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About the Structure of the Integer Cone and
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We consider the bin packing problem with d different item sizes and revisit the
structure theorem given by Goemans and Rothvoß [GR14] about solutions of the
integer cone. We present new techniques on how solutions can be modified and give
a new structure theorem that relies on the set of vertices of the underlying integer
polytope. As a result of our new structure theorem, we obtain an algorithm for the
bin packing problem with running time |V |2

O(d)
· enc(I)O(1), where V is the set of

vertices of the integer knapsack polytope and enc(I) is the encoding length of the
bin packing instance. The algorithm is fixed parameter tractable, parameterized by
the number of vertices of the integer knapsack polytope |V |. This shows that the
bin packing problem can be solved efficiently when the underlying integer knapsack
polytope has an easy structure, i.e. has a small number of vertices.

Furthermore, we show that the presented bounds of the structure theorem are
asymptotically tight. We give a construction of bin packing instances using new
structural insights and classical number theoretical theorems which yield the desired
lower bound.

1 Introduction

Given the polytope P = {x ∈ R
d | Ax ≤ c} for some matrix A ∈ Z

m×d and a vector c ∈ Z
d. We

consider the integer cone

int.cone(P ∩ Z
d) = {

∑

p∈P∩Zd

λpp | λ ∈ Z
P∩Zd

≥0 }

of integral points inside the polytope P. Let PI = Conv(P ∩Z
d) be the convex hull of all integer

points inside P, where for given set X ⊂ R
d, the convex hull of X is defined by Conv(X) =

{
∑

p∈X xpp | x ∈ [0, 1]X , ‖x‖1 = 1}. Let VI be the vertices of the integer polytope PI i.e.

PI = Conv(VI). In case of the (fractional) cone Cone(P ∩ Z
d) = {

∑

p∈P∩Zd λpp | λ ∈ R
P∩Zd

≥0 },
we know by Caratheodory’s Theorem (see e.g. [Sch86]) that each γ ∈ PI can be written as a
convex combination of at most d + 1 points in VI and hence Cone(P ∩ Z

d) = Cone(VI).
In this paper we investigate the structure of the integer cone int.cone(P∩Zd) versus int.cone(VI).

Therefore, we define the vertex distance of a point b ∈ int.cone(P ∩ Z
d) which describes how

∗This work was partially supported by DFG Project, Entwicklung und Analyse von effizienten polynomiellen
Approximationsschemata für Scheduling- und verwandte Optimierungsprobleme, Ja 612/14-2
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many extra points from (P ∩ Z
d) \ VI are needed to represent b. The vertex distance is defined

by

Dist(b) = min{‖γ‖1 | γ ∈ Z
P∩Z

d

≥0 , λ ∈ Z
VI

≥0 such that b =
∑

v∈VI

λvv +
∑

p∈PI

γpp}

In this paper we show that for every point b ∈ int.cone(P ∩ Z
d), the vertex distance Dist(b) is

bounded by 22O(d)
. Hence, every b can be written by b =

∑

v∈VI
λvv +

∑

p∈P∩Zd γpp for some

λ ∈ Z
VI

≥0 and some γ ∈ Z
P∩Zd

≥0 , where ‖γ‖1 ≤ 22O(d)
.

A related result concerning the structure of the integer cone was given by Eisenbrand and
Shmonin [ES06]. They proved that every b ∈ int.cone(P ∩ Z

d) can be written by a vector

λ ∈ Z
P∩Zd

≥0 with b =
∑

p∈P∩Zd λpp such that λ has a bounded support (=number of non-zero

components). Therefore, for a given set M and given vector λ ∈ R
M
≥0, let supp(λ) be the set of

non-zero components of λ, i.e. supp(λ) = {s ∈ M | xs 6= 0}.

Theorem 1 (Eisenbrand, Shmonin [ES06]). Given polytope P ⊂ R
d. For any integral point

b ∈ int.cone(P ∩ Z
d), there exists an integral vector λ ∈ Z

P∩Z
d

≥0 such that b =
∑

p∈P∩Zd λpp and

|supp(λ)| ≤ 2d.

Let (s, b) be an instance of the bin packing problem with item sizes s1, . . . , sd ∈ (0, 1] and
multiplicities b ∈ Z

d
≥0 of the respective item sizes. The objective of the bin packing problem

is to pack all items b into as few unit sized bins as possible. When we choose P to be the
knapsack polytope, i.e. P = {x ∈ Z

d
≥0 | sT x ≤ 1}, then a vector λ ∈ Z

PI

≥0 of int.cone(P ∩ Z
d)

yields a packing for the bin packing problem. A long standing open question was, if the bin
packing problem can be solved in polynomial time when the number of different item sizes d
is constant. This problem was recently solved by Goemans and Rothvoß [GR14] using similar
structural properties of the integer cone. They proved the existence of a distinguished set
X ⊂ P of bounded size such that for every vector b ∈ int.cone(P ∩ Z

d) there exists an integral

vector λ ∈ Z
P∩Zd

≥0 where most of the weight lies in X. More precisely, they proved the following
structure theorem:

Theorem 2 (Goemans, Rothvoß [GR14]). Let P = {x ∈ R
d | Ax ≤ c} be a polytope with

A ∈ Z
m×d, c ∈ Z

d such that all coefficients are bounded by ∆ in absolute value. Then there
exists a set X ⊆ P ∩Z

d with |X| ≤ mddO(d)(log ∆)d such that for any point b ∈ int.cone(P ∩Z
d),

there exists an integral vector λ ∈ Z
P∩Z

d

≥0 such that b =
∑

p∈P∩Zd λpp and

1. λp ≤ 1 ∀p ∈ (P ∩ Z
d) \ X

2. |supp(λ) ∩ X| ≤ 22d

3. |supp(λ) \ X| ≤ 22d

The set X is constructed in [GR14] by covering P by a set of integral parallelepipedes. The set
X consists of the vertices of the integral parallelepiped and can be computed in a preprocessing
step. Note that by the construction of Goemans and Rothvoß, we have that VI ⊂ X as the set
of vertices of some inner centrally symmetric polytopes is computed.

1.1 Our results:

At first, we study the special case when P is given by the convex hull of integral points
B0, B1, . . . , Bd ∈ Z

d i.e. P is the simplex S = Conv(B0, B1, . . . , Bd). This is for example
the case in the knapsack polytope when all items sizes are of the form si = 1/ai for some
ai ∈ Z≥1. In this case, all vertices of the knapsack polytope are of the form B0 = (0, . . . , 0)T

and Bi = (0, . . . , 0, ai, 0, . . . , 0)T for 1 ≤ i ≤ d and therefore integral. We prove the following
theorem:

2



Theorem 3. Let S be the simplex defined by S = Conv(B0, B1, . . . , Bd) for Bi ∈ Z
d and let B

be the set of vertices B = {B0, B1, . . . , Bd}. For any vector b ∈ int.cone(S ∩ Z
d), there exists

an integral vector λ ∈ Z
S∩Zd

≥0 with b =
∑

s∈S∩Zd λss and

1. λs ≤ 22O(d)
∀s ∈ (S ∩ Z

d) \ B

2. |supp(λ) \ B| ≤ 2d

This theorem shows that in the case that the integer polytope PI is a simplex, the vertex
distance Dist(b) can be bounded by a term 22O(d)

for any b ∈ int.cone(P ∩ Z
d). In Section 3,

we complement this result by giving a matching lower bound for Dist(b). We prove that the
double exponential bound for Dist(b) is tight, even in the special case of bin packing, where the
simplex S is a specific knapsack polytope. The lower bound is based on the sylvester sequence
Si which is inductively defined by S1 = 2 and Si+1 = (

∏i
j=1 Sj) + 1 [GKP94].

Theorem 4. There exists a bin packing instance with sizes 1
a1

, . . . , 1
ad

for ai ∈ Z≥1 and multi-

plicities b ∈ Z
d
≥0 corresponding to a point b ∈ int.cone(P ∩Z

d), where P is the knapsack polytope
such that

Dist(b) ≥ Sd − 2 = 22Ω(d)

Furthermore, in the end of Section 4, we discuss the difficulty of finding instances with large
vertex distance and we show a connection to the modified roundup property (see [ST97]).

As a direct consequence of our main Theorem 3, we obtain a structure theorem that is similar
to the one given by Goemans and Rothoß[GR14] but uses a different set X ⊂ P of distinguished
points. Instead of the set of vertices of integral parallelepipedes, our theorem uses the set of
vertices VI of the integer polytope.

Theorem 5. Let P = {x ∈ R
d | Ax ≤ c} be a polytope with A ∈ Z

m×d, c ∈ Z
d
≥0 and let

VI ⊆ P ∩ Z
d be the set of vertices of the integer polytope PI with Conv(VI) ∩ Z

d = P ∩ Z
d.

Then for any vector b ∈ int.cone(P ∩ Z
d), there exists an integral vector λ ∈ Z

P∩Z
d

≥0 such that
b =

∑

p∈P∩Zd λpp and

1. λp ≤ 22O(d)
∀p ∈ (P ∩ Z

d) \ VI

2. |supp(λ) ∩ VI | ≤ d · 2d

3. |supp(λ) \ VI | ≤ 22d

This theorem finally shows that for arbitrary polytopes P and any b ∈ int.cone(P ∩ Z
d), the

vertex distance Dist(b) is bounded by 22O(d)
and hence independent of the number of inequalities

m and the largest entry ∆ in the description of P.
Recall that a parameterized problem with parameter p and input I is called fixed parameter

tractable (fpt) if there exists an algorithm with running time O(f(p) · enc(I)O(1)) for some
computable function f of p which is independent of I and enc(I) is the encoding length of
instance I. We refer to the book of Downey and Fellows [DF99] for more details on parameterized
complexity. As a consequence of our structure theorem, we present in Section 2 an algorithm for
the bin packing problem with a running time of |VI |2

O(d)
· log(∆)O(1), where ∆ is the maximum

over all multiplicities b and denominators in s. Since |VI | ≥ d + 1 this is an fpt-algorithm
parameterized by the number of vertices of the integer knapsack polytope VI .

Theorem 6. The bin packing problem can be solved in fpt-time parameterized by the number
of vertices VI of the integer knapsack polytope.
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This theorem shows that the bin packing problem can be solved efficiently when the underlying
knapsack polytope has an easy structure i.e. has not too many vertices. However, since the
total number of vertices is bounded by O(log ∆)d [HL83] the algorithm has a worst case running

time of (log ∆)2O(d)
, which is identical to the running time of the algorithm by Goemans and

Rothvoß [GR14].

1.2 Related results

The bin packing problem is one of the most fundamental combinatorial problems in computer
science. It has been very well studied in the literature, mostly in the context of approxima-
tion. A major contribution was given by Karmarkar and Karp [KK82]. They presented a
polynomial time approximation algorithm with a guarantee of OPT + O(log2(OPT )). Very
recently, this famous result by Karmarkar and Karp was improved by Rothvoß [Rot13] who
presented an algorithm with guarantee OPT + O(log OPT log log(OPT )) and later by Hoberg
and Rothvoß [HR15] who improved the guarantee further to OPT + O(log(OPT )). Concerning
the bin packing problem when the number of different item sizes d is constant, Jansen and
Solis-Oba [JS11] presented an approximation algorithm with a guarantee of OPT + 1. Their

algorithm has a running time of 22O(d)
· enc(I)O(1) and therefore is fpt in the number of differ-

ent item sizes d. Finally, as mentioned above, Goemans and Rothvoß [GR14] presented their

polynomial time algorithm for the bin packing problem with running time (log ∆)2O(d)
.

In a very recent work, Onn [Onn15] discussed the problem of finding a vector λ ∈ Z
P∩Z

d

≥0 with

b =
∑

p∈P∩Zd λpp for given b ∈ int.cone(P ∩ Z
d). He presented an algorithm for the case that

the polytope P = {x ∈ R
d | Ax ≤ c} has a specific shape. In the case that the matrix A is

totally unimodular he gave a polynomial time algorithm even in the case that the dimension d
is variable.

2 Proof of the main theorem

Given simplex S = Conv(B0, B1, . . . , Bd) for Bi ∈ Z
d
≥0 and a vector b ∈ int.cone(S ∩ Z

d). We
consider integral points in cone(B) generated by the vertices B = {B0, B1, . . . , Bd} = VI of the
simplex S. For convenience, we denote by B also the matrix with columns B0, B1, . . . , Bd. As
our main subject of investigation, we consider the parallelepiped

Π = {x0B0 + x1B1 + . . . + xdBd | xi ∈ [0, 1]}.

By definition of S = {x0B0 + x1B1 + . . . + xdBd | xi ∈ [0, 1],
∑

i xi = 1} we have that S ⊂ Π.
Furthermore, one can easily see that cone(B) can be partitioned into parallelepipedes Π (see
figure 1 with B0 = 0), as each point b = x0B0 + x1B1 + . . . + xdBd ∈ cone(B) ∩ Z

d for some
x ∈ R

d
≥0 can be written as the sum of an integral part Bxint = ⌊x0⌋B0 + . . . + ⌊xd⌋Bd and a

fractional part [Bx] = {x0}B0 + . . . + {xd}Bd ∈ Π (we denote the fractional part of some v ∈ R

by {v} = v − ⌊v⌋ and for some vector x ∈ R
d we denote by {x} the vector ({x0}, . . . , {xd})T .

For vector b ∈ Cone(B) with b = Bx let [b] = [Bx]. We say that two points b, b′ ∈ Cone(B) are
equivalent if [b] = [b′].

For the proof of the main theorem, we consider a λ ∈ Z
P∩Zd

≥0 with b =
∑

s∈S λss and suppose

that λ does not fulfill property (1) of Theorem 3. Then there exists a γ ∈ (P ∩Z
d)\VI with big

weight i.e. λγ ≥ 22Ω(d)
. The key idea of the proof is that we consider the set of multiplicities

γ, 2γ, 3γ, . . . of the vector γ. Our goal is to find a possibly small multiplicity K > 1 such that
Kγ is equivalent to a point δ in the convex hull S. Hence, weight on γ can be shifted to the
vertices B0, . . . , Bd of S. Then Kγ can be written as the sum of vertices

∑

ΛiBi plus some
δ ∈ S ∩ Z

d (see Lemma 1 for a detailed proof). In figure 1 we have that 3γ is equivalent to a
point in the simplex (as remarked by the grey areas) and hence in that case 3γ = δB1 + B2 for

4



B1

B2

B0 = 0

γ

2γ

3γ

Π

Figure 1: Partitioning Cone(B)

some δ ∈ S. Before we are ready to prove the existence of a small multiplicity K, we give some
definitions and observations.

Instead of multiplicities of γ ∈ S ∩ Z
d, we consider multiplicities of a vector x ∈ [0, 1)d+1 in

the unit cube with γ = x0B0 + x1B1 + . . . + xdBd = Bx.

Definition 1. Consider multiplicities x, 2x, 3x, . . . of a vector x ∈ [0, 1)d+1 with
∑

xi = 1. We
say components i jumps at K if ⌈Kxi⌉ > ⌈(K − 1)xi⌉. We define

Level(Kx) =
d
∑

i=0

{Kxi}.

Note that Level(Kx) is always integral as Level(Kx) =
∑d

i=0 Kxi −
∑d

i=0⌊Kxi⌋ and both
terms

∑d
i=0 Kxi and

∑d
i=0⌊Kxi⌋ are integral. The following lemma shows that we obtain the

desired decomposition of Kγ if Level(Kx) = 1.

Lemma 1. Let γ ∈ S ∩Z
d be the vector with γ = Bx for x ∈ [0, 1)d+1. If Level(Kx) = 1, then

there exists a Λ ∈ Z
d+1
≥0 and a δ ∈ S ∩ Z

d such that

Kγ = δ +
d
∑

i=0

ΛiBi.

Proof. As above, we split every component i of Kx ∈ R
d+1
≥0 into an integral part Kxint

i = ⌊Kxi⌋

and a fractional part {Kxi}. Then Kx = Kxint + {Kx} and we set δ = B({Kx}) = [B(Kx)].

Observation 1. δ ∈ Z
d.

Since Kγ = KBx ∈ Z
d and KBxint ∈ Z

d we obtain that δ = B({Kx}) = B(Kx) − B(Kxint)
is integral and therefore δ ∈ Z

d.

Observation 2. δ ∈ S.

Since Level(Kx) = 1 we obtain that
∑d

i=0{Kxi} = 1 and δ = B({Kx}) = ({Kx0})B0 + . . . +
({Kxd})Bd, we can state δ as a convex combination of B0, B1, . . . Bd. Therefore δ ∈ S.

Finally, we can decompose Kγ into

Kγ = KBx = B({Kxd}) + B(Kxint) = B(Kxint) + δ = δ +
d
∑

i=0

ΛiBi

for some Λ ∈ Z
B
≥0.
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The following lemma gives a correlation between the level of some point Kx and the number
of jumps.

Lemma 2. Let J be the number of jumps at K, then

Level(Kx) = Level((K − 1)x) + 1 − J.

Proof. For every component i of Kx which jumps, we obtain that {Kxi} = {(K − 1)xi + xi} =
{(K − 1)xi} + xi − 1. Hence

Level(Kx) =
d
∑

i=0

{Kxi}

=
∑

i jumps at K

({(K − 1)xi} + xi − 1) +
∑

i does not jump at K

({(K − 1)xi} + xi)

=
d
∑

i=0

{(K − 1)xi} +
d
∑

i=0

xi − J = Level((K − 1)x) + 1 − J.

Theorem 7. Given x ∈ [0, 1)d+1 with Level(x) =
∑d

i=0 xi = 1. Then there is a K ∈ N>1 with

K ≤ 22O(d)
such that Level(Kx) =

∑d
i=0{Kxi} = 1.

Proof. We suppose that 1
2 > x0 ≥ x1 ≥ . . . ≥ xd. In the case that x0 ≥ 1

2 we obtain that
Level(2x) ≤ 1 and are done. Let d̄ ≤ d be the smallest index such that

d
∑

i=d̄+1

xi <
1

X(d̄)
xd̄,

where X(d̄) =
∏d̄

i=0 pi and pi = ⌈ 1
xi

⌉. Intuitively, d̄ is chosen such that there is a major jump

from xd̄ to xd̄+1, i.e. xd̄ >> xd̄+1. Note that the above equation is always fulfilled for d̄ = d

and since 1
X(d̄)

xd̄ < xd̄ < 1/2 we have that d̄ ≥ 1. First, we prove the following lemma to give

bounds for X(d̄) and xd̄

Lemma 3. Assuming for every 0 ≤ j ≤ d̄ that
∑d

i=j+1 xi ≥ 1
X(j)xj , then the following parame-

ters can be bounded by

• X(d̄) ≤ 22O(d)
and

• component xd̄ ≥ 1

22Ω(d) .

Proof. For j = 0 we know that x0 ≥ 1
d+1 as x0 is the largest component. This implies also that

X(0) ≤ d + 1. We suppose by induction that for every j ≤ d̄,

xj ≥ (2j22j

· d22j

)−1

and

X(j) ≤ (2j22j+1
· d22j+1

).

Since j ≤ d̄ we obtain that
∑d

i=j+1 xi ≥ 1
X(j)xj and since the coefficients are sorted in non-

increasing order we get dxj+1 ≥ 1
X(j)xj. Using the induction hypothesis this gives

xj+1 ≥ (2j22j+1
d22j+1

)−1 · (2j22j

d22j

)−1 · d−1

≥ (2j22j+1+j22j

· d22j+22j+1+1)−1

> (22·j22j+1
· d2·22j+1

)−1

= (2j22(j+1)
· d22(j+1)

)−1

6



Product X(j + 1) can be bounded as follows:

X(j + 1) = ⌈
1

xj+1
⌉X(j) ≤ (

1

xj+1
+ 1)X(j)

≤ (2(j+1)22(j+1)
d22(j+1)

+ 1) · 2j22j+1
d22j+1

< 2(j+1)22(j+1)+1d22(j+1)
· 2j22j+1

d22j+1

= 2(j+1)22(j+1)+1+j22j+1
· d22(j+1)+22j+1

< 22·(j+1)22(j+1)
· d2·22(j+1)

= 2·(j+1)22(j+1)+1
· d22(j+1)+1

As a result we obtain that X(d̄) ≤ (2d̄22d̄+1
·d22d̄+1

) = 22O(d)
and xd̄ ≥ (2d̄22d̄

·d22d̄
)−1 = 1

22Ω(d) .

Let X = X(d̄), for each component 0 ≤ i ≤ d, we define the distance Di(K) of a multiplicity
K by Di(K) = j, where j ≥ 0 is the smallest integer such that component i jumps at K + j.
Note that Di(K) is bounded by pi as pixi ≥ 1. We say Kx ≡ K ′x if for every 0 ≤ i ≤ d̄
the distance Di(K) = Di(K

′). Consider elements x, 2x, . . . , (X + 1)x. Since the number of

equivalence classes is bounded by X =
∏d̄

i=1 pi, there exist two elements Kx, (K + Z)x with
K, Z ∈ Z≥1 and K, (K +Z) ≤ X +1 such that Kx ≡ (K +Z)x. We will see that the equivalence
of two multiplicities implies the existence of a multiplicity M > 1 with Level(Mx) = 1.

First, we argue about the level of multiplicity Z −1. Note that since
∑d

i=0 xi = 1 we have that
Level(Kx) =

∑d
i=0{Kxi} for every multiplicity K ∈ Z≥1. The case that Level((Z −1)x) ≥ d̄+2

is not possible since

Level((Z − 1)x) =
d
∑

i=0

{(Z − 1)xi} ≤ d̄ + 1 + (Z − 1)
d
∑

i=d̄+1

xi ≤ d̄ + 1 + (X − 1)
d
∑

i=d̄+1

xi

≤ d̄ + 1 +
X − 1

X
xd̄ < d̄ + 2.

Case (1). Suppose Level((Z − 1)x) = d̄ + 1 (for Z ≥ 2).

Case (1a). Suppose {(Z − 1)xi} ≥ 1 − xi for all i = 0, 1, . . . , d̄.

In this case every component 0 ≤ i ≤ d̄ jumps at Z. By Lemma 2, we can bound the level of
Zx by Level(Zx) ≤ Level((Z − 1)x) + 1 − (d̄ + 1) = 1.

Case (1b). There is an 0 ≤ i ≤ d̄ such that {(Z − 1)xi} < 1 − xi.

In this case
∑d̄

i=0{(Z − 1)xi} ≤ d̄ + 1 − xi ≤ d̄ + 1 − xd̄ and we obtain

Level((Z − 1)x) =
d
∑

i=0

{(Z − 1)xi} < d̄ + 1 − xd̄ +
d
∑

i=d̄+1

(Z − 1)xi ≤ d̄ + 1 − xd̄ +
1

X
xd̄ < d̄ + 1

which contradicts the assumption of Case 1.

Case (2). Suppose Level((Z − 1)x) ≤ d̄.

Since K ≡ K +Z we know that every component i jumps at K +Di and K +Z +Di, hence for
every 0 ≤ i ≤ d̄ we obtain {(K +Di)xi} < xi and {(K +Z +Di)xi} < xi. Let {(K +Di)xi} = α1

and {(K + Z + Di)xi} = α2 for some α1, α2 < xi. Then {Zxi} = {α2 − α1} and hence {Zxi} =
α2 − α1 if α1 ≤ α2 and {Zxi} = 1 + α2 − α1 if α1 > α2. Since α1, α2 < xi we have {Zxi} < xi

or {Zxi} ≥ 1 − xi. Hence every component 0 ≤ i ≤ d̄ jumps at Zxi or at (Z + 1)xi. We obtain
by Lemma 2 that Level((Z + 1)x) ≤ Level((Z − 1)x) + 2 − (d̄ + 1) ≤ d̄ + 2 − (d̄ + 1) = 1.
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Proof of the main Theorem 3

Consider the vector b ∈ int.cone(S ∩ Z
d). Let λ ∈ Z

S∩Zd
be the integral vector with b =

∑

s∈S∩Zd λss.

Assume there is a component γ ∈ (S ∩ Z
d) \ B with high multiplicity i.e. λγ = 22Ω(d)

. Since
γ ∈ S, there is a x ∈ R

d+1
≥0 with

∑d
i=0 xi = 1 and γ = x0B0 + x1B1 + . . . xdBd. By Theorem 7

there exists a multiplicity K = 22O(d)
> 1 such that Level(Kx) = 1. According to Lemma 1,

there exists a δ ∈ S ∩ Z
d
≥0 such that Kγ = δ +

∑d
i=0 ΛiBi for some Λ ∈ Z

d+1
≥0 . Then we can

construct a λ′ ∈ Z
d+1
≥0 with b =

∑

s∈S∩Zd λ′
pp, which has more weight in B as K > 1:

λ′ =



























λγ − K

λδ + 1

λBi
+ Λi ∀Bi ∈ B

λs ∀s ∈ (S ∩ Z
d) \ (B ∪ {γ, δ})

Since K > 1, the resulting vector λ′ has a decreased vertex distance as the sum
∑

p∈(P∩Zd)\VI
λp

is reduced at least by 1. Using Theorem 1 applied to components i ∈ (S ∩ Z
d) \ B, we can

construct a λ′′ with |supp(λ′′ \ B)| ≤ 2d. In the case that there is another component γ ∈

(S ∩Z
d) \ B with multiplicity λ′′

γ = 22Ω(d)
we can iterate this process. In the other case, solution

λ′′ fulfills the proposed properties.

Proof of the structure Theorem 5

Proof. Given polytope P = {x ∈ R
d | Ax ≤ c} for some matrix A ∈ Z

m×d and a vector c ∈ Z
d

and let PI be the integer polytope with vertices VI . The structure theorem follows easily by
decomposing the polytope P into simplices S of the form S = Conv(B0, B1, . . . Bd) for Bi ∈ Vi.

By Caratheodory’s Theorem, there exist for each γ ∈ P vertices B0, B1, . . . , Bd ∈ VI and a x ∈
R

d+1
≥0 with

∑d
i=0 xi = 1 such that γ = x0B0+. . .+xdBd. Consider the vector b ∈ int.cone(P∩Z

d).

Let λ ∈ Z
P∩Zd

be the integral vector with b =
∑

p∈P∩Zd λpp. By Theorem 1, we can assume

that supp(λ) ≤ 2d and hence there are at most 2d simplices S(k) = Conv(B1
0 , B

(k)
1 , . . . B

(k)
d )

for k = 1, . . . , 2d which contain a point γ ∈ P with λγ > 0. Finally, we can apply our main

Theorem 3 to every simplex S(k) for k = 1, . . . , 2d to obtain a vector λ′ ∈ Z
P∩Zd

≥0 which fulfills
the above properties.

2.1 Algorithmic application

Computing VI in fpt-time

Given Polytope P = {x ∈ R
d | Ax ≤ c} for some matrix A ∈ Z

m×d and a vector c ∈ Z
d

such that all coefficients of A and c are bounded by ∆. Cook et al. [CHKM92] proved that
the number of vertices VI of the integer polytope PI is bounded by md · O((log ∆))d. In the
following we give a brief description on how the set of vertices VI can be computed in time
|VI | · dO(d) · (m log(∆))O(1) and therefore in fpt-time parameterized by the number of vertices
|VI |. For a detailed description of the algorithm we refer to the thesis of Hartmann [Har89].

Given at timestep t a set of vertices Vt ⊂ VI and the set of facets F (t) = {F1, . . . , Fℓ} of
conv(Vt) corresponding to half-spaces Hi = {x | nix ≤ ci} for normal vectors n1, . . . , nℓ ∈ R

d

and constants c1, . . . , cd ∈ Z with conv(V ) = ∩ℓ
i=1Hi. Consider for every 1 ≤ i ≤ ℓ the polytope

P ∩ H−
i for a halfspace H−

i = {x | x ∈ P, nix ≥ ci}. Compute with Lenstra’s algorithm [LJ83]
a solution x∗ ∈ P ∩Z

d of the ILP max{nix | x ∈ (P ∩Z
d), nix ≥ ci}. In the case that nix

∗ > ci,
solution x∗ does not belong to Conv(Vt). Assuming that x∗ is a vertex of the integer polytope
of P ∩ H−

i , solution x∗ is also a vertex of the integer polytope PI . We can add x∗ to the set
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of existing vertices Vt ⊂ VI , construct the increased set of facets F (t+1) of Conv(Vt ∪ {x∗}) and
iterate the procedure. In the case that there is no solution x∗ with nix

∗ > ci for any 1 ≤ i ≤ ℓ,
we have that PI = Conv(Vt) and are done.

Bin Packing in fpt-time

In the following we describe the algorithmic use of the presented structure theorem 5. Therefore,
we follow the approach by Goemans and Rothvoß [GR14].

Theorem 8. Given polytopes P, Q ⊂ R
d, one can find a y ∈ int.cone(P ∩ Z

d) ∩ Q and

a vector λ ∈ Z
P∩Zd

≥0 such that b =
∑

pP∩Zd λpp in time |VI |2
O(d)

enc(P)O(1)enc(Q)O(1), where
enc(P), enc(Q) is the encoding length of the polytope P, Q or decide that no such y exists.

Proof. Let P = {x ∈ R
d | Ax ≤ c} and Q = {x ∈ R

d | Ãx ≤ c̃} be the given polytopes

for a matrix A ∈ Z
m×d and a matrix Ã ∈ Z

m̃×d̃. First, we compute the set of vertices of
PI in time |VI |2

O(d)
enc(P)O(1)enc(Q)O(1) as described above. Suppose that there is a vector

b ∈ int.cone(P ∩ Z
d) ∩ Q, then by Theorem 5, we know there is a vector λ ∈ Z

P∩Z
d

≥0 with
b =

∑

p∈P∩Zd λss such that

1. λp ≤ 22O(d)
∀p ∈ (P ∩ Z

d) \ VI ,

2. |supp(λ) ∩ VI | ≤ d · 2d,

3. |supp(λ) \ VI | ≤ 22d.

At the expense of a factor
(|VI |

d2d

)

= |VI |2
O(d)

we can guess the support Vλ ⊆ VI of λ restricted to

components λp with p ∈ VI i.e. Vλ = supp(λ)∩VI . For each p ∈ Vλ we use variables λ̄p ∈ Z≥0 to
determine the multiplicities of λp. Furthermore, we guess the number of different points p 6∈ Vi

used in λ i.e. k = |supp(λ) \ VI | ≤ 22d. We use variables x
(j)
i for j = 1, . . . , k to determine

the points p 6∈ VI and their multiplicity λp. Note that in the following ILP, we encode the

multiplicity of a λp with p 6∈ VI binary, therefore the number of variables x
(j)
i can be bounded

by 22d · log(22O(d)
) = 2O(d). And finally we use a vector y ∈ Z

d to denote the target vector in
polytope Q.

Ax
(j)
i ≤ b ∀i = 1, . . . , 2O(d) and ∀j = 1, . . . , k

∑

p∈Vλ

λ̄pp +
k
∑

j=1

2O(d)
∑

i=1

2jx
(j)
i = y

Ãy ≤ b̃

xi ∈ Z
d i = 1, . . . , k

λ̄p ∈ Z≥0 ∀p ∈ Vλ

y ∈ Z
d

Using the algorithm of Lenstra or Kannan ([LJ83],[Kan87]) to solve the above ILP which
has k2O(d) + d + d2d = 2O(d) variables and mk + d + m̃ + d|Vλ| = m2O(d) + m̃ constraints,

takes time (2O(d))2O(d)
· (m2O(d) + m̃)O(1) log(∆̄)O(1) = 22O(d)

enc(P)O(1)enc(Q)O(1), where ∆̄ =

max{22O(d)
, d!∆d, ∆̃}. The total running time is hence of the form: |VI |2

O(d)
enc(P)O(1)enc(Q)O(1)

We can apply this theorem to the bin packing problem by choosing P = {

(

x
1

)

∈ R
d+1
≥0 |

sT x ≤ 1} and Q = {b} × [0, a] to decide if items b can be packed into at most a bins. Using
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binary search, on the number of used bins, we can solve the bin packing problem in time
|VI |2

O(d)
· log(∆)O(1), where ∆ is the largest multiplicity of item sizes or the largest denominator

appearing in an itemsize s1, . . . , sd. Since |VI | ≥ d+1 this running time is fpt-time, parametrized
by the number of vertices |VI | and therefore we obtain Theorem 6.

3 Lower Bound

In this section we give a construction of a bin packing instance (s, b) with vertex distance

Dist(b) = 22Ω(d)
. We consider the case that all item sizes s1, . . . , sd are of the form si = 1

ai

for some ai ∈ Z≥1. In this case, all vertices of the knapsack polytope P = {x ∈ R≥0 |
s1x1 + . . . + sdxd ≤ 1} are of the form Bi = (0, . . . , 0, ai, 0, . . . , 0)T and therefore integral. We
obtain that PI = P = Conv(0, B1, . . . , Bd).

Our approach for the proof of the lower bound is as follows: We prove the existence of a
parallelepipped Π = {x1B1 + . . . + xdBd | xi ∈ [0, 1]} with a special element g ∈ (P ∩ Z

d) \ VI

such that the unique optimal packing of the bin packing instance K · g (for a possibly large
multiplicity K ∈ Z≥0) is to use K times the configuration g. In this case, weight can not
be shifted to the vertices B1, . . . , Bd and hence the instance Kg implies a vertex distance of
Dist(Kg) = K. We show that the special element g can be determined by a set of modulo
congruences. Therefore, we are able to use basic number theory to construct a bin packing
instance with double exponential vertex distance.

First, we take a close look at the parallelepipped Π and Cone(B). Recall that two points
b, b′ ∈ Cone(B) are equivalent if [b] = [b′]. Each point b ∈ Cone(B) is equivalent to a point in
the parallelepiped Π.

Lemma 4. Using operation + defined by p + p′ = [p + p′] for some p, p′ ∈ Π ∩ Z
d then

G(Π) = (Π ∩ Z
d, +) is an abelian group with |G(Π)| = |det(B)| many elements.

The proof that G(Π) is a group can be easily seen, since G(Π) is the quotient group of Z
d

and the lattice ZB1 ⊕ . . . ⊕ ZBd. For the fact that |G(Π)| = det(B) we refer to [Bar07]. In the
considered case that Bi = (0, . . . , 0, ai, 0, . . . , 0)T , the group G(Π) is isomorphic to (Z/a1Z) ×
. . . × (Z/adZ). Recall that the set P ∩Z

d ⊂ Π∩Z
d represents all integral points of the knapsack

polytope and each δ ∈ P ∩Z
d therefore represents a way of packing a bin with items from sizes

s1, . . . , sd. We call δ ∈ P ∩ Z
d a configuration.

In the following subsection 3.3, we also give an easy observation on how the vertex distance
is connected to the integrality gap of the bin packing problem.

3.1 Preliminaries

In this section we state some basic number theoretic theorems that we will use in the following.
For details and proofs, we refer to the books of Stark [Sta70] and Graham, Knuth and Patashnik
[GKP94].

Theorem 9 ([Sta70]). Let a1, . . . ad ∈ Z with gcd(a1, . . . , ad) = 1, then there exist v1, . . . , vd ∈ Z

such that

a1v1 + . . . advd = 1.

Theorem 10 (Chinese remainder theorem [Sta70]). Suppose a1, . . . , ad ∈ Z are pairwise co-
prime. Then, for any given sequence of integers i1, . . . , id, there exists an integer x solving the
following system of simultaneous congruences.

x ≡ ij mod aj for 1 ≤ j ≤ d.

Furthermore, x is unique mod
∏d

i=1 ai.
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Theorem 11 ([Sta70]). Given congruence x mod a. If x and a are coprime, there exists an
inverse element x−1 ∈ Z/aZ such that xx−1 ≡ 1 mod a.

Sylvester’s sequence is defined by,

S1 = 2

Sj = 1 +
j−1
∏

i=1

Si

and has following properties (see [GKP94])

Sn ≈ 1.2642n

j−1
∑

i=1

1

Si
= 1 −

1

Sj − 1

3.2 Proof of the lower bound

We start by defining the size of an element π ∈ Π by

Size(π) =
d
∑

i=1

siπi.

In our case, the sizes si are given by si = 1
ai

and vectors Bi = (0, . . . , 0, ai, 0, . . . , 0)T for some

ai ∈ Z≥1. Hence, the size of a Bi equals to 1 and for each x ∈ [0, 1)d with Bx = π, we have that
∑d

i=1 xi = Size(π). Since the matrix B is a diagonal matrix with entries ai, the determinant
equals det(B) =

∏d
i=1 ai. We define for 1 ≤ i ≤ d that

Ri =
det(B)

ai
=
∏

j 6=i

aj.

In the following lemma we show that the fractional value of the size {Size(Π)} is unique for
every element π ∈ G(Π).

Lemma 5. Given parallelepiped Π = {x1B1+. . .+xdBd | xi ∈ [0, 1)d} with Bi = (0, . . . , 0, ai, 0, . . . , 0)T .
If a1, . . . , ad are pairwise coprime, then for every 0 ≤ a < det(B), there exists a unique vector
π ∈ Π ∩ Z

d and a vector x ∈ [0, 1)d with Bx = π, such that

Size(π) =
d
∑

i=1

xi = z + a/det(B),

for some z ∈ Z≥0.

Proof. Since a1 . . . , ad are pairwise coprime, we have that gcd(Ri, Ri+1) =
∏

j 6=i,i+1 aj and
hence gcd(R1, . . . , Rd) = 1. By Theorem 9, there exist v1, . . . , vd ∈ Z such that v1R1 + . . . +
vdRd = 1. For v′

i = viRi mod det(B) the sum
∑d

i=1 v′
i ≡ 1 mod det(B). Consider the vector

x = (
v′

1
det(B) , . . . ,

v′

d

det(B) )T , then
∑d

i=1 xi =
∑d

i=1
v′

i

det(B) = 1
det(B) + z for some z ∈ Z≥0. The vector

Bx =
v′

1
det(B) B1 + . . . +

v′

d

det(B) Bd is integral since for every 1 ≤ i ≤ d the congruence v′
iai ≡

viRiai ≡ videt(B) ≡ 0 mod det(B) holds and hence each item sizes aixi = πi =
v′

i

det(B) ai ∈ Z≥0.

Consider multiplicities x, 2x, 3x, . . .. As above we can rewrite each element Kx ∈ R
d
≥0 by

Kx = Kxint + {Kx} with {Kx} = ({Kx1}, . . . , {Kxd})T and {Kxi} < 1, which implies
that B({Kx}) ∈ Π. Since B(Kx) is integral and B(Kxint) is integral, the vector B({Kx})
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is integral as well. Furthermore, the sum of all component {Kx} sums up to
∑d

i=1{Kxi} =
K
∑d

i=1 xi −
∑d

i=1⌊Kxi⌋ = K
det(B) + z, for some z ∈ Z≥0. Hence for each multiplicity Kx in

0x, x, 2x, . . . , (det(B)−1)x there is a vector B({Kx}) ∈ Π with
∑d

i=1{Kxi} = z+ K
det(B) and since

Π contains exactly det(B) many elements (see Lemma 4), each element of G(Π) corresponds to
a unique element of 0x, x, 2x, . . . , (det(B) − 1)x.

Consider the specific element g ∈ Π ∩ Z
d with fractional vector x ∈ [0, 1)d such that Bx = g

and Size(g) = det(B)−1
det(B) + z. We call g the full generator of the group G(Π).

Corollary 1. For every element π ∈ G(Π) there exists a multiplicity K such that Kg = π, i.e.
the full generator g generates the group Π and hence G(Π) =< g > is a cyclic group. Element

Kg ∈ Π has a size of z + det(B)−K
det(B) for some z ∈ Z≥0.

Proof. In the proof of the lemma above, we showed that the element Bx with
∑d

i=1 xi = z+ 1
det(B)

generates G(Π) as each multiplicity Kx of x yields an element B({Kx}) ∈ G(Π) of size z+ K
det(B) .

We consider the full generator g with g = Bx′ for some x′ with
∑d

i=1 x′
i = z + det(B)−1

det(B) for

some z ∈ Z≥0. By the same argument as before, the multiplicities Kx′ yield elements π′ =

B({Kx′}) ∈ G(Π) with Size(π′) = z + det(B)−K
det(B) for some z ∈ Z≥0.

As above, we consider multiplicities Kg of a vector g ∈ Π and some K > 0. We say that
Kg ∈ cone(B) is unique if g ∈ P and 2g, . . . , Kg 6∈ P i.e. g is a configuration and 2g, . . . , Kg
are not. In the following lemma we prove that if Kg is unique and g is a full generator, then
using K-times configuration g is the unique optimal packing for instance Kg.

Lemma 6. Let g be the full generator of G(Π). If Kg ∈ cone(B) is unique, then there is no

λ ∈ Z
(P∩Zd)
≥0 with λg 6= K such that

∑

p∈P∩Zd λpp = Kg and |λ| = K.

Proof. Consider bin packing instance Kg ∈ cone(B) and a packing of the instance into bins

1, . . . , K. Since g contains items of size det(B)−1
det(B) , items in instance Kg have a total size of

K det(B)−1
det(B) and therefore, the bins 1, . . . , K have total free space of K

det(B) . Each bin configuration

c1, . . . , cK of bins 1, . . . , K belongs to P and hence to Π(G). By Cororllary 1 for each ci there
exists a multiplicity Ki ∈ Z≥1 such that Kig = ci. Assuming that ci 6= g and hence Ki > 1
we know that Ki > K as by definition of the uniqueness of Kg, elements 2g, . . . , Kg are no
configurations. However, a bin with configuration Kig = ci ∈ P with Ki > K has free space

K ′

det(B) > K
det(B) and hence more free space than the total sum of free space in bins 1, . . . , K.

Therefore, a configuration 6= g can not appear in an optimal packing of the instance Kg. The
unique way of packing instance Kg into K bins is to use K times configuration g.

Consider the full generator g = x1B1 + . . . + xdBd ∈ P with xi ≥ 0, we say g has the long-run
property if (1 − ǫ) 1

Si
≤ xi < 1

Si
for 1 ≤ i ≤ d − 1 and some ǫ < ( 1

Sd−1 )2, where Si is the i-th
sylvester number. The following inequality gives a lower bound for ‖x‖1:

d−1
∑

i=1

xi ≥ (1 − ǫ)
d−1
∑

i=1

1

Si
= (1 − ǫ)(1 −

1

Sd − 1
) = 1 − ǫ −

1 − ǫ

Sd − 1

> 1 −
1

(Sd − 1)2
−

1

Sd − 1
= 1 −

1

(Sd − 1)2
+

1

(Sd − 1)(Sd − 2)
−

1

Sd − 2
> 1 −

1

Sd − 2

If g is a configuration and hence ‖x‖1 ≤ 1, we can bound xd from above by

xd ≤ 1 −
d−1
∑

i=1

xi <
1

Sd − 2

Recall that the following statements are equivalent:
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• {Kg} ∈ G(Π) is a configuration i.e. Kg ∈ P

• Level(Kx) = 1

Lemma 7. If g is a configuration and g has the long run property, then (Sd − 2)g is unique for
d ≥ 3.

Proof. Let x ∈ [0, 1]d+1 such that x00 + x1B1 + . . . + xdBd = g with
∑d

i=0 xi = 1. We consider
the level Level(Kx) of multiplicities of x. Recall that Level(Kx) = 1 if and only if {Kg} ∈ Π is
a configuration. Hence, it remains to prove that that Level(Kx) > 1 for every 1 < K ≤ Sd − 2.

By Lemma 2 we know that level Level(Kx) = Level((K − 1)x) − JK + 1, where JK is the
number of jumps at K. This implies by induction that Level(Kx) = K −J , where J is the total
sum of all jumps in 2x, . . . , Kx. Using that

∑d−1
i=1 xi > 1 − 1

Sd−2 , we obtain that x0, xd < 1
Sd−2

and hence Kx0, Kxd < 1 for K ≤ Sd − 2. This means that component 0 and component d do
not jump in 2x, . . . , (Sd − 2)x.

Observation 3. For every 1 ≤ i ≤ d − 1, component i jumps at 1 + Si, 1 + 2Si, 1 + 3Si, . . . , 1 +
⌊Sd−2

Si
⌋Si.

Since (1− ǫ) 1
Si

≤ xi < 1
Si

for 1 ≤ i < d we know on the one hand that MSixi < M and on the

other hand (1 + MSi)xi ≥ (1 − ǫ)( 1
Si

+ M) > M as ǫ( 1
Si

+ M) ≤ ǫ(1+(Sd−2)
Si

) < Sd−1
(Sd−1)2

1
Si

< 1
Si

for i ≤ d−1 and M ≤ Sd−2
Si

. Hence component i jumps at 1+Si from 0 to 1 and at 1+2Si from
1 to 2 and so on. The total number of jumps JK(i) in component i can therefore be bounded
by 1 + JK(i)Si ≤ K and hence JK(i) ≤ ⌊K−1

Si
⌋.

The total number of jumps J up to K ≤ Sd − 2 in components 0, . . . , d sums up to

J =
d
∑

i=0

⌊
K − 1

Si
⌋ =

d−1
∑

i=1

⌊
K − 1

Si
⌋ ≤ ⌊(K − 1)

d−1
∑

i=1

1

Si
⌋

Since
∑d−1

i=1
1
Si

= 1 − 1
Sd−1 we obtain for K ≤ Sd − 2

J ≤ ⌊(K − 1)
d−1
∑

i=1

1

Si
⌋ = ⌊(K − 1)(1 −

1

Sd − 1
)⌋ ≤ K − 2

which implies that Level(Kx) = K − J ≥ K − (K − 2) = 2 and therefore {Kg} 6∈ P for
K = 2, . . . , Sd − 2.

Lemma 8. An element g ∈ G(Π) is a full generator if and only if for all 1 ≤ i ≤ d

gi ≡ −R−1
i mod ai.

Proof. Consider the full generator g of a group G(Π). By definition of the full generator, we
obtain that there exists a z ∈ Z≥0 such that

Size(g) =
d
∑

i=1

sigi =
d
∑

i=1

gi

ai
= z +

det(B) − 1

det(B)

and hence

det(B) − 1 + z · det(B) = det(B)
d
∑

i=1

gi

ai
=

d
∑

i=1

Rigi
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By definition of the modulo operation this equation is equivalent to

d
∑

i=1

Rigi ≡ det(B) − 1 mod (det(B)). (1)

As det(B) − 1 ≡ −1 mod ai for each 1 ≤ i ≤ d, we obtain by the Chinese remainder Theorem
10 (assuming that all ai’s are coprime), that congruence (1) is equivalent to the following system
of congruences:

d
∑

i=1

Rigi ≡ −1 mod ai for 1 ≤ i ≤ d

As Ri ≡ 0 mod aj for any i 6= j, we obtain that
∑d

i=1 Rigi ≡ Rjgj mod aj and hence

gi ≡ −R−1
i mod ai.

Sylvester’s sequence Si grows double exponentially by approximately Si ≈ 1.2642i
and there-

fore Si = 22Ω(i)
. It remains to prove the existence of sizes s1, . . . , sd with group G(Π) such that

the full generator of G(Π) has the long-run property. The following theorem concludes the proof
of a double exponential lower bound.

Theorem 4. There exists a bin packing instance with sizes 1
a1

, . . . , 1
ad

for ai ∈ Z≥1 and multi-

plicities b ∈ Z
d
≥0 corresponding to a point b ∈ int.cone(P ∩Z

d), where P is the knapsack polytope
such that

Dist(b) ≥ Sd − 2 = 22Ω(d)

Proof. Given parallelepiped Π = {x1B1 + . . . + xdBd | xi ∈ [0, 1)} with configurations Bi =
(0, . . . , 0, ai, 0, . . . , 0)T . Assume there are sizes si such that group G(Π) with full generator

g ∈ P has the long-run property. Then K times configuration

(

1
g

)

is by Lemma 6 the unique

representation of the vector b =

(

K
Kg

)

∈ int.cone(P ′ ∩Z
d) where P ′ = Conv(B′

0, . . . , B′
d) with

B′
0 = (1, 0, . . . , 0)T and B′

i =

(

1
Bi

)

. According to Lemma 7 this implies a vertex distance of

Dist(b) = Sd − 2 = 22Ω(d)
. Therefore, it remains to prove the existence of sizes s1, . . . , sd with

group G(Π) such that the full generator g of G(Π) has the long-run property. In the following
we give an inductive construction of the sizes si = 1

ai
:

First, choose a1 arbitrarily such that there is an m1 with (1 − ǫ) 1
S1

≤ m1
a1

< 1
S1

. This is

possible for every a1 > S1
ǫ that is not a multiple of S1 = 2. In this case m1 can be chosen

by m1 = ⌊ a1
S1

⌋ and we obtain ⌊a1/S1⌋
a1

< 1
S1

and ⌊a1/S1⌋
a1

≥ (a1/S1)−1
a1

≥ 1
S1

− 1
a1S1

≥ (1 − ǫ)S1.
Additionally, we assume w.l.o.g. that m1 and a1 are coprime.

For 1 ≤ i < d choose ai+1 such that there exists an mi+1 with (1− ǫ) 1
Si+1

≤ mi+1

ai+1
< 1

Si+1
. The

existence of the mi+1 can be shown for any ai+1 > Si+1

ǫ that is not a multiple of Si+1 by the
same argument as above for m1. Additionally we choose ai+1 such that the following conditions
hold:

ai+1 ≡ (
i−1
∏

j=1

aj)−1 · (−mi)
−1 mod ai (2)
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ai+1 ≡ 1 mod aj for j = 1, . . . , i − 1 (3)

Remark the following points, where we use the fact that gcd(a, b) = gcd(a mod b, b) for numbers
a, b ∈ Z.

• The inverse element of
∏i−1

j=1 aj and −mi in Z/aiZ exists since a1, . . . aj are coprime to ai

and mi is coprime to ai (see Theorem 11),

• since a1, . . . ai are coprime, by the chinese remainder theorem 10, there exists a unique
element ai+1 mod (

∏i
j=1 aj) satisfying the above inequalities,

• condition (2) implies that ai+1 is coprime to ai as mi is coprime to ai and
∏i−1

j=1 aj is
coprime to ai (coprimeness carries over to the inverse),

• condition (3) implies that ai+1 is coprime to a1, . . . , ai−1.

Claim (1). The full generator g of the constructed group G(Π) has the long-run property.

To prove that g = x1B1 + . . . + xdBd has the long-run property, we show for all 1 ≤ i < d
that 1

Si
(1 − ǫ) ≤ gi

ai
< 1

Si
. By Lemma 8

gi ≡ −R−1
i mod ai

By construction of the ai we obtain for g1, . . . , gd−1 the following congruences mod aj:

gi ≡ −





i−1
∏

j=1

aj ·
d
∏

j=i+1

aj





−1
(2)
≡ −





i−1
∏

j=1

aj · ai+1





−1
(3)
≡ −



(
i−1
∏

j=1

aj) · (
i−1
∏

j=1

aj)−1 · (−mi)
−1





−1

≡ mi mod ai

Since for every δ ∈ Π we have that δi < ai, we know gi = mi. By definition of mi we obtain
(1 − ǫ) 1

Si
≤ xi = mi

ai
< 1

Si
, which proves Claim 1.

Claim (2). The full generator g is a configuration.

Suppose Level(x) > 1, then we know by Lemma 5 that
∑d

i=1 xi = z + det(B)−1
det(B) for some

z ∈ Z≥1.

d
∑

i=1

xi <
d−1
∑

i=1

1

Si
+ xd = (1 −

1

Sd − 1
) + xd < (1 −

1

Sd − 1
) + 1

Since xi = gi

ai
< 1

Si
for 1 ≤ i < d, we know that ai ≥ Si + 1 and hence det(B) >

∏d−1
i=1 ai >

∏d−1
i=1 (Si + 1) > Sd − 1 which implies:

d
∑

i=1

xi < (1 −
1

det(B)
) + 1 = 1 +

det(B) − 1

det(B)

This is a contradiction to Level(x) > 1.
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3.3 Relation between Dist and the IRUP

In this section we study briefly the connection between the vertex distance and the modified
integer roundup property (MIRUP) which is defined in the following. Let P = {x ∈ R

d
≥0 |

sT x ≤ 1} be the knapsack polytope for given sizes s1, . . . sd ∈ (0, 1]. For given multiplicities
a1, . . . , ad, a packing of the items into a minimum number of bins is given by a solution of the
following ILP:

min{‖λ‖1 |
∑

p∈P∩Zd

λpp = b, λ ∈ Z
d
≥0}. (4)

The relaxed linear program (LP) is defined by

min{‖λ‖1 |
∑

p∈P∩Zd

λpp = b, λ ∈ R
d
≥0}. (5)

Let λ∗ be an optimal solution of the ILP (4) and let λf be an optimal solution of the relaxed
linear program (5), then the integrality gap of an instance (s, b) is defined by:

‖λ‖1 −
∥

∥

∥λf
∥

∥

∥

1

A well known conjecture by Scheithauer and Terno [ST97] concerning the integrality gap for

bin packing instance is that for any instance I, we have that ‖λ∗‖1 ≤ ⌈
∥

∥

∥λf
∥

∥

∥

1
⌉ + 1 which is the

so called modified integer roundup property (MIRUP). The integer roundup property (IRUP)

is fulfilled if ‖λ∗‖1 ≤ ⌈
∥

∥

∥λf
∥

∥

∥

1
⌉. In general, bin packing instances where die IRUP is not fulfilled

appear rarely. In the literature those kind of instances are studied and constructions of instances
are given where die IRUP does not hold (see [ST97], [CDDDIR14]). In the following we show
that a bin packing instance with a large vertex distance Dist(b) implies the existence of many
subinstances where the IRUP does not hold. Specifically, we show the following theorem:

Theorem 12. Given a bin packing instance (s, b) corresponding to a vector b ∈ int.cone(P ∩Z
d)

with vertex distance Dist(b) and let λ ∈ Z
P∩Zd

be a solution with
∑

p∈P∩Zd λpp = b and vertex

distance
∑

p∈(P∩Zd)\VI
λp = Dist(b). For every γ ∈ (P ∩ Z

d) \ VI with λγ = d + Z for some
Z ∈ Z≥0, there exist at least Z instances where the IRUP does not hold.

Proof. Given an instance b ∈ int.cone(P ∩ Z
d) with Dist(b). Then there exists an integral

optimal solution λ ∈ Z
P∩Zd

with
∑

p∈P∩Zd λpp = b and
∑

p∈(P∩Zd)\VI
λp = Dist(b). We consider

for a γ ∈ (P ∩Z
d)\VI with λγ = d+Z for some Z ∈ Z≥1 the instances (d+1)γ, . . . , (d+Z)γ. Let

b′ ∈ int.cone(P ∩Z
d) be the vector corresponding to a multiplicity (d+Z ′)γ for a Z ′ ≤ Z. Note

that by definition of b′, we have that Dist(b′) = d+Z ′, as γ is chosen from (P ∩Z
d)\VI and the

existence of a solution λ′′ for b′ with smaller vertex distance would imply a small vertex distance
for b. Since b′ ∈ Cone(P ∩ Z

d), there exist a basic feasible solution λf ∈ R
d
≥0 corresponding to

vectors B1, . . . , Bd ∈ P ∩ Z
d of LP (5) with b′ = λf

1B1 + . . . + λf
dBd and

∥

∥

∥λf
∥

∥

∥

1
≤ d + Z ′. Using

Caratheodory’s theorem, we can assume w.l.o.g. that B1, . . . , Bd are vertices.
Claim: The vector [b′] = {λf

1}B1 + . . .+{λf
d}Bd does not fulfill the integer roundup property.

Suppose the roundup property for [b′] is fulfilled, then there exists a packing of instance [b′] into

⌈
∥

∥

∥{λf }
∥

∥

∥

1
⌉ bins. Using the decomposition of b′ = Bλf int

+ [b′] into an integral part Bλf int
=

⌊λf
1⌋B1+. . .+⌊λf

d⌋Bd and the fractional part [b′], we obtain a packing for b′ into ⌈
∥

∥

∥λf
∥

∥

∥

1
⌉ ≤ d+Z ′

bins (which implies optimality). The constructed packing has vertex distance of ≤ ⌈
∥

∥

∥{λf }
∥

∥

∥

1
⌉.

Since ⌈
∥

∥

∥{λf }
∥

∥

∥

1
⌉ ≤ d < d + Z ′ = Dist(b′), this is a contradiction to the minimality of the vertex

distance for b′.
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Claim: Let vectors b(1), b(2) ∈ int.cone(P ∩ Z
d) be given which correspond to multiplicities

K1γ and K2γ of vector γ ∈ (P ∩ Z
d) \ VI with K1 < K2. Then [b(1)] 6= [b(2)].

By a similar argument as in the previous claim, we can argue in this case. Since b(1), b(2) ∈
Cone(P ∩ Z

d), there exist basic feasible solutions λ(1), λ(2) ∈ R
d
≥0 corresponding to vectors

B1, . . . , Bd ∈ VI of LP (5) with b(i) = λ
(i)
1 B1 + . . . + λ

(i)
d Bd for i = 1, 2 and λ(1) ≤ λ(2)

as K1γ ≤ K2γ. Suppose that [b(1)] = [b(2)], then we obtain for the difference (K2 − K1)γ

corresponding to b(2) −b(1) = Bλ(2)int
+[b(2)]−Bλ(1)int

− [b(1)] = Bλ(2)int
−Bλ(1)int

. Therefore,
the difference b(2) −b(1) can be written by the (positive) sum of vertices B1, . . . , Bd. This implies
a packing for b(2) by b(2) = b(1) + (b(2) − b(1)) with vertex distance Dist(b(1)) < Dist(b(2)) which
contradicts the minimality of vertex distance b(2).

As a conclusion of the above claims, we obtain for each multiplicity (d + 1)γ, . . . , (d + Z)γ of
γ the instances [(d + 1)γ], . . . , [(d + Z)γ] ∈ G(Π), where die IRUP does not hold.

Note that an instance with large vertex distance (e.g. double exponential in d) implies the
existence of solutions with large (double exponential) multiplicities λγ as the number of non-
zero components can be bounded by the theorem of Eisenbrand and Shmonin [ES06] applied
to points in (P ∩ Z

d) \ VI .
Together with the construction of the previous subsection where we created a bin packing

instance b with a unique solution λ ∈ int.cone(P ∩ Z
d) with λγ = 22Ω(d)

for some γ ∈ P ∩ Z
d,

we obtain that b has double exponentially many subinstances where the IRUP is not fulfilled.
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