 sup
tn≤r≤t

|Y n
r |.

Squaring this inequality and taking expectations yields

E

[

|X̃n
t − x|2

]

≤ 3|xn ∧ b(tn)− x|2 + 3 sup
tn≤r≤t

(

(xn ∧ b(tn)− b(r))+
)2

+ 6E

[

sup
tn≤r≤t

|Y n
r |2

]

.

The first two terms converge to 0 for n → ∞ since b is càdlàg and x ≤ b(t)∧b(t−). Regarding

the last term, observe that Jensen’s and the Burkholder-Davis-Gundy inequality yields

E

[

sup
tn≤r≤t

|Y n
r |2

]

≤ C

∫ t

tn

E

[

µ(s, X̃n
s )

2 + σ(s, X̃n
s )

2
]

ds

for some constant C > 0 (not depending on n). It remains to prove that E

[

µ(s, X̃n
s )

2 + σ(s, X̃n
s )

2
]

is a bounded sequence. To this end assume without loss of generality that X̃0 = X̃0,b(0),

then the linear growth of µ and σ, the Markov property of X̃0 and Claim (iv) imply

E

[

µ(s, X̃n
s )

2 + σ(s, X̃n
s )

2
]

≤ C1

(

1 + E

[

(X̃n
s − X̃0

s )
2 + (X̃0

s )
2
])

≤ C2

(

1 + E

[

(X̃0
tn
− xn ∧ b(tn))

2 + (X̃0
s )

2
])

for some C1, C2 > 0. This is a bounded sequence by Claim (i), which yields E[suptn≤r≤t |Y n
r |2] →

0 as n → ∞. �
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