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Abstract

Projection algorithms are well known for their simplicity and flexibility in solving feasibility
problems. They are particularly important in practice due to minimal requirements for software
implementation and maintenance. In this work, we study linear convergence of several projection
algorithms for systems of finitely many closed sets. The results complement contemporary
research on the same topic.
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1 Introduction

In this paper, X is a Euclidean space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Throughout,
we set I := {1, . . . , m} and assume that {Ci}i∈I is a system of closed (possibly nonconvex) subsets
of X. The notation used in the paper is fairly standard and follows [3]. The nonnegative integers
are N, the real numbers are R, while R+ := {x ∈ R

∣∣ x ≥ 0} and R++ := {x ∈ R
∣∣ x > 0}. If w ∈ X

and ρ ∈ R+, then IB(w; ρ) := {x ∈ X
∣∣ ‖x − w‖ ≤ ρ} is the closed ball centered at w with radius ρ.

Given a subset C of X, the affine hull of C is denoted by aff C and the orthogonal complement of
C is C⊥ := {x ∈ X

∣∣ ∀c ∈ C : 〈c, x〉 = 0}. The notation T : X ⇒ X means that T is a set-valued
operator from X to X and Fix T := {x ∈ X

∣∣ x ∈ T x} denotes the set of fixed points of T . As
usual, Id represents the identity operator.

The paper is concerned with cyclic algorithms for solving the feasibility problem

find a point x ∈
⋂

i∈I

Ci. (1)

This problem has long been known for its importance in many applications. To describe cyclic
algorithms for (1), we first associate each set Ci with an operator Ti : X ⇒ X and adopt the
following convention

∀n ∈ N, ∀i ∈ I : Cmn+i := Ci and Tmn+i := Ti. (2)
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Given a starting point x0 ∈ X, the cyclic algorithm with respect to the ordered tuple (Ti)i∈I

generates sequences (xn)n∈N by

∀n ∈ N : xn+1 ∈ Tn+1xn. (3)

Each such sequence is called a cyclic sequence generated by (Ti)i∈I . When m = 1, we drop the
subscripts and write C := C1 and T := T1. The recurrence (3) then reads as

∀n ∈ N : xn+1 ∈ T xn, (4)

and we say that the sequence (xn)n∈N is generated by T . The corresponding operators include, but
not limited to, projectors and their variants. Recall that for a set C, the distance function to C is
defined by

dC : X → R : x 7→ inf
c∈C

‖x − c‖, (5)

and the projector onto C is defined by

PC : X ⇒ C : x 7→ argmin
c∈C

‖x − c‖ = {c ∈ C
∣∣ ‖x − c‖ = dC(x)}. (6)

In general, one expects the cyclic sequence (xn)n∈N or other acquired sequences converge to a
solution of (1). In such case, we are interested in R-linear convergence of those sequences. Recall
that a sequence (xn)n∈N is said to converge R-linearly to a point x with rate ρ ∈ [0, 1[ if there exists
a constant σ ∈ R+ such that

∀n ∈ N : ‖xn − x‖ ≤ σρn. (7)

Among the main contributions of the paper, under certain regularity assumptions on sets and
system of sets, we show that:

(R1) The cyclic relaxed projections with at most one reflection, which includes the reflection-
projection algorithm [9], converge R-linearly locally (see Theorem 5.7 and Remark 5.13);

(R2) A refined R-linear rate is obtained for cyclic over-relaxed projections (see Theorem 5.8 and
Corollary 5.10);

(R3) The cyclic semi-intrepid projections for injectable sets converge locally with R-linear rate (see
Theorem 5.19);

Moreover, the linear convergence is global in the presence of convexity (see Corollaries 5.12 and
5.20). To the best of our knowledge, these results are new and have not been observed in the
literature. In addition, we also present other new results involving Douglas–Rachford (DR) operators
[18, 28]; see Theorems 5.21 and 5.25. Our work complements other studies on projection algorithms
[4, 5, 6, 12, 13, 19, 23, 27, 32, 33].

The remainder of the paper is organized as follows. Section 2 contains basic concepts needed
for our analysis. Section 3 then provides key components for R-linear convergence. In Section 4, we
prove R-linear convergence for general cyclic algorithms. Finally, Section 5 presents applications to
various cyclic algorithms including the cyclic relaxed projections, cyclic semi-intrepid projections,
and cyclic generalized DR algorithm.
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2 Preliminaries

Given a subset C of X and x ∈ C, the Fréchet normal cone to C at x [30, Definition 1.1(i)] is
defined by

N̂C(x) :=

{
u ∈ X

∣∣∣∣ lim sup
y→x, y∈Cr{x}

〈u, y − x〉
‖y − x‖ ≤ 0

}
, (8)

the proximal normal cone to C at x (see [30, Section 2.5.2, D] and [34, Example 6.16]) is given by

Nprox
C (x) := {λ(z − x)

∣∣ z ∈ P −1
C (x), λ ∈ R+}, (9)

and the limiting normal cone to C at x [30, Definition 1.1(ii)] can be given by ([30, Theorem 1.6])

NC(x) := {u ∈ X
∣∣ ∃xn → x, un → u with xn ∈ C, un ∈ N̂C(xn)}

= {u ∈ X
∣∣ ∃xn → x, un → u with xn ∈ C, un ∈ Nprox

C (xn)}.

(10a)

(10b)

As seen below, normal cones are used to describe superregularity for sets and strong regularity for
systems of sets. We recall the superregularity concept, which was first introduced in [27] and later
refined in [10, 11, 23, 32]. Superregularity holds for a major class of sets including convex sets and
sets with “smooth" boundary. This property plays an important role in analyzing linear convergence
of projection methods, see, e.g., [10, 11, 23, 27, 32, 33].

Definition 2.1 (superregularity of sets). Let C be a nonempty subset of X, w ∈ X, ε ∈ R+,
and δ ∈ R++. We say that C is (ε, δ)-regular at w if

x, y ∈ C ∩ IB(w; δ),

u ∈ Nprox
C (x)

}
⇒ 〈u, x − y〉 ≥ −ε‖u‖ · ‖x − y‖, (11)

and (ε, ∞)-regular at w if it is (ε, δ)-regular for all δ ∈ R++. The set C is said to be superregular

at w if for all ε ∈ R++, there exists δ ∈ R++ such that C is (ε, δ)-regular at w. The system {Ci}i∈I

is said to be superregular at w if Ci is superregular at w for every i ∈ I.

Next, we recall two regularity concepts for systems of sets: linear regularity and strong regularity.

Definition 2.2 (linear regularity of set systems). Let κ ∈ R++. The system {Ci}∈I is said to
be κ-linearly regular on a subset U of X if

∀x ∈ U : dC(x) ≤ κ max
i∈I

dCi(x), where C :=
⋂

i∈I

Ci. (12)

The constant κ is called a linear regularity modulus of {Ci}i∈I on U . We say that {Ci}i∈I is linearly

regular around w ∈ X if there exist δ ∈ R++ and κ ∈ R++ such that {Ci}i∈I is κ-linearly regular
on IB(w; δ).

Linear regularity for set systems has a long history and was first defined in convex settings, see,
e.g., [1, Definition 5.6], [2, Definition 3], and [12, Section 5.2] for a brief summary on this property.
Naturally, linear regularity was extended to system of closed sets, for instance, [23, Definition 3.5];
and was known as metric inequality in [25, Equation (15)], [31, Section 3], and [24, Section 5]; and
as subtransversality in [26, Definition 1].
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Definition 2.3 (strong regularity of set systems). The system {Ci}∈I is said to be strongly

regular at w ∈ ⋂
i∈I Ci if

∑

i∈I

ui = 0 and ui ∈ NCi(w) ⇒ ∀i ∈ I : ui = 0. (13)

In the case I = {1, 2}, condition (13) can be rewritten as

NC1(w) ∩ (−NC2(w)) = {0}. (14)

Strong regularity of systems is also known as normal qualification condition in [30, Definition 3.2],
as CQ condition in [10, Definition 6.6], and as transversality in [26, Definition 2]. To clear the
confusion it may cause, we will show that strong regularity in Definition 2.3 is equivalent to the ones
in [25, Definition 1(vi)] and in [23, Definition 3.2]. In view of [25, Proposition 2, Proposition 10(ii),
and Corollary 2], it suffices to prove the following result.

Proposition 2.4 (characterization of strong regularity). The system {Ci}i∈I is strongly reg-

ular at w ∈ ⋂
i∈I Ci if and only if there exist ζ ∈ R++ and δ ∈ R++ such that

∀i ∈ I, ∀xi ∈ Ci ∩ IB(w; δ), ∀ui ∈ N̂Ci(xi) :
∥∥∥

∑

i∈I

ui

∥∥∥ ≥ ζ
∑

i∈I

‖ui‖. (15)

Proof. (⇐): Suppose that (15) holds and that
∑

i∈I ui = 0 with ui ∈ NCi(w). Then for every i ∈ I,

by (10), there exist sequences xi,n → w, ui,n → ui with xi,n ∈ Ci and ui,n ∈ N̂Ci(xi,n). Since
xi,n → w, we can assume without loss of generality that xi,n ∈ IB(w; δ) for all n ∈ N. It follows that
xi,n ∈ Ci ∩ IB(w; δ), and then by (15), we have

∥∥ ∑
i∈I ui,n

∥∥ ≥ ζ
∑

i∈I ‖ui,n‖ for all n ∈ N. Passing to
the limit as n → ∞, we get ‖ ∑

i∈I ui‖ ≥ ζ
∑

i∈I ‖ui‖. Combining with the assumption
∑

i∈I ui = 0,
we derive ui = 0 for every i ∈ I.

(⇒): Suppose to the contrary that (15) is not true. Then there exist sequences ζn → 0+,
δn → 0+, xi,n ∈ Ci ∩ IB(w; δn), and ui,n ∈ N̂Ci(xi,n) such that

∀n ∈ N :
∥∥∥

∑

i∈I

ui,n

∥∥∥ < ζn

∑

i∈I

‖ui,n‖ and
∑

i∈I

‖ui,n‖ = 1, (16)

where the latter is obtained by rescaling if necessary. Thus, for every i ∈ I, the sequence (ui,n)n∈N

is bounded, and by extracting subsequences, we can assume that ui,n → ui. Since xi,n → w and
xi,n ∈ Ci, it follows from (10) that ui ∈ NCi(w). Letting n → ∞ in (16), we obtain

∥∥ ∑
i∈I ui

∥∥ = 0
and

∑
i∈I ‖ui‖ = 1, which contradicts the strong regularity. Thus (15) holds. �

We end this section with connections between linear regularity and strong regularity.
Fact 2.5. ([25, Theorem 1]) If the system {Ci}i∈I is strongly regular at w ∈ ⋂

i∈I Ci, then it is

linearly regular around w.

Remark 2.6 (strong regularity of subsystems). By definition, if the system {Ci}i∈I is strongly
regular at w, then so is each of its subsystems. However, even when each proper subsystem {Ci}i∈J

with J $ I is strongly regular and the entire system {Ci}i∈I is linearly regular, it does not imply
that {Ci}i∈I is strongly regular. For example, in R2, consider C1 = {(ξ, ζ)

∣∣ ξ + ζ ≤ 0}, C2 =
{(ξ, ζ)

∣∣ ξ − ζ ≤ 0}, C3 = {(ξ, ζ)
∣∣ ξ ≥ 0}, and w = (0, 0) ∈ C1 ∩ C2 ∩ C3. Then one can check that

{Ci}i∈J with J $ {1, 2, 3} is strongly regular at w, and {C1, C2, C3} is linearly regular around w,
but {C1, C2, C3} is not strongly regular at w.
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3 Quasi Fejér monotonicity and quasi coercivity

The following quasi Fejér monotonicity concept generalizes the Fejér monotonicity for sequences
and operators, see, e.g., [3, Definition 5.1] and [17, Definition 2.1.15].
Definition 3.1 (quasi firm Fejér monotonicity). Let C and U be nonempty subsets of X, let
γ ∈ [1, +∞[, and let β ∈ R+. A set-valued operator T : X ⇒ X is said to be (C, γ, β)-quasi firmly

Fejér monotone on U if

∀x ∈ U, ∀x+ ∈ T x, ∀x ∈ C : ‖x+ − x‖2 + β‖x − x+‖2 ≤ γ‖x − x‖2. (17)

We say that T is (C, γ)-quasi firmly Fejér monotone on U if β = 1, i.e.,

∀x ∈ U, ∀x+ ∈ T x, ∀x ∈ C : ‖x+ − x‖2 + ‖x − x+‖2 ≤ γ‖x − x‖2, (18)

and that T is (C, γ)-quasi Fejér monotone on U if β = 0, i.e.,

∀x ∈ U, ∀x+ ∈ T x, ∀x ∈ C : ‖x+ − x‖ ≤ γ1/2‖x − x‖. (19)

From the definition, we observe that

(i) (C, γ, β)-quasi firm Fejér monotonicity implies (C, γ)-quasi Fejér monotonicity, while (C, 1)-
quasi Fejér monotonicity is exactly Fejér monotonicity with respect to C in [17, Defini-
tion 2.1.15].

(ii) If γ′ ≥ γ ≥ 1, 0 ≤ β′ ≤ β, C ′ ⊆ C, and U ′ ⊆ U , then (C, γ, β)-quasi firm Fejér monotonicity
on U implies (C ′, γ′, β′)-quasi firm Fejér monotonicity on U ′.

(iii) If T is nonexpansive (see [3, Definition 4.1]), then T is (Fix T, 1)-quasi Fejér monotone on X.
(iv) If T is λ-averaged (see [3, Definition 4.23]), then by [3, Proposition 4.25(iii)], T is

(Fix T, 1, 1−λ
λ )-quasi firmly Fejér monotone on X. In particular, if T is firmly nonexpansive,

then T is (Fix T, 1)-quasi firmly Fejér monotone on X.

Quasi firm Fejér monotonicity is closely related to [23, Definition 2.3] and [29, Proposition 2.4(iii)].
Also, (C, γ)-quasi firm Fejér monotonicity is more restrictive than [33, Definition 2.7] since the latter
requires only

∀x ∈ U, ∀x+ ∈ T x, ∀x ∈ PCx : ‖x+ − x‖2 + ‖x − x+‖2 ≤ γ‖x − x‖2. (20)

Nevertheless, it turns out that quasi firm Fejér monotonicity still holds for a broad class of operators,
e.g., relaxed projectors for superregular sets (see Proposition 3.5) and generalized Douglas–Rachford
operators for systems of two superregular sets (see Proposition 3.7).

The next lemma shows the quasi firm Fejér monotonicity for averaged-type operators.
Lemma 3.2 (averaged quasi firmly Fejér monotone operators). Let C and U be nonempty

subsets of X, γ ∈ [1, +∞[, β ∈ R+, λ ∈ ]0, 1 + β], and let S : X ⇒ X be a (C, γ, β)-quasi firmly

Fejér monotone operator on U . Then T := (1− λ) Id +λS is (C, γ′, β′)-quasi firmly Fejér monotone

on U with

γ′ := 1 − λ + λγ and β′ :=
1 − λ + β

λ
. (21)

Proof. Let x ∈ U , x+ ∈ T x, and x ∈ C. Writing x+ = (1 − λ)x + λs with s ∈ Sx, we have
x+ − x = (1 − λ)(x − x) + λ(s − x) and x − x+ = λ(x − s). So

‖x+ − x‖2 = (1 − λ)‖x − x‖2 + λ‖s − x‖2 − λ(1 − λ)‖(x − x) − (s − x)‖2

= (1 − λ)‖x − x‖2 + λ‖s − x‖2 − λ(1 − λ)‖x − s‖2.

(22a)

(22b)
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Using the (C, γ, β)-quasi firm Fejér monotonicity of S on U , we continue (22) as

‖x+ − x‖2 ≤ (1 − λ)‖x − x‖2 + λ
(
γ‖x − x‖2 − β‖x − s‖2

)
− λ(1 − λ)‖x − s‖2

= (1 − λ + λγ)‖x − x‖2 − λ(1 − λ + β)‖x − s‖2

= (1 − λ + λγ)‖x − x‖2 − 1 − λ + β

λ
‖x − x+‖2.

(23a)

(23b)

(23c)

This completes the proof. �

Definition 3.3 (quasi coercivity). Let C and U be nonempty subsets of X and let ν ∈ R++.
An operator T : X ⇒ X is said to be (C, ν)-quasi coercive on U if

∀x ∈ U, ∀x+ ∈ T x : ‖x − x+‖ ≥ νdC(x). (24)

We say that T is C-quasi coercive around w ∈ X if there exist δ ∈ R++ and ν ∈ R++ such that T
is (C, ν)-quasi coercive on IB(w; δ).

Obviously, if 0 < ν ′ ≤ ν, C ′ ⊇ C, and U ′ ⊆ U , then (C, ν)-quasi coercivity on U implies
(C ′, ν ′)-quasi coercivity on U ′. Quasi coercivity follows and slightly extends the coercivity condition

in [23, Lemma 3.1(b)] because the latter requires C ⊆ Fix T while the former does not. Quasi
coercivity is also closely related to the linear regularity for operators in [12, Definition 2.1]. Indeed,
when C = Fix T 6= ∅, then T is (C, ν)-quasi coercive on X if and only if it is linearly regular with
constant 1

ν in the sense of [12, Definition 2.1]. Again, under certain conditions, we will show that
quasi coercivity holds for several class of projectors.

3.1 Relaxed projectors

In this section, we show the quasi firm Fejér monotonicity and quasi coercivity of relaxed projectors
for superregular sets. Let C be a nonempty closed subset of X and let λ ∈ R+. The relaxed projector

for C with parameter λ is defined by

P λ
C := (1 − λ) Id +λPC . (25)

We say that P λ
C is under-relaxed if λ ≤ 1 and over-relaxed if λ ≥ 1. Clearly, P 0

C = Id, P 1
C = PC ,

and P 2
C = RC := 2PC − Id (the reflector across C). The following lemma will be used several times

in our analysis.
Lemma 3.4. Let w ∈ C, let γ ∈ [1, +∞[, and let δ ∈ R++. Then the following hold:

(i) For all x ∈ IB(w; δ/2), P λ
Cx ⊆ IB(w; (1 + λ)δ/2). In particular, PC(IB(w; δ/2)) ⊆ C ∩ IB(w; δ).

(ii) If T : X ⇒ X is (C ∩ IB(w; δ), γ)-quasi Fejér monotone on IB(w; δ/2), then

∀x ∈ IB(w; δ/2) : T x ⊆ IB(w; γ1/2δ/2),

∀x ∈ IB(w; δ/2), ∀x+ ∈ T x : dC(x+) ≤ γ1/2dC(x).

(26a)

(26b)

Proof. (i): Let x ∈ IB(w; δ/2) and let x+ ∈ P λ
Cx. Writing x+ = (1 − λ)x + λp for some p ∈ PCx and

noting that w ∈ C, we have ‖x+ − x‖ = λ‖p − x‖ = λdC(x) ≤ λ‖x − w‖ and so

‖x+ − w‖ ≤ ‖x+ − x‖ + ‖x − w‖ ≤ (1 + λ)‖x − w‖ ≤ (1 + λ)δ/2. (27)

Therefore, P λ
Cx ⊆ C ∩ IB(w; (1 + λ)δ/2).
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(ii): Let x ∈ IB(w; δ/2) and let x+ ∈ T x. By quasi Fejér monotonicity,

∀x ∈ C ∩ IB(w; δ) : ‖x+ − x‖ ≤ γ1/2‖x − x‖. (28)

Setting x = w, we have ‖x+ − w‖ ≤ γ1/2‖x − w‖ ≤ γ1/2δ/2. Hence, T x ⊆ IB(w; γ1/2δ/2). Now let
p ∈ PCx. Then p ∈ C ∩ IB(w; δ) by (i). Applying (28) to x = p yields

dC(x+) ≤ ‖x+ − p‖ ≤ γ1/2‖x − p‖ = γ1/2dC(x). (29)

�

Proposition 3.5 (quasi firm Fejér monotonicity of relaxed projectors). Let w ∈ C, ε ∈
[0, 1[, δ ∈ R++, and λ ∈ ]0, 2]. Set

Ω := C ∩ IB(w; δ), γ := 1 +
λε

1 − ε
, and β :=

2 − λ

λ
. (30)

Suppose that C is (ε, δ)-regular at w. Then P λ
C is (Ω, γ, β)-quasi firmly Fejér monotone and, in

particular, RC is (Ω, 1+ε
1−ε)-quasi Fejér monotone on IB(w; δ/2). Additionally, if ε ∈ [0, 1/3], then

∀x ∈ IB(w; δ/2) : P λ
Cx ⊆ IB(w; δ/

√
2). (31)

Proof. Let x ∈ IB(w; δ/2) and let p ∈ PCx. Then p ∈ Ω by Lemma 3.4(i). Since C is (ε, δ)-regular
at w and x − p ∈ Nprox

C (p), we have

∀x ∈ Ω : 〈x − p, p − x〉 ≥ −ε‖x − p‖ · ‖p − x‖ ≥ −ε

2

(
‖x − p‖2 + ‖p − x‖2

)
. (32)

It then follows that

∀x ∈ Ω : ‖x − x‖2 = ‖x − p‖2 + ‖p − x‖2 + 2 〈x − p, p − x〉
≥ ‖x − p‖2 + ‖p − x‖2 − ε

(
‖x − p‖2 + ‖p − x‖2

)

= (1 − ε)
(
‖x − p‖2 + ‖p − x‖2)

.

(33a)

(33b)

(33c)

So

∀x ∈ Ω :
1

1 − ε
‖x − x‖2 ≥ ‖x − p‖2 + ‖p − x‖2, (34)

i.e., PC is (Ω, 1
1−ε , 1)-quasi firmly Fejér monotone on IB(w; δ/2). Now by Lemma 3.2, we conclude

that P λ
C = (1−λ) Id +λPC is (Ω, γ, β)-quasi firmly Fejér monotone on IB(w; δ/2) with γ and β given

by (30). For λ = 2, we have that γ = 1+ε
1−ε , β = 0, and so RC = P 2

C is (Ω, 1+ε
1−ε)-quasi Fejér monotone

on IB(w; δ/2).

Next assume that ε ∈ [0, 1/3]. Then γ = 1 − λ + λ
1−ε ≤ 1 + λ

2 ≤ 2. By quasi Fejér monotonicity

and Lemma 3.4(ii), P λ
Cx ⊆ IB(w; γ1/2δ/2) ⊆ IB(w; δ/

√
2). �

Proposition 3.6 (quasi coercivity of relaxed projectors). If λ ∈ R++, then P λ
C is (C, λ)-quasi

coercive on X.

Proof. Let x ∈ X and let x+ ∈ P λ
Cx. Then x+ = (1 − λ)x + λp for some p ∈ PCx. So ‖x − x+‖ =

λ‖x − p‖ = λdC(x). �
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3.2 Generalized Douglas–Rachford operators

In this section, we establish the quasi firm Fejér monotonicity and quasi coercivity of generalized
Douglas–Rachford operators for systems of two superregular sets. Let A and B be closed subsets
of X such that A ∩ B 6= ∅ and let λ, µ, α ∈ R++. The generalized Douglas–Rachford operator for
(A, B) with parameters (λ, µ, α) is defined by

T α
λ,µ := (1 − α) Id +αP µ

BP λ
A. (35)

Note that T 1
1,1 = PBPA is the classical alternating projection operator [16] and that T

1/2
2,2 =

1
2(Id +RBRA) is the classical DR operator [18, 28].
Proposition 3.7 (quasi firm Fejér monotonicity of generalized DR operators). Let w ∈
A ∩ B, ε1 ∈ [0, 1/3], ε2 ∈ [0, 1[, δ ∈ R++, λ, µ ∈ ]0, 2], and α ∈ ]0, 1]. Suppose that A and B are

(ε1, δ)- and (ε2,
√

2δ)-regular at w, respectively. Then T α
λ,µ is (A ∩ B ∩ IB(w; δ), γ, β)-quasi firmly

Fejér monotone on IB(w; δ/2) with

γ := 1 − α + α

(
1 +

λε1

1 − ε1

) (
1 +

µε2

1 − ε2

)
and β :=

1 − α

α
. (36)

Proof. Let x ∈ IB(w; δ/2), let r ∈ P λ
Ax, let s ∈ P µ

Br, and let x ∈ A∩B∩IB(w; δ). Then Proposition 3.5
applied to P λ

A yields

‖r − x‖ ≤ γ
1/2
1 ‖x − x‖, where γ1 := 1 +

λε1

1 − ε1
, (37)

and also r ∈ IB(w; δ/
√

2). Next, Proposition 3.5 applied to P µ
B yields

‖s − x‖ ≤ γ
1/2
2 ‖r − x‖ ≤ (γ1γ2)1/2‖x − x‖, where γ2 := 1 +

µε2

1 − ε2
. (38)

This proves (A ∩ B ∩ IB(w; δ), γ1γ2)-quasi Fejér monotonicity of P µ
BP λ

A on IB(w; δ/2). Now apply
Lemma 3.2 to the operators P µ

BP λ
A and T α

λ,µ = (1 − α) Id +αP µ
BP λ

A. �

Proposition 3.8 (quasi coercivity of generalized DR operators). Let w ∈ A∩B, λ, µ ∈ ]0, 2],
and α ∈ R++. Suppose that A is superregular at w and that {A, B} is strongly regular at w. Then

θ := sup{〈u, v〉
∣∣ u ∈ NA(w) ∩ IB(0; 1), v ∈

(
− NB(w)

)
∩ IB(0; 1)} < 1 (39)

and for all θ ∈
]
θ, 1

[
, there exist δ ∈ R++ and κ ∈ R++ such that T α

λ,µ is (A ∩ B, ν)-quasi coercive

on IB(w; δ/2) with

ν :=
α

√
1 − θ

κ
min

{
λ,

µ√
1 + µ2

}
. (40)

Proof. Since {A, B} is strongly regular at w, we have from [33, Lemma 2.3] that θ < 1. Now let

θ ∈
]
θ, 1

[
and let ε ∈ [0, 1/3]. Using Definition 2.1, Fact 2.5, and [33, Lemma 4.1], we can find

δ ∈ R++ and κ ∈ R++ such that A is (ε, δ)-regular at w, that

∀x ∈ IB(w; δ/2) : dA∩B(x) ≤ κ max{dA(x), dB(x)}, (41)

and that
a ∈ A ∩ IB(w; δ), b ∈ B ∩ IB(w;

√
2δ),

u ∈ Nprox
A (a), v ∈ Nprox

B (b)

}
⇒ 〈u, v〉 ≥ −θ‖u‖‖v‖. (42)
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Let x ∈ IB(w; δ/2) and x+ ∈ T α
λ,µx. By definition, there exist

{
a ∈ PAx, r = (1 − λ)x + λa ∈ P λ

Ax,

b ∈ PBr, s = (1 − µ)r + µb ∈ P µ
Br

(43a)

(43b)

such that x+ = (1 − α)x + αs. Then

x − x+ = α(x − s), x − r = λ(x − a), and r − s = µ(r − b). (44)

By Lemma 3.4(i), a ∈ PAx ⊆ A∩IB(w; δ). Since ε ∈ [0, 1/3], Proposition 3.5 yields r ∈ IB(w;
√

2δ/2).
Using again Lemma 3.4(i), we get b ∈ PBr ⊆ B ∩IB(w;

√
2δ). Now since x−r = λ(x−a) ∈ Nprox

A (a)
and r − s = µ(r − b) ∈ Nprox

B (b), we use (42) and the arithmetic mean-geometric mean inequality
to obtain

2 〈x − r, r − s〉 ≥ −2θ‖x − r‖‖r − s‖ ≥ −θ(‖x − r‖2 + ‖r − s‖2). (45)

So

‖x − x+‖2 = α2‖x − s‖2 = α2(‖x − r‖2 + ‖r − s‖2 + 2 〈x − r, r − s〉)
≥ (1 − θ)α2(‖x − r‖2 + ‖r − s‖2).

(46a)

(46b)

Furthermore,

‖x − r‖2 = λ2‖x − a‖2 = λ2d2
A(x), (47)

and by the coordinate version of Cauchy–Schwarz inequality,

(µ2 + 1)(‖x − r‖2 + ‖r − s‖2) ≥ (µ‖x − r‖ + ‖r − s‖)2

= (µ‖x − r‖ + µ‖r − b‖)2

≥ (µ‖x − b‖)2 ≥ µ2d2
B(x).

(48a)

(48b)

(48c)

Combining (41), (46), (47), and (48), we obtain

‖x − x+‖ ≥ α
√

1 − θ min
{

λ,
µ√

1 + µ2

}
max{dA(x), dB(x)}

≥ α
√

1 − θ

κ
min

{
λ,

µ√
1 + µ2

}
dA∩B(x) = νdA∩B(x),

(49a)

(49b)

which completes the proof. �

4 Linear convergence of cyclic algorithms

We start with an elementary result.
Lemma 4.1. Let C be a closed subset of X, let w ∈ C, and let (xn)n∈N be a sequence in X. Suppose

that one of the following assumptions holds:

(i) There exist δ ∈ R++, ρ ∈ [0, 1[, and σ ∈ R++ such that

∀n ∈ N : xn ∈ IB(w; δ) ⇒ dC(xn+1) ≤ ρdC(xn) and ‖xn+1 − xn‖ ≤ σdC(xn). (50)

(ii) The sequence (xn)n∈N is generated by an operator T : X ⇒ X and there exist δ, σ ∈ R++ and

ρ ∈ [0, 1[ such that

∀x ∈ IB(w; δ), ∀x+ ∈ T x : dC(x+) ≤ ρdC(x) and ‖x+ − x‖ ≤ σdC(x). (51)
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Then if either (xn)n∈N ⊂ IB(w; δ) or x0 ∈ IB
(
w; δ(1−ρ)

σ+1−ρ

)
, there exists x ∈ C ∩ IB(w; δ) such that

∀n ∈ N : ‖xn − x‖ ≤ σdC(x0)

1 − ρ
ρn, (52)

i.e., the sequence (xn)n∈N converges R-linearly to a point in C with rate ρ.

Proof. It suffices to prove the result for (i) because if (ii) holds, then (i) also holds for (xn)n∈N.
Suppose (i) holds, we distinguish two cases.

Case 1: (xn)n∈N ⊂ IB(w; δ). Combining with (50), we have

(∀n ∈ N) dC(xn+1) ≤ ρdC(xn) and ‖xn+1 − xn‖ ≤ σdC(xn), (53)

For each n ∈ N, take x∗
n ∈ PCxn. On the one hand,

‖xn − x∗
n‖ = dC(xn) ≤ ρnd(x0) → 0 as n → +∞. (54)

On the other hand, for all n ∈ N and k ∈ Nr {0},

‖xn − xn+k‖ ≤
n+k−1∑

i=n

‖xi+1 − xi‖ ≤
n+k−1∑

i=n

σρid(x0) ≤ σdC(x0)

1 − ρ
ρn → 0 as n → +∞. (55)

So (xn) is a Cauchy sequence. Therefore, (xn)n∈N and (x∗
n)n∈N both converge to the same limit

x ∈ C ∩ IB(w; δ). We then obtain (52) by leting k → +∞ in (55).

Case 2: x0 ∈ IB
(
w; δ(1−ρ)

σ+1−ρ

)
. We show that this is an instance of Case 1 by proving

(xn)n∈N ⊂ IB(w; δ). (56)

Clearly, ‖x0 − w‖ ≤ δ(1−ρ)
σ+1−ρ ≤ δ. So (56) holds for n = 0. Suppose (56) holds for 0, 1, . . . , n − 1, we

shall prove that it also holds for n. Indeed, the induction hypothesis and (50) yield

∀i ∈ {0, 1, . . . , n − 1} : dC(xi+1) ≤ ρdC(xi) and ‖xi+1 − xi‖ ≤ σdC(xi). (57)

Noting that dC(x0) ≤ ‖x0 − w‖, we obtain

‖xn − w‖ ≤
n−1∑

i=0

‖xi+1 − xi‖ + ‖x0 − w‖ ≤ σ
n−1∑

i=0

dC(xi) + ‖x0 − w‖

≤ σ
n−1∑

i=0

ρidC(x0) + ‖x0 − w‖ ≤
(
σ

1

1 − ρ
+ 1

)
‖x0 − w‖ ≤ δ.

(58a)

(58b)

Thus, (56) holds for n. By mathematical induction principle, (56) holds for all n ∈ N. The conclusion
now follows from Case 1. �

Corollary 4.2. ([33, Proposition 2.11]) Let T : X ⇒ X be an operator, let C be a closed subset of

X, let w ∈ C, and let (xn)n∈N be a sequence generated by T . Suppose that there exist δ ∈ R++ and

ρ ∈ [0, 1[ such that

∀x ∈ IB(w; δ), ∀x+ ∈ T x, ∀p ∈ PCx : ‖x+ − p‖ ≤ ρ‖x − p‖ = ρdC(x). (59)

Then whenever x0 ∈ IB(w; δ(1−ρ)
2 ), there exists x ∈ C ∩ IB(w; δ) such that

∀n ∈ N : ‖xn − x‖ ≤ (1 + ρ)‖x0 − w‖
1 − ρ

ρn, (60)

i.e., the sequence (xn)n∈N converges R-linearly to a point in C with rate ρ.
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Proof. Let x ∈ IB(w; δ), let x+ ∈ T x and let p ∈ PCx. By assumption,

dC(x+) ≤ ‖x+ − p‖ ≤ ρ‖x − p‖ = ρdC(x), (61)

and also
‖x+ − x‖ ≤ ‖x+ − p‖ + ‖x − p‖ ≤ (1 + ρ)‖x − p‖ = (1 + ρ)dC(x). (62)

Now apply Lemma 4.1(ii) with σ = 1 + ρ and note that dC(x0) ≤ ‖x0 − w‖. �

The following result proves that if distance to the feasible set is reduced at least by a factor
ρ ∈ [0, 1[ after every fixed number of steps, then R-linear convergence is achieved.
Lemma 4.3 (linear reduction after k steps). Let C be a closed subset of X, let w ∈ C, and let

(xn)n∈N be a sequence in X. Let also k ∈ N r {0}, δ0 ∈ R++, ρ ∈ [0, 1[, Γ ∈ R+, and suppose that

for every tuple (z0, z1, . . . , zk) := (xkn, xkn+1, . . . , xkn+k) with z0 ∈ IB(w; δ0), we have

dC(zk) ≤ ρdC(z0) and

∀i ∈ {1, . . . , k}, ∀p ∈ C ∩ IB(w; 2δ0) : ‖zi − p‖ ≤ Γ‖z0 − p‖.

(63a)

(63b)

Then if either (xkn)n∈N ⊂ IB(w; δ0) or x0 ∈ IB
(
w; δ0(1−ρ)

2+Γ−ρ

)
, the sequence (xn)n∈N converges R-linearly

to a point in C with rate ρ1/k. More specifically, there exists x ∈ C ∩ IB(w; δ0) such that

∀n ∈ N : ‖xn − x‖ ≤ Γ(1 + Γ)dC(x0)

1 − ρ
ρ⌊ n

k
⌋, (64)

where ⌊n
k ⌋ is the largest integer not exceeding n

k .

Proof. Consider the sequence (yn := xkn)n∈N. Suppose yn ∈ IB(w; δ0) and take p ∈ PCxkn =
PCyn ⊂ PC(IB(w; δ0)) ⊆ C ∩ IB(w; 2δ0) (see Lemma 3.4(i)). Then (63a) means dC(yn+1) ≤ ρdC(yn)
and (63b) yields

‖yn+1 − yn‖ ≤ ‖yn+1 − p‖ + ‖yn − p‖ ≤ ΓdC(yn) + dC(yn) = (1 + Γ)dC(yn). (65)

So, by Lemma 4.1, if (yn)n∈N ⊂ IB(w; δ0) or y0 ∈ IB
(
w; δ0(1−ρ)

2+Γ−ρ

)
, the sequence (yn)n∈N converges

R-linearly to some x ∈ C ∩ IB(w; δ0) and

‖yn − x‖ ≤ (1 + Γ)dC(y0)

1 − ρ
ρn =

(1 + Γ)dC(x0)

1 − ρ
ρn. (66)

Now (63b) implies that for every i ∈ {1, . . . , k},

‖xkn+i − x‖ ≤ Γ‖xkn − x‖ = Γ‖yn − x‖ ≤ Γ(1 + Γ)dC(x0)

1 − ρ
ρn. (67)

Replacing kn + i by n, we obtain

‖xn − x‖ ≤ Γ(1 + Γ)dC(x0)

1 − ρ
ρ⌊ n

k
⌋. (68)

Now if ρ = 0, then xn = x for all n ≥ 1; and if ρ > 0, then ρ⌊ n
k

⌋ ≤ 1
ρ · ρ

n
k . The lemma is proved. �

We next analyze the performance of m steps of cyclic algorithms for quasi firmly Fejér monotone
operators.
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Lemma 4.4 (consecutive steps of cyclic algorithms). Let w ∈ C :=
⋂

i∈I Ci, δ ∈ R++, and

ν ∈ ]0, 1]. For every i ∈ I, let γi ∈ [1, +∞[ and βi ∈ R++. Set Ω := C ∩IB(w; δ), Γ := (γ1 · · · γm)1/2,

and δ0 := δ
2Γγ

1/2
m . Let x0, x1, . . . , xm be m + 1 consecutive points of the cyclic algorithm with respect

to (Ti)i∈I such that

x0 ∈ IB(w; δ0) and ∀i ∈ I : xi ∈ Tixi−1. (69)

Then the following hold:

(i) If for every i ∈ I, Ti is (Ω, γi)-quasi Fejér monotone on IB(w; δ/2), then

∀i ∈ I r {m} : ‖xi − w‖ ≤ (γ1 · · · γi)
1/2δ0 ≤ δ

2
,

∀i ∈ I, ∀p ∈ Ω : ‖xi − p‖ ≤ γ
1/2
i ‖xi−1 − p‖ ≤ (γ1 · · · γi)

1/2‖x0 − p‖ ≤ Γ‖x0 − p‖.

(70a)

(70b)

(ii) If for every i ∈ I, Ti is both (Ω, γi, βi)-quasi firmly Fejér monotone and (Ci, ν)-quasi coercive

on IB(w; δ/2), then

∀p ∈ Ω : ‖xm − p‖2 ≤ (γ1 · · · γm)‖x0 − p‖2 − βν2 max
i∈I

d2
Ci

(x0), where β :=
( ∑

i∈I

1

βi

)−1
.

(71)

Proof. Let p ∈ Ω = C ∩ IB(w; δ).

(i): First, we have ‖x0 − w‖ ≤ δ0 = δ
2(γ1γ2···γm−1)1/2 ≤ δ

2 since γi ≥ 1 for every i ∈ I. The

(Ω, γ1)-quasi Fejér monotonicity of T1 on IB(w; δ/2) and Lemma 3.4(ii) then implies that

‖x1 − p‖ ≤ γ
1/2
1 ‖x0 − p‖ and ‖x1 − w‖ ≤ γ

1/2
1 δ0 =

δ

2(γ2 · · · γm−1)1/2
≤ δ

2
. (72)

Repeating the argument for x1, . . . , xm−1, we get (70a) and the first part of (70b), from which the
rest follows.

(ii): Since quasi firm Fejér monotonicity implies quasi Fejér monotonicity, (70a) holds due to (i),
that is, x0, x1, . . . , xm−1 ∈ IB(w; δ/2). Now since each Ti is (Ω, γi, βi)-quasi firmly Fejér monotone
on IB(w; δ/2), we derive that

‖x1 − p‖2 + β‖x0 − x1‖2 ≤ γ1‖x0 − p‖2,

‖x2 − p‖2 + β‖x1 − x2‖2 ≤ γ2‖x1 − p‖2,

...

‖xm − p‖2 + β‖xm−1 − xm‖2 ≤ γm‖xm−1 − p‖2,

(73a)

(73b)

(73c)

(73d)

and so

γ2 · · · γm‖x1 − p‖2 + γ2 · · · γmβ‖x0 − x1‖2 ≤ γ1γ2 · · · γm‖x0 − p‖2,

γ3 · · · γm‖x2 − p‖2 + γ3 · · · γmβ‖x1 − x2‖2 ≤ γ2γ3 · · · γm‖x1 − p‖2,

...

γm‖xm−1 − p‖2 + γmβ‖xm−2 − xm−1‖2 ≤ γm−1γm‖xm−2 − p‖2,

‖xm − p‖2 + β‖xm−1 − xm‖2 ≤ γm‖xm−1 − p‖2.

(74a)

(74b)

(74c)

(74d)

(74e)
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Using the telescoping technique and the fact that γi ≥ 1, we get

(γ1 · · · γm)‖x0 − p‖2 ≥ ‖xm − p‖2 +
∑

j∈I

βj‖xj−1 − xj‖2. (75)

Now the coordinate version of Cauchy–Schwarz inequality yields

(γ1 · · · γm)‖x0 − p‖2 ≥ ‖xm − p‖2 + β
( ∑

j∈I

‖xj−1 − xj‖
)2

. (76)

For every i ∈ I, Ti is (Ci, νi)-quasi coercive on IB(w; δ/2), so ‖xi−1 − xi‖ ≥ νdCi(xi−1). Hence,

∀i ∈ I :
∑

j∈I

‖xj−1 − xj‖ ≥ ‖x0 − xi−1‖ + ‖xi−1 − xi‖

≥ ‖x0 − xi−1‖ + νdCi(xi−1)

≥ ν
(
‖x0 − xi−1‖ + dCi(xi−1)

)
(because 1 ≥ ν ≥ 0)

≥ νdCi(x0),

(77a)

(77b)

(77c)

(77d)

which yields ∑

j∈I

‖xj−1 − xj‖ ≥ ν max
i∈I

dCi(x0). (78)

Combining with (76), we obtain (71). �

The following theorems are cornerstones in our convergence analysis. In the sequel, we denote
[ρ]+ := max{0, ρ} for ρ ∈ R.
Theorem 4.5 (cyclic sequence of quasi firmly Fejér monotone operators). Let w ∈ C :=⋂

i∈I Ci, δ ∈ R++, and ν ∈ ]0, 1]. For every i ∈ I, let γi ∈ [1, +∞[ and βi ∈ R++. Set Ω :=
C ∩ IB(w; δ) and let (xn)n∈N be a cyclic sequence generated by (Ti)i∈I . Suppose that

(a) {Ci}i∈I is κ-linearly regular on IB(w; δ/2) for some κ ∈ R++.

(b) For every i ∈ I, Ti is (Ω, γi, βi)-quasi firmly Fejér monotone and (Ci, ν)-quasi coercive on

IB(w; δ/2).

Set Γ := (γ1 · · · γm)1/2 and δ0 := δ
2Γγ

1/2
m . Then

∀x0 ∈ IB(w; δ0) : dC(xm) ≤ ρdC(x0), where ρ :=

[
Γ2 − ν2

κ2

( ∑

i∈I

1

βi

)−1
]1/2

+

. (79)

Consequently, if ρ < 1 and either (xmn)n∈N ⊂ IB(w; δ0) or x0 ∈ IB
(
w; δ0(1−ρ)

2+Γ−ρ

)
, then (xn)n∈N con-

verges R-linearly to some point x ∈ C with rate ρ1/m.

Proof. Let x0 ∈ IB(w; δ0) ⊆ IB(w; δ/2). Since {Ci}i∈I is κ-linearly regular on IB(w; δ/2),

max
i∈I

dCi(x0) ≥ 1

κ
dC(x0). (80)

Setting β :=
( ∑

i∈I
1
βi

)−1
, Lemma 4.4(ii) then implies that

∀p ∈ Ω : ‖xm − p‖2 ≤ (γ1γ2 · · · γm)‖x0 − p‖2 − βν2 max
i∈I

d2
Ci

(x0)

≤ Γ2‖x0 − p‖2 − βν2

κ2
d2

C(x0).

(81a)

(81b)
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Letting p ∈ PCx0 and noting from Lemma 3.4(i) that PCx0 ⊆ PC(IB(w; δ/2)) ⊆ Ω, we have

‖xm − p‖2 ≤ Γ2d2
C(x0) − βν2

κ2
d2

C(x0) ≤
[
Γ2 − βν2

κ2

]

+

d2
C(x0), (82)

which leads to (79).

Now assume ρ < 1. Since Ti is also (Ω, γi)-quasi Fejér monotone on IB(w; δ/2) and
C ∩ IB(w; 2δ0) ⊆ Ω, we obtain from (70b) in Lemma 4.4(i) that

∀i ∈ I, ∀p ∈ C ∩ IB(w; 2δ0) : ‖xi − p‖ ≤ Γ‖x0 − p‖. (83)

By combining with (79), for every tuple (z0, z1, . . . , zm) := (xmn, xmn+1, . . . , xmn+m) with z0 ∈
IB(w; δ0), one has

dC(zm) ≤ ρdC(z0) and

∀i ∈ I, ∀p ∈ C ∩ IB(w; 2δ0) : ‖zi − p‖ ≤ Γ‖z0 − p‖,

(84a)

(84b)

which fulfills (63) with k = m. The result then follows from Lemma 4.3. �

Remark 4.6. Regarding (82) in the proof of Theorem 4.5, we see that the term Γ2 − βν2

κ2 is
necessarily nonnegative if x0 /∈ C; however, no general conclusion about this term can be drawn
otherwise. We therefore use the notation [·]+ to ensure nonnegativity.

Now we prove linear convergence result for cyclic sequences when there is one quasi Fejér mono-
tone operator. Clearly, we need at least two operators, i.e., m = |I| ≥ 2. Here and in what follows,
|I| denotes the number of elements in the set I.
Theorem 4.7 (cyclic sequence with one quasi Fejér monotone operator). Let w ∈ C :=⋂

i∈I Ci, δ ∈ R++, ν ∈ ]0, 1], and γi ∈ [1, +∞[ for every i ∈ I. Set Ω := C ∩ IB(w; δ) and let (xn)n∈N

be a cyclic sequence generated by (Ti)i∈I . Suppose that

(a) {Ci}i∈I is κ-linearly regular on IB(w; δ/2) for some κ ∈ R++.

(b) There is j ∈ I such that for every i ∈ I r {j}, Ti is (Ω, γi, βi)-quasi firmly Fejér monotone

and (Ci, ν)-quasi coercive on IB(w; δ/2) for some βi ∈ R++; while Tj is (Ω, γj)-quasi Fejér

monotone on IB(w; δ/2) and Tjx ⊆ Cj for all x ∈ IB(w; δ/2).

Set Γ := (γ1 · · · γm)1/2 and δ0 := δ
2Γγ

1/2
j . Then

∀x0 ∈ IB(w; δ0) : dC(xm) ≤ ρdC(x0), where ρ :=

[
Γ2 − γjν2

κ2

( ∑

i∈Ir{j}

1

βi

)−1
]1/2

+

. (85)

Consequently, if ρ < 1 and either (xmn)n∈N ⊂ IB(w; δ0) or x0 ∈ IB(w; δ0(1−ρ)
2+Γ−ρ ), then (xn)n∈N con-

verges R-linearly to some point x ∈ C with rate ρ1/m.

Proof. It suffices to consider only the case j = 1 because other cases are identical up to relabeling.
Set δ1 := δ

2(γ2···γm−1)1/2 ≤ δ
2 and β :=

( ∑
i∈Ir{1}

1
βi

)−1
. We first claim that

∀x1 ∈ C1 ∩ IB(w; δ1) : dC(xm) ≤
[
γ2 · · · γm − βν2

κ2

]1/2

+

dC(x1). (86)

On the one hand, applying Lemma 4.4(ii) to the system (Ci)i∈Ir{1} and m consecutive points
x1, . . . , xm with x1 ∈ IB(w; δ1), we deduce that

∀p ∈ Ω : ‖xm − p‖2 ≤ (γ2 · · · γm)‖x1 − p‖2 − βν2 max
i∈Ir{1}

d2
Ci

(x1). (87)
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On the other hand, since dC1(x1) = 0, the linear regularity of {Ci}i∈I yields

max
i∈Ir{1}

dCi(x1) = max
i∈I

dCi(x1) ≥ 1

κ
dC(x1). (88)

From (87) and (88), letting p ∈ PCx1 ⊆ C ∩ IB(w; δ) = Ω (see Lemma 3.4(i)), we obtain

d2
C(xm) ≤ ‖xm − p‖2 ≤ (γ2 · · · γm)‖x1 − p‖2 − βν2 max

i∈I
d2

Ci
(x1)

≤ (γ2 · · · γm)d2
C(x1) − βν2

κ2
d2

C(x1)

=

[
γ2 · · · γm − βν2

κ2

]

+

d2
C(x1),

(89a)

(89b)

(89c)

which implies (86).

Now let x0 ∈ IB(w; δ0) ⊆ IB(w; δ/2). Then x1 ∈ T1x0 ⊆ C1. By applying Lemma 3.4(ii) to T1,

we derive that x1 ∈ IB(w; γ
1/2
1 δ0) = IB(w; δ1) and dC(x1) ≤ γ

1/2
1 dC(x0). Combining these with (86),

we get (85). The rest of the proof is exactly the same as the second part of Theorem 4.5. �

In the next result, we show that if the coercivity assumption is replaced by the assumption that
the image of each operator Ti lies in the corresponding set Ci, then linear reduction is obtained after
m−1 steps (instead of m steps). Thus, the rate of convergence is improved. This particular condition
is satisfied for certain operators such as projectors and semi-intrepid projectors (see Section 5.2).
Theorem 4.8 (refined linear convergence). Let w ∈ C :=

⋂
i∈I Ci and δ ∈ R++. For every

i ∈ I, let γi ∈ [1, +∞[ and βi ∈ R++. Set Ω := C ∩ IB(w; δ) and let (xn)n∈N be a cyclic sequence

generated by (Ti)i∈I . Suppose that

(a) {Ci}i∈I is κ-linearly regular on IB(w; δ/2) for some κ ∈ R++.

(b) For every i ∈ I, Ti is (Ω, γi, βi)-quasi firmly Fejér monotone on IB(w; δ/2).
(c) For every i ∈ I and every x ∈ IB(w; δ/2), Tix ⊆ Ci.

Set Γ :=
( γ1···γm

mini∈I γi

)1/2
, δ0 := δ

2Γ , and ρ :=
[
Γ2 − 1

κ2

(
(
∑

i∈I
1
βi

) − 1
maxi∈I βi

)−1]1/2

+
. Then

∀i ∈ I, ∀xi ∈ Ci ∩ IB(w; δ0) : dC(xi+m−1) ≤ ρdC(xi). (90)

Consequently, if ρ < 1 and either (x(m−1)n)n∈N ⊂ IB(w; γ
−1/2
max δ0) or x0 ∈ IB(w; γ

−1/2
max · δ0(1−ρ)

2+Γ−ρ ) where

γmax := maxi∈I γi, then (xn)n∈N converges R-linearly to some point x ∈ C with rate ρ
1

m−1 .

Proof. In addition to convention (2), we also use γmn+i := γi for n ∈ N and i ∈ I. For every i ∈ I,
it follows from (c) that

∀x ∈ IB(w; δ/2), ∀x+ ∈ Tix : ‖x+ − x‖ ≥ dCi(x), (91)

so Ti is (Ci, 1)-quasi coercive on IB(w; δ/2). Hence, all assumptions in Theorem 4.7 are fulfilled.
Now let i ∈ I and take m consecutive points (xi, . . . , xi+m−1) of (xn)n∈N with xi ∈ Ci ∩ IB(w; δ0).
Then

‖xi − w‖ ≤ δ0 ≤ δ

2(γi+1γi+2 · · · γi+m−1)1/2
≤ δ

2(γi+1 · · · γi+m−2)1/2
=: δ1. (92)
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First, noting that β̄i :=
( ∑

j∈Ir{i}
1

βj

)−1 ≥ β :=
(
(
∑

i∈I
1
βi

) − 1
maxi∈I βi

)−1
and applying claim (86)

in the proof of Theorem 4.7, we have

dC(xi+m−1) ≤
[

γ1 · · · γm

γi
− β̄i

κ2

]1/2

+

dC(xi) ≤
[
Γ2 − β

κ2

]1/2

+
dC(xi), (93)

which proves (90). Second, since xi ∈ IB(w; δ0), we derive from the quasi Fejér monotonicity of Ti’s
and (70a) in Lemma 4.4(i) that xi+m−2 ∈ IB(w; δ/2), which together with (c) yields

xi+m−1 ∈ Ci+m−1. (94)

Third, it follows from (70b) in Lemma 4.4(i) that

∀j ∈ {1, . . . , m − 1}, ∀p ∈ C ∩ IB(w; 2δ0) :

‖xi+j − p‖ ≤ (γi+1 · · · γi+m−1)1/2 ‖xi − p‖ ≤ Γ‖xi − p‖. (95)

Taking p ∈ PCxi ⊆ C ∩ IB(w; 2δ0) (due to Lemma 3.4(i)), we obtain

‖xi+m−1 − xi‖ ≤ ‖xi − p‖ + ‖xi+m−1 − p‖ ≤ (1 + Γ)‖xi − p‖ = (1 + Γ)dC(xi). (96)

So by (93), (94), and (96), we have proved that

∀i ∈ I, ∀xi ∈ Ci ∩ IB(w; δ0) :
xi+m−1 ∈ Ci+m−1, dC(xi+m−1) ≤ ρdC(xi) and ‖xi+m−1 − xi‖ ≤ (1 + Γ)dC(xi). (97)

Now assume that ρ < 1 and that either (x(m−1)n)n∈N ⊂ IB(w; γ
−1/2
max δ0) or x0 ∈ IB(w; γ

−1/2
max ·

δ0(1−ρ)
2+Γ−ρ ). We claim that

∀n ∈ N : x(m−1)n+1 ∈ C(m−1)n+1 ∩ IB(w; δ0). (98)

Indeed, if (x(m−1)n)n∈N ⊂ IB(w; γ
−1/2
max δ0) ⊆ IB(w; δ/2), then (98) holds due to (c) and Lemma 3.4(ii).

If x0 ∈ IB(w; γ
−1/2
max · δ0(1−ρ)

2+Γ−ρ ), then by using again (c) and Lemma 3.4(ii), x1 ∈ C1 ∩ IB(w; δ0(1−ρ)
2+Γ−ρ ),

and employing (97) and proceeding as in the proof of Lemma 4.1, we get (98).

Finally, we deduce from (95), (97), and (98) that for every tuple (z0, z1, . . . , zm−1) :=
(x(m−1)n+1, x(m−1)n+2, . . . , x(m−1)(n+1)+1),

dC(zm−1) ≤ ρdC(z0) and

∀i ∈ I r {m}, ∀p ∈ C ∩ IB(w; 2δ0) : ‖zi − p‖ ≤ Γ‖z0 − p‖,

(99a)

(99b)

which fulfills (63) with k = m − 1. The proof is finished by applying Lemma 4.3. �

5 Applications to projection algorithms

5.1 Cyclic relaxed projections

In this section, by specializing operators Ti to relaxed projectors P λi
Ci

, we obtain linear convergence
results for the cyclic relaxed projections, one of which is possibly a reflection across an injectable

set. First, we give the definition for injectability.
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Definition 5.1 (injectable set). Let C be a nonempty closed subset of X and let τ ∈ R+. The
set C is said to be τ -injectable on a subset U of X if

∀x ∈ U, ∀p ∈ PCx :
[
p, p + τ p−x

‖p−x‖

]
⊆ C (100)

with the convention that p−x
‖p−x‖ = 0 if p = x. We say that C is strictly injectable around w ∈ X if

there exist τ ∈ R++ and δ ∈ R++ such that C is τ -injectable on IB(w; δ). When C is τ -injectable
on U = X, we simply say that C is τ -injectable. When C is τ -injectable for all τ ∈ R+, we say that
C is ∞-injectable.

Clearly, if τ > τ ′ ≥ 0, then τ -injectability implies τ ′-injectability. To give an example of
injectable sets, we recall from [20, Section 3.2] that a closed convex cone K of X is obtuse if
−K⊖ ⊆ K, where K⊖ is the negative polar of K defined by

K⊖ := {y ∈ X
∣∣ ∀x ∈ K : 〈x, y〉 ≤ 0}. (101)

The following result is a variant of [9, Lemma 2.1(v)].
Proposition 5.2. Let C be a translation of an obtuse cone in X. Then

∀λ ∈ [1, +∞[ , ∀x ∈ X : P λ
Cx ∈ C. (102)

Consequently, C is ∞-injectable.

Proof. By assumption, there exist a vector c and an obtuse cone K in X such that C = c + K.
First, we clearly have C + K = c + K + K = c + K = C since K is a convex cone.

Now let x ∈ X and set p = PCx, which is unique since C is convex. It is easy to check that

p − x ∈ −Nprox
C (p) ⊆ −K⊖ ⊆ K. (103)

So, for every λ ∈ [1, +∞[,

P λ
Cx = (1 − λ)x + λp = p + (λ − 1)(p − x) ⊆ C + K = C. (104)

We therefore conclude that C is ∞-injectable. �

We now show that injectability is a generalization of the enlargement concept, which was first
defined for convex sets in [7, Definition 2].
Definition 5.3 (enlargement of an arbitrary set). Given a nonempty closed subset D of X
and τ ∈ R+, the τ -enlargement of D is defined by the set

D[τ ] := {x ∈ X
∣∣ dD(x) ≤ τ} = D + IB(0; τ). (105)

It is clear that D[0] = D and D[τ ] is nonempty and closed.
Proposition 5.4. Let τ ∈ R+. Then every τ -enlargement is 2τ -injectable. In particular, every ball

with radius τ is 2τ -injectable.

Proof. Let C be a τ -enlargement, say, C = D+IB(0; τ). Let x ∈ XrC and let p ∈ PCx. There exists
q ∈ D such that ‖p − q‖ ≤ τ . It follows that 0 < dC(x) ≤ ‖x − q‖ ≤ ‖x − p‖ + ‖p − q‖ ≤ dC(x) + τ .
We will show that the last two equalities happen, i.e.,

‖x − q‖ = ‖x − p‖ + ‖p − q‖ = dC(x) + τ. (106)
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Suppose otherwise, then ‖x− q‖ < dC(x)+ τ . Setting z := q + τ x−q
‖x−q‖ , we have z ∈ IB(q; τ) ⊆ C and

‖x − z‖ = ‖x − q‖ − τ < dC(x), which is a contradiction. So (106) is true, which implies that p lies
in the segment [x, q] and that ‖p − q‖ = τ . From here, we derive that p + 2τ p−x

‖p−x‖ = p + 2τ q−p
‖q−p‖ =

p + 2(q − p) = 2q − p and also [p − q, q − p] ⊆ IB(0; τ). Hence,

[
p, p + 2τ p−x

‖p−x‖

]
=

[
p, 2q − p

]
= q +

[
p − q, q − p

]
⊆ q + IB(0; τ) ⊆ C, (107)

and the conclusion follows. �

Remark 5.5. The converse of Proposition 5.4 is not true. For example, consider a nontrivial obtuse
cone C in R2 that is strictly contained in a halfspace. Then, for every τ ∈ R++, C is τ -injectable
but is not a τ -enlargement of any subset of R2.

Enlargements emerge in several applications. For example, the design problem in civil engineer-
ing discussed in [8] is modeled so that all constraints are represented in the form of enlargement
sets. In this case, enlargements are exactly the original constraints of the feasibility problem. In
general, one should not replace an original set by its enlargements since it may significantly change
the solution of the feasibility problem. Yet there are certain cases where enlargements are actu-
ally useful. For instance, in [21], the image reconstruction problem is to solve a system of linear
equations where constant coefficients may contain inevitable noise. Such systems may not have any
exact solution. Therefore, it is reasonable to allow original equations to be only satisfied within a
certain tolerance. This leads to a feasibility problem with enlargement sets. Here enlargements are

replacements of the original constraints. In both examples, the injectability property is exploited
to improve convergence.
Lemma 5.6. Let C be a nonempty closed subset of X and let w ∈ C. Suppose that C is strictly

injectable around w, i.e., there exist τ ∈ R++ and δ ∈ R++ such that C is τ -injectable on IB(w; δ).
Set δ′ := min{τ, δ}. Then

∀λ ∈ [1, 2] , ∀x ∈ IB(w; δ′) : P λ
Cx ⊆ C. (108)

Proof. Let λ ∈ [1, 2], let x ∈ IB(w; δ′) ⊆ IB(w; δ), let x+ ∈ P λ
Cx, and write x+ = (1 − λ)x + λp =

p+(λ−1)(p−x) for some p ∈ PCx. Now assume that p 6= x, then 0 < ‖p−x‖ = dC(x) ≤ ‖x−w‖ ≤
δ′ ≤ τ . Since λ ∈ [1, 2] we have 0 ≤ λ − 1 ≤ 1 ≤ τ

‖p−x‖ . Combining with the τ -injectability of C on

IB(w; δ) yields

x+ = p + (λ − 1)(p − x) ∈
[
p, p + τ

p − x

‖p − x‖
]

⊆ C, (109)

which finishes the proof. �

We arrive at our main results on linear convergence of cyclic relaxed projections.
Theorem 5.7 (cyclic relaxed projections with at most one reflection). Let w ∈ C :=⋂

i∈I Ci, ε ∈ [0, 1[, and δ ∈ R++. Suppose that

(a) {Ci}i∈I is κ-linearly regular on IB(w; δ/2) for some κ ∈ R++.

(b) {Ci}i∈I is (ε, δ)-regular at w.

(c) λi ∈ ]0, 2] for every i ∈ I and there is at most one λj equal to 2 with the corresponding set Cj

being τ -injectable on IB(w; δ/2) for some τ ∈ R++.

(d) Setting Γ :=
∏
i∈I

(1 + λiε
1−ε)1/2, J := {j ∈ I

∣∣ λj = 2}, and ν := min
i∈IrJ

{1, λi}, it holds that

ρ :=


Γ2 − ν2

κ2

( ∑

i∈IrJ

λi

2 − λi

)−1(1 + ε

1 − ε

)|J |




1
2m

+

< 1. (110)
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Then whenever the starting point is sufficiently close to w, the cyclic sequence (xn)n∈N generated

by the relaxed projections (P λi
Ci

)i∈I converges R-linearly to a point x ∈ C with rate ρ. In particular,

shrinking δ if necessary so that δ/2 ≤ τ , the linear convergence of (xn)n∈N is guaranteed provided

that either (xmn)n∈N ⊂ IB(w; δ0) or x0 ∈ IB
(
w; δ0(1−ρ)

2+Γ−ρ

)
, where δ0 := δ

2Γ min
i∈I

(1 + λiε
1−ε)1/2.

Proof. Set Ω := C ∩ IB(w; δ) and for every i ∈ I, set γi := 1 + λiε
1−ε and βi := 2−λi

λi
. Then

Γ = (γ1 · · · γm)1/2 and δ0 = δ
2Γ min

i∈I
γ

1/2
i . On the one hand, for every i ∈ I r J , Proposition 3.5

implies that P λi
Ci

is
(
Ci ∩ IB(w; δ), γi , βi

)
-quasi firmly Fejér monotone on IB(w; δ/2). On the other

hand, for every i ∈ I, Proposition 3.6 implies that P λi
Ci

is (Ci, λi)- and therefore (Ci, ν)- quasi
coercive on X. We consider two cases.

Case 1: There is no λj equal to 2, i.e, J = ∅. Noting that δ0 ≤ δ
2Γγ

1/2
m , we then apply

Theorem 4.5 to derive that if either (xmn)n∈N ⊂ IB(w; δ0) or x0 ∈ IB(w; δ0(1−ρ)
2+Γ−ρ ), the sequence

(xn)n∈N converges R-linearly with rate

ρ =

[
Γ2 − ν2

κ2

( ∑

i∈I

1

βi

)−1
] 1

2m

+

< 1. (111)

Case 2: There is only one λj = 2, i.e, J = {j}. Using Lemma 5.6 and shrinking δ so that
δ/2 ≤ τ , we have

∀x ∈ IB(w; δ/2) : P
λj

Cj
x ⊆ Cj . (112)

It follows from Proposition 3.5 that RCj = P
λj

Cj
is (Cj, γj)-quasi Fejér monotone on IB(w; δ/2)

with γj = 1+ε
1−ε . Since δ0 ≤ δ

2Γγ
1/2
j , Theorem 4.7 implies that if either (xmn)n∈N ⊂ IB(w; δ0) or

x0 ∈ IB(w; δ0(1−ρ)
2+Γ−ρ ), the sequence (xn)n∈N converges R-linearly with rate

ρ =


Γ2 − ν2

κ2

( ∑

i∈IrJ

1

βi

)−1(1 + ε

1 − ε

)



1
2m

+

< 1. (113)

Combining the two formulas for ρ, we obtain (110) and complete the proof. �

In the following, we present the convergence result with refined linear rate for cyclic over-relaxed
projections. In particular, if all sets are injectable, we will obtain linear reduction after every m − 1
steps. Therefore, the upper bound for linear rate is reduced.
Theorem 5.8 (cyclic over-relaxed projections for injectable sets). Let w ∈ C :=

⋂
i∈I Ci,

ε ∈ [0, 1[, δ ∈ R++, and τi ∈ R+ for every i ∈ I. Suppose that

(a) {Ci}i∈I is κ-linearly regular on IB(w; δ/2) for some κ ∈ R++.

(b) {Ci}i∈I is (ε, δ)-regular at w.

(c) For every i ∈ I, λi ∈ [1, 2[ and Ci is τi-injectable on IB(w; δ/2) with τi > 0 whenever λi > 1.

(d) Setting Γ := max
j∈I

∏
i∈Ir{j}

(1 + λiε
1−ε)1/2, it holds that

ρ :=

[
Γ2 − 1

κ2

(( ∑

i∈I

λi

2 − λi

)
− min

i∈I

λi

2 − λi

)−1
] 1

2(m−1)

+

< 1. (114)
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Then whenever the starting point is sufficiently close to w, the cyclic sequence (xn)n∈N gener-

ated by the relaxed projections (P λi
Ci

)i∈I converges R-linearly to a point x ∈ C with rate ρ. In

particular, shrinking δ if necessary so that δ/2 ≤ min{τi

∣∣ λi > 1}, the linear convergence of

(xn)n∈N is guaranteed provided that either (x(m−1)n)n∈N ⊂ IB(w; δ) or x0 ∈ IB
(
w; δ(1−ρ)

2+Γ−ρ

)
, where

δ := δ
2Γ

(
1 + max

i∈I

λiε
1−ε

)−1/2
.

Proof. We first shrink δ > 0 if necessary so that δ/2 ≤ min{τi

∣∣ λi > 1}. For every i ∈ I, note that

∀x ∈ IB(w; δ/2) : P λi
Ci

x ⊆ Ci. (115)

Indeed, if λi = 1 then (115) is automatic; and if λi > 1, then (115) follows from Lemma 5.6.

Next, define γi := 1 + λiε
1−ε and βi := 2−λi

λi
for every i ∈ I. Then

Γ =
( γ1 · · · γm

mini∈I γi

)1/2
and

( ∑

i∈I

λi

2 − λi

)
− min

i∈I

λi

2 − λi
=

( ∑

i∈I

1

βi

)
− 1

maxi∈I βi
. (116)

By Proposition 3.5, for every i ∈ I, P λi
Ci

is (Ci ∩ IB(w; δ), γi, βi)-quasi firmly Fejér monotone on
IB(w; δ/2). Now all assumptions in Theorem 4.8 are satisfied, hence the conclusion follows. �

Remark 5.9 (refined linear rate). One can observe that, given the same constants ε ∈ R++,
λi ∈ [1, 2[ (which yields ν = 1 in Theorem 5.7), and κ ∈ R++, the (upper bound) rate ρ in (114) is
smaller than the one in (110). Thus, if all sets are injectable, we obtain a better upper bound for
the linear rate.
Corollary 5.10 (refined linear convergence for cyclic projections). Let w ∈ C :=

⋂
i∈I Ci,

ε ∈ [0, 1[, and δ ∈ R++. Suppose that

(a) {Ci}i∈I is κ-linearly regular on IB(w; δ/2) for some κ ∈ R++.

(b) {Ci}i∈I is (ε, δ)-regular at w.

(c) It holds that

ρ :=

[
1

(1 − ε)m−1
− 1

(m − 1)κ2

] 1
2(m−1)

+

< 1. (117)

Then whenever the starting point is sufficiently close to w, the cyclic sequence generated by the

classical projections (PCi)i∈I converges R-linearly to a point x ∈ C with rate ρ.

Proof. Apply Theorem 5.8 with λi = 1 for every i ∈ I. �

The next corollary shows that when {Ci}i∈I is a linearly regular system of superregular sets,
the cyclic relaxed projections converge locally with linear rate.
Corollary 5.11 (cyclic relaxed projections for superregular sets). Let w ∈ C :=

⋂
i∈I Ci

and let λi ∈ ]0, 2] for every i ∈ I, where there is at most one λi equal to 2 with the corresponding Ci

being strictly injectable around w. Suppose that the system {Ci}i∈I is linearly regular around w and

superregular at w. Then when started at a point sufficiently close to w, the cyclic relaxed projection

sequence generated by (P λi
Ci

)i∈I converges R-linearly to a point x ∈ C.

Proof. Let ε ∈ ]0, 1[. By assumption, there exist κ ∈ R++ and δ ∈ R++ such that {Ci}i∈I is
κ-linearly regular on IB(w; δ/2) and (ε, δ)-regular at w. Borrowing notation from Theorem 5.7 and

noting that βν2

κ2

(1+ε
1−ε

)|J | ≥ βν2

κ2 > 0 and that 1 + λiε
1−ε → 1+ as ε → 0+, we choose ε sufficiently small

and shrink δ if necessary so that ρ < 1. Finally, apply Theorem 5.7. �

20



Now we turn our attention to the case of convexity in which global linear convergence is expected.
Corollary 5.12 (global linear convergence of convex cyclic relaxed projections). Sup-

pose that for every i ∈ I, Ci is convex and that
⋂

i∈Ip
Ci ∩ ⋂

i∈IrIp
ri Ci 6= ∅, where Ip :=

{i ∈ I
∣∣ Ci is polyhedral}. Let λi ∈ ]0, 2] for every i ∈ I and suppose that there is at most one

λi equal to 2 with the corresponding Ci being a translation of an obtuse cone in X. Then regard-

less of the starting point, the cyclic relaxed projection sequence generated by (P λi
Ci

)i∈I converges

R-linearly to a point x ∈ C :=
⋂

i∈I Ci. In particular, for every starting point x0 ∈ X, the linear

rate is

ρ :=


1 − ν2

κ2

( ∑

i∈IrJ

λi

2 − λi

)−1




1
2m

+

, (118)

where J := {i ∈ I
∣∣ λi = 2}, ν := min

i∈IrJ
{1, λi}, and κ is a linear regularity modulus of {Ci}i∈I on

IB(w; δ/2) for some δ ∈ R++ satisfying δ ≥ 2dC(x0).

Proof. Let x0 ∈ X, let δ ∈ R++ be such that δ ≥ 2dC(x0), and pick w ∈ C such that δ ≥
2‖x0 − w‖ ≥ 2dC(x0). Let (xn)n∈N be the cyclic sequence generated by (P λi

Ci
)i∈I with starting point

x0. Employing [2, Corollary 5], there exists κ ∈ R++ such that {Ci}i∈I is κ-linearly regular on
IB(w; δ/2). By convexity, {Ci}i∈I is (0, ∞)-regular at every point in X (see [10, Remark 8.2(v)]),
which combined with Proposition 3.5 implies that for every i ∈ I, P λi

Ci
is (Ci, 1)-quasi Fejér monotone

on X. In fact, P λi
Ci

= (1 − λi
2 ) Id +λi

2 RCi is even nonexpansive due to [3, Corollary 4.10 and
Remark 4.24(i)].

By Proposition 5.2, the set Ci corresponding to λi = 2, if any, is ∞-injectable on X. We also
see that ρ < 1 and all assumptions in Theorem 5.7 are therefore satisfied with ε = 0. Now since
x0 ∈ IB(w; δ/2), Lemma 3.4(ii) and the (Ci, 1)-quasi Fejér monotonicity of P λi

Ci
yield (xn)n∈N ⊂

IB(w; δ/2). Hence the proof is completed by applying Theorem 5.7. �

Remark 5.13. When λ1 = 2, λ2 = · · · = λm = 1 in Theorem 5.7 and Corollary 5.12, the cyclic
relaxed projections is precisely the reflection-projection algorithm, whose global convergence was
studied in [9] with the reflection across an obtuse cone. It is worth mentioning that our results are
the first to conclude local and global R-linear convergence for the reflection-projection algorithm.

We finish this section by two examples showing that convergence may fail even in convex settings
if there are more than one λi equal to 2 or if the strict injectability of Cj corresponding to λj = 2
is violated.
Example 5.14 (failure of convergence when more than one λi equal to 2). In X = R2,
consider two convex sets C1 = R2

+ and C2 = (−R+)2. Then C1 and C2 are obtuse cones and also
polyhedral sets in X with C1 ∩ C2 = {(0, 0)} 6= ∅, hence {C1, C2} is linearly regular. It is easy to
see that when started at a point x0 = (ζ, ξ) ∈ X r {(0, 0)}, the sequence generated by (RC1 , RC2)
does not converge since it cycles between two points (|ζ|, |ξ|) and (−|ζ|, −|ξ|).
Example 5.15 (failure of convergence if strict injectability is violated). Suppose X = R2,
that C1 = R × {0}, and that C2 = {0} × R. Then C1 and C2 are polyhedral but not strictly
injectable, and C1 ∩ C2 = {(0, 0)} 6= ∅. Take x0 = (0, ξ) with ξ ∈ Rr {0}, the sequence generated
by (RC1 , PC2) cycles indefinitely between x0 = (0, ξ), x1 = (0, −ξ), x2 = (0, −ξ) and x3 = (0, ξ).

5.2 Cyclic semi-intrepid projections

Cyclic intrepid projections [7, 8] have found their applications in solving the feasibility problem
(1), notably the road design problems [8]. The technique is to adjust the cyclic projections such
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that for every projection PCi , one tries to be “more aggressive" by extrapolating into the set Ci

whenever possible. However, there is little incentive to “leave" the set Ci, therefore, the ratio is
limited to which the extrapolated point remains within the set. This idea was first used in [21] for
special polyhedra named “strips", i.e., intersections of two halfspaces with opposite normal vectors,
see also [8, 22]; and was later generalized in [7] for enlargement sets. Motivated by this, we give the
definition of semi-intrepid projectors.
Definition 5.16 (semi-intrepid projector to injectable sets). Let α ∈ [0, 1], let τ ∈ R+, let
C be a τ -injectable set on a given set U of X, and let x ∈ X. The α-intrepid projection of x into
C is defined by

P
(α,τ)
C x =

{
p + (p − x) min{α, τ

‖p−x‖}
∣∣∣ p ∈ PCx

}
(119)

with the convention that τ
‖p−x‖ = 0 if p = x.

We note that P
(0,τ)
C and P

(α,0)
C are just the usual projector onto C and that P

(1,τ)
C is the original

intrepid projector [7, Definition 4], see also [8].
Proposition 5.17. Let τ ∈ R+ and let C be a τ -injectable set on a given set U of X. Then

∀α ∈ [0, 1], ∀x ∈ U : P
(α,τ)
C x ⊆ C. (120)

Proof. The proof is straightforward from the definition. �

Proposition 5.18 (quasi firm Fejér monotonicity of semi-intrepid operators). Let ε ∈ R+,

δ ∈ R++, τ ∈ R+, and α ∈ [0, 1]. Let C be a τ -injectable set on IB(w; δ/2) and suppose that C is

(ε, δ)-regular at w ∈ C. Then the semi-intrepid projector P
(α,τ)
C is (C ∩ IB(w; δ), 1+αε

1−ε , 1−α
1+α)-quasi

firmly Fejér monotone on IB(w; δ/2).

Proof. Take x ∈ IB(w; δ/2) and x+ ∈ P
(α,τ)
C x. There exists p ∈ PCx such that

x+ = p + α′(p − x) = x + (1 + α′)(p − x), where α′ := min{α, τ
‖x−p‖}. (121)

Then x+ is an image of the relaxed projection P 1+α′

C x and, by Proposition 3.5,

∀x ∈ C ∩ IB(w; δ) : ‖x+ − x‖2 + 2−(1+α′)
1+α′ ‖x+ − x‖2 ≤

(
1 + (1+α′)ε

1−ε

)
‖x − x‖2. (122)

As α′ ≤ α, one can check that 2−(1+α′)
1+α′ ≥ 1−α

1+α and 1 + (1+α′)ε
1−ε ≤ 1+αε

1−ε . Hence,

∀x ∈ C ∩ IB(w; δ) : ‖x+ − x‖2 + 1−α
1+α‖x+ − x‖2 ≤ 1+αε

1−ε ‖x − x‖2, (123)

and the proof is complete. �

We now prove the R-linear convergence for the cyclic semi-intrepid projections, one of which is
allowed to be the original intrepid projection [7, 8].
Theorem 5.19 (cyclic semi-intrepid projections). Let w ∈ C :=

⋂
i∈I Ci, ε ∈ ]0, 1[, and

δ ∈ R++. For every i ∈ I, let τi ∈ R+ and αi ∈ [0, 1], where there is at most one αj equal to 1. Set

J := {j ∈ I
∣∣ αj = 1} and

Γ :=
( γ1 · · · γm

mini∈I γ
1−|J |
i

) 1
2
, where γi :=

1 + αiε

1 − ε
for every i ∈ I. (124)

Suppose that
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(a) {Ci}i∈I is κ-linearly regular on IB(w; δ/2) for some κ ∈ R++.

(b) {Ci}i∈I is (ε, δ)-regular at w.

(c) For every i ∈ I, Ci is τi-injectable on IB(w; δ/2).
(d) It holds that

ρ :=


Γ2 − 1

κ2

( ∑

i∈IrJ

1 + αi

1 − αi
− (1 − |J |) min

i∈IrJ

1 + αi

1 − αi

)−1(1 + ε

1 − ε

)|J |




1
2(m−1+|J|)

+

< 1. (125)

Then whenever the starting point is sufficiently close to w, the cyclic sequence (xn)n∈N generated by

semi-intrepid projections
(
P

(αi,τi)
Ci

)
i∈I

converges R-linearly to a point in C with rate ρ. In particular,

the linear convergence of (xn)n∈N is guaranteed provided that either (x(m−1+|J |)n)n∈N ⊂ IB(w; δ′) or

x0 ∈ IB
(
w; δ′(1−ρ)

2+Γ−ρ

)
, where δ′ := δ

2Γ min
i∈I

γ
1/2
i (max

i∈I
γ

1/2
i )|J |−1.

Proof. According to Proposition 5.17, for every i ∈ I,

∀x ∈ IB(w; δ/2) : P
(αi,τi)
Ci

x ⊆ Ci, (126)

and P
(αi,τi)
Ci

is thus (Ci, 1)-quasi coercive on IB(w; δ/2). Next, we learn from Proposition 5.18 that,

for i ∈ I r J , P
(αi,τi)
Ci

is (C ∩ IB(w; δ), γi,
1−αi
1+αi

)-quasi firmly Fejér monotone on IB(w; δ/2) and that,

for j ∈ J , P
(αj ,τj)
Cj

is (C ∩ IB(w; δ), γj)-quasi Fejér monotone on IB(w; δ/2).

Case 1: J = {j}. In this case, Γ = (γ1 · · · γm)1/2 and δ′ = δ
2Γ min

i∈I
γ

1/2
i ≤ δ

2Γγ
1/2
j . By Theo-

rem 4.7, if either (xmn)n∈N ⊂ IB(w; δ′) or x0 ∈ IB
(
w; δ′(1−ρ)

2+Γ−ρ

)
, then (xn)n∈N converges with R-linear

rate

ρ =


Γ2 − 1

κ2

( ∑

i∈IrJ

1 + αi

1 − αi

)−1(1 + ε

1 − ε

)



1
2m

+

< 1. (127)

Case 2: J = ∅. In this case, Γ = ( γ1···γm

mini∈I γi
)1/2 and δ′ = (max

i∈I
γi)

−1/2δ0 where δ0 := δ
2Γ . We

get from Theorem 4.8 that if either (x(m−1)n)n∈N ⊂ IB(w; δ′) or x0 ∈ IB
(
w; δ′(1−ρ)

2+Γ−ρ

)
, then (xn)n∈N

converges with R-linear rate

ρ =

[
Γ2 − 1

κ2

(( ∑

i∈I

1 + αi

1 − αi

)
− min

i∈I

1 + αi

1 − αi

)−1
] 1

2(m−1)

+

< 1. (128)

The result follows by combining two cases. �

Corollary 5.20 (global linear convergence of convex cyclic semi-intrepid projections).
Suppose that for every i ∈ I, Ci is convex and that

⋂
i∈Ip

Ci ∩ ⋂
i∈IrIp

ri Ci 6= ∅, where Ip :=

{i ∈ I
∣∣ Ci is polyhedral}. Suppose also that each Ci is τi-injectable for some τi ∈ R+. Let αi ∈ [0, 1]

for every i ∈ I and assume there is at most one αj equal to 1. Then regardless of the starting point,

the cyclic semi-intrepid projection sequence generated by (P
(αi,τi)
Ci

)i∈I converges R-linearly to a point

x ∈ C :=
⋂

i∈I Ci. In particular, for every starting point x0 ∈ X, the linear rate is

ρ :=


1 − 1

κ2

(( ∑

i∈IrJ

1 + αi

1 − αi

)
− (1 − |J |) min

i∈IrJ

1 + αi

1 − αi

)−1




1
2(m−1+|J|)

+

, (129)
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where J := {i ∈ I
∣∣ αi = 1} and κ is a linear regularity modulus of {Ci}i∈I on IB(w; δ/2) for some

δ ∈ R++ satisfying δ ≥ 2dC(x0).

Proof. Take x0 ∈ X, δ ≥ 2dC(x0), and choose w ∈ C such that δ ≥ 2‖x0 − w‖ ≥ 2dC(x0). Then

x0 ∈ IB(w; δ/2). Let (xn)n∈N be the cyclic sequence generated by (P
(αi,τi)
Ci

)i∈I with starting point x0.
We observe from [2, Corollary 5] that {Ci}i∈I is κ-linearly regular on IB(w; δ/2) for some κ ∈ R++

and from [10, Remark 8.2(v)] that {Ci}i∈I is (0, ∞)-regular at every point in X (due to convexity).
Note that ρ < 1 in (129), so all assumptions in Theorem 5.19 are fulfilled with ε = 0.

Next, since {Ci}i∈I is (0, ∞)-regular at every point in X, Proposition 5.18 implies that, for

every i ∈ I, P
(αi,λi)
Ci

is (Ci, 1)-quasi Fejér monotone on X. Combining with x0 ∈ IB(w; δ/2) and
Lemma 3.4(ii) gives (xn)n∈N ⊂ IB(w; δ/2). Now apply Theorem 5.19. �

5.3 Cyclic generalized Douglas–Rachford algorithm

In this section, we work with the index set J := {1, . . . , ℓ}, where ℓ is a positive integer. For every
j ∈ J , let λj , µj ∈ ]0, 2], let αj ∈ ]0, 1[, and let sj, tj ∈ I such that sj 6= tj and that

{sj

∣∣ j ∈ J} ∪ {tj

∣∣ j ∈ J} = I. (130)

We consider the cyclic generalized Douglas–Rachford algorithm defined by (Tj)j∈J , where

∀j ∈ J : Tj := (1 − αj) Id +αjP
µj

Ctj
P

λj

Csj
, (131)

and shall prove that this algorithm also possesses R-linear convergence properties. It is worth noting
that if each Tj is a classical DR operator (i.e., αj = 1/2, λj = µj = 2), then the cyclic generalized
DR algorithm is the multiple-sets DR algorithm [15]. The latter reduces to the cyclic DR algorithm

[14] when ℓ = m, (sj, tj) = (j, j +1) for j = 1, . . . , m−1, and (sm, tm) = (m, 1); and to the cyclically

anchored DR algorithm [12] when ℓ = m − 1, (sj, tj) = (1, j + 1) for j = 1, . . . , m − 1.
Theorem 5.21 (cyclic generalized DR algorithm). Let w ∈ C :=

⋂
i∈I Ci. Suppose that the

system {Ci}i∈I is superregular at w and linearly regular around w and that {Csj , Ctj } is strongly

regular at w for every j ∈ J . Then when started at a point sufficiently close to w, the cyclic

generalized DR sequence generated by (Tj)j∈J converges R-linearly to a point x ∈ C.

Proof. Let j ∈ J and let ε ∈ ]0, 1/3]. Since {Ci}i∈I is superregular at w, there exists δ ∈ R++ such
that Ci is (ε,

√
2δ)-regular at w for every i ∈ I. Then Csj and Ctj are (ε, δ)- and (ε,

√
2δ)-regular

at w, respectively. Using Proposition 3.7, Tj is (Csj ∩ Ctj , γj ,
1−αj

αj
)-quasi firmly Fejér monotone on

IB(w; δ/2), where

γj := 1 − αj + αj

(
1 +

λjε

1 − ε

) (
1 +

µjε

1 − ε

)
→ 1+ as ε → 0+. (132)

Shrinking δ if necessary, we derive from Proposition 3.8 that Tj is (Csj ∩ Ctj , νj)-quasi coercive on
IB(w; δ/2), where

νj :=
αj

√
1 − θj

κj
min

{
λj ,

µj√
1 + µ2

j

}
for some κj ∈ R++ and θj ∈ ]0, 1[ . (133)
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Now by the linear regularity of {Ci}i∈I , we again shrink δ if necessary and find κ ∈ R++ such
that

∀x ∈ IB(w; δ/2) : dC(x) ≤ κ max
i∈I

dCi(x). (134)

Since Csj ∩ Ctj ⊆ Csj and Csj ∩ Ctj ⊆ Ctj ,

∀j ∈ J, ∀x ∈ X : max{dCsj
(x), dCtj

(x)} ≤ dCsj ∩Ctj
(x). (135)

Noting also from (130) that
⋂

j∈J

(Csj ∩ Ctj ) =
⋂

i∈I

Ci = C, (136)

we conclude that the system {Csj ∩ Ctj }j∈J is also κ-linearly regular on IB(w; δ/2).

Finally, set ν := minj∈J{1, νj}. Due to (132), we can choose ε sufficiently small so that

ρ :=


γ1 · · · γm − ν2

κ2

( ∑

j∈J

αj

1 − αj

)−1




1/2

+

< 1. (137)

Thus, applying Theorem 4.5 to (Tj)j∈J and the corresponding sets (Csj ∩ Ctj )j∈J , we obtain the
R-linear convergence. �

We recall from Remark 2.6 that the linear regularity of a system together with the strong
regularity of its subsystems are less restrictive than the strong regularity of that system. This
observation supports the use of our separate assumptions on linear regularity and strong regularity
in Theorem 5.21.

In the case m = 2, we obtain a generalization of [33, Theorem 4.3] which proves R-linear
convergence of the classical DR algorithm for two sets. In fact, the classical DR algorithm also
converges R-linearly in other settings where cyclic projections may not, more details can be found
in [4, 5, 6].
Corollary 5.22 (generalized DR algorithm). Let A and B be closed subsets of X and w ∈ A∩B.

Let λ, µ ∈ ]0, 2], α ∈ ]0, 1[, and set

T := (1 − α) Id +αP µ
BP λ

A. (138)

Suppose that the system {A, B} is superregular and strongly regular at w. Then when started at a

point sufficiently close to w, the generalized DR sequence generated by T converges R-linearly to a

point x ∈ A ∩ B.

Proof. Note that strong regularity implies linear regularity (see Fact 2.5) and apply Theorem 5.21
with m = 2, ℓ = 1, and (s1, t1) = (1, 2). �

5.4 Affine reduction for generalized Douglas–Rachford sequences

In this section, we extend the affine reduction scheme in [33, Section 3] to generalized Douglas–
Rachford sequences. Let A and B be nonempty closed subsets of X. For every n ∈ N, let λn, µn ∈
]0, 2], and αn ∈ ]0, 1[. A generalized DR sequence is given by

∀n ∈ N : xn+1 ∈ (1 − αn)xn + αnP µn

B P λn
A xn. (139)

We start with the following extension of [33, Lemma 3.1] whose elementary proof is omitted.
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Lemma 5.23. Let C be a nonempty closed subset of X, let L be an affine subspace of X containing

C, and let λ ∈ R+. Then the following hold:

(i) (Id −PL)P λ
C = (1 − λ)(Id −PL).

(ii) PLP λ
C = P λ

CPL.

The idea behind affine reduction for DR is to show that the shadow of any generalized DR
sequence on a certain affine subspace is again a generalized DR sequence. The next lemma provides
more details.
Lemma 5.24 (shadows of generalized DR sequences). Let L be an affine subspace of X
containing A ∪ B and define yn := PLxn for n ∈ N. Then the following hold:

(i) ∀n ∈ N : yn+1 ∈ (1 − αn)yn + αnP µn

B P λn
A yn, i.e., (yn)n∈N is also a generalized DR sequence.

(ii) ∀n ∈ N : xn+1 − yn+1 =
(
(1 − αn) + αn(1 − λn)(1 − µn)

)
(xn − yn).

Proof. Let n ∈ N.

(i): Then there exist rn ∈ P λn
A xn and sn ∈ P µn

B rn such that xn+1 = (1 − αn)xn + αnsn. By

Lemma 5.23(ii), PLsn ∈ PLP µn

B P λn
A xn = P µn

B P λn
A PLxn = P µn

B P λn
A yn. Since PL is an affine operator

(see [3, Corollary 3.20(ii)]), it follows that

yn+1 = PLxn+1 = PL((1 − αn)xn + αnsn) = (1 − αn)PLxn + αnPLsn

∈ (1 − αn)yn + αnP µn

B P λn
A yn.

(140a)

(140b)

Hence, (yn)n∈N is a generalized DR sequence starting at y0.

(ii): Using Lemma 5.23(i), we have

sn − PLsn = (1 − µn)(rn − PLrn) = (1 − µn)(1 − λn)(xn − PLxn)

= (1 − λn)(1 − µn)(xn − yn),

(141a)

(141b)

which implies that

xn+1 − yn+1 =
[
(1 − αn)xn + αnsn

]
−

[
(1 − αn)PLxn + αnPLsn

]

= (1 − αn)(xn − PLxn) + αn(sn − PLsn)

=
(
(1 − αn) + αn(1 − λn)(1 − µn)

)
(xn − yn).

(142a)

(142b)

(142c)

The proof is complete. �

In Corollary 5.22, strong regularity of {A, B} at w ∈ A ∩ B is not the most general condition
for R-linear convergence of DR sequences. Indeed, it can be relaxed to affine-hull regularity in the
sense that

NA(w) ∩ (−NB(w)) ∩ (L − w) = {0} with L := aff(A ∪ B). (143)

This condition has been observed in [33, Theorem 4.7] for the classical DR sequence (λ = µ = 2
and α = 1/2). We now continue extending such result for generalized DR sequences. For simplicity
of presentation, we consider only the case of constant parameters (λn, µn, αn) ≡ (λ, µ, α).
Theorem 5.25 (affine reduction for generalized DR sequences). Let A and B be closed

subsets of X such that A ∩ B 6= ∅, w ∈ A ∩ B, and L := aff(A ∪ B). Suppose that {A, B} is

superregular and affine-hull regular at w. Let (xn)n∈N be a generalized DR sequence generated by

T := (1 − α) Id +P µ
BP λ

A with λ, µ ∈ ]0, 2] and α ∈ ]0, 1[. Then the following hold:

(i) If λ = µ = 2, then, whenever PLx0 is sufficiently close to w, the sequence (xn)n∈N converges

R-linearly to a point x ∈ Fix T with PAx = PBx ∈ A ∩ B.
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(ii) If either λ < 2 or µ < 2, then, whenever PLx0 is sufficiently close to w, the sequence (xn)n∈N

converges R-linearly to a point x ∈ A ∩ B.

Proof. Define yn := PLxn for n ∈ N. By Lemma 5.24(i), (yn)n∈N ⊂ L is also a generalized DR
sequence generalized by T . By restricting our consideration within the affine subspace L, affine-hull
regularity (143) becomes strong regularity of {A, B} within L. Thus, Corollary 5.22 yields that
(yn)n∈N converges R-linearly to a point y ∈ A ∩ B when PLx0 = y0 is sufficiently close to w.

Setting η := (1 − α) + α(1 − λ)(1 − µ), we have from Lemma 5.24(ii) that

∀n ∈ N : xn − yn = ηn(x0 − y0). (144)

(i): Assume λ = µ = 2. Then η = 1 and, since (yn)n∈N converges R-linearly to y ∈ A ∩ B,
(144) implies that (xn)n∈N converges R-linearly to x := y + (x0 − y0). Now by [3, Corollary 3.20(i)],
x0−y0 ∈ (L−L)⊥ = (L−w)⊥, and by [10, Lemma 3.2], PAx = PAy = y and PBRAx = PB(2y−x) =
PB(y +y0 −x0) = PBy = y. It follows that RBRAx = x, which yields T x = (1−α)x+αRBRAx = x
and so x ∈ Fix T .

(ii): Assume either λ < 2 or µ < 2. Then η < 1 and, by (144), xn − yn converges R-linearly to
0. Hence, xn = yn + (xn − yn) converges R-linearly to x = y ∈ A ∩ B. �

Remark 5.26. Theorem 5.25(ii) has never been explored before even in convex settings where one
would obtain global R-linear convergence to the intersection; while Theorem 5.25(i) was proved in
[33, Theorem 4.7] for the classical DR algorithm. With some care on the parameters, Theorem 5.25
can certainly be extended to the case of generalized DR iterations of the form (139) with 1 <
inf
n∈N

{λn, µn} ≤ sup
n∈N

{λn, µn} ≤ 2 and 0 < inf
n∈N

αn ≤ sup
n∈N

αn < 1.
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