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A GENERAL REGULARIZED CONTINUOUS

FORMULATION FOR THE MAXIMUM CLIQUE PROBLEM

JAMES T. HUNGERFORD1 and FRANCESCO RINALDI2

Abstract. In this paper, we develop a general regularization-based
continuous optimization framework for the maximum clique problem.
In particular, we consider a broad class of regularization terms that can
be included in the classic Motzkin-Strauss formulation and we develop
conditions that guarantee the equivalence between the continuous regu-
larized problem and the original one in both a global and a local sense.
We further analyze, from a computational point of view, two different
regularizers that satisfy the general conditions.

1. Introduction.

LetG = (V, E) be a simple undirected graph on vertex set V = {1, 2, . . . , n}
and edge set E ⊆ V×V. Since G is simple and undirected (j, i) ∈ E whenever
(i, j) ∈ E , and (i, i) /∈ E for any i ∈ V. A clique in G is a subset C ⊆ V such
that (i, j) ∈ E for every i, j ∈ C with i 6= j. In this paper, we consider the
classical Maximum Clique Problem (MCP): find a clique C ⊆ V such that
|C| is maximum.

The Maximum Clique Problem has a wide range of applications (see [4, 20]
and references therein) in areas such as social network analysis, telecommu-
nication networks, biochemistry, and scheduling. The cardinality of a max-
imum clique in G is denoted ω(G). A clique C is said to be maximal if it is
not contained in any strictly larger clique; that is, if there does not exist a
clique D such that C ⊂ D. C is said to be strictly maximal if there do not
exist vertices i ∈ C and j /∈ C such that C ∪ {j}\{i} is a clique.

The MCP is NP-hard [12]. However, due in part to its wide applicability,
a large variety of both heuristic and exact approaches have been investigated
(see [4] for a thorough overview of formulations and algorithms going up to
1999; a more recent survey of algorithms is given in [20]). A significant
number of the solution methods proposed (for example, [3, 5, 9, 14, 15,
18, 19]) are based on solving the following well-known continuous quadratic
programming formulation of the MCP, due to Motzkin and Straus [15]:

max xTAx(1)

subject to x ∈ ∆ ,
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where ∆ is the n-dimensional simplex defined by

∆ := {x ∈ R
n : 0 ≤ x ≤ 1 and 1Tx = 1}

and A = (aij)i,j∈V denotes the adjacency matrix for G defined by

aij =

{

1, (i, j) ∈ E
0, (i, j) /∈ E

∀ i, j ∈ V .

For any non-empty clique C we let x(C) ∈ ∆ denote the corresponding
characteristic vector (defined by x(C)i =

1
|C| whenever i ∈ C and x(C)i = 0

otherwise). The equivalence between MCP and (1) is given by the following
theorem:

Theorem 1.1 (Theorem 1 [15]). The optimal objective value of (1) is

1−
1

ω(G)

and x(C) is a global maximizer of (1) for any maximum clique C.

Solution approaches to MCP based on solving (1) include nonlinear pro-
gramming methods [8] and methods based on discrete time replicator dy-
namics [3, 4, 5, 18]. Since (1) is NP-hard (by reduction to MCP), the
computing time required to obtain a global maximizer can grow exponen-
tially with the size of the graph; hence, finding a global maximizer may
be impractical in many settings. On the other hand, iterative optimization
methods will typically converge to a point satisfying the first-order opti-
mality (Karush-Kuhn-Tucker) conditions. In general, verifiying whether a
first-order point of a quadratic program is even locally optimal is an NP-
hard problem [16, 17]. However, it was shown in [9] that local optimality of
a first-order point (in fact, any feasible point) in (1) can be ascertained in
polynomial time.

In [19, Proposition 3], a characteristic vector for a clique was shown to
satisfy the standard first-order optimality condition for (1) if and only if the
associated clique is maximal. In [9, Theorem 2], the authors gave a charac-
terization of the local optima of (1) and demonstrated a one-one correspon-
dence between strict local maximizers and strictly maximal cliques. These
results suggest the possibility of applying iterative optimization methods to
(1) in order to approximately solve MCP (ie. to find large maximal cliques).
However, one known [3, 18, 19] drawback of this approach in practice is
the presence of “infeasible” or “spurious” local maximizers of (1) which are
not characteristic vectors for cliques and from which a clique can not be re-
covered through any simple transformation. Such points are an undesirable
property of the program, since they can cause continuous based heuristics to
fail by terminating without producing a clique. In [3], the author addresses
this issue by introducing the following regularized formulation (with α = 1

2):

max xTAx+ α||x||22(2)

subject to x ∈ ∆ .
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In contrast to (1), the local maximizers of (2) have been shown to be in
one-one correspondence with the maximal cliques in G (see [3, Theorem
9]), and a replicator dynamics approach to solving (2) was shown to reduce
the total number of algorithm failures by 30%, compared with a similar
approach to solving (1). In [5], the authors enhanced the algorithm of [3],
adding an annealing heuristic to obtain even stronger results. In addition, it
was demonstrated that the correspondence between the local/global optima
of (2) and MCP is maintained for any α ∈ (0, 1). A similar formulation
and approach [2] has also been applied successfully to a weighted version of
MCP.

In practice, the numerical performance of an iterative optimization method
(in terms of speed and/or solution quality) may depend on the particular
regularization term employed. In this paper we consider a broad class of
regularization terms, and develop conditions under which the regularized
program is equivalent to MCP in both a global and a local sense. We es-
tablish the equivalence in a step by step manner that reveals some of the
underlying structural properties of (1). We provide two different examples
of regularization terms satisfying the general conditions, and also give some
preliminary computational results evaluating their effectiveness in terms of
both speed and solution quality. Over the course of our analysis (see Section
2), we also correct an (apparently as yet unidentified) erroneous result in the
literature linking maximal cliques to local maximizers in (1) by constructing
an example of a maximal clique whose characteristic vector is not a local
maximizer of (1).

The paper is organized as follows. In Section 2, we develop a general
regularized formulation of MCP and provide conditions under which the
global/local maximizers of the regularized program are in one-one corre-
spondence with the maximum/maximal cliques in G. In Section 3, we re-
port on some preliminary computational results comparing the performance
of two new regularization terms with the one proposed by Bomze in [3]. We
conclude in Section 4.

Notation. 0 and 1 denote column vectors whose entries are all 0 and
all 1 respectively and I denotes the identity matrix, where the dimensions
should be clear from the context. ∇f(x) denotes the gradient of f , a row
vector, and ∇2f(x) denotes the Hessian of f . For a set Z, |Z| is the number
of elements in Z. ei ∈ R

n denotes the i-th column of the n × n identity
matrix. If {si}

n
i=1 ⊂ R is a finite sequence of length n, then Diag({si}

n
i=1)

is the n × n diagonal matrix whose (i, i)th entry is si. If x ∈ R
n, then

supp (x) denotes the support of x, defined by supp (x) = {i : xi 6= 0}.
Given vectors x,y ∈ R

n, [x,y] := {tx + (1 − t)y : t ∈ [0, 1]}. For a given
positive integer n, we denote the set {1, 2, . . . , n} by [n]. Sn is the set of
permutations of [n]. If B ∈ R

n×n is a symmetric matrix, we write B � 0

if B is positive semidefinite, B ≻ 0 if B is positive definite, and B � 0

(resp. B ≺ 0) when −B � 0 (resp. −B ≻ 0). If X ⊆ R
n and f : X → R,

then a point x ∈ X is a local (resp. strict local) maximizer of the problem
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max {f(x) : x ∈ X} if there exists some ǫ > 0 such that f(x) ≥ f(x̃) (resp.
f(x) > f(x̃)) for every x̃ ∈ X with 0 < ||x̃− x||2 < ǫ. x is an isolated local
maximizer if there exists some ǫ > 0 such that x̃ is not a local maximizer
for any x̃ ∈ X with 0 < ||x̃ − x||2 < ǫ. conv(X) denotes the convex hull of

X. span+(X) := {
∑k

i=1 αix
i : k ∈ N+, αi ≥ 0, xi ∈ X ∀ i ∈ [k]}. N+

denotes the set of positive natural numbers.

2. General regularized formulation.

Consider the following problem:

max f(x) := xTAx+Φ(x)(3)

subject to x ∈ ∆ ,

where Φ : X → R is a twice continuously differentiable function defined on
some open set X ⊃ ∆. Throughout this section, we will also assume that Φ
satisfies the following conditions for every x ∈ ∆:

(C1) ∇2Φ(x) � 0

(C2) ||∇2Φ(x)||2 < 2
(C3) Φ is constant on the set

P(x) := {x̃ ∈ ∆ : ∃ σ ∈ Sn such that x̃i = xσ(i) ∀ i ∈ [n]} ,

where Sn is the set of permutations of [n]. Note that (C1) is equivalent to
requiring that Φ is convex at x and (C2) is equivalent to ∇2Φ(x)−2I ≺ 0 (a
fact that will be used later). Also, since Φ ≡ 0 satisfies (C1) – (C3) trivially,
the results of this section will hold in particular for the original unpenalized
formulation (1) when no additional assumptions are made on Φ.

We will establish the global equivalence between (3) and MCP through a
series of intermediate results. For any clique C define the set

∆(C) := {x ∈ ∆ : supp (x) ⊆ C} ,

and let

(4) ∆0 :=
⋃

C clique

∆(C) = {x ∈ ∆ : supp (x) is a clique} .

Lemma 2.1. Let x ∈ ∆0. Then,

1. For any x̃ ∈ P(x) ∩∆0 we have

f(x̃) = f(x) .

2. For any 0 6= d ∈ R
n such that x+ td ∈ ∆0 for all sufficiently small

t > 0 we have

dT∇2f(x)d < 0 .
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Proof. First, we note that for any z ∈ R
n such that supp (z) is a clique, we

have

zTAz =
n
∑

i=1

n
∑

j=1

ziaijzj =
∑

i∈supp (z)

∑

j∈supp (z)\{i}

zizj

=
∑

i∈supp (z)





∑

j∈supp (z)

zizj − z2i





(5)

= (1Tz)2 − zTz .(6)

Next let x ∈ ∆0. We prove the two parts separately.
Part 1. For any x̃ ∈ P(x) ∩∆0 we have

f(x̃) = x̃TAx̃+Φ(x̃)

= (1Tx̃)2 − x̃Tx̃+Φ(x̃)(7)

= (1Tx)2 − xTx+Φ(x)(8)

= xTAx+Φ(x)(9)

= f(x) ,

where (7) and (9) are due to (6), since x̃,x ∈ ∆0, and (8) is due to (C3) and
the assumption that x̃ ∈ P(x).

Part 2. Let 0 6= d ∈ R
n be any vector such that x + td ∈ ∆0 for

all sufficiently small t > 0. Then when t is sufficiently small supp (d) ⊆
supp (x + td), which implies that supp (d) is a clique; moreover, since
1Tx = 1T(x+ td) = 1, we have 1Td = 0. So by (6) we have

dT∇2f(x)d = 2dTAd+ d∇2Φ(x)d(10)

= 2[(1Td)2 − dTd] + dT∇2Φ(x)d

= −2dTd+ dT∇2Φ(x)d

= −dT
[

2I −∇2Φ(x)
]

d

< 0 ,(11)

where (11) follows from (C2). �

Now consider the following problem:

max f(x)(12)

subject to x ∈ ∆(C) .

Proposition 2.1. The unique local (hence global) maximizer of (12) is
x(C).
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Proof. Suppose by way of contradiction that there exist distinct local maxi-
mizers x1 6= x2 of (12). Then by Taylor’s Theorem (see for example Propo-
sition A.23 of [1]) ∃ ξ ∈ [x1,x2] ⊆ ∆ such that

(13) f(x2) = f(x1) +∇f(x1)d+
1

2
dT∇2f(ξ)d ,

where d = x2−x1. Since x1,x2 ∈ ∆, we have that x1+td ∈ [x1,x2] ⊆ ∆(C)
for all sufficiently small t > 0. So by the standard first-order necessary local
optimality condition (see for example, Section 1 of [10]), we have

(14) ∇f(x1)d ≤ 0 .

Moreover, Part 2 of Lemma 2.1 implies

(15) dT∇2f(ξ)d < 0 .

Combining (13), (14), and (15), we obtain f(x2) < f(x1). But then inter-
changing x2 and x1 the same argument can be used to show that f(x1) <
f(x2), a contradiction. Therefore, there is a unique local (hence global)
maximizer of (12), say x∗.

Next, we claim that P(x∗) ∩ ∆(C) = {x∗}. Indeed, suppose by way of
contradiction that ∃ x̃ ∈ P(x∗)∩∆(C) such that x̃ 6= x∗. Since supp (x∗) ⊆
C and C is a clique, Part 1 of Lemma 2.1 implies f(x̃) = f(x∗). But then
x̃ must be a global maximizer of (12), contradicting the uniqueness of x∗.
Hence, we must have P(x∗)∩∆(C) = {x∗}. Thus, x∗i = x∗j for any i, j ∈ C.

Since x∗ ∈ ∆(C), this implies x∗ = x(C). �

Remark 2.1. By Part 2 of Lemma 2.1, (12) is a strictly concave (and
smooth) maximization problem. Thus, the uniqueness of the maximizer of
(12) may be seen as following from standard results in the theory of convex
optimization (for instance, Proposition B.4 in [1]).

Next, consider the problem

max f(x)(16)

subject to x ∈ ∆0 .

Proposition 2.2. A point x ∈ ∆0 is a local maximizer of (16) if and only
if x = x(C) for some maximal clique C. Moreover, every local maximizer
of (16) is strict.

Proof. First, observe that for any local maximizer x of (16), by (4) there
exists some maximal clique C such that x ∈ ∆(C); and since x is a local
maximizer of (16), it is also a local maximizer of (12), which implies that
x = x(C), by Proposition 2.1. Thus, the proof will be complete when we
show that every characteristic vector for a maximal clique is a strict local
maximizer in (16). To this end, let C be a maximal clique, and suppose by
way of contradiction that x(C) is not a strict local maximizer of (16). Then,
for every k ∈ N+ there exists some xk ∈ ∆0 with 0 < ||xk − x(C)||2 < 1/k
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such that f(xk) ≥ f(x(C)). Since there are only finitely many sets in
the unions in (4), there must exist some clique C ′ and some subsequence
(xkl)∞l=1 ⊆ (xk)∞k=1 such that xkl ∈ ∆(C ′) for each l ≥ 1, with xkl → x(C).

Hence, x(C) ∈ ∆(C ′) = ∆(C ′), which implies C = supp (x(C)) ⊆ C ′. Since
C is maximal, we must have that C = C ′, and thus xkl ∈ ∆(C ′) = ∆(C) for
each l ≥ 1. Thus, x(C) is not a strict local maximizer of (12), contradicting
Proposition 2.1. This completes the proof. �

Proposition 2.3. If C1 and C2 are cliques, then

|C1| < |C2| ⇔ f(x(C1)) < f(x(C2)) .

Proof. Let C1 and C2 be cliques. First, suppose that |C1| < |C2|. Let C be
any clique such that C ⊂ C2 and |C| = |C1|. Then x(C1) ∈ P(x(C)). So,
Part 1 of Lemma 2.1 implies f(x(C1)) = f(x(C)). Moreover, by Proposition
2.1 f(x(C)) < f(x(C2)), since x(C) ∈ ∆(C2). Hence, f(x(C1)) < f(x(C2)).
Conversely, suppose that f(x(C1)) < f(x(C2)). Then, by the proof of the
forward direction we must have |C1| ≤ |C2|. Moreover, if |C1| = |C2|, then
x(C1) ∈ P(x(C2)) and Part 1 of Lemma 2.1 implies f(x(C1)) = f(x(C2)),
a contradiction. Hence, we must have |C1| < |C2|. �

Corollary 2.1. A point x ∈ ∆0 is a global maximizer of (16) if and only if
x = x(C) for some maximum clique C.

Proof. Let x ∈ ∆0. Then x is a global maximizer of (16) if and only if x is
a local maximizer and f(x) ≥ f(x̄) for every local maximizer x̄ 6= x, which
by Proposition 2.2 holds if and only if x = x(C) for some maximal clique
C and f(x(C)) ≥ f(x(C̄)) for every maximal clique C̄ 6= C. The corollary
then follows from Proposition 2.3. �

Proposition 2.4. For every clique C, x(C) is a global maximizer of (3) if
and only if C is a maximum clique.

Proof. We will show that there exists a global maximizer of (3) which lies
in ∆0. The proof will then follow from Corollary 2.1. To this end, let x

be any global maximizer of (3). If x ∈ ∆0, then we are done. So, suppose
instead that x /∈ ∆0. Then supp (x) is not a clique and there exist indices
i 6= j ∈ supp (x) such that aij = 0. Next, for any t ∈ [−xi, xj ], let
x(t) := x + t(ei − ej), and observe that by Taylor’s Theorem there exists
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some ξ ∈ [x,x(t)] such that

f(x(t)) = f(x) + t∇f(x)(ei − ej) +
t2

2
(ei − ej)

T∇2f(ξ)(ei − ej)

= f(x) +
t2

2

[

(2aii + 2ajj − 4aij) + (ei − ej)
T∇2Φ(ξ)(ei − ej)

]

(17)

= f(x) +
t2

2

[

(ei − ej)
T∇2Φ(ξ)(ei − ej)

]

(18)

≥ f(x) .(19)

Here, (17) follows from the first-order optimality condition at x, which im-
plies that ∇f(x)(ei − ej) = 0 since x(t) is feasible for all t ∈ [−xi, xj ].
Equality (18) follows from the fact that aij = 0 = aii = ajj. And (19) fol-
lows from (C1). Thus, setting t = xj, we obtain another global maximizer
x(t) ∈ ∆ such that supp (x(t)) = supp (x)\{j} ⊂ supp (x). We may re-
peat this process, gradually reducing the size of supp (x) while maintaining
global maximality, until supp (x) is a clique (possibly of size 1), at which
point the proof is complete, since then x ∈ ∆0. �

By Proposition 2.2, a one-one correspondence exists between the local
maximizers of (16) and the maximal cliques in G. However, as is already
well-known in the case when Φ ≡ 0 (see the discussions pertaining to “in-
feasible” or “spurious” local optima in [3, 18, 19]), if ∆0 in (16) is relaxed
to ∆ ⊇ ∆0 (in fact, ∆ = conv(∆0), but we need not prove this here), there
may exist local maximizers of (3) that are not characteristic vectors for
cliques, which may cause iterative optimization methods for solving (3) to
fail, terminating without producing a clique.

Conversely, when Φ ≡ 0 there may exist characteristic vectors for maximal
cliques which are not local maximizers in (3). Indeed, in the graph G in

Figure 1, the sets C = {1, 2} and Ĉ = {3, 4, 5} are both maximal cliques;

and since x(C), x(Ĉ) ∈ ∆, we have that for all sufficiently small t > 0,

x(C) + td ∈ ∆, where d = x(Ĉ)− x(C). Moreover, it is easy to check that
by computation one has that ∇f(x)d = 0 and dT∇2f(x)d = 1

6 > 0, where
x = x(C). Hence, for all sufficiently small t > 0

f(x+ td) = f(x) + t∇f(x)d+
t2

2
dT∇2f(x)d

= f(x) +
t2

2
dT∇2f(x)d

> f(x) .

Thus, x(C) is not a local maximizer of (3), despite the fact that C is maxi-
mal. We note that the above is a counterexample to [9, Corollary 2].

Hence, there is not necessarily any relationship (in either direction) be-
tween the local optima of (1) and the maximal cliques in G. However, we
will see in the next proposition that for any strictly convex Φ satisfying (C1)
– (C3), the local maximizers of (3) are in one-one correspondence with the
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1 2

3

4 5

C

Ĉ

Figure 1. An example of a graph G and two maximal
cliques C and Ĉ. Here, x(C) is not a local maximizer of
(1) even though C is maximal.

characteristic vectors for maximal cliques. The proposition is based on three
lemmas.

Lemma 2.2. Let x ∈ ∆ and let F(x) denote the set of first-order feasible
directions for (3) at x, defined by

F(x) = {d ∈ R
n : 1Td = 0 and di ≥ 0 whenever xi = 0} .

Then,

F(x) = span+(F(x) ∩ D) ,

where D =
⋃n

i,j=1

i 6=j

{ei − ej}.

Proof. The lemma follows immediately from [10, Corollary 2.2] and the fact
that D is a reflective edge-description (defined in [10]) of ∆. �

The next lemma is a restatement in the language of the present paper of
the result [19, Proposition 3] which states that a characteristic vector for a
maximal clique satisfies the first-order optimality conditions of (1).

Lemma 2.3. If C is a maximal clique, then

x(C)TAd ≤ 0 ∀ d ∈ F(x(C)) .

Proof. Let C be a maximal clique. We claim that for any ds ∈ F(x(C))∩D
we have x(C)TAds ≤ 0. Once this is shown, the proof will be complete, since
by Lemma 2.2 ∀ d ∈ F(x(C)) ∃ k ∈ N+, α1, α2, . . . , αk ≥ 0, d1,d2, . . . ,dk ⊆

F(x(C)) ∩ D such that d =
∑k

s=1 α
sds, and therefore

x(C)TAd =
∑

s∈[k]

αsx(C)TAds ≤ 0 .

So, suppose that ds ∈ F(x(C)) ∩ D. Then ds = (ei − ej) for some i 6= j.
Moreover, by definition of F(x(C)) we have xj(C) > 0; that is, j ∈ C.
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Hence,

x(C)TAds =

n
∑

t=1

n
∑

r=1

xt(C)atrd
s
r

=
1

|C|

∑

t∈C

(ati − atj)

=
1

|C|

[

∑

t∈C\{j}

(ati − 1) + aji

]

.(20)

Here, (20) follows from the fact that C is a clique, j ∈ C, and ajj = 0. We
now consider two cases.

Case 1: i ∈ C. In this case, since aii = 0, the right hand side of (20)
equals

(21)
1

|C|

[

∑

t∈C\{i,j}

(ati − 1) + aji − 1

]

.

But since i ∈ C and C is a clique, we have that ati = 1 for every t ∈ C\{i, j}.
Hence, (21) is equal to

1

|C|
(aji − 1) ≤ 0 .

Thus, x(C)TAds ≤ 0.
Case 2: i /∈ C. In this case, we have that (20) is equal to

(22)
1

|C|

[

∑

t∈C\{i,j}

(ati − 1) + aji

]

.

But since C is maximal and i /∈ C there must exist some k ∈ C such that
aik = 0. If k = j, then (22) is less than or equal to zero, since aji = 0 and
each of the terms in the first summation is less than or equal to zero. On
the other hand, if k 6= j, then there exists a term in the first summation
of (22) which is equal to −1, and hence, since aji ≤ 1, (22) is less than or

equal to zero. Thus, x(C)TAds ≤ 0. This completes the proof. �

Lemma 2.4. Let ∅ 6= S ⊆ V. Then

(23) ∇Φ(x(S))d ≤ 0 ∀ d ∈ F(x(S)) .

Moreover, if ∇2Φ(x̃) ≻ 0 ∀ x̃ ∈ ∆, then the inequality in (23) is strict
whenever supp (d) 6⊆ S.

Proof. First, observe that if (23) holds in the case when ∇2Φ(x̃) ≻ 0 ∀ x̃ ∈
∆, then it also holds for any Φ (satisfying (C1) – (C3)). The argument is
as follows: If Φ satisfies (C1) – (C3), then for all sufficiently large k ∈ N,
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the regularization function Φ(k) := Φ+ 1
k
‖ · ‖22 also satisfies (C1) – (C3), and

moreover for any x̃ ∈ ∆ we have that

∇2Φ(k)(x̃) = ∇2Φ(x̃) +
2

k
I ≻ 0 .

Hence,

(24) ∇Φ(x(S))d+
2

k
x(S)Td = ∇Φ(k)(x(S))d ≤ 0 ∀ d ∈ F(x(S)) .

But then, taking the limit of (24) as k → ∞ we obtain (23).
So suppose that ∇2Φ(x̃) ≻ 0 for every x̃ ∈ ∆. We first prove the following

result for any x ∈ ∆:

(25) ∇Φ(x)(ei − ej) < 0 ∀ i, j ∈ [n] such that xi < xj .

To see this, let x ∈ ∆, suppose that i, j ∈ [n] are such that xi < xj, and let
t := xj − xi > 0 and x̄ := x + t(ei − ej). Then x̄ ∈ P(x), since x̄i = xj,
x̄j = xi, and x̄k = xk ∀ k 6= i, j. So, by (C3) we have Φ(x̄) = Φ(x). But
taking a Taylor expansion of Φ about x, we have that for some ξ ∈ [x, x̄] ⊆ ∆

Φ(x) = Φ(x̄) = Φ(x) + t∇Φ(x)(ei − ej) +
t2

2
(ei − ej)

T∇2Φ(ξ)(ei − ej) ,

and hence

0 = t∇Φ(x)(ei − ej) +
t2

2
(ei − ej)

T∇2Φ(ξ)(ei − ej) .

So since ∇2Φ(ξ) ≻ 0 (by assumption) and t > 0, we have that

∇Φ(x)(ei − ej) < 0 .

Thus, (25) is proved. Moreover, note that by continuity of ∇Φ(·)(ei − ej)
we have in addition that

(26) ∇Φ(x)(ei − ej) ≤ 0 ∀ i, j ∈ [n] such that xi = xj > 0 .

In fact, by symmetry it is easy to see that the inequality in (26) must actually
be an equality.

Now we prove the lemma. Let ∅ 6= S ⊆ [n] and let d ∈ F(x(S)).
Then by Lemma 2.2 there exist k ∈ N+, d

1, . . . ,dk ∈ F(x(S)) ∩ D, and

α1, α2, . . . , αk ≥ 0 such that d =
∑k

s=1 α
sds. Hence,

(27) ∇Φ(x(S))d =

k
∑

s=1

αs∇Φ(x(S))ds .

Next, note that by definition of D for each s ∈ [k] there exist i, j ∈ [n] such
that ds = (ei − ej); moreover, since (ei − ej) ∈ F(x(S)), we have that xi ≤
1
|S| = xj. Hence, by (25), (26), and (27) we have that ∇Φ(x(S))ds ≤ 0 for

each s ∈ [k]. So, by (27) we have ∇Φ(x(S))d =
∑k

s=1 α
s∇Φ(x(S))ds ≤ 0.

Moreover, in the case where supp (d) 6⊆ S, there must exist some s ∈ [k]
and some i, j ∈ [n] such that ds = (ei−ej) with i /∈ S and αs > 0. By (25),
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this implies ∇Φ(x(S))ds < 0. Hence, ∇Φ(x(S))d < 0. This completes the
proof. �

In the proof of the next proposition, we will use the following well-known
second-order sufficient optimality condition (see [10]): A point x ∈ ∆ is a
local maximizer of (3) if

(28) ∇f(x)d ≤ 0 ∀ d ∈ F(x) ,

and

(29) dT∇2f(x)d < 0 ∀ 0 6= d ∈ C(x) ,

where C(x) is the critical cone at x defined by

C(x) := {d ∈ F(x) : ∇f(x)d = 0} .

Proposition 2.5. Suppose that ∇2Φ(x̃) ≻ 0 for every x̃ ∈ ∆. Then a point
x ∈ ∆ is a local maximizer of (3) if and only if x = x(C) for some maximal
clique C. Moreover, every local maximizer of (3) is strict.

Proof. Suppose that ∇2Φ(x̃) ≻ 0 for every x̃ ∈ ∆. First, we claim that every
local maximizer of (3) lies in ∆0. To this end, let x be any local maximizer
of (3). If supp (x) is a clique, then clearly x ∈ ∆0. So, suppose by way of
contradiction that supp (x) is not a clique. By applying an argument similar
to the one given in the proof of Proposition 2.4, there exist indices i 6= j ∈
supp (x) such that for all t ∈ [−xi, xj ] we have x(t) = x + t(ei − ej) ∈ ∆
and f(x(t)) > f(x), where the strict inequality here follows from (18) and
the fact that ∇2Φ(ξ) ≻ 0 for any ξ ∈ [x,x(t)] ⊆ ∆. But this contradicts
the fact that x is a local maximizer of (3). Hence, supp (x) is a clique and
x ∈ ∆0.

So, every local maximizer of (3) lies in ∆0 and is therefore a local maxi-
mizer of (16). Thus, by Proposition 2.2 every local maximizer of (3) is equal
to x(C) for some maximal clique C. Since there are only finitely many
maximal cliques in G, there are only finitely many local maximizers of (3),
which implies that every local maximizer of (3) is isolated, and is therefore
a strict local maximizer (see for instance [9]).

To complete the proof, we must show that for any maximal clique C,
x(C) is a local maximizer of (3). To see this, let C be a maximal clique
and let x := x(C). First, we show that the first-order condition (28) holds.
Let d1 ∈ F(x). By Lemma 2.3, we have xTAd1 ≤ 0, and by Lemma 2.4,
∇Φ(x)d1 ≤ 0. Hence,

(30) ∇f(x)d = 2xTAd1 +∇Φ(x)d1 ≤ 0 .

So, we will be done when we show that the second-order condition (29)
holds. To see this, let 0 6= d2 ∈ C(x) be arbitrary. Then,

(31) 0 = ∇f(x)d2 = 2xTAd2 +∇Φ(x)d2 ≤ ∇Φ(x)d2 ,
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where the last inequality follows from Lemma 2.3, since d2 ∈ F(x). Thus, by
the second statement in Lemma 2.4 we must have supp (d2) ⊆ C, implying
that x+ td2 ∈ ∆(C) ⊆ ∆0 for all sufficiently small t > 0. And so by Part 2
of Lemma 2.1 we have

d2T∇2f(x)d2 < 0 .

This completes the proof. �

3. Preliminary numerical results.

In this section, we conduct some preliminary numerical experiments on
three different regularization functions satisfying the conditions outlined in
Section 2 in order to give an indication of the potential impact of different
regularization terms on the performance of a local optimization algorithm
applied to (3). If in practice a maximum clique (rather than merely a max-
imal clique) is sought, the local optimization algorithm we employ in our
experiments would need to be incorporated into a global optimization frame-
work, such as branch and bound, in order to ensure convergence to a global
maximizer.

3.1. Regularization functions. We considered the following three regu-
larization terms, with the indicated choices of parameters:

ΦB(x) :=
1

2
||x||22,(32)

Φ1(x) := α1‖x+ ǫ1‖pp, ǫ > 0, p > 2, 0 < α1 <
2

p(p−1)(1+ǫ)p−2 ,(33)

Φ2(x) := α2

n
∑

i=1

(e−βxi − 1), β > 0, 0 < α2 <
2
β2 .(34)

Here, ΦB is the 2-norm regularization function introduced by Bomze et al.
[3], and Φ1 is a generalization of ΦB to p-norms where p > 2. Φ2 is a well-
known (for instance, see [6]) approximation of the following non-smooth
function:

(35) Φ̃(x) = −α2‖x‖0 ,

where ‖x‖0 = supp (x). The motivation behind the choice of Φ2 is as fol-
lows. By definition of Φ2, maximizing xTAx+Φ2 over ∆ is closely related
to the problem of finding a solution to (1) which has the smallest support
(ie. the maximum sparsity). Following the argument laid out in the proof
of Proposition 2.4, from any global maximizer of (1) which is not a charac-
teristic vector for a maximum clique, there exists a path leading to another
global maximizer which is a characteristic vector for a maximum clique and
whose support is strictly smaller than that of the starting point. Hence, the
global maximizers of (1) which have the smallest support are necessarily the
characteristic vectors for maximum cliques. Thus, Φ2 is a somewhat natural
choice in our present context.
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Next, we show that each of the regularization functions above satisfies the
conditions of Section 2. For any δ ∈ (0, ǫ), where ǫ > 0 is the value used in
the definition of Φ1, let X := conv(∪n

i=1Bδ(ei)) ⊆ R
n, where Bδ(ei) = {x ∈

R
n : ‖x − ei‖2 < δ}. Then, X is open, X ⊃ ∆, and ΦB , Φ1, and Φ2 are

each well-defined on X. Moreover, it is easy to check that ΦB, Φ1, and Φ2

are each twice continuously differentiable over X and that for any x ∈ ∆ we
have

∇2ΦB(x) = I ≻ 0 ,

∇2Φ1(x) = α1p(p− 1)Diag({(xi + ǫ)p−2}ni=1) ≻ 0 , and(36)

∇2Φ2(x) = α2β
2Diag({e−βxi}ni=1) ≻ 0 ,

where the positive definiteness of the Hessians in (36) follows from the choice
of parameters. Hence, ΦB, Φ1, and Φ2 each satisfy (C1) strictly. Next,
observe that for any x ∈ ∆ we have

‖∇2ΦB(x)‖2 = 1 < 2 ,

‖∇2Φ1(x)‖2 = α1p(p− 1)max {(xi + ǫ)p−2}ni=1

<
2

(1 + ǫ)p−2
max {(xi + ǫ)p−2}ni=1

≤
2

(1 + ǫ)p−2
(1 + ǫ)p−2 = 2 , and

‖∇2Φ2(x)‖2 = α2β
2 max {e−βxi}ni=1

< 2max {e−βxi}ni=1

≤ 2 .

Thus, (C2) is satisfied for each of ΦB, Φ1, and Φ2. That (C3) holds fol-
lows easily from the fact that ΦB, Φ1, and Φ2 are each separable and the
coefficients associated with the terms xi are independent of i.

3.2. The testing set. In the experiments, we considered different families
of widely used maximum-clique instances belonging to the DIMACS bench-
mark [11]:

• C family: Random graphs Cx.y, where x is the number of nodes
and y the edge probability;

• DSJC family: Random graphs DSCJx y. Here again, x is the
number of nodes and y the edge probability;

• brock family: Random graphs with cliques hidden among nodes
that have a relatively low degree;

• gen family: Artificially generated graphs with large, known em-
bedded clique;

• hamming family: hamminga-b are graphs on a-bit words with an
edge if and only if the two words are at least hamming distance b
apart;
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Table 1. DIMACS instances used in the tests.

graph degrees best degrees

instance best known nodes edges median iqr median iqr

C125.9 34 125 6963 112 5 114.5 4.75

C250.9 44 250 27984 224 6 227 5

C500.9 57 500 112332 449 9 455 9

C1000.9 68 1000 450079 900 13 907 11.25

C2000.5 16 2000 999836 999 30 1006 11.5

C2000.9 80 2000 1799532 1800 18 1803 15.25

DSJC500 5 13 500 125248 250 16 259 14

DSJC1000 5 15 1000 499652 500 20 503 23

brock200 2 12 200 9876 99 10 101 11

brock200 4 17 200 13089 131 8 134 6

brock400 2 29 400 59786 299 10 299 9

brock400 4 33 400 59765 299 11 299 9

brock800 2 24 800 208166 521 18 516.5 20.25

brock800 4 26 800 207643 519 18.25 512 20.25

gen200 p0.9 44 44 200 17910 180 8 179.5 4.25

gen200 p0.9 55 55 200 17910 179 7.25 179 5.5

gen400 p0.9 55 55 400 71820 360 13.25 359 6

gen400 p0.9 65 65 400 71820 361 14 359 9

gen400 p0.9 75 75 400 71820 359 13 359 8

hamming8-4 16 256 20864 163 0 163 0

hamming10-4 40 1024 434176 848 0 848 0

keller4 11 171 9435 110 8 112 17

keller5 27 776 225990 578 38 578 33

keller6 59 3361 4619898 2724 50 2724 50

p hat300-1 8 300 10933 73 39 103 20

p hat300-2 25 300 21928 146.5 73 213 18

p hat300-3 36 300 33390 224 38 251 15.25

p hat700-1 11 700 60999 174.5 87 250 22.5

p hat700-2 44 700 121728 353 177.5 508 31.5

p hat700-3 62 700 183010 526 89 602 14

p hat1500-1 12 1500 284923 383 197 509 82

p hat1500-2 65 1500 568960 763 387 1100 37

p hat1500-3 94 1500 847244 1132.5 192 1297.5 25.75

• keller family: Instances based on Keller’s conjecture [13] on tilings
using hypercubes;

• p hat family: Random graphs generated with the p-hat generator,
which is a generalization of the classical uniform random graph gen-
erator. Graphs generated with p-hat have wider node degree spread
and larger cliques than uniform graphs.

In Table 1, we report the names of the instances used (instance), the best
known solutions (best known), the number of nodes and edges in the in-
stances (nodes and edges), and the median and interquartile range related
to the graph degrees (median and iqr in column graph degrees) as well
as the median and iqr of the degrees of the nodes lying in the best known
solution (median and iqr in column best degrees).

3.3. Experiments. To conduct our tests, we developed a multistart frame-
work in MATLAB that uses a hybrid algorithm as local optimizer. It combines
the fmincon solver with the Frank-Wolfe method [7]. For each instance,
we ran 100 trials each with a different randomly generated point in ∆ as
a starting guess. The same starting guesses were used for all formulations.
Since the iterates of the Frank-Wolfe method we used are only guaranteed
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to converge to a point satisfying the first-order conditions, we omitted the
trials in which the final iterate was not a true local optimizer from the sta-
tistical computations in the tables below. (Another potential way of dealing
with this issue, which we leave to a future work, would be to take a step in
an ascent direction whenever the final iterate is not a local maximizer, and
then rerun the algorithm using the new point as a starting guess.) Once
a local maximizer x∗ is obtained, the associated clique is constructed by
taking C∗ := supp (x∗). In our experiments, we used the parameter values
p = 3, ǫ = 10−9, and β = 5. Furthermore, α1 and α2 were suitably chosen
in order to satisfy condition (33) and (34) respectively. All the tests were
performed on an Intel Core i7-3610QM 2.3 GHz, 8GB RAM.

In Table 2, we report the largest clique size obtained (max), mean (mean),
standard deviation (std) and the average CPU time (CPU time) over the
100 runs for each instance and each of the three formulations. When the
largest clique obtained is the same as the largest known clique size, the
result is reported in bold. Observe that with the exception of the keller

instances, the average clique size obtained from using either of Φ1 or Φ2

was strictly larger than the average obtained from using ΦB. Overall, Φ1

performed slightly better than Φ2 yielding a strictly larger clique in 17 out
of the 33 instances. Next, taking a look at the results related to the C and
p hat families, we notice that as the number of nodes increases (and also
the number of edges increases) finding a solution close to the best known
gets harder and harder for all three formulations. This is likely due to the
simplicity of the global optimization approach that we use to solve the prob-
lem. However, for the smaller instances in these groups Φ1 and Φ2 performed
quite well. In particular, the formulation using Φ1 found the largest known
clique size in 6 of the instances. The DSJC, brock, and gen families all
confirm the good behavior of the proposed formulations. Indeed, in all cases
the solutions found were closer (sometimes significantly) to the best known
clique than the ones found using ΦB.

4. Conclusions.

We described a general regularized continuous formulation for the MCP
and developed conditions which guarantee an equivalence between the orig-
inal problem and the continuous reformulation in both a global and a local
sense. We have also proved the results in a step by step manner which we
hope reveals some of the underlying structural properties of the formula-
tion. We further proposed two specific regularizers that satisfy the general
conditions given in the paper, and compared the two related continuous for-
mulations with the one proposed in [3] on different families of widely used
maximum-clique instances belonging to the DIMACS benchmark. The nu-
merical results, albeit still preliminary, seem to confirm the effectiveness of
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Table 2. Results obtained on the DIMACS instances.

ΦB Φ1 Φ2

instances max mean std CPU time max mean std CPU time max mean std CPU time

C125.9 34 32.83 0.92 0.13 34 33.17 0.38 0.69 34 33.22 0.42 0.25
C250.9 40 37.08 1.30 0.43 44 40.79 1.09 1.31 44 40.77 1.13 0.77
C500.9 49 45.51 1.46 1.80 54 51.03 1.57 5.14 54 50.92 1.68 3.36
C1000.9 60 54.40 2.26 10.01 63 58.90 1.91 23.57 63 59.16 1.94 15.76
C2000.5 13 11.46 0.70 56.09 15 12.90 1.08 101.40 15 12.95 0.94 66.69
C2000.9 69 61.75 1.86 56.67 67 63.35 1.61 106.22 68 63.89 1.96 76.71

DSJC500 5 10 9.43 0.61 2.20 11 10.45 0.55 4.59 12 10.19 0.44 2.36
DSJC1000 5 13 10.68 0.97 10.29 14 11.86 0.79 25.53 14 11.53 1.20 13.69

brock200 2 9 8.00 0.58 0.25 10 9.30 0.67 0.64 10 9.04 0.21 0.37
brock200 4 14 12.60 0.87 0.30 15 13.44 0.63 1.35 15 13.40 0.64 0.43
brock400 2 23 19.84 1.00 1.16 24 22.14 1.26 3.49 24 21.80 1.23 1.60
brock400 4 22 19.77 1.33 1.10 24 21.47 1.15 2.62 24 21.46 1.05 1.51
brock800 2 18 15.60 1.12 6.14 20 17.32 0.96 15.58 20 17.28 0.94 7.81
brock800 4 17 15.22 0.94 6.53 20 17.12 1.05 17.79 19 17.08 1.00 8.83

gen200 p0.9 44 36 33.37 1.25 0.31 40 37.51 1.05 1.45 40 37.43 1.12 0.49
gen200 p0.9 55 40 36.93 1.02 0.31 41 38.95 1.14 1.06 41 38.98 1.20 0.41
gen400 p0.9 55 48 44.19 1.57 0.96 51 49.01 0.87 3.22 51 49.03 0.86 1.64
gen400 p0.9 65 48 43.97 2.28 1.13 51 48.05 1.75 4.14 51 48.25 1.90 1.79
gen400 p0.9 75 46 42.93 1.41 1.05 49 47.76 1.04 5.69 50 47.65 1.38 2.91

hamming8-4 16 13.61 2.27 0.43 16 15.73 1.00 0.66 16 15.73 1.01 0.51
hamming10-4 34 30.54 1.23 10.69 40 33.45 1.37 35.23 40 33.47 1.42 18.99

keller4 8 7.17 0.38 0.19 7 7.00 0.00 0.73 9 7.02 0.20 0.18
keller5 16 15.02 0.15 4.40 15 15.00 0.00 7.54 15 15.00 0.00 4.39
keller6 34 32.86 1.46 388.05 34 33.83 0.61 290.79 34 32.80 1.48 222.96

p hat300-1 7 7.00 0.00 0.54 8 8.00 0.00 0.88 8 8.00 0.00 0.52
p hat300-2 24 24.00 0.00 0.55 25 24.01 0.10 1.89 24 24.00 0.00 0.44
p hat300-3 33 31.15 0.76 0.62 36 33.39 0.70 1.86 36 33.20 0.64 0.90
p hat700-1 9 7.24 0.62 3.97 9 8.15 0.43 13.31 9 7.94 0.55 6.15
p hat700-2 43 41.53 0.75 4.49 44 43.61 0.70 10.07 44 43.50 0.72 4.74
p hat700-3 60 58.71 0.87 4.77 61 58.99 0.69 10.55 61 59.21 0.80 7.73
p hat1500-1 11 9.00 0.86 23.26 11 9.36 1.12 41.27 11 9.83 0.65 25.40
p hat1500-2 62 59.09 1.10 29.06 62 60.79 0.87 44.76 64 62.30 1.15 30.42
p hat1500-3 87 81.90 1.80 31.76 88 86.99 0.39 225.12 92 88.21 1.98 38.19

the proposed regularizers; that is, when a local optimization method is ap-
plied to the new regularized formulations, cliques of high quality can often
be obtained in reasonable computational times.

Acknowledgments.

This work has been partly developed while the first author was an ER of
the “MINO: Mixed-Integer Nonlinear Optimization” program funded by the
European Union. The authors therefore gratefully acknowledge the financial
support of the European Union’s Horizon 2020 Marie Curie Network for
Initial Training (ITN) programme under grant agreement No. 316647.

References

1. D. P. Bertsekas, Nonlinear programming, Athena Scientific, Belmont, MA, 1999.
2. I. R. Bomze, M. Pelillo, and V. Stix, Approximating the maximum weight clique using

replicator dynamics, IEEE Transactions on Neural Networks 11 (2000), no. 6, 1228–
1241.

3. Immanuel M Bomze, Evolution towards the maximum clique, Journal of Global Opti-
mization 10 (1997), no. 2, 143–164.

4. Immanuel M. Bomze, Marco Budinich, Panos M. Pardalos, and Marcello Pelillo, The
maximum clique problem, pp. 1–74, Springer US, Boston, MA, 1999.



18 J. T. HUNGERFORD, F. RINALDI

5. Immanuel M. Bomze, Marco Budinich, Marcello Pelillo, and Claudio Rossi, Annealed
replication: a new heuristic for the maximum clique problem, Discrete Applied Math-
ematics 121 (2002), no. 1–3, 27 – 49.

6. P.S. Bradley, O.L Mangasarian, and J.B. Rosen, Parsimonious least norm approxima-

tion, Computational Optimization and Applications 11 (1998), 5 – 21.
7. Marguerite Frank and Philip Wolfe, An algorithm for quadratic programming, Naval

research logistics quarterly 3 (1956), no. 1-2, 95–110.
8. L. E. Gibbons, D. W. Hearn, and P. M. Pardalos, A continuous based heuristic for the

maximum clique problem, Second DIMACS Implementation Challenge (D. S. John-
son and M. Trick, eds.), DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 26, American Mathematics Society, USA, 1993, pp. 103–124.

9. L. E. Gibbons, D. W. Hearn, P. M. Pardalos, and M. V. Ramana, Continuous char-

acterizations of the maximum clique problem, Math. Oper. Res. 22 (1997), 754–768.
10. W. W. Hager and J. T. Hungerford, Optimality conditions for maximizing a function

over a polyhedron, Math. Program. 145 (2014), 179–198.
11. David S. Johnson and Michael A. Trick, Cliques, coloring, and satisfiability: second di-

macs implementation challenge, october 11-13, 1993, vol. 26, American Mathematical
Soc., 1996.

12. R.M. Karp, Reducibility among combinatorial problems, Complexity of Computer
Computations: Proc. of a Symp. on the Complexity of Computer Computations (New
York, NY), Plenum Press, 1972, pp. 85–103.
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