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Abstract

While the computational complexity of many game-theoretic solution concepts, notably Nash
equilibrium, has now been settled, the question of determining the exact complexity of computing
an evolutionarily stable strategy has resisted solution since attention was drawn to it in 2004. In
this paper, I settle this question by proving that deciding the existence of an evolutionarily stable
strategy is ΣP

2 -complete.
Keywords: Algorithmic game theory, equilibrium computation, evolutionarily stable strategies.

1 Introduction

Game theory provides ways of formally representing strategic interactions between multiple players,
as well as a variety of solution concepts for the resulting games. The best-known solution concept is
that of Nash equilibrium (Nash, 1950), where each player plays a best response to all the other players’
strategies. The computational complexity of, given a game in normal form, computing a (any) Nash
equilibrium, remained open for a long time and was accorded significant importance (Papadimitriou,
2001). (I will give a brief introduction to / review of computational complexity in Section 2; the reader
unfamiliar with it may prefer to read this section first.) An elegant algorithm for the two-player case,
the Lemke-Howson algorithm (Lemke and Howson, 1964), was proved to require exponential time on
some game families by Savani and von Stengel (2006). Finally, in a breakthrough series of papers, the
problem was established to be PPAD-complete, even in the two-player case (Daskalakis et al., 2009;
Chen et al., 2009).1

Not all Nash equilibria are created equal; for example, one can Pareto-dominate another. Moreover,
generally, the set of Nash equilibria does not satisfy interchangeability. That is, if player 1 plays her
strategy from one Nash equilibrium, and player 2 plays his strategy from another Nash equilibrium,
the result is not guaranteed to be a Nash equilibrium. This leads to the dreaded equilibrium selection
problem: if one plays a game for the first time, how is one to know according to which equilibrium
to play? This problem is arguably exacerbated by the fact that determining whether equilibria with
particular properties, such as placing probability on a particular pure strategy or having at least a
certain level of social welfare, exist is NP-complete in two-player games (and associated optimization

∗To appear in Mathematics of Operations Research. An early version of this paper appeared at the Ninth Conference
on Web and Internet Economics.

1Depending on the precise formulation, the problem can actually be FIXP-complete for more than 2 players (Etessami
and Yannakakis, 2010).
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problems are inapproximable unless P=NP) (Gilboa and Zemel, 1989; Conitzer and Sandholm, 2008).
In any case, equilibria are often seen as a state to which play could reasonably converge, rather than
an outcome that can necessarily be arrived at immediately by deduction.

In this paper, we consider the concept of evolutionarily stable strategies, a solution concept for
symmetric games with two players. s will denote a pure strategy and σ a mixed strategy, where σ(s)
denotes the probability that mixed strategy σ places on pure strategy s. u(s, s′) is the utility that a
player playing s obtains when playing against a player playing s′, and

u(σ, σ′) =
∑
s,s′

σ(s)σ′(s′)u(s, s′)

is the natural extension to mixed strategies.

Definition 1 (Price and Smith (1973)) Given a symmetric two-player game, a mixed strategy σ
is said to be an evolutionarily stable strategy (ESS) if both of the following properties hold.

1. (Symmetric Nash equilibrium property) For any mixed strategy σ′, we have u(σ, σ) ≥ u(σ′, σ).

2. For any mixed strategy σ′ (σ′ 6= σ) for which u(σ, σ) = u(σ′, σ), we have u(σ, σ′) > u(σ′, σ′).

The intuition behind this definition is that a population of players playing σ cannot be successfully
“invaded” by a small population of players playing some σ′ 6= σ, because they will perform strictly
worse than the players playing σ and therefore they will shrink as a fraction of the population. They
perform strictly worse either because (1) u(σ, σ) > u(σ′, σ), and because σ has dominant presence in
the population this outweighs performance against σ′; or because (2) u(σ, σ) = u(σ′, σ) so the second-
order effect of performance against σ′ becomes significant, but in fact σ′ performs worse against itself
than σ performs against it, that is, u(σ, σ′) > u(σ′, σ′).

Example (Hawk-Dove game (Price and Smith, 1973)). Consider the following symmetric
two-player game:

Dove Hawk
Dove 1,1 0,2

Hawk 2,0 -1,-1

The unique symmetric Nash equilibrium σ of this game is 50% Dove, 50% Hawk. For any σ′, we
have u(σ, σ) = u(σ′, σ) = 1/2. That is, everything is a best reponse to σ. We also have u(σ, σ′) =
1.5σ′(Dove) − 0.5σ′(Hawk) = 2σ′(Dove) − 0.5, and u(σ′, σ′) = 1σ′(Dove)2 + 2σ′(Hawk)σ′(Dove) +
0σ′(Dove)σ′(Hawk)−1σ′(Hawk)2 = −2σ′(Dove)2 + 4σ′(Dove)−1. The difference between the former
and the latter expression is 2σ′(Dove)2 − 2σ′(Dove) + 0.5 = 2(σ′(Dove)− 0.5)2. The latter is clearly
positive for all σ′ 6= σ, implying that σ is an ESS.

Intuitively, the problem of computing an ESS appears significantly harder than that of computing a
Nash equilibrium, or even a Nash equilibrium with a simple additional property such as those described
earlier. In the latter type of problem, while it may be difficult to find the solution, once found, it
is straightforward to verify that it is in fact a Nash equilibrium (with the desired simple property).
This is not so for the notion of ESS: given a candidate strategy, it does not appear straightforward to
figure out whether there exists a strategy that successfully invades it. However, appearances can be
deceiving; perhaps there is a not entirely obvious, but nevertheless fast and elegant way of checking
whether such an invading strategy exists. Even if not, it is not immediately clear whether this makes
the problem of finding an ESS genuinely harder. Computational complexity provides the natural
toolkit for answering these questions.
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The complexity of computing whether a game has an evolutionarily stable strategy (for an overview,
see Chapter 29 of the Algorithmic Game Theory book (Suri, 2007)) was first studied by Etessami and
Lochbihler (2008), who proved that the problem is both NP-hard and coNP-hard, as well as that the
problem is contained in ΣP

2 (the class of decision problems that can be solved in nondeterministic
polynomial time when given access to an NP oracle; see also Section 2). Nisan (2006) subsequently2

proved the stronger hardness result that the problem is coDP -hard. He also observed that it follows
from his reduction that the problem of determining whether a given strategy is an ESS is coNP-hard
(and Etessami and Lochbihler (2008) then pointed out that this also follows from their reduction).
Etessami and Lochbihler (2008) also showed that the problem of determining the existence of a regular
ESS is NP-complete. As was pointed out in both papers, all of this still leaves the main question of
the exact complexity of the general ESS problem open. In this paper, this is settled: the problem is
in fact ΣP

2 -complete. After the review of computational complexity (Section 2), I will briefly discuss
the significance of this result (Section 3).

The remainder of the paper—to which the reader not interested in a review of computational
complexity or a discussion of the significance of the result is welcome to jump—contains the proof,
which is structured as follows. In Section 4, Lemma 1 states that the slightly more general problem of
determining whether an ESS exists whose support is restricted to a subset of the strategies is ΣP

2 -hard.
This is the main part of the proof. Then, in Section 5, Lemma 2 points out that if two pure strategies
are exact duplicates, neither of them can occur in the support of any ESS. By this, we can disallow
selected strategies from taking part in any ESS simply by duplicating them. Combining this with the
first result, we arrive at the main result, Theorem 1.

One may well complain that Lemma 2 is a bit of a cheat; perhaps we should just consider duplicate
strategies to be “the same” strategy and merge them back into one. As the reader probably suspects,
such a hasty and limited patch will not avoid the hardness result. Even something a little more
thorough, such as iterated elimination of very weakly dominated strategies (in some order), will not
suffice: in Appendix A I show, with additional analysis and modifications, that the result holds even
in games where each pure strategy is the unique best response to some mixed strategy.

2 Brief Background on Computational Complexity

Much of theoretical computer science is concerned with designing algorithms that solve computational
problems fast (as well as, of course, correctly). For example, one computational problem is the
following: given a two-player game in normal form, determine whether there exists a Nash equilibrium
in which player 1 obtains utility at least 1. A specific two-player normal-form game would be an
instance of that problem. What does it mean to solve a problem fast? This is fundamentally about
how the runtime scales with the size of the input (e.g., the size of the game). The focus is generally
primarily on whether the runtime scales as a polynomial function of the input, which is considered
fast (or efficient)—as opposed to, say, an exponential function.

For many problems, including the one described in the previous paragraph, we do not have any
efficient algorithm, nor do we have a proof that no such algorithm exists. However, in these situations,
we can often prove that the problem is at least as hard as any other problem in a large class. That
is, we can prove that if the problem under consideration admits an efficient algorithm, then so do all
other problems in a large class. The most famous such class is NP, which consists of decision problems,
i.e., problems for which every instance has a “yes” or “no” answer. Specifically, it consists of decision
problems that are such that for every “yes” instance, there is a succinct proof (that can be efficiently
checked) that the answer is “yes.” A problem that is at least as hard as any problem in NP is said to
be NP-hard. If an NP-hard problem is also in the class NP, it is said to be NP-complete; thus, in a

2An early version of Etessami and Lochbihler (2008) appeared in 2004.
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sense, all NP-complete problems are equally hard.
Many problems of interest are NP-complete. The paradigmatic NP-complete problem is the sat-

isfiability problem, which asks, given a propositional logic formula, whether there is a way to set the
variables in this formula to true or false in such a way that the formula as a whole evaluates to true.
For example, the formula (x1 ∨ x2) ∧ (¬x2) is a “yes” instance, because setting x1 to true and x2 to
false results in the formula evaluating to true. The succinct proof that an instance is a “yes” instance
consists simply of values that the variables can take to make the formula evaluate to true. As it turns
out, the problem introduced at the beginning of this section is NP-complete. It is in NP because
given the supports of the strategies in a Nash equilibrium with high utility for player 1, we can easily
reconstruct such an equilibrium; therefore, the supports serve as the proof that it is a “yes” instance.
Many similar problems are also NP-complete (Gilboa and Zemel, 1989; Conitzer and Sandholm, 2008).

A standard way to prove that a problem A is NP-hard is to take another problem B that is already
known to be NP-hard, and reduce it to problem A. A reduction here is an efficiently computable
function that maps every instance of B to some instance of A with the same truth value (“yes” or
“no”). Given such a reduction, an efficient algorithm for A could be used to solve B as well, proving
that in the relevant sense, A is at least as hard as B.

There are other classes of interest besides NP, with hardness and completeness defined similarly.
For example, coNP consists of problems where there is a succinct proof of an instance being a “no”
instance. The class ΣP

2 is most easily illustrated by a standard complete problem for it. As in the
satisfiability problem, we are given a propositional logic formula, but this time, the variables are split
into two sets, X1 and X2. We are asked whether there exists a way to set the variables in X1 such that
no matter how the variables in X2 are set, the formula evaluates to true. (Note here the similarity to
the ESS problem, where we are asked whether there exists a strategy σ such that no matter which σ′

invades, the invasion is repelled.) Similarly, a complete problem for the class ΠP
2 (which equals coΣP

2 )
asks whether no matter how the variables in X1 are set, there is a way to set the variables in X2 so
that the formula evaluates to true. These classes are said to be at the second level of the polynomial
hierarchy, and the generalization to higher levels is straightforward.

3 Significance of the Result

What is the significance of establishing the ΣP
2 -completeness of deciding whether an evolutionarily

stable strategy exists? When the computational problem of determining the existence of an ESS
comes up, it is surely more satisfying to be able to simply state the exact complexity of the problem
than to have to state that it is hard for some classes, included in another, and the exact complexity is
unknown. Moreover, the latter situation also left open the possibility that the ESS problem exposed
a fundamental gap in our understanding of computational complexity theory. It could even have been
the case that the ESS problem required the definition of an entirely new complexity class for which
the problem was complete.3 The result presented here implies that this is not the case; while ΣP

2 is
not as well known as NP, it is a well-established complexity class.

Additionally, some of the significance of the result is in the irony that a key solution concept in
evolutionary game theory, which is often taken to be a model of how equilibria might actually be
reached in practice by a simple process, is actually computationally significantly less tractable (as far
as our current understanding of computational complexity goes) than the concept of Nash equilibrium.
This was already implied by the earlier hardness results referenced in the introduction, but the result
obtained here shows the gap to be even wider. This perhaps suggests that modified solution concepts
are called for, and more generally that the computational complexity of solution concepts should be

3In the case of computing one Nash equilibrium, the class PPAD had previously been defined (Papadimitriou, 1994),
but it did not have much in the way of known complete problems before the Nash equilibrium result—and the standing
of the class was quite diminished by this lack of natural problems known to be complete for it.
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j 1 j 2
J = {1,2}

j = 1 j = 2
I = {1,2}

v11 v12i = 1

V12={v12}V11={v11} 12 { 12}11 { 11}

v21 v22i = 2

V22={v22}V21={v21}

Figure 1: An example MINMAX-CLIQUE instance (with k = 2), for which the answer is “no.”

taken into account in assessing their reasonableness for the purpose at hand. On the other hand, it
is important to note that it may yet be possible to find evolutionarily stable strategies fast for most
games actually encountered in practice. Games encountered in practice may have additional structure
that puts the problem in a lower complexity class, possibly even P. If so, this would clearly reduce
the force of the call for new solution concepts.

4 Hardness with Restricted Support

Having completed a review of the relevant computational complexity theory and a discussion of the
significance of the result, we now begin the technical part of the paper. As outlined earlier, we first
introduce a slightly different problem, which we will then show is ΣP

2 -hard. From this, it will be fairly
easy to show, in Section 5, that the main problem is ΣP

2 -hard.

Definition 2 In ESS-RESTRICTED-SUPPORT, we are given a symmetric two-player normal-form
game G with strategies S, and a subset T ⊆ S. We are asked whether there exists an evolutionarily
stable strategy of G that places positive probability only on strategies in T (but not necessarily on all
strategies in T ).

We will establish ΣP
2 -hardness by reduction from (the complement of) the following problem.

Definition 3 (MINMAX-CLIQUE) We are given a graph G = (V,E), sets I and J , a partition
of V into subsets Vij for i ∈ I and j ∈ J , and a number k. We are asked whether it is the case that for
every function t : I → J , there is a clique of size (at least) k in the subgraph induced on

⋃
i∈I Vi,t(i).

(Without loss of generality, we will require k > 1.)

Example. Figure 1 shows a tiny MINMAX-CLIQUE instance (let k = 2). The answer to this in-
stance is “no” because for t(1) = 2, t(2) = 1, the graph induced on

⋃
i∈I Vi,t(i) = V12∪V21 = {v12, v21}

has no clique of size at least 2.

We have the following known hardness result for this problem. (Recall that ΠP
2 = coΣP

2 .)

Known Theorem 1 ((Ko and Lin, 1995)) MINMAX-CLIQUE is ΠP
2 -complete.

We are now ready to present the main part of the proof.
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Lemma 1 ESS-RESTRICTED-SUPPORT is ΣP
2 -hard.

Proof: We reduce from the complement of MINMAX-CLIQUE. That is, we show how to transform
any instance of MINMAX-CLIQUE into a symmetric two-player normal-form game with a distin-
guished subset T of its strategies, so that this game has an ESS with support in T if and only if the
answer to the MINMAX-CLIQUE instance is “no.”

The Reduction. For every i ∈ I and every j ∈ J , create a strategy sij . For every v ∈ V , create
a strategy sv. Finally, create a single additional strategy s0.

• For all i ∈ I and j ∈ J , u(sij , sij) = 1.

• For all i ∈ I and j, j′ ∈ J with j 6= j′, u(sij , sij′) = 0.

• For all i, i′ ∈ I with i 6= i′ and j, j′ ∈ J , u(sij , si′j′) = 2.

• For all i ∈ I, j ∈ J , and v ∈ V , u(sij , sv) = 2− 1/|I|.

• For all i ∈ I and j ∈ J , u(sij , s0) = 2− 1/|I|.

• For all i ∈ I, j ∈ J , and v ∈ Vij , u(sv, sij) = 2− 1/|I|.

• For all i ∈ I, j, j′ ∈ J with j 6= j′, and v ∈ Vij , u(sv, sij′) = 0.

• For all i, i′ ∈ I with i 6= i′, j, j′ ∈ J , and v ∈ Vij , u(sv, si′j′) = 2− 1/|I|.

• For all v ∈ V , u(sv, sv) = 0.

• For all v, v′ ∈ V with v 6= v′ where (v, v′) /∈ E, u(sv, sv′) = 0.

• For all v, v′ ∈ V with v 6= v′ where (v, v′) ∈ E, u(sv, sv′) = (k/(k − 1))(2− 1/|I|).

• For all v ∈ V , u(sv, s0) = 0.

• For all i ∈ I and j ∈ J , u(s0, sij) = 2− 1/|I|.

• For all v ∈ V , u(s0, sv) = 0.

• u(s0, s0) = 0.

We are asked whether there exists an ESS that places positive probability only on strategies sij with
i ∈ I and j ∈ J . That is, T = {sij : i ∈ I, j ∈ J}.

Example. Consider again the MINMAX-CLIQUE instance from Figure 1. The game to which
the reduction maps this instance is:

s11 s12 s21 s22 sv11 sv12 sv21 sv22
s0

s11 1 0 2 2 3/2 3/2 3/2 3/2 3/2
s12 0 1 2 2 3/2 3/2 3/2 3/2 3/2
s21 2 2 1 0 3/2 3/2 3/2 3/2 3/2
s22 2 2 0 1 3/2 3/2 3/2 3/2 3/2
sv11 3/2 0 3/2 3/2 0 0 3 3 0
sv12 0 3/2 3/2 3/2 0 0 0 3 0
sv21 3/2 3/2 3/2 0 3 0 0 0 0
sv22 3/2 3/2 0 3/2 3 3 0 0 0
s0 3/2 3/2 3/2 3/2 0 0 0 0 0

6



It has an ESS σ with weight 1/2 on each of s12 and s21. In contrast, (for example) σ′ with weight 1/2
on each of s11 and s21 is invaded by the strategy σ′′ with weight 1/2 on each of sv11 and sv21 , because
u(σ′′, σ′) = u(σ′, σ′) = 3/2 and u(σ′′, σ′′) = u(σ′, σ′′) = 3/2.

Proof of equivalence. Suppose there exists a function t : I → J such that every clique in the
subgraph induced on

⋃
i∈I Vi,t(i) has size strictly less than k. We will show that the mixed strategy σ

that places probability 1/|I| on si,t(i) for each i ∈ I (and 0 everywhere else) is an ESS.
First, we show that σ is a best response against itself. For any sij in the support of σ, we have

u(sij , σ) = (1/|I|) · 1 + (1− 1/|I|) · 2 = 2− 1/|I|, and hence we also have u(σ, σ) = 2− 1/|I|. For sij
not in the support of σ, we have u(sij , σ) = (1/|I|) · 0 + (1− 1/|I|) · 2 = 2− 2/|I| < 2− 1/|I|. For all
i ∈ I, for all v ∈ Vi,t(i), we have u(sv, σ) = (1/|I|) · (2 − 1/|I|) + (1 − 1/|I|) · (2 − 1/|I|) = 2 − 1/|I|.
For all i ∈ I, j ∈ J with j 6= t(i), and v ∈ Vij , we have u(sv, σ) = (1/|I|) · 0 + (1− 1/|I|) · (2− 1/|I|) =
(1− 1/|I|)(2− 1/|I|) < 2− 1/|I|. Finally, u(s0, σ) = 2− 1/|I|. So σ is a best response to itself.

It follows that if there were a strategy σ′ 6= σ that could successfully invade σ, then σ′ must put
probability only on best responses to σ. Based on the calculations in the previous paragraph, these best
responses are s0, and, for any i, si,t(i) and, for all v ∈ Vi,t(i), sv. The expected utility of σ against any
of these is 2−1/|I| (in particular, for any i, we have u(σ, si,t(i)) = (1/|I|) ·1+(1−1/|I|) ·2 = 2−1/|I|).
Hence, u(σ, σ′) = 2− 1/|I|, and to successfully invade, σ′ must attain u(σ′, σ′) ≥ 2− 1/|I|.

We can write σ′ = p0s0 + p1σ
′
1 + p2σ

′
2, where p0 + p1 + p2 = 1, σ′

1 only puts positive probability
on the si,t(i) strategies, and σ′

2 only puts positive probability on the sv strategies with v ∈ Vi,t(i). The
strategy that results from conditioning σ′ on σ′

1 not being played may be written as

(p0/(p0 + p2))s0 + (p2/(p0 + p2))σ′
2

and thus we may write

u(σ′, σ′) = p21u(σ′
1, σ

′
1) + p1(p0 + p2)u(σ′

1, (p0/(p0 + p2))s0 + (p2/(p0 + p2))σ′
2)

+ (p0 + p2)p1u((p0/(p0 + p2))s0 + (p2/(p0 + p2))σ′
2, σ

′
1)

+ (p0 + p2)2u((p0/(p0 + p2))s0 + (p2/(p0 + p2))σ′
2, (p0/(p0 + p2))s0 + (p2/(p0 + p2))σ′

2)

Now, if we shift probability mass from s0 to σ′
2, i.e., we decrease p0 and increase p2 by the same

amount, this will not affect any of the coefficients in the previous expression; it will not affect any of

u(σ′
1, σ

′
1),

u(σ′
1, (p0/(p0 + p2))s0 + (p2/(p0 + p2))σ′

2)

(because u(sij , sv) = u(sij , s0) = 2− 1/|I|), and

u((p0/(p0 + p2))s0 + (p2/(p0 + p2))σ′
2, σ

′
1)

(because u(s0, sij) = u(sv, sij) = 2− 1/|I| when v ∈ Vij or v ∈ Vi′j′ with i′ 6= i);

and it will not decrease

u((p0/(p0 + p2))s0 + (p2/(p0 + p2))σ′
2, (p0/(p0 + p2))s0 + (p2/(p0 + p2))σ′

2)

(because for any v ∈ V , u(s0, s0) = u(s0, sv) = u(sv, s0) = 0).

Therefore, we may assume without loss of generality that p0 = 0, and hence σ′ = p1σ
′
1 + p2σ

′
2. It

follows that we can write

u(σ′, σ′) = p21u(σ′
1, σ

′
1) + p1p2u(σ′

1, σ
′
2) + p2p1u(σ′

2, σ
′
1) + p22u(σ′

2, σ
′
2)

We first note that u(σ′
1, σ

′
1) can be at most 2− 1/|I|. Specifically,

u(σ′
1, σ

′
1) = (

∑
i

σ′
1(si,t(i))

2) · 1 + (1−
∑
i

σ′
1(si,t(i))

2) · 2

7



and this expression is uniquely maximized by setting each σ′
1(si,t(i)) to 1/|I|. u(σ′

1, σ
′
2) is easily seen

to also be 2 − 1/|I|, and u(σ′
2, σ

′
1) is easily seen to be at most 2 − 1/|I| (in fact, it is exactly that).

Thus, to obtain u(σ′, σ′) ≥ 2 − 1/|I|, we must have either p1 = 1 or u(σ′
2, σ

′
2) ≥ 2 − 1/|I|. However,

in the former case, we would require u(σ′
1, σ

′
1) = 2− 1/|I|, which can only be attained by setting each

σ′
1(si,t(i)) to 1/|I|—but this would result in σ′ = σ. Thus, we can conclude u(σ′

2, σ
′
2) ≥ 2 − 1/|I|.

But then σ′
2 would also successfully invade σ. Hence, we can assume without loss of generality that

σ′ = σ′
2, i.e., p0 = p1 = 0 and p2 = 1.

That is, we can assume that σ′ only places positive probability on strategies sv with v ∈
⋃

i∈I Vi,t(i).
For any v, v′ ∈ V , we have u(sv, sv′) = u(sv′ , sv). Specifically, u(sv, sv′) = u(sv′ , sv) = (k/(k−1))(2−
1/|I|) if v 6= v′ and (v, v′) ∈ E, and u(sv, sv′) = u(sv′ , sv) = 0 otherwise. Now, suppose that
σ′(sv) > 0 and σ′(sv′) > 0 for v 6= v′ with (v, v′) /∈ E. We can write σ′ = p0σ

′′ + p1sv + p2sv′ , where
p0, p1 = σ′(sv), and p2 = σ′(sv′) sum to 1. We have

u(σ′, σ′) = p20u(σ′′, σ′′) + 2p0p1u(σ′′, sv) + 2p0p2u(σ′′, sv′)

(because u(sv, sv) = u(sv′ , sv′) = u(sv, sv′) = 0). Suppose, without loss of generality, that u(σ′′, sv) ≥
u(σ′′, sv′). Then, if we shift all the mass from sv′ to sv (so that the mass on the latter becomes
p1 +p2), this can only increase u(σ′, σ′), and it reduces the size of the support of σ′ by 1. By repeated
application, we can assume without loss of generality that the support of σ′ corresponds to a clique
of the induced subgraph on

⋃
i∈I Vi,t(i). We know this clique has size c where c < k. u(σ′, σ′) is

maximized if σ′ randomizes uniformly over its support, in which case

u(σ′, σ′) = ((c− 1)/c)(k/(k − 1))(2− 1/|I|) < ((k − 1)/k)(k/(k − 1))(2− 1/|I|) = 2− 1/|I|

But this contradicts that σ′ would successfully invade σ. It follows that σ is indeed an ESS.
Conversely, suppose that there exists an ESS σ that places positive probability only on strategies

sij with i ∈ I and j ∈ J . We must have u(σ, σ) ≥ 2 − 1/|I|, because otherwise s0 would be a better
response to σ. First suppose that for every i ∈ I, there is at most one j ∈ J such that σ places
positive probability on sij (we will shortly show that this must be the case). Let t(i) denote the j ∈ J
such that σ(sij) > 0 (if there is no such j for some i, then choose an arbitrary j to equal t(i)). Then,
u(σ, σ) is uniquely maximized by setting σ(si,t(i)) = 1/|I| for all i ∈ I, resulting in

u(σ, σ) = (1/|I|) · 1 + (1− 1/|I|) · 2 = 2− 1/|I|

Hence, this is the only way to ensure that u(σ, σ) ≥ 2 − 1/|I|, under the assumption that for every
i ∈ I, there is at most one j ∈ J such that σ places positive probability on sij .

Now, let us consider the case where there exists an i ∈ I such that there exist j, j′ ∈ J with j 6= j′,
σ(sij) > 0, and σ(sij′) > 0, to show that such a strategy cannot obtain a utility of 2− 1/|I| or more
against itself. We can write σ = p0σ

′ + p1sij + p2sij′ , where σ′ places probability zero on sij and
sij′ . We observe that u(σ′, sij) = u(sij , σ

′) and u(σ′, sij′) = u(sij′ , σ
′), because when the game is

restricted to these strategies, each player always gets the same payoff as the other player. Moreover,
u(σ′, sij) = u(σ′, sij′), because σ′ does not place positive probability on either sij or sij′ . Hence, we
have that

u(σ, σ) = p20u(σ′, σ′) + 2p0(p1 + p2)u(σ′, sij) + p21 + p22

But then, if we shift all the mass from sij′ to sij (so that the mass on the latter becomes p1 + p2)
to obtain strategy σ′′, it follows that u(σ′′, σ′′) > u(σ, σ). By repeated application, we can find a
strategy σ′′′ such that u(σ′′′, σ′′′) > u(σ, σ) and for every i ∈ I, there is at most one j ∈ J such that
σ′′′ places positive probability on sij . Because we showed previously that the latter type of strategy
can obtain expected utility at most 2− 1/|I| against itself, it follows that it is in fact the only type of
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strategy (among those that randomize only over the sij strategies) that can obtain expected utility
2− 1/|I| against itself. Hence, we can conclude that the ESS σ must have, for each i ∈ I, exactly one
j ∈ J (to which we will refer as t(i)) such that σ(si,t(i)) = 1/|I|, and that σ places probability 0 on
every other strategy.

Finally, suppose, for the sake of contradiction, that there exists a clique of size k in the induced
subgraph on

⋃
i∈I Vi,t(i). Consider the strategy σ′ that places probability 1/k on each of the corre-

sponding strategies sv. We have that u(σ, σ) = u(σ, σ′) = u(σ′, σ) = 2− 1/|I|. Moreover,

u(σ′, σ′) = (1/k) · 0 + ((k − 1)/k) · (k/(k − 1))(2− 1/|I|) = 2− 1/|I|

It follows that σ′ successfully invades σ—but this contradicts σ being an ESS. It follows, then, that t
is such that every clique in the induced graph on

⋃
i∈I Vi,t(i) has size strictly less than k.

5 Hardness without Restricted Support

All that remains is to reduce the modified problem to the main problem of determining whether a
game has an ESS. The following lemma makes this fairly straightforward.

Lemma 2 (No duplicates in ESS) Suppose that strategies s1 and s2 (s1 6= s2) are duplicates, i.e.,
for all s, u(s1, s) = u(s2, s).

4 Then no ESS places positive probability on s1 or s2.

Proof: For the sake of contradiction, suppose σ is an ESS that places positive probability on s1 or s2
(or both). Then, let σ′ 6= σ be identical to σ with the exception that σ′(s1) 6= σ(s1) and σ′(s2) 6= σ(s2)
(but it must be that σ′(s1) + σ′(s2) = σ(s1) + σ(s2)). That is, σ′ redistributes some mass between s1
and s2. Then, σ cannot repel σ′, because u(σ, σ) = u(σ′, σ) and u(σ, σ′) = u(σ′, σ′).

We now formally define the main problem:

Definition 4 In ESS, we are given a symmetric two-player normal-form game G. We are asked
whether there exists an evolutionarily stable strategy of G.

We now obtain the main result as follows.

Theorem 1 ESS is ΣP
2 -complete.

Proof: Etessami and Lochbihler (2008) proved membership in ΣP
2 . We prove hardness by reduction

from ESS-RESTRICTED-SUPPORT, which is hard by Lemma 1. Given the game G with strategies
S and subset of strategies T ⊆ S that can receive positive probability, construct a modified game
G′ by duplicating all the strategies in S \ T . (At this point, for duplicate strategies s1 and s2, we
require u(s, s1) = u(s, s2) as well as u(s1, s) = u(s2, s).) If G has an ESS σ that places positive
probability only on strategies in T , this will still be an ESS in G′, because any strategy that uses the
new duplicate strategies will still be repelled, just as its equivalent strategy that does not use the new
duplicates was repelled in the original game. (Here, it should be noted that the equivalent strategy in
the original game cannot turn out to be σ, because σ does not put any probability on a strategy that
is duplicated.) On the other hand, if G′ has an ESS, then by Lemma 2, this ESS can place positive
probability only on strategies in T . This ESS will still be an ESS in G (all of whose strategies also
exist in G′), and naturally it will still place positive probability only on strategies in T .

4It is fine to require u(s, s1) = u(s, s2) as well, and we will do so in the proof of Theorem 1, but it is not necessary
for this lemma to hold.
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A Hardness without duplication

In this appendix, it is shown that with some additional analysis and modifications, the result holds
even in games where each pure strategy is the unique best response to some mixed strategy. That
is, the hardness is not simply an artifact of the introduction of duplicate or otherwise redundant
strategies.

Definition 5 In the MINMAX-CLIQUE problem, say vertex v dominates vertex v′ if they are in the
same partition element Vij, there is no edge between them, and the set of neighbors of v is a superset
(not necessarily strict) of the set of neighbors of v′.

Lemma 3 Removing a dominated vertex does not change the answer to a MINMAX-CLIQUE in-
stance.

Proof: In any clique in which dominated vertex v′ participates (and therefore its dominator v does
not), v can participate in its stead.

Modified Lemma 1 ESS-RESTRICTED-SUPPORT is ΣP
2 -hard, even if every pure strategy is the

unique best response to some mixed strategy.

Proof: We use the same reduction as in the proof of Lemma 1. We restrict our attention to instances
of the MINMAX-CLIQUE problem where |I| ≥ 2, |J | ≥ 2, there are no dominated vertices, and
every vertex is part of at least one edge. Clearly, the problem remains ΠP

2 -complete when restricting
attention to these instances. For the games resulting from these restricted instances, we show that
every pure strategy is the unique best response to some mixed strategy. Specifically:

• sij is the unique best response to the strategy that distributes 1−ε mass uniformly over the si′j′

with i′ 6= i, and ε mass uniformly over the sij′ with j′ 6= j. (This is because only pure strategies
sij′ will get a utility of 2 against the part with mass 1− ε, and among these only sij will get a
utility of 1 against the part with mass ε.)

• sv (with v ∈ Vij) is the unique best response to the strategy that places (1/|I|)(1−ε) probability
on sij and (1/(|I||J |))(1 − ε) probability on every si′j′ with i′ 6= i, and that distributes the
remaining ε mass uniformly over the vertex strategies corresponding to neighbors of v. (This
is because sv obtains an expected utility of 2 − 1/|I| against the part with mass 1 − ε, and an
expected utility of (k/(k−1))(2−1/|I|) against the part with mass ε; strategies sv′ with v′ /∈ Vij
obtain utility strictly less than 2− 1/|I| against the part with mass 1− ε; and strategies si′′j′′ ,
s0, and sv′ with v′ ∈ Vij obtain utility at most 2− 1/|I| against the part with mass 1− ε, and
an expected utility of strictly less than (k/(k − 1))(2− 1/|I|) against the part with mass ε. (In
the case of sv′ with v′ ∈ Vij , this is because by assumption, v′ does not dominate v, so either v
has a neighbor that v′ does not have, which gets positive probability and against which sv′ gets
a utility of 0; or, there is an edge between v and v′, so that sv′ gets positive probability and sv′

gets utility 0 against itself.))

• s0 is the unique best response to the strategy that randomizes uniformly over all the sij . (This
is because it obtains utility 2 − 1/|I| against that strategy, and all the other pure strategies
obtain utility strictly less against that strategy, due to getting utility 0 against at least one pure
strategy in its support.)

The following lemma is a generalization of Lemma 2.
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Modified Lemma 2 Suppose that subset S′ ⊆ S satisfies:

• for all s ∈ S \ S′ and s′, s′′ ∈ S′, we have u(s′, s) = u(s′′, s) (that is, strategies in S′ are
interchangeable when they face a strategy outside S′);5 and

• the restricted game where players must choose from S′ has no ESS.

Then no ESS of the full game places positive probability on any strategy in S′.

Proof: Consider a strategy σ that places positive probability on S′. We can write σ = p1σ1 + p2σ2,
where p1 +p2 = 1, σ1 places positive probability only on S \S′, and σ2 places positive probability only
on S′. Because no ESS exists in the game restricted to S′, there must be a strategy σ′

2 (with σ′
2 6= σ2)

whose support is contained in S′ that successfully invades σ2, so either (1) u(σ′
2, σ2) > u(σ2, σ2) or

(2) u(σ′
2, σ2) = u(σ2, σ2) and u(σ′

2, σ
′
2) ≥ u(σ2, σ

′
2). Now consider the strategy σ′ = p1σ1 + p2σ

′
2; we

will show that it successfully invades σ. This is because

u(σ′, σ) = p21u(σ1, σ1) + p1p2u(σ1, σ2) + p2p1u(σ′
2, σ1) + p22u(σ′

2, σ2)

= p21u(σ1, σ1) + p1p2u(σ1, σ2) + p2p1u(σ2, σ1) + p22u(σ′
2, σ2)

≥ p21u(σ1, σ1) + p1p2u(σ1, σ2) + p2p1u(σ2, σ1) + p22u(σ2, σ2) = u(σ, σ)

where the second equality follows from the property assumed in the lemma. If case (1) above holds,
then the inequality is strict and σ is not a best response against itself. If case (2) holds, then we have
equality; moreover,

u(σ′, σ′) = p21u(σ1, σ1) + p1p2u(σ1, σ
′
2) + p2p1u(σ′

2, σ1) + p22u(σ′
2, σ

′
2)

= p21u(σ1, σ1) + p1p2u(σ1, σ
′
2) + p2p1u(σ2, σ1) + p22u(σ′

2, σ
′
2)

≥ p21u(σ1, σ1) + p1p2u(σ1, σ
′
2) + p2p1u(σ2, σ1) + p22u(σ2, σ

′
2) = u(σ, σ′)

where the second equality follows from the property assumed in the lemma. So in this case too, σ′

successfully invades σ.

Modified Theorem 1 ESS is ΣP
2 -complete, even if every pure strategy is the unique best response

to some mixed strategy.

Proof: Again, Etessami and Lochbihler (2008) proved membership in ΣP
2 . For hardness, we use a

similar proof strategy as in Theorem 1, again reducing from ESS-RESTRICTED-SUPPORT, which
is hard even if every pure strategy is the unique best response to some mixed strategy, by Modified
Lemma 1. Given the game G with strategies S and subset of strategies T ⊆ S that can receive
positive probability, construct a modified game G′ by replacing each pure strategy s ∈ S \ T by
three new pure strategies, s1, s2, s3. For each s′ /∈ {s1, s2, s3}, we will have u(si, s′) = u(s, s′) (the
utility of the original s) and u(s′, si) = u(s′, s) for all i ∈ {1, 2, 3}; for all i, j ∈ {1, 2, 3}, we will have
u(si, sj) = u(s, s) + ρ(i, j), where ρ gives the payoffs of rock-paper-scissors (with −1 for a loss, 0 for
a tie, and 1 for a win).

If G has an ESS that places positive probabilities only on strategies in T , this will still be an
ESS in G′ because any strategy σ′ that uses new strategies si will still be repelled, just as the
corresponding strategy σ′′ that put the mass on the corresponding original strategies s (i.e., σ′′(s) =
σ′(s1) + σ′(s2) + σ′(s3)) was repelled in the original game. (Unlike in the proof of the original

5Again, it is fine to require u(s, s′) = u(s, s′′) as well, and we will do so in the proof of Modified Theorem 1, but it
is not necessary for the lemma to hold.
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Theorem 1, here it is perhaps not immediately obvious that u(σ′′, σ′′) = u(σ′, σ′), because the right-
hand side involves additional terms involving ρ. But ρ is a symmetric zero-sum game, and any strategy
results in an expected utility of 0 against itself in such a game.) On the other hand, if G′ has an ESS,
then by Modified Lemma 2 (letting S′ = {s1, s2, s3} and using the fact that rock-paper-scissors has
no ESS), this ESS can place positive probability only on strategies in T . This ESS will still be an
ESS in G (for any potentially invading strategy in G there would be an equivalent such strategy in
G′, for example replacing s by s1 as needed), and naturally it will still place positive probability only
on strategies in T .

Finally it remains to be shown that in G′ each pure strategy is the unique best response to some
mixed strategy, using the fact that this is the case for G. For a pure strategy in T , we can simply use
the same mixed strategy as we use for that pure strategy in G, replacing mass placed on each s /∈ T
in G with a uniform mixture over s1, s2, s3 where needed. (By using a uniform mixture, we guarantee
that each si obtains the same expected utility against the mixed strategy as the corresponding s
strategy in G.) For a pure strategy si /∈ T , we cannot simply use the same mixed strategy as we use
for the corresponding s in G (with the same uniform mixture trick), because s1, s2, s3 would all be
equally good responses. But because these three would be the only best responses, we can mix in a
sufficiently small amount of si+1 (mod 3) (where i beats i+ 1 (mod 3) in ρ) to make si the unique best
response.
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