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Approximation Algorithms for

Dynamic Assortment Optimization Models

Ali Aouad∗ Retsef Levi† Danny Segev‡

Abstract

We consider the single-period joint assortment and inventory planning problem with

stochastic demand and dynamic substitution across products, motivated by applications in

highly differentiated markets, such as online retailing and airlines. This class of problems is

known to be notoriously hard to deal with from a computational standpoint. In fact, prior

to the present paper, only a handful of modeling approaches were shown to admit provably-

good algorithms, at the cost of strong restrictions on customers’ choice outcomes. Our main

contribution is to provide the first efficient algorithms with provable performance guaran-

tees for a broad class of dynamic assortment optimization models. Under general rank-based

choice models, our approximation algorithm is best-possible with respect to the price pa-

rameters, up to lower-order terms. In particular, we obtain a constant-factor approximation

under horizontal differentiation, where product prices are uniform. In more structured set-

tings, where the customers’ ranking behavior is motivated by price and quality cues, we

derive improved guarantees through tailor-made algorithms. In extensive computational

experiments, our approach dominates existing heuristics in terms of revenue performance,

as well as in terms of speed, given the myopic nature of our methods. From a technical

perspective, we introduce a number of novel algorithmic ideas of independent interest, and

unravel hidden relations to submodular maximization.
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1 Introduction

The challenge of designing an offer set to meet uncertain demand, with heterogeneous prefer-

ences across products, is a key driver of strategic and operational success in many industries [9].

In layman’s terms, an offer set corresponds to choosing an assortment, that specifies the subset

of products offered to customers, as well as deciding on their inventory levels, i.e., the initial

number of units stocked of each product. Typically, inventory and assortment decisions are

very likely to inform each other. Indeed, as demand evolves during the selling season, some

products may be fully consumed (or stock-out) due to inventory limitations. Consequently,

customers arriving at different times could very well be facing different assortments, thereby

affecting their purchasing behavior. Despite this fundamental interplay between inventory and

assortment, the corresponding decision-making problems have been studied for the most part

in separate frameworks, arguably due to their computational hardness.

In this paper, we consider the single-period joint assortment planning and inventory manage-

ment problem, whereby a retailer wishes to maximize expected revenue in the face of stochastic

demand, consisting of a random number of customers with dynamic substitution across prod-

ucts. A complete mathematical description of this model, along with additional technical terms

mentioned below (including the IFR property), are given in Section 1.2. Somewhat informally,

the retailer selects an assortment of products, and determines their initial inventory levels, given

a capacity constraint on the total number of units to be stocked. These decisions are made at the

beginning of the selling period. Next, the consumption process consists in a random sequence of

arriving customers, each of which purchases at most one unit. The problem formulation largely

depends on the distribution of the number of arriving customers, also named the demand, and

on the probabilistic structure of their purchasing preferences. This preference distribution, also

called a choice model, describes the probability that a unit of any given product is purchased,

amongst the assortment products available upon the customer’s arrival.

In recent years, the availability of highly detailed purchase data has motivated a generic

approach to modeling the customer choice preferences through a distribution over ranked pref-

erence lists [6, 21]. Generally speaking, each list describes a ranking over the product alternatives

considered by a customer, among which she chooses her most preferred product out of those

available upon arrival, or leaves without making any purchase if none is currently stocked. Un-

fortunately, as choice models become more detailed, and subsume more general families of pref-

erence list distributions, the corresponding optimization problems rapidly become intractable.

In this paper, we develop general-purpose algorithms under distributions over preference lists.

Our approach enjoys best-possible theoretical guarantees and demonstrates superior practical

performance against existing heuristics. Moreover, we show that additional structure on cus-

tomer choices, motivated by real-life purchasing behaviors, can be leveraged to obtain improved

guarantees.

Directly-related work. With a single customer arrival, the fundamental problem considered

in this paper reduces to the well-known ‘static’ assortment optimization problem. Here, the

objective is to compute an assortment of products that maximizes the expected revenue due to

one representative customer. However, even in this seemingly simple context, the problem was
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proven to be APX-hard by Goyal et al. [11], and in fact, was recently shown by Aouad et al. [1]

to be inapproximable within any factor sub-linear in the number of products. On the positive

side, there has been an ever-growing line of work in recent revenue management literature on the

static variant, investigating tractable approaches for special cases of the aforementioned choice

model [2, 4, 14, 16, 23, 27]. In contrast, under multiple customer arrivals, the problem becomes

considerably harder due to the additional ‘dynamic’ aspect. Indeed, the initial assortment is

altered along the sequence of arrivals due to stock-out events, and the dynamic substitution

behavior of customers depends on each sample path realization. In fact, even the evaluation of

the expected revenue for a given offer set is by itself an open and challenging question.

For the dynamic models in question, most of the work we are aware of makes use of heuristics

based on continuous relaxations and probabilistic assumptions [13, 15, 17, 19, 26, 28]. In par-

ticular, these approaches either give rise to exponential-time algorithms, do not admit provable

non-trivial approximation guarantees, or apply to inventory models of very different nature.

Interestingly, even in rather restricted settings, such as that of horizontally differentiated prod-

ucts (where prices are uniform), not much is known at present time. In this context, Gaur and

Honhon [10] studied a newsvendor-like inventory model with dynamic substitution, and devised

a heuristic for the locational choice model, assuming a parametric demand distribution. While

they propose lower and upper bounds on the optimal revenue, the analysis thereof does not

translate into an efficient algorithm with theoretical guarantees. Chen and Bassok [3] consid-

ered a similar setting where prices are uniform, assuming a less-realistic allocation rule, where

products are assigned to customers at the retail’s discretion after seeing the entire sequence of

arriving customers, instead of sequentially.

To our knowledge, prior to this paper, the work of Goyal et al. [11] and Segev [24] are the

only papers that study dynamic optimization models with discrete demand realizations and a

fully stochastic sequence of arrivals through the lens of approximation algorithms. Specifically,

Goyal et al. devised a polynomial-time approximation scheme (PTAS) assuming that the de-

mand follows an increasing failure rate (IFR) distribution, when the choice model consists in

a distribution over nested preference lists, referred to in the sequel as the nested choice model.

This model assumes that customers always prefer cheaper products, and have a budget con-

straint that dictates the most expensive product they are willing to purchase. Their algorithm

is based on efficient enumeration methods, by observing that there are near-optimal assortments

comprised of a constant number of products.

While this algorithm approximates the optimal revenue within factor 1 − 󰂃, the overall

approach suffers from two major drawbacks. First, since it resorts to enumerating all inventory

levels over a predetermined assortment with poly(1/󰂃) products, the resulting running time is

exponential in 1/󰂃, and becomes impractical even for medium-scale instances. Second, in some

practical settings the demand is ‘heavy tailed’, while retailers wish to hedge against extreme

demand realizations, especially for newly launched products with limited data and forecast

accuracy. However, the algorithm and its analysis do not carry over when the IFR property is

relaxed. The latter drawback has been bypassed by Segev [24], who proposed a quasi-PTAS

for general demand distributions (again, under the nested choice model), based on an dynamic

programming approach with an approximate state space representation. However, this result is
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accuracy. However, the algorithm and its analysis do not carry over when the IFR property is

relaxed. The latter drawback has been bypassed by Segev Segev (2015), who proposed a quasi-

PTAS for general demand distributions (again, under the nested choice model), based on an

dynamic programming approach with an approximate state space representation. However, this

result is more theoretical in nature, and still leaves open the question of efficiently approximating

nested preference lists under general demand distributions.

1.1 Our results

Our main contribution is to provide the first polynomial-time algorithms with provable approx-

imation guarantees for a broad class of demand and choice model specifications in dynamic

assortment optimization. From a technical perspective, we introduce a number of novel al-

gorithmic ideas of independent interest, that could very well be applicable in a wide range of

settings, and unravel hidden relations to submodular maximization. In addition, our algorithms

employ a mixture of greedy procedures and low-dimensional dynamic programs, that are suit-

able for solving instances of practical nature and scale. In computational experiments, these

algorithms are shown to be faster than existing heuristics by an order of magnitude and to

result in substantially better expected revenues. Our main results can be briefly summarized

as follows.

General rank-based choice model. We first devise an approximation algorithm in the

context of horizontal differentiation, where product prices are identical, assuming an IFR de-

mand distribution. As previously mentioned, a similar modeling approach has been taken by

Gaur and Honhon Gaur and Honhon (2006) and Chen and Bassok Chen and Bassok (2008). In

this setting, we obtain a constant-factor approximation, without any structural assumptions on

the preference list distribution. Our algorithm, formally described in Section 2, is based on a

two-step “selective-greedy” approach. In the selection step, we restrict attention to a subset of

products, identified by approximately solving the underlying static problem (without inventory

limitations). Next, the inventory levels are determined by greedily optimizing a multi-item

newsvendor problem, whose optimal solution provides a lower bound on the optimal expected

revenue. To analyze this approach, we explicitly construct a feasible solution to the latter

problem that generates an (e− 1)/(4e− 2) fraction of the optimal expected revenue.

This result extends to the general class of random utility choice models (preference list

distributions with potentially exponential support), as long as there exists an efficient oracle

to evaluate the purchase probabilities of products in any given assortment. As explained later

on, this setting subsumes most choice models studied in the revenue management literature.

Moreover, when the static version of the problem admits an approximation ratio of α ≥ 1−1/e,

we argue that the above-mentioned guarantee can be improved to α/4.

In the presence of price differentiation, the selection step is complemented by price thresh-

olding. That is, we eliminate all products cheaper than an appropriate price threshold, and

apply our horizontal differentiation algorithm on the remaining products, assuming identical

prices. This approach yields an approximation guarantee of O(log(pmax/pmin)), where pmax and

pmin stand for the maximum and minimum price of any product, respectively. The latter ratio is
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best possible in this setting, due to the work of Aouad et al. Aouad et al. (2015), who established

an Ω(log(pmax/pmin)) inapproximability bound even for the static problem formulation.

Intervals choice model. We proceed by proving that the above-mentioned logarithmic ratio,

obtained under price differentiation, can be beaten in more structured settings. We first investi-

gate a generalization of nested preference lists, known as the intervals choice model. This model

subsumes any distribution over lists that are comprised of an interval of products, ranked by

increasing price order. Such preference lists find behavioral justification in capturing common

screening rules, used by customers to generate their choice set (see the survey by Hauser Hauser

et al. (2009) in the marketing literature). Indeed, the intervals structure naturally arises when

the customers’ choice set is formed by the conjunction of a budget constraint and a quality re-

quirement, assuming that price and perceived quality are inversely related, which is commonly

observed in practical settings Zeithalm (1988).

Assuming an IFR distribution of customer arrivals, we develop in Section 3 an algorithmic

approach with an approximation guarantee of O(log log(pmax/pmin)) under the intervals choice

model. First, we show that the problem can be approximated within a factor logarithmic in

the number of products. This is achieved through a recursive decomposition of the preference

lists into a logarithmic number of classes, thereby creating independent and highly-structured

instances, that can be approximated within constant factors. The log-logarithmic ratio is at-

tained via a refined decomposition, where products are initially grouped into nearly-uniform

price buckets, which allow us to employ our algorithm for horizontally differentiated products

as a subroutine.

Nested choice model with general demand distributions. For arbitrary (non-IFR)

demand distributions, we provide the first polynomial-time approximation algorithm under the

nested choice model, attaining a performance guarantee of 1 − 1/e. Our algorithm, whose

specifics are given in Section 4, reveals a hidden submodular structure within this setting, and

relies on a distinct selective-greedy approach (very dissimilar to the one described in Section 2).

We initially eliminate sub-optimal products by leveraging solutions to multiple instances of

the static version. Next, the resulting problem formed by the residual products is cast as a

capacity-constrained maximization of a certain submodular function. In contrast to existing

enumeration-based approaches Goyal et al. (2016), Segev (2015), our algorithm is very efficient

in practice.

Computational experiments. In Section 5, we conduct extensive computational experi-

ments on randomly-generated instances, showing that our general-purpose algorithm largely

outperforms existing heuristics, in terms of both revenue and efficiency. Specifically, our ap-

proach is compared to the following heuristics:

1. A local-search heuristic based on greedily exchanging units between pairs of products.

2. A gradient-descent approach based on a continuous extension of the revenue function.

3. A discrete-greedy algorithm, where in each step a single unit is added to the product with

the largest marginal expected revenue.
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4. The approximation scheme of Goyal et al. (2016) for the nested choice model.

On average, the expected revenue is (on average) increased by a factor ranging between 8%

and 30% relative to the best heuristic, while reducing the running time in most configurations.

In structured settings, with interval and nested preference lists, our comparative experiments

again validate the practicality of the algorithms we propose against existing heuristics.

Counter-examples. For each of the settings considered in Sections 2-4, we construct

carefully-made instances, showing that the objective function of the respective formulations

is neither concave, nor submodular. These counter-examples, described in Appendix A.3, sug-

gest that generic optimization methods do not directly apply to the problems considered in this

paper.

1.2 Problem formulation

Products and inventories. We are given a collection of n products, with per-unit selling

prices p1 ≤ · · · ≤ pn. In addition, there is a capacity bound of C on the total number of

units to be stocked. In the (single-period) dynamic assortment problem, the retailer has to

jointly decide on an assortment, i.e., a subset products to be stocked, as well as on the initial

inventory levels of these products, which are not replenished later on. In other words, a feasible

solution specifies the initial inventory levels of all products, represented by an integer-valued

vector U = (u1, . . . , un) that meets the capacity constraint,
󰁓n

i=1 ui ≤ C.

The consumption process. Independently of stocking decisions, a random number of cus-

tomers M arrive sequentially, where the distribution of M is assumed to be known to the

decision-maker. Each customer j picks a random preference list Lj that describes a sub-

collection of products in decreasing order of preference. This list is drawn from a common

known distribution over a collection of preference lists, independently of the other lists and the

number of customers M . Unless mentioned otherwise, this distribution is encoded explicitly

as a collection of preference lists L, that are specified as an input along with their respective

probabilities. Upon arrival, each customer purchases a single unit of the most preferred product

on her list available at that time. In other words, the customer first attempts to purchase her

most preferred product, and if that product has stocked out or was not initially selected in

the assortment, the customer substitutes to the second most preferred product, so forth and

so on. If none of the products in her preference list is available, this customer leaves without

purchasing any product. Therefore, at each step, the inventory vector is decremented by at

most one unit, corresponding to the customer’s purchasing decision.

Objective. When the sequence of customer arrivals ends, we use R(U) to denote the revenue

resulting from an initial inventory vector U . Based on the preceding discussion, this revenue

is clearly random, due to the stochasticity in the number of customers and in their choice of

preference lists. The objective is to compute a feasible inventory vector, so that the expected
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revenue is maximized, i.e.,

max
(u1,...,un)∈Zn

+

󰀫
E [R(u1, . . . , un)] :

n󰁛

i=1

ui ≤ C

󰀬
.

Structural properties. We have previously discussed several structural properties that give

rise to different settings studied in this paper. Below, detailed definitions of these modeling

assumptions are provided.

• Nested choice model: This model describes distributions over a collection of preference lists

L that consists of intervals of the form (1, . . . , ℓ), where ℓ ∈ [n]. Namely, there are n+ 1

possible preferences lists, (), (1), (1, 2), . . . , (1, 2, . . . , n), where the respective probabilities

of these lists are arbitrary. Here, () denotes the empty preference list, for customers who

are not interested in purchasing any product.

• Intervals choice model: This model describes a more general class of preference list distri-

butions, where L consists of intervals of the form (ℓ, . . . , k), with 1 ≤ ℓ ≤ k ≤ n. Again,

the respective probabilities of these lists can be arbitrary.

• Increasing Failure Rate: Here, the distribution of the number of customers M is assumed

to have an increasing failure rate (IFR), meaning that Pr [M = k] /Pr [M ≥ k] is non-

decreasing over the integer domain. This definition is equivalent to requiring that the

sequence of random variables [M − k|M ≥ k]k∈Z is stochastically non-increasing in k.

For definitions of stochastic orders and stochastic monotonicity, we refer the reader to

Shaked and Shanthikumar Shaked and Shanthikumar (1994). It is worth mentioning that

the IFR property is satisfied by many distributions considered in operations management

applications, including Normal, Exponential, Geometric, Poisson, and Beta (for certain

parameters).

Additional notation. In certain settings, we will treat the preference lists in L as subsets of

products. Also, for each list Lℓ ∈ L, we use θℓ to denote the probability that it is picked by an

arriving customer. Finally, we allow L to interchangeably designate the set of preference lists,

as well as the corresponding collection of indices, ℓ = 1, . . . , |L|.

2 General choice model

In what follows, we consider the most general setting, where the underlying choice model is

expressed as a distribution over an arbitrary collection of preference lists. As discussed sub-

sequently, this setting coincides with the class of random-utility choice models, and therefore

subsumes most models of practical interest proposed in the literature (parametric and non-

parametric).

Our approximation algorithm is introduced in an incremental way. In Sections 2.1-2.3,

we begin by investigating the setting of horizontally differentiated products. Here, products

are assumed to be associated with uniform prices, meaning that without loss of generality

p1 = · · · = pn = 1, and the retailer wishes to maximize his expected sales quantity. When the
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number of customers M follows an IFR distribution, we show how to efficiently compute an

inventory vector that approximates the optimal expected revenue within a constant factor. For

ease of presentation, we do not attempt to optimize the latter constant. It is worth noting that

the uniform-price problem is NP-hard to approximate within factor larger than 1 − 1/e, since

it subsumes the maximum coverage problem Feige (1998) as a special case, even with a single

customer.

Theorem 2.1. When M is IFR-distributed and the product prices are uniform, the dynamic

assortment planning problem under general preference list distributions can be approximated

within factor (e− 1)/(4e− 2) in polynomial time.

In Section 2.4, this constant-factor approximation is leveraged as a subroutine to solve

the general problem with price differentiation. Here, without loss of generality, we assume

that products are indexed such that p1 ≤ · · · ≤ pn. As stated in the next theorem, our

performance guarantee scales logarithmically with the ratio of extremal prices. The latter ratio

is best possible in this setting (up to constant terms), due a matching inapproximability bound,

established by Aouad et al. Aouad et al. (2015) even for the static problem formulation.

Theorem 2.2. When M is IFR-distributed, the dynamic assortment planning problem under

general preference list distributions can be approximated within factor O(log(pn/p1)) in polyno-

mial time.

2.1 Algorithm under horizontal differentiation

At a high level, our algorithm is based on two-step approach, termed selective-greedy:

• Selection step. First, we ignore the inventory limitations and select an assortment of

products that approximates the static (single-customer) problem. To this end, we observe

that the static problem is equivalent to computing a weighted maximum coverage of a set

system defined by the collection of preference lists. Thus, a constant-factor approximation

for the static case is obtained by a greedy allocation rule.

• Greedy step. Next, to allocate the inventory capacity over the assortment products in the

dynamic setting, we consider a lower bound on the expected revenue, that can be viewed

a multi-item newsvendor formulation. The latter (simplified) objective is then optimized

greedily.

In what follows, we provide a more detailed description of the algorithm.

Step 1 (selection): approximating the static solution. Recall that L designates the

original collection of preference lists, where each list Lℓ is picked by a single customer with

probability θℓ. We begin by considering the static variant of the problem, that seeks to maximize

the expected revenue extracted from a single arriving customer. Since all prices are identical,

out of all subsets of products with cardinality at most C, we wish to pick one that maximizes

the total probability of all preference lists in L that are being hit. In other words, we would

like to identify a subset of products that satisfies the cardinality constraint and achieves a
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maximum coverage of the preference lists, where each product covers (or hits) the subset of

lists that contain it. This is precisely an instance of the maximum coverage problem, that can

be approximated within factor 1− 1/e by a classic greedy procedure Nemhauser et al. (1978).

Specifically, a single product is greedily added at each step to maximize the coverage quantity,

defined as the combined probability of all lists intersecting the assortment. As a result, we use

Q ⊆ [n] to denote the corresponding assortment picked for the static problem. In addition, we

assume without loss of generality that the assortment Q is minimal with respect to inclusion,

that is, removing any product would decrease the combined probability of preference lists that

contain any of the products in Q.

Newsvendor-like lower bound. We begin by defining LQ ⊆ L as the subset of lists that

intersect with the assortment Q. We construct an assignment A : LQ → Q that maps each list

in LQ to its most preferred product in Q, which exists by definition of LQ. Hence, A−1(i) is

the subset of lists in which product i ∈ Q is the most preferred when faced with the assortment

Q. Note that, since Q is minimal with respect to inclusion (see step 1), each product in

this assortment is necessarily assigned with at least one preference list in LQ, meaning that

A−1(i) ∕= ∅ for every i ∈ Q. We highlight a basic property attained by the assignment A.

Consider some product i ∈ Q, and suppose that we are looking on a customer who has just

arrived. The key observation is that, if product i has at least one unit in stock at the moment,

the current customer will purchase i with probability at least ψi =
󰁓

ℓ∈A−1(i) θℓ, regardless of

the inventory levels of all other products. The reason is that, for any list ℓ ∈ A−1(i), which

occurs with probability θℓ, product i is preferred over any other product in the assortment Q,

and we are not stocking any of the products in [n]\Q. Therefore, the number of units purchased

from i if this product had an infinite (unlimited) inventory level is stochastically larger than

Yi ∼ B(M,ψi). However, assuming that ui units of product i are initially stocked, we would

actually be considering the truncated random variable Ȳi(ui) = min{Yi, ui}. Therefore, letting
(u1, . . . , un) be an inventory vector stocking only products in Q, an immediate lower bound on

its expected revenue is given by:

E [R(u1, . . . , un)] ≥
󰁛

i∈Q
E
󰀅
Ȳi(ui)

󰀆
. (1)

Since the above lower bound is separable by products, it can be viewed as the revenue function

of a multi-item newsvendor problem (without stock-out substitution), over the products in Q.

Step 2 (greedy): solving a multi-item newsvendor problem. The inventory levels of

products in Q are now set in order to optimize the lower bound described by inequality (1). As

noted above, this formulation is a special case of the multi-item newsvendor problem subject

to a single cardinality constraint, with salvage value and cost 0. It is well-known that an exact

solution can be derived in polynomial time (see, e.g., (Muckstadt and Sapra 2010), Chapter 5).

For instance, one may employ a greedy procedure that, at each step, augments the current

inventory vector by a single unit that incurs the largest marginal increase of the expected

revenue. It is worth noting that our lower bound on the revenue contribution of any given
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unit can easily be computed in polynomial time. In contrast, evaluating the exact expected

revenue it generates is an open question by itself, as explained in Section 1, and our algorithm

is surprisingly able to bypass this difficulty.

Running time. The selection step requires n greedy increments, each with at most n eval-

uations of the static expected revenue, whereas the greedy step involves C increments of the

inventory vector, each leading to n evaluations of the multi-item newsvendor objective function.

The static expected revenue of a given assortment can be computed in time O(n · |L|) while the
newsvendor objective can be evaluated through dynamic programming in time O(nCM̄), where

M̄ is the maximal number of arrivals (see Goyal et al. Goyal et al. (2016)). Hence, the overall

running time is O(n3 · |L|+n2C2M̄). In fact, by observing that each incremental action only

affects a constant number of the revenue terms (and their corresponding purchase probabilities),

a refined implementation of the evaluation oracles leads to a running time of O(n2 · |L|+nCM̄).

Practically speaking, for common parametric random variables (e.g., gaussian) where M̄ is in-

finite, the newsvendor objective can be evaluated using numerical integration techniques, with

high accuracy.

2.2 Analysis under horizontal differentiation

To analyze our algorithm, we explicitly construct a ‘good’ candidate solution, making use of

products in Q. The subsequent analysis reveals that, under the choice of such inventory levels,

the newsvendor-like lower bound approximates the optimal revenue within a constant factor.

This candidate solution is constructed in two steps.

Step 1: Rounding up the capacity. We begin by modifying the original capacity C.

Specifically, we round the capacity value up to the nearest multiple of 2 · |Q|, denoted by C̄.

Note that since |Q|≤ C, we must have C̄ ≤ 2C. Our approach to design a feasible solution

first creates a solution under the relaxed capacity C̄. We overload notation by reusing C as

the current capacity, instead of C̄, in the next algorithmic steps. However, once the final

inventory vector is computed, it remains to restore the original capacity by selecting the ‘best’

C units. Namely, we select the C units with largest contribution to the lower bound described

in Section 2.1. This leaves us with at least half of the lower bound attained by the relaxed

solution.

Step 2: Setting inventory levels. Based on the assignment A defined earlier, we proceed

by explaining how to spread the capacity of C over the underlying set of products Q. Intuitively,

we would like the number of units stocked from each product i ∈ Q to be proportional to ψi/ΘQ,

where ΘQ =
󰁓

i∈Q ψi. Namely,

ũi =
ψi

ΘQ
· C .

However, this quantity may not be integral, and is therefore rounded down to the nearest

multiple of C/(2 · |Q|), which is necessarily integral by step 1. For this purpose, we can uniquely
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write

ũi = µi ·
C

2 · |Q| + αi ,

for some integer µi ∈ [0, 2 · |Q|] and some real αi ∈ [0, C/(2 · |Q|)). With these definitions in

place, for each product i ∈ Q, the number of units to be stocked is

ui = µi ·
C

2 · |Q| ,

while other products are not stocked at all. This way, each product indeed has an integer

number of units stocked, and furthermore, we do not exceed the overall capacity, since

󰁛

i∈Q
ui ≤

󰁛

i∈Q
ũi =

C

ΘQ
·
󰁛

i∈Q
ψi = C .

Deriving the approximation ratio. For the remainder of this section, let (u1, . . . , un) be

the inventory vector that has just been constructed. Since this vector stocks only products in Q,

it is a feasible solution to the multi-item newsvendor instance solved (exactly) by our algorithm.

Therefore, to prove Theorem 2.1, it remains to show that the expected revenue generated by

(u1, . . . , un) can be lower bounded in terms of the optimal expected revenue.

We begin by stating two technical lemmas, that prove useful for analyzing the consumption

process of the inventory vector (u1, . . . , un). Although written in slightly different terms, the

first lemma has been proven by Goyal et al. (Goyal et al. 2016, Lem. 4). The second lemma is

easy to establish, as shown in Appendix A.2.

Lemma 2.3. Let M be a non-negative integer-valued IFR random variable. For any α ∈ [0, 1],

the random variable X ∼ B(M,α) also follows an IFR distribution.

Lemma 2.4. Let X be a non-negative IFR random variable, and let X̄ = min{X,C}, for some

constant C. Suppose that E[X̄] ≤ δC for some δ ∈ [0, 1]. Then, E[X̄] ≥ (1− δ) · E[X].

Upper bounds on the optimal revenue. The important observation is that, for any in-

ventory vector with a total capacity of at most C, an arriving customer will purchase a unit

with probability at most (e/(e− 1)) ·ΘQ. This follows by noting that, as explained in step 1,

the assortment Q approximates the optimal maximal coverage solution within factor 1 − 1/e.

Therefore, the expected revenue of the optimal inventory vector (u∗1, . . . , u
∗
n) can be bounded

by

E [R(u∗1, . . . , u
∗
n)] ≤ min

󰀝
C,

e

e− 1
· E [M ] ·ΘQ

󰀞
. (2)

Frequent and rare products. The key idea of our analysis is to distinguish between two

types of products. For a parameter δ ∈ [0, 1] whose value will be optimized later, we say that

product i ∈ Q is frequent when, in expectation, at least a δ-fraction of the units stocked are

purchased in the consumption process, i.e., E[Ȳi(ui)] ≥ δui. Otherwise, this product is said to

be rare. We denote the sets of frequent and rare products by F and R, respectively. Note that,
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by the relation between ui and ũi,

󰁛

i∈F
ui +

󰁛

i∈R
ui =

󰁛

i∈Q
ui =

󰁛

i∈Q
ũi −

󰁛

i∈Q
αi ≥ C − |Q|· C

2 · |Q| =
C

2
. (3)

We separately examine the contribution of each product type to the lower bound stated in

inequality (1). For the contribution of frequent products, by definition we clearly have

󰁛

i∈F
E
󰀅
Ȳi(ui)

󰀆
≥ δ ·

󰁛

i∈F
ui . (4)

We now lower bound the contribution of rare products. Based on Lemma 2.3, since the number

of customers M is assumed to be IFR distributed, we know that Yi ∼ B(M,ψi) follows an

IFR distribution as well. As a result, by Lemma 2.4, we infer that the expectations of Yi and

Ȳi(ui) are closely-related for every rare product i, meaning that E[Ȳi(ui)] ≥ (1− δ) · E[Yi], and
therefore, 󰁛

i∈R
E
󰀅
Ȳi(ui)

󰀆
≥ (1− δ) ·

󰁛

i∈R
E [Yi] . (5)

Also, by definition of ui and ũi, we observe that

E [Yi] = ψi · E [M ] =
ΘQ
C

· ũi · E [M ] ≥ ΘQ
C

· ui · E [M ] .

Therefore, combining this with inequality (5), we obtain

󰁛

i∈R
E
󰀅
Ȳi(ui)

󰀆
≥ (1− δ) · E [M ] · ΘQ

C
·
󰁛

i∈R
ui . (6)

Conclusion. By substituting (4) and (6) into the lower bound stated in inequality (1) and

setting δ = (e− 1)/(2e− 1), we infer that

E [R(u1, . . . , un)] ≥ δ ·
󰁛

i∈F
ui + (1− δ) · E [M ] · ΘQ

C
·
󰁛

i∈R
ui

≥ E [R(u∗1, . . . , u
∗
n)] ·

󰀣
δ

C
·
󰁛

i∈F
ui +

1− δ

C
·
󰀕
1− 1

e

󰀖
·
󰁛

i∈R
ui

󰀤

=
e− 1

2e− 1
· E [R(u∗1, . . . , u

∗
n)] ·

1

C
·
󰀣
󰁛

i∈R
ui +

󰁛

i∈F
ui

󰀤

≥ e− 1

4e− 2
· E [R(u∗1, . . . , u

∗
n)] ,

where the second inequality is derived from the upper bound in (2), and the last inequality

follows from (3). Finally, as explained in step 1, we restore the original capacity by selecting

at least half of the units stocked, based on their individual contributions to the lower bounds

in (4) and (6). This alteration yields an approximation guarantee of (e− 1)/(8e− 4).

For a more careful analysis, we need to distinguish in the lower bound above between the
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rounded capacity C̄ and the initial capacity C, yielding

E [R(u1, . . . , un)] ≥
e− 1

2e− 1
· E [R(u∗1, . . . , u

∗
n)] ·

1

C̄
·
󰀣
󰁛

i∈R
ui +

󰁛

i∈F
ui

󰀤
.

We now observe that, when restoring the original capacity C, our lower bound scales-down

by a factor of C/β, where β is the total number of units in the relaxed solution, i.e., β =
󰁓

i∈R ui +
󰁓

i∈F ui. For this reason, we obtain an expected revenue of at least

e− 1

2e− 1
· E [R(u∗1, . . . , u

∗
n)] ·

β

C̄
· C
β

≥ e− 1

4e− 2
· E [R(u∗1, . . . , u

∗
n)] ,

concluding the proof of Theorem 2.1.

2.3 Refined performance guarantee

A close investigation of our algorithm shows that the factor of 1 − 1/e is incurred due to

employing a general-purpose maximum coverage algorithm to solve the static problem in step 1.

However, for numerous special cases of preference lists (such as nested, intervals, laminar, just

to name a few), this variant can be solved either exactly or within a greater degree of accuracy.

The following claim explicitly relates between our approximation guarantee for the dynamic

model and the best achievable one for the static variant.

Corollary 2.5. Suppose that, for a certain class of preference lists, the static variant can be

efficiently approximated within factor α. Then, the corresponding dynamic formulation, with

identical prices and IFR demand distribution, admits an α/(2α+2)-approximation in polynomial

time.

It is important to point out that our results extend to the case where the distribution

over preference lists is not explicitly specified as part of the input, potentially having an

exponentially-large support. In fact, to efficiently implement our algorithm, we only require

a polynomial-time procedure for computing the probability that each product in a given as-

sortment is purchased under a single customer arrival. Indeed, this property is sufficient to

greedily approximate the static problem (step 1 in Section 2.1) and to compute each of the

ψi-probabilities defining the newsvendor objective function. In particular, such procedures can

easily be devised for most choice models proposed in the revenue management literature, includ-

ing mixtures of logits Talluri and Van Ryzin (2004), Rusmevichientong and Topaloglu (2012),

nested logit Li et al. (2015), Davis et al. (2014), as well as the Markov chain model Blanchet

et al. (2016), Feldman and Topaloglu (2017), Désir et al. (2015).

2.4 Price differentiation

Algorithm. In what follows, we explain how the algorithm of Section 2.1 can be adapted

in the presence of price differentiation to obtain an O(log(pmax/pmin))-approximation. The

basic idea is based on the classify-and-select paradigm, where products are initially partitioned

into classes with nearly-uniform prices, and then, we employ for each class our constant-factor

approximation as a subroutine, treating these products as if they are associated with uniform
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prices. Specifically, assuming that products are indexed such that p1 ≤ · · · ≤ pn, our algorithm

picks the most profitable inventory vector out of U1, . . . , UK , where K = ⌈log(pn/p1)⌉. Each

vector Uk is generated as follows:

1. Let ak be the minimum index of a product whose price is at least p1 · 2k−1, that is,

ak = min{i ∈ [n] : pi ≥ p1 · 2k−1}. Given this parameter, we define the collection of

products Ak = [ak, ak+1 − 1].

2. The inventory vector Uk = (uk1, . . . , u
k
n) is constructed by applying the horizontal differ-

entiation procedure (see Section 2.1) to the subproblem formed by products in Ak, with

identical prices of p̃ak = · · · = p̃ak+1−1 = 1.

It is worth noting that, in order to pick the “most profitable” inventory vector, we make the

final comparisons in terms of the multi-item newsvendor lower bound, that can be computed in

polynomial time.

Analysis. In order to establish the performance guarantee attained by our algorithm, we

begin by highlighting a fundamental property of the consumption process under an arbitrary

collection of preference lists. To avoid deviating from the overall discussion, we prove the next

claim in Appendix A.1.

Lemma 2.6. The expected revenue function E[R(·)] is subadditive.

Now, for every k ∈ [K], let U∗(k) be the projection of the optimal inventory vector U∗ on

the products Ak. That is, U∗(k) is obtained from U∗ by setting to 0 the inventory levels of all

products in [n] \ Ak. We proceed by showing that Uk, the inventory vector constructed earlier

by our algorithm, generates a constant fraction of the expected revenue of U∗(k).

Lemma 2.7. E[R(Uk)] ≥ e−1
8e−4 · E[R(U∗(k))].

Proof. Recall that the inventory vector Uk constitutes an (e − 1)/(4e − 2)-approximation for

the optimal sales quantity (i.e., expected number of units purchased) when the underlying set of

products is Ak. Therefore, since U∗(k) stocks only products in Ak, the expected sales quantity

with respect to Uk is at least (e − 1)/(4e − 2) times the analogous quantity with respect to

U∗(k). The claim follows by observing that, by definition of Ak, the ratio between the extremal

prices within this class is at most 2.

Based on the preceding discussion, we are now ready to show that the most profitable

inventory vector out of U1, . . . , UK guarantees an expected revenue within factor O(log(pn/p1))

of optimal. Indeed,

max
k

󰁱
E
󰁫
R

󰀓
Uk

󰀔󰁬󰁲
≥ e− 1

8e− 4
·max

k

󰁱
E
󰁫
R

󰀓
U∗(k)

󰀔󰁬󰁲

≥ e− 1

8e− 4
· 1

K
·

K󰁛

k=1

E
󰁫
R

󰀓
U∗(k)

󰀔󰁬

≥ e− 1

8e− 4
· 1

K
· E [R (U∗)]
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= Ω

󰀕
1

log(pn/p1)

󰀖
· E [R (U∗)] ,

where the first inequality follows from Lemma 2.7 and the third inequality is implied by the

subadditivity of the expected revenue function (see Lemma 2.6).

3 Approximation Algorithms for the Intervals Choice Model

In what follows, we consider the dynamic assortment planning problem under interval preference

lists. When the number of customers M satisfies the IFR property, we show how to efficiently

compute an inventory vector that approximates the optimal expected revenue within factor

O(log log(pn/p1)), where p1 and pn are the minimal and maximal prices, respectively.

Since our approach employs recursive decompositions of the preference lists, it is instructive

to start off by presenting some of the high-level ideas, followed by a simpler O(log n) approxima-

tion. We then explain how to make use of our algorithm for uniform prices, given in Section 2,

to establish the main result of this section.

3.1 General outline

The main algorithmic idea, exploited in different forms in Sections 3.2 and 3.3, consists in

partitioning the collection of preference lists L into a small number of classes, L. By sepa-

rating customer purchases according to their different classes, the expected revenue function

decomposes into L terms. Hence, to obtain an O(L)-approximation, we propose the following

approach:

1. Consider separately each of the L subproblems, where the consumption process is limited

to customers picking preference lists from a single class of the partition.

2. Approximately solve each of these L subproblems. The crux would be to design a partition

such that the corresponding subproblems have a simplified structure, admitting constant-

factor approximations.

3. Pick the best solution among these L inventory vectors.

However, this approach is generally insufficient to claim the desired approximation ratio.

Indeed, the decomposition into separate subproblems does not take into account the dependency

of the revenue functions across the different preference list classes, in the joint sequence of

arrivals. In other words, the expected revenue restricted to a single class in the full consumption

process (i.e., when all preference lists in L could be picked) is different from the one generated

by the distribution induced on that class. Consequently, our decomposition approach may very

well under-estimate the potential expected revenue.

Motivated by this observation, for any class of preference lists V ⊆ L and inventory vector

U , we distinguish between two types of revenues, captured by the following random variables:

• Original model: R+
V (U) designates the revenue generated by the arrival of M customers

who draw a preference list in V, assuming that the consumption process is formed by the

original model, where all preference lists in L occur according to the initial distribution.
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• V-restricted model: R−
V (U) denotes the revenue generated by the arrival of M customers

who draw a preference list in V, assuming that the consumption process is formed by

the V-restricted model. Here, only preference lists in V can occur and their probabilities

remain unchanged, whereas all lists in L \ V are replaced by an empty list.

Now assume that the classes of our partition are denoted by V1, . . . ,VL. Generally speaking,

the expected revenues in the restricted and original models are unrelated; elementary examples

demonstrate that neither one dominates the other. What we need to argue to utilize this

approach is that these revenues are within constant factors of each other, due to the specific

properties of our decomposition. Formally, for every ℓ ∈ [L], we construct a feasible inventory

vector Uℓ satisfying

E
󰁫
R−

Vℓ
(Uℓ)

󰁬
= Ω(1) · E

󰁫
R+

Vℓ
(U∗)

󰁬
, (7)

where U∗ is the optimal inventory vector for the original model.

As a result, the best inventory vector out of U1, . . . , UL guarantees an O(L)-approximation

for the original model. Indeed, by considering any realization of the consumption process, it is

easy to verify that the revenue generated in the original model is stochastically larger than that

of the Vℓ-restricted model. By combining this observation and equation (7),

max
ℓ∈[L]

E [R(Uℓ)] ≥ max
ℓ∈[L]

E
󰁫
R−

Vℓ
(Uℓ)

󰁬

≥ 1

L
·

L󰁛

ℓ=1

E
󰁫
R−

Vℓ
(Uℓ)

󰁬

= Ω

󰀕
1

L

󰀖
·

L󰁛

ℓ=1

E
󰁫
R+

Vℓ
(U∗)

󰁬

= Ω

󰀕
1

L

󰀖
· E [R (U∗)] .

3.2 O(log n)-approximation

We begin by describing our partition of the preference lists into L = O(log n) classes V1, . . . ,VL.

For the resulting partition, we devise a polynomial-time algorithm for computing an inventory

vector Uℓ satisfying

E
󰁫
R−

Vℓ
(Uℓ)

󰁬
≥ 1

8
· E

󰁫
R+

Vℓ
(U∗)

󰁬
.

3.2.1 The recursive decomposition

In order to formalize our decomposition approach, we first introduce a sequence of increasingly

refined partitions of the products in [n], denoted by S1, . . . ,SL. In turn, this sequence induced

the desired partition of preference lists into V1, . . . ,VL.

Partitions of products. We define the middle product of a segment [a, b] ⊆ [n] as the

product ⌈(a+ b)/2⌉. The sequence S1, . . . ,SL is obtained by the following recursive procedure:

• First, we define S1 as the trivial partition of [n], comprised of a single segment consisting

of all products, i.e., S1 = {[n]}.

15



• The next partition, S2, is obtained by breaking the segment [n] at its middle product,

that is, S2 = {[1, ⌈(n+ 1)/2⌉], [⌈(n+ 1)/2⌉+ 1, n]}.

• This process continues recursively, that is, we define Sℓ as the partition of products ob-

tained by breaking each segment of Sℓ−1 at its middle product into two parts.

Partition of preference lists. Given any subset of lists V ⊆ L and a partition S of the

products [n] into pairwise-disjoint segments, we define mid(V,S) as the subset of lists in V that

contain the middle product of at least one segment in S. With this definition at hand, we

construct the partition of the preference lists into V1, . . . ,VL as follows:

• First, we have V1 = mid(L,S1).

• Then, V2 = mid(L \ V1,S2).

• This process continues recursively, as illustrated in Figure 1. That is, we define Vℓ as the

subset of residual preference lists that contain the middle product of a segment in Sℓ, i.e.,

Vℓ = mid(L \ (∪ℓ−1
j=1Vj),Sℓ).

1! 2! n-1! n!
Products!

Interval Lists!
V1

V2

S1

S2

S3

⇠
n+ 1

2

⇡

Figure 1: The recursive decomposition of L into V1, . . . ,VL.

Structural properties. Since the maximum length of any segment shrinks by a constant

factor at each level of the decomposition, it immediately follows that the resulting number of

classes is L = O(log n). In addition, each partition of products Sℓ can be viewed as a collection

of pairwise-disjoint segments, satisfying the next two properties:

• Property 1: each interval list in Vℓ is fully contained in precisely one of the segments in

Sℓ.

• Property 2: for each segment S ∈ Sℓ, there exists a product in S that intersects all intervals

in Vℓ contained in this segment.

These are precisely the sufficient properties that will enable us to compute a feasible inventory

vector Uℓ satisfying

E
󰁫
R−

Vℓ
(Uℓ)

󰁬
≥ 1

8
· E

󰁫
R+

Vℓ
(U∗)

󰁬
.
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3.2.2 Proving the existence of Uℓ

Single segment analysis. In order to construct Uℓ, it is sufficient to show that, for every

segment of products S in the partition Sℓ, there exists an inventory vector US
ℓ such that:

• The vector US
ℓ only makes use of products in S.

• Letting VS
ℓ be the set of interval preference lists in Vℓ that are fully contained in S, we

have

E
󰁫
R−

VS
ℓ

󰀃
US
ℓ

󰀄󰁬
≥ 1

8
· E

󰁫
R+

VS
ℓ

(U∗)
󰁬
. (8)

• The combined number of units stocked in {US
ℓ : S ∈ Sℓ} is at most C.

Indeed, given property 1, since the segments in Sℓ are pairwise disjoint, the expected revenue

of the combined vector
󰁓

S∈Sℓ
US
ℓ decomposes into the sum of expected revenues generated by

each vector US
ℓ . This decomposition applies in both the original model and the Vℓ-restricted

model. In other words, assuming that each US
ℓ satisfies inequality (8), we obtain the desired

inequality:

E

󰀵

󰀷R−
Vℓ

󰀳

󰁃
󰁛

S∈Sℓ

US
ℓ

󰀴

󰁄

󰀶

󰀸 =
󰁛

S∈Sℓ

E
󰁫
R−

VS
ℓ

󰀃
US
ℓ

󰀄󰁬

≥ 1

8
·
󰁛

S∈Sℓ

E
󰁫
R+

VS
ℓ

(U∗)
󰁬

=
1

8
· E

󰁫
R+

Vℓ
(U∗)

󰁬
.

Simplified problem. The preceding discussion implies that we can focus on a single segment

S from this point on. We prove the existence of an inventory vector US
ℓ that satisfies the above

properties by analyzing the revenue generated under the optimal vector U∗ by the lists in VS
ℓ . In

fact, in the course of proving the existence of US
ℓ , we implicitly describe an efficient algorithmic

procedure to construct such a vector. To simplify the presentation, the corresponding algorithm

is made explicit in Section 3.2.3. Also, we use simplified notation throughout this section,

where VS
ℓ and US

ℓ are replaced by Ṽ and Ũ , respectively, i.e., we do not explicitly mention the

dependency of these variables on S and ℓ.

Revenue decomposition. Based on property 2, we define J to be the highest index product

that intersects all intervals in Ṽ. We now break the segment S into a left part Sleft = S∩[1, J ] and
a right part Sright = S∩ [J+1, n], noting that the latter part could be empty. These definitions,

in turn, are used to further divide the expected revenue E[R+
Ṽ (U

∗)] based on whether units are

purchased from the left or right part of S, that is,

E
󰁫
R+

Ṽ (U
∗)
󰁬
= E

󰁫
R+

Ṽ,Sleft
(U∗)

󰁬
+ E

󰁫
R+

Ṽ,Sright
(U∗)

󰁬
.

The proof proceeds by considering two cases, depending on whether most of the expected revenue

is coming from the left or right parts. To better understand this case analysis, we advise the

reader to consult Figure 2.
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i⇤

Optimal solution U⇤

Preference lists

Products of S

Case 1 Case 2A Case 2BSegment solution

Sright

FJ

Sleft

VS
` ⇠ Ṽ

US
` ⇠ Ũ

Figure 2: The inventory vectors examined by the algorithm to construct US
ℓ .

Case 1: E[R+

Ṽ ,Sleft
(U∗)]≥E[R+

Ṽ
(U∗)]/2. This case can be handled rather easily. To con-

struct the inventory vector Ũ , we consider the restriction of the optimal vector U∗ to the left

segment Sleft = S∩ [1, J ], and relocate all stocked units to product J . It is not difficult to verify

that, in every realization of the consumption process, the number of units of the left segment

Sleft consumed in the Ṽ-restricted model is greater or equal to the number of units consumed

in the original model by preference lists in Ṽ. In addition, J is the most expensive product in

Sleft, meaning that R−
Ṽ,Sleft

(Ũ) ≥st R+
Ṽ,Sleft

(U∗), and therefore

E
󰁫
R−

Ṽ

󰀓
Ũ
󰀔󰁬

= E
󰁫
R−

Ṽ,Sleft

󰀓
Ũ
󰀔󰁬

≥ E
󰁫
R+

Ṽ,Sleft
(U∗)

󰁬
≥ 1

2
· E

󰁫
R+

Ṽ (U∗)
󰁬
,

where the first equality holds since Ũ only contains the product J , and the last inequality is

due to the case hypothesis.

Case 2: E[R+

Ṽ ,Sright
(U∗)]≥E[R+

Ṽ
(U∗)]/2. This case is more involved. Let us focus on

some product i in the segment Sright = S ∩ [J + 1, n], and let ψi be the probability that

an arriving customer picks one of the intervals in Ṽ that contains i (necessarily on its right

part). Note that since all non-empty right parts have J + 1 as a left endpoint, it follows that

ψJ+1 ≥ ψJ+2 ≥ · · ·. We begin by defining a pair of random variables, whose exact meaning

will be revealed later on. These are Yi ∼ B(M,ψi) and Ȳi = min{Yi, C∗
S}, where C∗

S is the total

capacity used by the optimal inventory vector U∗ over the segment Sright.

With these random variables at hand, we say that product i is frequent when E[Ȳi] ≥ C∗
S/2.

Otherwise, this product is rare. Since ψJ+1 ≥ ψJ+2 ≥ · · ·, it follows that there is a product

F such that the set of frequent products F is precisely those in [J + 1, F ], whereas the rare

ones R are those in Sright \ [J + 1, F ]. As a result, we can break the revenue R+
Ṽ,Sright

(U∗) into

purchases of frequent and rare products, obtaining that

E
󰁫
R+

Ṽ,F (U∗)
󰁬
+ E

󰁫
R+

Ṽ,R (U∗)
󰁬
= E

󰁫
R+

Ṽ,Sright
(U∗)

󰁬
≥ 1

2
· E

󰁫
R+

Ṽ (U∗)
󰁬
,
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where the last inequality follows from the case hypothesis. It remains to consider two cases, de-

pending on which set of products (frequent or rare) is contributing more in the above inequality.

Case 2A: E[R+

Ṽ ,F
(U∗)]≥E[R+

Ṽ
(U∗)]/4. Note that C∗

S · pF is a trivial upper bound on the

random variable R+
Ṽ,F (U

∗), and consequently on its expectation. This follows by observing that,

in each realization, at most C∗
S units are purchased among frequent products, and each purchase

generates a revenue of at most pF , given that F is the right endpoint of F . To construct the

inventory vector Ũ , we simply stock C∗
S units of F , the most expensive frequent product. We

observe that in the Ṽ-restricted model, the distribution of the number of units consumed is

identical to that of ȲF . Indeed, similar to the consumption process considered in Section 2,

under the Ṽ-restricted model, a unit of product F is consumed with probability ψF as long

as this product has not stocked-out, corresponding to a sequence of M independent Bernoulli

trials whose sum is capped by the capacity C∗
S . This means that the expected revenue under

the restricted model would be

E
󰁫
R−

Ṽ

󰀓
Ũ
󰀔󰁬

= pF · E
󰀅
ȲF

󰀆

≥ pF · C
∗
S

2

≥ 1

2
· E

󰁫
R+

Ṽ,F (U∗)
󰁬

≥ 1

8
· E

󰁫
R+

Ṽ (U∗)
󰁬
,

where the first inequality follows from the definition of frequent products while the last inequality

is due to the case hypothesis.

Case 2B: E[R+

Ṽ ,R
(U∗)]≥E[R+

Ṽ
(U∗)]/4. Here, we derive an upper bound on the expected

revenue of R+
Ṽ,R(U

∗) by considering an unrealistic model, where prior to the arrival of any

customer, the current inventory vector can be re-optimized. Specifically, suppose that we may

substitute to any vector (still, using only rare products), without any capacity restrictions. In

this model, since we are only interested in maximizing the expected revenue due to purchases

made by (the right part of) intervals in Ṽ, the optimal strategy is to stock a single unit of

i∗, which is the product that maximizes ψipi over all rare products. Indeed, assuming i is the

minimal-index product stocked, the expected revenue generated by a single arrival of the lists

in Ṽ is exactly ψipi. Therefore,

E
󰁫
R+

Ṽ,R (U∗)
󰁬
≤ E [M ] · ψi∗pi∗ .

Now, to construct the inventory vector Ũ , we simply stock C∗
S units of product i∗. Once again,

in the Ṽ-restricted model, the distribution of the number of units consumed will be identical to

that of Ȳi∗ ∼ B(M,ψi∗). Indeed, similar to the consumption process considered in Section 2,

under the Ṽ-restricted model, a unit of product i∗ is consumed with probability ψi∗ as long as

this product has not stocked-out. Therefore, the resulting expected revenue is

E
󰁫
R−

Ṽ

󰀓
Ũ
󰀔󰁬

= pi∗ · E
󰀅
Ȳi∗

󰀆
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≥ pi∗ ·
E [Yi∗ ]

2

=
1

2
· E [M ] · ψi∗pi∗

≥ 1

2
· E

󰁫
R+

Ṽ,R (U∗)
󰁬

≥ 1

8
· E

󰁫
R+

Ṽ (U∗)
󰁬
,

where the first inequality follows from Lemmas 2.3 and 2.4, recalling that i∗ is a rare product,

and the last inequality is due to the case hypothesis.

3.2.3 Dynamic program

A careful review of the arguments used to prove the existence of Uℓ reveals that we actually

describe an efficient way to construct this vector, assuming that the number of units CS of the

optimal solution within each interval S ∈ Sℓ is known a-priori. We prove that this assumption is

not needed, explaining why a similar approximation ratio can be attained by means of dynamic

programming. In the following, J , F , and i∗ play precisely the same roles as in the previous

section. It is not difficult to verify that each of these products can easily be identified in

polynomial time.

The general idea is to formulate a dynamic program that tries out all feasible capacities for

each single segment S ∈ Sℓ, and chooses the best vector among those constructed in cases 1, 2A,

and 2B. Specifically, for any positive capacity c, we define U
(1)
S,c as the inventory vector described

in case 1 that stocks c units of product J . Similarly, U
(2A)
S,c is the inventory vector described

in case 2A that stocks c units of product F , and U
(2B)
S,c is the vector of case 2B that stocks c

units of product i∗. One important observation is that we can efficiently compute the expected

revenue associated with each of these vectors under the VS
ℓ -restricted model, as it is equivalent

to computing the expected value of a truncated binomial random variable. Finally, we let

{S1, . . . , Sr} designate the segments of products in the partition Sℓ, numbered in increasing

order of product indices.

For any j ∈ [r] and c̄ ∈ [C], we define the objective function G(j, c̄) as the maximal ex-

pected revenue in the restricted model, generated by a vector with at most c̄ units, obtained

by concatenating the candidate solutions U
(1)
S,c or U

(2A)
S,c or U

(2B)
S,c , over the first j segments of

the partition, S1, . . . , Sj . It is not difficult to verify that the function G satisfies the following

recursion formula:

G(j, c̄) = max
c≤c̄

󰁱
G (j − 1, c̄− c) + max

󰁱
E
󰁫
R−

VS
ℓ

󰀓
U

(1)
Sj ,c

󰀔󰁬
,E

󰁫
R−

VS
ℓ

󰀓
U

(2A)
Sj ,c

󰀔󰁬
,E

󰁫
R−

VS
ℓ

󰀓
U

(2B)
Sj ,c

󰀔󰁬󰁲 󰁲
.

By solving this recursion forward, we infer the quantity G(r, C). Given the optimality conditions

satisfied by the above dynamic program, it follows that G(r, C) ≥ E[R−
VS
ℓ

(Uℓ)], where Uℓ is the

vector constructed in Section 3.2.2. Indeed, the allocation of capacity across the different

segments, as described in the previous section, can be replicated by the dynamic program, and

for each segment, the dynamic program selects a vector that maximizes the expected revenue.
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3.2.4 Running time analysis

The recursive decomposition is computed in time O(|L|· log n). Indeed, we identify the location

of each interval list with respect to at most ⌈log n⌉ middle products along the recursion. Next,

the dynamic program in Section 3.2.3 is solved in time O(|Sℓ|·C2M̄) for the collection of pref-

erence lists Vℓ. Indeed, the state space has size O(|Sℓ|·C). Each recursive step is computed in

O(M̄C) time by comparing the expected revenues of three inventory vectors, each stocking C

units. The latter require to evaluate the expectations of truncated binomial variables, with at

most M̄ trials. Summing over all ℓ ∈ [L], the overall running time is O(|L|· log n+ nC2M̄).

3.3 O(log log(pn/p1))-approximation

In this section, we explain how the main technical ideas of Section 3.2 can be utilized in order

to attain an approximation guarantee of O(log log(pn/p1)), where pn and p1 stand for the

maximum and minimum price of any product. Here, we employ a different decomposition of

L, that allows us to make use of the constant-factor approximation for uniform prices (see

Section 2) as a subroutine.

3.3.1 The recursive decomposition

We initially break the interval [1, n] into K = O(log(pn/p1)) buckets B1, . . . , BK according to

prices, geometrically by powers of 2. That is, the first bucket B1 consists of products with prices

in [p1, 2p1), the second bucket B2 corresponds to prices in [2p1, 2
2p1), so forth and so on.

The recursive partition here resembles the one in Section 3.2.1, at the exception that seg-

ments are now defined with respect to the indexing 1, . . . ,K, and the middle product depends

on the collection of buckets B1, . . . , BK . Specifically, the middle product associated with a

segment [a, b] ⊆ [K] is defined as the right-most product of the middle bucket B⌈(a+b)/2⌉. Given

any subset of lists V ⊆ L and a partition K of [K] into pairwise-disjoint segments, we define

mid(V,K) as the set of interval lists in V that contain the middle product of at least one segment

in K. With this definition at hand, we define the classes of lists V1, . . . ,VL,Vin as follows:

• The special class Vin is comprised of all intervals in L that are fully contained in one of

the buckets B1, . . . , BK .

• The remaining classes are determined as follows:

– First, we have V1 = mid(L \ Vin,K1), where K1 = {[K]}.

– Then, V2 = mid(L \ (V1 ∪ Vin),K2), where K2 is obtained by breaking the segment

[K] at its middle product.

– This process continues recursively, as illustrated in Figure 3. That is, we define Kℓ as

the partition of [K] obtained by breaking each segment of Kℓ−1 at its middle product

into two parts. Then, Vℓ is the residual subset of lists that contain the middle product

of at least one segment in Kℓ, i.e., Vℓ = mid(L \ ((∪ℓ−1
j=1Vj) ∪ Vin),Kℓ).

The decomposition above terminates as soon as we reach a level L, where KL consists of only

singletons of [1,K]. Once again, since the maximum length of any segment shrinks by a con-
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stant factor at each level, it follows that the depth of this decomposition is L = O(logK) =

O(log log(pn/p1)).

V1

V2

Products and 
Buckets!

Interval Lists!

V3

Vin

B1 BK
BdK+1

2 e

Figure 3: The decomposition of L into V1, . . . ,VL,Vin.

3.3.2 Proving the existence of Uℓ and Uin

We now argue that there is an efficient way of meeting the fundamental inequality (7) that

relates between the restricted and original models for each class of the partition. Formally, for

every ℓ ∈ [L], we devise a polynomial-time procedure to compute a feasible inventory vector Uℓ

satisfying

E
󰁫
R−

Vℓ
(Uℓ)

󰁬
≥ 1

8
· E

󰁫
R+

Vℓ
(U∗)

󰁬
,

where U∗ is the optimal inventory vector for the original model. We also construct Uin such

that

E
󰁫
R−

Vin
(Uin)

󰁬
= Ω(1) · E

󰁫
R+

Vin
(U∗)

󰁬
.

Following the discussion in Section 3.1, we obtain an O(log log(pn/p1)) approximation for the

original model by picking the best vector out of U1, . . . , UL, Uin.

Handling V1, ... ,VL. The important observation is that the intervals in each class Vℓ satisfy

the sufficient properties mentioned at the end of Section 3.2.1. For this reason, the exact same

algorithm, now applied to a different collection of segments, enables us to compute a feasible

inventory vector Uℓ such that

E
󰁫
R−

Vℓ
(Uℓ)

󰁬
≥ 1

8
· E

󰁫
R+

Vℓ
(U∗)

󰁬
.

Handling Vin. Let us focus attention on a single bucket B, corresponding to a power-of-2

price range, say [∆, 2∆), where the set of intervals contained in this bucket are denoted by

VB
in . The important observation is that, in every realization, the number of units consumed in

the VB
in -restricted model is greater or equal to the number of units consumed in the original

model by these intervals. Indeed, this claim can be proven inductively over the arrival rank of

customers and by arguing that, at any point in time during the arrival sequence, the number of
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units left within each interval in VB
in in the former model is greater or equal to the corresponding

number of units in the latter model. Therefore, since all products in bucket B have prices in

[∆, 2∆), it follows that R−
VB
in

(U∗) ≥st R+
VB
in

(U∗) /2, and consequently,

E
󰁫
R−

VB
in

(U∗)
󰁬
≥ 1

2
· E

󰁫
R+

VB
in

(U∗)
󰁬
. (9)

Now, based on our constant-factor approximation for uniform prices (see Section 2), assum-

ing that the capacity used by the optimal vector U∗ over the bucket B is known in advance, we

can efficiently compute an inventory vector UB
in satisfying

E
󰁫
R−

VB
in

󰀃
UB
in

󰀄󰁬
= Ω(1) · E

󰁫
R−

VB
in

(U∗)
󰁬
= Ω(1) · E

󰁫
R+

VB
in

(U∗)
󰁬
,

where the last equation follows from (9). By gluing the inventory vectors UB
in over all buckets

B1, . . . , BK , we obtain an expected revenue of Ω(1) · E[R+
Vin

(U∗)]. Finally, since the capacities

used by U∗ are not known a-priori, the assumption above can be bypassed by means of dynamic

programming, similar to that of Section 3.2.3.

4 Nested Choice Model and General Demand Distribution

In this section, we provide a constant-factor approximation for the nested choice model under a

general (non-IFR) demand distribution. This result is obtained through a sequence of structural

transformations, allowing us to formulate the resulting instance as a (monotone) submodular

maximization problem subject to a cardinality constraint. By leveraging the existing machinery

in this context, we derive the following result.

Theorem 4.1. Under the nested choice model, the dynamic assortment planning problem can

be approximated within factor 1− 1/e in polynomial time.

4.1 Technical overview

For ease of exposition, we focus here on presenting the overall idea, and defer most of the

technicalities to Sections 4.2 and 4.3.

Selection step: elimination of suboptimal products. The first step consists in simpli-

fying the problem by identifying a well-structured collection of products, while preserving the

optimal expected revenue. We begin by defining the quantity ri, for each product i ∈ [n], that

denotes the expected revenue generated by a single customer arrival assuming that i is the most

preferred product available. Namely, ri = pi ·
󰁓

ℓ∈Li
θℓ, where Li ⊆ L is the subset of lists

containing product i. Next, we define the i-maximal product as the highest-index product that

maximizes the quantity rj over j ∈ [i, n]. We show that, without any loss in optimality, we can

restrict our attention to assortments included in the collection of i-maximal products, over all

i ∈ [n]. This subset of products is designated by V, while V(i) denotes the i-maximal product.

Lemma 4.2. There exists an optimal inventory vector that stocks only products of V.
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The proof of this claim is given in Section 4.2. The main observation is that there is no point

in stocking any of the products strictly between two successive products in V. Specifically, we

prove that the expected revenue can only increase by shifting any unit of product i ∈ [n] \ V to

the i-maximal product V(i). As a result, while preserving the optimal revenue, all products in

[n]\V are eliminated. Thus, we assume from this point on that ri is non-increasing over i ∈ [n].

Greedy step: set decision formulation. We now argue that the problem can equivalently

be recast as the maximization of a set function subject to a capacity constraint. This modified

problem is referred to as the ‘set decision’ formulation hereafter. Specifically, each product is

represented by C distinct copies of identical price, that are consecutive in the preference order.

(Recall that C represents the maximal number of units due to the capacity constraint.) Thus,

there are exactly N = n · C distinct products. Each preference list is now represented by the

interval of [N ] containing all copies of its initial products. Finally, a decision is made relative to

each product, whether to stock it or not in the assortment. In other words, the inventory level

decisions are replaced by a set decision over products. In this new formulation, our objective

is to maximize the expected revenue over all subsets of products that satisfy the cardinality

constraint.

Establishing submodularity. The expected revenue generated by a subset S ⊆ [N ] is de-

noted by f(S). We now state our main technical result, which is established in Section 4.3.

Lemma 4.3. The set function f : 2N → R+ is submodular and monotone.

Interestingly, submodularity does not hold for arbitrary instances of the nested choice model,

i.e., ones that were not processed by our elimination procedure, as demonstrated in Lemma A.2.

In fact, the revenue function is also not concave, as we argue in Lemma A.3. To avoid deviating

from the overall discussion, the proofs of these claims are given in Appendix A.3.

Submodular maximization problems have extensively been studied in combinatorial opti-

mization, and in particular, when the input function is also monotone, this problem can be

approximated within factor 1 − 1/e under a cardinality constraint Nemhauser et al. (1978).

Moreover, the algorithm thereof is based on a greedy procedure that admits very efficient im-

plementations when the function has an evaluation oracle. In our particular case, Goyal et

al. Goyal et al. (2016) showed that the revenue function can be evaluated by dynamic program-

ming in time O(M̄ · N · k), where M̄ is the maximal number of arrivals. By leveraging this

algorithm, Theorem 4.1 immediately follows.

4.2 Proof of Lemma 4.2

For any inventory vector U and integer m, we define the random variable αm(U) to denote

the most preferred product available (i.e., with positive inventory level) for the m-th arriving

customer, when initially stocking the vector U . If there are fewer than m arrivals, or if no units

are left, αm(U) = ∞, denoting a dummy product with price p∞ = 0. With this definition,

the expected revenue function can be rewritten by conditioning on the most preferred product
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available upon each arrival, yielding

E [R(U)] = E

󰀥 ∞󰁛

m=1

rαm(U)

󰀦
. (10)

The desired result is proven by mapping any inventory vector U = (u1, . . . , un) to a vector

Ũ = (ũ1, . . . , ũn) that only stocks products in V, has the same number of units, and generates

at least as much expected revenue as U . The vector Ũ is constructed as follows: each unit of

product i in U is represented in Ũ by a distinct unit of the maximal product V(i). That is,

ũi =

󰀻
󰀿

󰀽

󰁓
k:V(k)=i uk if i = V(i),

0 otherwise.

Clearly, the number of units in Ũ is identical to that of U . This construction is illustrated in

Figure 5.

1! 2! 3! 6!4! 5! 7! 8! 9!

V(1) V(6)V(3)

Products!

Inventory vectors!

Shifting units! X! Products! Inventory unit!

Ũ

U v1

ṽ1 ṽ3 ṽ4

ṽ5

ṽ6

v6
v5

v4

v3

Figure 4: Construction of Ũ by shifting each unit in U towards its corresponding maximal
product.

Claim 4.4. For m ≥ 1, every realization of the consumption process satisfies αm(Ũ) ≤
V(αm(U)).

Proof. To prove this inequality, we interpret each inventory vector as a non-decreasing sequence

of products, that enumerates (with repetition) the units in the preference order. In other words,

if X units are stocked of a given product, then this product is repeated X times consecutively

in the sequence. Let (vj)j≤C and (ṽj)j≤C denote the sequences associated with the inventory

vectors U and Ũ , respectively. Without loss of generality, we assume that these vectors stock

precisely C units.

Our construction of Ũ implies that vk ≤ ṽk = V(vk). Now assume that, just before the
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m-th arrival, the most preferred product remaining when stocking initially the vector Ũ cor-

responds to the j-th unit of the sequence, meaning that αm(Ũ) = ṽj , and that all units in

{v1, . . . , vj−1} have been consumed by previously arriving customers. Each of these units can

be mapped to the arrival rank of the customer who purchases it, entailing the subsequence of

arrivals (m1, . . . ,mj−1). Clearly, each product vk belongs to the preference list Lmk
. The key

observation is that, since vk ≤ ṽk, the preference list Lmk
also contains product vk for each

k ∈ [j − 1]. Consequently, when initially stocking the vector U , after the first m− 1 arrivals of

customers, whereby the preference lists (Lm1 , . . . , Lmj−1) occurred precisely in this order, the

units {v1, . . . vj−1} are consumed as well. Indeed, each unit vk would necessarily be consumed

by the list Lmk
, if it were not purchased by a previously arriving customer. We thus obtain

that vj ≤ αm(U), meaning that αm(Ũ) = V(vj) ≤ V(αm(U)).

To conclude Lemma 4.2, recall that ri is the expected revenue generated by a single arrival,

conditional on product i being the most preferred one available. Therefore, the expected revenue

generated by the m-th arrival satisfies

rαm(U) ≤ rV(αm(U)) ≤ rV(αm(Ũ)) = rαm(Ũ) ,

where the first inequality follows from the definition of maximal products, and the second

inequality is due to Claim 4.4 and the monotonicity of (ri)i∈V . Therefore, based on the revenue

decomposition given by equation (10), we conclude that

E [R(U)] =

∞󰁛

m=1

E
󰀅
rαm(U)

󰀆
≤

∞󰁛

m=1

E
󰁫
rαm(Ũ)

󰁬
= E

󰁫
R(Ũ)

󰁬
.

4.3 Proof of Lemma 4.3

Notation. Following the previous section, for every subset S ⊆ [N ] we define αm(S) as the

most preferred product available at the m-th arrival, when initially stocking the set S. If all

products have stocked out, or if the number of arrivals is smaller than m, the value of αm(S) is

set to∞, which corresponds to a dummy product with price 0. Using these random variables, the

expected revenue can be decomposed similar to equation (10), namely f(S) = E[
󰁓∞

m=1 rαm(S)].

Monotonicity. Consider a subset S ⊆ [N ] and some product i ∈ [N ]\S. For each realization

of the consumption process, it is easy to verify that, just before each arrival, the most preferred

product available under the initial set decision S, is larger or equal to the one under the initial

set S ∪ {i}. That is, αm(S) ≥ αm(S ∪ {i}) for any realization. Thus, the revenue function f is

indeed monotone since

f(S) =

∞󰁛

m=1

E
󰀅
rαm(S)

󰀆
≤

∞󰁛

m=1

E
󰀅
rαm(S∪{i})

󰀆
= f(S ∪ {i}) ,

where the above inequality follows from the monotonicity of (ri)i∈[N ].
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Submodularity. To prove that f is also submodular, it is sufficient to show that for any

subset S and distinct products i, j ∈ [n] \ S, the expected revenue function satisfies

f(S ∪ {i, j})− f(S ∪ {j}) ≤ f(S ∪ {i})− f(S) .

One important observation is that we can assume without loss of generality that j < i; otherwise,

by permuting i and j we obtain an equivalent inequality. For ease of exposition, we introduce

the subset S1 = S, S2 = S ∪ {i}, S′
1 = S ∪ {j}, and S′

2 = S ∪ {i, j}. With this notation, the

desired inequality is

f(S′
2)− f(S′

1) ≤ f(S2)− f(S1) . (11)

Note that, if inequality (11) is satisfied for any deterministic number of arrivals, it generalizes

to the case where M is stochastic. Thus, we restrict our attention to a deterministic number of

arrivals M . In this case, the expected revenue increment can be written as

f(S′
2)− f(S′

1) =

M󰁛

m=1

E
󰁫
rαm(S′

2)

󰁬
−

M󰁛

m=1

E
󰁫
rαm(S′

1)

󰁬
. (12)

We define τ as the stopping time corresponding to the first arrival where the minimal product

available is i, when initially stocking S2. Namely, we have ατ (S2) = i, and ατ−1(S2) < i or

τ = 1. (In case τ is not defined, the stopping time is set to ∞.) Note that the stopping time

τ corresponds to the first arriving customer faced by distinct minimal products, when initially

stocking S1 and S2. Hence, the revenue difference between these two sets is a function of the

arrivals after τ . Formally, since αm(S2) = αm(S1) with probability 1 for all arrivals m < τ , we

infer from an analog of equality (12) for S1 and S2 that

f(S2)− f(S1) =

τ−1󰁛

m=1

E
󰀅
rαm(S2) − rαm(S1)

󰀆
+

M󰁛

m=τ

E
󰀅
rαm(S2) − rαm(S1)

󰀆

=

M󰁛

m=τ

E
󰀅
rαm(S2) − rαm(S1)

󰀆

=

M−τ󰁛

k=0

E
󰀅
rατ+k(S2) − rατ+k(S1)

󰀆
. (13)

This simplification is made intuitive by Figure 5. Similarly, by defining τ ′ as the minimal arrival

m such that αm(S′
2) = i, we obtain:

f(S′
2)− f(S′

1) =

M−τ ′󰁛

k=0

E
󰁫
rατ ′+k(S

′
2)
− rατ ′+k(S

′
1)

󰁬
. (14)

Now observe that, by an inductive argument, it is not difficult to prove that, for any realiza-

tion of the consumption process, τ ≤ τ ′, meaning that M − τ ≥ M − τ ′. As a result, combining
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Figure 5: Equivalence between the residual sets at the stopping times τ and τ ′.

inequalities (13) and (14), we have

(f(S2)− f(S1))− (f(S′
2)− f(S′

1)) =

M−τ ′󰁛

k=0

E
󰁫
rατ+k(S2) − rατ ′+k(S

′
2)

󰁬
−

M−τ ′󰁛

k=0

E
󰁫
rατ+k(S1) − rατ ′+k(S

′
1)

󰁬

+

M−τ󰁛

k=M−τ ′+1

E
󰀅
rατ+k(S2) − rατ+k(S1)

󰀆
. (15)

Now, the important observation is that the consumption process starting from the τ -th

arrival only depends on the residual set of products available at that time. Hence, we can

exploit the equivalence between the residual sets of products, reflected in Figure 5, to infer an

equivalence between revenues:

• Equivalence ατ ′+k(S
′
2) ∼ ατ+k(S2). When initially stocking S′

2, the residual set of prod-

ucts at the τ ′-th arrival is the set ({i} ∪ S) ∩ [i, N ], which is equal to the residual set

at the τ -th arrival when initially stocking S2. Thus, we infer that the random variables

ατ ′+k(S
′
2) and ατ+k(S2) are identically distributed for all k ≤ M − τ ′.

• Equivalence ατ ′+k(S
′
1) ∼ ατ+k(S1). When initially stocking S′

2, the residual set of prod-

ucts at the τ ′-th arrival is the set S ∩ [i, N ], which is exactly the residual set at the τ -th

arrival when initially stocking S2. Thus, we infer that the random variables ατ ′+k(S
′
1)

and ατ+k(S1) are identically distributed for all k ≤ M − τ ′.

As a result, equation (15) simplifies as follows:

(f(S2)− f(S1))− (f(S′
2)− f(S′

1)) =

M−τ󰁛

k=M−τ ′+1

E
󰀅
rατ+k(S2) − rατ+k(S1)

󰀆
. (16)

Since S1 ⊆ S2, it is easy to verify that αm(S2) ≤ αm(S1) with probability 1, for any arrival m.
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Therefore, rαm(S2) ≥ rαm(S1), as our selection step guarantees that r1 ≥ · · · ≥ rn. Combining

this observation with inequality (16), we infer the desired inequality (11), proving that f is

indeed submodular.

5 Computational Experiments

In this section, we demonstrate the practical merits of our algorithms against existing heuristics.

In order to run such comparisons on instances of realistic scale, we take as a benchmark several

efficient heuristics proposed in previous related work. Specifically, our algorithms are compared

against the following: (i) a discrete-greedy algorithm; (ii) a local search heuristic; and (iii) a

gradient-descent algorithm on a continuous extension of the expected revenue function. The lat-

ter two heuristics are directly inspired by the work of Mahajan and van Ryzin (2001) and Goyal

et al. (2016). For the nested choice model, we have also implemented the enumeration-based

algorithm of Goyal et al. (2016).

5.1 Heuristics and their implementation

In what follows, we summarize the different algorithms implemented for our computational

experiments.

Discrete-greedy. The greedy algorithm starts with zero inventory levels for all products, and

iteratively augments the current vector by a single unit of the product that incurs the largest

marginal increase in the expected revenue, until reaching C units. As explained toward the

end of this section, the expected revenue is evaluated by averaging random realizations of the

revenue function, which are sampled by simulating the consumption process and choice behavior

of arriving customers.

Local search. Starting from an initial inventory vector, the local search algorithm iteratively

improves the expected revenue, by greedily transferring a single inventory unit from a one

product to another. Formally, letting U (k) denote the inventory vector obtained at the beginning

of step k, a swap is represented by an ordered pair of products (i, j) for which the current

inventory level u
(k)
i of product i is strictly positive. The inventory vector U

(k)
i→j resulting from

this swap is derived from U (k) through decreasing u
(k)
i by one unit and augmenting u

(k)
j by one

unit. With this definition, we either proceed to step k + 1 with the inventory vector U
(k)
i→j that

maximizes E[R(U
(k)
i→j)] over all swaps (i, j), or terminate the algorithm when none of these swaps

improves the expected revenue by at least 0.5%. Once again, the expected revenue function

is estimated through sampling, while the initial inventory vector U (1) is defined by stocking C

units of the best single-product assortment.

Gradient-descent approach. We consider an adaptation of the stochastic gradient-descent

algorithm of Mahajan and van Ryzin (2001). In contrast to their setting, here the revenue

function is defined only for integer-valued inventory vectors. Hence, similar to the approach

of Goyal et al. (2016), we develop a continuous relaxation of the revenue function, defined
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through the Lovász extension of a discrete function. Letting f : Zn → R denote the expected

revenue function, its Lovász extension f̂ : Rn → R is defined as

f̂(U) = f(⌊U⌋) +
n󰁛

i=1

󰀃
uπ(i) − uπ(i−1)

󰀄
·
󰀥
f

󰀣
⌊U⌋+

i󰁛

k=1

eπ(k)

󰀤
− f

󰀣
⌊U⌋+

i−1󰁛

k=1

eπ(k)

󰀤󰀦
,

where the permutation π sorts products by the increasing fractional part of their inventory,

namely, uπ(1) − ⌊uπ(1)⌋ ≤ · · · ≤ uπ(n) − ⌊uπ(n)⌋. The Lovász extension is piecewise linear, and

its gradient can be approximately computed through sampling.

Starting with the initial solution U (0) = 0, and letting U (k) denote the solution obtained at

the end of step k, each iteration consists of computing U (k+1) = max{0, U (k) + 󰂃k+1∇f(U (k))},
where 󰂃k+1 is the step size. When the latter vector does not lie in the feasible region {U ∈ Rn :

󰀂U󰀂1 ≤ C}, it is projected onto the boundary by linear rescaling. Through extensive trial and

error, we chose an adaptive step size of

󰂃k+1 = max

󰀫
C − 󰀂U (k)󰀂1

2
, 0.05 · C

󰀬
.

Intuitively, the step size is larger when the vector U (k) is farther from the boundary, while

still enforcing a minimal step size. The algorithm terminates when the objective value does

not improve by a factor greater than 0.5%, or after 2000 iterations. Finally, it remains to

round the resulting inventory vector to an integral one. Suppose that U (k+1) is the inventory

vector obtained following the gradient-descent algorithm; then ⌊U (k+1)⌋ is augmented greedily,

by stocking at each step a unit of the product with maximal marginal expected revenue, until

reaching C units.

Approximation scheme for the nested choice model. We also implemented the approx-

imation scheme developed by Goyal et al. Goyal et al. (2016) for the nested choice model. This

algorithm begins by partitioning products into two classes, frequent and rare, the latter de-

fined as the collection of products for which fewer than 󰂃2C units are purchased in expectation

when C units of that product are initially stocked. Next, all inventory vectors consisting of

O((1/󰂃) · log(1/󰂃)) frequent products and a single rare product are approximately enumerated.

However, even when we choose 󰂃 = 0.3, corresponding to a guaranteed approximation ratio

of only 0.15, this enumeration procedure is impractical and incurs exorbitant running times.

In fact, time limits that still enable running the required experiments in practice (within less

than an hour) resulted in only partial enumeration, even for the smallest instances considered.

Therefore, to improve the observed performance, the enumeration order over inventory vectors

is determined such that more expensive products are stocked with higher priority. After con-

sidering several different options, this heuristic was superior in balancing between performance

and speed.

Revenue evaluation. To approximately evaluate the expected revenue function in each of

the above-mentioned heuristics, we use a sample mean estimator over 100 realizations of the
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consumption process. The number of samples is uniform over all heuristics to provide “fair”

comparisons. In contrast, our approximation algorithms, both for the general model and for

intervals, make use of the newsvendor-based lower bound, that can be computed exactly and

very efficiently.

5.2 Instance generation

We fix the number of products at n = 20, while the capacity parameter C is varied in

{20, 40, 80, 150}. The prices of these products are generated randomly from a log-normal dis-

tribution with location µ = 0 and scale σ = 0.3. The parameters underlying the consumption

process are sampled randomly according to the following generative models.

Choice models. We run three series of experiments:

• General choice model: The number of preference lists (in the support of the distribution)

is given by |L|∈ {50, 160}. The preference lists Lj ∈ L are generated independently and

identically through the following random procedure. We first determine the set of products

in Lj through a sequence of Bernoulli trials with p = 0.35, i.e., each of the 20 products

is independently picked to appear in this list with probability 0.35. Next, for each list

Lj , the ranking order over product alternatives in Lj is sampled uniformly over all |Lj |!
permutations.

• Intervals choice model: Similarly, we vary the number of interval preference lists |L| in
{50, 200}. To create L, we sample uniformly at random over all subsets formed by |L|
distinct intervals (out of n(n+ 1)/2 intervals overall).

• Nested choice model: Here, we pick |L|= n, meaning that every nested list is included in

L.

In each of the above models, the probability distribution over L is sampled uniformly over the

unit simplex.

Number of customers M . We test several parametric distributions for the demand M .

Specifically, letting G ∼ N(30, 40) and P ∼ exp(0.02), we alternatively examine M =

min{[⌈G⌉|G ≥ 0], 100} and M = min{⌈P ⌉, 100}. For the nested choice model, we also test

a nonparametric non-IFR demand distribution, where the support of M is constructed by ran-

domly sampling 5 integers in the interval [1, 100] (without replacement), and the corresponding

probability measure is generated uniformly at random from the unit simplex.

5.3 Results

We implemented our algorithms, as well as the heuristics described in Section 5.1, using the

Julia programming language. The experiments described in this section were conducted on a

standard laptop with 2.7GHz Intel Core i5 processor and 8GB of RAM. In order to execute the

required experiments within several days, we imposed a time limit of 10 minutes (per-instance)

for all heuristics tested, noting that each of our algorithms terminates within a few seconds.
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Relative performance. For each instance tested, in practice one cannot simply compute the

optimal expected revenue through brute-force enumeration, as the latter involves considering all

combinations of feasible inventory vectors, number of customers, and their choice preferences.

Similarly, we found integer programming approaches to be impractical; for example, using a

sample average approximation with 100 realizations of the consumption process, the running

time exceeds 30 minutes for the smallest instance tested. Therefore, rather than estimating the

exact optimality gaps, we compare the different algorithms on a relative basis. Specifically, for

each instance, the benchmark is set as the expected revenue of the most profitable inventory

vector obtained through all algorithms tested. Then, the relative performance of each algorithm

(reported subsequently) is defined as the ratio between its expected revenue and the benchmark.

For example, if our algorithm attains an expected revenue of 1, while all tested heuristics

generate an expected revenue of 0.9, the relative performance is 100% for our algorithm, and

90% for the other heuristics.

Performance analysis. The results of our experiments are summarized in Tables 1, 2, and 3,

where each entry is obtained by averaging over 30 random instances. Our algorithms dominate

the other heuristics revenue-wise in all configurations. Under a general generative model, the

discrete-greedy algorithm emerges as the most effective heuristic on average, but it still falls

behind our general approximation by 7% to 36%. There is a single configuration where the

gradient-descent algorithm outperforms the other heuristics, specifically when C = 80. In-

teresting, in the latter regime, the inventory capacity approximately matches the demand in

expectation. Since this observation is consistent across all choice models and demand distri-

butions, our experiments seem to indicate that the gradient-descent is particularly effective in

such a regime (while still falling short of the algorithms we propose).

Table 1: Results under the general choice model (|L|=160)

parameters average relative performance (%) average running time (sec.)

M C GA DG GD LS GA DG GD LS

Gaussian

20 100 87.6 66.5 77.4 6.6 3.1 55.9 7.9
40 100 70.6 77.2 62.1 7.1 6.4 216.2 16.9
80 100 64.1 78.9 54.4 7.3 13 374.8 21.4
150 100 66.8 62.2 50.6 8.1 24.3 384.2 19.7

Poisson

20 99.9 93.1 66.4 91.4 6.9 3.7 36.6 10.7
40 100 77.3 80.7 65.6 6.9 7.4 238.8 17.1
80 100 72.6 86.5 57.6 7.6 15.2 435.3 27.5
150 100 71 67.8 53.4 8.3 28.4 442 20.4

Here, GA designates our general approximation algorithm, DG is the discrete-greedy algorithm, GD is
the gradient-descent approach, and LS corresponds to the local search heuristic.

Surprisingly, even in the more specialized settings, our general-purpose approximation still

enjoys strong practical performance. Specifically, its performance is comparable to the decom-

position algorithm of Section 3 in the intervals case. Under the nested model, the selective-

greedy algorithm developed in Section 4 improves revenue by 1% on average against our general

approximation. It is worth mentioning that, as one would expect, the discrete-greedy and

32



selective-greedy algorithms have identical performance under the nested model. However, our

selection step restricts the incremental actions examined upon each iteration, as opposed to

considering all possible stocking decisions at each iteration, and therefore reduces the running

time significantly.

Table 2: Results under the intervals choice model (|L|=160)

parameters average relative performance (%) average running time (sec.)

M C GA IN DG GD LS GA IN DG GD LS

Gaussian

20 99.2 99.4 89.6 52.7 67.4 5.6 6.8 2.0 33.7 5.3
40 99.2 99.0 62.1 60.6 25.6 6.0 10.7 4.0 136.2 8.8
80 97.5 98.4 49.1 76.3 16.6 6.2 11.7 8.1 229.5 19.6
150 99.5 97.7 48.3 27.6 15.7 6.7 7.1 15.1 244.8 13.5

Poisson

20 99.7 99.6 97.3 52.7 93.3 8.1 10.8 3.6 23.3 9.3
40 99.4 99.2 76.8 63.4 37.2 8.5 9.0 7.3 232.7 16.6
80 99.0 99.1 57.2 79.7 17.7 9.0 10.8 14.5 399.4 15
150 98.4 99.3 57.3 37.1 18 9.9 10.4 27.2 430.1 51.9

Here, GA designates our general approximation algorithm, IN is our approximation for the intervals
choice model, DG is the discrete-greedy algorithm, GD is the gradient-descent approach, and LS
corresponds to the local search heuristic.

On the computational front, our algorithms tend to outperform the other heuristics while the

gradient-descent algorithm is the slowest one. In contrast to other algorithms, the running time

of the general approximation grows sub-linearly in the capacity value; hence, when C = 150, its

running time is better by a factor of 3 to 40 against other heuristics. Under the nested choice

model, the selective-greedy algorithm is an order of magnitude faster than any other algorithm

for small instances (C ≤ 80). In this setting, the approximation scheme of Goyal et al. (2016)

is particularly inefficient, and reaches the time limit of 10 minutes prior to completing its full

enumeration procedure. As a result, the revenue performance is not near-optimal, particularly

for large instances (C = 150), where the average optimality gap can be as large as 18%.

6 Concluding Remarks

Robustness under a mixture of nested models. Given the very structured nature of

nested preference lists, it is interesting to investigate whether our algorithms can be utilized in

the case of a model misspecification, specifically, under a mixture of nested instances. Here,

each segment of the mixture is uniquely described by its left endpoint product; this setting is

a special case of the intervals choice model. It is not difficult to verify that, when the mixture

is formed by K customer segments, we can derive an O(logK)-approximation by adapting the

recursive decomposition of Section 3.2. Specifically, at every step of the recursion, each segment

of the partition is broken at the median left endpoint product of all remaining lists contained in

that segment. As a result, the recursion depth is O(logK), thus leading to the above-mentioned

approximation ratio.

Newsvendor-like models. The problem formulation considered in this paper incorporates a

hard capacity constraint on the number of units stocked. A natural direction for future research
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Table 3: Results under the nested choice model (|L|=20)

parameters average relative performance (%) average running time (sec.)

M C GA SG GLS DG GD LS GA SG GLS DG GD LS

Gaussian

20 96.4 99.8 93 99.8 78 99.7 0.8 <
0.1

600 0.1 1.4 0.3

40 99.5 99.8 89.2 99.8 92.9 83.9 0.9 <
0.1

600 0.3 2 0.9

80 99.9 99.7 91.6 99.7 99.3 69.9 0.9 0.3 600 1.3 3.8 0.9
150 100 100 85.2 100 96.5 69.7 1 0.9 600 3.9 5.7 12.2

Poisson

20 95.6 99.4 92.3 99.4 83.2 99.9 0.8 <
0.1

600 <
0.1

1.5 0.3

40 98.5 99.5 91.1 99.5 91.7 97.1 0.9 <
0.1

600 0.3 2.9 1

80 99.5 99.7 89.8 99.7 99.4 83.9 0.9 0.3 600 1.3 4 2.6
150 100 100 82 100 99.3 71.2 0.9 1 571 3.8 5 12.8

Non-IFR

20 97.1 99.2 92.1 99.2 79.8 99.5 0.8 <
0.1

600 <
0.1

1.5 0.3

40 95.9 99 91.3 99 89.3 95.6 0.8 <
0.1

600 0.3 2.5 1.1

80 99.9 98.9 89.8 98.9 97.7 84.4 0.9 0.2 600 1.2 4.8 1.7
150 100 100 86.4 100 96.7 72.3 0.9 1.2 561.9 3.7 5 18.6

Here, GA designates our general approximation algorithm, SG is our selective-greedy approximation for
the nested choice model, DG is the discrete-greedy algorithm, GD is the gradient-descent approach, LS
corresponds to the local search heuristic, and GLS is the enumeration-based algorithm of Goyal et al.
(2016).
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is to study newsvendor-like models, where there is no capacity limitation, and instead, the

salvage value of inventory has decreasing marginal gains. It would be interesting to investigate

whether the technical ideas we developed can be leveraged to this setting.

Refined approximability results. Following the present work, one open question is that

of determining whether the intervals model can be efficiently approximated within a constant

factor. Although we were able to obtain a performance guarantee of O(log log(pmax/pmin)),

even the simpler problem of evaluating the expected revenue of a given inventory vector in this

model is still wide open. An interesting direction to consider would be to propose structural

transformations, in the spirit of Section 4, in order to reveal certain submodularity properties.

It is worth mentioning that, even with identical prices, the original revenue function is not

submodular, as we demonstrate in Lemma A.4 (see Appendix A.3).

A Additional Proofs

A.1 Proof of Lemma 2.6

In what follows, we prove a sufficient condition for subadditivity, stating that with respect to

any inventory vector, the deletion of units can only increase the consumption probability of any

remaining unit. Formally, any inventory vector U is viewed as a collection of units, each of which

is a separate copy of a given product; within units of the same product, a fixed (arbitrary) order

is set, according to which they are consumed by customers. We denote by U−i the inventory

vector obtained from U by deleting the first unit of product i, and use [Ev|U ] to designate the

event where unit v is purchased during the consumption process with the initial inventory vector

U .

Lemma A.1. For any inventory vector U , any product i ∈ [n] with Ui ≥ 1, and any unit

v ∈ U−i,

Pr
󰀅
Ev

󰀏󰀏U−i
󰀆
≥ Pr [Ev|U ] .

Proof. Given an initial inventory vector U , we designate by U(1), . . . , U(M) the random se-

quence of residual inventory levels facing each customer arrival, i.e., U(m) is the inventory

vector facing the m-th arriving customer. To prove the desired claim, it suffices to show that

U(m)(w) ≥ U−i
(m)(w) for any realization w of the consumption process. Here, any such realization

corresponds to the specific outcomes of the number of arriving customers M and their choices

of preference lists.

We now focus on a fixed realization w, and prove the latter claim by induction on the arrival

rank m. For m = 1, we have by definition U(1)(w) = U > U−i = U−i
(1)(w). For the general case,

by the induction hypothesis, we have U(m−1)(w) ≥ U−i
(m−1)(w). Now let k be the first product on

the preference list of customer m− 1 (picked according to w) that is stocked by U(m−1)(w); we

define k = ∞ when not such product exists. As any product stocked by U−i
(m−1)(w) is necessarily

stocked by U(m−1)(w), there are three cases:

1. k = ∞: Here, customer m−1 does not purchase any unit with respect to both U(m−1)(w)

and U−i
(m−1)(w), meaning that U(m)(w) = U(m−1)(w) ≥ U−i

(m−1)(w) = U−i
(m)(w).
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2. k < ∞ and product k is stocked by both U(m−1)(w) and U−i
(m−1)(w): In this case, customer

m − 1 purchases a single unit of product k in U(m−1)(w) and U−i
(m−1)(w), implying that

U(m)(w) ≥ U−i
(m)(w).

3. k < ∞ and product k is stocked by U(m−1)(w) but not by U
−i
(m−1)(w): Even though customer

m− 1 purchases a single unit of product k in U(m−1)(w), the remaining number of units

stocked of this product is still greater or equal to the same quantity with respect to the

residual vector after purchasing from U−i
(m−1)(w). For the latter, customer m−1 purchases

a single unit of a product different than k or does not purchase at all; in either case, we

have U(m)(w) ≥ U−i
(m)(w).

A.2 Proof of Lemma 2.4

The claim follows by observing that

E [X] = E
󰀅
min {X,C}+ [X − C]+

󰀆

= E
󰀅
X̄
󰀆
+ Pr [X ≥ C] · E [X − C|X ≥ C]

≤ E
󰀅
X̄
󰀆
+ δ · E [X] .

The last inequality holds since X is IFR and since

δC ≥ E
󰀅
X̄
󰀆
= E [min{X,C}] ≥ C · Pr [X ≥ C] .

A.3 Counter-Examples

Lemma A.2. Under the nested choice model and a single arrival, the set function f : {0, 1}N →
R+ is neither monotone nor submodular .

Proof. Consider the following instance: there are three products denoted by {1, 2, 3} with

respective prices p1 = 1, p2 = 2 and p3 = 3, while the total capacity is C = 1. We model a

single customer arrival, where the list (1, 2, 3) occurs with probability 1. With a slight abuse of

notation, where sets are used instead of binary sequences, it is easy to verify that for S1 = {3}
and S2 = {1, 3}, we have f(S1) > f(S2), and f(S1∪{2})−f(S1) = −1 while f(S2∪{2})−f(S2) =

0.

Lemma A.3. Under the nested choice model and IFR demand distributions, the expected rev-

enue function is not concave.

Proof. Consider the following instance: there are two products denoted by {1, 2}, with prices

p1 = 0 and p2 = 1. There are two arriving customers, each of which draws the preference list

(1, 2) with probability 1/2 and the empty list with probability 1/2. We consider the inventory

vectors (2, 0), (0, 2) and (1, 1). We observe that E [R(2, 0)] = 0, E [R(0, 2)] = 1 and E [R(1, 1)] =

1/4. As a result, we obtain that

1

2
· E [R(2, 0)] +

1

2
· E [R(0, 2)] > E [R(1, 1)] = E

󰀗
R

󰀕
1

2
· (2, 0) + 1

2
· (0, 2)

󰀖󰀘
.
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Lemma A.4. Under the interval choice model, the revenue function is not submodular, even

with deterministic arrivals and uniform prices.

Proof. To construct a counterexample, we consider the collection of products {1, 2, 3} such

that p1 = p2 = p3 = 1, and define the consumption process where there are exactly two arrivals.

Each of these customers samples a preference list according to the following distribution: with

probability 1− 󰂃, the customer chooses the list (2), and with probability 󰂃 she chooses the list

(1, 2, 3), where 󰂃 < 1/2.

For this instance, focusing on the sets of products S1 = {3} and S2 = {2, 3}, we have

E[R(S1 ∪ {1})] − E[R(S1)] = 󰂃2 whereas E[R(S2 ∪ {1})] − E[R(S2)] = 󰂃 · (1 − 󰂃). Note that

󰂃 · (1− 󰂃) > 󰂃2 since 󰂃 < 1/2, meaning that

E [R(S2 ∪ {1})]− E [R(S2)] > E [R(S1 ∪ {1})]− E [R(S1)] .
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