
ar
X

iv
:1

61
2.

00
72

2v
1 

 [
m

at
h.

PR
] 

 2
 D

ec
 2

01
6

Asymptotic Optimality of Power-of-d Load Balancing

in Large-Scale Systems

Debankur Mukherjee∗1, Sem C. Borst1,2,
Johan S.H. van Leeuwaarden1 , Philip A. Whiting3

1Eindhoven University of Technology, The Netherlands
2Nokia Bell Labs, Murray Hill, NJ, USA

3Macquarie University, North Ryde, NSW, Australia

September 20, 2018

Abstract

We consider a system of N identical server pools and a single dispatcher where

tasks arrive as a Poisson process of rate λ(N). Arriving tasks cannot be queued, and
must immediately be assigned to one of the server pools to start execution, or dis-

carded. The execution times are assumed to be exponentially distributed with unit
mean, and do not depend on the number of other tasks receiving service. However,

the experienced performance (e.g. in terms of received throughput) does degrade

with an increasing number of concurrent tasks at the same server pool. The dis-
patcher therefore aims to evenly distribute the tasks across the various server pools.

Specifically, when a task arrives, the dispatcher assigns it to the server pool with the
minimum number of tasks among d(N) randomly selected server pools. This assign-

ment strategy is called the JSQ(d(N)) scheme, as it resembles the power-of-d version

of the Join-the-Shortest-Queue (JSQ) policy, and will also be referred to as such in the
special case d(N) = N.

We construct a stochastic coupling to bound the difference in the system occu-

pancy processes between the JSQ policy and a scheme with an arbitrary value of d(N).
We use the coupling to derive the fluid limit in case d(N) → ∞ and λ(N)/N → λ as

N → ∞, along with the associated fixed point. The fluid limit turns out to be in-
sensitive to the exact growth rate of d(N), and coincides with that for the JSQ policy.

We further leverage the coupling to establish that the diffusion limit corresponds to

that for the JSQ policy as well, as long as d(N)/
√
N log(N) → ∞, and characterize

the common limiting diffusion process. These results indicate that the JSQ optimality

can be preserved at the fluid-level and diffusion-level while reducing the overhead by
nearly a factor O(N) and O(

√
N/ log(N)), respectively.
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1 Introduction

In the present paper we establish asymptotic optimality for a broad class of randomized

load balancing strategies. While the specific features of load balancing policies may con-

siderably differ, the principal purpose is to distribute service requests or tasks among

servers or distributed resources in parallel-processing systems. Well-designed load bal-

ancing schemes provide an effective mechanism for improving relevant performance met-

rics experienced by users while achieving high resource utilization levels. The analysis

and design of load balancing policies has attracted strong renewed interest in the last sev-

eral years, mainly motivated by significant challenges involved in assigning tasks (e.g. file

transfers, compute jobs, data base look-ups) to servers in large-scale data centers, see for

instance [20].

Load balancing schemes can be broadly categorized as static (open-loop), dynamic

(closed-loop), or some intermediate blend, depending on the amount of real-time feed-

back or state information (e.g. queue lengths or load measurements) that is used in assign-
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ing tasks. Within the category of dynamic policies, one can further distinguish between

push-based and pull-based approaches, depending on whether the initiative resides with

a dispatcher actively collecting feedback from the servers, or with the servers advertiz-

ing their availability or load status. The use of state information naturally allows dy-

namic policies to achieve better performance and greater resource pooling gains, but also

involves higher implementation complexity and potentially substantial communication

overhead. The latter issue is particularly pertinent in large-scale data centers, which de-

ploy thousands of servers and handle massive demands, with service requests coming in

at huge rates.

In the present paper we focus on a basic scenario of N identical parallel server pools

and a single dispatcher where tasks arrive as a Poisson process. Incoming tasks cannot be

queued, and must immediately be dispatched to one of the server pools to start execution,

or discarded. The execution times are assumed to be exponentially distributed, and do not

depend on the number of other tasks receiving service, but the experienced performance

(e.g. in terms of received throughput or packet-level delay) does degrade in a convex

manner with an increasing number of concurrent tasks. These characteristics pertain for

instance to video streaming sessions and various interactive applications. In contrast to

elastic data transfers or computing-intensive jobs, the duration of such sessions is hardly

affected by the number of contending service requests. The perceived performance in

terms of video quality or packet-level latency however strongly varies with the number of

concurrent tasks, creating an incentive to distribute the incoming tasks across the various

server pools as evenly as possible.

Specifically, adopting the usual time scale separation assumption, suppose that the

task-perceived performance at a particular server pool can be described as some function

F(x) of the instantaneous number of concurrent tasks x, and let X = (X1, . . . ,XN), with Xn

the number of active tasks at the nth server pool. Then G(X) =
∑N

n=1 XnF(Xn)/
∑N

n=1 Xn,

provides a proxy for the instantaneous overall system performance. In many situations,

the function G(·) tends to be either Schur-convex of Schur-concave. For example, if F(·)
is convex increasing (for instance average packet-level delay), then G(·) is Schur-convex,

i.e., G(X) 6 G(Y) if X is majorized by Y, i.e., X is ‘more balanced’ than Y with
∑N

n=1 Xn =
∑N

n=1 Yn. Likewise, if F(Xn) = U(1/Xn), with U(·) is concave increasing (for instance

throughput utility), then G(·) is Schur-concave, i.e., G(X) > G(Y) if X is majorized by Y.

The so-called Join-the-Shortest-Queue (JSQ) policy has primarily been considered for

load balancing among parallel single-server queues where it furnishes several strong opti-

mality guarantees [3, 28, 31]. Its fundamental ability of optimally balancing tasks across

parallel resources also translates however into crucial optimality properties with respect

to the performance criterion G(·) in the present context with infinite-server dynamics.

In particular, let XΠ(t) = (XΠ
1 (t), . . . ,XΠ

N(t)), with XΠ
n(t) denoting the number of active

tasks at the nth server pool at time t under a task assignment scheme Π. Then, given

the same initial conditions and in the absence of any blocking,
{
XJSQ(t)

}

t>0
is majorized

by
{
XΠ(t)

}

t>0
for any non-anticipating task assignment scheme Π [12, 13, 22, 23, 24].

Thus G(XJSQ(t)) is either stochastically smaller or larger than G(XΠ(t)) at all times t for

any task assignment scheme Π, depending on whether the function G(·) is Schur-convex

or Schur-concave. In a scenario where each server pool can only accommodate a maxi-

mum of B < ∞ simultaneous tasks, the JSQ policy belongs to the class of policies that
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stochastically minimize the total cumulative number of blocked tasks over any time in-

terval [0, t] [22, 25].

In order to implement the JSQ policy, a dispatcher requires instantaneous knowledge

of the numbers of tasks at all the server pools, which may give rise to a substantial

communication burden, and may not be scalable in scenarios with large numbers of server

pools. The latter issue has motivated consideration of so-called JSQ(d) policies, where

the dispatcher assigns an incoming task to a server pool with the minimum number

of active tasks among d randomly selected server pools. Mean-field limit theorems in

Mitzenmacher [14] and Vvedenskaya et al. [27] indicate that even a value as small as d = 2

yields significant performance improvements in a single-server queueing regime with

N → ∞, in the sense that the tail of the queue length distribution at each individual server

falls off much more rapidly compared to a strictly random assignment policy (d = 1). This

is commonly referred to as the “power-of-two” effect. Work of Turner [26] and recent

papers by Mukhopadhyay et al. [17, 18] and Xie et al. [32] have shown similar power-of-

two properties for loss probabilities in a blocking scenario with infinite-server dynamics

as described above.

As illustrated by the above, the diversity parameter d induces a fundamental trade-off

between the amount of communication overhead and the performance in terms of block-

ing probabilities or throughputs. For example, a strictly random assignment policy can

be implemented with zero overhead, but for any finite buffer capacity B < ∞ the block-

ing probability does not fall to zero as N → ∞. In contrast, a nominal implementation

of the JSQ policy (without maintaining state information at the dispatcher) involves O(N)

overhead per task, but it can be shown that for any subcritical load, the blocking proba-

bility vanishes as N → ∞. As mentioned above, JSQ(d) strategies with a fixed parameter

d > 2 yield significant performance improvements over purely random task assignment

while reducing the overhead by a factor O(N) compared to the JSQ policy. However, the

blocking probability does not vanish in the limit, and in that sense a fixed value of d is

not sufficient to achieve asymptotically optimal performance.

In order to gain further insight in the trade-off between performance and communica-

tion overhead as governed by the diversity parameter d, we also consider a regime where

the number of servers N grows large, but allow the value of d to depend on N, and write

d(N) to explicitly reflect that. For convenience, we assume a Poisson arrival process of

rate λ(N) and unit-mean exponential service requirements.

We construct a stochastic coupling to bound the difference in the system occupancy

processes between the JSQ policy and a scheme with an arbitrary value of d(N). We

exploit the coupling to obtain the fluid limit in case λ(N)/N → λ < B and d(N) → ∞ as

N → ∞, along with the associated fixed point. As it turns out, the fluid limit is insensitive

to the exact growth rate of d(N), and in particular coincides with that for the ordinary

JSQ policy. This implies that the overhead of the JSQ policy can be reduced by almost a

factor O(N) while maintaining fluid-level optimality.

We further consider the diffusion limit of the system occupancy states, and consider

the infinite-server dynamics analog of the Halfin-Whitt regime. We leverage the above-

mentioned coupling to prove that the diffusion limit in case d(N)/(
√
N log(N)) → ∞

corresponds to that for the ordinary JSQ policy, and characterize the common limiting

diffusion process. This indicates that the overhead of the JSQ policy can be reduced by

almost a factor O(
√
N/ log(N)) while retaining diffusion-level optimality.
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The above results mirror fluid-level and diffusion-level optimality properties reported

in the companion paper [16] for the power-of-d(N) strategies in a scenario with single-

server queues. As it turns out, however, the infinite-server dynamics in the present paper

require a fundamentally different coupling argument to establish asymptotic equivalence.

In particular, for the single-server dynamics, first the servers are ordered according to the

number of active tasks, and the departures at the ordered servers under two different

policies are then coupled. In contrast, for the infinite-server dynamics, the departure

rate at the ordered server pools can vary depending on the exact number of active tasks.

Therefore, the departure processes under two different policies cannot be coupled as be-

fore, which necessitates the construction of a novel stochastic coupling. Specifically, one

can think of the coupling for the single-server dynamics as one-dimensional (depending

only upon the ordering of the servers), while the coupling we introduce in this paper is

two-dimensional, with the server ordering as one coordinate and the number of tasks as

the other, as will be explained in greater detail later. We further elaborate on the necessity

and novelty of the coupling methodology developed in the current paper, and reflect on

the contrast with the stochastic optimality results for the JSQ policy in the existing litera-

ture and the coupling technique in [16] in Remarks 4.3 and 4.4. In addition, the fluid- and

diffusion-limit results in the infinite-server scenario are also notably different from those

in [16]. More specifically, we extend the fluid-limit result in [16, Theorem 4.1] to a more

general class of assignment probabilities and departure rate functions, and depending

on whether the scaled arrival rate converges to an integer or not, obtain a qualitatively

different behavior of the occupancy state process on diffusion scale. Furthermore, the dif-

fusion limit result in [16, Theorem 2.4] characterizes the diffusion-scale behavior only in

the transient regime, whereas in the current paper we are able to analyze the steady-state

behavior as well.

The remainder of the paper is organized as follows. In Section 2 we present a de-

tailed model description, and provide an overview of the main results. In Section 3 we

explain the proof outline and introduce a notion of asymptotic equivalence of two assign-

ment schemes. Section 4 introduces a stochastic coupling between any two schemes, and

proves the asymptotic equivalence results. Sections 4–7 contain the proofs of the main

results, and in Section 8 we reflect upon various performance implications. We conclude

in Section 9 with some pointers to open problems and future research.

2 Main Results

2.1 Model description and notation

Consider a system with N parallel identical server pools and a single dispatcher where

tasks arrive as a Poisson process of rate λ(N). Arriving tasks cannot be queued, and

must immediately be assigned to one of the server pools to start execution. The execution

times are assumed to be exponentially distributed with unit mean, and do not depend

on the number of other tasks receiving service. Each server pool is however only able to

accommodate a maximum of B simultaneous tasks (possibly B = ∞), and when a task

is allocated to a server pool that is already handling B active tasks, it gets permanently

discarded.

Specifically, when a task arrives, the dispatcher assigns it to the server pool with
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Figure 1: The occupancy state of the system; When the server pools are arranged in

nondecreasing order of the number of active tasks, Qi represents the width of the ith row,

as shown above.

the minimum number of active tasks among d(N) randomly selected server pools (1 6

d(N) 6 N). As mentioned earlier, this assignment strategy is called a JSQ(d(N)) scheme,

as it closely resembles the power-of-d version of the Join-the-Shortest-Queue (JSQ) policy,

and will also consisely be referred to as such in the special case d(N) = N. We will

consider an asymptotic regime where the number of server pools N and the task arrival

rate λ(N) grow large in proportion, with λ(N)/N → λ 6 B as N → ∞. For convenience,

we denote K = ⌊λ⌋ and f = λ−K ∈ [0, 1).

For any d(N) (1 6 d(N) 6 N), let Qd(N)(t) = (Q
d(N)
1 (t),Q

d(N)
2 (t), . . . ,Q

d(N)
B (t)) be

the system occupancy state, where Q
d(N)
i (t) is the number of server pools under the

JSQ(d(N)) scheme with i or more active tasks at time t, i = 1, . . . ,B. A schematic diagram

of the Qi-values is provided in Figure 1. We occasionally omit the superscript d(N), and

replace it by N, to refer to the Nth system, when the value of d(N) is clear from the

context. In case of a finite buffer size B < ∞, when a task is discarded, we call it an

overflow event, and we denote by Ld(N)(t) the total number of overflow events under the

JSQ(d(N)) policy up to time t.

Throughout we assume that at each arrival epoch the server pools are ordered in

nondecreasing order of the number of active tasks (ties can be broken arbitrarily), see

Figure 1, and whenever we refer to some ordered server pool, it should be understood

with respect to this prior ordering, unless mentioned otherwise.

Boldfaced letters will be used to denote vectors. A sequence of random variables
{
XN

}

N>1
is said to be OP(g(N)), or oP(g(N)), for some function g : N → R+, if the

sequence of scaled random variables
{
XN/g(N)

}

N>1
is a tight sequence, or converges to

zero in probability, respectively. Whenever we mention ‘with high probability’, it should

be understood as ‘with probability tending to 1 as the underlying scaling parameter tends

to infinity’. For stochastic boundedness of a process we refer to [19, Definition 5.4]. Also,

f will be called ‘diverging to infinity’ if g(N) → ∞ as N → ∞. For any complete separable

metric space E, denote by DE[0,∞), the set of all E-valued cádlág (right continuous with

left limit exists) processes. By the symbol ‘
L−→’ we denote convergence in distribution

for real-valued random variables, and with respect to Skorohod-J1 topology for cádlág

processes.

6



2.2 Fluid-limit results

In order to state the fluid-limit results, we first introduce some useful notation. De-

note the fluid-scaled system occupancy state by qd(N)(t) := Qd(N)(t)/N. We will de-

note by S̃ =
{

Q ∈ Z

B : Qi 6 Qi−1 for all i = 2, . . . ,B
}

and S =
{

q ∈ [0, 1]B : qi 6

qi−1 for all i = 2, . . . ,B
}

the set of all possible unscaled and fluid-scaled occupancy states,

respectively. Further define SN := S ∩
{
i/N : 1 6 i 6 N

}B
as the space of all fluid-

scaled occupancy states of the Nth system. We take the following product norm on S: for

q1 = (q1,1,q1,2, . . . ,q1,B), q2 = (q2,1,q2,2, . . . ,q2,B) ∈ S,

ρ(q1, q2) :=

B∑

i=1

|q1,i − q2,i|

2i
,

and all the convergence results below will be with respect to product topology. We often

write ρ(q1, q2) as ‖q1 − q2‖. Let (E, ρ̂) be a metric space. We call a function g : S → E

Lipschitz continuous on S, if there exists L > 0, such that for all x,y ∈ S,

ρ̂(g(x),g(y)) 6 L‖x− y‖.

For any q ∈ S, denote by m(q) = min
{
i : qi+1 < 1

}
the minimum number of active tasks

among all server pools, with the convention that qB+1 = 0 if B < ∞. Now distinguish

two cases, depending on whether the normalized arrival rate λ is larger than m(q)(1 −

qm(q)+1) or not. If λ 6 m(q)(1 − qm(q)+1), then define

pm(q)−1(q) = 1, and pi(q) = 0 for all i 6= m(q) − 1.

On the other hand, if λ > m(q)(1 − qm(q)+1), then

pi(q) =






m(q)(1 − qm(q)+1)/λ for i = m(q) − 1,

1 − pm(q)−1(q) for i = m(q),

0 otherwise.

(2.1)

Note that the assumption λ 6 B ensures that the latter case cannot occur when B < ∞

and m(q) = B.

Theorem 2.1. (Universality of fluid limit for JSQ(d(N)) scheme) Assume qd(N)(0)
P−→ q∞ ∈

S as N → ∞. For the JSQ(d(N)) scheme with d(N) diverging to infinity, the sequence of processes
{

qd(N)(t)
}

t>0
has a weak limit

{
q(t)

}

t>0
that satisfies the system of integral equations

qi(t) = qi(0) + λ

∫ t

0
pi−1(q(s))ds− i

∫ t

0
(qi(s) − qi+1(s))ds, i = 1, . . . ,B,

where q(0) = q∞ and the coefficients pi(·) are as defined above.

The above theorem shows that the fluid-level dynamics do not depend on the specific

growth rate of d(N) as long as d(N) → ∞ as N → ∞. In particular, the JSQ(d(N)) scheme

with d(N) → ∞ as N → ∞ exhibits the same behavior as the ordinary JSQ policy, and

thus achieves fluid-level optimality. This result can be intuitively interpreted as follows.

Since d(N) is growing, for large N, at an arrival epoch, if the fraction of server pools
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with the minimum number of active tasks becomes positive, then with high probability

at least one of the d(N) selected server pools will be from the ones with the minimum

number of active tasks. This ensures that as long as d(N) → ∞ as N → ∞, the difference

in Qi-values between the ordinary JSQ policy and the JSQ(d(N)) scheme can not become

O(N), yielding fluid-level optimality.

The coefficient pi(q) represents the fraction of incoming tasks assigned to server pools

with exactly i active tasks in the fluid-level state q ∈ S. Assuming m(q) < B, a strictly

positive fraction 1 − qm(q)+1 of the server pools have exactly m(q) active tasks. Since

d(N) → ∞ as N → ∞, the fraction of incoming tasks that get assigned to server pools with

m(q) + 1 or more active tasks is therefore zero: pi(q) = 0 for all i = m(q) + 1, . . . ,B− 1.

Also, tasks at server pools with exactly i active tasks are completed at (normalized) rate

i(qi − qi+1), which is zero for all i = 1, . . . ,m(q) − 1, and hence the fraction of incoming

tasks that get assigned to server pools with m(q) − 2 or less active tasks is zero as well:

pi(q) = 0 for all i = 0, . . . ,m(q) − 2. This only leaves the fractions pm(q)−1(q) and

pm(q)(q) to be determined. Now observe that the fraction of server pools with exactly

m(q) − 1 active tasks is zero. However, since tasks at server pools with exactly m(q)

active tasks are completed at (normalized) rate m(q)(1 − qm(q)+1) > 0, incoming tasks

can be assigned to server pools with exactly m(q) − 1 active tasks at that rate. We thus

need to distinguish between two cases, depending on whether the normalized arrival

rate λ is larger than m(q)(1 − qm(q)+1) or not. If λ 6 m(q)(1 − qm(q)+1), then all the

incoming tasks can be assigned to server pools with exactly m(q) − 1 active tasks, so that

pm(q)−1(q) = 1 and pm(q)(q) = 0. On the other hand, if λ > m(q)(1 − qm(q)+1), then

not all incoming tasks can be assigned to server pools with exactly m(q) − 1 active tasks,

and a positive fraction will be assigned to server pools with exactly m(q) active tasks:

pm(q)−1(q) = m(q)(1 − qm(q)+1)/λ and pm(q)(q) = 1 − pm(q)−1(q).

It is easily verified that the unique fixed point of the differential equation in Theo-

rem 2.1 is given by

q⋆

i =






1 i = 1, . . . ,K

f i = K+ 1

0 i = K+ 2, . . . ,B,

(2.2)

and thus
∑B

i=1 q
⋆

i = λ. This is consistent with the results in Mukhopadhyay et al. [17, 18]

and Xie et al. [32] for fixed d, where taking d → ∞ yields the same fixed point. However,

the results in [17, 18, 32] for fixed d cannot be directly used to handle joint scalings, and

do not yield the universality of the entire fluid-scaled sample path for arbitrary initial

states as established in Theorem 2.1.

Having obtained the fixed point of the fluid limit, we now establish the interchange

of the mean-field (N → ∞) and stationary (t → ∞) limits. Let

πd(N)(·) = lim
t→∞

P

(

qd(N)(t) = ·
)

be the stationary measure of the occupancy states of the Nth system.

Proposition 2.2 (Interchange of limits). The sequence of stationary measures
{
πd(N)

}

N>1

with d(N) → ∞ as N → ∞ converges weakly to π⋆, where π⋆ = δq⋆ with δx being the Dirac

measure concentrated upon x, and q⋆ defined by (2.2).
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Proof. Observe that πd(N) is defined on S, and S is a compact set when endowed with the

product topology. Prohorov’s theorem implies that the sequence
{
πd(N)

}

N>1
is relatively

compact, and hence, has a convergent subsequence. Let
{
πd(Nn)

}

n>1
be a convergent

subsequence, with
{
Nn

}

n>1
⊂ N, such that πd(Nn) L−→ π̂. We show that π̂ is unique and

equals the measure π⋆.

First of all note that if qd(Nn)(0) ∼ πd(Nn), then qd(Nn)(t) ∼ πd(Nn). Also, the fact that

qd(Nn)(t)
L−→ q(t), and πd(Nn) L−→ π̂, means that π̂ is a fixed point of the deterministic

process
{

q(t)
}

t>0
. Since the latter fixed point is unique, q⋆, we can conclude the desired

convergence of the stationary measure.

2.3 Diffusion-limit results for non-integral λ

As it turns out, the diffusion-limit results may be qualitatively different, depending on

whether f = 0 or f > 0, and we will distinguish between these two cases accordingly.

Observe that for any assignment scheme, in the absence of overflow events, the total

number of active tasks evolves as the number of jobs in an M/M/∞ system with arrival

rate λ(N) and unit service rate, for which the diffusion limit is well-known [21]. For the

JSQ(d(N)) scheme with d(N)/(
√
N log(N)) → ∞ as N → ∞, we can establish, for suitable

initial conditions, that the total number of server pools with K− 2 or less and K+ 2 or

more tasks is negligible on the diffusion scale. If f > 0, the number of server pools with

K− 1 tasks is negligible as well, and the dynamics of the number of server pools with K

or K+ 1 tasks can then be derived from the known diffusion limit of the total number of

tasks mentioned above. In contrast, if f = 0, the number of server pools with K− 1 tasks

is not negligible on the diffusion scale, and the limiting behavior is qualitatively different,

but can still be characterized.

We first consider the case f > 0, and define f(N) := λ(N) − KN. Based on the above

observations, we define the following centered and scaled processes:

Q̄
d(N)
i (t) :=

N−Q
d(N)
i (t)√
N

> 0, i 6 K,

Q̄
d(N)
K+1 (t) :=

Q
d(N)
K+1 (t) − f(N)√

N
∈ R,

Q̄
d(N)

i (t) := Q
d(N)

i (t) > 0, for i > K+ 2.

(2.3)

Theorem 2.3. (Universality of diffusion limit for JSQ(d(N)) scheme, f > 0) If f > 0,

Q̄
d(N)

K+1 (0)
P−→ Q̄K+1 ∈ R, Q̄

d(N)

i (0)
P−→ 0 for i 6= K + 1, and d(N)/(

√
N log(N)) → ∞ as

N → ∞, then the following holds as N → ∞:

(i) For i 6 K,
{
Q̄

d(N)

i (t)
}

t>0

L−→
{
Q̄i(t)

}

t>0
, where Q̄i(t) ≡ 0.

(ii)
{
Q̄

d(N)
K+1 (t)

}

t>0

L−→
{
Q̄K+1(t)

}

t>0
, where Q̄K+1(t) is given by the Ornstein-Uhlenbeck

process satisfying the following stochastic differential equation:

dQ̄K+1(t) = −Q̄K+1(t)dt+
√

2λdW(t), (2.4)

where W(t) is the standard Brownian motion.

9



(iii) For i > K+ 2,
{
Q̄

d(N)
i (t)

}

t>0

L−→
{
Q̄i(t)

}

t>0
, where Q̄i(t) ≡ 0.

Loosely speaking, the above theorem says that, if f > 0 and d(N)/(
√
N log(N)) → ∞

as N → ∞, then over any finite time horizon, there will only be oP(
√
N) server pools

with fewer than K or more than K+ 1 active tasks, and fN+OP(
√
N) server pools with

precisely K+ 1 active tasks. Also, as long as d(N)/(
√
N log(N)) → ∞ as N → ∞, the

JSQ(d(N)) scheme exhibits the same behavior as the ordinary JSQ policy (i.e., d(N) = N),

and thus achieves diffusion-level optimality. The result can be heuristically explained as

follows. When the number of server pools with the minimum number of active tasks

is O(
√
N), the JSQ(d(N)) scheme should be able to assign the incoming tasks with high

probability to one of the server pools with the minimum number of active tasks. To be

able to select one of the O(
√
N) server pool out of N server pools, d(N) must grow faster

than
√
N. Now further observe that in any finite time interval there are on average O(N)

arrivals, and hence it is not enough to assign the incoming task to the appropriate server

pool only once. The number of times that the JSQ(d(N)) scheme fails to assign a task to

the ‘appropriate’ server pool in any finite time interval, should be oP(
√
N). This gives

rise to the additional log(N) factor in the growth rate of d(N).

2.4 Diffusion-limit results for integral λ

We now turn to the case f = 0, and assume that

KN− λ(N)√
N

→ β ∈ R as N → ∞, (2.5)

which can be thought of as an analog of the so-called Halfin-Whitt regime [7]. As men-

tioned above, the limiting behavior in this case is qualitatively different from the case

f > 0. Hence, we now consider the following scaled quantities:

Q̂
d(N)
K−1 (t) :=

K−1∑

i=1

N−Q
d(N)

i (t)√
N

> 0,

Q̂
d(N)
K (t) :=

N−Q
d(N)

K (t)√
N

> 0,

Q̂
d(N)
i (t) :=

Q
d(N)
i (t)√

N
> 0, for i > K+ 1.

(2.6)

Theorem 2.4. (Universality of diffusion limit for JSQ(d(N)) scheme, f = 0) Suppose there

exists M > K+ 1, such that Q
d(N)

M+1 (0) ≡ 0, and

(Q̂
d(N)
K−1 (0), Q̂

d(N)
K (0), . . . , Q̂

d(N)
M (0))

L−→ (Q̂K−1(0), Q̂K(0), . . . , Q̂M(0))

inRM−K+2. If f = 0, d(N)/(
√
N log(N)) → ∞, Equation (2.5) is satisfied, and Q̂

d(N)
K−1 (0)

P−→ 0,

as N → ∞, then the process
{
(

Q̂
d(N)
K−1 (t), Q̂

d(N)
K (t), . . . , Q̂

d(N)
M (t), Q̂

d(N)
M+1 (t)

)

}

t>0
converges

10



weakly to the process defined as the unique solution to the stochastic integral equation

Q̂K(t) = Q̂K(0) +
√

2KW(t) −

∫ t

0
(Q̂K(s) +KQ̂K+1(s))ds+βt+V1(t)

Q̂K+1(t) = Q̂K+1(0) +V1(t) − (K+ 1)

∫ t

0
(Q̂K+1(s) − Q̂K+2(s))ds,

Q̂i(t) = Q̂i(0) − i

∫t

0
(Q̂i(s) − Q̂i+1(s))ds, i = K+ 2. . . . ,M− 1,

Q̂M(t) = Q̂M(0) −M

∫t

0
Q̂M(s)ds,

(2.7)

Q̂K−1(t) ≡ 0, and Q̂M+1(t) ≡ 0, where W(t) is the standard Brownian motion, and V1(t) is the

unique non-decreasing process in D
R+

[0,∞) satisfying

∫t

0
1[Q̂K(s)>0]dV1(s) = 0.

Unlike the f > 0 case, the above theorem says that, if f = 0, then over any finite time

horizon, there will be OP(
√
N) server pools with fewer than K or more than K active tasks,

and hence most of the server pools have precisely K active tasks.

3 Proof Outline

The proofs of the asymptotic results for the JSQ(d(N)) scheme in Theorems 2.1, 2.3, and

2.4 involve two main components:

(i) deriving the relevant limiting processes for the ordinary JSQ policy,

(ii) establishing a universality result which shows that the limiting processes for the

JSQ(d(N)) scheme are ‘asymptotically equivalent’ to those for the ordinary JSQ pol-

icy for suitably large d(N).

For Theorems 2.1, 2.3 and 2.4, part (i) will be dealt with in Theorems 5.1, 6.1 and 7.1,

respectively. For all three theorems, part (ii) relies on a notion of asymptotic equivalence

between different schemes, which is formalized in the next definition.

Definition 1. Let Π1 and Π2 be two schemes parameterized by the number of server pools N.

For any positive function g : N → R+, we say that Π1 and Π2 are ‘g(N)-alike’ if there exists a

common probability space, such that for any fixed T > 0, for all i > 1,

sup
t∈[0,T ]

(g(N))−1|QΠ1
i (t) −QΠ2

i (t)|
P−→ 0 as N → ∞.

Intuitively speaking, if two schemes are g(N)-alike, then in some sense, the associated

system occupancy states are indistinguishable on g(N)-scale. For brevity, for two schemes

Π1 and Π2 that are g(N)-alike, we will often say that Π1 and Π2 have the same process-

level limits on g(N)-scale. The next theorem states a sufficient criterion for the JSQ(d(N))

scheme and the ordinary JSQ policy to be g(N)-alike, and thus, provides the key vehicle

in establishing the universality result in part (ii) mentioned above.
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Theorem 3.1. Let g : N→ R+ be a function diverging to infinity. Then the JSQ policy and the

JSQ(d(N)) scheme are g(N)-alike, with g(N) 6 N, if

(i) d(N) → ∞, for g(N) = O(N), (3.1)

(ii) d(N)

(

N

g(N)
log

(

N

g(N)

))−1

→ ∞, for g(N) = o(N). (3.2)

Theorem 3.1 can be intuitively explained as follows. The choice of d(N) should be

such that the JSQ(d(N)) scheme, at each arrival, with high probability selects one of the

server pools with the minimum number of tasks, if the total number of server pools with

the minimum number of tasks is of order g(N). Moreover, in any finite time interval,

the total number of times it fails to do so, should be of order lower than that of g(N).

These conditions imply that d(N) must diverge if g(N) = O(N), or grow faster than

(N/g(N)) log(N/g(N)), if g(N) = o(N).

In order to obtain the fluid and diffusion limits for various schemes, the two main

scales that we consider are g(N) ∼ N and g(N) ∼
√
N, respectively. The next two im-

mediate corollaries of the above theorem will imply that it is enough to investigate the

ordinary JSQ policy in various regimes.

Corollary 3.2. If d(N) → ∞ as N → ∞, then the JSQ(d(N)) scheme and the ordinary JSQ

policy are N-alike.

Remark 3.3. The growth condition on d(N) in order for the JSQ(d(N)) scheme to be N-

alike to the ordinary JSQ policy, stated in the above corollary, is not only sufficient, but

also necessary. Specifically, if lim infN→∞ d(N) 6 d < ∞, then consider a subsequence

along which the limit of d(N) exists and is uniformly bounded by d. Therefore, one can

choose a further subsequence, such that d(N) = d for all N along that subsequence. Now,

from the fluid-limit result for the JSQ(d) scheme [17, 18], one can see that it differs from

that of the JSQ policy stated in (2.1), and hence the JSQ(d(N)) scheme is not N-alike to the

ordinary JSQ policy.

Corollary 3.4. If d(N)/(
√
N log(N)) → ∞ as N → ∞, then the JSQ(d(N)) scheme and the

ordinary JSQ policy are
√
N-alike.

We will prove the universality result in Theorem 3.1 in the next section. The key chal-

lenge is that a direct comparison of the JSQ(d(N)) scheme and the ordinary JSQ policy

is not straightforward. Hence, to compare the JSQ(d(N)) scheme with the JSQ policy, we

adopt a two-stage approach based on a novel class of schemes, called CJSQ(n(N)), as a

convenient intermediate scenario. Specifically, for some nonnegative integer-valued se-

quence
{
n(N)

}

N>1
, with n(N) 6 N, we introduce a class of schemes named CJSQ(n(N)),

containing all the schemes that always assign the incoming task to one of the n(N) + 1

lowest ordered server pools. Note that when n(N) = 0, the class only contains the ordi-

nary JSQ policy.

Just like the JSQ(d(N)) scheme, the schemes in the class CJSQ(n(N)) may be thought

of as “sloppy” versions of the JSQ policy, in the sense that tasks are not necessarily as-

signed to a server pool with the minimum number of active tasks but to one of the

n(N) + 1 lowest ordered server pools, as graphically illustrated in Figure 2a. Below we

often will not differentiate among the various schemes in the class CJSQ(n(N)), and prove
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(b) Asymptotic equivalence relations

Figure 2: (Left) The class CJSQ(n(N)) is depicted in a high-level view of the system, where

as in Figure 1 the server pools are arranged in nondecreasing order of the number of active

tasks, and the arrival must be assigned through the left tunnel. (Right) The equivalence

structure is depicted for various intermediate load balancing schemes to facilitate the

comparison between the JSQ(d(N)) scheme and the ordinary JSQ policy.

a common property possessed by all these schemes. Hence, with minor abuse of notation,

we will often denote a typical assignment scheme in this class by CJSQ(n(N)). Note that

the JSQ(d(N)) scheme is guaranteed to identify the lowest ordered server pool, but only

among a randomly sampled subset of d(N) server pools. In contrast, a scheme in the

class in CJSQ(n(N)) only guarantees that one of the n(N) + 1 lowest ordered server pools

is selected, but across the entire system of N server pools. We will show that for suffi-

ciently small n(N), any scheme from the class CJSQ(n(N)) is still ‘close’ to the ordinary

JSQ policy in terms of g(N)-alikeness as stated in the next proposition.

Proposition 3.5. For any function g : N → R+ diverging to infinity, if n(N)/g(N) → 0 as

N → ∞, then the JSQ policy and the CJSQ(n(N)) schemes are g(N)-alike.

In order to prove this proposition, we introduce in Section 4.1 a novel stochastic cou-

pling called the T-coupling, to construct a common probability space, and establish the

property of g(N)-alikeness.

Next we compare the CJSQ(n(N)) schemes with the JSQ(d(N)) scheme. The com-

parison follows a somewhat similar line of argument as in [16, Section 4], and involves a

JSQ(n(N),d(N)) scheme which is an intermediate blend between the CJSQ(n(N)) schemes

and the JSQ(d(N)) scheme. Specifically, the JSQ(n(N),d(N)) scheme selects a candidate

server pool in the exact same way as the JSQ(d(N)) scheme. However, it only assigns the

task to that server pool if it belongs to the n(N) + 1 lowest ordered ones, and to a ran-

domly selected server pool among these otherwise. By construction, the JSQ(n(N),d(N))

scheme belongs to the class CJSQ(n(N)).

We now consider two T-coupled systems with a JSQ(d(N)) and a JSQ(n(N),d(N))

scheme. Assume that at some specific arrival epoch, the incoming task is assigned to the

kth ordered server pool in the system under the JSQ(d(N)) scheme. If k ∈
{

1, 2, . . . ,n(N)+

1
}

, then the scheme JSQ(n(N),d(N)) also assigns the arriving task to the kth ordered
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server pool. Otherwise it dispatches the arriving task uniformly at random among the

first n(N) + 1 ordered server pools.

We will establish a sufficient criterion on d(N) in order for the JSQ(d(N)) scheme

and JSQ(n(N),d(N)) scheme to be close in terms of g(N)-alikeness, as stated in the next

proposition.

Proposition 3.6. Assume, n(N)/g(N) → 0 as N → ∞ for some function g : N → R+

diverging to infinity. The JSQ(n(N),d(N)) scheme and the JSQ(d(N)) scheme are g(N)-alike if

the following condition holds:

n(N)

N
d(N) − log

N

g(N)
→ ∞, as N → ∞. (3.3)

Finally, Proposition 3.6 in conjunction with Proposition 3.5 yields Theorem 3.1. The

overall proof strategy as described above, is schematically represented in Figure 2b.

Remark 3.7. Note that, sampling without replacement polls more server pools than with

replacement, and hence the minimum number of active tasks among the selected server

pools is stochastically smaller in the case without replacement. As a result, for sufficient

conditions as in Theorem 3.1 it is enough to consider sampling with replacement.

4 Universality Property

In this section we formalize the proof outlined in the previous section. In Subsection 4.1

we first introduce the T-coupling between any two task assignment schemes. This cou-

pling is used to derive stochastic inequalities in Subsection 4.2, stated as Proposition 4.1

and Lemma 4.2, which in turn, are used to prove Propositions 3.5, 3.6 and Theorem 3.1 in

Subsection 4.3.

4.1 Stochastic coupling

Throughout this subsection we fix N, and suppress the superscript N in the notation.

Let QΠ1
i (t) and QΠ2

i (t) denote the number of server pools with at least i active tasks, at

time t, in two systems following schemes Π1 and Π2, respectively. With a slight abuse

of terminology, we occasionally use Π1 and Π2 to refer to systems following schemes Π1

and Π2, respectively. To couple the two systems, we synchronize the arrival epochs and

maintain a single exponential departure clock with instantaneous rate at time t given by

M(t) := max
{∑B

i=1 Q
Π1
i (t),

∑B
i=1 Q

Π2
i (t)

}

. We couple the arrivals and departures in the

various server pools as follows:

(1) Arrival: At each arrival epoch, assign the incoming task in each system to one of

the server pools according to the respective schemes.

(2) Departure: Define

H(t) :=

B∑

i=1

min
{

QΠ1
i (t),QΠ2

i (t)
}

14
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Figure 3: Superposition of the occupancy states at sgreenome particular time instant, of

schemes Π1 and Π2 when the server pools in both systems are arranged in nondecreasing

order of the number of active tasks. The Π1 system is the union of the green and blue

tasks, and the Π2 system is the union of the green and red tasks.

and

p(t) :=






H(t)

M(t)
, if M(t) > 0,

0, otherwise.

At each departure epoch tk (say), draw a uniform[0, 1] random variable U(tk). The de-

partures occur in a coupled way based upon the value of U(tk). In either of the systems,

assign a task index (i, j), if that task is at the jth position of the ith ordered server pool. Let

A1(t) and A2(t) denote the set of all task-indices present at time t in systems Π1 and Π2,

respectively. Color the indices (or tasks) in A1 ∩A2, A1 \ A2 and A2 \ A1, green, blue and

red, respectively, and note that |A1 ∩A2| = H(t). Define a total order on the set of indices

as follows: (i1, j1) < (i2, j2) if i1 < i2, or i1 = i2 and j1 < j2. Now, if U(tk) 6 p(tk−), then

select one green index uniformly at random and remove the corresponding tasks from

both systems. Otherwise, if U(tk) > p(tk−), then choose one integer m, uniformly at

random from all the integers between 1 and M(t) −H(t) = M(t)(1 − p(t)), and remove

the tasks corresponding to the mth smallest (according to the order defined above) red

and blue indices in the corresponding systems. If the number of red (or blue) tasks is less

than m, then do nothing.

The above coupling has been schematically represented in Figure 3, and will hence-

forth be referred to as T-coupling, where T stands for ‘task-based’. Now we need to show

that, under the T-coupling, the two systems, considered independently, evolve according

to their own statistical laws. This can be seen in several steps. Indeed, the T-coupling ba-

sically uniformizes the departure rate by the maximum number of tasks present in either

of the two systems. Then informally speaking, the green regions signifies the common

portion of tasks, and the red and blue region represent the separate contributions. Now

observe that

(i) The total departure rate from Πi is

M(t)

[

p(t) + (1 − p(t))
|Ai \ A3−i|

M(t) −H(t)

]

= |A1 ∩A2|+ |Ai \ A3−i| = |Ai|, i = 1, 2.

15



(ii) Assuming without loss of generality |A1| > |A2|, each task in Π1 is equally likely to

depart.

(iii) Each task in Π2 within A1 ∩ A2 and each task within A2 \ A1 is equally likely to

depart, and the probabilities of departures are proportional to |A1 ∩A2| and |A2 \A1|,

respectively.

4.2 Stochastic inequalities

Now, as in [16] we define a notion of comparison between two T-coupled systems. Two

T-coupled systems are said to differ in decision at some arrival epoch, if the index of the

ordered server pool joined by the arriving task at that epoch, differs in the two systems.

Denote by ∆Π1,Π2
(t), the cumulative number of times that the two systems Π1 and Π2

differ in decision up to time t.

Proposition 4.1. For two T-coupled systems under any two schemes Π1 and Π2 the following

inequality is preserved

B∑

i=1

∣

∣QΠ1
i (t) −QΠ2

i (t)
∣

∣ 6 2∆Π1 ,Π2
(t) ∀ t > 0, (4.1)

provided the two systems start from the same occupancy state at time t = 0.

The proof follows a somewhat similar line of argument as in [15, 16], but is provided

below since the coupling is different here. For any scheme Π, define IΠ(c) := max
{
i :

QΠ
i > N− c+ 1

}
, c = 1, . . . ,N.

Proof of Proposition 4.1. We use forward induction on event times, i.e., time epochs when

either an arrival or a departure takes place. Assume the inequality in (4.1) holds at time

epoch t0. We denote by Q̃Π the updated occupancy state after the next event at time

epoch t1, and distinguish between two cases depending on whether t1 is an arrival epoch

or a departure epoch.

If t1 is an arrival epoch and if the systems differ in decision, then observe that the left

side of (4.1) can increase at most by two. In this case, the right side also increases by two,

and the ordering is preserved. Therefore, it is enough to prove that the right side of (4.1)

remains unchanged if the two systems do not differ in decision. In that case, assume that

both Π1 and Π2 assign the arriving task to the kth ordered server pool. Then

Q̃Π
i =

{
QΠ

i + 1, for i = IΠ(k) + 1,

QΠ
j , otherwise,

(4.2)

if IΠ(k) < B; otherwise all the Qi-values remain unchanged. If IΠ1
(k) = IΠ2

(k), then

the left side of (4.1) clearly remains unchanged. Now, without loss of generality, assume

IΠ1
(k) < IΠ2

(k). Therefore,

QΠ1

IΠ1
(k)+1(t0) < QΠ2

IΠ1
(k)+1(t0) and QΠ1

IΠ2
(k)+1(t0) < QΠ2

IΠ2
(k)+1(t0).

After an arrival, the (IΠ1
(k) + 1)th term in the left side of (4.1) decreases by one, and the

(IΠ2
(k) + 1)th term increases by one. Thus the inequality is preserved.
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If t1 is a departure epoch, then first consider the case when the departure occurs

from the green region. In that case, without loss of generality, assume that a potential

departure occurs from the kth ordered server pool, for some k ∈
{

1, 2, . . . ,N
}

. Also note

that a departure in either of the two systems can change at most one of the Qi-values.

Thus

Q̃Π
i =

{
QΠ

i − 1, for i = IΠ(k),

QΠ
j , otherwise,

(4.3)

if IΠ(k) > 1; otherwise all the Qi-values remain unchanged.

If at time epoch t0, IΠ1
(k) = IΠ2

(k) = I, then both QIΠ1 and QIΠ2 decrease by one, and

hence the left side of (4.1) does not change.

Otherwise, without loss of generality assume IΠ1
(k) < IΠ2

(k). Then observe that

QΠ1

IΠ1
(k)

(t0) 6 QΠ2

IΠ1
(k)

(t0) and QΠ1

IΠ2
(k)

(t0) < QΠ2

IΠ2
(k)

(t0).

Furthermore, after the departure, QΠ1

IΠ1
(k)

decreases by one, therefore |QΠ1

IΠ1
(k)

−QΠ2

IΠ1
(k)

|

increases by one, and QΠ2

IΠ2
(k)

decreases by one, thus |QΠ1

IΠ2
(k)

−QΠ2

IΠ2
(k)

| decreases by one.

Hence, in total, the left side of (4.1) remains the same. Now if a departure occurs from the

blue and/or red region, then for some i1 and/or i2, (QΠ1
i1

−QΠ2
i1

)+ or (QΠ2
i2

−QΠ1
i2

)+ (or

both) decreases, and the other terms remain unchanged, and hence the left side clearly

decreases or remains unchanged.

In order to compare the JSQ policy with the CJSQ(n(N)) schemes, denote by QΠ1
i (t)

and QΠ2
i (t) the number of server pools with at least i tasks under the JSQ policy and

CJSQ(n(N)) scheme, respectively. Now, in order to prove Proposition 3.5, we will need

the following lemma.

Lemma 4.2. For any k ∈
{

1, 2, . . .B
}

,

{
k∑

i=1

QΠ1
i (t) − kn(N)

}

t>0

6st

{
k∑

i=1

QΠ2
i (t)

}

t>0

6st

{
k∑

i=1

QΠ1
i (t)

}

t>0

, (4.4)

provided at t = 0 the two systems start from the same occupancy states.

In the next two remarks we comment on the contrast of Lemma 4.2 and the underly-

ing T-coupling with stochastic dominance properties for the ordinary JSQ policy in the

existing literature and the S-coupling technique in reference [16], respectively

Remark 4.3. The stochastic ordering in Lemma 4.2 is to be contrasted with the weak

majorization results in [23, 24, 25, 28, 31] in the context of the ordinary JSQ policy in the

single-server queueing scenario, and in [10, 12, 13, 22] in the scenario of state-dependent

service rates, non-decreasing with the number of active tasks. In the current infinite-

server scenario, the results in [10, 12, 13, 22] imply that for any non-anticipating scheme Π

taking assignment decision based on the number of active tasks only, for all t > 0,

ℓ∑

m=1

X
JSQ
(m)

(t) 6st

ℓ∑

m=1

XΠ
(m)(t), for ℓ = 1, 2, . . . ,N, (4.5)

{
LJSQ(t)

}

t>0
6st

{
LΠ(t)

}

t>0
, (4.6)
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where XΠ
(m)

(t) is the number of tasks in the mth ordered server pool at time t in the system

following scheme Π and LΠ(t) is the total number of overflow events under policy Π up

to time t. Observe that XΠ
(m)

can be visualized as the mth largest (rightmost) vertical bar

(or stack) in Figure 1. Thus (4.5) says that the sum of the lengths of the ℓ largest vertical

stacks in a system following any scheme Π is stochastically larger than or equal to that

following the ordinary JSQ policy for any ℓ = 1, 2, . . . ,N. Mathematically, this ordering

can be equivalently written as

B∑

i=1

min
{
ℓ,QJSQ

i (t)
}
6st

B∑

i=1

min
{
ℓ,QΠ

i (t)
}

, (4.7)

for all ℓ = 1, . . . ,N. In contrast, in order to show asymptotic equivalence on various

scales, we need to both upper and lower bound the occupancy states of the CJSQ(n(N))

schemes in terms of the JSQ policy, and therefore need a much stronger hold on the

departure process. The T-coupling provides us just that, and has several useful properties

that are crucial for our proof technique. For example, Proposition 4.1 uses the fact that

if two systems are T-coupled, then departures cannot increase the sum of the absolute

differences of the Qi-values, which is not true for the coupling considered in the above-

mentioned literature. The left stochastic ordering in (4.4) also does not remain valid in

those cases. Furthermore, observe that the right inequality in (4.4) (i.e., Qi’s) implies the

stochastic inequality is reversed in (4.7), which is counter-intuitive in view of the optimality

properties of the ordinary JSQ policy studied in the literature, as mentioned above. The

fundamental distinction between the two coupling techniques is also reflected by the fact

that the T-coupling does not allow for arbitrary nondecreasing state-dependent departure

rate functions, unlike the couplings in [10, 12, 13, 22].

Remark 4.4. As briefly mentioned in the introduction, in the current infinite-server sce-

nario, the departures of the ordered server pools cannot be coupled, mainly since the

departure rate at the mth ordered server pool, for some m = 1, 2, . . . ,N, depends on its

number of active tasks. It is worthwhile to mention that the coupling in this paper is

stronger than that used in [16]. Observe that due to Lemma 4.2, the absolute difference

of the occupancy states of the JSQ policy and any scheme from the CJSQ class at any

time point can be bounded deterministically (without any terms involving the cumula-

tive number of lost tasks). It is worth emphasizing that the universality result on some

specific scale, stated in Theorem 3.1 does not depend on the behavior of the JSQ policy

on that scale, whereas in [16] it does, mainly because the upper and lower bounds in [16,

Corollary 3.3] involve tail sums of two different policies. Also, the bound in the current

paper does not depend upon t, and hence, applies in the steady state as well. Moreover,

the coupling in [16] compares the k highest horizontal bars, whereas the present paper

compares the k lowest horizontal bars. As a result, the bounds on the occupancy states

established in [16, Corollary 3.3] involves tail sums of the occupancy states of the ordinary

JSQ policy, which necessitates proving the ℓ1 convergence of the occupancy states of the

ordinary JSQ policy. In contrast, the bound we establish in the present paper, involves

only a single component (see equations (4.9) and (4.10)), and thus, the convergence with

respect to product topology suffices.

Proof of Lemma 4.2. Fix any k > 1. We will use forward induction on the event times, i.e.,

time epochs when either an arrival or a departure occurs, and assume the two systems
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to be T-coupled as described in Section 4.1. We suppose that the two inequalities hold at

time epoch t0, and will prove that they continue to hold at time epoch t1.

(a) We first prove the left inequality in (4.4). We distinguish between two cases de-

pending on whether the next event time t1 is an arrival epoch or a departure epoch. We

first consider the case of an arrival. Since at each arrival, there can be an increment of size

at most one, if
∑k

i=1 Q
Π1
i (t0) − kn(N) <

∑k
i=1 Q

Π2
i (t0), the inequality holds trivially at

time t1. Therefore, consider the case when
∑k

i=1 Q
Π1
i (t0) − kn(N) =

∑k
i=1 Q

Π2
i (t0). Now

observe that,
k∑

i=1

QΠ2
i (t0) =

k∑

i=1

QΠ1
i (t0) − kn(N) 6 kN− kn(N).

Hence, QΠ2
k (t0) 6 N − n(N), which in turn implies that at time t1,

∑k
i=1 Q

Π2
i increases

by 1, and the inequality is preserved. We now assume the case of a departure. Then

also if
∑k

i=1 Q
Π1
i (t0) − kn(N) <

∑k
i=1 Q

Π2
i (t0), the inequality holds trivially at time t1.

Otherwise assume
∑k

i=1 Q
Π1
i (t0) − kn(N) =

∑k
i=1 Q

Π2
i (t0). In this case if the departure

occurs from the green region in Figure 3, then both
∑k

i=1 Q
Π1
i and

∑k
i=1 Q

Π2
i change in a

similar fashion (i.e., either decrease by one or remain unchanged). Else, if the departure

occurs from the red and blue regions, since
∑k

i=1 Q
Π1
i >

∑k
i=1 Q

Π2
i , by virtue of the T-

coupling, if
∑k

i=1 Q
Π2
i decreases by one, then so does

∑k
i=1 Q

Π1
i . To see this observe the

following:

k∑

i=1

QΠ1
i >

k∑

i=1

QΠ2
i =⇒

k∑

i=1

(QΠ1
i −QΠ2

i )+ >

k∑

i=1

(QΠ2
i −QΠ1

i )+. (4.8)

Therefore, if m 6
∑k

i=1(Q
Π2
i −QΠ1

i )+, then m 6
∑k

i=1(Q
Π1
i −QΠ2

i )+. Hence the inequal-

ity will be preserved.

(b) We now prove the right inequality in (4.4) and again distinguish between two

cases. If t1 is an arrival epoch, we assume for a similar reason as above,
∑k

i=1 Q
Π2
i (t0) =∑k

i=1 Q
Π1
i (t0). In this case when a task arrives, if it gets admitted under the CJSQ(n(N))

scheme and increases
∑k

i=1 Q
Π2
i , then clearly

∑k
i=1(N −QΠ1

i (t)) > 0, and hence the in-

coming task will increase
∑k

i=1 Q
Π1
i , as well, and the inequality will be preserved. If

t1 is a departure epoch with
∑k

i=1 Q
Π2
i (t0) =

∑k
i=1 Q

Π1
i (t0), then by virtue of the T-

coupling again, if
∑k

i=1 Q
Π1
i decreases by one, then by the argument in (a) above, so does

∑k
i=1 Q

Π2
i , thus preserving the inequality.

4.3 Asymptotic equivalence

Proof of Proposition 3.5. Using Lemma 4.2, there exists a common probability space such

that for any k > 1 we can write

QΠ2
k (t) =

k∑

i=1

QΠ2
i (t) −

k−1∑

i=1

QΠ2
i (t)

6

k∑

i=1

QΠ1
i (t) −

k−1∑

i=1

QΠ1
i (t) + kn(N)

= QΠ1
k (t) + kn(N).

(4.9)
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Similarly, we can write

Q
Π2
k (t) =

k∑

i=1

Q
Π2
i (t) −

k−1∑

i=1

Q
Π2
i (t)

>

k∑

i=1

QΠ1
i (t) − kn(N) −

k−1∑

i=1

QΠ1
i (t)

= QΠ1
k (t) − kn(N).

(4.10)

Therefore, for all k > 1, we have, supt |Q
Π2
k (t) −QΠ1

k (t)| 6 kn(N). Since n(N)/g(N) → ∞

as N → ∞, the proof is complete.

Proof of Proposition 3.6. For any T > 0, let AN(T) and ∆N(T) be the total number of arrivals

to the system and the cumulative number of times that the JSQ(d(N)) scheme and the

JSQ(n(N),d(N)) scheme differ in decision up to time T . Using Proposition 4.1 it suffices to

show that for any T > 0, ∆N(T)/g(N)
P−→ 0 as N → ∞. Observe that at any arrival epoch,

the systems under the JSQ(d(N)) and JSQ(n(N),d(N)) schemes will differ in decision

only if none of the n(N) + 1 lowest ordered server pools get selected by the JSQ(d(N))

scheme.

Now at the time of an arrival, the probability that the JSQ(d(N)) scheme does not

select one of the n(N) + 1 lowest ordered server pools, is given by

p(N) =

(

1 −
n(N) + 1

N

)d(N)

.

Since at each arrival epoch d(N) server pools are selected independently, given AN(T),

∆N(T) ∼ Bin(AN(T),p(N)).

Note that, for T > 0, Markov’s inequality yields

P

(

∆N(T) > g(N)
∣

∣AN(T)
)

6
E

(

∆N(T)
)

g(N)
=

AN(T)

g(N)

(

1 −
n(N) + 1

N

)d(N)

.

Since
{
AN(T)/N

}

N>1
is a tight sequence of random variables, in order to ensure that

∆N(T)/g(N) converges to zero in probability, it is enough to have

N

g(N)

(

1 −
n(N) + 1

N

)d(N)

→ 0

⇐= exp

(

log

(

N

g(N)

)

− d(N)
n(N)

N

)

→ 0

⇐⇒ d(N)
n(N)

N
− log

(

N

g(N)

)

→ ∞.

(4.11)

We now use Propositions 3.5 and 3.6 to prove Theorem 3.1.
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Proof of Theorem 3.1. Fix any d(N) satisfying either (3.1) or (3.2). From Propositions 3.5

and 3.6 observe that it is enough to show that there exists an n(N) with n(N) → ∞ and

n(N)/g(N) → 0, as N → ∞, such that

n(N)

N
d(N) − log

(

N

g(N)

)

→ ∞.

(i) If g(N) = O(N), then observe that log(N/g(N)) is O(1). Since d(N) → ∞, choosing

n(N) = N/ log(d(N)) satisfies the above criteria, and hence part (i) of the theorem is

proved.

(ii) Next we obtain a choice of n(N) if g(N) = o(N). Note that, if

h(N) :=
d(N)

g(N)
N

log
(

N
g(N)

) → ∞, as N → ∞,

then choosing n(N) = g(N)/ log(h(N)), it can be seen that as N → ∞, n(N)/g(N) → 0,

and

d(N)
n(N)
N

log
(

N
g(N)

) =
h(N)

log(h(N))
→ ∞

=⇒ n(N)

N
d(N) − log

(

N

g(N)

)

→ ∞.

(4.12)

5 Fluid Limit of JSQ

In this section we establish the fluid limit for the ordinary JSQ policy. In the proof we

will leverage the time scale separation technique developed in [8], suitably extended to an

infinite-dimensional space. Specifically, note that the rate at which incoming tasks join a

server pool with i active tasks is determined only by the process ZN(·) = (ZN
1 (·), . . . ,ZN

B (·)),
where ZN

i (t) = N−QN
i (t), i = 1, . . . ,B, represents the number of server pools with fewer

than i tasks at time t. Furthermore, in any time interval [t, t+ ε] of length ε > 0, the ZN(·)
process experiences O(εN) events (arrivals and departures), while the qN(·) process can

change by only O(ε) amount. Therefore, the ZN(·) process evolves on a much faster time

scale than the qN(·) process. As a result, in the limit as N → ∞, at each time point t,

the ZN(·) process achieves stationarity depending on the instantaneous value of the qN(·)
process, i.e., a separation of time scales takes place.

In order to illuminate the generic nature of the proof construct, we will allow for

a more general task assignment probability and departure dynamics than described in

Section 2. Denote by Z̄+ the one-point compactification of the set of nonnegative in-

tegers Z+, i.e., Z̄+ = Z̄+ ∪ {∞}. Equip Z̄+ with the order topology. Denote G = Z̄

B
+

equipped with product-topology, and with the Borel σ-algebra, G. Let us consider the

G-valued process ZN(s) := (ZN
i (s))i>1 as introduced above. Let

{
Ri

}

16i6B
be a partition

of G such that Ri ∈ G. We assume that a task arriving at (say) tk is assigned to some

server pool with i active tasks is given by pN
i−1(Q

N(tk−)) = 1[ZN(tk−)∈Ri]
fi(q

N(tk−)),
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where f = (f1, . . . , fB) : [0, 1]B → [0, 1]B is Lipschitz continuous, i.e., there exists Cf, such

that for any q1, q2 ∈ S,

‖f(q1) − f(q2)‖ 6 Cf ‖q1 − q2‖ .

The partition corresponding to the ordinary JSQ policy can be written as

Ri :=
{
(z1, z2, . . . , zB) : z1 = . . . = zi−1 = 0 < zi 6 zi+1 6 . . . 6 zB

}
, (5.1)

with the convention that QN
B is always taken to be zero, if B < ∞, and fi ≡ 1 for all

i = 1, 2, . . . ,B. The fluid-limit results up to Proposition 5.5 (the relative compactness of

the fluid-scaled process) hold true for these general assignment probabilities. It is only

when proving Theorem 5.1, that we need to assume the specific
{
Ri

}

16i6B
in (5.1). For

the departure dynamics, when the system occupancy state is QN = (QN
1 ,QN

2 , . . . ,QN
B ),

define the total rate at which departures occur from a server pool with i active tasks

by µN
i (Q), where µN(Q) = (µN

1 (Q), . . . ,µN
B (Q)) will be referred to as the departure rate

function. The departure dynamics described in Section 2 correspond to µN
i (Q) = i(Qi −

Qi+1) and will be referred to as the infinite-server scenario, since all active tasks are

executed concurrently. The single-server scenario, where tasks are executed sequentially,

corresponds to the case µN
i (Q) = Qi −Qi+1.

Assumption 1 (Condition on departure rate function). The departure rate function µN : S̃ →
[0,∞)B satisfies the following conditions

(a) There exists a function µ : S → [0,∞)B, such that

lim
N→∞

sup
q∈SN

∥

∥

∥

∥

1

N
µN(⌊Nq⌋) −µ(q)

∥

∥

∥

∥

= 0.

(b) The function µ is Lipschitz continuous in S, i.e., there exists a constant Cµ, such that for any

q1, q2 ∈ S,

‖µ(q1) −µ(q2)‖ 6 Cµ ‖q1 − q2‖ .

(c) Also, µN satisfies linear growth constraints in each coordinate, i.e., for all i > 1, there exists

Ci > 0, such that for all q ∈ S,

µN
i (⌊Nq⌋) 6 NCi(1 + ‖q‖).

We will often omit ⌊·⌋ in the argument of µN for notational convenience.

Under these assumptions on the departure rate function, we prove the following fluid-

limit result for the ordinary JSQ policy. Recall the definition of m(q) in Subsection 2.2,

and define

pi(q) =






min
{
µm(q)(q)/λ, 1

}
for i = m(q) − 1,

1 − pm(q)−1(q) for i = m(q),

0 otherwise.

(5.2)

Note that pi(·) in (5.2) is consistent with the one defined in Subsection 2.2 for the proper

choice of the departure rate function µi(q) = i(qi − qi+1).
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Theorem 5.1 (Fluid limit of JSQ). Assume qN(0)
P−→ q∞ ∈ S and λ(N)/N → λ > 0 as

N → ∞. Further assume that the departure rate function µN satisfies Assumption 1. Then the

sequence of processes
{

qN(t)
}

t>0
for the ordinary JSQ policy has a continuous weak limit that

satisfies the system of integral equations

qi(t) = qi(0) + λ

∫t

0
pi−1(q(s))ds−

∫t

0
µi(q(s))ds, i = 1, 2, . . . ,B, (5.3)

where q(0) = q∞ and the coefficients pi(·) are defined in (5.2), and may be interpreted as the

fractions of incoming tasks assigned to server pools with exactly i active tasks.

We will now verify that the departure rate functions corresponding to the infinite-

server and single-server scenarios satisfy the conditions in Assumption 1.

Proposition 5.2. The following departure rate functions denoted by µ = (µ1,µ2, . . . ,µB), satisfy

the conditions in Assumption 1. For Q ∈ S̃, and q ∈ S,

(i) µN
i (Q) = Qi −Qi+1, and µi(q) = qi − qi+1, i > 1.

(ii) µN
i (Q) = i(Qi −Qi+1), and µi(q) = i(qi − qi+1), i > 1.

Proof. Observe that if B < ∞, then since componentwise µi satisfies all the conditions

for all i > 1, µ satisfies the conditions in the product space as well. Therefore, let us

consider the case when B = ∞. In this case observe that, for both (i) and (ii) condition

(a) is immediate, since µN(⌊Nq⌋)/N = µ(q) for all q ∈ SN. Also, the linear growth rate

constraint in condition (c) is satisfied in both cases by taking Ci = 1 in (i) and Ci = i

in (ii).

Now we will show that in both cases µ is Lipschitz continuous in S.

(i) For µi(q) = qi − qi+1, i > 1, and q1, q2 ∈ S,

‖µ(q)‖ =
∑

i>1

|qi − qi+1|

2i
6

∑

i>1

qi

2i
+
∑

i>1

qi+1

2i
6 2 ‖q‖ .

(ii) Now assume µi(q) = i(qi−qi+1), i > 1. Since µ is a linear operator on the Banach

space (complete normed linear space) RB, to prove Lipschitz continuity of µ, it is enough

to show that µ is continuous at zero. Specifically, we will show that for any sequence
{

qn
}

n>1
, in RB, ‖qn‖ → 0 implies ‖µ(qn)‖ → 0. This would imply that there exists

ε > 0, such that whenever ‖qn‖ 6 ε with qn ∈ RB, we have ‖µ(qn)‖ < 1. Then due to

linearity of µ, for any q ∈ RB,

‖µ(q)‖ =

∥

∥

∥

∥

‖q‖
ε

µ

(

ε
q

‖q‖

)
∥

∥

∥

∥

6
‖q‖
ε

∥

∥

∥

∥

µ

(

ε
q

‖q‖

)
∥

∥

∥

∥

6
1

ε
‖q‖ .

To show that µ is continuous at 0 ∈ RB, fix any ε > 0. Also, fix an M > 0, depending

upon ε, such that
∑

i>M 1/2i < ε/2. Now, choose δ < ε/(4M). Then, for any q such that
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‖q‖ < δ, we have

‖µ(q)‖ =

∞∑

i=1

i|qi − qi+1|

2i

=

M∑

i=1

i|qi − qi+1|

2i
+

ε

2

6 M

M∑

i=1

|qi − qi+1|

2i
+

ε

2

6 2M ‖q‖+ ε

2
6 ε.

Hence, µ is Lipschitz continuous on R∞.

5.1 Martingale representation

In this subsection we construct the martingale representation of the occupancy state pro-

cess QN(·). The component QN
i (t), satisfies the identity relation

QN
i (t) = QN

i (0) +AN
i (t) −DN

i (t), for i = 1, . . . ,B, (5.4)

where

AN
i (t) = number of arrivals during [0, t] to some server pool with i− 1 active tasks,

DN
i (t) = number of departures during [0, t] from some server pool with i active tasks.

We can express AN
i (t) and DN

i (t) as

AN
i (t) = NA,i

(

λ(N)

∫ t

0
pN
i−1(Q

N(s))ds

)

,

DN
i (t) = ND,i

(∫ t

0
µN
i (QN(s))ds

)

,

where NA,i and ND,i are mutually independent unit-rate Poisson processes, i = 1, 2, . . . ,B.

Define the following sigma fields.

AN
i (t) := σ

(

AN
i (s) : 0 6 s 6 t

)

,

DN
i (t) := σ

(

DN
i (s) : 0 6 s 6 t

)

, for i > 1,

and the filtration FN ≡
{
FN
t : t > 0

}
with

FN
t :=

∞
∨

i=1

[

AN
i (t)∨DN

i (t)
]

(5.5)

augmented by all the null sets. Now we have the following martingale decomposition

from the classical result in [2, Proposition 3].
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Proposition 5.3. The following are FN-martingales, for i > 1:

MN
A,i(t) := NA,i

(

λ(N)

∫ t

0
pN
i−1(Q

N(s))ds

)

− λ(N)

∫ t

0
pN
i−1(Q

N(s))ds,

MN
D,i(t) := ND,i

(∫ t

0
µN
i (QN(s))ds

)

−

∫t

0
µN
i (QN(s))ds,

(5.6)

with respective compensator and predictable quadratic variation processes given by

〈MN
A,i〉(t) := λ(N)

∫ t

0
pN
i−1(Q

N(s−))ds,

〈MN
D,i〉(t) :=

∫ t

0
µN
i (QN(s))ds.

Therefore, finally we have the following martingale representation of the Nth process:

QN
i (t) = QN

i (0) + λ(N)

∫ t

0
pN
i−1(Q

N(s))ds

−

∫ t

0
µN
i (QN(s))ds+ (MN

A,i(t) −MN
D,i(t)), t > 0, i = 1, . . . ,B.

(5.7)

In the proposition below, we prove that the martingale part vanishes when scaled by N.

Since convergence in probability in each component implies convergence in probability

with respect to the product topology, it is enough to show convergence in each compo-

nent.

Proposition 5.4. For all i > 1,
{

1

N
(MN

A,i(t) −MN
D,i(t))

}

t>0

L−→
{
m(t)

}

t>0
≡ 0.

Proof. Fix any T > 0, and i > 1. From Doob’s inequality [11, Theorem 1.9.1.3], we have

P

(

sup
t∈[0,T ]

1

N
MN

A,i(t) > ǫ

)

= P

(

sup
t∈[0,T ]

MN
A,i(t) > Nǫ

)

6
1

N2ǫ2
E

(

〈MN
A,i〉(T)

)

6
1

Nǫ2

∫T

0
pi−1(Q

N(s−))λNds

6
λT

Nǫ2
→ 0, as N → ∞.

Similarly, for MN
D,i,

P

(

sup
t∈[0,T ]

1

N
MN

D,i(t) > ǫ

)

= P

(

sup
t∈[0,T ]

MN
D,i(t) > Nǫ

)

6
1

N2ǫ2
E

(

〈MN
D,i〉(T)

)

6
1

N2ǫ2

∫T

0
µN
i (QN(s))ds

6
2L ′

Nǫ2
→ 0, as N → ∞,
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where the last inequality follows from the linear growth constraint in Assumption 1 (c).

Therefore we have uniform convergence over compact sets, and hence with respect to the

Skorohod-J1 topology.

5.2 Relative compactness and uniqueness

Now we will first prove the relative compactness of the sequence of fluid-scaled pro-

cesses. Recall that we denote all the fluid-scaled quantities by their respective small let-

ters, e.g. qN(t) := QN(t)/N, componentwise, i.e., qN
i (t) := QN

i (t)/N for i > 1. Therefore

the martingale representation in (5.7), can be written as

qN
i (t) = qN

i (0) +
λ(N)

N

∫ t

0
pN
i−1(Q

N(s))ds

−

∫t

0

1

N
µN
i (QN(s))ds+

1

N
(MN

A,i(t) −MN
D,i(t)), i = 1, 2, . . . ,B,

(5.8)

or equivalently,

qN
i (t) = qN

i (0) +
λ(N)

N

∫ t

0
fi(q

N(s))1[ZN(s)∈Ri]
ds

−

∫t

0

1

N
µN
i (QN(s))ds+

1

N
(MN

A,i(t) −MN
D,i(t)), i = 1, 2, . . . ,B.

(5.9)

Now, we consider the Markov process (qN, ZN)(·) defined on S×G. Define a random

measure αN on the measurable space ([0,∞)×G,C⊗ G), when [0,∞) is endowed with

Borel sigma algebra C, by

αN(A1 ×A2) :=

∫

A1

1[ZN(s)∈A2]
ds, (5.10)

for A1 ∈ C and A2 ∈ G. Then the representation in (5.9) can be written in terms of the

random measure as,

qN
i (t) = qN

i (0) + λ

∫

[0,t]×Ri

fi(q
N(s))dαN

−

∫t

0

1

N
µN
i (QN(s))ds+

1

N
(MN

A,i(t) −MN
D,i(t)), i = 1, 2, . . . ,B.

(5.11)

Let L denote the space of all measures on [0,∞)×G satisfying γ([0, t],G) = t, endowed

with the topology corresponding to weak convergence of measures restricted to [0, t]×G

for each t.

Proposition 5.5. Assume qN(0)
L−→ q(0) as N → ∞, then

{
(qN(·),αN)

}
is a relatively compact

sequence in DS[0,∞)× L and the limit
{
(q(·),α)

}
of any convergent subsequence satisfies

qi(t) = qi(0) + λ

∫

[0,t]×Ri

fi(q(s))dα−

∫t

0
µi(q(s))ds, i = 1, 2, . . . ,B. (5.12)

Remark 5.6. Proposition 5.5 is true even when the function f in the assignment probability

depends on N. In that case the proof will go through by assuming that fN converges

uniformly to some Lipschitz continuous function f in the sense of Assumption 1.(a).
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Remark 5.7. The relative compactness result in the above proposition holds for an even

more general class of assignment probabilities than those considered above. Since the

proof will follow a nearly identical line of arguments, we briefly mention them here.

Consider a scheme for which the assignment probabilities can be written as

pN
i (QN) = η11[ZN∈Ri]

+ η2gi(q
N), i = 1, . . . ,B,

for some fixed η1, η2 ∈ [0, 1], and some Lipschitz continuous function g = (g1,g2, . . . ,gB) :

S → [0,∞)B. The above scheme assigns a fixed fraction η1 of incoming tasks according

to the ordinary JSQ policy, and a fraction η2 as some suitable function of the fluid-scaled

occupancy states g(q), for q ∈ S. In practice, the above scheme can handle (two or more)

priorities among the incoming tasks, by assigning the high-priority tasks in accordance

with the ordinary JSQ policy, and others governed by the JSQ(d) scheme, say. In that

case, the fluid limit in (5.12) will become

qi(t) = qi(0)+λη1α([0, t]×Ri)+η2

∫ t

0
gi(q(s))ds−

∫ t

0
µi(q(s))ds, i = 1, 2, . . . ,B. (5.13)

To prove Proposition 5.5, we will verify the conditions of relative compactness from [5].

Let (E, r) be a complete and separable metric space. For any x ∈ DE[0,∞), δ > 0 and

T > 0, define

w ′(x, δ, T) = inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

r(x(s), x(t)), (5.14)

where
{
ti
}

ranges over all partitions of the form 0 = t0 < t1 < . . . < tn−1 < T 6 tn
with min16i6n(ti − ti−1) > δ and n > 1. Below we state the conditions for the sake of

completeness.

Theorem 5.8. [5, Corollary 3.7.4] Let (E, r) be complete and separable, and let
{
Xn

}

n>1
be a

family of processes with sample paths in DE[0,∞). Then
{
Xn

}

n>1
is relatively compact if and

only if the following two conditions hold:

(a) For every η > 0 and rational t > 0, there exists a compact set Γη,t ⊂ E such that

lim
n→∞

P
(Xn(t) ∈ Γη,t) > 1 − η.

(b) For every η > 0 and T > 0, there exists δ > 0 such that

lim
n→∞

P

(

w ′(Xn, δ, T) > η
)

6 η.

Proof of Proposition 5.5. The proof goes in two steps. We first prove the relative compact-

ness, and then show that the limit satisfies (5.12).

Observe from [5, Proposition 3.2.4] that, to prove the relative compactness of the pro-

cess
{
(qN(·),αN)

}
, it is enough to prove relative compactness of the individual compo-

nents. Note that, from Prohorov’s theorem [5, Theorem 3.2.2], L is compact, since G is

compact. Now, relative compactness of αN follows from the compactness of L under the

topology of weak convergence of measures and Prohorov’s theorem.

To claim the relative compactness of
{

qN(·)
}

, first observe that [0, 1]B is compact

with respect to product topology, and S is a closed subset of [0, 1]B, and hence S is also
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compact with respect to product topology. So, the compact containment condition (a) of

Theorem 5.8 is satisfied by taking Γη,t ≡ S.

For condition (b), we will show for each coordinate i, that for any η > 0, there exists

δ > 0, such that for any t1, t2 > 0 with |t1 − t2| < δ,

lim
n→∞

P
(|qn

i (t1) − qn
i (t2)| > η) = 0.

With respect to product topology, this will imply that for any η > 0, there exists δ > 0,

such that for any t1, t2 > 0 with |t1 − t2| < δ,

lim
n→∞

P
(‖qn(t1) − qn(t2)‖ > η) = 0,

which in turn will imply condition (b) in Theorem 5.8. To see this, observe that for any

fixed η > 0 and T > 0, we can choose δ ′ > 0 small enough, so that for any fine enough

finite partition 0 = t0 < t1 < . . . < tn−1 < T 6 tn of [0, T ] with min16i6n(ti − ti−1) > δ ′

and max16i6n(ti − ti−1) < δ, limn→∞P (‖qn(ti) − qn(ti+1)‖ > η) = 0 for all 1 6 i 6 n.

Now fix any 0 6 t1 < t2 < ∞, and 1 6 i 6 B.

|qN
i (t1) − qN

i (t2)|

6 λαN([t1, t2]×Ri) +

∫ t2

t1

1

N
µN
i (QN(s))ds

+
1

N
|MN

A,i(t1) −MN
D,i(t1) −MN

A,i(t2) +MN
D,i(t2)|

6 λ ′(t2 − t1) +
1

N
|MN

A,i(t1) −MN
D,i(t1) −MN

A,i(t2) +MN
D,i(t2)|,

for some λ ′ ∈ R, using the linear growth constraint of µN due to Assumption 1(c). Now,

from Proposition 5.4, we get, for any T > 0,

sup
t∈[0,T ]

1

N
|MN

A,i(t1) −MN
D,i(t1) −MN

A,i(t2) +MN
D,i(t2)|

P−→ 0.

To prove that the limit
{
(q(·),α)

}
of any convergent subsequence satisfies (5.12), we will

use the continuous-mapping theorem [30, Section 3.4]. Specifically, we will show that

the right side of (5.11) is a continuous map of suitable arguments. Let
{

q(t)
}

t>0
and

{
y(t)

}

t>0
be an S-valued and an RB-valued cádlág function, respectively. Also, let α be

a measure on the measurable space ([0,∞)×G,C⊗ G). Then for q0 ∈ S, define for i > 1,

Fi(q,α, q0, y)(t) := q0
i + yi(t) + λ

∫

[0,t]×Ri

fi(q(s))dα−

∫t

0
µi(q(s))ds.

Observe that it is enough to show F = (F1, . . . , FB) is a continuous operator. Indeed, in

that case the right side of (5.11) can be written as F(qN,αN, qN(0), yN), where yN =

(yN
1 , . . . ,yN

B ) with yN
i = (MN

A,i −MN
D,i)/N, and since each argument converges we will

get the convergence to the right side of (5.12). Therefore, we now prove the continuity of

F below. In particular assume that the sequence of processes
{
(qN, yN)

}

N>1
converges to

{
(q, y)

}
, for any fixed t > 0, the measure αN([0, t], ·) on G converges weakly to α([0, t], ·),

and the sequence of S-valued random variables qN(0) converges weakly to q(0). Fix any

T > 0 and ε > 0.
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(i) Choose N1 ∈ N, such that supt∈[0,T ]

∥

∥qN(t) − q(t)
∥

∥ < ε/(4TCµ). In that case, ob-

serve that

sup
t∈[0,T ]

∫t

0

∥

∥µ(qN(s)) −µ(q(s))
∥

∥ds 6 T sup
t∈[0,T ]

∥

∥µ(qN(t)) −µ(q(t))
∥

∥

6 TCµ sup
t∈[0,T ]

∥

∥qN(t)) − q(t)
∥

∥ <
ε

4
,

where we have used the Lipschitz continuity of µ due to Assumption 1(b).

(ii) Choose N2 ∈ N, such that supt∈[0,T ]

∥

∥yN(t) − y(t)
∥

∥ < ε/4,

(iii) Choose N3 ∈ N, such that

∑

i>1

λ

2i

∣

∣

∣

∣

∫

[0,T ]×Ri

fi(q
N(s))dαN −

∫

[0,T ]×Ri

fi(q(s))dα

∣

∣

∣

∣

<
ε

4
.

This can be done as follows: choose M ∈ N large enough so that
∑

i>M 2−i < ε/8.

Now for i 6 M, since αN([0, T ], ·) converges weakly to α([0, T ], ·), and M is finite, we

can choose N3 ∈ N such that

M∑

i=1

λ

2i

∣

∣

∣

∣

∫

[0,T ]×Ri

fi(q
N(s))dαN −

∫

[0,T ]×Ri

fi(q(s))dα

∣

∣

∣

∣

6

M∑

i=1

λ

2i

∫

[0,T ]×Ri

|fi(q
N(s)) − fi(q(s))|dα

N +

M∑

i=1

λ

2i
|αN([0, T ]×Ri) − α([0, T ]×Ri)|

6

M∑

i=1

λ

2i
TCf sup

s∈[0,T ]

∥

∥qN(s) − q(s)
∥

∥+

M∑

i=1

λ

2i
|αN([0, T ]×Ri) −α([0, T ]×Ri)| <

ε

4
.

(iv) Choose N4 ∈ N, such that
∥

∥qN(0) − q(0)
∥

∥ < ε/4.

Let N̂ = max
{
N1,N2,N3,N4

}
, then for N > N̂,

sup
t∈[0,T ]

∥

∥F(qN,αN, qN(0), yN) − F(q,α, q(0), y)
∥

∥ (t) < ε.

Thus the proof of continuity of F is complete.

To characterize the limit in (5.12), for any q ∈ S, define the Markov process Zq on G

as

Zq →
{

Zq + ei at rate µi(q)

Zq − ei at rate λ1[Zq∈Ri]
,

(5.15)

where ei is the ith unit vector, i = 1, . . . ,B.

Proof of Theorem 5.1. Having proved the relative compactness in Proposition 5.5, it follows

from analogous arguments as used in the proof of [8, Theorem 3], that the limit of any

convergent subsequence of the sequence of processes
{

qN(t)
}

t>0
satisfies

qi(t) = qi(0) + λ

∫ t

0
πq(s)(Ri)ds−

∫ t

0
µi(q(s))ds, i = 1, 2, . . . ,B, (5.16)
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for some stationary measure πq(t) of the Markov process Zq(t) described in (5.15) satisfy-

ing πq

{
Z : Zi = ∞

}
= 1 if qi < 1.

Now it remains to show that q(t) uniquely determines πq(t), and that πq(s)(Ri) =

pi−1(q(s)) described in (5.2). As mentioned earlier, in this proof we will now assume the

specific assignment probabilities in (5.1), corresponding to the ordinary JSQ policy. To see

this, fix any q = (q1, . . . ,qB) ∈ S, and assume that there exists m > 0, such that qm+1 < 1

and q1 = . . . = qm = 1, with the convention that q0 ≡ 1 and qB+1 ≡ 0 if B < ∞. In that

case,

πq

({
Zm+1 = ∞,Zm+2 = ∞, . . . ,ZB = ∞

})
= 1.

Also, note that qi = 1 forces dqi/dt 6 0, i.e., λπq(Ri) 6 µi(q) for all i = 1, . . . ,m, and in

particular πq(Ri) = 0 for all i = 1, . . . ,m− 1. Thus,

πq

({
Z1 = 0,Z2 = 0, . . . ,Zm−1 = 0

})
= 1.

Therefore, πq is determined only by the stationary distribution of the mth component,

which can be described as a birth-death process

Z →
{
Z+ 1 at rate µm(q)

Z− 1 at rate λ1[Z>0]

(5.17)

and let π(m) be its stationary distribution. Now it is enough to show that π(m) is uniquely

determined by µm(q). First observe that the process on Z̄ described in (5.17) is reducible,

and can be decomposed into two irreducible classes given by Z and {∞}, respectively.

Therefore, if π(m)(Z = ∞) = 0 or 1, then it is unique. Indeed, if π(m)(Z = ∞) = 0,

then Z is birth-death process on Z only, and hence it has a unique stationary distribution.

Otherwise, if π(m)(Z = ∞) = 1, then it is trivially unique. Now we distinguish between

two cases depending upon whether µm(q) > λ or not.

Note that if µm(q) > λ, then π(m)(Z > k) = 1 for all k > 0. On Z̄ this shows that

π(m)(Z = ∞) = 1. Furthermore, if µm(q) < λ, we will show that π(m)(Z = ∞) = 0. On

the contrary, assume π(m)(Z = ∞) = ε ∈ (0, 1]. Also, let π̂(m) be the unique stationary

distribution of the birth-death process in (5.17) restricted to Z. Therefore,

π(m)(Z > 0) = π̂(m)(Z > 0) + ε > π̂(m)(Z > 0) =
µm(q)

λ
,

and πq(Rm) = π(m)(Z > 0) > µm(q)/λ. Putting this value in the fluid-limit equation (5.3),

we obtain that dqm(t)/dt > 0. Since qm(t) = 1, this leads to a contradiction, and hence

it must be the case that π(m)(Z = ∞) = 0.

Therefore, for all q ∈ S, πq is uniquely determined by q. Furthermore, we can identify

the expression for πq(Ri) as

πq(Ri) =






min
{
µi(q)/λ, 1

}
for i = m,

1 − min
{
µi(q)/λ, 1

}
for i = m+ 1,

0 otherwise,

(5.18)

and hence πq(s)(Ri) = pi−1(q(s)) as claimed.
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6 Diffusion Limit of JSQ: Non-integral λ

In this section we establish the diffusion-scale behavior of the ordinary JSQ policy in the

case when λ is not an integer, i.e., f > 0. Recall that f(N) = λ(N) −KN. In this regime, let

us define the following centered and scaled processes:

Q̄N
i (t) = N−QN

i (t) > 0 for i 6 K− 1

Q̄N
K (t) :=

N−QN
K (t)

log(N)
> 0

Q̄N
K+1(t) :=

QN
K+1(t) − f(N)√

N
∈ R

Q̄N
i (t) := QN

i (t) > 0 for i > K+ 2.

(6.1)

Theorem 6.1. [Diffusion limit for JSQ policy; f > 0] Assume Q̄N
i (0)

L−→ Q̄i(0) in R, i > 1,

and λ(N)/N → λ > 0 as N → ∞, with f = λ− ⌊λ⌋ > 0, then

(i) limN→∞P

(

supt∈[0,T ] Q̄
N
K−1(t) 6 1

)

= 1, and
{
Q̄N

i (t)
}

t>0

L−→
{
Q̄i(t)

}

t>0
, where

Q̄i(t) ≡ 0, provided limN→∞P

(

Q̄N
K−1(0) 6 1

)

= 1, and Q̄N
i (0)

P−→ 0 for i 6 K− 2.

(ii)
{
Q̄N

K (t)
}

t>0
is a stochastically bounded sequence of processes in D

R

[0,∞).

(iii)
{
Q̄N

K+1(t)
}

t>0

L−→
{
Q̄K+1(t)

}

t>0
, where Q̄K+1(t) is given by the Ornstein-Uhlenbeck

process satisfying the following stochastic differential equation:

dQ̄K+1(t) = −Q̄K+1(t)dt+
√

2λdW(t),

where W(t) is the standard Brownian motion, provided Q̄N
K+1(0)

L−→ Q̄K+1(0) in R.

(iv) For i > K+ 2,
{
Q̄N

i (t)
}

t>0

L−→
{
Q̄i(t)

}

t>0
, where Q̄i(t) ≡ 0, provided Q̄N

i (0)
P−→ 0.

Note that statements (i) and (ii) in Theorem 6.1 imply statement (i) in Theorem 2.3,

for the JSQ policy, while (iii) and (iv) in Theorem 6.1 are equivalent with statements (ii)

and (iii) in Theorem 2.3. In view of the universality result in Corollary 3.4, it thus suffices

to prove Theorem 6.1.

The rest of this section is devoted to the proof of Theorem 6.1. From a high level, the

idea of the proof is the following. Introduce

YN(t) :=

B∑

i=1

QN
i (t), DN

+ (t) :=

K∑

i=1

(N−QN
i (t)), DN

− (t) :=

B∑

i=K+2

QN
i (t). (6.2)

and observe that

QN
K+1(t) + KN =

B∑

i=1

QN
i (t) +

K∑

i=1

(N−QN
i (t)) −

B∑

i=K+2

QN
i (t)

= YN(t) +DN
+ (t) −DN

− (t).

We show in Proposition 6.4 that the sequence of processes
{
DN

+ (t)
}

t>0
is OP(log(N)),

which implies that the number of server pools with fewer than K active tasks is negligible
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on
√
N-scale. Furthermore, in Proposition 6.3 we prove that since λ < B the number

of tasks that are assigned to server pools with at least K+ 1 tasks converges to zero in

probability and hence, for a suitable starting state,
{
DN

− (t)
}

t>0
converges to the zero

process. As we will show, this also means that YN(t) behaves with high probability as

the total number of tasks in an M/M/∞ system. Therefore with the help of the following

diffusion limit result for the M/M/∞ system in [21, Theorem 6.14], we conclude the proof

of statement (iii) of Theorem 6.1.

Theorem 6.2 ([21, Theorem 6.14]). Let
{
YN
∞(t)

}

t>0
be the total number of tasks in an M/M/∞

system with arrival rate λ(N) and unit-mean service time. If (YN
∞(0) − λ(N))/

√
N → v ∈ R,

then the process
{
ȲN
∞(t)

}

t>0
, with

ȲN
∞(t) =

YN
∞(t) − λ(N)√

N
,

converges weakly to an Ornstein-Uhlenbeck process
{
X(t)

}

t>0
described by the stochastic differ-

ential equation

X(0) = v, dX(t) = −X(t)dt+
√

2λdW(t).

The next two propositions state asymptotic properties of
{
DN

+ (t)
}

t>0
and

{
DN

− (t)
}

t>0

mentioned before, which play a crucial role in the proof of Theorem 6.1. Let BN
K+1(t) be

the cumulative number of tasks up to time t that are assigned to some server pool having

at least K+ 1 active tasks if B > K+ 1, and that are lost if B = K+ 1.

Proposition 6.3. Under the assumptions of Theorem 6.1, for any T > 0, BN
K+1(T)

P−→ 0, and

consequently, supt∈[0,T ]D
N
− (t)

P−→ 0 as N → ∞, provided DN
− (0)

P−→ 0.

Informally speaking, the above proposition implies that for large N, there will be

almost no server pool with K+ 2 or more tasks in any finite time horizon, if the system

starts with no server pools with more than K+ 1 tasks. The next proposition shows that

the number of server pools having fewer than K tasks is of order log(N) in any finite time

horizon.

Proposition 6.4. Under the assumptions of Theorem 6.1, the sequence
{
DN

+ (t)/ log(N)
}

t>0

is stochastically bounded in D
R

[0,∞), provided
{
DN

+ (0)/ log(N)
}

N>1
is a tight sequence of

random variables.

Before providing the proofs of the above two propositions, we first prove Theorem 6.1

using Propositions 6.3 and 6.4.

Proof of Theorem 6.1. First observe that (iv) and (ii) immediately follows from Proposi-

tions 6.3 and 6.4, respectively.

To prove (i), fix any T > 0. We will show that

lim
N→∞

P

(

sup
t∈[0,T ]

K−1∑

i=1

Q̄N
i (t) 6 1

)

= 1. (6.3)

Since Q̄N
i 6 1 implies that Q̄N

i−1 6 1 for i = 2, . . . ,K, this then completes the proof of (i).

Note that the process
∑K−1

i=1 Q̄N
i (·) increases by one when there is a departure from some
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server pool with at most K− 1 active tasks, and if positive, decreases by one whenever

there is an arrival. Therefore it can be thought of as a birth-death process with state-

dependent instantaneous birth rate
∑K−1

i=1 i(QN
i (t)−QN

i+1(t)), and constant instantaneous

death rate λ(N). Since

K−1∑

i=1

i(QN
i (t) −QN

i+1(t)) =

K−1∑

i=1

QN
i (t) − (K− 1)QN

K (t) 6 (K− 1)(N−QN
K (t)),

the process
{∑K−1

i=1 Q̄N
i (t)

}

t>0
is stochastically upper bounded by a birth-and-death pro-

cess
{
ZN(t)

}

t>0
with birth rate (K− 1)(N−QN

K (t)) and constant death rate λ(N). Due to

(ii), we can claim that for any nonnegative sequence ℓ(N) diverging to infinity,

lim
N→∞

P

(

sup
t∈[0,T ]

(N−QN
K (t)) 6 ℓ(N) log(N)

)

= 1.

Let
{
ηN(n)

}

n>1
denote the discrete uniformized chain of the upper bounding birth-death

process. Also, let KN(t) denote the number of jumps taken up to time t by
{
ηN(n)

}

n>1
.

Since the jump rate of the process is O(N), we have for any nonnegative sequence ℓ0(N)

diverging to infinity, and for any T > 0,

lim
N→∞

P

(

KN(T) 6 Nℓ0(N)
)

= 1.

Given QN
K , considering the ηN(·) Markov chain, the probability of one birth is bounded

from above by

pQN
K
=

(K− 1)(N−QN
K )

N+ (K− 1)(N−QN
K )

.

Now, ZN(·) will exceed 1 if and only if there are at least two successive births. Hence,

P

(

sup
t∈[0,T ]

ZN(t) 6 1

)

= P

(

sup
n6KN(T)

ηN(n) 6 1

)

> P

(

sup
n6Nℓ0(N)

ηN(n) 6 1

)

P

(

KN(T) 6 Nℓ0(N)
)

+P
(

KN(T) > Nℓ0(N)
)

.

(6.4)

Again we can write the first term of the last inequality above as

P

(

sup
n6Nℓ0(N)

ηN(n) 6 1

)

> P

(

sup
n6Nℓ0(N)

ηN(n) 6 1

∣

∣

∣

∣

∣

sup
t∈[0,T ]

(N−QN
K (t)) 6 ℓ(N) log(N)

)

×P
(

sup
t∈[0,T ]

(N−QN
K (t)) 6 ℓ(N) log(N)

)

>

(

1 −

(

(K− 1)ℓ(N) log(N)

N+ (K− 1)ℓ(N) log(N)

)2
)Nℓ0(N)

×P
(

sup
t∈[0,T ]

(N−QN
K (t)) 6 ℓ(N) log(N)

)

.
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If we choose ℓ(N) and ℓ0(N) such that ℓ(N)2ℓ0(N) log(N)/N → 0 as N → ∞, then the

expression on the right of (6.4) converges to 1 (one can see that this choice is always

feasible). Hence the proof of (i) is complete.

For (iii), recall that YN
∞(t) denotes the total number of tasks in an M/M/∞ system

with arrival rate λ(N) and exponential service time distribution with unit mean. Also,

Proposition 6.3 implies that under the assumptions of the theorem, in any finite time

horizon, with high probability there will be no arrival to a server pool with K+ 1 or more

active tasks. Now observe that since B > K+ 1, for any T > 0,

P

(

∃ t ∈ [0, T ] : YN(t) 6= YN
∞(t)

)

6 P
(

∃ t ∈ [0, T ] : BN
K+1(t) > 1

)

→ 0, as N → ∞.

Propositions 6.3 and 6.4 then yield

sup
t∈[0,T ]

1√
N

∣

∣QN
K+1(t) − f(N) − (YN

∞ (t) − λ(N))
∣

∣

= sup
t∈[0,T ]

1√
N

∣

∣

∣

∣

∣

B∑

i=1

QN
i (t) +

K∑

i=1

(N−QN
i (t)) −

B∑

i=K+2

QN
i (t) − KN− f(N) − (YN

∞(t) − λ(N))

∣

∣

∣

∣

∣

= sup
t∈[0,T ]

1√
N

[

YN(t) − YN
∞(t) +D+

N(t) −DN
− (t)

]

→ 0,

as N → ∞, which in conjunction with [21, Theorem 6.14], as mentioned earlier, gives the

desired diffusion limit.

Proof of Proposition 6.3. Couple the M/M/∞ system and a system under the ordinary JSQ

policy in the natural way, until an overflow event occurs in the latter system. Observe

that for any fixed M > 0, the event
[

supt∈[0,T ] B
N
K+1(t) > M

]

will occur only if for some

t ′ 6 T , some arriving task is assigned to a server pool with more than K active tasks,

and in that case, there exists t ′′ 6 t ′, such that YN(t ′′) > (λ+ ε)N, for some ε > 0 with

λ+ ε < 1. Since, for any t ∈ [0, t ′′], YN(t) = YN
∞(t), we have

sup
t∈[0,T ]

BN
K+1(t) > M

=⇒ sup
t ′′∈[0,t ′]

YN(t ′′) > (λ+ ε)N

=⇒ sup
t ′′∈[0,t ′]

YN
∞(t ′′) > (λ+ ε)N

=⇒ sup
t∈[0,T ]

(YN
∞(t) − λ(N)) > εN+ o(N)

=⇒ sup
t∈[0,T ]

1√
N
(YN

∞(t) − λ(N)) > ε
√
N+ o(

√
N).

(6.5)

From Theorem 6.14 of [21], we know that the process
{
(YN(t)−λ(N))/

√
N
}

t>0
is stochas-

tically bounded. Hence, Equation (6.5) yields that for any T > 0, supt∈[0,T ] B
N
K+1(t) con-

verges to zero in probability as N → ∞. Consequently, from the assumption of Theo-

rem 6.1 that DN
− (0)

P−→ 0, the conclusion supt∈[0,T ]D
N
− (t)

P−→ 0, is immediate.
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Proof of Proposition 6.4. Observe that
∑K

i=1(N−QN
i (·)) increases by one when there is a

departure from some server pool with at most K active tasks, and if positive, decreases

by one whenever there is an arrival. Therefore the process
{
DN

+ (t)
}

t>0
increases by one

at rate
∑K

i=1 i(Qi(t) −Qi+1(t)) =
∑K

i=1(Qi(t) −QK+1(t)), and while positive, decreases

by one at constant rate λ(N). Now, to prove stochastic boundedness of the sequence of

processes
{
DN

+ (t)/ log(N)
}

t>0
, we will show that for any fixed T > 0 and any function

ℓ(N) diverging to infinity (i.e., such that ℓ(N) → ∞ as N → ∞),

P

(

sup
t∈[0,T ]

DN
+ (t) > ℓ(N) log(N)

)

→ 0. (6.6)

Let
{
XN(n)

}

n>0
be the discrete jump chain, and KN(t) be the number of jumps before

time t, of the process
{
DN

+ (t)
}

t>0
. Hence, for any fixed T > 0,

P

(

sup
t∈[0,T ]

DN
+ (t) > ℓ(N) log(N)

)

= P

(

sup
n6KN(T)

XN(n) > ℓ(N) log(N)

)

6 P

(

sup
n6Nℓ0(N)

XN(n) > ℓ(N) log(N)

)

P
(KN(T) 6 Nℓ0(N))

+P (KN(T) > Nℓ0(N)) ,

(6.7)

for some function ℓ0(N) : N → N, to be chosen according to Lemma 6.5 below. Now,

observe that KN(T) is upper bounded by a Poisson random variable with parameter

λ(N)T +
∫T

0

∑K
i=1(Qi(s) −QK+1(s))ds, and

∑K
i=1(Qi(s) −QK+1(s)) 6 KN. Hence for

any function ℓ0(N) diverging to infinity, we have

P
(KN(T) > Nℓ0(N)) → 0.

To control the first term, it is enough to note that
∑K

i=1(Qi(t) −QK+1(t)) 6 KN <

λN. Hence the process
{
XN(n)

}

n>1
can be stochastically upper bounded by the process

{
X̂N(n)

}

n>1
, defined as follows:

X̂N(n+ 1) =

{
X̂N(n) + 1 with prob. K/(K+ λ)

(X̂N(n) − 1)∨ 0 with prob. λ/(K+ λ)
(6.8)

Therefore combining Lemma 6.5 below for the above Markov process
{
X̂N(n)

}

n>0
with

Equation (6.7) we obtain Equation (6.6). Hence the proof is complete.

Lemma 6.5. For any function ℓ(N) : N→ N, diverging to infinity, there exists another function

ℓ0(N) : N→ N, diverging to infinity, such that

P

(

sup
n6Nℓ0(N)

X̂N(n) > ℓ(N) log(N)

)

→ 0.
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Proof. We will use a regenerative approach to prove the lemma. Let p := K/(K+ λ). Note

that then p < q := 1 − p. Define the ith regeneration time ρi of the Markov chain as

follows: ρ0 = 0, and ρi := min
{
k > ρi−1 : X̂k = 0

}
, for i > 1. Also define, mi :=

max
{
X̂k : ρi−1 6 k < ρi

}
, for i > 1, and ξ(n) := min

{
i : ρi > n

}
, for n > 1. Now

observe that [6, XIV.2],

P
(mi > M) = p×

q
p
− 1

(

q
p

)M

− 1

6 a−M, (6.9)

for some a > 1, since q/p > 1. Thus the tail of the distribution of the maximum attained

in one regeneration period decays exponentially. Recall that, in n steps the Markov chain

exhibits ξ(n) regenerations. Hence, for any ℓ0(N) and ℓ(N),

P

(

sup
n6Nℓ0(N)

X̂N(n) > ℓ(N) log(N)

)

= P

(

sup
i6ξ(Nℓ0(N))

mi > ℓ(N) log(N)

)

6 1 −
(

1 − a−ℓ(N) log(N)
)ξ(Nℓ0(N))

6 1 −
(

1 − a−ℓ(N) log(N)
)Nℓ0(N)

.

(6.10)

Now, for given ℓ(N), choose ℓ0(N) diverging to infinity, such that

Nℓ0(N)a−ℓ(N) log(N) → 0 as N → ∞.

Since the condition is equivalent to

log(N) + log(ℓ0(N)) − ℓ(N) log(a) log(N) → −∞,

it is evident that such a choice of ℓ0(N) is always possible. Hence, for such a choice of

ℓ0(N) the probability in Equation (6.10) converges to zero and the proof is complete.

7 Diffusion Limit of JSQ: Integral λ

In this section we analyze the diffusion-scale behavior of the ordinary JSQ policy when λ

is an integer, i.e., f = 0, and

KN− λ(N)√
N

→ β, as N → ∞,

with β ∈ R being a fixed real number. Throughout this section we assume B = K+ 1.

Thus, tasks that arrive when all the server pools have K+ 1 active tasks, are permanently

discarded. For brevity in notation, define, ZN
1 (t) =

∑K
i=1(N −QN

i (t)) and ZN
2 (t) :=

QN
K+1(t). Note that ZN

1 (t) corresponds to DN
+ (t) in the previous section. Also recall (2.6),

and define

ζN1 (t) :=
ZN

1 (t)√
N

= Q̂N
K−1(t) + Q̂N

K (t)

ζN2 (t) :=
ZN

2 (t)√
N

= Q̂N
K+1(t),

(7.1)

with Q̂N
K−1(t), Q̂

N
K (t), and Q̂N

K+1(t) as in (2.6).
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Theorem 7.1. Assume that (ζN1 (0), ζN2 (0))
L−→ (ζ1(0), ζ2(0)) in R2 as N → ∞. Then the two-

dimensional process
{
(ζN1 (t), ζN2 (t))

}

t>0
converges weakly to the process

{
(ζ1(t), ζ2(t))

}

t>0
in

D
R

2 [0,∞) governed by the following stochastic recursion equation:

ζ1(t) = ζ1(0) +
√

2KW(t) −

∫ t

0
(ζ1(s) + Kζ2(s))ds+ βt+V1(t)

ζ2(t) = ζ2(0) + V1(t) − (K+ 1)

∫ t

0
ζ2(s)ds,

where W is the standard Brownian motion, and V1(t) is the unique non-decreasing process in

D
R+

[0,∞) satisfying
∫t

0
1[ζ1(s)>0]dV1(s) = 0.

Remark 7.2. Note that YN(t)−KN = ZN
2 (t)−ZN

1 (t). Thus, under the assumption in (2.5),

the diffusion limit in Theorem 7.1 implies that

YN(·) − λ(N)√
N

=
YN(·) −KN√

N
+

KN− λ(N)√
N

L−→ ζ2(·) − ζ1(·) +β.

Writing X(t) = ζ2(t)−ζ1(t)−β, from Theorem 7.1, one can note that the process
{
X(t)

}

t>0

satisfies

dX(t) = −X(t)dt−
√

2KdW(t),

which is consistent with the diffusion-level behavior of YN(·) stated in Theorem 6.2.

Next, using the arguments in the proof of Proposition 6.4 one can see that the process

K−1∑

i=1

N−QN
i (·)√
N

= Q̂N
K−1(·)

P−→ 0,

provided Q̂N
K−1(0)

P−→ 0. Thus, Theorem 7.1 yields the diffusion limit for the ordinary JSQ

policy in the case B = K+ 1. The proof for B > K+ 1 then follows from exactly the same

arguments as provided in [4, Section 5.2]. The idea is that since the process QN
K+1(·), when

scaled by
√
N, is stochastically bounded, the probability that on any finite time interval,

it will take value N (or equivalently, all server pools will have at least K+ 1 active tasks)

vanishes as N grows large. Therefore, the dynamics of the limit of (Q̂N
K+2(·), . . . , Q̂M(·))

becomes deterministic, and the limit of Q̂N
K+1(·) for B > K+ 1 becomes a transformation

of the limit of Q̂N
K+1(·) for B = K+ 1, as described in Theorem 2.4. Hence, note that the

diffusion limit in Theorem 7.1 is equivalent to the one in Theorem 2.4. In view of the

universality result in Corollary 3.4, it thus suffices to prove Theorem 7.1.

We will use the reflection argument developed in [4] to prove Theorem 7.1. Observe

that the evolution of
{
(ZN

1 (t),ZN
2 (t))

}

t>0
can be described by the following stochastic

recursion which is explained in detail below.

ZN
1 (t) = ZN

1 (0) +A1

(∫t

0
(KN−ZN

1 (s) − KZN
2 (s))ds

)

−D1(λ(N)t) +UN
1 (t)

ZN
2 (t) = ZN

2 (0) +UN
1 (t) −D2

(∫t

0
(K+ 1)ZN

2 (t)ds

)

−UN
2 (t),

(7.2)
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where A1, D1 and D2 are unit-rate Poisson processes, and

UN
1 (t) =

∫t

0
1[ZN

1 (s)=0]dD1(λ(N)s)

UN
2 (t) =

∫t

0
1[ZN

2 (s)=C
√
N]dD1(λ(N)s).

(7.3)

The components of Equation (7.2) can be explained as follows. The process Z1(t)

increases by one when a departure occurs from a server pool with at most K active tasks,

and it decreases by one when an arriving task is assigned to a server pool with at most K

active tasks. Hence the instantaneous rate of increase at time s is given by

K∑

i=1

i(QN
i (t) −QN

i+1(t)) =

K∑

i=1

QN
i (t) −KQN

K+1(t)

= KN−

K∑

i=1

(N−QN
i (t)) −KQN

K+1(t)

= KN−ZN
1 (t) −KZN

2 (t),

and the instantaneous rate of decrease is given by the arrival rate λ(N). But ZN
1 cannot be

negative, and hence the arrivals when ZN
1 is zero, add to ZN

2 , and the rate of increase of

the ZN
2 process is given by the overflow process UN

1 . Since B = K+ 1, the rate of decrease

of ZN
2 equals the total number of tasks at server pools with exactly K+ 1 tasks, which

is given by (K+ 1)ZN
2 . This explains the rate in the Poisson process D2(·). Finally, since

ZN
2 is upper bounded by N, UN

2 is the overflow of the ZN
2 process with C =

√
N, i.e., the

number of arrivals to the system when ZN
2 = N. The existence and uniqueness of the

above stochastic recursion can be proved following the arguments in [19, Section 2].

Martingale representation We now introduce the martingale representation for (7.2),

and following similar arguments as in [4, Subsection 4.3], we obtain the following scaled,

square integrable martingales with appropriate filtration:

MN
1,1(t) =

1√
N
A1

(∫ t

0
(KN−ZN

1 (s) −KZN
2 (s))ds

)

−
1√
N

∫ t

0
(KN− ZN

1 (s) −KZN
2 (s))ds

MN
1,2(t) =

1√
N
(D1(λ(N)t) − λ(N)t)

MN
2,1(t) =

1√
N
D2

(∫t

0
(K+ 1)ZN

2 (t)ds

)

−
K+ 1√

N

∫t

0
ZN

2 (s)ds,

(7.4)

with VN
1 (t) := UN

1 (t)/
√
N and VN

2 (t) := UN
2 (t)/

√
N, and the predictable quadratic varia-

tion processes given by

〈MN
1,1〉(t) =

1

N

∫ t

0
(KN− ZN

1 (s) −KZN
2 (s))ds

〈MN
1,2〉(t) =

λ(N)t

N

〈MN
2,1〉(t) =

K+ 1

N

∫t

0
ZN

2 (s)ds.

(7.5)
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Therefore, we have the following martingale representation for (7.2):

ζN1 (t) = ζN1 (0) +MN
1,1(t) −MN

1,2(t) −

∫t

0
(ζN1 (s) +KζN2 (s))ds+

t(KN− λ(N))√
N

+VN
1 (t)

ζN2 (t) = ζN2 (0) +VN
1 (t) −MN

2,1(t) − (K+ 1)

∫ t

0
ζN2 (s)ds−VN

2 (t)

(7.6)

Convergence of independent martingales We now show the convergence of the mar-

tingales defined in (7.4) using the functional central limit theorem.

Lemma 7.3. As N → ∞,

{(
MN

1,1(t),M
N
1,2(t),M

N
2,1(t)

)}

t>0

L−→
{(√

KW1(t),
√
KW2(t), 0

)}

t>0

in D
R

3 [0,∞), where W1, W2 are independent standard Brownian motions.

Proof. From Theorem 2.1 we know that for any fixed T > 0,

sup
t∈[0,T ]

ZN
1 (t)/N

P−→ 0 and sup
t∈[0,T ]

ZN
2 (t)/N

P−→ 0.

This yields the following convergence results:

〈MN
1,1〉(T)

P−→ KT

〈MN
1,2〉(T)

P−→ λT = KT

〈MN
2,1〉(T)

P−→ 0.

(7.7)

Then, using a random time change, the continuous-mapping theorem and functional

central limit theorem [19, Theorem 4.2], [4, Lemma 6], we get the convergence of the

martingales.

Now we use the continuous-mapping theorem to prove the convergence of the pro-

cesses described in (7.6). To proceed in that direction, we need the following proposition,

which is analogous to [4, Lemma 1].

Proposition 7.4. Let B ∈ R̄+, b ∈ R2, (y1,y2) ∈ D2[0,∞), and (x1, x2) ∈ D2[0,∞) be defined

by the following recursion: for t > 0,

x1(t) = b1 + y1(t) +

∫t

0
(−x1(s) −Kx2(s))ds+ u1(t)

x2(t) = b2 + y2(t) + (K+ 1)

∫ t

0
(−x2(s))ds+ u1(t) −u2(t),

(7.8)

where u1 and u2 are unique non-decreasing functions in D, such that

∫∞

0
1[x1(s)>0]du1(t) = 0

∫∞

0
1[x2(s)<B]du2(t) = 0.

(7.9)
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Then, (x,u) is the unique solution to the above system. Furthermore, there exist functions (f,g) :

(R̄,R2,D2
R

[0,∞)) → (D2
R

[0,∞),D2
R

[0,∞)) with x = f(B,b,y) and u = g(B,b,y), which

are continuous when R̄+ is equipped with order topology, D
R

[0,∞) is equipped with topology of

uniform convergence over compact sets, and (R̄,R2,D2
R

[0,∞)) and (D2
R

[0,∞),D2
R

[0,∞)) are

equipped with product topology.

The proof of the above proposition follows from similar arguments as described in the

proof of [4, Lemma 1], and hence is omitted.

Proof of Theorem 7.1. Observe that the stochastic recursion equations described by (7.6) fit

in the framework of the recursion described by (7.8), by taking bi = ζNi (0), i = 1, 2,

C =
√
N, y1(t) = MN

1,1(t) −MN
1,2(t) + t(KN− λ(N))/

√
N, and y2(t) = −MN

2,1(t) for the Nth

process.

By the assumptions of the theorem we have ζNi (0)
L−→ ζi(0), for i = 1, 2. Also, by

Lemma 7.3,
{
(MN

1,1(t),M
N
1,2(t),M

N
2,1(t))

}

t>0

L−→
{
(
√
KW1(t),

√
KW2(t), 0)

}

t>0
. Hence, for

the limiting process, y1(t) =
√
KW1(t) −

√
KW2(t) + βt ≡

√
2KW(t) + βt and y2(t) ≡ 0.

Finally, using the continuous-mapping theorem we get the desired convergence as in the

proof of [4, Theorem 2].

8 Performance Implications

8.1 Evolution of number of tasks at tagged server pool

We now provide some insights into the steady-state dynamics of the number of tasks at

a particular server pool in the regime d(N) → ∞ as N → ∞. Due to exchangeability

of the server pools, asymptotically, the dynamics at a particular server pool depends on

the system only through the mean-field limit, or the global system state averages. Based

on the fixed point (2.2), we claim (without proof) that the steady-state dynamics can be

described as follows:

(i) If a server pool contains ⌈λ⌉ active tasks, then with high probability no further task

will be assigned to it.

(ii) Similarly, if a departure occurs from a server pool having K = ⌊λ⌋ active tasks, a task

will immediately be assigned to it.

(iii) Since the total flow of arrivals that join server pools with exactly K active tasks, are

distributed uniformly among all such server pools, each server pool with exactly K

active tasks will observe an arrival rate λpK(q
⋆)/(q⋆

K − q⋆

K+1) = (K+ 1)f/(1 − f).

(iv) Finally, the rate of departure from a server pool with K+ 1 active tasks is given by

K+ 1.

Let S
d(N)

k (t) denote the number of tasks at server pool k at time t in the Nth system under

the JSQ(d(N)) scheme. Combining all the above, provided d(N) → ∞ as N → ∞, the

process
{
S
d(N)
k (t)

}

t>0
converges in distribution to the process

{
S(t)

}

t>0
, described as

follows:
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(i) If f > 0, then
{
S(t)

}

t>0
is a two-state process, taking values K and K + 1, with

transition rate from K to K+ 1 given by (K+ 1)f/(1 − f), and from K+ 1 to K given

by K+ 1. So the steady-state distribution is P (S = K) = 1− f, and P (S = K+ 1) = f,

i.e., for i > 1, P (S = i) = q⋆

i − q⋆

i+1, which agrees with the fixed point (2.2) of the

fluid limit.

(ii) If f = 0, then
{
S(t)

}

t>0
is a constant process, taking value λ = K.

8.2 Evolution of number of tasks observed by tagged task

To analyze the performance perceived by a particular tagged task with execution time

T , observe that in steady state the probability that it will join a server pool with i active

tasks is given by pi(q
⋆) = K(1 − f)/λ for i = K− 1, (K+ 1)f/λ for i = K, and 0 otherwise.

In the time interval [0, T ], the number of active tasks in the server pool it joins, is again

a birth-death process
{
Ŝ(t)

}

06t6T
, whose dynamics is the same as of

{
S(t)

}

t>0
process

conditioned on having one permanent task (i.e., its departure is not allowed). Therefore,
{
Ŝ(t)

}

06t6T
can be described as follows:

(i) If f > 0, then
{
Ŝ(t)

}

06t6T
is a two-state process, taking values K and K+ 1, with

transition rate from K to K+ 1 given by (K+ 1)f/(1 − f), and from K+ 1 to K given

by K. The steady-state distribution of the process is then given by P
(

Ŝ = K
)

=

K(1 − f)/λ, and P
(

Ŝ = K+ 1
)

= (K+ 1)f/λ.

(ii) If f = 0, then
{
Ŝ(t)

}

06t6T
is a constant process, taking value λ = K.

Observe in both of the above two cases that the initial distribution of Ŝ(t) coincides with its

stationary distribution. Now, if the performance perceived by the tagged task is measured

as a function h : N→ R of the number of concurrent tasks, then the relevant performance

measure is given by

E

(

1

T

∫T

0
h(Ŝ(t))dt

)

=
1

λ
((1 − f)Kh(K) + f(K+ 1)h(K+ 1)), (8.1)

independent of the execution time T . Notice that if h(x) = 1/(x + 1), then the above

performance measure becomes the constant (K(K+ 2) − f)/((K+ 1)(K+ 2)).

8.3 Loss probabilities

We now examine the asymptotic behavior of the loss probability when the buffer capacity

at each server is B < ∞ and the arrival rate λ(N) satisfies (2.5) with K = B. We will

establish lower and upper bounds, and prove that these asymptotically coincide. When

the buffer capacity B is finite, to characterize the asymptotic steady-state loss probability

of the JSQ(d(N)) scheme, we bound it from below and above by that of an ordinary

and a modified Erlang loss system, respectively. The lower and upper bounds rely on a

stochastic comparison.

Suppose Y1(t) and Y2(t) are two non-explosive, continuous-time Markov processes

taking values in a complete separable metric space E. Let X1(t) and X2(t) be two birth-

death processes defined on the same probability space, with finite state spaces
{

0, 1, . . . ,n1

}
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and
{

0, 1, . . . ,n2

}
, whose birth rates are f1(X1(t), Y1(t)) and f2(X2(t), Y2(t)), and death

rates are g1(X1(t), Y1(t)) and g2(X2(t), Y2(t)), respectively.

Lemma 8.1. If n1 6 n2, and for all x ∈
{

0, 1, . . . ,n1

}
, f1(x,y1) 6 f2(x,y2) and g1(x,y1) >

g2(x,y2), for all y1,y2 ∈ E, then
{
X1(t)

}

t>0
6st

{
X2(t)

}

t>0
, provided X1(0) 6st X2(0).

Proof. The proof is fairly straightforward, but we present it briefly for the sake of com-

pleteness. First we suitably couple the two processes, and then as before, using the

forward induction on event times, we show that the inequality holds throughout the

sample path. Define the processes
(

X1(·),X2(·), Y1(·), Y2(·)
)

on the same probability space.

Due to the assumptions in the theorem, we do not need any condition on the evolu-

tion of Y1 and Y2, provided that they are defined on the same probability space. Main-

tain two exponential clocks of rate MB := max
{
f1(x1,y1), f2(x2,y2)

}
(birth-clock) and

MD := max
{
g1(x1,y1),g2(x2,y2)

}
(death-clock), respectively. When the birth-clock rings,

draw a single uniform[0, 1] random variable u say, and a birth occurs in the X1 process

and X2 process if u 6 f1(x1,y1)/MB and u 6 f2(x2,y2)/MB, respectively. Couple the

deaths also, in a similar fashion. Note that the processes thus constructed satisfy the

relevant statistical laws in terms of the transition rates f1(x1,y1) and f2(x2,y2).

Now under the above coupling we prove the inequality. Assume that the inequality

holds at event time t0, and X1(t0) = x1 and X2(t0) = x2. Note that if x1 < x2, then trivially

the inequality holds at the next event time t1. Therefore, without loss of generality,

assume x1 = x2 = x 6 n1. We will distinguish between two cases depending on whether

the birth-clock or death-clock rings at time epoch t1. In the former case, observe that since

f1(x,y1) 6 f2(x,y2) for all y1,y2 ∈ E, whenever there is a birth in the X1 process, there

will be a birth in the X2 process as well. Thus the inequality is preserved. Alternatively,

if the death-clock rings at time epoch t1, then observe that since g1(x,y1) > g2(x,y2) for

all y1,y2 ∈ E, whenever there is a death in the X2 process, there will be a death in the X1

process as well, and the inequality is preserved. This completes the proof.

Denote by Er(C, λ) an Erlang loss system with capacity C, load λ, and exponential

service times with unit mean. We further introduce a modified Erlang loss system Êr(n,d)

with capacity B(N− n), and arrival rate λ, with unit-exponential service times, where a

fraction

p(n,d) :=

(

1 −
n+ 1

N

)d

,

of tasks is rejected upfront, independent of any other processes. Note that the number of

active tasks in the Êr(n,d) system evolves like an Er(B(N− n), λp(n,d)) system.

Define C(N) := BN, Ĉ(N) := B(N− n(N)), and λ̂(N) := λ(N)p(n(N),d(N)). Denote

the total number of active tasks at time t in the Nth system following the JSQ(d(N))

scheme, an Er(C(N), λ(N)) system, and an Êr(n(N),d(N)) system by Yd(N)(t), YN
Er(t),

and YN
Êr
(t), respectively. Denote the associated steady-state loss probabilities by Ld(N),

L(C, λ) and L̂(n,d), respectively.

Lemma 8.2. For all N > 1, d(N) > 1, and n(N) < N,

(a)
{
YN

Êr
(t)

}

t>0
6st

{
Yd(N)(t)

}

t>0
6st

{
YN

Er(t)
}

t>0
,

(b) L(C(N), λ(N)) 6 Ld(N)
6 L̂(n(N),d(N)).
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Proof. (a) For the lower bound, observe that the rate of increase of the process Yd(N)(·)
is at most that of the process YN

Er(·), and the rate of decrease at any state is the same

in both processes. Thus, Lemma 8.1 implies that if both systems start from the same

occupancy states, then
{
Yd(N)(t)

}

t>0
6st

{
YN

Er(t)
}

t>0
. Consequently, in the steady state,

Yd(N)(∞) 6st Y
N
Er(∞), and invoking Little’s law yields L(C(N), λ(N)) 6 Ld(N).

For the upper bound, first observe that at any arrival, as long as one of the n(N)

lowest-ordered server pools is sampled, which occurs with probability 1− p(n(N),d(N)),

a task can only get lost when the total number of active tasks is at least B(N−n(N)). Thus

when the total number of active tasks Yd(N)(·) in the system under the JSQ(d(N)) scheme

is y, the rate of increase of Yd(N)(t) is at least λ(N)(1−p(n(N),d(N))) if y 6 B(N−n(N)),

and the rate of decrease is given by y. Comparing with the modified Erlang loss system

Êr(n(N),d(N)) and using Lemma 8.1, we obtain that if Yd(N)(0) >st Y
N
Êr
(0), then

{
Yd(N)(t)

}

t>0
>st

{
YN

Êr
(t)

}

t>0
.

The proof of the upper bound Ld(N) 6 L̂(n(N),d(N)) is then completed by again invoking

Little’s law.

(b) Little’s law implies

Ld(N) = 1 −
1

λ(N)
lim
T→∞

∫T

0
Yd(N)(t)dt,

and similarly for the Er(C(N), λ(N)) and Êr(n(N),d(N)) systems. Statement (b) then

follows from statement (a).

The proposition below states that the limiting loss probability for the JSQ(d(N))

scheme vanishes as long as d(N) → ∞.

Proposition 8.3. For any λ 6 B, if d(N) → ∞ as N → ∞, then Ld(N) → 0, as N → ∞.

Proof. From (4.11) and (4.12), we know if d(N) → ∞, then there exists n(N) such that as

N → ∞, n(N)/N → 0 and p(n(N),d(N)) → 0. For such a choice of n(N), λ(N)/C(N) →
λ/B 6 1, and λ̂(N)/Ĉ(N) → λ/B 6 1 as N → ∞. Therefore, using Lemma 8.2 and the

standard results of the Erlang loss function [9], we complete the proof of the proposition.

Remark 8.4. Note that in view of the results in [17, 18] for the JSQ(d) schemes with fixed

d, following the arguments as in Remark 3.3, the growth condition d(N) → ∞ as N → ∞

is also necessary to achieve an asymptotically zero probability of loss.

We now further show that the steady-state loss probability multiplied by
√
N con-

verges to a non-degenerate limit, which is the same as in an Er(C(N), λ(N)) system.

The next theorem also establishes that if (2.5) is satisfied, and d(N)/(
√
N log(N)) → 0

as N → ∞, then the steady-state loss probability is of higher order than 1/
√
N. This

indicates that the growth rate
√
N log(N) is not only sufficient but also nearly necessary.

Theorem 8.5 (Scaled loss probability). Assume that d(N)/(
√
N log(N)) → ∞, as N → ∞,

and λ(N) satisfies (2.5) with K = B. Then,

lim
N→∞

√
N Ld(N) =

φ(β)√
BΦ(β)

, (8.2)
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where φ(·) and φ(·) are the density and distribution function of the standard Normal distribution,

respectively.

Since the right side of (8.2) corresponds to the asymptotic steady-state loss probability

in an Er(C(N), λ(N)) system [1, 9, 29], we thus conclude that (8.2) is optimal on
√
N-scale

in terms of loss probability.

Proof of Theorem 8.5. The idea again is to suitably bound the steady-state loss probability

of the JSQ(d(N)) scheme. Using Lemma 8.2 and [1, Chapter 7, Theorem 15 (2)], [29], we

obtain the lower bound as

Ld(N)
> L(C(N), λ(N))

=⇒ lim
N→∞

√
NLd(N)

> lim
N→∞

√
NL(C(N), λ(N)) =

φ(β)√
BΦ(β)

.
(8.3)

For the upper bound, from (4.11) and (4.12), we know if d(N)/(
√
N log(N)) → ∞ as

N → ∞, then there exists n(N) with n(N)/
√
N → 0 and

√
Np(n(N),d(N)) → 0, as N → ∞. (8.4)

Take such an n(N). Again using [1, Chapter 7, Theorem 15 (2)], we know that since as

N → ∞, λ̂(N)/Ĉ(N) converges to one and Ĉ(N)/N converges to B,

lim
N→∞

√
NL(Ĉ(N), λ̂(N)) =

φ(β)√
BΦ(β)

. (8.5)

Therefore, Lemma 8.2, and Equations (8.4), (8.5) yield

lim
N→∞

√
NLd(N)

6 lim
N→∞

√
NL(C(N), λ(N)) + lim

N→∞

√
Np(n(N),d(N)) =

φ(β)√
BΦ(β)

. (8.6)

Combination of the lower bound in (8.3) and the above upper bound completes the proof.

Remark 8.6 (Almost necessary condition for growth rate). It is worthwhile to mention that

when λ = K > 0 and λ(N) satisfies (2.5), the growth condition d(N)/(
√
N log(N)) → ∞, as

N → ∞, is nearly necessary in order for the JSQ(d(N)) scheme to have the same diffusion

limit as the ordinary JSQ policy. More precisely, if d(N)/(
√
N log(N)) → 0 as N → ∞,

then the diffusion limit of the JSQ(d(N)) scheme differs from the ordinary JSQ policy.

In this remark we briefly sketch the outline of the proof. We will assume that the d(N)

server pools are chosen with replacement, to avoid cumbersome notation. But the proof

technique and the result holds if the server pools are chosen without replacement.

Assume on the contrary that as in the ordinary JSQ policy, if N−1/2(KN−
∑K

i=1 Q
d(N)
i (0))

is tight, then N−1/2(KN−
∑K

i=1 Q
d(N)
i (t)) is a stochastically bounded process. We argue

that in this case, for any finite time t, the cumulative number of tasks joining a server with

K active tasks (or the cumulative number of lost tasks in case K = B) Ld(N)(t) does not

scale with
√
N, and arrive at a contradiction. Indeed,

{
Ld(N)(t)

}

t>0
admits the following

martingale decomposition:

Ld(N)(t) = MN
L (t) + 〈MN

L 〉(t), (8.7)
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where
{
MN

L (t)
}

t>0
is a martingale with compensator and predictable quadratic variation

process given by

〈MN
L 〉(t) = λ(N)

∫ t

0

(

Q
d(N)
K (s−)/N

)d(N)

ds.

Since 〈MN
L 〉(t)/N 6 λt,

{
MN

L (t)/
√
N
}

t>0
is stochastically bounded. We will show that

〈MN
L 〉(t) is stochastically unbounded on

√
N-scale. From (8.7), this will imply that the

process
{
Ld(N)(t)/

√
N
}

t>0
is stochastically unbounded, which will complete the proof.

Note that

Q
d(N)
K (s) = N− (N−Q

d(N)
K (s)) > N−

K∑

i=1

(N−Q
d(N)
i (s)),

and hence,

〈MN
L 〉(t) > λ(N)

∫ t

0

(

1 −
1

N

K∑

i=1

(N−Q
d(N)
i (s))

)d(N)

ds

> λ(N)t

(

1 −
1

N
sup

s∈[0,t]

K∑

i=1

(N−Q
d(N)
i (s))

)d(N)

.

For any T > 0, since supt∈[0,T ]

(

KN−
∑K

i=1 Q
d(N)
i (t)

)

is OP(
√
N), for any function c(N)

growing to infinity (to be chosen later), we have with probability tending to 1,

λ(N)T√
N

(

1 −
1

N
sup

t∈[0,T ]

(

KN−

K∑

i=1

Q
d(N)
i (t)

))d(N)

>
λ(N)T√

N

(

1 −

√
Nc(N)

N

)d(N)

>
λ(N)T√

N

(

1 −
c(N)√

N

)d(N)

.

Now since d(N)/
√
N log(N) → 0 as N → ∞, define ω(N) :=

√
N log(N)/d(N), which

goes to infinity as N grows large. Choose c(N) such that c(N)/ω(N) → 0, as N → ∞. In

that case,

λ(N)T√
N

(

1 −
c(N)√

N

)d(N)

= T exp

[

log(
√
N−β) +

√
N log(N)

ω(N)
log

(

1 −
c(N)√

N

)

]

= T exp

[

log(
√
N−β) −

√
N log(N)

ω(N)

c(N)√
N

]

→ ∞ as N → ∞.

9 Conclusion

In the present paper we have investigated asymptotic optimality properties for JSQ(d)

load balancing schemes in large-scale systems. Specifically, we considered a system of N

parallel identical server pools and a single dispatcher which assigns arriving tasks to the

server with the minimum number of tasks among d(N) randomly selected server pools.
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We showed that the fluid limit in a regime where the total arrival rate and number of

server pools grow large in proportion coincides with that for the ordinary JSQ policy

(d(N) = N) as long as d(N) → ∞ as N → ∞, however slowly. We also proved that

the diffusion limit in the Halfin-Whitt regime corresponds to that for the ordinary JSQ

policy as long as d(N) grows faster than
√
N log(N), and that the latter growth rate is

in fact nearly necessary. These results indicate that the optimality of the JSQ policy can

be preserved at the fluid-level and diffusion-level while reducing the communication

overhead by nearly a factor O(N) and O(
√
N/ log(N)), respectively. In future work we

plan to further establish convergence rates and extend the results to non-exponential

service requirement distributions.

The proofs of the asymptotic optimality properties rely on a novel stochastic coupling

construction to bound the difference in the system occupancy processes between the JSQ

policy and a JSQ(d) scheme with an arbitrary value of d. It is worth observing that the

coupling construction is two-dimensional in nature, and fundamentally different from

the classical coupling approach used for deriving stochastic dominance properties for the

ordinary JSQ policy and for establishing universality in the single-server case [16]. As it

turns out, a direct comparison between the JSQ policy and a JSQ(d) scheme is a significant

challenge. Hence, we adopted a two-stage approach based on a novel class of schemes

which always assign the incoming task to one of the server pools with the n(N) + 1

smallest number of tasks. Just like the JSQ(d(N)) scheme, these schemes may be thought

of as ‘sloppy’ versions of the JSQ policy. Indeed, the JSQ(d(N)) scheme is guaranteed to

identify the server pool with the minimum number of tasks, but only among a randomly

sampled subset of d(N) server pools. In contrast, the schemes in the above class only

guarantee that one of the n(N) + 1 server pools with the smallest number of tasks is

selected, but across the entire system of N server pools. We showed that the system

occupancy processes for an intermediate blend of these schemes are simultaneously close

on a g(N) scale (e.g. g(N) = N or g(N) =
√
N) to both the JSQ policy and the JSQ(d(N))

scheme for suitably chosen values of d(N) and n(N) as function of g(N). Based on the

latter asymptotic universality, it then sufficed to establish the fluid and diffusion limits

for the ordinary JSQ policy.
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