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Abstract

We consider a multidimentional Brownian control problem (BCP) with model un-
certainty that formally emerges from a multiclass M/M/1 queueing control problem un-
der heavy-traffic with model uncertainty. The BCP is formulated as a multidimensional
stochastic differential game with two players: a minimizer that has an equivalent role to the
decision maker in the queueing control problem and a maximizer whose role is to set up the
uncertainty of the model. The dynamics are driven by a Brownian motion. We show that
a state-space collapse propery holds. That is, the multidimensional BCP can be reduced
to a one-dimensional BCP with model uncertainty that also takes the form of a two-player
stochastic differential game. Then, the value function of both games is characterized as
the unique solution to a free-boundary problem from which we extract equilibria for both
games. Finally, we analyze the dependence of the value function and the equilibria on the
ambiguity parameters.

AMS Classification: Primary: 93E20, 60K25, 91A15, 60J60; secondary: 49J15, 35R35.
Keywords: Brownian control problem; ambiguity aversion; model uncertainty; multiclass
M/M/1; heavy-traffic; the Harrison–Taksar free-boundary problem.

1 Introduction

Typically, heavy-traffic queueing control problems (QCPs) in the diffusion scale are treated by
defining a limiting control problem associated with Brownian motion, called Brownian control
problems (BCPs), first introduced by [18]; for further reading on BCPs see e.g., [8, 11, 12] and
the references therein. In this paper we study two BCPs with model uncertainty that formally
emerge from a multiclass M/M/1 QCP with finitely many buffers with finite capacity under
heavy-traffic with model uncertainty. The asymptotic relationship between the QCP and the
BCPs is the subject of a separate paper, see [14]. Both the QCP and the BCP were studied
in the classical case under the framework of G/G/1 without ambiguity about the model in [6]
and in [28], where the latter considers time constraints instead of the finite buffers constraints.
These problems are referred to as risk-neutral problems.
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We are formulating a decision maker (DM) that has a reference model in mind, which, up to
some degree, describes the situation she is facing. Since the DM is uncertain about the true
model (either because the parameters are not fully known, can change over time, etc.), she
takes into account other models and penalizes them based on their deviation from a specific
reference model. The penalization depends then on how averse the DM is to ambiguity. Such
ambiguity models are sometimes referred to as model uncertainty or Knightian uncertainty, see
e.g., [27, 17, 16, 7] and in the context of queueing systems see [24, 10, 26].

The first BCP with model uncertainty introduced is a multidimensional stochastic differential
game (MSDG) with two players: a DM and the nature, which according to their goals are
referred to as the minimizer and the maximizer, respectively. Borrowing terminology and the
roles of the processes from the QCP to the MSDG (here and in the sequel), the state-space of
the game is a product set of intervals of the form [0, b̂i], where b̂i is the capacity of buffer i.
The minimizer in this game controls the server’s effort allocation among the buffers and the
admission/rejection to each buffer. The maximizer chooses the underlying probability measure;
this is shown to be equivalent to stochastically perturbing the drift of the Brownian motion
(possibly, differently for each coordinate).The game’s cost consists of holding and rejection
penalties and a variant of the Kullback–Leibler divergence with respect to (w.r.t.) the relevant
measures in this setup. The latter component stands for a penalty for the maximizer for
changing the drift.

We show that a state-space collapse property holds. That is, we provide a one-dimensional BCP
with uncertainty that also takes the form of a stochastic game, called the reduced stochastic
differential game (RSDG), whose state emerges from the workload process in the QCP. The
roles of the two players remain the same as in the MSDG and the dynamics and the cost
functions have similar components. We show that the games are equivalent in the sense that
given any strategy of the minimizer in either one of the games, we construct a strategy for
the minimizer in the other game that performs at least as well, and therefore, also the value
functions are the same (Proposition 2.1). For further reading about workload reduction, see
[18, 22, 19, 20, 23]. The advantage of such a reduction is that the dynamics live in a lower
dimension and have only two components of singular controls that represent idleness and
workload rejection. Therefore, most of the analysis is performed in the RSDG1 setup. We
characterize the value function of the RSDG as the unique classical solution of a Hamilton-
Jacobi-Bellman (HJB) equation (Theorem 3.1). Doing so, we extend the relationship between
the reduced BCP and a relevant HJB equation studied in [21, Equation (1.2)] and in [6,
Equation (41)] to a similar relationship in a stochastic game setup with a different HJB; unlike
in [6], due to the existence of a maximal player in our model, the HJB is not linear. Therefore,
one cannot use the results given in these papers and rather needs to establish the relationship
between the two. As a first step, we reduce the problem of solving the HJB equation to a free-
boundary problem. (To the best of my knowledge, this is the first model uncertainty control
problem that leads to a free-boundary problem with Neumann boundary conditions). Then
we use the shooting method to solve the latter problem. In short, this is a method for solving
boundary value problems using initial value problems. We take it one step forward in the

1Throughout the paper we alternatively refer to the BCPs as the ‘stochastic differential games’, or as ‘the
games’, or explicitly by MSDG and RSDG.
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free-boundary setup; see [33, Section 7.3] for further reading about the method. Moreover, we
supply equilibria in both games and refer to the equilibrium strategies of the minimizer (in both
games) as the optimal strategy of the minimizer (Theorem 4.1). Starting with the RSDG, we
show that the optimal strategy for the minimizer in this game is a reflecting strategy. Namely,
the minimizer should use minimal idleness and minimal amount of workload rejections in order
to keep the workload in a fixed interval. The equilibrium strategy of the maximizer in this
game is also provided. From the RSDG equilibrium we construct an equilibrium in the MSDG.
According to the minimizer’s optimal policy in the MSDG, the queue length processes evolve
along a certain curve in the state-space. The minimizers’ opimal strategies in our games are
shown to have the same structures as the optimal strategies in the risk-neutral BCPs in [6].
Such a result is not so obvious for reasons having to do with the non-stationarity structure
of the problem caused by the existence of the maximizer player. The difference between the
policy of the minimizer in the multidimensional setup here as compared to [6] is only the cut-
off level of the reflecting strategy in the RSDG, which affects the point of reflection on the
multidimensional curve.

Aside from studying the games, we also analyze the dependence of the games on the ambiguity
parameters. We show continuity of the value function and the optimal reflecting strategies
w.r.t. the ambiguity parameters and that as the ambiguity vanishes, the problem converges to
the risk-neutral problem studied in [6] (Theorems 5.1 and 5.2).

We now discuss about the position of the current work between the risk-neutral BCPs and the
deterministic differential games (DDGs) studied in [2] and provide future outlook. Recall that
the risk-neutral BCPs from [6] governs the limiting behavior of a diffusion scaled multiclass
G/G/1 QCP with linear utility function. On the other side, the DDGs from [2] approximate
the same type of QCP with the following differences: the moderate-deviation replaces the
diffusion scaling and the utility function is exponential, scaled with the moderate-deviation
parameters. While in the risk-neutral case the probability of buffer overflow is approximated
by the probability that a Brownian motion with drift hits a positive level, which is of order
O(1), in the moderate-deviation scaling this probability vanishes with the scaling parameter.
As a compensation, the criteria considered is a risk-sensitive one, which gives an overwhelming
scaled exponential cost for such event. This means that the DM has a large ambiguity about
the model and she gives high weight even for events that are ‘very’ unlikely to happen. The
intuition behind the relationship between the QCP in the moderate-deviation heavy-traffic
regime and the limiting DDG goes back to the classical risk-sensitive control problem with
small noise diffusion. As argued in [15, Ch. VI.2], consider a cost function J and a positive
constant ̺, then the risk-sensitive cost can be expressed as,

α−1 log
(

EP[eαJ ]
)

= sup
Q

EQ
[

α
(

J − log

(

dQ

dP

)

)]

, (1.1)

where the supremum is taken over an appropriate set of measures. When the noise coefficient
is α−1/2 and α → ∞, the limiting problem is a DDG. What we consider is the criteria given
in (1.1), without sending α → ∞. In the QCP, it means that we still consider the classical
diffusion scaling, yet our criteria gives space for ambiguity about the true underlying probability
measure. Since the higher α is, the more weight the DM gives to unlikely events, we say that
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the DM has more ambiguity in the moderate-deviation risk sensitive QCP then in the one
related to our work, and thus we position our model between the two models described above.
This work does not aim to establish a deeper connection between the model uncertainty’s BCPs
and the DDGs. At this point it worth mentioning that the relation between the Kullback–
Leibler-constrained formulation and the exponential functional (i.e., (1.1)) is well known in
other contexts, see e.g., [13] for an example in the context of uncertainty quantification.

In [2] it was shown that the optimal strategies of the minimizers in the DDGs have the same
structure as the ones in the BCPs from [6]. Together with the observation stated earlier, we get
that all the three models ([6], [2], and the present one) share the same optimal policy, where the
different lies in the cut-off point for rejections. Moreover, in a recent line of research of queueing
systems under the moderate-deviation heavy-traffic regime with risk-sensitive performance
criteria it was shown that classical results from the theory of risk-neutral QCPs and BCPs
such as state-space collapse and generalyzed cµ rule hold in these models as well, see e.g.,
[1, 9, 2, 5, 3, 4]. The current paper together with [14] represents a line of research of QCPs
and their associated BCPs under model uncertainty.

In this work we assume that the buffers are finite. This property arises naturally in private
cloud computing, which are limited in data and capacity. For a more detailed application,
see [31]. Intuitively, the problem with unlimited capacities and without rejections seems to be
simpler. We expect that similar tools can be used to show that the optimal strategy would
be to assign fixed lowest priority to the class with the smallest ĥiµi value. Consequently, the
limiting queueing sizes would vanish with the scaling parameter for the rest of the buffers.
This is left for future work.

In summary, our main contributions are as follows. We

• provide and solve for the first time a BCP with model uncertainty that emerges from a
multiclass M/M/1 QCP with model uncertainty;

• show that a state-space collapse property holds for this game (Corollary 2.1);

• show that the reduced game solves uniquely a relevant HJB equation, which is a nonlinear
free-boundary problem and that there is an optimal reflecting strategy (Theorem 3.1);

• provide equilibria for the two games considered (Theorem 4.1);

• analyze the dependence of the value function and the equilibria on the ambiguity param-
eters (Theorems 5.1 and 5.2).

The paper is organized as follows. In Section 2 we motivate and present the stochastic dif-
ferential games and study the relationship between the two. Next, In Section 3 we study the
RSDG. We provide the HJB equation and prove that the value function of the game is the
unique smooth solution of the HJB. Moreover, we show that the minimizer has an optimal re-
flecting strategy. In Section 4 we discuss the uniqueness of the optimal reflecting strategy and
find equilibria in both games. Finally, in Section 5 we study the dependency on the ambiguity
parameters.
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1.1 Notation

We use the following notation. For a, b ∈ R, a ∧ b = min{a, b} and a ∨ b = max{a, b}. For
a positive integer k and c, d ∈ Rk, c · d denotes the usual scalar product and ‖c‖ = (c · c)1/2.
We denote [0,∞) by R+. For subintervals I1, I2 ⊆ R and m ∈ {1, 2} we denote by C(I1, I2),
Cm(I1, I2), and D(I1, I2) the space of continuous functions [resp., functions with continuous
derivatives of order m, functions that are right-continuous with finite left limits (RCLL)]
mapping I1 → I2. The space D(I1, I2) is endowed with the usual Skorohod topology.

2 The BCPs

We start this section with a motivative QCP. The two BCPs are presented in Section 2.2: in
Section 2.2.1 we formally derive the MSDG and in Section 2.2.2 its reduction. Then in Section
2.3 we show that the two games share the same value and that given any strategy (for the
minimizer) in either one of the games, one can construct a strategy in the second game that
performs at least as well.

2.1 Motivative QCP

Consider a model that consists of I customer classes and a single server. Each class has its own
finite buffer and upon arrival, customers are queued in the corresponding buffer or rejected.
Within each class, customers are served at the order of their arrivals. Processor sharing is
allowed and the server may serve up to I customers at a time, where two customers from the
same class cannot be served simultaneously. The system under consideation is in heavy-traffic.
For this, we consider a sequence of systems, indexed by the scaling parameter n ∈ N. For
every n we consider a reference probability space that supports independent Poisson processes
Ani and Sni , i ∈ [I] := {1, . . . , I} with rates λni and µni , repsectively. The value A

n
i (t) stands for

the number of customers of class i that arrived to the system until time t ∈ R+, and S
n
i (t) is

the number of service completions of class i customers had the server dedicated all of its effort
to class i during the time interval [0, t].

Denote by T ni (t) the units of time that the server devoted to class i until time t. For every
t ∈ R+ and i ∈ [I], Sni (T

n
i (t)) is the number of service completions of class i customers until

time t. This is a Cox process with the infinitesimal intensity µni dT
n
i (t). Rejections of customers

are allowed upon arrival and a rejected customer will never return to the system. The number
of customers from class i that were rejected by time t is denoted by Rni (t). For every i ∈ [I],
the balance equation is given by,

Xn
i (t) = Xn

i (0) +Ani (t)− Sni (T
n
i (t))−Rni (t), t ∈ R+, (2.1)

where Xn
i (t) stands for the number of class i customers in the system at time t. We use the

notation Ln = (Lni )
I
i=1 for {A,S,X,R, T}.

We assume that

λni := λin+ λ̂in
1/2 + o(n1/2), µni := µin+ µ̂in

1/2 + o(n1/2), (2.2)

where λi, µi ∈ (0,∞) and λ̂i, µ̂i ∈ R are fixed. Moreover, the system is assumed to be critically
loaded, that is,

∑I
i=1 ρi = 1, where ρi := λi/µi, i ∈ [I].
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The scaled version of (2.1) is given by,

X̂n
i (t) = X̂n

i (0) + m̂n
i t+ Âni (t)− Ŝni (T

n
i (t)) + Ŷ n

i (t)− R̂ni (t), t ∈ R+, (2.3)

where

X̂n
i (t) := n−1/2Xn

i (t), Âni (t) := n−1/2(Ani (t)− λni t), Ŝni (t) := n−1/2(Sni (t)− µni t), (2.4)

Ŷ n
i (t) := µni n

−1/2(ρit− T ni (t)), R̂n(t) := n−1/2Rn(t),

and
m̂n
i := n−1/2(λni − ρiµ

n
i ).

As previously, we use the notation L̂n = (L̂ni )
I
i=1 for L ∈ {A,S,X,R, Y, T,m}.

The capacity of buffer i is given by b̂ni := b̂in
1/2 for some constant b̂i ∈ (0,∞), i ∈ [I]. We

assume that X̂n(0) ∈ X :=
∏I
i=1[0, b̂i], and the rejection mechanism assures that

X̂n
i (t) ∈ X , t ∈ R+, Pn-a.s. (2.5)

We now present the optimization criteria. The intuition behind it is as follows. The
DM, also referred to as the minimizer, chooses a control based on the past observations. He
minimizes a cost that takes into account a possible deviation from the reference model. For
this, we consider an adverse ‘player’, also referred to as the maximizer, who has access to the
policy chosen by the minimizer and to the history. This player is penalized for deviating from
the reference model.

In details, the vectors ĥ, r̂ ∈ (0,∞)I stand for the holding and rejection costs, respectively.
The DM is uncertain about the underlying reference probability measure, or in other words,
she suspects with some level of uncertainty that the rates of the processes {Ani }

I
i=1 and {Sni }

I
i=1

are not exactly {λni }
I
i=1 and {µni }

I
i=1 and may be unspecified or may even change over the time.

Therefore, she considers a set of candidate measures and penalizes their deviation from the
reference probability measure. The penalization is done by using discounted variants of the
Kullback–Leibler divergence, given by

L̺1(Q̂
n
1,i‖P

n
1,i) := E

Q̂n
1,i

[

∫ ∞

0
̺e−̺t log

dQ̂n
1,i(t)

dPn1,i(t)
dt

]

, n ∈ N, i ∈ [I],

L̺2(Q̂
n
2,i‖P

n
2,i) := E

Q̂n
2,i

[

∫ ∞

0
̺e−̺t log

dQ̂n
2,i(t)

dPn2,i(t)
dT ni (t)

]

, n ∈ N, i ∈ [I],

(2.6)

where Pn1,i and Pn2,i are the reference measures under which Ani and Sni are Poisson processes
with rates λni and µni , respectively. To establish the level of ambiguity, for every i ∈ [I],
we consider the (finite and) positive parameters κ1,i and κ2,i that quantify the amount of
ambiguity that the DM has regarding the rates λni and µni , or in other words, the measures
Pn1,i and Pn2,i, respectively. Set κ := (κ1,i, κ2,i)

I
i=1. The DM is facing the following optimization

problem:

V n(Xn(0);κ) = inf
(Tn,Rn)

sup
Q̂n∈Q̂n(X̂n(0))

Ĵn(X̂n(0), Un, Rn, Q̂n;κ),
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where

Ĵn(X̂n(0), Un, Rn, Q̂n;κ) = (2.7)

EQ̂n
[

∫ ∞

0
e−̺t

(

ĥ · X̂n(t)dt+ r̂ · dR̂n(t)
) ]

−
I

∑

i=1

1

κ1,i
L̺1(Q̂

n
1,i‖P

n
1,i)−

I
∑

i=1

1

κ2,i
L̺2(Q̂

n
2,i‖P

n
2,i),

Q̂n =
∏I
i=1(Q̂

n
1,i × Q̂n

2,i), and the set of candidate measures Q̂n(X̂n(0)) is described at the end
of this paragraph. When κj,i is ‘small’ (resp., ‘large’) we say that there is a weak (resp., strong)
ambiguity about the rates of the processes Ani and Sni (T

n
i ) := Sni (T

n
i (·)). The idea is that for

small κj,i’s there is a big punishment per unit of deviation from the reference measure and

therefore, the measures Q̂n
j,i and Pnj,i should be close to each other and as a consequence also

the relevant expectations. We now turn to define the set of candidate measures. A probability
measure Q̂n belongs to Q̂n(X̂n(0)) if for every i ∈ [I] and t ∈ R+ it satisfies

dQ̂n
1,i(t)

dPn1,i(t)
= exp

{

∫ t

0
log

(

ψn1,i(s)

λni

)

dAni (s)−

∫ t

0
(ψn1,i(s)− λni )ds

}

, (2.8)

dQ̂n
2,i(t)

dPn2,i(t)
= exp

{

∫ t

0
log

(

ψn2,i(s)

µni

)

dSni (T
n
i (s))−

∫ t

0
(ψn2,i(s)− µni )dT

n
i (s)

}

, (2.9)

for measurable and positive processes ψnj,i that are predictable w.r.t. the filtration generated

by the arrival and service completions processes, satisfying
∫ t
0 ψ

n
j,i(s)ds <∞ Pnj,i-a.s., for every

t ∈ R+. These conditions guarantee that the right-hand sides in (2.8) are Pnj,i-martingales,

and that under the measure Q̂n
1,i (resp., Q̂

n
2,i), the processes Ani (resp., Sni (T

n
i )) is a counting

process with infinitesimal intensity ψn1,i(t)dt (resp., ψ
n
2,idT

n
i (t)). Notice that we do not force

the critically loaded condition under the measures Q̂n
j,i. As we argue in [14, Section 4] such

changes of measures are ‘too costly’ and will be avoided by the maximizer who would choose
ψn1,i(t) = λni +O(n1/2) and ψn2,i(t) = µni +O(n1/2).

We now provide an approximation to the change of measure penalty that will be useful as
a motivation in the next section. Since Ani (·) −

∫ ·

0 ψ
n
1,i(s)ds is a martingale, we have

L̺1(Q̂
n
1,i‖P

n
1,i)

= E
Q̂n

1,i

[

∫ ∞

0
ρe−̺t

(

∫ t

0
log

(ψn1,i(s)

λni

)

dAni (s)−

∫ t

0
(ψn1,i(s)− λni )ds

)

dt
]

= E
Q̂n

1,i

[

∫ ∞

0
ρe−̺t

(

∫ t

0
log

(ψn1,i(s)

λni

)

(dAni (s)− ψn1,i(s)ds)

+

∫ t

0

{

ψn1,i(s) log
(ψn1,i(s)

λni

)

− ψn1,i(s) + λni

}

ds
)

dt
]

= E
Q̂n

1,i

[

∫ ∞

0
ρe−̺t

(

∫ t

0

{

ψn1,i(s) log
(ψn1,i(s)

λni

)

− ψn1,i(s) + λni

}

ds
)

dt
]

= E
Q̂n

1,i

[

∫ ∞

0
ρe−̺t

{

ψn1,i(t) log
(ψn1,i(t)

λni

)

− ψn1,i(t) + λni

}

dt
]

,

7



where a change of variables is used to obtain the last equality. The same analysis applies for
Sni as well. Consider the processes

ψ̂n1,i(t) := (λin)
−1/2(ψn1,i(t)− λni ), ψ̂n2,i(t) := (µin)

−1/2(ψn2,i(t)− µni ).

The Taylor expansion of log(1 + x), gives2

1

κ1,i
L̺1(Q̂

n
1,i‖P

n
1,i) +

1

κ2,i
L̺2(Q̂

n
2,i‖P

n
2,i) (2.10)

≈ E
Q̂n

1,i×Q̂n
2,i

[
∫ ∞

0
e−̺t

{

1

2κ1,i
(ψ̂n1,i(t))

2 +
1

2κ2,i
ρi(ψ̂

n
2,i(t))

2

}

dt

]

.

The term ρi is due to the convergence T ni (t) → ρit, t ∈ R+. Now, since the maximizer is free
to choose ψ̂n1,i and ψ̂

n
2,i, she faces the two steps optimization problem. First, to choose ψ̂ni (t)

and then to solve

min
(ψ̂n

1,i(t),ψ̂
n
2,i(t))

{

1

2κ1,i
(ψ̂n1,i(t))

2 +
1

2κ2,i
ρi(ψ̂

n
2,i(t))

2 : λ
1/2
i ψ̂n1,i(t)− ρiµ

1/2
i ψ̂n2,i(t) = (2λi)

1/2ψ̂ni (t)

}

.

The minimal value of the above equals (2ε̂i)
−1(ψ̂ni (t))

2, where

ε̂i :=
1

2
(κ1,i + κ2,i). (2.11)

Therefore, (2.10) can be approximated by (2ε̂i)
−1(ψ̂ni (t))

2. These arguments are rigorously
justified in [14, Section 4].

2.2 Two stochastic differential games

2.2.1 The multidimensional stochastic differential game (MSDG)

The sequence of the scaled and centered 2I-dimensional Poisson processes (Ân, Ŝn) weakly
converges to a 2I-dimensional Brownian motion starting at zero, with zero mean and the

covariance matrix Diag (λ
1/2
1 , . . . , λ

1/2
I , µ

1/2
1 , . . . , µ

1/2
I ). Formally speaking, if the process Ŷ n is

of order one as n→ ∞, which is rigorously proven in [14, Section 4], we get from its definition
in (2.4) that T n(t) → (ρ1t, . . . , ρIt), t ∈ R, and therefore, under Pn, (Âni − Ŝni (T

n
i ))

I
i=1 weakly

converges to an I-dimensional Brownian motion starting at zero, with zero mean and the
covariance matrix

σ̂ = (σ̂ij) := Diag
(

(2λ1)
1/2, . . . , (2λI)

1/2
)

,

where Ŝni (T
n
i ) := Ŝni (T

n
i (·)), i ∈ [I].

Recall that in the QCP, an admissible control is of the form (Un, Rn). Notice that
(Ŷ n(t), R̂n(t)) is uniquely determined by (Un(s), Rn(s))0≤s≤t. In the MSDG we consider two
I-dimensional processes, R̂ and Ŷ that play the roles of instantaneous controls, which stand
for the scaled rejection process R̂n and the scaled idle time process Ŷ n, respectively. Moreover,

2This is rigorously justified in [14] by another level of approximation to the processes {ψn
j,i}.
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the ambiguity about the true underlying probability measure in the QCP, which is formulated
by a penalty for deviating from the reference measure is translated to the limiting problem
as well. In the definition below we refer to two players by their roles as a minimizer and a
maximizer even though the roles can only be derived from the cost function, which is presented
afterwards.

Definition 2.1 (admissible controls, MSDG) An admissible control for the minimizer for
any initial state x̂0 ∈ X is a filtered probability space

(Ω,F , {Ft},P) :=
(

I
∏

i=1

Ωi,F1 ⊗ . . .⊗FI , {Ft},
I
∏

i=1

Pi

)

,

that supports a process (Ŷ , R̂) taking values in (RI+)
2 with RCLL sample paths adapted to the

filtration {Ft}, where (Ωi,F i, {F i
t},Pi) supports a one-dimensional standard Brownian motion

B̂i adapted to the filtration {F i
t}, i ∈ [I]. Moreover, assume that the following properties hold:

(i)

for every i ∈ [I] and 0 ≤ s < t, B̂i(t)− B̂i(s) is independent of F i
s under Pi; (2.12)

(ii)

θ · Ŷ and R̂i, i ∈ [I] are nonnegative and nondecreasing, where θ := (µ−1
1 , . . . , µ−1

I ); (2.13)

(iii)

X̂(t) = x̂0 + m̂t+ σ̂B̂(t) + Ŷ (t)− R̂(t), t ∈ R+, (2.14)

such that

X̂(t) ∈ X , t ∈ R+, P-a.s., (2.15)

where m̂ := limn m̂
n = (λ̂i − ρiµ̂i)

I
i=1 and B̂ = (B̂i)

I
i=1.

An admissible control for the maximizer is a product measure Q̂ =
∏I
i=1 Q̂i, where each Q̂i

is defined on (Ωi,F i, {F i
t}), such that

dQ̂i(t)

dPi(t)
= exp

{

∫ t

0
ψ̂i(s)dB̂i(s)−

1

2

∫ t

0
ψ̂2
i (s)ds

}

, t ∈ R+, (2.16)

for an {Ft}-progressively measurable process ψ̂ = (ψ̂1, . . . , ψ̂I) satisfying

EP
[

∫ ∞

0
e−̺sψ̂2

i (s)ds
]

<∞ and EP
[

e
1

2

∫ t
0
ψ̂2

i (s)ds
]

<∞ t ∈ R+, i ∈ [I]. (2.17)

We consider a probability space that is constructed from I small probability spaces, where each
one supports the processes associated with one of the classes (in the QCP studied in [14] there
are 2I small probability spaces as can be inferred from the structure of Q̂n). The Brownian
motion approximates the difference (Âni −Ŝ

n
i (T

n
i ))

I
i=1 up to the deterministic covariance matrix,

and (2.14) follows by (2.1). The emphasis of Condition (2.12) is that the independent condition

9



for B̂i is given w.r.t. the filtration F i
t and not simply w.r.t. its own filtration, which merely

follows by being a Brownian motion. It is necessary for the approximation procedure, see the
details in [14, Section 4]. Condition (2.13) follows since the rejection process (in the QCP)
and also θn · Ŷ n are nondecreasing. Occasionally, we refer to R̂ as the rejection process in
the MSDG. The buffer constraint is imposed in (2.15). Pay attention that we consolidate the
processes Âni and Ŝni (T

n
i ) into one Brownian motion. Hence, we consider only I changes of

measures instead of 2I.
We now explain the change of measure structure. Recall the definition of ψ̂nj,i and ψ̂i from

the previous section. Then,

Âni (t) = n−1/2
(

Ani (t)−

∫ t

0
ψn1,i(s)ds

)

+ λ
1/2
i

∫ t

0
ψ̂n1,i(s)ds, (2.18)

Ŝni (T
n
i (t)) = n−1/2

(

Sni (T
n
i (t))−

∫ t

0
ψn2,i(s)dT

n
i (s)

)

+ µ
1/2
i

∫ t

0
ψ̂n2,i(s)dT

n
i (s).

Informally speaking, in both lines above, under Q̂n
1,i × Q̂n

2,i, the first term is approximately a
standard Brownian motion and the second term approximates a drift (in case it converges).
This claim is handelled rigorously in [14, Section 4]. As a result, under Q̂n

i , Â
n
i − Ŝni (T

n
i ) is

approximately a diffusion process with drift (2λi)
1/2ψ̂ni := λ

1/2
i ψ̂n1,i− ρiµ

1/2
i ψ̂n2,i and a diffusion

coefficient σii = (2λi)
1/2; the term ρi is due to the convergence T ni (t) → ρit, t ∈ R+.

Remark 2.1 (i) Notice that the structure of the information in the game is consistent with
the one in the QCP. The minimizer chooses a strategy and the maximizer, which is penalized
for deviating from the reference measure, responds to this strategy by choosing a worst case
scenario. For further reading about the structure of the information in control problems with
model uncertainty, the reader is referred to [32].

(ii) Given any {Ft}-progressively measurable process ψ̂ that satisfies the conditions in
(2.17), the right-hand side (r.h.s.) of (2.16) is a martingale, and therefore, there exists a
probability measure Q̂ such that Q̂|Ft satisfies (2.16) for all t ∈ R+.

(iii) Equation (2.14) can alternatively be written as

X̂(t) = x̂0 + m̂t+

∫ t

0
σ̂ψ̂(s)ds+ σ̂B̂Q̂(t) + Ŷ (t)− R̂(t), t ∈ R+, (2.19)

where B̂Q̂(t) := B̂(t)−
∫ t
0 ψ̂(s)ds, t ∈ R+, is an {Ft}-I-dimensional standard Brownian motion

under Q̂.

Denote by Â(x̂0) the set of all admissible controls for the minimizer, given the initial
condition x̂0. We often abuse notation and denote (Ŷ , R̂) ∈ Â(x̂0), keeping in mind that the
control includes a filtered probability space. The set of all admissible controls for the maximizer
is denoted by Q̂(x̂0).

The cost function (MSDG). Recall the discussion about the approximation of the cost
function of the QCP from the previous section and (2.11). Set ε̂ = (ε̂i)

I
i=1. The cost associated

10



with the initial condition x̂0 and the strategies (Ŷ , R̂) and Q̂ is given by

Ĵ(x̂0, Ŷ , R̂, Q̂; ε̂) := EQ̂
[

∫ ∞

0
e−̺t

(

ĥ · X̂(t)dt+ r̂ · dR̂(t)
) ]

−
I

∑

i=1

1

ε̂i
L̺(Q̂i‖Pi), (2.20)

where

L̺(Q̂i‖Pi) := EQ̂i

[

∫ ∞

0
̺e−̺t log

dQ̂i(t)

dPi(t)
dt

]

(2.21)

The cost function can alternatively be expressed by

Ĵ(x̂0, Ŷ , R̂, Q̂; ε̂) = EQ̂
[

∫ ∞

0
e−̺t

(

ĥ · X̂(t)dt+ r̂ · dR̂(t)−
I

∑

i=1

1

2ε̂i
ψ̂2
i (t)dt

)]

, (2.22)

with ψ̂ satisfying (2.16)–(2.17) above. Indeed,

L̺(Q̂i‖Pi) = EQ̂i

[
∫ ∞

0
̺e−̺t

(

−
1

2

∫ t

0
ψ̂2
i (s)ds+

∫ t

0
ψ̂i(s)dB̂i(s)

)

dt

]

(2.23)

= EQ̂i

[
∫ ∞

0
̺e−̺t

(

−
1

2

∫ t

0
|ψ̂i(s)|

2ds +

∫ t

0
ψ̂i(s) · (dB̂

Q̂
i (s) + ψ̂i(s)ds)

)

dt

]

= EQ̂i

[
∫ ∞

0
̺e−̺t

(

1

2

∫ t

0
ψ̂2
i (s)ds

)

dt

]

= EQ̂i

[

1

2

∫ ∞

0
ψ̂2
i (s)

∫ ∞

s
̺e−̺tdtds

]

= EQ̂i

[

1

2

∫ ∞

0
e−̺tψ̂2

i (t)dt

]

<∞.

Compare this structure with the approximated penalty in the QCP given at the end of the
previous section.

While the form of the cost function given in (2.20) captures better the ambiguity aversion,
the form of the cost given in (2.22) is more useful from a technical point of view. Moreover, the
dynamics in (2.19) together with the cost function given in (2.22) are similar in their structure
to their correspondences in Equation (11) and the display below (13) together with (2) in [2].
The DM is faced the following optimization problem

V̂ (x̂0; ε̂) = inf
(Ŷ ,R̂)∈Â(x̂0)

sup
Q̂∈Q̂(x̂0)

Ĵ(x̂0, Ŷ , R̂, Q̂; ε̂)

2.2.2 The reduced stochastic differential game (RSDG)

We now present the RSDG. This game is one-dimensional and obtained by projecting the
processes from (2.14) in the θ direction, which is given in (2.13). For this we need the following
notation,

x0 := θ · x̂0, m := θ · m̂, σ := ‖θσ̂‖, (2.24)

ε :=
1

σ2

I
∑

i=1

(θσ̂)2i ε̂i, (2.25)

11



and

b := max{θ · ξ̂ : ξ̂ ∈ X} = θ · b̂,

where b̂ = (b̂i)
I
i=1.

Definition 2.2 (admissible controls, RSDG) An admissible control for the minimizer for
any initial state x0 ∈ [0, b] is a filtered probability space (Ω,F , {Ft},P) that supports a one-
dimensional standard Brownian motion B and a process (Y,R) taking values in R2

+ with RCLL
sample paths, both adapted to the filtration {Ft} and satisfy the following properties:
(i) for every 0 ≤ s < t, B(t)−B(s) is independent of Fs under P;
(ii) Y and R are nonnegative and nondecreasing;
(iii)

X(t) = x0 +mt+ σB(t) + Y (t)−R(t), t ∈ R+, (2.26)

such that

X(t) ∈ [0, b], t ∈ R+, P-a.s.

An admissible control for the maximizer is a meausre Q defined on (Ω,F , {Ft}) such that

dQ(t)

dP(t)
= exp

{

∫ t

0
ψ(s)dB(s)−

1

2

∫ t

0
ψ2(s)ds

}

, t ∈ R+, (2.27)

for an {Ft}-progressively measurable process ψ satisfying

EP
[

∫ ∞

0
e−̺sψ2(s)ds

]

<∞ and EP
[

e
1

2

∫ t
0
ψ2(s)ds

]

<∞ for every t ∈ R+. (2.28)

The statements given in Remark 2.1 also hold for the RSDG as well. For completeness of
the presentation and for later references we provide an alternative form of the dynamics given
in (2.26),

X(t) = x0 +mt+

∫ t

0
σψ(s)ds + σBQ(t) + Y (t)−R(t), t ∈ R+, (2.29)

where BQ(t) := B(t) −
∫ t
0 ψ(s)ds, t ∈ R+, is an {Ft}-one-dimensional standard Brownian

motion under Q.
Denote by A(x0) the set of all admissible controls for the minimizer, given the initial

condition x0. As before, we often abuse notation and denote (Y,R) ∈ A(x0), keeping in mind
that the control includes a filtered probability space. The set of all admissible controls for the
maximizer is denoted by Q(x0).

The cost function (RSDG). The expected cost associated with the initial condition x
and the controls (Y,R) and Q is given by

J(x0, Y,R,Q; ε) :=EQ
[

∫ ∞

0
e−̺t (h(X(t))dt + rdR(t))

]

−
1

ε
L̺(Q‖P),
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where

h(x) := min{ĥ · ξ̂ : ξ̂ ∈ X , θ · ξ̂ = x}, (2.30)

r := min{r̂ · q : q ∈ RI+, θ · q = 1}, (2.31)

and L̺(Q‖P) is given by (2.21) with (Q,P) replacing (Q̂i,Pi). By the convexity of X it follows
that h is convex. In fact, h is piecewise linear and Lipschitz continuous. Moreover, h(x) ≥ 0
for x ≥ 0 and equality holds if and only if x = 0. Therefore, h is strictly increasing. In [6,
page 568] it is shown that there is i∗ ∈ [I] such that,

r = ri∗µi∗ := min{riµi : i ∈ [I]}. (2.32)

The index i∗ stands for the class with the smallest rejection cost, weighted with the mean
service rate. In fact, as we discuss in Section 2.3 and prove in Theorem 4.1, under optimality
of both players in the MSDG, rejections are performed only from this class.

By the same arguments that lead to (2.22), the cost function of the RSDG can alternatively
be expressed by the technically more convenient form,

J(x0, Y,R,Q; ε) =EQ
[

∫ ∞

0
e−̺t

(

h(X(t))dt + rdR(t)−
1

2ε
ψ2(t)dt

)]

, (2.33)

with ψ satisfying (2.28) above. The value function is given by

V (x0; ε) = inf
(Y,R)∈A(x0)

sup
Q∈Q(x0)

J(x0, Y,R,Q; ε). (2.34)

Remark 2.2 In case that there is no ambiguity, we define the cost and the value functions by

JNA(x0, Y,R) := EP
[

∫ ∞

0
e−̺t(h(X(t))dt + rdR(t))

]

, (2.35)

V (x0; 0) := inf
(Y,R)∈A(x0)

JNA(x0, Y,R).

This problem was studied by Harrison and Taksar [21] and later on was used by Atar and Shifrin
[6]. In Theorem 5.1 we show that this problem is obtained when the ambiguity vanishes, that
is, limε→0 V (x0; ε) = V (x0; 0).

2.3 The relationship between the games

We now show that the last two games share the same value and moreover, that given any
admissible control for the minimizer in either one of the games, one can construct an admissible
control in the other game that performs at least as well. For this, we define a function γ, taken
from [6, Equations (48)–(49)], that sends any workload value x0 to the cheapest state of the
MSDG (from the holding cost perspective) among all the states whose workload levels are x0.
Using this function and an optimal strategy for the minimizer in the RSDG, we construct an
optimal strategy for the minimizer in the MSDG, see Theorem 4.1. In order to define the
function it is convenient to assume without loss of generality that

h1µ1 ≥ h2µ2 ≥ · · · ≥ hIµI .
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Figure 1: The graphs refer to the case I = 3, ĥ = (1, 5/2, 3/2), µ = (3, 1, 3/2), and (b̂1, b̂2, b̂3) = (4, 7, 6). The

graph to the left stands for the workload levels. The curve of the function γ is in bold in the graph to the right.

The workload levels with the lower case letters are j = 0, k = b̂3/µ3 = 4, l = b̂3/µ3 + b̂2/µ2 = 11, m = b̂3/µ3 +

b̂2/µ2 + 1, and n = b̂3/µ3 + b̂2/µ2 + b̂1/µ1 = b = 37/3. They respectively correspond to the upper case letters:

J = (0, 0, 0),K = (0, 0, b̂3/µ3) = (0, 0, 4), L = (0, b̂2/µ2, b̂3/µ3) = (0, 7, 4),M = (1, b̂2/µ2, b̂3/µ3) = (1, 7, 4), and

N = (b̂1/µ1, b̂2/µ2, b̂3/µ3) = (4/3, 7, 4).

Recall that b = θ · (b̂1, . . . , b̂I). Given x ∈ [0, b), let (j, υ) be the unique pair that is determined
by

x =
I

∑

i=j+1

θib̂i + θjυ, j ∈ [I], υ ∈ [0, b̂j),

and for x = b, take (j, υ) = (1, b̂1). Let γ : [0, b] → X be the function given by

γ(x) =
I

∑

i=j+1

b̂iei + υej , (2.36)

where {e1, . . . , eI} is the standard basis of RI . By filling up the cheaper buffers first (w.r.t. the
holding costs) we get that,

γ(x) ∈ argmin{ĥ · ξ̂ : ξ̂ ∈ X , θ · ξ̂ = x}. (2.37)

The curve γ(x), x ∈ [0, b] is continuous and located on the edges of X , see Figure 1. The idea
is as follows, recall that the components of Ŷ = (Ŷi)

I
i=1 can be positive or negative, as long as

θ · Ŷ is nonnegative and nondecreasing. Now, as the workload changes in the interval [0, b), the
DM can use only the process Ŷ , without the need of the rejection process R̂, so that X̂ moves
along the curve of γ. As will be shown in Theorem 4.1, under optimality, the rejection process
is used only to reduce the workload, and only from the class which has the cheapest weighted
rejections cost, denoted by i∗. We discuss more about the minimizer’s optimal strategy in the
MSDG in Remark 2.3 and in the paragraph that comes before Theorem 4.1.

We state the proposition below for an arbitrary initial point x̂0 ∈ X and show that
V̂ (x̂0; ε̂) = V (x0; ε), where recall that x0 = θ · x̂0.

Proposition 2.1 Fix ε̂ = (ε̂i)
I
i=1 and x̂0 ∈ X . Let ε be given by (2.25).
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(i) Given an admissible control in the MSDG, (Ω,F , {Ft},P, B̂, Ŷ , R̂) and an admissible mea-
sure Q∗ associated with ψ∗ in the RSDG that satisfies (2.27)–(2.28), set B = 1

σθσ̂·B̂, (X,Y,R) =

(θ · X̂, θ · Ŷ , θ · R̂), and ψ̂∗ = (ψ̂∗,1, . . . , ψ̂∗,I), by

ψ̂∗,i(t) :=
σψ∗(t)(θσ̂)iε̂i
∑I

j=1(θσ̂)
2
j ε̂j

, t ∈ R+, i ∈ [I]. (2.38)

Let Q̂∗ be the associated measure defined through (2.16). Then (Y,R) ∈ A(x0), Q̂∗ ∈ Q̂(x̂0),
and

J(x0, Y,R,Q∗; ε) ≤ Ĵ(x̂0, Ŷ , R̂, Q̂∗; ε̂). (2.39)

As a consequence,

sup
Q∈Q(x0)

J(x0, Y,R,Q; ε) ≤ sup
Q̂∈Q̂(x̂0)

Ĵ(x̂0, Ŷ , R̂, Q̂; ε̂).

(ii) Conversely, consider an admissible control in the RSDG, (Ω,F , {Ft},P, B, Y,R), which
is assumed to support an I-dimensional standard Brownian motion B̂. Consider also an ad-
missible Q̂♯ associated with ψ̂♯ in the MSDG that satisfies (2.16)–(2.17). Assume that B̂ is

{Ft}-adapted and satisfies 1
σθσ̂ · B̂ = B and (2.12). Define (X̂, Ŷ , R̂) by

X̂(t) := γ(X(t)), R̂(t) := R(t)µi∗ei∗ , (2.40)

and

Ŷ (t) := X̂(t)− x̂0 − m̂t− σ̂B̂(t) + R̂(t). (2.41)

Also, let

ψ♯(t) :=
1

σ
θσ̂ · ψ̂♯(t), t ∈ R+, (2.42)

and let Q♯ be the associated measure defined through (2.27). Then (Ŷ , R̂) ∈ Â(x̂0), Q♯ ∈ Q(x0),
and

Ĵ(x̂0, Ŷ , R̂, Q̂♯; ε̂) ≤ J(x0, Y,R,Q♯; ε).

As a consequence,

sup
Q̂∈Q̂(x̂0)

Ĵ(x̂0, Ŷ , R̂, Q̂; ε̂) ≤ sup
Q∈Q(x0)

J(x0, Y,R,Q; ε). (2.43)

Notice that in part (i) we define the dynamics (X,Y,R) in the RSDG from the dynamics
(X̂, Ŷ , R̂) in the MSDG by projecting in the θ direction. In part (ii) we consider an auxiliary
I-dimensional standard Brownian motion for technical reasons. The proof that the probability
space (Ω,F , {Ft},P, B, Y,R) supports such a Brownian motion is merely technical and is fully
given in [6, Proposition 2.1.(iii)]. Therefore, it is omitted. Also, in (2.40)–(2.41) we construct
first X̂ from the one-dimensional process X using the well-defined function γ that maps [0, b]
to X . Then, we define R̂ as a process with degeneracy in its [I] \ {i∗} coordinates. Only then
we define Ŷ in such a way that (2.14) holds.
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Corollary 2.1 Fix ε̂ = (ε̂i)
I
i=1 and x̂0 ∈ X . Let ε be given by (2.25). Then, V̂ (x̂0; ε̂) =

V (x0; ε).

Remark 2.3 In Theorem 3.1 we show that the minimizer in the RSDG has a simple optimal
strategy, which uses minimal idleness and minimal amount of rejections in order to keep the
workload in some subinterval [0, β] ⊆ [0, b]. In Theorem 4.1 we use the function γ given
in (2.36) and the relations given in (2.40)–(2.41) to construct an optimal strategy for the
minimizer in the MSDG. An optimal strategy for the maximizer emerges from (2.38) and
(2.42).

Proof of Proposition 2.1: Some of the arguments in the proof are given in [6, Proposi-
tion 2.1]. However, the ones that involve changes of the probability measure are new. For
completeness of the proof we provide all the details.

(i) The proof that (Y,R) ∈ A(x0) is straightforward and therefore omitted. Notice that
‖ψ̂∗(·)‖ ≤ |ψ∗(·)| and therefore, Q̂∗ ∈ Q̂(x̂0) follows since Q∗ ∈ Q(x0).

We now show that the distribution of X under Q∗ is the same as under Q̂∗. Replacing Q̂

by Q̂∗ in equation (2.19) and multiplying its both sides by θ yield

X(t) = x0 +mt+

∫ t

0
θσ̂ψ̂∗(s)ds + θσ̂B̂Q̂∗(t) + Y (t)−R(t) (2.44)

= x0 +mt+

∫ t

0
σψ∗(s)ds + σBQ∗(t) + Y (t)−R(t).

The equality between the integrals follows by the definitions of ψ̂∗ and σ. The equality between
the Brownian motion terms follows since

θσ̂B̂Q̂∗(t) = θσ̂B̂(t)−

∫ t

0
θσ̂ψ̂∗(s)ds = σB(t)− σ

∫ t

0
ψ∗(s)ds = σBQ∗,

which in turn follows by using the definitions of B̂Q̂∗ and BQ∗ ((2.19) and (2.29)) together with

the definition of B from the proposition and once again the definition of ψ̂∗. Recall that B̂
Q̂∗

is an I-dimensional standard Brownian motion under Q̂∗ and that θσ̂ is a deterministic vector
with norm σ. Then from the above, we get that under Q̂∗, the process B

Q∗ is a one-dimensional
standard Brownian motion. Since BQ∗ is a one-dimensional standard Brownian motion also
under Q∗, we get from (2.44) that X admits the same distribution under Q̂∗ and under Q∗.

Next, by the definitions of h and r (see (2.30) and (2.31)) it follows that

h(X(t)) ≤ ĥ · X̂(t), t ∈ R+, (2.45)
∫ ∞

0
e−̺trdR(t) ≤

∫ ∞

0
e−̺tr̂ · dR̂(t). (2.46)

Moreover, using the fact that the distribution of X under Q̂∗ is the same as under Q∗ and the
equality

I
∑

i=1

1

2ε̂i
ψ̂2
∗,i(t) =

1

2ε
ψ2
∗(t), t ∈ R+,
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we get,

J(x0, Y,R,Q∗; ε) = EQ∗

[

∫ ∞

0
e−̺t

(

h(X(t))dt + rdR(t)−
1

2ε
ψ2
∗(t)

)

dt
]

= EQ̂∗

[

∫ ∞

0
e−̺t

(

h(X(t))dt + rdR(t)−
1

2ε
ψ2
∗(t)

)

dt
]

≤ EQ̂∗

[

∫ ∞

0
e−̺t

(

ĥ · X̂(t)dt+ r̂ · dR̂(t)−
I

∑

i=1

1

2ε̂i
ψ̂2
∗,i(t)

)

dt
]

= Ĵ(x̂0, Ŷ , R̂, Q̂∗; ε̂).

Since Q∗ ∈ Q(x0) is arbitrary, it follows that

sup
Q∈Q(x0)

J(x0, Y,R,Q; ε) ≤ sup
Q̂∈Q̂(x̂0)

Ĵ(x̂0, Ŷ , R̂, Q̂; ε).

(ii) We start by showing that (Ŷ , R̂) ∈ Â(x̂0). The processes X̂ , R̂, and Ŷ are {Ft}-adapted
since X, R, and B̂ are. Now,

θ · Ŷ (t) = θ · X̂(t)− θ · x0 − θ · m̂t− θ · σ̂B̂(t) + θ · R̂(t) = Y (t),

and since Y is admissible it follows that θ · Ŷ = Y is nonnegative and nondecreasing. The pro-
cesses {R̂i}

I
i=1 are clearly nonnegative and nondecreasing since so is R. Thus, property (2.13)

holds. Finally, properties (2.14) and (2.15) follow by the definition of γ and the construction
of (X̂, Ŷ , R̂).

Notice that, ‖ψ̂♯(·)‖ = |ψ♯(·)| and therefore, Q♯ ∈ Q(x0) follows since Q̂♯ ∈ Q̂(x̂0). From
Cauchy-Schwartz inequality,

I
∑

i=1

1

2ε̂i
ψ̂2
♯,i(t) ≥

1

2ε
ψ2
♯ (t).

By the definitions of h, r, and γ and (2.32), (2.37), and (2.40) it follows that

ĥ · X̂(t) = h(X(t)), t ∈ R+,
∫ ∞

0
e−̺tr̂ · dR̂(t) =

∫ ∞

0
e−̺trd(θ · R̂(t)) =

∫ ∞

0
e−̺trdR(t).

By the relationship between the I-dimensional processes B̂ and ψ̂♯ and the one-dimensional
processes B and ψ♯, one can show as was done in the previous part that the distribution of X

under Q̂♯ is the same as under Q♯. Therefore,

J(x0, Y,R,Q♯; ε) = EQ♯

[

∫ ∞

0
e−̺t

(

h(X(t))dt + rdR(t)−
1

2ε
ψ2
♯ (t)

)

dt
]

(2.47)

= EQ̂♯

[

∫ ∞

0
e−̺t

(

h(X(t))dt + rdR(t)−
1

2ε
ψ2
♯ (t)

)

dt
]

≥ EQ̂♯

[

∫ ∞

0
e−̺t

(

ĥ · X̂(t)dt+ r̂ · dR̂(t)−
I

∑

i=1

1

2ε̂i
ψ̂2
♯,i(t)

)

dt
]

= Ĵ(x̂0, Ŷ , R̂, Q̂♯; ε̂).
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Since Q̂♯ ∈ Q̂(x̂0) is arbitrary, it follows that

sup
Q̂∈Q̂(x̂0)

Ĵ(x̂0, Ŷ , R̂, Q̂; ε̂) ≤ sup
Q∈Q(x0)

J(x0, Y,R,Q; ε).

✷

3 Solution of the RSDG

In this section we provide a solution to the RSDG. In Section 3.1 we present the notion of
a reflection strategy. Then in Section 3.2 we provide the HJB equation associated with the
RSDG. We prove that the value function is the unique smooth solution of the HJB equation
and show that the minimizer has an optimal reflecting strategy.

3.1 Reflecting strategies

The optimal strategy of the minimizer is shown to be one that enforces the workload to stay in
a specific interval of the form [0, β] with minimal effort. To rigorously define such a strategy we
make use of the Skorokhod map on an interval. Fix α < β. For any η ∈ D(R+,R) there exists
a unique triplet of functions (χ, ζ1, ζ2) ∈ D(R+,R

3) that satisfies the following properties:
(i) for every t ∈ R+, χ(t) = η(t) + ζ1(t)− ζ2(t);
(ii) ζ1 and ζ2 are nondecreasing, ζ1(0−) = ζ2(0−) = 0, and

∫ ∞

0
1(α,β](χ(t))dζ1(t) =

∫ ∞

0
1[α,β)(χ(t))dζ2(t) = 0.

We denote by Γ[α,β](η) = (Γ1
[α,β],Γ

2
[α,β],Γ

3
[α,β])(η) = (χ, ζ1, ζ2). See [25] for existence and

uniqueness of solutions, and continuity and further properties of the map. In particular, we
have the following.

Lemma 3.1 There exists a constant cS > 0 such that for every t > 0, α < β and ω, ω̃ ∈
D(R+,R),

sup
s∈[0,t]

‖Γ[α,β](ω)(t)− Γ[α,β](ω̃)(t)‖ ≤ cS sup
s∈[0,t]

|ω(s)− ω̃(s)|.

Definition 3.1 Fix x0, β ∈ [0, b]. The strategy (Y,R) is called a β-reflecting strategy if for
every η ∈ C(R+,R) one has (X,Y,R)(η) = Γ[0,β](η).

One can easily verify that any β-reflecting strategy is admissible.

3.2 The HJB equation and the value function

In case that there is no ambiguity (see Remark 2.2), the problem was analyzed by Harrison
and Taksar [21]. It is shown there (see Proposition 5.11) that if kαβ is a C1([0, b],R) is twice
continuously differentiable on [α, β] and satisfies

l + k′αβ(x) = 0, 0 ≤ x ≤ α, (3.1)

1

2
σ2k′′αβ(x) +mk′αβ(x)− ̺kαβ(x) + h(x) = 0, α ≤ x ≤ β, (3.2)

r − k′αβ(x) = 0, β ≤ x ≤ b, (3.3)
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then

kαβ(x) = EP

[
∫ ∞

0
e−̺t[h(X(t))dt + rdR(t) + ldY (t)]

]

, x ∈ [0, b],

with (X,Y,R)(t) = Γ[α,β](x0 +m ·+σB(·))(t), t ∈ R+. The rationale behind this argument is
as follows. Consider x ∈ (β, b), then in order to keep the process X between α and β, there is
an instantaneous reflection from above that contributes the cost r(x−β). This explains (3.3).
Similar arguments yield (3.1). When no control is taking action, standard arguments imply
(3.2). The HJB in this case takes the form

{

[

1
2σ

2f ′′(x) +mf ′(x)− ̺f(x) + h(x)
]

∧ f ′(x) ∧ [r − f ′(x)] = 0, x ∈ (0, b),

f ′(0) = 0, f ′(b) = r.

However, the uniqueness of a solution of the HJB is not argued in [21] (see the paragraph
before Section 7) but rather in [6, Proposition 2.2], using viscosity solutions.

Remark 3.1 Notice that in [21] there is a cost associated with the reflections from both sides,
unlike our case that does not consider a cost component for reflections from below, that is l = 0.
It simply follows since in our QCP there is no penalty/reward for idleness. Henceforth, under
optimality, α = 0 in (3.1)–(3.2).

Motivated by these results and the structure of the cost function given in (2.33) together with
the inf-sup structure of the value function given in (2.34), we consider the following HJB,







[

sup
p∈R

{1
2σ

2f ′′(x) + (m+ σp)f ′(x)− ̺f(x) + h(x) − 1
2εp

2}
]

∧ f ′(x) ∧ [r − f ′(x)] = 0, x ∈ (0, b),

f ′(0) = 0, f ′(b) = r.

Or equivalently, by substituting the optimal solution of the supp∈R above, p∗ = εσf ′(x),

{

[f ′′(x) +H(x, f(x), f ′(x))] ∧ f ′(x) ∧ [r − f ′(x)] = 0, x ∈ (0, b),

f ′(0) = 0, f ′(b) = r,
(HJB(ε))

where hereafter,

H(x, y, z) :=
2

σ2

(

mz +
1

2
σ2εz2 − ̺y + h(x)

)

.

Notice that when ε = 0, HJB(ε) coincides with the HJB given in Harrison and Taksar [21,
Equation (1.2)] and by Atar and Shifrin [6, Equation (41)].

The idea is that we may think of the change of measure done by the maximizer as a change
of the drift term from m tom+σp, which costs her 1

2εp
2, where p depends on x and is chosen in

order to maximize the cost. As can be seen, due to the term 1
2σ

2ε(f ′(x))2 in H(x, f(x), f ′(x)),
the HJB is not linear, a fact that raises some technical difficulties in proving Proposition 3.3
below.

We now state the main theorem of the paper, which is given also for ε = 0, see Remark
2.2.
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Theorem 3.1 Fix ε ∈ [0,∞). The value function V (·; ε) is the unique C2([0, b],R) solution of
HJB(ε). Moreover, set

βε = inf
{

x ∈ (0, b] : V ′(x; ε) = r
}

, (3.4)

where V ′(x; ε) is the derivative of V (·; ε) w.r.t. x. Then the βε-reflecting strategy is optimal
for the minimizer and V = V (·; ε) satisfies,











V ′′(x) +H(x, V (x), V ′(x)) = 0, 0 ≤ x ≤ βε,

r − V ′(x) = 0, βε ≤ x ≤ b,

V ′(0) = 0.

(3.5)

From the definition of HJB(ε) and the theorem above we get the following corollary, which is
given for reference purposes.

Corollary 3.1 For any ε ∈ (0,∞), 0 ≤ V ′(·; ε) ≤ r.

The proof of the theorem is done in several steps and follows from the next three propo-
sitions. Before stating them we define a measure Qf associated with a process ψf , which in
turn is driven by a function f ∈ C1([0, b],R) through (2.27). This measure serves us in the
sequel, especially in Propositions 3.1 and 3.2 and Theorem 4.1. In the latter, we show that the
measure QV = QV (·;ε) is the optimal strategy of the maximizer, where V is the value function.
For any f ∈ C1([0, b],R) and t ∈ R+ set

ψf (t) : = argmax
p∈R

{

1

2
σ2f ′′(X(t)) + (m+ σp)f ′(X(t)) − ̺f(X(t)) + h(X(t)) −

1

2ε
p2
}

(3.6)

= εσf ′(X(t)).

This is an {Ft}-progressively measurable process since Y,R, and B are, see Definition 2.2.
Let Qf be the measure associated with ψf through (2.27). Note that ψf is bounded since
f ∈ C1([0, b],R) and therefore (2.28) holds trivially.

The proof of the propositions below are deferred to after the proof of Theorem 3.1.

Proposition 3.1 Fix ε ∈ (0,∞). Assume that HJB(ε) admits a C2([0, b],R) solution f . Then

f(x) ≤ inf
(Y,R)∈A(x)

J(x, Y,R,Qf ; ε), x ∈ [0, b],

and as a consequence f ≤ V .

The next proposition characterizes the solution of the following ordinary differential equation,











k′′β(x) +H(x, kβ(x), k
′
β(x)) = 0, 0 ≤ x ≤ β,

r − k′β(x) = 0, β ≤ x ≤ b,

k′β(0) = 0.

(3.7)
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Proposition 3.2 Fix ε ∈ (0,∞). Assume that there is a function kβ = kβ,ε ∈ C1([0, b],R) ∩
C2([a, b]\{β},R) that solves (3.7). Let (Yβ, Rβ) be a β-reflecting strategy, that is (X,Yβ , Rβ)(t) =
Γ[0,β](x+m ·+σB(·))(t), t ∈ R+. Then, for every x ∈ [0, b],

kβ(x) = sup
Q∈Q(x)

J(x, Yβ , Rβ,Q; ε) = J(x, Yβ , Rβ,Qk; ε), (3.8)

where Qk = Qkβ is the measure associated with ψk = ψkβ , defined in (3.6).

We now claim that for every ε ∈ (0,∞), HJB(ε) admits a unique smooth solution. Harrison
and Taksar provided in [21, page 450] explicit functions from which a smooth solution can be
constructed. The construction is provided and the smoothness is claimed to be straightforward
yet tedious and therefore omitted, see the paragraph below (6.8) there. The situation is more
subtle in our case since HJB(ε) is nonlinear and therefore explicit solutions are out of reach. We
choose a different path and use the shooting method to prove that a smooth solution of HJB(ε)
uniquely exists and that it solves the free-boundary problem (3.7). In short, the shooting
method is used to solve boundary value problems by reducing them to initial value problems;
see [33, Section 7.3] for further reading about the method. We take it one step forward and use
it in the free-boundary setup with Neumann boundary conditions. Specifically, we consider a
set of Cauchy problems on the interval [0, b], indexed3 by s:

{

(k(s))′′(x) +H(x, k(s)(x), (k(s))′(x)) = 0, 0 ≤ x ≤ b,

k(s)(0) = 0, (k(s))′(0) = 0.

We prove that there is a parameter s for which there is βε ∈ (0, b] at which we can smoothly
paste the linear functions k(s) and x 7→ k(s)(βε)+ r(x−βε); namely, (k(s))′(βε) = r and in case
that βε < b also (k(s))′′(βε) = 0. This implies a smooth solution to (3.5). From the technical
point of view, the proof of Proposition 3.3 is the most demanding in this section.

Proposition 3.3 For every ε ∈ (0,∞), HJB(ε) admits a unique C2([0, b],R) solution. More-
over, the solution has the form kβε for some parameter βε ∈ (0, b] for which (kβε)

′ < r on
[0, βε), where kβε is taken from Proposition 3.2.

Proof of Theorem 3.1: Recall that when ε = 0, HJB(ε) coincides with the HJB given in
[21, 6]. Thus, we focus only on positive ε’s.

From Proposition 3.3, the HJB(ε) admits a unique C2([0, b],R) solution that also solves
(3.7) for some βε ∈ (0, b]. Denote it by kβε . From Proposition 3.2 this is the cost of the βε-
reflecting strategy. Therefore, the value function, which is the infimum over all the strategies
satisfies, V (·; ε) ≤ kβε(·). Together with Proposition 3.1, V (·; ε) = kβε(·). Recalling again
that kβε is the cost of the βε-reflecting strategy, we obtain its optimality. The relation in (3.4)
follows now from Proposition 3.3.

✷

The rest of the section is devoted to the proofs of Propositions 3.1–3.3.

3For technical reasons, in the proof we use a modification of H .
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Proof of Proposition 3.1: Fix f ∈ C2([0, b],R) and an arbitrary (Y,R) ∈ A(x) with an
associated standard Brownian motion B. Set

X(t) = x+mt+ σB(t) + Y (t)−R(t), t ∈ R+.

Recalling (2.29), Itô’s lemma implies that for every t > 0 and every Q ∈ Q(x),

EQ
[

e−̺tf(X(t))
]

= f(x) + EQ

[
∫ t

0
e−̺s

(

1

2
σ2f ′′(X(s)) + (m+ σψ(s))f ′(X(s))− ̺f(X(s))

)

ds

]

+ EQ

[
∫ t

0
e−̺sf ′(X(s))(dY c(s)− dRc(s))

]

(3.9)

+ EQ





∑

0≤s≤t

e−̺s∆f(X)(s)



 ,

where Q and ψ are related to each other through (2.27)–(2.28). We used the fact that BQ(t) :=
B(t)−

∫ t
0 ψ(s)ds, t ∈ R+ is a Q standard Brownian motion. The processes

Y c(t) := Y (t)−
∑

0≤s≤t

∆Y (s), Rc(t) := R(t)−
∑

0≤s≤t

∆R(s), t ∈ R+, (3.10)

are the continuous parts of Y and R, respectively. Consider now (3.9) with ψ = ψf defined in
(3.6) and with the measure Q = Qf . Recalling the definition of ψf and that f solves HJB(ε),
we get that

EQf
[

e−̺tf(X(t))
]

≥f(x)− EQf

[
∫ t

0
e−̺s

(

h(X(s))ds + rdR(s)−
1

2ε
ψ2
f (s)ds

)]

(3.11)

+ EQf





∑

0≤s≤t

e−̺s(∆f(X)(s) + r∆R(s))



 .

Since ∆X(s) = ∆Y (s)−∆R(s), we get that

∆f(X)(s) + r∆R(s) = f(X(s))− f(X(s)−∆Y (s)) (3.12)

− [f(X(s) + ∆R(s)−∆Y (s))− f(X(s)−∆Y (s))] + r∆R(s)

=

∫ X(s)

X(s)−∆Y (s)
f ′(u)du+

∫ X(s)+∆R(s)−∆Y (s)

X(s)−∆Y (s)
(r − f ′(u))du

≥ 0.

Combining (3.11)–(3.12), we get that

EQf
[

e−̺tf(X(t))
]

+ EQf

[
∫ t

0
e−̺s

(

h(X(s))ds + rdR(s)−
1

2ε
ψ2
f (s)ds

)]

≥ f(x).

Recalling the definition of the cost function J in (2.33) and noting that the function f is
bounded as a continuous function on [0, b], by taking t → ∞, we get that

sup
Q∈Q(x)

J(x, Y,R,Q; ε) ≥ J(x, Y,R,Qf ; ε) ≥ f(x).
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Since x and (Y,R) are arbitrary, it follows that V (·; ε) ≥ f(·).
✷

Proof of Proposition 3.2: We split the proof into two cases x ∈ [0, β] and x ∈ (β, b).
Fix x ∈ [0, β] and an arbitrary Q ∈ Q(x) with an associated process ψ. Recall the notation
ψk = ψkβ . By (3.6), we get

1

2
σ2k′′β(X(t)) + (m+ σψ(t))k′β(X(t)) − ̺kβ(X(t)) + h(X(t)) −

1

2ε
(ψ(t))2 (3.13)

≤
1

2
σ2k′′β(X(t)) + (m+ σψk(t))k

′
β(X(t)) − ̺kβ(X(t)) + h(X(t)) −

1

2ε
(ψk(t))

2

=
1

2
σ2

(

k′′β(x) +H(x, kβ(x), k
′
β(x))

)

= 0.

Equations (3.9) and (3.10) are given for general admissible strategies (Y,R) ∈ A(x) and
Q ∈ Q(x). Thus, they hold here as well. Notice that since x ∈ [0, β] and (Yβ, Rβ) is a β-
reflecting strategy, the processes Yβ and Rβ have no jumps and so, Y c

β = Yβ and Rcβ = Rβ.
From (3.9), (3.10), and (3.13), one has,

EQ
[

e−̺tkβ(X(t))
]

≤ kβ(x)− EQ

[
∫ t

0
e−̺s

(

h(X(s)ds −
1

2ε
ψ2(s)ds

)

ds

]

(3.14)

+ EQ

[
∫ t

0
e−̺sk′β(X(s))(dYβ(s)− dRβ(s))

]

.

Using now the equalities k′β(0) = 0 and k′β(β) = r, driven from (3.7), we get

EQ
[

e−̺tkβ(X(t))
]

≤ kβ(x)− EQ

[
∫ t

0
e−̺s

(

h(X(s))ds + rdRβ(s)−
1

2ε
ψ2(s)ds

)]

. (3.15)

Recalling the definition of J and noting that the function kβ is bounded as a continuous
function on [0, b], by taking t→ ∞, we get that

kβ(x) ≥ sup
Q∈Q(x)

J(x, Yβ , Rβ ,Q; ε). (3.16)

Notice that all the inequalities in (3.13)–(3.15) hold with equality in case that ψ = ψk and
Q = Qk. Then, together with (3.16), we get that (3.8) holds.

Consider now the case that β < b and x ∈ (β, b]. From (3.7),

kβ(x) = r(x− β) + kβ(β).

Since the strategy (Yβ, Rβ) starts with an instantaneous rejection of x− β0, there is an imme-
diate cost of r(x− β) and hence for any Q ∈ Q(x),

J(x, Yβ, Rβ ,Q; ε) = r(x− β) + J(β, Yβ , Rβ ,Q; ε).

Recall that we just showed that

kβ(β) = sup
Q∈Q(x)

J(β, Yβ , Rβ,Q; ε) = J(β, Yβ , Rβ,Qf ; ε).
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From the last three equalities we get that (3.8) holds for x ∈ (β, b] as well.
✷

Before getting to the proof of Proposition 3.2 we provide an auxiliary parametrized ordinary
differential equation in order to solve the free-boundary one. Fix a parameter s ∈ R and
consider the following Cauchy problem

{

(k(s))′′(x) +HF (x, k
(s)(x), (k(s))′(x)) = 0, x ∈ [0, b],

(k(s))′(0) = 0, k(s)(0) = s,
(3.17)

where

HF (x, y, z) := H(x, y, F (z)) (3.18)

and F is a C1(R,R) function that satisfies the following properties: F (z) = z on [−r, r],
|F | ≤ 2r, and |F ′| ≤ 1 and therefore Lipschitz continuous. For example,

F (z) =































−3/2r, z < −2r,

(1/2)r + 2z + z2/(2r), −2r ≤ z < −r,

z, −r ≤ z ≤ r,

−(1/2)r + 2z − z2/(2r), r ≤ z < 2r,

3/2r, 2r ≤ z.

Because the function F and its derivative are bounded, and since the function h is Lipschitz
(see the paragraph below (2.31)), HF is uniformly Lipschitz. Namely, there is a constant cL
such that for every (x, y, z), (x′, y′, z′) ∈ [0, b]× R× R, one has

|HF (x, y, z) −HF (x
′, y′, z′)| ≤ L(|x− x′|+ |y − y′|+ |z − z′|). (3.19)

From [29, Section 0.3.1], (3.17) admits a unique C2([0, b],R) solution.
Set

β(s) := inf{x ∈ (0, b] : (k(s))′(x) ≥ r} ∧ b, (3.20)

where we use the convention that inf ∅ = ∞. The smoothness of k(s) implies that

if β(s) < b then (k(s))′(β(s)) = r. (3.21)

The following lemma provides some continuity properties that serve us in the proof of
Proposition 3.3.

Lemma 3.2 The function s 7→ (k(s), (k(s))′, (k(s))′′) is continuous in the uniform norm topol-
ogy taken on the interval [0, b]. Moreover, the mapping s 7→ β(s) is continuous for every s
for which either β(s) = b or the following two conditions hold β(s) < b and (k(s))′′(β(s)) 6= 0.
In these cases we conclude that the mapping s 7→ (k(s)(β(s)), (k(s))′(β(s)), (k(s))′′(β(s))) is also
continuous.
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Proof: Fix s ∈ R. One can easily verify that the conditions of [30, Theorem 23] are satisfied
for HF . Therefore, for any δ1 ∈ R

sup
x∈[0,b]

∣

∣

∣
k(s+δ1)(x)− k(s)(x)

∣

∣

∣
≤ |δ1|, (3.22)

and the continuity of s 7→ k(s) is established.
We now turn to showing that s 7→ (k(s))′ is continuous. From (3.17) it follows that for

every x ∈ [0, b]

(k(s))′(x) = 0−

∫ x

0
HF (y, k

(s)(y), (k(s))′(y))dy,

(k(s+δ1))′(x) = 0−

∫ x

0
HF (y, k

(s+δ1)(y), (k(s+δ1))′(y))dy.

Set gs,δ1(x) :=
∣

∣(k(s+δ1))′(x)− (k(s))′(x)
∣

∣, x ∈ [0, b]. From (3.19), there exists a constant L > 0
independent of s and δ1 such that

gs,δ1(x) ≤ L

∫ x

0

(
∣

∣

∣
k(s+δ1)(y)− k(s)(y)

∣

∣

∣
+ gs,δ1(y)

)

dy ≤ Lb|δ1|+ L

∫ x

0
gs,δ1(y)dy,

where the second inequality follows by (3.22). Now, Grönwall’s inequality implies that
supx∈[0,b] gs,δ1(x) ≤ |δ1|Lbe

Lb, and the continuity of s 7→ (k(s))′ is established.

Finally, the continuity of s 7→ (k(s))′′ follows by the relation (k(s))′′(x) = −HF (x, k
(s)(x), (k(s))′(x)),

the continuity of s 7→ (k(s), (k(s))′), and the Lipschitz continuity of HF stated in (3.19).
The rest of the proof is dedicated to the continuity of the function s 7→ β(s) under the

conditions mentioned in the lemma. To this end, we fix s ∈ R and show that if β(s) = b or if
β(s) < b and (k(s))′(β(s)) < r, then

lim sup
δ→0

β(s+δ) ≤ β(s) ≤ lim inf
δ→0

β(s+δ). (3.23)

We start with the first inequality. If β(s) = b then it is obvious, since all the β(u)’s are less or
equal to b. If β(s) < b and (k(s))′′(β(s)) 6= 0, we necessarily have (k(s))′′(β(s)) > 0. Otherwise,
(k(s))′′(β(s)) < 0 and from (3.21), we get that (k(s))′(β(s) − ν) > r for sufficiently small ν > 0,
a contradiction to the definition of β(s).

Using now (k(s))′′(β(s)) > 0, we get that for sufficiently small ν > 0, (k(s))′(β(s) + ν) > r.
By the continuity of s 7→ (k(s))′, we get that for every δ2 with sufficiently small absolute value,
one has (k(s+δ2))′(β(s)+ν) > r. Therefore, β(s+δ2) < β(s)+ν and lim supδ→0 β

(s+δ) ≤ β(s)+ν.
Since ν > 0 can be arbitrary small we get the first inequality on (3.23).

We now turn to proving the second inequality in (3.23). Set γ1 > 0 and β̂(s) := lim infδ→0 β
(s+δ).

Consider a sequence {δj}j → 0 such that {β(s+δj)}j → β̂(s) and β(s+δj) < b for every j. If such
a subsequence does not exist it means that for every δ with sufficiently small absolute value,
β(s+δ) = b and the claim is trivial. Since k(s) ∈ C2([0, b],R), we get that for sufficiently large j,

∣

∣

∣
(k(s))′(β(s+δj))− (k(s))′(β̂(s))

∣

∣

∣
< γ1. (3.24)
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Together with the continuity of s 7→ (k(s))′, we get that for sufficiently large j, one has

∣

∣

∣
(k(s+δj))′(β(s+δj))− (k(s))′(β(s+δj ))

∣

∣

∣
< γ1. (3.25)

Recall that β(s+δj) < b. Thus, (k(s+δj))′(β(s+δj )) = r. From (3.24)–(3.25) we get that

∣

∣

∣
(k(s))′(β̂(s))− r

∣

∣

∣
< 2γ1.

Since γ1 > 0 can be arbitrary small, we get that (k(s))′(β̂(s)) = r and therefore, β(s) ≤ β̂(s).
✷

Proof of Proposition 3.3: Fix ε ∈ (0,∞). We start the proof by arguing uniqueness of the
solution and then we move on to showing that a solution indeed exists.

Uniqueness: We first argue that there cannot be two different C2([0, b],R) solutions of
HJB(ε). Notice that the non-linearity of our differential equation prevents us from using the
same proof given in [6, Proposition 2.2]. Arguing by contradiction, assume that there are two
C2([0, b],R) solutions f1 6= f2. Without loss of generality, assume that there exists x ∈ [0, b]
such that f1(x) > f2(x). Take y0 ∈ argmaxx∈[0,b]{f1(x) − f2(x)}. Clearly, f1(y0) > f2(y0).
Also, f ′1(0) = f ′2(0) = 0 and f ′1(b) = f ′2(b) = r since they are both solutions to HJB(ε). Now,
if y0 ∈ (0, b), then first order condition for f1 − f2 implies that f ′1(y0) = f ′2(y0), and therefore
it holds whether y0 is an internal point or an endpoint of [0, b].

By the structure of HJB(ε) applied to f1, we get

f ′′1 (y0) +H(y0, f1(y0), f
′
1(y0)) ≥ 0. (3.26)

The same inequality holds for f2. Now, if

f ′′2 (y0) +H(y0, f2(y0), f
′
2(y0)) = 0, (3.27)

then by subtracting (3.27) form (3.26), and recalling that f1(y0) > f2(y0) and f
′
1(y0) = f ′2(y0),

we get that f ′′1 (y0) > f ′′2 (y0). Therefore, in a small neighborhood of y0 (in case that y0 = 0 or
y0 = b, we take right- and left-neighborhoods, respectively), f1(x) − f2(x) > f1(y0) − f2(y0),
which contradicts the definition of y0.

Consider now the case

f ′′2 (y0) +H(y0, f2(y0), f
′
2(y0)) > 0.

Since f2 is a C2([0, b],R) solution of HJB(ε), it follows that 0 ≤ y1 < y0 < y2 ≤ b, where

y1 := sup
{

x ∈ [0, y0] : f
′′
2 (x) +H(x, f2(x), f

′
2(x)) = 0

}

∨ 0,

y2 := inf
{

x ∈ [y0, b] : f
′′
2 (x) +H(x, f2(x), f

′
2(x)) = 0

}

∧ b.

We use the convention that sup ∅ = − inf ∅ = −∞. Notice that on the interval (y1, y2), which
includes y0, f

′′
2 (x) +H(x, f2(x), f

′
2(x)) > 0. Since f2 solves HJB(ε), it follows that f ′2 = 0 on

[y1, y2] or f
′
2 = r on [y1, y2]. In the former case, we get f2(y0) = f2(y2) and since f ′2(b) = r,

y2 < b. Since f ′1 ≥ 0 as a solution of HJB(ε), we get that f1(y2) − f2(y2) ≥ f1(y0) − f2(y0),
which by the definition of y0 is in fact an equality. Therefore, y2 ∈ argmaxx∈[0,b]{f1(x)−f2(x)}.
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Since y2 < b it follows by the smoothness of f2 and the definition of y2 that (3.26) and (3.27)
hold with y2 replacing y0. Repeating the same argument proceeding (3.27), with y2 replacing
y0 yields a contradiction. Now if, f ′2 = r on [y1, y2], a similar argument hold by using f ′1 ≤ r
and the point y1 instead of y2.

Existence: We now construct a C2([0, b],R) solution of (3.7) with some βε ∈ (0, b] that also
solves HJB(ε). The solution is shown to satisfy also k′βε ≤ r. Repeating the same arguments
given in [21, Proposition 6.1], we get that k′′βε(x) + H(x, kβε(x), k

′
βε
(x)) ≥ 0 on [β, b] and

therefore, kβε satisfies HJB(ε) and we are done.
To solve (3.7), we hereby consider the Cauchy problem given in (3.17). Since eventually

we find a solution to (3.17) that satisfies 0 ≤ (k(s))′ ≤ r, it also solves the same ordinary
differential equation from (3.17) with H replacing HF . The rest of the proof is performed in
two steps. First, we prove the existence of s∗ ∈ R for which the parameter β(s

∗) ∈ (0, b] from
(3.20) satisfies the following

(k(s
∗))′(x) < r on [0, β(s

∗)), (3.28)

(k(s
∗))′(β(s

∗)) = r, (3.29)

and in case that β(s
∗) < b, also

(k(s
∗))′′(β(s

∗)) = 0. (3.30)

In the second step we show that (k(s))′ ≥ 0 on [0, β(s
∗)]. Therefore, the function

k(x) =

{

k(s
∗)(x), 0 ≤ x < β(s

∗),

k(s
∗)(β(s

∗)) + r(x− β(s
∗)), β(s

∗) ≤ x ≤ b,

satisfies (3.7), and the proof is done by setting

βε := β(s
∗) and kβε := k(s

∗). (3.31)

As a conclusion, we get that

s∗ = kβε(0) = V (0; ε). (3.32)

Step 1: Notice that (3.28) holds trivially for every s∗ by the definition of β(s). Therefore,
we only need to check that (3.29) and (3.30) hold.

The first observation is that for sufficiently large s, β(s) < b and (k(s))′′(β(s)) > 0. Also, for
sufficiently small s, β(s0) = b and (k(s0))′(b) < r. We prove the first part, the second one follows
by the same lines and is therefore omitted. Fix s1 > (2|m|r+2σ2εr2+h(b)+rσ2/b)/̺. Now, the
function k(s1) is nondecreasing on [0, b]. Indeed, arguing by contradiction, assume that there
is x ∈ (0, b) such that (k(s1))′(x) < 0, then consider y3 := inf{x ∈ [0, b] : (k(s1))′(x) < 0}. The
smoothness of k(s1) on [0, b] and the initial condition (k(s1))′(0) = 0 imply that (k(s1))′(y3) = 0.
So,

1

2
σ2(k(s1))′′(y3) = ̺k(s1)(y3)− h(y3) ≥ ̺k(s1)(0)− h(b) = ̺s1 − h(b) > 0. (3.33)
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The first inequality follows since k(s1) is nondecreasing on [0, y3]. This is a contradiction to the
definition of y3, since for every sufficiently small δ > 0 we have (k(s1))′(y3 + δ) > 0. Therefore,
(k(s1))′ ≥ 0 on [0, b]. Combining it with (3.17), |F | ≤ 2r, k(s1)(0) = s1, the choice of s1, and
that h is increasing (see the paragraph below (2.31)), we get that for every x ∈ [0, b],

(k(s1))′′(x) = −
2

σ2

(

mF ((k(s1))′(x)) +
1

2
σ2εF 2((k(s1))′(x))− ̺k(s1)(x) + h(x)

)

>
2

σ2

(

̺k(s1)(0)− 2|m|r −
1

2
σ2r2ε− h(b)

)

=
2r

b
.

In particular (k(s1))′′(β(s1)) > 0. Also (k(s1))′(b/2) =
∫ b/2
0 (k(s1))′′(u)du ≥ r and therefore,

β(s1) ≤ b/2 < b.
By the choices of s0 and s1, the following infimum is attained. Set

s∗ := inf{s ∈ (−s0, s1) : ∀u ∈ (s, s1), β
(u) < b and (k(u))′′(β(u)) > 0}.

In case that β(s
∗) = b, then by the definition of s∗, for every u ∈ (s∗, s1), β

(u) < b and therefore,
from (3.21) we have (k(u))′(β(u)) = r. Now, the continuity of the mapping s 7→ (k(s))′(β(s)) at
s = s∗ in this case, provided in Lemma 3.2 implies that (k(s

∗))′(β(s
∗)) = r and (3.29) holds in

this case.
In case that β(s

∗) < b then (3.21) implies that (3.29) holds. We now claim that (3.30)
holds, that is, (k(s

∗))′′(β(s
∗)) = 0. Otherwise, if (k(s

∗))′′(β(s
∗)) < 0, then by the continuity of the

mapping s 7→ (β(s), (k(s))′′(β(s))) in this case (see Lemma 3.2), we get that for every sufficiently
small ν > 0, β(s

∗+ν) < b and (k(s
∗+ν))′′(β(s

∗+ν)) < 0, which contradicts the definition of s∗.
If however, (k(s

∗))′′(β(s
∗)) > 0 then Lemma 3.2 again implies that for every sufficiently small

ν > 0, one has β(s
∗−ν) < b and (k(s

∗−ν))′′(β(s
∗−ν)) > 0, in contradiction to the definition of s∗.

Therefore, (k(s
∗))′′(β(s

∗)) = 0 and (3.30) holds.
Step 2: In this step we show that

(k(s
∗))′(x) ≥ 0, x ∈ [0, β(s

∗)]. (3.34)

Arguing by contradiction, assume that there is y5 ∈ (0, β(s
∗)) with (k(s

∗))′(y5) < 0. We omitted
the endpoints where the derivatives are 0 and r. The smoothness of the function k(s

∗) together
with (k(s

∗))′(0) = 0 and (k(s
∗))′(β(s

∗)) = r (from the previous step) imply that the following
supremum and infimum are attained

y4 := inf{x ∈ [0, y5) : ∀y ∈ (x, y5), (k
(s∗))′(y) ≤ 0},

y6 := sup{x ∈ (y5, β
(s∗)) : ∀y ∈ (x, y5), (k

(s∗))′(y) ≤ 0}.

Also, (k(s
∗))′(y4) = (k(s

∗))′(y6) = 0 and (k(s
∗))′′(y4) ≤ 0 ≤ (k(s

∗))′′(y6). Substituting these
relations in (3.17), we obtain,

̺k(s
∗)(y4)− h(y4) ≤ 0 ≤ ̺k(s

∗)(y6)− h(y6). (3.35)

Since (k(s
∗))′(x) ≤ 0 on [y4, y6], and by the smoothness of k(s

∗), there is a subinterval on which
(k(s

∗))′(x) < 0, one has k(s
∗)(y4) > k(s

∗)(y6). Recall that the function h is increasing (see the
paragraph below (2.31)) and therefore, h(y4) < h(y6). The last two inequalities contradict
(3.35) and therefore, (3.34) holds.

✷
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4 Optimal strategies and equilibria in the games

In Theorem 3.1 we claimed that the minimizer has an optimal strategy, which is a βε-reflecting
strategy with βε given in (3.4). However, we did not argue uniqueness in the sense that for
every β 6= βε, the β-reflecting strategy is strictly sub-optimal. Neither did Harrison and Taksar
[21] nor Atar and Shifrin [6]. Hence, in the following discussion, which evolves around this
issue, we allow ε = 0 and consider ε ∈ [0,∞).

Recall the definition of βε from (3.4). Define now,

β̂ε := sup
{

x ∈ (0, b] : ∀y ≤ x, V ′′(y; ε) +H(y, V (y; ε), V ′(y; ε)) = 0
}

. (4.1)

From (3.5) it follows that β̂ε ≥ βε. Since on the interval [βε, β̂ε] both of the conditions

V ′′(x; ε) +H(x, V (y; ε), V ′(x; ε)) = 0 and V ′(x; ε) = r (4.2)

hold, it follows that V solves (3.7) for any β ∈ [βε, β̂ε]. Proposition 3.2 implies that every such
β-reflecting strategy is optimal. Thus, the non-uniqueness of the optimal reflecting strategy is
equivalent to the existence of non-degenerate interval [βε, β̂ε], on which the equations in (4.1)
hold. Combining both of them, we get that V (x; ε) = (mr + σ2r2ε/2 + h(x))/̺. Using again
V ′(x; ε) = r, we get that h′(x) = ̺r. Recall that h is piecewise linear with slopes in the set
{h1µ1, . . . , hIµI} (see the paragraph below (2.31)). Thus, if ̺r does not belong to this set, we
get uniqueness of the optimal reflecting strategy. Another sufficient condition would be that m
is sufficiently negative such that (mr+ σ2r2ε/2 + h(b))/̺ ≤ 0, since the value function cannot
be non-positive. The arguments above are summarized in the following proposition.

Proposition 4.1 Fix ε ∈ [0,∞). A β-reflecting strategy is optimal if and only if β ∈ [βε, β̂ε].
If

for every i ∈ [I], ĥiµi 6= ̺r or mr +
1

2
σ2εr2 + h(b) ≤ 0, (4.3)

then βε = β̂ε and there is a unique optimal reflecting strategy.

Although there might be weaker assumptions under which uniqueness hold, we do not aim to
find them, and remain contented with the not so restrictive conditions given in (4.3).

We already know that the minimizer has an optimal reflecting strategy. We now show
that for every ε̂ ∈ (0,∞)I and ε given through (2.25), both the RSDG and the MSDG have
equilibria. Specifically, each player has an optimal strategy that is good against any strategy
of the other player. Recall that Proposition 2.1 connects between the costs in the games. Fix
x̂0 ∈ X , ε̂ ∈ (0,∞)I , β̄ε ∈ [βε, β̂ε], and an I-dimensional standard Brownian motion B̂. Set
B = σ−1θσ̂ · B̂ and recall (2.24) and (2.25). Let (Yβ̄ε , Rβ̄ε) be an optimal reflecting strategy
for the minimizer. Also, let QV = QV (·;ε) be the measure driven by ψV = ψV (·;ε) (see (3.6)).
Recall the definition of the function γ from (2.36) and the relations given in (2.40)–(2.41). Set
the strategy (Ŷβ̄ε , R̂β̄ε) by

R̂β̄ε(t) := Rβ̄ε(t)µi∗ei∗ and Ŷβ̄ε(t) := X̂β̄ε(t)− x̂0 − m̂t− σ̂B̂(t) + R̂β̄ε(t), t ∈ R+,

29



where i∗ is given in (2.32) and for any t ∈ R+,

X̂β̄ε(t) : = γ(Xβ̄ε(t)),

Xβ̄ε(t) = x0 +mt+ σB(t) + Yβ̄ε(t)−Rβ̄ε(t).

Moreover, let Q̂V be the measure associated with ψ̂V (t) = (ψ̂V,1(t), . . . , ψ̂V,I(t)), given by

ψ̂V,i(t) :=
σψV (t)(θσ̂)iε̂i
∑I

j=1(θσ̂)
2
j ε̂j

, i ∈ [I], t ∈ R+. (4.4)

We now claim that the mentioned strategies form equilibria in the games. Using the β̄ε-
reflecting strategy in the RSDG it follows that the associated workload dynamics Xβ̄ε is a
reflected diffusion that moves continuously along the interval [0, β̄ε]. The function γ continu-
ously maps the workload process to the bold curve from Figure 1. If for example m = β̄ε in
figure 1, then the process X̂βε moves continuously along the bold curve between the points J
and M , where it is reflected at these two points.

The next theorem generalizes Corollary 2.1 and Theorem 3.1 and provides equilibria in the
games.

Theorem 4.1 Fix ε ∈ (0,∞). Using the notation above, the triplets (Yβ̄ε , Rβ̄ε ,QV ) and

(Ŷβ̄ε , R̂β̄ε , Q̂V ) form equilibria in the RSDG and the MSDG, respectively. That is,

V (x0; ε) = sup
Q∈Q(x0)

J(x0, Yβ̄ε , Rβ̄ε ,Q; ε) = J(x0, Yβ̄ε , Rβ̄ε ,QV ; ε) = inf
(Y,R)∈A(x0)

J(x0, Y,R,QV ; ε)

= V̂ (x̂0; ε̂) = sup
Q̂∈Q̂(x̂0)

Ĵ(x0, Ŷβ̄ε , R̂β̄ε , Q̂; ε̂) = Ĵ(x̂0, Ŷβ̄ε , R̂β̄ε , Q̂V ; ε̂) = inf
(Ŷ ,R̂)∈Â(x̂0)

Ĵ(x̂0, Ŷ , R̂, Q̂V ; ε̂).

Remark 4.1 Notice that the optimal policies for the minimizer in the MSDG has the same
structure as the optimal policy in the BCP given in [6]. The only difference emerge from
the cut-off point βε, which affects the point of reflection on the curve γ. Such a result is
not obvious due to the non-stationarity structure of the problem caused by the existence of
the maximizer player. Furthermore, the structures of the equilibria share similarities with the
optimal policies in the differential game given in [2]. More specifically, [2, Theorem 3.3] states
that the minimizer’s optimal strategy in the one-dimensional deterministic differential game is
a reflecting strategy (called there a ‘barrier strategy’). Under optimality, the maximal player
in the same game uses a drift change that is illustrated more compactly in [3, Section 3, (30)–
(31)]. The relationship between the multidimensional and the one-dimensional games is given
in [2, Appendix A].

Proof of Theorem 4.1: In this proof we do not check admissibility. It can be verified easily
the same way as in Proposition 2.1 using Corollary 3.1. The first two equalities follow from
the optimality of (Yβ̄ε , Rβ̄ε) and from (3.8). The third equality follows since on the one hand,
by the definition of V ,

V (x0; ε) ≥ inf
(Y,R)∈A(x0)

J(x0, Y,R,QV ; ε)
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and on the other hand, the reversed inequality follows from Proposition 3.1 since by Theorem
3.1, V ∈ C2([0, b],R). The forth equality follows by Corollary 2.1. For the fifth and sixth
equalities notice that V̂ (x̂0; ε̂) = V (x0; ε) and that

V̂ (x̂0; ε̂) ≤ sup
Q̂∈Q̂(x̂0)

Ĵ(x̂0, Ŷβ̄ε , R̂β̄ε , Q̂; ε̂) ≤ sup
Q∈Q(x0)

J(x0, Yβ̄ε , Rβ̄ε ,Q; ε) = V (x0; ε),

where the second inequality follows by (2.43). For the last equality, notice that we already
established

V̂ (x̂0; ε̂) = sup
Q̂∈Q̂(x̂0)

Ĵ(x0, Ŷβ̄ε , R̂β̄ε , Q̂; ε̂) ≥ Ĵ(x̂0, Ŷβ̄ε , R̂β̄ε , Q̂V ; ε̂) ≥ inf
(Ŷ ,R̂)∈Â(x̂0)

Ĵ(x̂0, Ŷ , R̂, Q̂V ; ε̂).

Therefore, it is sufficient to show that inf(Ŷ ,R̂)∈Â(x̂0)
Ĵ(x̂0, Ŷ , R̂, Q̂V ; ε̂) ≥ V (x0; ε), which holds

by (2.39) (replace the subindex ∗ with V ) as follows,

inf
(Ŷ ,R̂)∈Â(x̂0)

Ĵ(x̂0, Ŷ , R̂, Q̂V ; ε̂) ≥ inf
(Y,R)∈A(x0)

J(x0, Y,R,QV ; ε) = V (x0; ε).

✷

5 Dependency on the ambiguity parameters

In this section we study the dependence of the value functions and the optimal cut-offs on
the ambiguity parameters. We show continuity and that as ε→ 0 our model converges to the
risk-neutral model, studied by Harrison and Taksar [21] and by Atar and Shifrin [6]. For this,
recall the definition of V (·; 0) given in Remark 2.2.

Theorem 5.1 The mapping [0,∞) ∋ ε 7→ (V (·; ε), V ′(·; ε)) is increasing and continuous in
the uniform norm topology taken on the interval [0, b]. Moreover, there is a constant C > 0
such that for every ε ∈ (0,∞), supx∈[0,b] |V (x; ε) − V (x; 0)| ≤ Cε. Also, limε→∞ V (·; ε) = ∞,

uniformly on [0, b]. Finally, consider the relations ≺ and � on (0,∞)I × (0,∞)I given by,

ε̂ ≺ ε̂′ (resp., �) if and only if

I
∑

i=1

(θσ̂)2i ε̂i <

I
∑

i=1

(θσ̂)2i ε̂
′
i (resp., ≤).

Then the mapping (0,∞)I ∋ ε̂ 7→ V̂ (·; ε̂) is increasing w.r.t. ≺ and continuous in the uniform
norm topology taken on X .

Proof: The last part of the theorem merely follows by the first one, (2.25), and Corollary
2.1. Therefore it is omitted and we turn to proving the first part of the theorem. We start by
showing the monotonicity and continuity of the mapping (0,∞) ∋ ε 7→ V (·; ε). The proof for
ε = 0 is given separately. Fix 0 < ε2 < ε1. Denote by Qi = QV (·;εi) and ψi = ψV (·;εi), i = 1, 2.
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Then, for every x0 ∈ [0, b] one has

V (x0; ε1) = inf
(Y,R)∈A(x0)

J(x0, Y,R,Q1; ε1)

= inf
(Y,R)∈A(x0)

[

J(x0, Y,R,Q1; ε2) +
1

2

(

1

ε2
−

1

ε1

)
∫ ∞

0
e−̺tEQ1

[

ψ2
1(t)

]

dt

]

≤ inf
(Y,R)∈A(x0)

[

J(x0, Y,R,Q1; ε2) +
ε1σ

2r2

2ε2̺
(ε1 − ε2)

]

≤ inf
(Y,R)∈A(x0)

sup
Q∈Q(x0)

[J(x0, Y,R,Q; ε2)] +
ε1σ

2r2

2ε2̺
(ε1 − ε2)

= V (x0; ε2) +
ε1σ

2r2

2ε2̺
(ε1 − ε2).

The first equality follows by Theorem 4.1. The second equality follows by (2.33). The first
inequality follows since by (3.6), ψ1(t) = εσV ′(X(t); ε1) and since V ′(x; ε1) ≤ r, see Corollary
3.1. The second inequality is trivial and finally, the last equality follows by the definition of
V , see (2.34).

On the other hand,

V (x0; ε1) ≥ inf
(Y,R)∈A(x0)

J(x0, Y,R,Q2; ε1)

= inf
(Y,R)∈A(x0)

[

J(x0, Y,R,Q2; ε2) +
1

2

(

1

ε2
−

1

ε1

)
∫ ∞

0
e−̺tEQ2

[

ψ2
2(t)

]

dt

]

> inf
(Y,R)∈A(x0)

J(x0, Y,R,Q2; ε2)

= V (x0; ε2).

The first inequality follows by the definition of V . The first equality follows by (2.33). The
strict inequality follows since ε1 > ε2 and since by (3.6), ψ1(t) = εσV ′(X(t); ε1) and since
V ′(x; ε1) ≥ 0, see Corollary 3.1. Obviously, with Q2-probability zero, V ′(X(t); ε1) = 0 for
almost every t ∈ R+ w.r.t. Lebesgue measure. The last equality follows by Theorem 4.1.
Combining the last two sets of relations, we obtain,

V (x0; ε2) < V (x0, ; ε1) ≤ V (x0; ε2) +
ε1σ

2r2

2ε2̺
(ε1 − ε2)

and the monotonicity and continuity of ε 7→ V (·; ε) is proven on the interval (0,∞). The
monotonicity at ε = 0 follows by the following sequence of relations,

V (x0; 0) = inf
(Y,R)∈A(x0)

EP
[

∫ ∞

0
e−̺t(h(X(t))dt + rdR(t))

]

(5.1)

= inf
(Y,R)∈A(x0)

J(x0, Y,R,P; ε1)

≤ inf
(Y,R)∈A(x0)

sup
Q∈Q(x0)

J(x0, Y,R,Q; ε1)

= V (x0; ε1),
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where x0 ∈ [0, b] and ε1 ∈ (0,∞). The first equality follows by the definition of the cost in the
risk-neutral case, see (2.35). The second equality follows since L̺(P‖P) = 0.

We now turn to proving the continuity at ε = 0. Notice that in the arguments above, the
inequality ε2 > 0 cannot be relaxed to ε2 ≥ 0 since we divide by ε2. Therefore, we come up
with another proof for continuity at 0. Recall that the arguments in Section 4 included the
case where ε is zero. Fix an optimal cut-off in the risk-neutral problem β̄0 ∈ [β0, β̂0]. Fix also
ε > 0 and set Qε := QV (·;ε) and ψ

ε := ψV (·;ε). From (5.1) and Theorem 4.1 one has,

V (x0; 0) ≤ V (x0; ε) = J(x0, Yβ̄0 , Rβ̄0 ,Q
ε; ε).

Recall that by (2.33) and (3.6),

J(x0, Yβ̄0 , Rβ̄0 ,Q
ε; ε) (5.2)

= EQε
[

∫ ∞

0
e−̺t(h(Xβ̄0(t))dt + rdRβ̄0(t))

]

− εσ2
∫ ∞

0
e−̺t(V ′(Xβ̄0(s); ε))

2ds,

where

Xβ̄0
(t) = x0 +mt+ σB(t) + Yβ̄0(t)−Rβ̄0(t), t ∈ R+. (5.3)

Since 0 ≤ V ′(·; ε) ≤ r, the last term on the r.h.s. of (5.2) goes to zero as ε → 0. Hence, in
order to show the limit limε→0 V (x0; ε) = V (x0; 0) it is sufficient to show that

lim
ε→0

EQε
[

∫ ∞

0
e−̺t(h(Xβ̄0(t))dt+ rdRβ̄0(t))

]

= EP
[

∫ ∞

0
e−̺t(h(Xβ̄0(t))dt+ rdRβ̄0(t))

]

. (5.4)

The proof of (5.4) relies on the continuity property of the Skorokhod mapping in addition
to a coupling argument. We consider a probability space (Ω,F , {Ft}, P̌) that supports a one-
dimensional standard Brownian motion B, adapted to the filtration {Ft}, such that for every
0 ≤ s < t, B(t) − B(s) is independent of Fs under P̌. Recall Definition 3.1 and consider the
following processes,

(Xε, Y ε, Rε)(t) := Γ[0,β̄0]

(

x0 +m ·+

∫ ·

0
εσ2V ′(Xε(s); ε)(s)ds + σB(·)

)

(t),

(X0, Y 0, R0)(t) := Γ[0,β̄0] (x0 +m ·+σB(·)) (t).

Notice that by (3.6), (X0, Y 0, R0) (resp., (Xε, Y ε, Rε)) has the same distribution under the
measure P̌ as (Xβ̄0

, Yβ̄0 , Rβ̄0) given in (5.3) under the measure P (resp., Qε, see (2.29)). Hence,
(5.4) follows once we show that

lim
ε→0

EP̌
[

∫ ∞

0
e−̺t(h(Xε(t))dt+ rdRε(t))

]

= EP̌
[

∫ ∞

0
e−̺t(h(X0(t))dt + rdR0(t))

]

. (5.5)

Now,
∣

∣

∣

∣

EP̌
[

∫ ∞

0
e−̺t(h(Xε(t))dt+ rdRε(t))

]

− EP̌
[

∫ ∞

0
e−̺t(h(X0(t))dt + rdR0(t))

]

∣

∣

∣

∣

(5.6)

=

∣

∣

∣

∣

EP̌
[

∫ ∞

0
e−̺t[h(Xε(t))− h(X0(t))]dt +

∫ ∞

0
̺re−̺t[Rε(t)−R0(t)]dt+ [e−̺t(Rε(t)−R0(t))]

∣

∣

∣

∣

∞

0

]

∣

∣

∣

∣

≤ EP̌
[

∫ ∞

0
e−̺t|h(Xε(t)) − h(X0(t))|dt +

∫ ∞

0
̺re−̺t|Rε(t)−R0(t)|dt

]

.
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The last inequality follows since limt→∞ e−̺tRε(t) = 0, P̌-a.s. and similarly for R0. Indeed,
consider w(·) = x0+m ·+

∫ ·

0 εσ
2V ′(Xε(s); ε)(s)ds+σB(·) and w̃ = 0 in Lemma 3.1. Recalling

the bound 0 ≤ V ′(·, ε) ≤ r, it follows that Rε(t) ≤ cS(x0+(m+εσ2r)t+σ sup0≤s≤t |B(s)|) and

the limit follows since limt→∞ e−̺t sup0≤s≤t |B(s)| = 0, P̌-a.s. Using the Lipschitz continuity of
h, again 0 ≤ V ′(·, ε) ≤ r, and Lemma 3.1 with w(·) = x0+m·+

∫ ·

0 εσ
2V ′(Xε(s); ε)(s)ds+σB(·)

and w̃(·) = x0 +m ·+σB(·), we get that for every t ∈ R+,

sup
s∈[0,t]

‖(Xε, Y ε, Rε)(s)− (X0, Y 0, R0)(s)‖ ≤ εcSσ
2rt.

Recalling that h is Lipschitz, we get that the r.h.s. of (5.6) is bounded above by Cε(1/̺ +
r)/̺,where the constant C > 0 depends on cS , σ

2r, and the Lipschitz constant of h. This
implies (5.5). Recalling (5.2) and the estimations above, we get the bound

sup
x∈[0,b]

|V (x; ε) − V (x; 0| ≤ (σ2r2 +Cε(1/̺ + r)/̺)ε

as required.
We now turn to proving the limit limε→∞ V (·; ε) = ∞. For this, consider the strategy of

the maximizer given by Qε, which is associated with ψε(s) = ε1/4 for every s ∈ R+. Given
that and recalling the presentation of the dynamics provided in (2.29), it follows that,

X(t) = x0 + (m+ σε1/4)t+ σBQε(t) + Y (t)−R(t), t ∈ R+, (5.7)

where BQε is an {Ft}-one-dimensional standard Brownian motion under Qε. His cost function
is given by

J(x0, Y,R,Qε; ε) = EQ
[

∫ ∞

0
e−̺t

(

h(X(t))dt + rdR(t)−
1

2ε
ψ2(t)dt

)]

= EQε

[

∫ ∞

0
e−̺t(h(X(t))dt + rdR(t))

]

−
1

2̺2ε1/2
.

Since the last term is constant, we can think as if the minimizer is facing a risk-neutral
problem with the drift mt replaced by (m+ σε1/4)t, where her cost function has an additional
deterministic term, which vanishes as ε → ∞. Therefore, we analyze only the limit of the
expectation in the second line of the above. Consider an optimal β-reflecting strategy (Yβ, Rβ),
which exists in the risk-neutral problem. From the dynamics in (5.7), we get for every t ∈ R+,

Rβ(t) ≥ x0 −X(t) + (m+ σε1/4)t+ σBQε(t) + Yβ(t) ≥ −b+ (m+ σε1/4)t+ σBQε(t).

The same arguments that lead to (5.6), imply that

EQε

[

∫ ∞

0
e−̺t(h(X(t))dt + rdRβ(t))

]

= EQε

[

∫ ∞

0
e−̺t(h(X(t)) + ̺rRβ(t))dt

]

≥ EQε

[

∫ ∞

0
e−̺t(h(X(t)) + ̺r(−b+ (m+ σε1/4)t+ σBQε(t)))dt

]

.

Standard estimates give that the last term goes to ∞ together with ε.
✷
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From Theorem 4.1, Corollary 3.1, and (3.6) it is easy to see the continuity of the maximizer’s
optimal control w.r.t. ε. Also, it is clear that as ε → 0, ψV (·;ε) → 0, uniformly on [0, b] and
therefore, the maximizer’s optimal strategy is relatively close to keep the original measure as
is. Since we do not have explicit expressions for the cut-off points of the reflecting strategies
βε and β̂ε described in Section 4, the situation with the minimizer’s optimal strategy is more
subtle and is studied now. The next theorem provides a continuity property of the optimal
cut-off points βε and β̂ε w.r.t. ε. Recall the sufficient conditions given in (4.3) for uniqueness
of the reflecting strategy.

Theorem 5.2 For any given ε ∈ [0,∞),

βε ≤ lim inf
δ→0

βε+δ ≤ lim sup
δ→0

β̂ε+δ ≤ β̂ε. (5.8)

Hence, in case that β̂ε = βε (for the given ε), that is, if there is a unique optimal reflecting
strategy, one has,

lim
δ→0

βε+δ = lim
δ→0

β̂ε+δ = β̂ε. (5.9)

As a preparation for the proof, we present an auxiliary function defined for every ε ∈ [0,∞).
Recall the definition of k(s) given in (3.17) and (3.32). Set l(ε)(x) = k(V (0;ε))(x), x ∈ [0, b].
More explicitly,

{

(l(ε))′′(x) +HF (x, l
(ε)(x), (l(ε))′(x)) = 0, x ∈ [0, b],

(l(ε))′(0) = 0, l(ε)(0) = V (0; ε),
(5.10)

with the same F given after (3.17). The next lemma provides a continuity property of l(ε) as
a function of ε.

Lemma 5.1 The mapping [0,∞) ∋ ε 7→ (l(ε)(·), (l(ε))′(·)) is continuous in the uniform norm
topology taken on the interval [0, b].

Proof: Fix ε1, ε2 ∈ R+. Set f1 = l(ε1) and f2 = l(ε2). Then,

f ′1(x) = −

∫ x

0
Hε1
F (y, f1(y), f

′
1(y))dy,

f ′2(x) = −

∫ x

0
Hε2
F (y, f2(y), f

′
2(y))dy = −

∫ x

0
Hε1
F (y, f2(y), f

′
2(y))dy +

∫ x

0
(ε2 − ε1)F (f

′
2(y)),

where the index εi in Hεi
F emphasizes its dependence on εi, i = 1, 2. From (3.19) it follows

that there exists a constant L > 0 independent of ε1, ε2 such that

|f ′1(x)− f ′2(x)| ≤ L

(
∫ x

0

[

|f1(y)− f2(y)|+ |f ′1(y)− f ′2(y)|
]

dy + |ε1 − ε2|

)

.

Also, since fi(0) = V (0; εi),

|f1(x)− f2(x)| ≤ |V (0; ε1)− V (0; ε2)|+

∫ x

0
|f ′1(y)− f ′2(y)|dy.
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From the last two inequalities and Grönwall’s inequality we get that there is a constant C > 0
independent of ε1, ε2, and x, such that for every x ∈ [0, b]

|f1(x)− f2(x)| + |f ′1(x)− f ′2(x)| ≤ C (|V (0; ε1)− V (0; ε2)|+ |ε1 − ε2|) .

Recalling from Theorem 5.1 that ε 7→ V (·; ε) is continuous, we get that
sup0≤x≤b (|f1(x)− f2(x)| + |f ′1(x)− f ′2(x)|) is uniformly bounded by a function of (ε1, ε2) that
goes to zero as (ε1 − ε2) → 0.

✷

Proof of Theorem 5.2: For any ε′ ∈ [0,∞), the function V (·; ε′) satisfies (3.5) and therefore
also (5.10) on x ∈ [0, β̂ε′ ]. Uniqueness of the solution implies that

V (x; ε′) = l(ε
′)(x), x ∈ [0, β̂ε′ ], (5.11)

see [29, Section 0.3.1].
To get the first inequality in (5.8) notice that from (5.11), the definition of βε in (3.4), the

definition of β(s) in (3.20), and recalling that l(ε) = k(V (0;ε)), it follows that for any ε′ ∈ [0,∞),
βε′ = β(V (0;ε′)). From the continuity of ε 7→ V (·; ε), see Theorem 5.1, and the second inequality
in (3.23), we get the first inequality in (5.8).

The second inequality in (5.8) is trivial and follows since βε+δ ≤ β̂ε+δ. We now turn to
proving the last inequality in (5.8). Fix ε ∈ [0,∞). From Theorem 5.1 and Lemma 5.1 we
have

lim
δ→0

V (·; ε + δ) = V (·; ε) and lim
δ→0

l(ε+δ)(·) = l(ε)(·),

uniformly on [0, b]. Together with (5.11) applied to ε′ = ε+ δ, one has V (x; ε+ δ) = l(ε+δ)(x),
x ∈ [0, β̂ε+δ). Taking δ → 0, we get that V (x; ε) = l(ε)(x) for x ∈ [0, αε), where αε :=
lim supδ→0 β̂ε+δ. Since both functions are continuous, the equality holds for αε as well. By the
definition of β̂ε, see (4.1), we get that (5.8) holds.

✷
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