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Abstract

We consider a multidimentional Brownian control problem (BCP) with model un-
certainty that formally emerges from a multiclass M/M/1 queueing control problem un-
der heavy-traffic with model uncertainty. The BCP is formulated as a multidimensional
stochastic differential game with two players: a minimizer that has an equivalent role to the
decision maker in the queueing control problem and a maximizer whose role is to set up the
uncertainty of the model. The dynamics are driven by a Brownian motion. We show that
a state-space collapse propery holds. That is, the multidimensional BCP can be reduced
to a one-dimensional BCP with model uncertainty that also takes the form of a two-player
stochastic differential game. Then, the value function of both games is characterized as
the unique solution to a free-boundary problem from which we extract equilibria for both
games. Finally, we analyze the dependence of the value function and the equilibria on the
ambiguity parameters.
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1 Introduction

Typically, heavy-traffic queueing control problems (QCPs) in the diffusion scale are treated by
defining a limiting control problem associated with Brownian motion, called Brownian control
problems (BCPs), first introduced by [18]; for further reading on BCPs see e.g., [8, 11} [12] and
the references therein. In this paper we study two BCPs with model uncertainty that formally
emerge from a multiclass M/M/1 QCP with finitely many buffers with finite capacity under
heavy-traffic with model uncertainty. The asymptotic relationship between the QCP and the
BCPs is the subject of a separate paper, see [I4]. Both the QCP and the BCP were studied
in the classical case under the framework of G/G/1 without ambiguity about the model in [6]
and in [28], where the latter considers time constraints instead of the finite buffers constraints.
These problems are referred to as risk-neutral problems.
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We are formulating a decision maker (DM) that has a reference model in mind, which, up to
some degree, describes the situation she is facing. Since the DM is uncertain about the true
model (either because the parameters are not fully known, can change over time, etc.), she
takes into account other models and penalizes them based on their deviation from a specific
reference model. The penalization depends then on how averse the DM is to ambiguity. Such
ambiguity models are sometimes referred to as model uncertainty or Knightian uncertainty, see

e.g., [27, 17, 16], [7] and in the context of queueing systems see [24] [10] 26].

The first BCP with model uncertainty introduced is a multidimensional stochastic differential
game (MSDG) with two players: a DM and the nature, which according to their goals are
referred to as the minimizer and the maximizer, respectively. Borrowing terminology and the
roles of the processes from the QCP to the MSDG (here and in the sequel), the state-space of
the game is a product set of intervals of the form [0, l;Z], where b; is the capacity of buffer 7.
The minimizer in this game controls the server’s effort allocation among the buffers and the
admission /rejection to each buffer. The maximizer chooses the underlying probability measure;
this is shown to be equivalent to stochastically perturbing the drift of the Brownian motion
(possibly, differently for each coordinate).The game’s cost consists of holding and rejection
penalties and a variant of the Kullback—Leibler divergence with respect to (w.r.t.) the relevant
measures in this setup. The latter component stands for a penalty for the maximizer for
changing the drift.

We show that a state-space collapse property holds. That is, we provide a one-dimensional BCP
with uncertainty that also takes the form of a stochastic game, called the reduced stochastic
differential game (RSDG), whose state emerges from the workload process in the QCP. The
roles of the two players remain the same as in the MSDG and the dynamics and the cost
functions have similar components. We show that the games are equivalent in the sense that
given any strategy of the minimizer in either one of the games, we construct a strategy for
the minimizer in the other game that performs at least as well, and therefore, also the value
functions are the same (Proposition 2.1]). For further reading about workload reduction, see
18l 22], 19, 20, 23]. The advantage of such a reduction is that the dynamics live in a lower
dimension and have only two components of singular controls that represent idleness and
workload rejection. Therefore, most of the analysis is performed in the RSD setup. We
characterize the value function of the RSDG as the unique classical solution of a Hamilton-
Jacobi-Bellman (HJB) equation (Theorem B.I]). Doing so, we extend the relationship between
the reduced BCP and a relevant HJB equation studied in [2I] Equation (1.2)] and in [6]
Equation (41)] to a similar relationship in a stochastic game setup with a different HJB; unlike
in [6], due to the existence of a maximal player in our model, the HJB is not linear. Therefore,
one cannot use the results given in these papers and rather needs to establish the relationship
between the two. As a first step, we reduce the problem of solving the HJB equation to a free-
boundary problem. (To the best of my knowledge, this is the first model uncertainty control
problem that leads to a free-boundary problem with Neumann boundary conditions). Then
we use the shooting method to solve the latter problem. In short, this is a method for solving
boundary value problems using initial value problems. We take it one step forward in the

!Throughout the paper we alternatively refer to the BCPs as the ‘stochastic differential games’, or as ‘the
games’, or explicitly by MSDG and RSDG.



free-boundary setup; see [33] Section 7.3] for further reading about the method. Moreover, we
supply equilibria in both games and refer to the equilibrium strategies of the minimizer (in both
games) as the optimal strategy of the minimizer (Theorem E.T]). Starting with the RSDG, we
show that the optimal strategy for the minimizer in this game is a reflecting strategy. Namely,
the minimizer should use minimal idleness and minimal amount of workload rejections in order
to keep the workload in a fixed interval. The equilibrium strategy of the maximizer in this
game is also provided. From the RSDG equilibrium we construct an equilibrium in the MSDG.
According to the minimizer’s optimal policy in the MSDG, the queue length processes evolve
along a certain curve in the state-space. The minimizers’ opimal strategies in our games are
shown to have the same structures as the optimal strategies in the risk-neutral BCPs in [6].
Such a result is not so obvious for reasons having to do with the non-stationarity structure
of the problem caused by the existence of the maximizer player. The difference between the
policy of the minimizer in the multidimensional setup here as compared to [6] is only the cut-
off level of the reflecting strategy in the RSDG, which affects the point of reflection on the
multidimensional curve.

Aside from studying the games, we also analyze the dependence of the games on the ambiguity
parameters. We show continuity of the value function and the optimal reflecting strategies
w.r.t. the ambiguity parameters and that as the ambiguity vanishes, the problem converges to
the risk-neutral problem studied in [6] (Theorems Bl and B.2]).

We now discuss about the position of the current work between the risk-neutral BCPs and the
deterministic differential games (DDGs) studied in [2] and provide future outlook. Recall that
the risk-neutral BCPs from [6] governs the limiting behavior of a diffusion scaled multiclass
G/G/1 QCP with linear utility function. On the other side, the DDGs from [2] approximate
the same type of QCP with the following differences: the moderate-deviation replaces the
diffusion scaling and the utility function is exponential, scaled with the moderate-deviation
parameters. While in the risk-neutral case the probability of buffer overflow is approximated
by the probability that a Brownian motion with drift hits a positive level, which is of order
O(1), in the moderate-deviation scaling this probability vanishes with the scaling parameter.
As a compensation, the criteria considered is a risk-sensitive one, which gives an overwhelming
scaled exponential cost for such event. This means that the DM has a large ambiguity about
the model and she gives high weight even for events that are ‘very’ unlikely to happen. The
intuition behind the relationship between the QCP in the moderate-deviation heavy-traffic
regime and the limiting DDG goes back to the classical risk-sensitive control problem with
small noise diffusion. As argued in [I5, Ch. VI.2], consider a cost function [J and a positive
constant p, then the risk-sensitive cost can be expressed as,

a 'log <EP[e°“7]) = S?épEQ [oz(j — log <Z%> ﬂ, (1.1)

where the supremum is taken over an appropriate set of measures. When the noise coefficient
is a2 and a — oo, the limiting problem is a DDG. What we consider is the criteria given
in (II), without sending @ — oo. In the QCP, it means that we still consider the classical
diffusion scaling, yet our criteria gives space for ambiguity about the true underlying probability
measure. Since the higher « is, the more weight the DM gives to unlikely events, we say that



the DM has more ambiguity in the moderate-deviation risk sensitive QCP then in the one
related to our work, and thus we position our model between the two models described above.
This work does not aim to establish a deeper connection between the model uncertainty’s BCPs
and the DDGs. At this point it worth mentioning that the relation between the Kullback—
Leibler-constrained formulation and the exponential functional (i.e., (II])) is well known in
other contexts, see e.g., [I3] for an example in the context of uncertainty quantification.

In [2] it was shown that the optimal strategies of the minimizers in the DDGs have the same
structure as the ones in the BCPs from [6]. Together with the observation stated earlier, we get
that all the three models ([0], [2], and the present one) share the same optimal policy, where the
different lies in the cut-off point for rejections. Moreover, in a recent line of research of queueing
systems under the moderate-deviation heavy-traffic regime with risk-sensitive performance
criteria it was shown that classical results from the theory of risk-neutral QCPs and BCPs
such as state-space collapse and generalyzed cu rule hold in these models as well, see e.g.,
[, O 2, B, B, 4]. The current paper together with [14] represents a line of research of QCPs
and their associated BCPs under model uncertainty.

In this work we assume that the buffers are finite. This property arises naturally in private
cloud computing, which are limited in data and capacity. For a more detailed application,
see [31]. Intuitively, the problem with unlimited capacities and without rejections seems to be
simpler. We expect that similar tools can be used to show that the optimal strategy would
be to assign fized lowest priority to the class with the smallest fzi,ui value. Consequently, the
limiting queueing sizes would vanish with the scaling parameter for the rest of the buffers.
This is left for future work.

In summary, our main contributions are as follows. We

e provide and solve for the first time a BCP with model uncertainty that emerges from a
multiclass M/M/1 QCP with model uncertainty;

e show that a state-space collapse property holds for this game (Corollary 2.1]);

e show that the reduced game solves uniquely a relevant HJB equation, which is a nonlinear
free-boundary problem and that there is an optimal reflecting strategy (Theorem [B.1));

e provide equilibria for the two games considered (Theorem [£.]);

e analyze the dependence of the value function and the equilibria on the ambiguity param-
eters (Theorems [b.1] and [B.2]).

The paper is organized as follows. In Section [2] we motivate and present the stochastic dif-
ferential games and study the relationship between the two. Next, In Section Bl we study the
RSDG. We provide the HJB equation and prove that the value function of the game is the
unique smooth solution of the HJB. Moreover, we show that the minimizer has an optimal re-
flecting strategy. In Section [ we discuss the uniqueness of the optimal reflecting strategy and
find equilibria in both games. Finally, in Section [5] we study the dependency on the ambiguity
parameters.



1.1 Notation

We use the following notation. For a,b € R, a A b = min{a,b} and a Vb = max{a,b}. For
a positive integer k and ¢,d € R¥, ¢-d denotes the usual scalar product and |c|| = (¢ - ¢)'/2.
We denote [0,00) by Ry. For subintervals I1,Io € R and m € {1,2} we denote by C(I1, I2),
C™(I,1I2), and D(I1,I2) the space of continuous functions [resp., functions with continuous
derivatives of order m, functions that are right-continuous with finite left limits (RCLL)]
mapping I1 — Is. The space D(Iy, I2) is endowed with the usual Skorohod topology.

2 The BCPs

We start this section with a motivative QCP. The two BCPs are presented in Section 2.2} in
Section [2.2.1] we formally derive the MSDG and in Section [2.2.2]its reduction. Then in Section
23] we show that the two games share the same value and that given any strategy (for the
minimizer) in either one of the games, one can construct a strategy in the second game that
performs at least as well.

2.1 Motivative QCP

Consider a model that consists of I customer classes and a single server. Each class has its own
finite buffer and upon arrival, customers are queued in the corresponding buffer or rejected.
Within each class, customers are served at the order of their arrivals. Processor sharing is
allowed and the server may serve up to I customers at a time, where two customers from the
same class cannot be served simultaneously. The system under consideation is in heavy-traffic.
For this, we consider a sequence of systems, indexed by the scaling parameter n € N. For
every n we consider a reference probability space that supports independent Poisson processes
A and SP', i € [I] :={1,...,1} with rates A" and p', repsectively. The value A7 (t) stands for
the number of customers of class ¢ that arrived to the system until time ¢t € Ry, and S]*(t) is
the number of service completions of class i customers had the server dedicated all of its effort
to class ¢ during the time interval [0, ¢].

Denote by T*(t) the units of time that the server devoted to class ¢ until time ¢. For every
t € Ry and i € [I], SP*(T]*(t)) is the number of service completions of class i customers until
time ¢. This is a Cox process with the infinitesimal intensity p'd7}*(t). Rejections of customers
are allowed upon arrival and a rejected customer will never return to the system. The number
of customers from class ¢ that were rejected by time ¢ is denoted by R}'(t). For every i € [I],
the balance equation is given by,

Xi(t) = X7(0) + A7 (1) = ST (1) — Ri'(t),  tEeRy, (2.1)

where X'(t) stands for the number of class i customers in the system at time t. We use the
notation L™ = (L)I_, for {A,S, X, R, T}.
We assume that

AP = \in+ A2 4 o(n'/?), ul o= n + fun’? + o(nt/?), (2.2)

where \;, u; € (0,00) and 5\,-, i1; € R are fixed. Moreover, the system is assumed to be critically
loaded, that is, Zi[:l pi = 1, where p; :== \;/u;, i € [I].



The scaled version of (ZT) is given by,
X7 () = XP0) + it + AF(8) = ST (t) + Y, (t) — BP(1),  tE€Ry, (2.3)
where

XP(t) = n2XI(), AP =0T AR = AT, ST =T RSP — pit), (24)
YO(t) = pin= P (it = TI(E),  RM(t) =0T PR(),

and
mp =02 = pil).

As previously, we use the notation L" = (ﬁ;‘)i:l for L € {A, S, X, R, Y, T, m}.
The capacity of buffer i is given by b} := bin'/? for some constant b; € (0,00), i € [I]. We
assume that X" (0) € X := HiI:l[O, bi], and the rejection mechanism assures that

X't)yeXx, teRy, Pas. (2.5)

We now present the optimization criteria. The intuition behind it is as follows. The
DM, also referred to as the minimizer, chooses a control based on the past observations. He
minimizes a cost that takes into account a possible deviation from the reference model. For
this, we consider an adverse ‘player’, also referred to as the maximizer, who has access to the
policy chosen by the minimizer and to the history. This player is penalized for deviating from
the reference model.

In details, the vectors il, 7€ (0, oo)l stand for the holding and rejection costs, respectively.
The DM is uncertain about the underlying reference probability measure, or in other words,
she suspects with some level of uncertainty that the rates of the processes {A?}._, and {S"}L_,
are not exactly {\?}/_, and {z'}._, and may be unspecified or may even change over the time.
Therefore, she considers a set of candidate measures and penalizes their deviation from the
reference probability measure. The penalization is done by using discounted variants of the
Kullback—Leibler divergence, given by

) o oo n(t
ZE@EIP) =B | [~ oretiog LDl heN e,
T dPy ;(t)
o (2.6)
L§(Q3,||Py,) == E%: / oe % log — 2 STy, neN, e[l
illt2, aP% (1)

where P7; and P73, are the reference measures under which A7 and S are Poisson processes
with rates A" and p', respectively. To establish the level of ambiguity, for every i € [I],
we consider the (finite and) positive parameters ;,; and kg; that quantify the amount of
ambiguity that the DM has regarding the rates A!' and p', or in other words, the measures

1, and Py, respectively. Set k := (K1, 5272,)2[:1_ The DM is facing the following optimization
problem:

VH(X"(0);5) = inf sup J*(X"(0),U", R", Q" k),
(T™,R") Qredn(Xn(0))



where

JHX"(0),U", R, Q"5 k) = (2.7)
1

B9 [ et (b X0+ R 0) | - 30 LGB - Y- I8P,

K K
i—1 1,3 i—1 2,1

~

Qr = Hi[:l( ] Ti X ng), and the set of candidate measures Q™(X™(0)) is described at the end
of this paragraph. When &, ; is ‘small’ (resp., ‘large’) we say that there is a weak (resp., strong)
ambiguity about the rates of the processes A" and S}*(1}*) := S7(T}*(-)). The idea is that for
small x;;’s there is a big punishment per unit of deviation from the reference measure and
therefore, the measures Q?z and P?; should be close to each other and as a consequence also
the relevant expectations. We now turn to define the set of candidate measures. A probability
measure Q" belongs to Q™(X™(0)) if for every i € [I] and ¢ € R it satisfies

‘ﬁfg = { [ 1og (Y o - [t - s 2:5)

3353 = e { [1og () asiaren - [ i)} @9

i

for measurable and positive processes ¢7; that are predictable w.r.t. the filtration generated

by the arrival and service completions processes satisfying fo J(s)ds < o0 Py -a.s., for every
t € Ry. These conditions guarantee that the right-hand s1des in [2]) are ]P’f-—martingales,

and that under the measure @?Z (resp., le), the processes AP (resp., SI'(T}")) is a counting
process with infinitesimal intensity ¢7,(t)dt (vesp., ¢35 ,dT}"(t)). Notice that we do not force

the critically loaded condition under the measures Q;LZ As we argue in [I14] Section 4] such
changes of measures are ‘too costly’ and will be avoided by the maximizer who would choose
1 z( ) - )\n + O( 1/2) and ¢2 7,( ) M;L + O(n1/2)
We now provide an approxnnation to the change of measure penalty that will be useful as
a motivation in the next section. Since A7 (- fo T ( i s)ds is a martingale, we have

LE@IPT)
= [ o [ron (Mo - [ w0 - apas)al
= [ ot [ron (M) aars) - i (o
+ /0 t ln,i(s)log(%(s)) — Ui(s) + A7 fs )t
:E%ﬁi[/owpe—@t(/ot{ 1”,Z-(s)log<%i\z( )) UHi(s) + AP pds ) dt]

— g% [/OOO pe‘gt{wﬁi(t) log (d’iﬁﬂ) —U1(t) + )\?}dt} ;

)




where a change of variables is used to obtain the last equality. The same analysis applies for
S7' as well. Consider the processes

Pi() = ) TR () = A, () = (uan) TR (0) — ).
The Taylor expansion of log(1 + x), givesﬁ
1

A\ n 1 av n
LI(QT,1IPY,) + ELg(in”Pu) (2.10)

n n e 1
~ EQl,iXQZ,i / -
0 € 2/€12(1/}11( )) 2521

The term p; is due to the convergence T; ™(t) — pit, t € Ry, Now, since the maximizer is free
to choose 1/1 and wz i» she faces the two steps optimization problem. First, to choose w”( )
and then to Solve

1,

(05007 | ]

1 N ~
s {2 (D40 + 5—pi(I(0)*  NP0La(0) — pusni084() = <2Ai>1/2w?<t>}'
(7 ()3 (1) Ki,i K2,

The minimal value of the above equals (2@)_1(1&?@))2, where
. 1
Ei = 5(/%17,' + Hg,i). (2.11)

Therefore, (ZI0) can be approximated by (2¢;)~'(4"(t))?. These arguments are rigorously
justified in [14] Section 4].

2.2 Two stochastic differential games
2.2.1 The multidimensional stochastic differential game (MSDG)

The sequence of the scaled and centered 2/-dimensional Poisson processes (A",S'”) weakly
converges to a 2/-dimensional Brownian motion starting at zero, with zero mean and the
covariance matrix Diag ()\1/2, e ,/\}/2, ,ui/z, . ,,ul/ ). Formally speaking, if the process Y7 s
of order one as n — oo, which is rigorously proven in [14, Section 4], we get from its definition
in 24) that T"(t) — (p1t,...,prt), t € R, and therefore, under P, (1217 — SZ"(TZ")){:l weakly
converges to an I-dimensional Brownian motion starting at zero, with zero mean and the

covariance matrix

& = (61;) = Diag ((2>\1)1/2, 2\ )1/2)

where S7/(T7") := SP(T}(-)), i € [1].

Recall that in the QCP, an admissible control is of the form (U™, R™). Notice that
(Y™ (t), R*(t)) is uniquely determined by (U"(s), R"(s))o<s<¢. In the MSDG we consider two
I-dimensional processes, R and Y that play the roles of instantaneous controls, which stand
for the scaled rejection process R" and the scaled idle time process Y™, respectively. Moreover,

2This is rigorously justified in [T4] by another level of approximation to the processes {%7;}.



the ambiguity about the true underlying probability measure in the QCP, which is formulated
by a penalty for deviating from the reference measure is translated to the limiting problem
as well. In the definition below we refer to two players by their roles as a minimizer and a
maximizer even though the roles can only be derived from the cost function, which is presented
afterwards.

Definition 2.1 (admissible controls, MSDG) An admissible control for the minimizer for
any nitial state o € X is a filtered probability space

I 1
@ F (7)) = ([[9.F o...e 7 {FL]] ),
=1

i=1

that supports a process (Y,R) taking values in (Ri)2 with RCLL sample paths adapted to the
filtration {F;}, where (', F* {Fi},P;) supports a one-dimensional standard Brownian motion
B; adapted to the filtration {F}}, i € [I]. Moreover, assume that the following properties hold:

(1)

for every i € [I] and 0 < s < t, B;(t) — B;(s) is independent of F: under P;; (2.12)

s
(ii)

0-Y and R;, i € [I] are nonnegative and nondecreasing, where 0 := (,ul_l, e ,,ul_l); (2.13)
(iii)

X(t) =do+mt+6B(t)+Y(t)— R(t), teRy, (2.14)

such that

X(t)ex, teRy, P-as., (2.15)
where m = lim, m" = (5\Z — p,-/li)i[:l and B = (BZ)ZIZ1 X R X
An admissible control for the maximizer is a product measure Q = Hle Q;, where each Q;
is defined on (Q°, F',{F}}), such that

(ji%:((tt)) = exp {/0 Vi(s)dB;(s) — %/0 z@?(s)ds}, teRy, (2.16)

for an {F; }-progressively measurable process )= (12)1, . ,12)1) satisfying
EP[/ e‘gszﬁf(s)ds} <oo and EF [e% Jo @z?(s)ds} <oo teRy, ielll] (2.17)
0

We consider a probability space that is constructed from I small probability spaces, where each
one supports the processes associated with one of the classes (in the QCP studied in [I4] there
are 21 small probability spaces as can be inferred from the structure of @") The Brownian
motion approximates the difference (A? —S™(T7))L_, up to the deterministic covariance matrix,

and (2.I4]) follows by (ZI]). The emphasis of Condition (2.12) is that the independent condition



for B; is given w.r.t. the filtration F} and not simply w.r.t. its own filtration, which merely
follows by being a Brownian motion. It is necessary for the approximation procedure, see the
details in [I4, Section 4]. Condition (ZI3)) follows since the rejection process (in the QCP)
and also 0" - Y™ are nondecreasing. Occasionally, we refer to R as the rejection process in
the MSDG. The buffer constraint is imposed in (2.15). Pay attention that we consolidate the
processes fll" and SZ"(TZ") into one Brownian motion. Hence, we consider only I changes of
measures instead of 21.

We now explain the change of measure structure. Recall the definition of ¢" and v; from
the previous section. Then,

A~

t
Ap(e) = n2 (axe / UL i()ds) + A2 / 0 (s)ds, (2.18)
SpIr () = n 2 (SpTy / S 6) [ B

Informally speaking, in both lines above, under Q?z X ngv the first term is approximately a
standard Brownian motion and the second term approximates a drift (in case it converges).
This claim is handelled rigorously in [14] Section 4]. As a result, under QF, A" — SI'(T!") is

approximately a diffusion process with drift (2);)"/ 21/)” = )\1/ b pz,ull/ 2¢2 ' and a diffusion

coefficient oj; = (2);)'/2; the term p; is due to the convergence T"( ) — pit, t € Ry

Remark 2.1 (i) Notice that the structure of the information in the game is consistent with
the one in the QCP. The minimizer chooses a strategy and the maximizer, which is penalized
for deviating from the reference measure, responds to this strategy by choosing a worst case
scenario. For further reading about the structure of the information in control problems with
model uncertainty, the reader is referred to [32)].

(i) Given any {F;}-progressively measurable process 1) that satisfies the conditions in
@I7), the right-hand side (r.h.s.) of [2.18) is a martingale, and therefore, there exists a
probability measure Q such that Q|z, satisfies ZI8) for all t € R,

(iii) Equation (ZI4) can alternatively be written as

X (t) = &g + 1t + / t Gi(s)ds + 6B + V(t) — R(t), teRy, (2.19)
0

where BQ( fo s)ds, t € Ry, is an {F; }-I-dimensional standard Brownian motion
under Q.

Denote by A(#g) the set of all admissible controls for the minimizer, given the initial
condition Zo. We often abuse notation and denote (Y, ]A%) € /l(i’o), keeping in mind that the
control includes a filtered probability space. The set of all admissible controls for the maximizer
is denoted by Q(i).

The cost function (MSDG). Recall the discussion about the approximation of the cost
function of the QCP from the previous section and (). Set & = (¢;)/_;. The cost associated

10



with the initial condition &y and the strategies (Y, ]A%) and Q is given by

J(#0,Y, R, 0;2) —E@[/OOO —ot (ﬁ X(t)dt +7 - dR(t )] EI:&%L@ @), (2.20)

i=1

where

L2(Qi||P;) := E% [/OOO e % log CCZZ%(%)dt] (2.21)

The cost function can alternatively be expressed by

A

J(@0,V, R, Q;8) = E@[/OOO e—@t(/} X (t)dt + 7 - dR(t) — EI: {ﬂf(t)dt)], (2.22)

with 1) satisfying (ZI6)—(@I7) above. Indeed,

/O " peet (-1 / " (s)ds + / tl/;i(s)dBi(s)> dt] (2.23)
/OOO (——/ lhi(s yds+/ bi(s) - (dBY( )—i—l[}i(s)ds)) dt]

[ e )] 1t e

— g% %/0 _th() } < o0.

Compare this structure with the approximated penalty in the QCP given at the end of the
previous section.

While the form of the cost function given in (Z20]) captures better the ambiguity aversion,
the form of the cost given in (Z22]) is more useful from a technical point of view. Moreover, the
dynamics in ([219) together with the cost function given in (2:22]) are similar in their structure
to their correspondences in Equation (11) and the display below (13) together with (2) in [2].
The DM is faced the following optimization problem

Lo(Qil[p:) = E*

_ gl

V(ig;é) =  inf sup  J (&0, Y, R,Q;¢)
(Y,R)€A(20) Qed(z0)

2.2.2 The reduced stochastic differential game (RSDG)

We now present the RSDG. This game is one-dimensional and obtained by projecting the
processes from (2.I4]) in the 6 direction, which is given in (213]). For this we need the following
notation,

xg:=0-T9, m:=0-m, o:=]|6l|, (2.24)
1 J
— 5)24.
€= — E_l (00)7¢;, (2.25)



and

b:zmax{@-é:ée)(}zﬁ-l;,

where b = (62){:1
Definition 2.2 (admissible controls, RSDG) An admissible control for the minimizer for
any initial state xo € [0,b] is a filtered probability space (Q, F,{F},P) that supports a one-
dimensional standard Brownian motion B and a process (Y, R) taking values in Ri with RCLL
sample paths, both adapted to the filtration {F;} and satisfy the following properties:
(1) for every 0 < s < t, B(t) — B(s) is independent of Fs under P;
(i) Y and R are nonnegative and nondecreasing;
(iii)

X(t)=zo+mt+0oB(t)+Y(t)—R(t), teR,, (2.26)
such that

X(t) €[0,b], teRy, P-as.

An admissible control for the mazimizer is a meausre Q defined on (2, F,{F;}) such that

dQ(t)

00 = exp /zp )dB(s ——/1/;2 ds t € Ry, (2.27)

for an {F; }-progressively measurable process v satisfying
o
EP[/ 6_981/)2(8)(18:| <oo and EF [e% Js wQ(S)dS} < oo foreveryt € R,. (2.28)
0

The statements given in Remark 2] also hold for the RSDG as well. For completeness of
the presentation and for later references we provide an alternative form of the dynamics given

in (2.26),
X(t) =x0+mt+ /t op(s)ds + o Bt) + Y (t) — R(t), teR,, (2.29)
0

where BQ(t) := B(t fo s)ds, t € Ry, is an {F;}-one-dimensional standard Brownian
motion under Q.

Denote by A(zg) the set of all admissible controls for the minimizer, given the initial
condition xg. As before, we often abuse notation and denote (Y, R) € A(x¢), keeping in mind
that the control includes a filtered probability space. The set of all admissible controls for the
maximizer is denoted by Q(zp).

The cost function (RSDG). The expected cost associated with the initial condition
and the controls (Y, R) and Q is given by

J(x0,Y, R, Q;¢) ::EQ[/OOO e (h(X(t))dt +rdR(t)) | — %LQ(QHP),
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where

h(z) :==min{h-£: € X, 0-£ =z}, (2.30)
ro=min{f-q:qe R, .q=1}, (2.31)

and L¢(Q||P) is given by (Z21)) with (Q, P) replacing (Q;,P;). By the convexity of X it follows
that h is convex. In fact, h is piecewise linear and Lipschitz continuous. Moreover, h(z) > 0
for z > 0 and equality holds if and only if 2 = 0. Therefore, h is strictly increasing. In [0,
page 568] it is shown that there is i* € [I] such that,

7= T i = min{rp; i € [I]}. (2.32)

The index ¢* stands for the class with the smallest rejection cost, weighted with the mean
service rate. In fact, as we discuss in Section and prove in Theorem 1] under optimality
of both players in the MSDG, rejections are performed only from this class.

By the same arguments that lead to ([2:22]), the cost function of the RSDG can alternatively
be expressed by the technically more convenient form,

J(z0,Y, R, Q;¢) :EQ[ /0 et <h(X(t))dt +rdR(t) — %W(t)dt)} , (2.33)

with 1 satisfying (2.28]) above. The value function is given by

V(xg;e) = inf sup  J(zo,Y, R,Q;e). 2.34
(20i€) = | fnf - sup (o ) (2.34)

Remark 2.2 In case that there is no ambiguity, we define the cost and the value functions by

Jwa(eo, Y. R) = E° / et ((X (t))dt + rdR(2)] (2.35)
0
V(zg;0) := inf J Y R).
(an ) (Y7R;2.A(SC()) NA(x()v ’ )

This problem was studied by Harrison and Taksar [21)] and later on was used by Atar and Shifrin
[6]. In Theorem [51 we show that this problem is obtained when the ambiguity vanishes, that
is, lim. 0 V(xg;€) = V(20;0).

2.3 The relationship between the games

We now show that the last two games share the same value and moreover, that given any
admissible control for the minimizer in either one of the games, one can construct an admissible
control in the other game that performs at least as well. For this, we define a function ~, taken
from [6, Equations (48)—(49)], that sends any workload value zg to the cheapest state of the
MSDG (from the holding cost perspective) among all the states whose workload levels are x.
Using this function and an optimal strategy for the minimizer in the RSDG, we construct an
optimal strategy for the minimizer in the MSDG, see Theorem LIl I<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>