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Abstract

Ideal matrices and clutters are prevalent in Combinatorial Optimization, ranging from balanced matrices,

clutters of T -joins, to clutters of rooted arborescences. Most of the known examples of ideal clutters are

combinatorial in nature. In this paper, rendered by the recently developed theory of cuboids, we provide a

different class of ideal clutters, one that is geometric in nature. The advantage of this new class of ideal

clutters is that it allows for infinitely many ideal minimally non-packing clutters. We characterize the densest

ideal minimally non-packing clutters of the class. Using the tools developed, we then verify the Replication

Conjecture for the class.

1 Introduction

LetE be a finite set of elements, and let C be a family of subsets ofE called members. If no member is contained

in another one, then C is a clutter over ground setE [15]. The incidence matrix of C, denotedM(C), is the matrix

whose columns are labeled by E and whose rows are the incidence vectors of the members. We say that C is

ideal if the set covering polyhedron
{
x ∈ RE : M(C)x ≥ 1, x ≥ 0

}
is integral [13]. Ideal clutters are prevalent

in the literature:

• M(C) is totally unimodular [22] or balanced [8] (also see [11], Chapter 6),

• C is the clutter of T -joins of a graft [17] (also see [11], Theorems 1.21 and 2.1),

• C is the clutter of odd circuits of a signed graph without an odd-K5 minor [19],

• C is the clutter of rooted arborescences of a directed graph [14, 18] (also see [5]).

All of these clutters are ideal because the members conform to a combinatorial pattern. In this paper, we come

up with a different class of clutters that is ideal because a geometric pattern is followed.1 To present this new

class of ideal clutters, we need to move to a different, yet equivalent framework.

1This idea first appeared in a paper by Jon Lee [24].
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Figure 1: An illustration of the coordinate system, and the convex hull of R1,1.

Take an integer n ≥ 1. A cuboid is a clutter over ground set [2n] := {1, . . . , 2n} where every member C

satisfies the following:

|C ∩ {2i− 1, 2i}| = 1 ∀i ∈ [n].

For instance, the clutter Q6 :=
{
{2, 4, 6}, {1, 3, 6}, {1, 4, 5}, {2, 3, 5}

}
of triangles of K4 is a cuboid.

When is a cuboid ideal?

This question is actually equivalent to asking when a clutter is ideal, even though cuboids form a special class

of clutters [3]. To answer it, we need to view cuboids as vertex subsets of the unit n-dimensional hypercube.

To this end, denote by {0, 1}n the vertices of the n-dimensional unit hypercube. Take a set S ⊆ {0, 1}n. We

will think of the points in S as feasible points and the points in S as infeasible points. The cuboid of S, denoted

cuboid(S), is the clutter over ground set [2n] whose members have incidence vectors

(x1, 1− x1, . . . , xn, 1− xn) x ∈ S.

Notice that every cuboid over ground set [2n] is the cuboid of an appropriate subset of {0, 1}n. For instance, Q6

is the cuboid of the set R1,1 := {000, 110, 101, 011} ⊆ {0, 1}3.

Theorem 1.1 ([3], Theorem 1.6). Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then cuboid(S) is ideal if, and

only if, S is cube-ideal.2

We say that S is cube-ideal if the convex hull of the feasible points is described by inequalities of the form

0 ≤ xi ≤ 1 i ∈ [n] (hypercube inequalities)
∑

i∈I
xi +

∑

j∈J
(1− xj) ≥ 1 I, J ⊆ [n], I ∩ J = ∅ (generalized set covering inequalities).

For instance, the set R1,1 is cube-ideal (see Figure 1), so by Theorem 1.1, Q6 is an ideal cuboid.

By Theorem 1.1, our question above is equivalent to the following:

When is a set cube-ideal?
2The dual of this statement was proved in [20, 27], where idealness of 0,±1 matrices was reduced to idealness of 0, 1 matrices.
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To answer it, take a coordinate i ∈ [n]. Denote by ei the ith unit vector. To twist S at coordinate i is to replace

S by the set

S4ei := {x4ei : x ∈ S},

where the second4 refers to coordinate-wise addition modulo 2. As twists correspond to the change of variables

xi 7→ 1 − xi, i ∈ [n], and the hypercube and generalized set covering inequalities are closed under these

transformations, if a set is cube-ideal, then so is every twisting of it.

Given a point x ∈ {0, 1}n, the induced clutter of S with respect to x is the clutter over ground set [n] whose

members are

ind(S4x) := the minimal sets of
{
C ⊆ [n] : χC ∈ S4x

}
,

where χC ∈ {0, 1}n is the incidence vector of C. Notice that if x is feasible, then ind(S4x) = {∅}. Notice

that the induced clutters of S pick up only local information about the set.

Theorem 1.2 ([3], Theorem 1.8). A set is cube-ideal if, and only if, every induced clutter is ideal.

This is the key to generating a new class of ideal clutters.

1.1 Resistant sets

Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. We say that S is resistant if for every induced clutter, the members

are pairwise disjoint. For instance, the set R1,1 = {000, 110, 101, 011} is resistant as its induced clutters are

equal to either {∅} or {{1}, {2}, {3}}. Clearly, if a set is resistant, then so is every twisting of it.

Remark 1.3. A clutter whose members are pairwise disjoint is ideal.

An immediate consequence of Theorem 1.2 and Remark 1.3 is that,

Corollary 1.4. Resistant sets are cube-ideal.

Combining this with Theorem 1.1, we obtain a new class of ideal clutters:

Corollary 1.5. Cuboids of resistant sets are ideal clutters.

Resistant sets form a rich class of cube-ideal sets. We will see several basic classes of resistant sets in §2;

let us display one of them here. Denote by Gn the skeleton graph of {0, 1}n whose vertices are the points

in {0, 1}n and two points u, v are adjacent if they differ in exactly one coordinate. A feasible component of

S is a (connected) component of the vertex induced subgraph Gn[S], while an infeasible component of S is a

component of Gn[S]. We will prove the following in §2:

Theorem 1.6. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n, where every infeasible component is a hypercube

or has maximum degree at most two. Then S is resistant.
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Figure 2: An illustration of a fragile set. Round points are feasible and square points are infeasible.

There are several binary operations that preserve resistance, one way or another. Take integers n1, n2 ≥ 1

and sets S1 ⊆ {0, 1}n1 , S2 ⊆ {0, 1}n2 . Define the product, coproduct and reflective product of S1, S2 as

S1 × S2 :=
{

(x, y) ∈ {0, 1}n1 × {0, 1}n2 : x ∈ S1 and y ∈ S2

}

S1 ⊕ S2 :=
{

(x, y) ∈ {0, 1}n1 × {0, 1}n2 : x ∈ S1 or y ∈ S2

}

S1 ∗ S2 := (S1 × S2) ∪ (S1 × S2),

respectively. Notice that S1 ⊕ S2 = S1 × S2 and S1 ∗ S2 = S1 ∗ S2. The following theorem is proved in §2:

Theorem 1.7. Take integers n1, n2 ≥ 1 and sets S1 ⊆ {0, 1}n1 , S2 ⊆ {0, 1}n2 . Then the following statements

hold:

(1) If S1 is resistant, then so is S1 × {0, 1}n2 .

(2) If S1, S2 are resistant, then so is S1 ⊕ S2.

(3) If S1, S1, S2, S2 are resistant, then so are S1 ∗ S2, S1 ∗ S2.

Take a coordinate i ∈ [n]. The set obtained from S ∩ {x : xi = 0} after dropping coordinate i is called the

0-restriction of S at coordinate i, and the set obtained from S∩{x : xi = 1} after dropping coordinate i is called

the 1-restriction of S at coordinate i. A restriction of S is a set obtained after a series of 0- and 1-restrictions.

The projection of S at coordinate i is the set obtained from S after dropping coordinate i. A projection of S is a

set obtained after a series of single projections. A minor of S is what is obtained after a series of restrictions and

projections. A minor is proper if at least one operation is applied.

We will see in §3 that if a set is resistant, then so is every minor of it. So what are the excluded minors

defining resistance? We say that two sets S, S′ are isomorphic, and denote it by S ∼= S′, if one is obtained from

the other after twisting and relabeling some coordinates. Take a set F ⊆ {0, 1}3 such that

F ∩ {000, 100, 010, 001, 101, 011} = {101, 011}.

We refer to F , and any set isomorphic to it, as fragile (see Figure 2). Observe that F is not resistant because its

induced clutter with respect to the origin has intersecting members {1, 3}, {2, 3}. We will prove the following

characterization of resistant sets in §3:

Theorem 1.8. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then the following statements are equivalent:
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(i) S is resistant,

(ii) S has no fragile restriction and no
{
0k,1k − e1

}
, k ≥ 4 isomorphic restriction,3

(iii) S has no fragile minor.

We will prove this in §3 (0k,1k denote the k-dimensional vectors whose entries are 0, 1, respectively). In that

section, we will also prove the following statement:

Theorem 1.9. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then in time O(n4|S|3), one can test whether or

not S is resistant.

1.2 When do cuboids of resistant sets have the packing property?

Let C be a clutter over ground set E. We say that C packs if the maximum number of pairwise disjoint members

is equal to the minimum number of elements needed to intersect every member. For instance, the clutter of edges

of a bipartite graph over the vertex set packs [23], while the clutter Q6 does not [26, 28]. Given disjoint subsets

I, J ⊆ E, the minor of C obtained after deleting I and contracting J is the clutter over ground set E − (I ∪ J)

whose members are

C \ I/J := the minimal sets of {C − J : C ∈ C, C ∩ I = ∅}.

A minor is proper if I ∪ J 6= ∅. We say that C has the packing property if every minor of it, including C itself,

packs [12]. A consequence of Lehman’s theorem [25] is that clutters with the packing property are ideal [12].

The converse however is not true, even for cuboids of resistant sets, asQ6 shows. So when do cuboids of resistant

sets have the packing property?

Take an integer n ≥ 1. Two points a, b ∈ {0, 1}n are antipodal if a + b = 1. We say that S ⊆ {0, 1}n

is polar if either there are antipodal feasible points or the feasible points all agree on a coordinate; otherwise it

is non-polar. We say that S is strictly polar if every restriction of it, including S itself, is polar. We need the

following result:

Theorem 1.10 ([3], Theorem 1.11). Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then cuboid(S) has the

packing property if, and only if, S is strictly polar and every induced clutter of it has the packing property.

The reader can easily verify the following remark:

Remark 1.11. A clutter whose members are pairwise disjoint has the packing property.

As a consequence,

Corollary 1.12. Take an integer n ≥ 1 and a resistant set S ⊆ {0, 1}n. Then cuboid(S) has the packing

property if, and only if, S is strictly polar.

In fact, we will prove the following non-trivial generalization:
3Hereinafter, the adjective “isomorphic” will be omitted from “isomorphic restriction” and “isomorphic minor”.
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Theorem 1.13. If a set is resistant and strictly polar, then its cuboid has the max-flow min-cut property.

The definition of the max-flow min-cut property, along with the proof of Theorem 1.13, can be found in §7. This

theorem verifies the Replication Conjecture of Conforti and Cornuéjols [9] for cuboids of resistant sets.

So, when is a resistant set strictly polar? We will prove in §4 the following statement:

Theorem 1.14. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then the following statements are equivalent:

(i) S is resistant and strictly polar, (ii) in every restriction of S, either there are antipodal feasible points or the

feasible points form a hypercube.

We say that S is strictly non-polar if it is non-polar, but every proper restriction is polar. Notice that a set is

strictly polar if, and only if, it has no strictly non-polar restriction. (Beware, a set that is not strictly polar is not

necessarily strictly non-polar.) We will prove in §4 that,

Theorem 1.15. Take an integer n ≥ 1 and a resistant set S ⊆ {0, 1}n. Then S is strictly non-polar if, and only

if, cuboid(S) is an ideal minimally non-packing clutter.

A clutter is minimally non-packing if it does not pack, but every proper minor does. This theorem motivates us

even further to pose the following question:

Question 1.16. What are the strictly non-polar sets that are resistant?

Even though we are not able to answer this question, we can characterize the resistant strictly non-polar sets of

maximum possible cardinality. To elaborate, take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Observe that if S is

non-polar, then |S| ≤ 2n−1, and if equality holds, we say that S is half-dense. In [3], strictly non-polar sets are

extensively studied, and among the many identified/generated examples, a significant portion are half-dense (out

of the 745 strictly non-polar sets of dimension at most 7 enumerated, 74 are half-dense). Out of their examples,

an infinite class and a sporadic instance played a significant role, namely the half-dense strictly non-polar sets

Rk,1 :=
{
0k+1,1k+1

}
∗ {0} (k ≥ 1) and R5 := R ∗ {0},

where

R =

{
d∑

i=1

ei,1
4 −

d∑

i=1

ei : d ∈ [4]

}
.

We will see in §2 that {Rk,1 : k ≥ 1} ∪ {R5} are also resistant sets (see Figure 3). As a first step towards

answering Question 1.16, we prove the following, which is the main result of this paper:

Theorem 1.17. {Rk,1 : k ≥ 1} ∪ {R5} are, up to isomorphism, the only half-dense strictly non-polar sets that

are resistant.

This theorem answers Question 7.4 of [3] affirmatively for cuboids of resistant sets. More precisely, as an

application of Theorem 1.17, we prove the following:
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Figure 3: An illustration of R1,1, R2,1, R5.

Theorem 1.18. Take integers n1, n2 ≥ 1 and sets S1 ⊆ {0, 1}n1 , S2 ⊆ {0, 1}n2 , where S1, S1, S2, S2 are

nonempty and resistant. Then S1 ∗S2 is strictly polar if, and only if, S1 ∗S2 has none of {Rk,1 : k ≥ 1}∪ {R5}
as a restriction.

The proofs of these theorems can be found in §6, and the tools needed to prove them are provided in §4 and §5.

2 Basic resistant classes and resistance-preserving operations

In this section, we exhibit three basic classes of resistant sets as well as three operations that preserve resistance,

prove Theorems 1.6 and 1.7, and show as a consequence that {Rk,1 : k ≥ 1} ∪ {R5} are resistant sets.

Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. A minimal point of S is simply a point in S of minimal support.

We will need the following observation:

Proposition 2.1. Take an integer n ≥ 1, a set S ⊆ {0, 1}n, and an infeasible component K ⊆ S. Then for each

x ∈ K, ind(S4x) = ind(K4x).

Proof. After a twisting, if necessary, we may assume that x = 0. Then we need to show that S and K have the

same set of minimal points. Notice that S ⊆ K.

Claim 1. If y is a minimal point of K, then y ∈ S. In particular, the minimal points of K are also minimal

points of S.

Proof of Claim. Since y is a minimal point of K, there is a hypercube H ⊆ {0, 1}n such that 0 ∈ H and

H ∩K = {y}. In particular, H − {y} ⊆ K, implying in turn that y is adjacent to a point of K. Since K is an

infeasible component of S and y /∈ K, it follows that y ∈ S. ♦

Claim 2. The minimal points of S are also minimal points of K.
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Proof of Claim. Let y be a minimal point of S. Then there is a hypercube H ⊆ {0, 1}n such that 0 ∈ H and

H ∩ S = {y}. Thus, as Gn[H − {y}] is connected and contains 0, it follows that H − {y} ⊆ K. As a result,

H ∩K = {y}, implying in turn that y is a minimal point of K, as required. ♦

Claims 1 and 2 finish the proof.

As a consequence, the infeasible components of a set dictate whether or not a set is resistant:

Corollary 2.2. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then the following statements are equivalent:

(i) S is resistant,

(ii) for every infeasible component K, the set K is resistant.4

We will need the following proposition as well:

Proposition 2.3. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then the following statements hold:

(1) If the infeasible points form a hypercube, then S is resistant.

(2) If every infeasible point has at most two infeasible neighbors, then S is resistant.

Proof. (1) As the infeasible points form a hypercube, S does not have a 2-dimensional restriction with exactly

one feasible point. Thus, a hypercube of dimension at least 2 cannot have exactly one feasible point. In particular,

for each infeasible point x, a minimal point of S4x cannot have support of cardinality at least 2. This implies

that for each infeasible point x, the members of ind(S4x) have cardinality one, implying in particular that the

members of ind(S4x) are pairwise disjoint. Therefore, S is resistant. (2) Take an infeasible point x. We need to

show that the members of ind(S4x) are pairwise disjoint. After a possible twisting, we may assume that x = 0,

and as x has at most two infeasible neighbors, we may assume after a possible relabeling that e3, e4, . . . , en ∈ S.

As a result, ind(S4x) = ind(S) has {3}, {4}, . . . , {n} as members. Hence, as its ground set is [n], ind(S)

cannot have intersecting members, as required.

As a consequence,

Proof of Theorem 1.6. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n, where every infeasible component is a

hypercube or has maximum degree at most two. It then follows from Corollary 2.2 and Proposition 2.3 that S is

resistant, as required.

There are also resistant sets that are the union of an arbitrary number of hypercubes that are pairwise arbi-

trarily far apart:

Proposition 2.4. The following statements hold:

4Notice that Proposition 2.1, together with Theorem 1.2, gives us an analogue of Remark 2.2 for cube-idealness: “S is cube-ideal if, and

only if, K is cube-ideal for every infeasible component K.” This fact was noticed earlier in a much more general setting by Angulo, Ahmed,

Dey, Kaibel [7], and their insight, believe it or not, had a large impact on this paper and our other papers [3, 4, 6].
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(1) Take an integer n ≥ 1 and a set S ⊆ {0, 1}n that is the disjoint union of two nonempty hypercubes and

contains antipodal feasible points. Then S is resistant.

(2) Take an integer p ≥ 3 and another integer n ≥
(
p
2

)
. Let (Pij : i, j ∈ [p], j > i) be a partition of [n] into

(
p
2

)

nonempty parts. For each i ∈ [p], let Hi be the hypercube of points y ∈ {0, 1}n such that

yk = 0 ∀ k ∈
⋃

(Pij : j > i) and yk = 1 ∀ k ∈
⋃

(Pji : j < i).

Then H1 ∪H2 ∪ · · · ∪Hp is resistant.

Proof. (1) Suppose that S is the disjoint union of two nonempty hypercubesH1 andH2, and S contains antipodal

points a, b. SinceH1, H2 are nonempty and disjoint, neither of them can contain both a and b, so we may assume

that a ∈ H1 and b ∈ H2. Take an infeasible point x, if any. We need to show that the members of ind(S4x)

are pairwise disjoint. Since hypercubes (resp. antipodal points) remain hypercubes (resp. antipodal) after twists,

we may assume that x = 0. It therefore suffices to show that the minimal points of S have disjoint supports. As

H1 (resp. H2) is a nonempty hypercube, it has a unique point of minimal support, say a′ (resp. b′). Notice that

{a′, b′} are the minimal points of S. As a′ ≤ a and b′ ≤ b, and as a, b are antipodal, it follows that a′, b′ have

disjoint supports. Thus, S is resistant.

(2) Take an infeasible point x. For each i ∈ [p], let xi be the point in the hypercube Hi4x of minimal

support. It suffices to show that x1, . . . , xp have pairwise disjoint supports. To this end, pick a coordinate

k ∈ [n]. Choose i, j ∈ [p] such that j > i and k ∈ Pij . Then xik + xjk = 1 and x`k = 0 for all ` ∈ [p] − {i, j}.
As a result, exactly one of x1, . . . , xp has coordinate k in its support, and since this is true for every k ∈ [n], it

follows that x1, . . . , xp have pairwise disjoint supports, as required.

Let us see one last example of resistant sets; this class arises from clutters. We say that S is up-monotone if

for all x, y ∈ {0, 1}n such that x ≥ y, if y is feasible then so is x. The up-monotone set associated with a clutter

C over ground set E is
{
χC : C ⊆ E, C contains a member of C

}
⊆ {0, 1}E .

An element of a clutter is free if it is not contained in any member. The following remark follows rather imme-

diately from up-monotonicity:

Remark 2.5 ([3], Remark 4.6). Take an integer n ≥ 1, an up-monotone set S ⊆ {0, 1}n, and a point x ∈
{0, 1}n. Then ind(S4x) is, after deleting free elements, equal to ind(S)/{i ∈ [n] : xi = 1}.

As a result,

Proposition 2.6. Let C be a clutter whose members are pairwise disjoint, and let S be the associated up-

monotone set. Then S is resistant.

Proof. Take an infeasible point x. Then after deleting free elements, ind(S4x) is a contraction minor of

ind(S) = C, by Remark 2.5. As the members of C are pairwise disjoint, the members of ind(S4x) are also

pairwise disjoint. So S is resistant.
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Let us now introduce three binary operations that can be used to generate resistant sets starting from smaller

ones. Let E1, E2 be disjoint finite sets, and let C1, C2 be clutters over ground sets E1, E2, respectively. The

product and coproduct of C1, C2 are the clutters over ground set E1 ∪ E2 whose members are

C1 × C2 :=
{
C1 ∪ C2 : C1 ∈ C1, C2 ∈ C2

}

C1 ⊕ C2 := the minimal sets of {C : C ∈ C1} ∪ {C : C ∈ C2},

respectively. We need the following result:

Proposition 2.7 ([3], Remark 5.4 and Proposition 5.6). Take integers n1, n2 ≥ 1 and sets S1 ⊆ {0, 1}n1 , S2 ⊆
{0, 1}n2 . Then, viewing ind(S1) and ind(S2) as clutters over disjoint ground sets, we have that

ind(S1 × S2) = ind(S1)× ind(S2)

ind(S1 ⊕ S2) = ind(S1)⊕ ind(S2)

and

ind(S1 ∗ S2) =





{∅} if 0 ∈ S1 and 0 ∈ S2

{∅} if 0 ∈ S1 and 0 ∈ S2

ind(S1)⊕ ind(S2) if 0 ∈ S1 and 0 ∈ S2

ind(S1)⊕ ind(S2) if 0 ∈ S1 and 0 ∈ S2.

Now let us prove Theorem 1.7, telling us how to generate resistant sets starting from smaller ones:

Proof of Theorem 1.7. Take integers n1, n2 ≥ 1 and sets S1 ⊆ {0, 1}n1 , S2 ⊆ {0, 1}n2 . (1) Assume that S1

is resistant. We need to show that S1 × {0, 1}n2 is resistant. To this end, take a point (x, y) ∈ {0, 1}n1 ×
{0, 1}n2 . It suffices to show that the members of ind

(
(S1 × {0, 1}n2)4(x, y)

)
are pairwise disjoint. Clearly

(S1 × {0, 1}n2)4(x, y) = (S14x)× {0, 1}n2 , so by Proposition 2.7,

ind
(
(S1 × {0, 1}n2)4(x, y)

)
= ind(S14x)× ind({0, 1}n2).

As ind({0, 1}n2) = {∅}, it follows that

ind
(
(S1 × {0, 1}n2)4(x, y)

)
= ind(S14x).

As S1 is resistant, the members of ind
(
(S1 × {0, 1}n2)4(x, y)

)
must be pairwise disjoint, as required. (2)

Assume that S1, S2 are resistant. We need to show that S1 ⊕ S2 is resistant. To this end, take a point (x, y) ∈
{0, 1}n1 × {0, 1}n2 . By Proposition 2.7,

ind
(
(S1 ⊕ S2)4(x, y)

)
= ind

(
(S14x)⊕ (S24y)

)
= ind(S14x)⊕ ind(S24y).

As S1, S2 are resistant, the members of ind(S14x), ind(S24y) are pairwise disjoint, implying in turn that the

members of ind
(
(S1 ⊕ S2)4(x, y)

)
= ind(S14x)⊕ ind(S24y) are pairwise disjoint, so S1 ⊕ S2 is resistant.

(3) Assume that S1, S1, S2, S2 are resistant. We need to show that S1 ∗ S2, S1 ∗ S2 = S1 ∗ S2 are resistant.
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Clearly, it suffices to show that S1 ∗ S2 is resistant. Pick an arbitrary point (x, y) ∈ {0, 1}n1 × {0, 1}n2 . Then

(S1 ∗ S2)4(x, y) = (S14x) ∗ (S24y), so by Proposition 2.7, ind
(
(S1 ∗ S2)4(x, y)

)
is one of

{∅} or ind(S14x)⊕ ind(S24y) or ind(S14x)⊕ ind(S24y)

(notice that S24y = S24y and S14x = S14x). As S1, S1, S2, S2 are all resistant, it follows that ind(S14x),

ind(S24y), ind(S14x), ind(S24y) each have only pairwise disjoint members. As a result, the members of

ind
(
(S1 ∗ S2)4(x, y)

)
are pairwise disjoint. Thus, S1 ∗ S2 is resistant.

We are now ready to prove the following:

Remark 2.8. {Rk,1 : k ≥ 1} ∪ {R5} are resistant sets.

Proof. Take an integer k ≥ 1. Recall that Rk,1 = {0k+1,1k+1} ∗ {0}. By Proposition 2.4 (1), {0k+1,1k+1} is

resistant, and by Theorem 1.6, {0k+1,1k+1} is resistant. It is clear that {0}, {1} are resistant too. As a result,

by Theorem 1.7 (3), Rk,1 is resistant. To prove that R5 is resistant, recall that R5 = R ∗ {0} for

R =

{
d∑

i=1

ei,1
4 −

d∑

i=1

ei : d ∈ [4]

}
.

Notice that R,R are circuits of length 8. As a result, Theorem 1.6 implies that both R,R are resistant. Hence,

Theorem 1.7 (3) implies that R5 is resistant.

3 Testing resistance in polynomial time

Here we prove Theorems 1.8 and 1.9. We need the following easy remark:

Remark 3.1 ([3], Remark 2.11(i)). Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then an induced clutter of a

minor of S is a minor of an induced clutter of S.

If the members of a clutter are pairwise disjoint, then so are the members of any minor of it. This fact,

combined with the preceding remark, implies the following:

Remark 3.2. If a set is resistant, then so is any minor of it.

We are now ready to prove Theorem 1.8, providing two characterizations of resistant sets:

Proof of Theorem 1.8. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. We need to prove that the following

statements are equivalent:

(i) S is resistant,

(ii) S has no fragile restriction and no {0k,1k − e1}, k ≥ 4 restriction,

(iii) S has no fragile minor.
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(i)⇒ (ii): As we noted already, fragile sets are not resistant. For each integer k ≥ 4, the set {0k,1k − e1}
is not resistant either, because its induced clutter with respect to e1 + e2 has intersecting members {1, 2} and

{1, 3, 4, . . . , k}. Remark 3.2 now tells us that (i) implies (ii).

(ii)⇒ (iii): Assume that S has a fragile minor. It suffices to show that S has either a fragile restriction or a

{0k,1k − e1} restriction, for some k ∈ {4, . . . , n}. We will need the following two claims:

Claim 1. Suppose T ⊆ {0, 1}4 has no fragile restriction and its projection at coordinate 4 is fragile. Then T is

a twisting of {04,14 − e1}.

Proof of Claim. For i ∈ {0, 1}, let Ti ⊆ {0, 1}3 be the i-restriction of T at coordinate 4. Since the projection of

T at 4 is fragile, it follows that {000, 100, 010, 001} ⊆ T0 and {000, 100, 010, 001} ⊆ T1. Moreover, as T0 and

T1 are not fragile, we may assume that T0 ∩ {101, 011} = {011} and T1 ∩ {101, 011} = {101}:

Once again, as T0 and T1 are not fragile, it follows that 110 /∈ T0∪T1. Since the 1-restriction of T at coordinate 1

is not fragile, we get that 111 /∈ T0, and since the 1-restriction of T at coordinate 2 is not fragile, 111 /∈ T1.

Thus, T is a twisting of {04,14 − e1}, as claimed. ♦

Claim 2. Take an integer k ≥ 4 and a set T ⊆ {0, 1}k+1 without a {0k,1k − e1} restriction. If the projection

of T at coordinate k + 1 is {0k,1k − e1}, then T is a twisting of {0k+1,1k+1 − e1}.

Proof of Claim. For i ∈ {0, 1}, let Ti ⊆ {0, 1}k be the i-restriction of T at coordinate k + 1. Clearly, Ti ⊆
{0k,1k − e1} for each i ∈ {0, 1}. As equality cannot hold, we may assume that T0 ∩ {0k,1k − e1} = {0k}
and T1 ∩ {0k,1k − e1} = {1k − e1}, implying in turn that T is a twisting of {0k+1,1k+1 − e1}. ♦

Suppose a fragile minor of S is obtained after applying k single projections and n−k−3 single restrictions,

for some k ∈ {0, . . . , n−3}. If k = 0, then S has a fragile restriction, so we are done. We may therefore assume

that k ≥ 1 and S has no fragile restriction. It follows from Claim 1 that S has a {04,14 − e1} minor obtained

after applying k − 1 single projections and n − k − 3 single restrictions. If k = 1, then S has a {04,14 − e1}
restriction. We may therefore assume that k ≥ 2 and S has no {04,14 − e1} restriction. Now by repeatedly

applying Claim 2, we see that S has one of {0`,1` − e1}, ` ∈ {5, . . . , k + 3} as a restriction, as required.

(iii) ⇒ (i): Assume that S is not resistant. It suffices to prove that S has a fragile minor. After possibly

twisting S, we may assume that C := ind(S) has intersecting members.

Claim 3. There exist disjoint I, J ⊆ [n] such that C \I/J has ground set {x, y, z} and has {x, z}, {y, z} among

its members.

12



S3P3

Figure 4: An illustration of P3 and S3, the smallest non-cube-ideal sets.

Proof of Claim. Among all pairs of intersecting members in C, pick an intersecting pair C1, C2 whose union is

minimal. Our minimal choice of C1, C2 implies that every member of C contained in C1 ∪C2 is either C1 or C2

or it contains C14C2. Take elements x ∈ C1−C2, y ∈ C2−C1 and z ∈ C1∩C2. Let I := [n]−(C1∪C2) and

J := [n] − (I ∪ {x, y, z}). It is easy to see that C \ I/J has ground set {x, y, z} and has {x, z}, {y, z} among

its members. ♦

Consider now the minor S′ of S obtained after 0-restricting coordinates I and projecting away coordinates J .

Since ind(S) = C, it follows that ind(S′) = C \ I/J has {x, z}, {y, z} as members, implying in turn that S′ is

fragile. Thus, S has a fragile minor, as required.

Define P3 := {110, 011, 101} ⊆ {0, 1}3 and S3 := {110, 011, 101, 111} ⊆ {0, 1}3 (see Figure 4). Notice

that the induced clutters of P3 and S3 with respect to the origin are equal to ∆3 :=
{
{1, 2}, {2, 3}, {3, 1}

}
. As

(
1
2

1
2

1
2

)
is an extreme point of its set covering polyhedron, ∆3 is non-ideal, so by Theorem 1.2, P3, S3 are not

cube-ideal. In fact, it can be readily checked that P3 and S3 are the only non-cube-ideal sets of dimension at

most 3.

Remark 3.3. Take a set S ⊆ {0, 1}3. Then S is fragile if, and only if, S ∪X is isomorphic to either P3, S3 for

some set X ⊆ {0, 1}3 of cardinality at most one.

Thus a fragile set can be made non-cube-ideal after making at most one infeasible point feasible. Theorem 1.8

and Remark 3.3 together imply the following result, which justifies our choice of the term “resistant”:

Theorem 3.4. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then S is resistant if, and only if, S ∪X has no

P3, S3 minor for all sets X ⊆ {0, 1}n of cardinality at most one.

Proof. (⇐) Assume that S is not resistant. Then by Theorem 1.8 (iii), S has a fragile minor S′ ⊆ {0, 1}3. After

a possible twisting and relabeling, we may assume that S′ is obtained after 0-restricting I ⊆ [n]− {1, 2, 3} and

projecting away J ⊆ [n] − {1, 2, 3}. Since S′ is fragile, Remark 3.3 implies that there is a set X ′ ⊆ {0, 1}3

of cardinality at most one such that S′ ∪X ′ is isomorphic to one of P3, S3. Define X ⊆ {0, 1}n as follows: if

X ′ = ∅ set X := ∅, otherwise set X := {x} where x ∈ {0, 1}n is obtained from the point in X ′ by setting the

coordinates in I ∪J to 0. Then S∪X has an S′∪X ′ minor obtained after 0-restricting I and projecting away J .

Since S′ ∪X ′ is isomorphic to one of P3, S3, we get that S ∪X has one of P3, S3 as a minor, as required. (⇒)

Assume that S ∪X has one of P3, S3 as minor, for some set X ⊆ {0, 1}n of cardinality at most one. Then there
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is a set Y ⊆ {0, 1}3 of cardinality at most one such that S has one of P3−Y, S3−Y as a minor. By Remark 3.3,

both P3 − Y, S3 − Y are fragile, so S has a fragile minor. Thus, by Theorem 1.8 (iii), S is not resistant.

Take an integer n ≥ 1 and points a, b ∈ {0, 1}n. Denote by dist(a, b) the (Hamming) distance between a

and b, that is, dist(a, b) is the number of coordinates a, b disagree on. We will next prove Theorem 1.9, stating

that the resistance of S ⊆ {0, 1}n can be tested in time O(n4|S|3).

Proof of Theorem 1.9. We will take advantage of Theorem 1.8 (ii), stating that S ⊆ {0, 1}n is resistant if, and

only if, it has no fragile restriction and no {0k,1k − e1}, k ∈ {4, . . . , n} restriction. For k ∈ {3, 4, . . . , n},
consider the following algorithm:

1. for every pair of points x, y of S at distance k − 1,

(a) let I := {i ∈ [n] : xi = yi},

(b) for every coordinate i ∈ I ,

i. let S′ ⊆ {0, 1}k be the restriction of S at coordinates I − {i} containing (the images of) x and

y, that is, S′ is obtained after xj-restricting coordinate j for each j ∈ I − {i},

ii. if k = 3 and S′ is fragile, then output “S has a fragile restriction”,

iii. if k ≥ 4 and S′ is isomorphic to {0k,1k − e1}, then output “S has a {0k,1k − e1} restriction”,

2. if k = 3, then output “S has no fragile restriction”,

3. if k ≥ 4, then output “S has no {0k,1k − e1} restriction”.

The correctness of this algorithm is clear; its running time is n
(|S|

2

)
×(n−k+1)×n|S|. Thus, by Theorem 1.8 (ii),

one can test whether or not S is resistant in time
∑n
k=3 n

(|S|
2

)
×(n−k+1)×n|S| = O(n4|S|3), as required.

4 Propagations

In this section, we prove three lemmas needed for all the forthcoming proofs, as well as prove Theorems 1.14

and 1.15. Before getting started, let us set up a few ingredients. Recall that for an integer n ≥ 1, Gn is the

skeleton graph of {0, 1}n.

Remark 4.1. For an integer n ≥ 1, the following statements hold:

• For points a, b, c ∈ {0, 1}n, dist(a, b) + dist(b, c) ≥ dist(a, c).

• For points a, b ∈ {0, 1}n, every (a, b)-path in Gn has at least dist(a, b) many edges.

An (a, b)-path whose vertices are a = v0, v1, . . . , vk = b as traversed from a to b will be represented as the

sequence (v0, v1, . . . , vk). The length of a path is the number of edges it has. An (a, b)-path of Gn is straight if

it has length exactly dist(a, b).
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Remark 4.2. Take an integer n ≥ 1. Then the following statements hold:

• Take distinct points a, b at Hamming distance ` ≥ 1, and let P be an (a, b)-path of Gn. Then P is straight

if, and only if, there are ` distinct coordinates i1, . . . , i` such that

P = (a, a4ei1 , a4ei14ei2 , . . . , a4ei14ei24· · ·4ei` = b).

• Pick distinct points a, b, c such that dist(a, b) + dist(b, c) = dist(a, c). If P is a straight (a, b)-path and

Q a straight (b, c)-path of Gn, then P ∪Q is a straight (a, c)-path of Gn.5

Take a set S ⊆ {0, 1}n. A path in Gn[S] is called a feasible path, and a path in Gn[S] is called an infeasible

path. We say that S is connected if Gn[S] is a connected graph. If every restriction of S, including S itself, is

connected, then we say that S is strictly connected.

Proposition 4.3 ([3], Proposition 5.10). Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then the following

statements are equivalent:

(i) S is strictly connected,

(ii) S has no {0k,1k}, k ≥ 2 restriction,

(iii) for all distinct feasible points a and b, there is a straight feasible (a, b)-path.

4.1 An example

Let us start with the following proposition which best illustrates the title of this section:

Proposition 4.4. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n, where for all x ∈ {0, 1}n and distinct i, j ∈ [n],

the following statement holds:

if x, x4ei, x4ej ∈ S then x4ei4ej ∈ S.

Then every component of S is a hypercube.

Proof. Let us start with the following claim:

Claim. Let I ⊆ [n] be of cardinality at least two. If x ∈ S and x4ei ∈ S for each i ∈ I , then we have

x4
(∑

i∈I ei
)
∈ S.

Proof of Claim. We proceed by induction on |I| ≥ 2. The base case |I| = 2 follows from the hypothesis of

Proposition 4.4. For the induction step, assume that k := |I| ≥ 3. After a possible twisting and relabeling, we

may assume that x = 0 and I = {e1, . . . , ek}. We need to show that
∑k
i=1 ei ∈ S. Let y :=

∑k−2
i=1 ei. If

k = 3 then y ∈ S by assumption, and if k ≥ 4 then y ∈ S by the induction hypothesis. Moreover, the induction

hypothesis implies that y4ek−1, y4ek ∈ S. As a result,
∑k
i=1 ei = y4ek−14ek ∈ S by the hypothesis of

Proposition 4.4, thereby completing the induction step. This finishes the proof of the claim. ♦

5If P is an (a, b)-path and Q is a (b, c)-path, then P ∪ Q denotes the (a, c)-walk that first traverses the vertices of P from a to b, and

then traverses the vertices of Q from b to c.
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Take a component S′ of S. Let d be the maximum number of feasible neighbors of a point in S′. If d ≤ 1,

then |S′| ∈ {1, 2}, so S′ is clearly a hypercube. Otherwise, d ≥ 2. After a possible twisting and relabeling, we

may assume that 0, e1, . . . , ed ∈ S′. Then for all subsets I ⊆ [d] of cardinality at least two,
∑
i∈I ei ∈ S by the

claim. As a result,
{
x ∈ {0, 1}n : xj = 0, j ∈ [n]− [d]

}
⊆ S′.

Since every feasible point in S′ has at most d feasible neighbors, equality holds above, so S′ is a hypercube, as

required.

So the condition “if x, x4ei, x4ej ∈ S then x4ei4ej ∈ S” has a propagating effect, ensuring that every

feasible component is a hypercube. As a consequence,

Corollary 4.5. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then every component of S is a hypercube if, and

only if, S has no {00, 10, 01} restriction.

Proof. (⇒) If every feasible component is a hypercube, then there is no 2-dimensional restriction with exactly

three feasible points, so there is no {00, 10, 01} restriction. (⇐) Assume that S has no {00, 10, 01} restriction.

Then for all x ∈ {0, 1}n and distinct i, j ∈ [n]: if x, x4ei, x4ej ∈ S then x4ei4ej ∈ S. Thus, by

Proposition 4.4, every component of S is a hypercube.

So excluding {00, 10, 01} restrictions has a propagating effect. In the same vein, resistance, which is equivalent

to excluding fragile restrictions and {0k,1k − e1}, k ≥ 4 by Theorem 1.8 (ii), entails propagations.

4.2 Propagations in resistant sets

Here we state three lemmas illustrating the different propagations running in resistant sets. Here is the first

lemma:

Lemma 4.6 (Plane Propagation). Take an integer n ≥ 1 and a resistant set S ⊆ {0, 1}n. If S ∩ {x : xn =

0} = ∅, then S is a hypercube.

Proof. Let S1 ⊆ {0, 1}n be the 1-restriction of S at coordinate n.

Claim 1. S1 is strictly connected.

Proof of Claim. Suppose otherwise. Then by Proposition 4.3, there is an integer k ≥ 2 such that S1 has a

{0k,1k} restriction. Since S ∩ {x : xn = 0} = ∅, it follows that S has a {0k+1,1k+1 − e1} restriction. As S is

resistant, Theorem 1.8 (ii) implies that k = 2. However, {03,13 − e1} is fragile, so S has a fragile restriction, a

contradiction to Theorem 1.8 (ii). ♦

Claim 2. Every component of S1 is a hypercube.
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y
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e1

y + e1

implies

Figure 5: An illustration of Remark 4.7. Round points are feasible, the square points and the shaded region are

infeasible, while the diamond point can be either.

Proof of Claim. Suppose otherwise. It follows from Corollary 4.5 that S1 has a {00, 10, 01} restriction. As

S ∩ {x : xn = 0} = ∅, it follows that S has a {000, 100, 010} restriction. However, {000, 100, 010} is fragile,

a contradiction to Theorem 1.8 (ii). ♦

Claims 1 and 2 together imply that S1 is a hypercube, so S is a hypercube because S ∩ {x : xn = 0} = ∅, as

required.

For the next lemma, let us start with the following remark illustrated in Figure 5:

Remark 4.7. Take an integer n ≥ 1 and a resistant set S ⊆ {0, 1}n, where 0, e1 are infeasible. Assume that y

is a minimal feasible point such that y1 = 0. Then
{
z ∈ S : z ≤ y + e1, z1 = 1

}
⊆ {y + e1}.

Proof. Suppose otherwise. Pick a minimal point z of
{
z ∈ S : z ≤ y + e1, z1 = 1

}
. Our contrary assumption

implies that z 6= y + e1, and therefore, z is also a minimal point of S. Moreover, as e1 is infeasible, z 6= e1.

Pick members C,C ′ ∈ ind(S) such that y = χC and z = χC′ . Then C ∩ C ′ 6= ∅, a contradiction as S is

resistant.

Let us phrase this remark in a more applicable language. Take an integer n ≥ 1 and a resistant set S ⊆ {0, 1}n.

A valid pair is a pair [x, y] where x is infeasible, y is feasible, and y4x is a minimal feasible point of S4x. If

[x, y] is a valid pair, we will say that x sees y. Remark 4.7 has the following immediate consequence:

Lemma 4.8 (Sight Propagation). Take an integer n ≥ 1, a resistant set S ⊆ {0, 1}n and a valid pair [x, y].

For a coordinate i ∈ [n] such that x4ei is infeasible, exactly one of the following statements holds:

(i) y4ei is feasible and [x4ei, y4ei] is valid,

(ii) y4ei is infeasible and [x4ei, y] is valid.
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Proof. After a possible twisting and relabeling, if necessary, we may assume that x = 0 and i = 1. As [0, y] is

valid, y is a minimal feasible point. If y1 = 1, then clearly (ii) holds and (i) does not. Otherwise, y1 = 0. Then

by Remark 4.7,
{
z ∈ S : z ≤ y + e1, z1 = 1

}
is either ∅ or {y + e1}. In the first case, (ii) holds and (i) does

not, while in the second case, (i) holds and (ii) does not.

The Sight Propagation Lemma has a subtle implication, which leads to the third propagation lemma. Take

an integer n ≥ 1, a resistant set S ⊆ {0, 1}n and an infeasible point x. A valid sequence for x is a nonempty

sequence (i1, i2, . . . , ik) of (not necessarily distinct) coordinates in [n] such that the points

x4ei1 , x4ei14ei2 , . . . , x4ei14ei24· · ·4eik

are infeasible. Take a valid pair [x, y] and a valid sequence (i1, . . . , ik) for x. In what follows, we define the

trajectory of [x, y] along (i1, . . . , ik) as some sequence (t1, . . . , tk) with entries in {0, 1} which will be defined

precisely shortly, and given the sequence, we define the image of [x, y] along (i1, . . . , ik) as

im[x, y](i1, . . . , ik) := y +

k∑

j=1

tjeij mod 2.

The sequence (t1, . . . , tk) is defined as follows:

• for a valid pair [x, y] and a valid sequence (i) of length 1, the trajectory of [x, y] along (i) is

T [x, y](i) :=

{
(1) if y4ei ∈ S
(0) if y4ei /∈ S,

• for a valid pair [x, y] and a valid sequence (i1, . . . , ik) of length at least 2, the trajectory of [x, y] along

(i1, . . . , ik) is defined recursively as follows: let y′ := im[x, y](i1, . . . , ik−1) and

T [x, y](i1, . . . , ik) :=

{
T [x, y](i1, . . . , ik−1) ∪ (1) if y′4eik ∈ S
T [x, y](i1, . . . , ik−1) ∪ (0) if y′4eik /∈ S.

(Given two sequences (a, . . . , b) and (c, . . . , d), (a, . . . , b)∪ (c, . . . , d) is the sequence (a, . . . , b, c, . . . , d).) The

following is an immediate consequence of the Sight Propagation Lemma:

Remark 4.9. Take an integer n ≥ 1, a resistant set S ⊆ {0, 1}n, a valid pair [x, y] and a valid sequence

(i1, . . . , ik) for x. Then im[x, y](i1, . . . , ik) is feasible and is seen by x4ei14· · ·4eik .

We are now ready for the third propagation lemma:

Lemma 4.10 (Path Propagation). Take an integer n ≥ 1, a resistant set S ⊆ {0, 1}n, a straight infeasible path

P contained in {x : xn = 0}, and let a, b be the ends of P . If a4en, b4en are feasible, then for every vertex v

of P , v4en is feasible.

18



Proof. If a, b are the only vertices of P , then we are clearly done. Otherwise, as P is straight and contained in

{x : xn = 0}, we may assume by Remark 4.2 that after a possible relabeling,

P =

(
a = 0, e1, e1 + e2, . . . ,

k∑

i=1

ei = b

)
,

where k ∈ {2, . . . , n− 1}. Assuming that a4en = en and b4en = en +
∑k
i=1 ei are feasible, we need to show

that the points en +
∑j
i=1 ei, j ∈ [k − 1] are feasible. To this end, as P is infeasible, the sequence (1, . . . , k) is

valid for 0. Consider the valid pair [0, en] and the valid sequence (1, . . . , k). Let

(t1, . . . , tk) := T [0, en](1, . . . , k)

y := im[0, en](1, . . . , k) = en +

k∑

i=1

tiei.

By Remark 4.9, y is a feasible point seen by 0 +
∑k
i=1 ei = b.

Claim. y = en +
∑k
i=1 ei.

Proof of Claim. We know that b sees y, and clearly b sees b4en = en +
∑k
i=1 ei, too. In particular, y4b

and (b4en)4b = en are either equal or incomparable. However, as (y4b)n = 1, it follows that y4b ≥ en,

implying in turn that y4b = en, so y = b4en, thereby proving the claim. ♦

As an immediate consequence, t1 = t2 = · · · = tk = 1. Take a coordinate j ∈ [k − 1]. Then the image of the

valid pair [0, en] along the valid sequence (1, . . . , j) for 0 is

im[0, en](1, . . . , j) = en +

j∑

i=1

tiei = en +

j∑

i=1

ei.

Thus, by Remark 4.9, en +
∑j
i=1 ei is feasible, as required.

4.3 Global implications for resistant sets

Applying the Plane Propagation Lemma Let us prove Theorem 1.14, stating that for a set S ⊆ {0, 1}n, (i) S

is resistant and strictly polar if, and only if, (ii) in every restriction of S, either there are antipodal feasible points

or the feasible points form a hypercube.

Proof of Theorem 1.14. (i)⇒ (ii): Assume that S is resistant and strictly polar. By Remark 3.2, every restriction

of S is also resistant, and by definition, every restriction of S is also strictly polar. Thus, it suffices to show that

either S has antipodal points or S is a hypercube. To this end, assume that S does not have antipodal points. As

S is polar, the points in S must all agree on a coordinate. The Plane Propagation Lemma now implies that S is

a hypercube, as required. (ii)⇒ (i): Assume that in every restriction of S,

(?) there are either antipodal feasible points or the feasible points form a hypercube.
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Obviously, every restriction of S is polar, so S is strictly polar. It remains to show that S is resistant. By

Theorem 1.8 (ii), it suffices to show that S has no fragile or {0k,1k − e1}, k ≥ 4 restriction, and as these

restrictions do not satisfy (?), we are done.

Applying the Sight Propagation Lemma The first application of this lemma is the following theorem that we

will use in §7:

Theorem 4.11. Take an integer n ≥ 1 and a nonempty resistant set S ⊆ {0, 1}n. Then the following statements

hold:

(1) Let x, x4ei be infeasible points for some coordinate i ∈ [n], and let y1, y2 be distinct feasible points seen

by x. Then im[x, y1](i) and im[x, y2](i) are distinct points.

(2) For every infeasible component K, there is a constant mK ∈ {1 . . . , n} such that every infeasible point of

K sees exactly mK feasible points.

Proof. (1) By definition, y14x, y24x are points of minimal support in S4x. As S is resistant, y14x, y24x
have disjoint supports, implying in turn that dist(y1, y2) = dist(y14x, y24x) ≥ 2. Since im[x, y1](i) ∈
{y1, y14ei} and im[x, y2](i) ∈ {y2, y24ei}, it follows that im[x, y1](i), im[x, y2](i) are distinct points. (2)

Take neighboring infeasible points x, x4ei and let m(x),m(x4ei) ≥ 1 be the number of feasible points

x, x4ei see, respectively. It suffices to show that m(x) = m(x4ei). By symmetry, it actually suffices to

show that m(x4ei) ≥ m(x). Let y1, . . . , ym(x) be the feasible points x sees. By Remark 4.9 and (1),

im[x, y1](i), . . . , im[x, ym(x)](i) are distinct feasible points seen by x4ei. Thus, m(x4ei) ≥ m(x), as re-

quired.

For the next application, Theorem 1.15, take an integer n ≥ 3 and a set S ⊆ {0, 1}n. We say that S

is critically non-polar if it is strictly non-polar and, for each i ∈ [n], both the 0- and 1-restrictions of S at

coordinate i have antipodal points. The Plane and Sight Propagation Lemmas have the following implication:

Proposition 4.12. A resistant strictly non-polar set is critically non-polar.

Proof. Take an integer n ≥ 3 and a resistant strictly non-polar set S ⊆ {0, 1}n. Suppose for a contradiction

that S is not critically non-polar. After twisting and relabeling, if necessary, we may assume that S1, the 1-

restriction of S at coordinate 1, does not have antipodal points. As S is strictly non-polar, S1 is polar so its

points must agree on a coordinate. Since it is resistant, the Plane Propagation Lemma implies that S1 is a

hypercube. After twisting and relabeling, if necessary, we may assume that

(�) S ∩ {x : x1 = 1} = {x ∈ {0, 1}n : x1 = x2 = · · · = xk = 1}

for some k ∈ {2, 3, . . . , n}.

Claim. S ∩ {x1 = 0} ⊆ {x ∈ {0, 1}n : x2 = · · · = xk = 1}.
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Proof of Claim. Take a point b ∈ {0, 1}n such that b1 = 0 and b /∈ {x : x2 = · · · = xk = 1}. We need to show

that b is infeasible. To this end, let a, c be the points in {x : x1 = 0, x2 = · · · = xk = 0}, {x : x1 = 0, x2 =

· · · = xk = 1} that otherwise agree with b, respectively. So ai = ci = bi for all i ∈ [n] − [k]. By assumption,

b 6= c. Since (�) holds and S does not have antipodal points, a is infeasible. Thus, as [a + e1, c + e1] is a valid

pair, and a is infeasible, the Sight Propagation Lemma implies that a sees one of c, c + e1. As a result, all the

points in {x : a ≤ x ≤ c, x 6= c}, including b, are infeasible, as required. ♦

In particular, the points in S agree on coordinate 2, a contradiction as S is non-polar. Thus, S is critically

non-polar.

We will need the following result:

Theorem 4.13 ([3], Theorem 3.6). Take an integer n ≥ 3 and a strictly non-polar set S ⊆ {0, 1}n. Then the

following statements are equivalent:

(i) cuboid(S) is minimally non-packing,

(ii) S is critically non-polar, and every induced clutter of S has the packing property.

We are now ready to prove Theorem 1.15, stating that a resistant set is strictly non-polar if and only if its cuboid

is an ideal minimally non-packing clutter.

Proof of Theorem 1.15. Take an integer n ≥ 3 and let S ⊆ {0, 1}n be a resistant set. Then by Corollary 1.5,

cuboid(S) is ideal. (⇒) Assume that S is strictly non-polar. By Proposition 4.12, S is critically non-polar,

and by Remark 1.11, every induced clutter of S has the packing property. Thus, Theorem 4.13 implies that

cuboid(S) is minimally non-packing, as required. (⇐) Assume that cuboid(S) is minimally non-packing.

Then by Theorem 4.13, S is critically non-polar, so S is strictly non-polar also, thereby finishing the proof.

Applying the Path Propagation Lemma Finally, let us see the following application of this lemma, which

will be useful later:

Theorem 4.14. Take an integer n ≥ 3 and a resistant strictly non-polar set S ⊆ {0, 1}n. Then S and S are not

strictly connected.

Proof. By Proposition 4.12, S is critically non-polar. Thus, after a possible twisting, we may assume that

0,1− en ∈ S. As S does not contain antipodal points, we have that en,1 ∈ S.

Claim 1. S is not strictly connected.

Proof of Claim. Suppose for a contradiction that S is strictly connected. We will show that

(?) for every infeasible point a in
{
x ∈ {0, 1}n : xn = 1

}
, the point a4en is feasible.
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To this end, as S is strictly connected, there exist a straight infeasible (en, a)-path P and a straight infeasible

(a,1)-path Q, by Proposition 4.3. Since dist(en, a) + dist(a,1) = dist(en,1), it follows from Remark 4.2

that P ∪ Q is a straight infeasible (en,1)-path, which contains a. Thus, as 0,1 − en are feasible, the Path

Propagation Lemma implies that a4en is feasible, thereby proving (?). (?) implies in particular that every

infeasible path is contained in either {x : xn = 1} or {x : xn = 0}. Applying Proposition 4.3, we see that in

fact, S ⊆ {x : xn = 1}. Since S does not contain antipodal points, we must have that S = {x : xn = 1} and

S = {x : xn = 0}, implying in turn that S is polar, a contradiction. ♦

Claim 2. S is not strictly connected.

Proof of Claim. Suppose for a contradiction that S is strictly connected. We will show that

(�) for every feasible point b in
{
x ∈ {0, 1}n : xn = 0

}
, the point b4en is infeasible.

To this end, as S is strictly connected, there exist a straight feasible (0, b)-path P as well as a straight feasible

(b,1 − en)-path Q, by Proposition 4.3. Since dist(0, b) + dist(b,1 − en) = dist(0,1 − en), it follows from

Remark 4.2 that P ∪Q is a straight feasible (0,1− en)-path, which contains b. Since S does not have antipodal

points, it follows that (P∪Q)41 is a straight infeasible (en,1)-path.6 The Path Propagation Lemma now implies

that (P ∪ Q)414en is a straight feasible (0,1 − en)-path. Once again, as S does not have antipodal points,

we get that (P ∪ Q)4en is a straight infeasible (en,1)-path, implying in particular that b4en is infeasible,

thereby proving (�). (�) implies in particular that every feasible path is contained in either {x : xn = 0} or

{x : xn = 1}. Applying Proposition 4.3, we see that in fact, S ⊆ {x : xn = 0}, implying in turn that S is polar,

a contradiction. ♦

Claims 1 and 2 finish the proof of Theorem 4.14.

As a consequence,

Corollary 4.15. Take an integer n ≥ 1 and a resistant set S ⊆ {0, 1}n. If S or S is strictly connected, then S

is strictly polar.

Proof. Let us prove the contrapositive statement. Assume that S is not strictly polar. Then it has a restriction S′

that is strictly non-polar. We know that S′ is resistant. It therefore follows from Theorem 4.14 that neither S′

nor S′ is strictly connected, implying in turn that neither S nor S is strictly connected, as required.

5 Straight circuits

Take an integer n ≥ 2. Let C be a circuit of Gn whose vertices, denoted V (C), are v0, v1, . . . , vk in clockwise

order. We will represent C as the sequence (v0, v1, . . . , vk, v0). Take a point v ∈ {0, 1}n, an integer ` ∈
6If P is an (a, b)-path, then P4x denotes the (a4x, b4x)-path whose vertices are the vertices of P twisted by x.
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{2, . . . , n}, and distinct coordinates i1, . . . , i` ∈ [n]. Denote by (v : i1, i2, . . . , i`) the circuit

(v0, v1, . . . , v`, . . . , v2`−1, v2` = v0)

where v0 = v and vj = vj−14eij and v`+j = v`+j−14eij for each j ∈ [`]. We will refer to (v : i1, i2, . . . , i`)

as a straight circuit. (Notice that any point of the straight circuit can be a starting point.)

The length of a circuit is the number of edges it has. Take a set S ⊆ {0, 1}n. We refer to every circuit of

Gn[S] as a feasible circuit and to every circuit of Gn[S] as an infeasible circuit. The purpose of this section is to

prove the following statement:

Take an integer n ≥ 4 and a resistant set S ⊆ {0, 1}n that is non-polar. Assume that there is a

straight infeasible circuitK of length 2(n−1) contained in {x : xn = 0} such that V (K4en) ⊆ S.

Then S has one of {Rk,1 : k ≥ 1} ∪ {R5} as a restriction.7

This tool is crucial for proving the main result of the paper, Theorem 1.17. To prove this statement, let us start

with the following lemma that is widely referenced throughout this section:

Lemma 5.1 (Straight Circuit). Take an integer n ≥ 4 and a resistant set S ⊆ {0, 1}n without antipodal points.

Let K be a straight infeasible circuit of length 2(n − 1) contained in {x : xn = 0} such that V (K4en) ⊆ S.

Then for a vertex v ∈ {x : xn = 0} − V (K) that is adjacent to a vertex of K, either

{v,1− v4en} ⊆ S and {v4en,1− v} ⊆ S

or

{v,1− v4en} ⊆ S and {v4en,1− v} ⊆ S.

Proof. After a possible relabeling and twisting, we may assume that

K = (0 : 1, 2, . . . , n− 1) = (v0, v1, . . . , vn−1, . . . , v2n−3, v2n−2 = v0),

where v0 = 0 and vj = vj−14ej and vn−1+j = vn−1+j−14ej for each j ∈ [n− 1].

Claim. Take a vertex w ∈ {x : xn = 0} − V (K) that is adjacent to a vertex of K. If w ∈ S then w4en ∈ S.

Proof of Claim. By the symmetry between the vertices of K, we may assume that w is adjacent to v0, that is,

w = v04ei for some i ∈ [n− 1]− {1, n− 1}. Let

P := (vn−1+i, vn−1+i+1, . . . , v2n−2 = v0) and Q := (v0, v1, . . . , vi−1) and R := P ∪Q.

Notice that R is a straight subpath of the infeasible circuit K. The Path Propagation Lemma implies that the

feasible points in R4ei should form a path. Thus, since v04ei = w ∈ S, it follows that either V (P4ei) ⊆ S

or V (Q4ei) ⊆ S. By symmetry, we may assume that V (P4ei) ⊆ S. Consider now the straight infeasible

path P ′ := (v0) ∪ [P4ei] whose ends are v0 and vn−1+i4ei = vn−1+i−1. Since {v04en, vn−1+i−14en} ⊆
V (K4en) ⊆ S, it follows from the Path Propagation Lemma that P ′4en is a feasible path. In particular, we

have that v04ei4en = w4en ∈ S. ♦
7If C is a circuit, then C4x denotes the circuit whose vertices are the vertices of C twisted by x.
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Now take a vertex v ∈ {x : xn = 0} − V (K) that is adjacent to a vertex of K. Assume in the first case that

v ∈ S. By the claim, v4en ∈ S. Since S does not contain antipodal points, we get that 1 − v4en ∈ S. Since

1 − v4en is also adjacent to a vertex of K, and is not a vertex of K, it follows from the claim that 1 − v ∈ S.

Assume in the remaining case that v ∈ S. As S does not contain antipodal points, 1 − v ∈ S, so by the claim,

we have 1− v4en ∈ S, so its antipodal point v4en belongs to S. This finishes the proof of the lemma.

Before moving on, we should point out that the results in this section will make heavy use of the Sight

Propagation Lemma, most often applied as illustrated in the following figure,

implies

and in most cases, we will leave it to the reader to identify the 3-dimensional cube where the Sight Propagation

Lemma is being applied.

5.1 When there are no R1,1, R5 restrictions

We will need the following technical lemma:

Lemma 5.2. Take an integer n ≥ 6 and a resistant set S ⊆ {0, 1}n without antipodal points and without an

R1,1, R5 restriction. Suppose K := (0 : 1, 2, 3, 4, 5, . . . , n− 1) is a straight infeasible circuit, V (K4en) ⊆ S,

and {e2, e2 + e3, e3, e1 + e3} ⊆ S. Then, for each i ∈ [n− 4],

Ki := (0 : 4, . . . , 3 + i, 1, 2, 3, 3 + i+ 1, . . . , n− 1)

is a straight infeasible circuit,V (Ki4en) ⊆ S and {e2, e2 + e3, e3, e1 + e3}4e44· · ·4e3+i ⊆ S.

Proof. We proceed by induction on i ≥ 1. Let us first prove the base case i = 1, which we restate as follows:

(?) Take an integer n ≥ 6 and a resistant set S ⊆ {0, 1}n without antipodal points and without

an R1,1, R5 restriction. Suppose K := (0 : 1, 2, 3, 4, 5, . . . , n− 1) is a straight infeasible circuit,

V (K4en) ⊆ S, and {e2, e2 + e3, e3, e1 + e3} ⊆ S. Then, K ′ := (0 : 4, 1, 2, 3, 5, . . . , n− 1) is a

straight infeasible circuit,V (K ′4en) ⊆ S and {e2, e2 + e3, e3, e1 + e3}4e4 ⊆ S.

Define P0, P1, Q0, Q1 ⊆ {0, 1}4 as follows: P0 (resp. P1) is obtained after 0-restricting coordinates 5, . . . , n−1

and 0-restricting coordinate n (resp. 1-restricting coordinate n), and Q0 (resp. Q1) is obtained after 1-restricting

coordinates 5, . . . , n− 1 and 0-restricting coordinate n (resp. 1-restricting coordinate n). Since V (K) ⊆ S and

V (K4en) ⊆ S, it follows that

{0000, 1000, 1100, 1110, 1111} ⊆ P0 {0000, 1000, 1100, 1110, 1111} ⊆ P1

{1111, 0111, 0011, 0001, 0000} ⊆ Q0 {1111, 0111, 0011, 0001, 0000} ⊆ Q1.
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By assumption, we also know that

{0100, 0110, 0010, 1010} ⊆ P0.

In {0, 1}n, each one of these points belongs to K and is adjacent to a vertex of K, so by the Straight Circuit

Lemma,

{0100, 0110, 0010, 1010} ⊆ P1

{1011, 1001, 1101, 0101} ⊆ Q0

{1011, 1001, 1101, 0101} ⊆ Q1.

See the following figure illustrating the inclusions listed so far:

P0 P1

Q0 Q1

In the following claim, we will take advantage of the assumption that S has no R1,1, R5 restriction.

Claim 1. {0001, 1001, 1101} ⊆ P0 ∩ P1 and {1110, 0110, 0010} ⊆ Q0 ∩Q1.

Proof of Claim. We will first show that 1101 ∈ P0. Suppose for a contradiction that 1101 ∈ P0. Since S is

resistant, it follows from the Sight Propagation Lemma that 1001 ∈ P0. As the vertices in {0, 1}n corresponding

to 1101, 1001 are inK and adjacent to vertices ofK, the Straight Circuit Lemma implies that {1101, 1001} ⊆ P1

and {0010, 0110} ⊆ Q0 ∩ Q1. Since the restriction of (P0 × {0}) ∪ (P1 × {1}) obtained after 1-restricting

coordinate 2 and 0-restricting coordinate 3 is neither P3 nor R1,1, it follows that 0101 ∈ P0. As S does not

contain antipodal points, we get that 1010 ∈ Q1:

P0 P1

Q0 Q1
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Since the 0-restriction of Q1 at coordinate 2 is resistant, it follows that 1000 ∈ Q1, so by the Straight Circuit

Lemma, 1000 ∈ Q0 and 0111 ∈ P0 ∩ P1. As the 1-restriction of Q1 at coordinate 3 is resistant, we have

1110 ∈ Q1, and so by the Straight Circuit Lemma, 1110 ∈ Q0 and 0001 ∈ P0 ∩ P1:

P0 P1

Q0 Q1

Since the 1-restriction of P0 at coordinate 3 is resistant, we get that 1011 ∈ P0, and by the Straight Circuit

Lemma, 1011 ∈ P1 and 0100 ∈ Q0 ∩ Q1. As the restriction of (Q0 × {0}) ∪ (Q1 × {1}) obtained after

1-restricting coordinate 1 and 0-restricting coordinate 4 is resistant and has no R1,1 restriction, it follows that

1100 ∈ Q1 and 1010 ∈ Q0. Since S does not have antipodal points, we get that 0011 ∈ P0 and 0101 ∈ P1:

P0 P1

Q0 Q1

Since the 0-restriction of P1 at coordinate 2 is resistant, it follows that 0011 ∈ P1, implying in turn that (P0 ×
{0}) ∪ (P1 × {1}) ∼= R5, so S has an R5 restriction, a contradiction. Thus, 1101 ∈ P0.

It follows from the Sight Propagation Lemma that {1001, 0001} ⊆ P0. By the Straight Circuit Lemma,

{0001, 1001, 1101} ⊆ P1 and {1110, 0110, 0010} ⊆ Q0 ∩Q1, as claimed. ♦

Recall that K ′ = (0 : 4, 1, 2, 3, 5, . . . , n− 1). Notice that by Claim 1, K ′ is a straight infeasible circuit such

that V (K ′4en) ⊆ S. In the following claim, we will apply the Straight Circuit Lemma to the straight infeasible

circuit K ′.

Claim 2. {0101, 0111, 0011, 1011} ⊆ P0.

Proof of Claim. Since P1 is resistant, it follows from the Sight Propagation Lemma that either

{0011, 0111} ⊆ P1 or {0011, 0111} ⊆ P1.
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We claim that {0011, 0111} ⊆ P1. Suppose for a contradiction that {0011, 0111} ⊆ P1. After applying the

Straight Circuit Lemma to K ′, we get that {0011, 0111} ⊆ P0:

P0 P1

Since P0 is resistant, it follows from Theorem 1.8 (ii) that P0 has no fragile restriction. However, either its 0-

restriction at coordinate 2 or its 1-restriction at coordinate 3 is fragile, a contradiction. Thus, {0011, 0111} ⊆ P1.

After applying the Straight Circuit Lemma to K ′, we get that {0011, 0111} ⊆ P0. As P0 is resistant, it follows

that {0101, 1011} ⊆ P0, as required. ♦

By Claim 2, {e2, e2 + e3, e3, e1 + e3}4e4 ⊆ S. This proves (?) and in turn the base case i = 1. For the

induction step, assume that i ≥ 2. Then an application of (?) to Ki−1, instead of K, implies that Ki :=

(0 : 4, . . . , 3 + i, 1, 2, 3, 3 + i+ 1, . . . , n− 1) is a straight infeasible circuit,V (Ki4en) ⊆ S, and {e2, e2 +

e3, e3, e1 + e3}4e44· · ·4e3+i ⊆ S, thereby completing the induction step.

Let D3 := {000, 100, 110, 111} ⊆ {0, 1}3. Using the preceding lemma, we prove the following:

Proposition 5.3. Take an integer n ≥ 5 and a resistant set S ⊆ {0, 1}n without antipodal points and without

an R1,1, R5 restriction. Let K be a straight infeasible circuit of length 2(n− 1) contained in {x : xn = 0} such

that V (K4en) ⊆ S. Then S does not have a D3 restriction whose infeasible points all belong to K.

Proof. After a possible relabeling and twisting, we may assume that K = (0 : 1, 2, . . . , n− 1). Suppose for a

contradiction that S has a D3 restriction whose infeasible points all belong to K. By symmetry, we may assume

that the D3 restriction is obtained after 0-restricting coordinates 4, . . . , n, that is, {e2, e2 + e3, e3, e1 + e3} ⊆ S.

Assume in the first case that n ≥ 6. It then follows from Lemma 5.2 that for each i ∈ [n − 4], Ki :=

(0 : 4, . . . , 3 + i, 1, 2, 3, 3 + i+ 1, . . . , n− 1) is a straight infeasible circuit,V (Ki4en) ⊆ S, and {e2, e2 +

e3, e3, e1 + e3}4e44· · ·4e3+i ⊆ S. In particular, setting i = n− 4, we get that

e34e44e54· · ·4en−1 ∈ S.

However, e34e44e54· · ·4en−1 ∈ K ⊆ S, a contradiction. Assume in the remaining case that n = 5.

Let P0 ⊆ {0, 1}4 (resp. P1 ⊆ {0, 1}4) be the 0-restriction (resp. 1-restriction) of S at coordinate 5. Since

V (K) ⊆ S and V (K4en) ⊆ S, it follows that

{0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001} ⊆ P0

{0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001} ⊆ P1.

As the 0-restriction of P0 at coordinate 4 yields D3, we also know that {0100, 0110, 0010, 1010} ⊆ P0. In

{0, 1}5, each one of these points belongs to K and is adjacent to a vertex of K, so by the Straight Circuit
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Lemma,

{0100, 0110, 0010, 1010} ⊆ P1

{1011, 1001, 1101, 0101} ⊆ P0

{1011, 1001, 1101, 0101} ⊆ P1.

The points given above determine that S ∼= R5,

S

P0 P1

a contradiction.

5.2 Finding {Rk,1 : k ≥ 1} ∪ {R5} restrictions

For an integer n ≥ 3, we will need the following property defined on the points x in {0, 1}n:

(�) x is feasible⇔ 1− x4en is feasible⇔ x4en is infeasible⇔ 1− x is infeasible.

Lemma 5.4. Take an integer n ≥ 5 and a resistant set S ⊆ {0, 1}n that does not have antipodal points,

and let K := (0 : 1, 2, . . . , n− 1) be a straight infeasible circuit such that V (K4en) ⊆ S. Suppose that

` ∈ {2, . . . , n− 3} is an integer such that the points in {x : x`+1 = · · · = xn = 0} satisfy (�) and the feasible

points in there form a hypercube. Then one of the following statements hold:

• S has one of {Rk,1 : 1 ≤ k ≤ `} ∪ {R5} as a restriction, or

• the points in {x : x`+2 = · · · = xn = 0} satisfy (�) and the feasible points in there form a hypercube.

Proof. Let us proceed by induction on ` ≥ 2.

For the base case, assume that ` = 2. Notice that every point in {x : x4 = · · · = xn = 0} either belongs

to K or is adjacent to a vertex of K. It therefore follows from the Straight Circuit Lemma that every point in

{x : x4 = · · · = xn = 0} satisfies (�). Suppose that the feasible points in {x : x4 = · · · = xn = 0} do not

form a hypercube. Let H ⊆ {0, 1}4 be the 0-restriction of S at coordinates 4, . . . , n − 1. Since V (K) ⊆ S

and V (K4en) ⊆ S, we see that {0000, 1000, 1100, 1110} ⊆ H and {0001, 1001, 1101, 1111} ⊆ H . As the

0-restriction of H at the last coordinate is not a hypercube, one of the following inclusions must hold:

• {0100, 1010} ⊆ H: By (�), {0101, 1011} ⊆ H . If |{0010, 0110} ∩ H| = 0, then by (�), H ∼= R2,1,

so S has an R2,1 restriction. If |{0010, 0110} ∩ H| = 1, then by (�), H , and therefore S, has an R1,1

restriction. Otherwise, when |{0010, 0110} ∩H| = 2, then H ∼= D3 and so S has a D3 restriction whose

infeasible points all belong to K, so by Proposition 5.3, S has one of R1,1, R5 as a restriction.
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• {0110, 1010} ⊆ H: Since H is resistant, it follows that 0100 ∈ H , so by the preceding case, S has one of

R1,1, R2,1, R5 as a restriction.

• {0100, 0010} ⊆ H: Since H is resistant, it follows that 1010 ∈ H , so by the first case, S has one of

R1,1, R2,1, R5 as a restriction.

In each case, we see that S has one of R1,1, R2,1, R5 as a restriction, thereby proving the base case ` = 2.

For the induction step, assume that ` ≥ 3. Then n ≥ 6. Let S′ := S ∩ {x : x`+1 = · · · = xn = 0}.
By assumption, S′ is a (possibly empty) hypercube, which excludes the points 0,

∑`
i=1 ei as these two points

belong to the infeasible circuit K. Since S′ is a hypercube and the points in {x : x`+1 = · · · = xn = 0} satisfy

(�),

(1) every infeasible point of {x : x`+1 = · · · = xn = 0} appears on a straight infeasible circuit

K ′ := (0 : i1, . . . , i`, ` + 1, . . . , n − 1) such that V (K ′4en) ⊆ S, where i1, . . . , i` is some

permutation of 1, . . . , `.

We will use (1) throughout the proof to reroute the circuit K. Notice that together with the Straight Circuit

Lemma, (1) implies that

(2) every point of {x : x`+2 = · · · = xn = 0} adjacent to an infeasible point of {x : x`+1 = · · · =
xn = 0} satisfies (�).

As a result, if the feasible points in {x : x`+2 = · · · = xn = 0} form a hypercube, then every infeasible point in

{x : x`+2 = · · · = xn = 0} satisfies (�), and so every infeasible point of {x : x`+2 = · · · = xn = 0} appears

on a straight infeasible circuit K ′ := (0 : i1, . . . , i`+1, ` + 2, . . . , n − 1) such that V (K ′4en) ⊆ S, where

i1, . . . , i`+1 is some permutation of 1, . . . , `+ 1. Thus, by the Straight Circuit Lemma,

(3) if the feasible points in {x : x`+2 = · · · = xn = 0} form a hypercube, then every infeasible

point in {x : x`+2 = · · · = xn = 0} satisfies (�).

Suppose that S has none of {Rk,1 : 1 ≤ k ≤ `} ∪ {R5} as a restriction. By (3), it suffices to show that the

feasible points in {x : x`+2 = · · · = xn = 0} form a hypercube. As 0,
∑`
i=1 ei /∈ S′, it follows that S′ is a

hypercube of dimension at most `− 2. There are five cases:

(i) S′ = ∅,

(ii) S′ is nonempty, of dimension at most `− 3, and has no vertex adjacent to
∑`
i=1 ei,

(iii) S′ is nonempty, of dimension at most `− 3, and has a vertex adjacent to
∑`
i=1 ei,

(iv) S′ is of dimension `− 2 and ` = 3,

(v) S′ is of dimension `− 2 and ` ≥ 4.
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(i) In this case, it follows from the Plane Propagation Lemma that the feasible points in {x : x`+2 = · · · =

xn = 0} form a hypercube, thereby completing the induction step.

(ii) In this case, after possibly relabeling coordinates 1, . . . , ` and rerouting K according to (1), we may

assume that S′ ⊆ {x ∈ {0, 1}n : x` = 0} while K remains as (0 : 1, . . . , n − 1). Consider the following

illustration of {x : x`+2 = · · · = xn = 0}:

0

X̀

i=1

eiS0

x` = 0 x` = 1

x`+1 = 1

x`+1 = 0

The filled-in parallelogram shows the feasible points of S′, while the shaded area and the square vertices indicate

infeasible points. As S′ 6= ∅, the infeasible point
∑`
i=1 ei sees a feasible point in S′, so by the Sight Propagation

Lemma,
∑`+1
i=1 ei sees a feasible point in S′ ∪ (S′4e`+1). In particular,

(4) S′4e`+14e` contains an infeasible point,

and
∑`+1
i=1 ei− e` is infeasible, and by the Straight Circuit Lemma,

∑`+1
i=1 ei− e` satisfies (�). Consider now the

straight infeasible circuit

K ′ := (0 : 1, . . . , `− 1, `+ 1, `, . . . , n− 1)

such that V (K ′4en) ⊆ S. Let us apply the induction hypothesis to K ′ given that the points in {x : x` =

x`+1 = x`+2 = · · · = xn = 0} satisfy (�) and its feasible points form a hypercube. The induction hypothesis

implies that the points in {x : x` = x`+2 = · · · = xn = 0} also satisfy (�) and its feasible points form a

hypercube. In particular, by (2), the points in {x : x`+2 = · · · = xn = 0} all satisfy (�). Moreover, as S′ 6= ∅,
S ∩ {x : x` = x`+2 = · · · = xn = 0} is either S′ or S′ ∪ (S′4e`+1).

Assume in the first case that S ∩ {x : x` = x`+2 = · · · = xn = 0} = S′. We then must have that

S ∩ {x : x`+2 = · · · = xn = 0} = S′.

Suppose not. Pick the closest pair of feasible vertices a, b such that a ∈ S′ and b ∈ {x : x`+2 = · · · = xn =

0}−S′. Since the points in {x : x`+2 = · · · = xn = 0} satisfy (�), it follows that the restriction of S containing

a, b4en as antipodal points is one of {Rk,1 : 1 ≤ k ≤ `} as a restriction, a contradiction. Thus, the equation

above holds, implying in turn that the feasible points in {x : x`+2 = · · · = xn = 0} form a hypercube, thereby

completing the induction step.

Assume in the remaining case that S ∩ {x : x` = x`+2 = · · · = xn = 0} = S′ ∪ (S′4e`+1):
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0

X̀

i=1

eiS0

x` = 0 x` = 1

x`+1 = 1

x`+1 = 0

Consider the straight infeasible circuit

K ′′ := (e`+1 : 1, . . . , `, `+ 2, . . . , n− 1, `+ 1)

such that V (K ′′4en) ⊆ S. Let us apply the induction hypothesis to K ′′ given that the points in {x : x` =

x`+2 = · · · = xn = 0, x`+1 = 1} satisfy (�) and its feasible points form a hypercube. The induction hypothesis

implies that the feasible points in {x : x`+2 = · · · = xn = 0, x`+1 = 1} form a hypercube. That is, S ∩ {x :

x`+2 = · · · = xn = 0, x`+1 = 1} is either S′4e`+1 or (S′4e`+1) ∪ (S′4e`+14e`). However, the latter is not

possible by (4), so S ∩ {x : x`+2 = · · · = xn = 0, x`+1 = 1} = S′4e`+1 and

S ∩ {x : x`+2 = · · · = xn = 0} = S′ ∪ (S′4e`+1).

Thus, the feasible points in {x : x`+2 = · · · = xn = 0} form a hypercube, thereby completing the induction

step.

(iii) In this case, as S′ has dimension at most `− 3, it cannot have a vertex adjacent to 0. So, after possibly

relabeling coordinates 1, . . . , ` and rerouting K according to (1), we may assume that S′ ⊆ {x : x` = 1, x1 =

0, x2 = 1} and
∑`
i=2 ei ∈ S′ while K remains as (0 : 1, . . . , n− 1):

0
S0

x` = 0 x` = 1

x`+1 = 1

x`+1 = 0
X̀

i=2

ei

Consider the straight circuit

K ′ := (e` : 1, . . . , `− 1, `+ 1, . . . , n− 1, `).
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Since e` is infeasible and satisfies (�) by (2), it follows that K ′ is infeasible and K ′4en is feasible. Let us apply

the induction hypothesis to K ′, given that the points in {x : x`+1 = x`+2 = · · · = xn = 0, x` = 1} satisfy (�)
and its feasible points form a hypercube. The induction hypothesis implies that the points in {x : x`+2 = · · · =
xn = 0, x` = 1} satisfy (�) and its feasible points form a hypercube. Together with (2), this implies that all the

points in {x : x`+2 = · · · = xn = 0} satisfy (�).

Assume in the first case that S ∩ {x : x`+2 = · · · = xn = 0, x` = 1} = S′. Then we must have that

S ∩ {x : x`+2 = · · · = xn = 0} = S′.

Suppose otherwise. Pick a closest pair of feasible points a, b such that a ∈ S′ and b ∈ {x : x`+2 = · · · = xn =

0} − S′. As the points in {x : x`+2 = · · · = xn = 0} satisfy (�), it follows that the restriction of S containing

a, b4en as antipodal points is one of {Rk,1 : 1 ≤ k ≤ `}, a contradiction. Thus, S ∩ {x : x`+2 = · · · = xn =

0} = S′. So the feasible points in {x : x`+2 = · · · = xn = 0} form a hypercube, thereby completing the

induction step.

Assume in the remaining case that S ∩ {x : x`+2 = · · · = xn = 0, x` = 1} = S′ ∪ (S′4e`+1):

0
S0

x` = 0 x` = 1

x`+1 = 1

x`+1 = 0

We claim that all the points in S′4e`4e`+1 are infeasible. Suppose for a contradiction that, for some x ∈ S′,
x4e`4e`+1 ∈ S. Recall that S′ ⊆ {x : x1 = 0, x2 = 1}. For i ∈ {1, 2}, consider the 3-dimensional cube

Hi ⊆ {0, 1}3 containing x4e`, x4e`+1, x4ei. Notice that for i ∈ {1, 2},

{x, x4e`+1, x4e`4e`+1} ⊆ S and {x4ei, x4e`, x4ei4e`, x4ei4e`+1} ⊆ S.

Thus, since H1, H2 are not fragile by Theorem 1.8 (ii), it follows that x4e14e`4e`+1, x4e24e`4e`+1 ∈ S.

To summarize, setting y := x4e`+1, {y4e`, y4e14e`, y4e24e`, y} ⊆ S. Moreover, {y4e1, y4e2, y4e14e2}
⊆ S. As a result, since S does not contain antipodal points and the points in {x : x`+2 = · · · = xn = 0} satisfy

(�), it follows that the 3-dimensional restriction of S containing {y4e1, y4e2, y4e`}41 is fragile, a contra-

diction to Theorem 1.8 (ii). Thus, all the points in S′4e`4e`+1 are infeasible.

We next claim that

S ∩ {x : x`+2 = · · · = xn = 0} = S′ ∪ (S′4e`+1).

Suppose otherwise. Pick the closest pair of feasible points a, b such that a ∈ S′4e`+1 and b ∈ {x : x`+2 =

· · · = xn = 0}−[S′∪(S′4e`+1)]. Since all the points in S′4e`4e`+1 are infeasible, it follows that dist(a, b) ≥
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2. Consider now the restriction of S containing a, b4en as antipodal points; because all the points in {x :

x`+2 = · · · = xn = 0} satisfy (�), this restriction is one of {Rk,1 : 1 ≤ k ≤ ` − 1}, a contradiction.

Thus, S ∩ {x : x`+2 = · · · = xn = 0} = S′ ∪ (S′4e`+1), implying in particular that the feasible points in

{x : x`+2 = · · · = xn = 0} form a hypercube, thereby completing the induction step.

(iv) After possibly relabeling coordinates 1, 2, 3 and rerouting K according to (1), we may assume that

S′ = {e3, e2 + e3} while K remains as (0 : 1, . . . , n− 1). By the Straight Circuit Lemma, S ∩ {x : x4 = · · · =
xn−1 = 0, xn = 1} = {e3 + en, e2 + e3 + en}.

Consider the straight circuit

K1 := (e2 : 1, 3, 4, 5, . . . , n− 1, 2).

By (2), K1 is infeasible and K14en is feasible. The induction hypothesis applied to K1 implies that the feasible

points in {x : x5 = · · · = xn = 0, x2 = 1} form a hypercube, implying in turn that {e2 +e4, e1 +e2 +e4} ⊆ S,

and so by (2), {e2 + e4 + en, e1 + e2 + e4 + en} ⊆ S:

e10

e2

e3

e4 en

We claim that e1+e3+e4 ∈ S. Suppose for a contradiction that e1+e3+e4 ∈ S. By (2), e1+e3+e4+en ∈ S.

By the Sight Propagation Lemma, e1 + e4 ∈ S, and so by (2), e1 + e4 + en ∈ S:

Consider the 3-dimensional restriction of S containing e3 + e1, e3 + e4, e3 + en; as this restriction is neither P3

nor R1,1, it follows that e3 + e4 ∈ S. If e4 ∈ S, then as S does not have antipodal points and 0, e1, e1 + e3

satisfy (�) by (2), the 3-dimensional restriction of S containing {e1, e3, e4}41 is fragile, thereby contradicting

Theorem 1.8 (ii). Otherwise, e4 /∈ S. By the Sight Propagation Lemma, e2 + e3 + e4 ∈ S. Consider the straight

circuit

K2 := (0 : 4, 2, 1, 3, 5, . . . , n− 1).

By (2), K2 is infeasible and K24en is feasible. However, the 3-dimensional restriction of S containing e4 +

e1, e4 + e2, e4 + e3 is a D3 whose infeasible points all belong to K3, so by Proposition 5.3, S has an R1,1, R5

restriction, a contradiction. Thus, e1 + e3 + e4 ∈ S, and so by (2), e1 + e3 + e4 + en ∈ S.

Consider the straight circuit

K3 := (0 : 1, 3, 4, 2, 5, . . . , n− 1).

By (2), K3 is infeasible and K34en is feasible. The induction hypothesis applied to K3 tells us that the feasible

points in {x : x5 = · · · = xn = 0, x2 = 0} form a hypercube, implying in turn that {e4, e1 + e4} ⊆ S. By (2),

{e4 + en, e1 + e4 + en} ⊆ S:
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Resistance now implies that the feasible points in {x : x5 = · · · = xn = 0} form a hypercube, thereby

completing the induction step.

(v) After possibly relabeling coordinates 1, . . . , ` and rerouting K according to (1), we may assume that

S′ = {x : x`−1 = 0, x` = 1, x`+2 = · · · = xn = 0} while K remains as (0 : 1, . . . , n− 1). As `− 2 ≥ 2, the

points in S′ are active in directions 1, 2. Let us apply the induction hypothesis to the straight infeasible circuit K

but with a different starting point (e1 : 2, . . . , n− 1, 1), given that the points in {x : x`+1 = · · · = xn = 0, x1 =

1} satisfy (�) and its feasible points S′ ∩ {x : x1 = 1} form a hypercube; and to the straight infeasible circuit

K4 := (e2 : 1, 3, . . . , n − 1, 2) satisfying V (K44en) ⊆ S, given that the points in {x : x`+1 = · · · = xn =

0, x2 = 1} satisfy (�) and its feasible points S′ ∩ {x : x2 = 1} form a hypercube. The induction hypothesis

implies that

(5) the points in {x : x`+2 = · · · = xn = 0, x1 = 1} satisfy (�) and its feasible points form a

hypercube,

and that the points in {x : x`+2 = · · · = xn = 0, x2 = 1} satisfy (�) and its feasible points form a hypercube.

The latter implies in particular that
∑`+1
i=1 ei−e1 ∈ S. We will next apply the induction hypothesis to the straight

infeasible circuit K5 := (0 : 2, . . . , `+ 1, 1, `+ 1, . . . , n− 1) satisfying V (K54en) ⊆ S, given that the points

in {x : x`+1 = · · · = xn = 0, x1 = 0} satisfy (�) and its feasible points S′ ∩ {x : x1 = 0} form a hypercube.

The induction hypothesis tells us that

(6) the points in {x : x`+2 = · · · = xn = 0, x1 = 0} satisfy (�) and its feasible points form a

hypercube.

By (5) and (6), the points in {x : x`+2 = · · · = xn = 0} satisfy (�) and the feasible points of {x : x`+2 = · · · =
xn = 0} are contained in S′ ∪ (S′4e`+1):

x` = 0 x` = 1

x`+1 = 1

x`+1 = 0

x`�1 = 0

x`�1 = 0

x`�1 = 1

x`�1 = 1

S0
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After applying the Plane Propagation Lemma to the 0-restriction of S at coordinates `+2, . . . , n, we see that the

feasible points in {x : x`+2 = · · · = xn = 0} must in fact form a hypercube, thereby completing the induction

step. This finishes the proof of the lemma.

We are now ready to prove the main result of this section:

Theorem 5.5. Take an integer n ≥ 4 and a resistant set S ⊆ {0, 1}n that is non-polar. Assume that there is a

straight infeasible circuit K of length 2(n − 1) contained in {x : xn = 0} such that V (K4en) ⊆ S. Then S

has one of {Rk,1 : 1 ≤ k ≤ n− 2} ∪ {R5} as a restriction.

Proof. After a possible twisting and relabeling, we may assume that K = (0 : 1, 2, . . . , n− 1).

Claim. If n = 4, then S ∼= R2,1.

Proof of Claim. Suppose that n = 4. As V (K) ⊆ S and V (K4e4) ⊆ S, it follows that

{0000, 1000, 1100, 1110, 0110, 0010} ⊆ S and {0001, 1001, 1101, 1111, 0111, 0011} ⊆ S.

Since S is non-polar, |{1010, 0100} ∩ S| ≥ 1. Since 1010, 0100 are both adjacent to a vertex of K, it follows

from the Straight Circuit Lemma that {1010, 0100} ⊆ S and {0101, 1011} ⊆ S, implying in turn that S ∼= R2,1,

as required. ♦

We may therefore assume that n ≥ 5. By the Straight Circuit Lemma, the points of {x : x3 = · · · = xn = 0}
satisfy (�). Also, as {x : x3 = · · · = xn = 0} contains at most one feasible point, the hypotheses of Lemma 5.4

hold for ` = 2. If S has one of {Rk,1 : 1 ≤ k ≤ n − 3} ∪ {R5} as a restriction, then we are done. Otherwise,

after applying Lemma 5.4 for ` = 2, . . . , n − 3 in this order, we see that the points in {x : xn−1 = xn = 0}
satisfy (�), implying in turn that all the points in {0, 1}n satisfy (�), and that S′ := S ∩ {x : xn−1 = xn = 0}
is a hypercube. Since S is non-polar and (�) holds, it follows that S′ 6= ∅. Pick a closest pair of feasible points

a, b such that a ∈ S′ and b ∈ (S ∩ {x : xn = 0})−S′ = S′414en. Notice that dist(a, b) ≥ 2. It follows from

(�) that the restriction of S containing a, b4en as antipodal points is one of {Rk,1 : 1 ≤ k ≤ n− 2}. In either

one of the two cases, S has one of {Rk,1 : 1 ≤ k ≤ n− 2} ∪ {R5} as a restriction, as required.

6 Proofs of Theorems 1.17 and 1.18

Let us start with the following result:

Proposition 6.1. Take an integer n ≥ 3 and a resistant set S ⊆ {0, 1}n without antipodal points. If every

straight infeasible path has length at most n− 2, then S has an R1,1 restriction.

Proof. Let m ≤ n− 2 be the maximum length of a straight infeasible path. Then every straight infeasible path

has length at most m. As S does not have antipodal points, it follows that

(?) every straight feasible path has length at most m,
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because the antipode of every straight feasible path is a straight infeasible path of the same length. Let P :=

(v0, v1, . . . , vm) be a maximum length straight infeasible path. After a possible twisting and relabeling, we

may assume that v0 = 0 and vj = vj−14ej for j ∈ [m]. Our maximal choice of P implies that for each

j ∈ {m+ 1, . . . , n}, the points v04ej , vm4ej are feasible. Thus, by the Path Propagation Lemma,

(�) for each j ∈ {m+ 1, . . . , n}, P4ej is a feasible path.

If m = n − 2, then v04em+1 = en−1 and vm4em+2 = 1 − en−1 are feasible points by (�), which cannot be

the case as there are no antipodal feasible points. Thus, m ≤ n− 3. Let

R := S ∩
{
x : xi = 0, i /∈ {m+ 1,m+ 2,m+ 3}

}
.

By assumption, 0 /∈ R, and by (�), em+1, em+2, em+3 ∈ R. Moreover, by (?), P4em+1, P4em+2, P4em+3

are maximal straight feasible paths, so em+14em+2, em+24em+3, em+34em+1 /∈ R. As S is resistant, it

does not have a fragile restriction by Theorem 1.8 (ii), so em+14em+24em+3 ∈ R. As a result, after dropping

coordinates [n]−{m+1,m+2,m+3} fromR we obtain anR1,1, so S has anR1,1 restriction, as required.

Using Theorem 5.5 and Proposition 6.1, we prove the following:

Theorem 6.2. Take an integer n ≥ 3 and a resistant set S ⊆ {0, 1}n that is non-polar. If every straight

infeasible path has length at most n− 1, then S has one of {Rk,1 : k ≥ 1} ∪ {R5} as a restriction.

Proof. If there is no straight infeasible path of length n − 1, then S has an R1,1 restriction by Proposition 6.1,

so we are done. Otherwise, there is a straight infeasible path P := (v0, v1, . . . , vn−1) of length n − 1, which

by assumption is maximal. After a possible relabeling and twisting, if necessary, we may assume that V (P ) ⊆
{x : xn = 0}. Maximality of P implies that v04en, vn−14en are feasible, so by the Path Propagation Lemma,

P4en is a feasible path. As S does not contain antipodal points, it follows that the path Q := P4en41 is

infeasible. Since Q is a straight infeasible (vn−1, v0)-path, and vn−14en, v04en ∈ S, we get from the Path

Propagation Lemma that Q4en is a feasible path. Consider the straight infeasible circuit K := P ∪Q of length

2(n− 1) contained in {x : xn = 0}. We just showed that V (K4en) ⊆ S. Thus, by Theorem 5.5, S has one of

{Rk,1 : k ≥ 1} ∪ {R5} as a restriction, as required.

We are now ready to prove Theorem 1.17, stating that up to isomorphism, {Rk,1 : k ≥ 1} ∪ {R5} are the

only half-dense strictly non-polar sets that are resistant:

Proof of Theorem 1.17. Take an integer n ≥ 3 and a half-dense strictly non-polar set S ⊆ {0, 1}n that is

resistant. Since S is non-polar and half-dense, it follows that for each x ∈ {0, 1}n, one of x,1 − x is feasible

and the other is infeasible. In particular, there is no antipodal pair of infeasible points. Since a straight path of

length n has antipodal points as ends, it therefore follows that every straight infeasible path has length at most

n− 1. Hence, as S is resistant and non-polar, Theorem 6.2 implies that S has one of {Rk,1 : k ≥ 1} ∪ {R5} as

a restriction. As {Rk,1 : k ≥ 1} ∪ {R5} are non-polar, and S is strictly non-polar, S must be isomorphic to one

of {Rk,1 : k ≥ 1} ∪ {R5}, as required.
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Next we prove Theorem 1.18, which states the following:

Take integers n1, n2 ≥ 1 and sets S1 ⊆ {0, 1}n1 , S2 ⊆ {0, 1}n2 , where S1, S1, S2, S2 are nonempty

and resistant. Then S1∗S2 is strictly polar if, and only if, S1∗S2 has none of {Rk,1 : k ≥ 1}∪{R5}
as a restriction.

This theorem is by and large a consequence of Corollary 4.15 and Theorem 1.17. The proof also relies on the

following result:

Proposition 6.3 ([3], Proposition 5.11). Take integers n1, n2 ≥ 1 and sets S1 ⊆ {0, 1}n1 , S2 ⊆ {0, 1}n2 ,

where S1, S1, S2, S2 are nonempty. If one of S1, S1, S2, S2 is not strictly connected, then S1 ∗ S2 has one of

{Rk,1 : k ≥ 1} as a restriction.

We will also need the following result:

Theorem 6.4 ([3], Theorem 1.18 (2)). Take integers n1, n2 ≥ 1 and sets S1 ⊆ {0, 1}n1 , S2 ⊆ {0, 1}n2 , where

S1 ∗ S2 is strictly non-polar. Then either n1 = 1 or n2 = 1. In particular, S1 ∗ S2 is half-dense.

We are now ready to prove the final result of the paper, Theorem 1.18:

Proof of Theorem 1.18. (⇒) holds trivially. (⇐) Assume that S1 ∗ S2 has a non-polar restriction. We need to

show that S1 ∗ S2 has one of {Rk,1 : k ≥ 1} ∪ {R5} as a restriction. If one of S1, S1, S2, S2 is not strictly

connected, then by Proposition 6.3, S1∗S2 has one of {Rk,1 : k ≥ 1} as a restriction, so we are done. Otherwise,

S1, S1, S2, S2 are strictly connected. Since they are also resistant, Corollary 4.15 implies that S1, S1, S2, S2 are

strictly polar.

For each i ∈ {1, 2}, take an integer mi ≥ 0 and a restriction Ri ⊆ {0, 1}mi so that R1 ∗ R2 is a strictly

non-polar restriction of S1 ∗ S2. As restrictions of S1 and S2, R1 and R2 are both polar, implying in turn that

m1 ≥ 1 and m2 ≥ 1. Therefore, R1 ∗ R2 is half-dense by Theorem 6.4. As restrictions of S1, S1, S2, S2, the

sets R1, R1, R2, R2 are resistant by Remark 3.2. Thus, R1 ∗ R2 is resistant by Theorem 1.7 (3). As a result,

R1 ∗R2 is isomorphic to one of {Rk,1 : k ≥ 1} ∪ {R5} by Theorem 1.17, in turn finishing the proof.

7 The max-flow min-cut property and Theorem 1.13

Let C be a clutter over ground set E. A cover is a subset of E that intersects every member. Take weights

w ∈ ZE+. A w-weighted packing is a collection of (possibly equal) members such that every element e appears

in at most we members; its value is the number of members in the collection. Given a cover B and a w-weighted

packing C1, . . . , Ck, we have that

w(B) =
∑

e∈B
we ≥

∑

e∈B
|{i ∈ [k] : e ∈ Ci}| =

∑

i∈[k]
|B ∩ Ci| ≥ k.

That is, the weight of every cover is at least as large as the value of every w-weighted packing. Denote by

τ(C, w) the minimum weight of a cover, and by ν(C, w) the maximum value of a w-weighted packing. Then
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τ(C, w) ≥ ν(C, w). Observe that C packs if, and only if, τ(C,1) = ν(C,1). Moreover, C has the packing

property if, and only if,

τ(C, w) = ν(C, w) ∀w ∈ {0, 1,∞}E .

We say that C has the max-flow min-cut property if

τ(C, w) = ν(C, w) ∀w ∈ ZE+.

Clearly, the max-flow min-cut property implies the packing property. The Replication Conjecture of Conforti

and Cornuéjols [9] predicts the converse should also hold, that

(?) the packing property implies the max-flow min-cut property. (?)

Corollary 1.12 showed that if a set is resistant and strictly polar, then its cuboid has the packing property; if the

Replication Conjecture were true, then the cuboid should also have the max-flow min-cut property. This is what

Theorem 1.13 proves, without relying on the Replication Conjecture. We will need the following proposition:

Proposition 7.1. Take an integer n ≥ 1, a polar set S ⊆ {0, 1}n, and weights w ∈ Z2n
+ such that

(h1) τ(cuboid(S), w) > ν(cuboid(S), w),

(h2) for any w′ ∈ Z2n
+ such that

∑
e∈[2n] w

′
e <

∑
e∈[2n] we, we have that

τ(cuboid(S), w′) = ν(cuboid(S), w′),

(h3) the cuboid of every proper restriction of S has the max-flow min-cut property.

Given that τ := τ(cuboid(S), w), the following statements hold:

(c1) for each i ∈ [n], {2i− 1, 2i} is a minimum weight cover,

(c2) for each element e, τ − 1 ≥ we ≥ 1,

(c3) τ ≥ 3, and

(c4) for every member C of cuboid(S), there is a minimal cover B such that

w(B) ≤ τ − 2 + |B ∩ C|.

Moreover, for every such B,

(c5) B has at most two elements of weight at least τ2 , and

(c6) if B has two elements f, g of weight at least τ2 , then B ⊆ C, wf = wg = τ
2 , and we = 1 for all

e ∈ B − {f, g}.

Proof. (c1) Let us first prove that
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every element e of cuboid(S) appears in a minimum weight cover.

Suppose otherwise. In particular, we ≥ 1. Let w′ be obtained from w after decreasing the weight of e by 1.

Our contrary assumption implies that τ(cuboid(S), w′) = τ . It follows from (h2) that τ = τ(cuboid(S), w′) =

ν(cuboid(S), w′), so there is a w′-weighted packing of value τ , which is also a w-weighted packing of value τ ,

a contradiction to (h1).

Pick minimum weight coversB1, B2 containing 2i−1, 2i, respectively. If {2i−1, 2i} ⊆ B1 or {2i−1, 2i} ⊆
B2, then {2i− 1, 2i} is also a minimum weight cover, so we are done. Otherwise, B1 ∩{2i− 1, 2i} = {2i− 1}
and B2 ∩ {2i − 1, 2i} = {2i}. As a result, (B1 ∪ B2) − {2i − 1, 2i} is a cover, and so its weight is at least τ .

Since {2i− 1, 2i} is a cover as well, its weight is also at least τ , so

2τ = w(B1) + w(B2) ≥ w
(
(B1 ∪B2)− {2i− 1, 2i}

)
+ w

(
{2i− 1, 2i}

)
≥ 2τ,

and so equality holds throughout. Subsequently, {2i− 1, 2i} is a minimum weight cover, as required.

(c2) Take i ∈ [n]. By (c1), w2i−1 + w2i = τ . It therefore suffices to show that {w2i−1, w2i} 6= {0, τ}.
Suppose otherwise. After a possible twisting and relabeling, we may assume that i = n, w2n−1 = 0 and

w2n = τ . Define w′ ∈ Z2n−2
+ as follows:

w′e := we ∀e ∈ [2n− 2].

Let S′ ⊆ {0, 1}n−1 be the 0-restriction of S at coordinate n. By (h3), cuboid(S′) has the max-flow min-cut

property, so

τ(cuboid(S′), w′) = ν(cuboid(S′), w′).

Notice however that cuboid(S′) = cuboid(S) \ 2i− 1/2i. Thus, since w2n−1 = 0,

τ(cuboid(S′), w′) = τ(cuboid(S), w) = τ.

So cuboid(S′) has a w′-weighted packing of value τ , and as w2n = τ , we get a w-weighted packing of value τ

in cuboid(S), a contradiction to (h1).

(c3) Clearly, τ ≥ 2. Suppose for a contradiction that τ = 2. Then by (c2), every element must have weight 1.

However, as S is polar, τ(cuboid(S),1) = ν(cuboid(S),1), a contradiction to (h1).

(c4) Suppose for a contradiction that for every minimal cover B,

w(B)− |B ∩ C| ≥ τ − 1.

Let w′ ∈ R2n
+ be obtained from w after decreasing the weight of every element in C by 1. The inequality above

implies that τ(cuboid(S), w′) ≥ τ−1. It follows from (h2) that ν(cuboid(S), w′) = τ(cuboid(S), w′) ≥ τ−1.

As a result, cuboid(S) has a w′-weighted packing of value τ − 1, which together with C yields a w-weighted

packing of value τ , a contradiction to (h1). (c5) Suppose for a contradiction that there are three elements

e, f, g ∈ B of weight at least τ2 . Since every other element has weight at least 1 by (c2),

τ − 2 + |B| ≥ τ − 2 + |B ∩ C| ≥ w(B) ≥
(

3× τ

2

)
+ |B| − 3
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implying in turn that 2 ≥ τ , a contradiction to (c3). (c6) Assume that B has elements f, g of weight at least τ2 .

Since every other element has weight at least 1 by (c2),

τ − 2 + |B| ≥ τ − 2 + |B ∩ C| ≥ w(B) = wf + wg +
∑

e∈B−{f,g}
we ≥

τ

2
+
τ

2
+ |B| − 2.

As a result, equality holds throughout, implying in turn that (c6) holds.

We will also need the following remark about resistant sets:

Remark 7.2. Take an integer n ≥ 1 and a resistant set S ⊆ {0, 1}n, where 0 is infeasible. Let p1, . . . , pk be

the feasible points of minimal support, and let C1, . . . , Ck be the corresponding members of cuboid(S). Then

• C1 ∩ {1, 3, . . . , 2n− 1}, . . . , Ck ∩ {1, 3, . . . , 2n− 1} are pairwise disjoint,

• for every subset B ⊆ {1, 3, . . . , 2n− 1}, B is a cover of cuboid(S) if, and only if,

B ∩ Cj 6= ∅ ∀j ∈ [k].

In particular, B is a minimal cover of cuboid(S) if, and only if,

|B ∩ Cj | = 1 ∀j ∈ [k].

Proof. Since S is resistant, p1, . . . , pk have pairwise disjoint supports, implying in turn that C1∩{1, 3, . . . , 2n−
1}, . . . , Ck ∩{1, 3, . . . , 2n−1} are pairwise disjoint. For every member C of cuboid(S), C ∩{2i−1 : i ∈ [n]}
contains one of Cj ∩ {2i − 1 : i ∈ [n]}, j ∈ [k]. Put together, these facts imply that for every subset B ⊆
{1, 3, . . . , 2n− 1}, B is a cover of cuboid(S) if, and only if,

B ∩ Cj 6= ∅ ∀j ∈ [k],

as required.

Lastly, we will need the following remark:

Remark 7.3 ([28]). If a clutter is ideal, then so is every minor of it.

We are now ready to prove Theorem 1.13, stating that every resistant, strictly polar set has a cuboid with the

max-flow min-cut property:

Proof of Theorem 1.13. Take an integer n ≥ 1 and a resistant, strictly polar set S ⊆ {0, 1}n. By Remark 3.2,

every restriction of S is resistant. Since every restriction of S is strictly polar as well, we may assume that the

cuboid of every proper restriction of S has the max-flow min-cut property. Suppose for a contradiction that S

does not have the max-flow min-cut property. Choose weights w ∈ Z2n
+ such that

τ(cuboid(S), w) > ν(cuboid(S), w),
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and subject to satisfying this inequality,
∑
e∈[2n] we is minimized. By Proposition 7.1, as hypotheses (h1)-(h3)

hold, consequences (c1)-(c6) follow. In particular, setting τ := τ(cuboid(S), w), we have by (c1) that

w2i−1 + w2i = τ ∀i ∈ [n].

Going forward, given B ⊆ {1, 2, . . . , 2n− 1, 2n}, define

Bodd := B ∩ {1, 3, . . . , 2n− 1} Beven := B ∩ {2, 4, . . . , 2n}.

Claim 1. Assume that w2i ≥ τ
2 ≥ w2i−1 for each i ∈ [n], and 0 is infeasible. Let p1, . . . , pk be the feasi-

ble points of minimal support, for some integer k ≥ 1, and let C1, . . . , Ck be the corresponding members of

cuboid(S). Then the following statements hold:

(1) k ≥ 2,

(2) if Beven = {2n} and B is a minimal cover not containing 2n− 1, then

∣∣{j ∈ [k] : B ∩ Codd
j = ∅

}∣∣ = 1.

Moreover,

(3) for each j ∈ [k], w(B) ≥ τ − 2 + |B ∩ Cj |,

Given that B ∩ Codd
k = ∅ and w(B) = τ − 2 + |B ∩ C1|, then

(4) for each c ∈ Codd
k , we have that wc = τ

2 , and

(5) for each i ∈ [k − 1] and ci ∈ B ∩ Codd
i , we have that

∑k−1
i=1 wci = τ

2 .

(6) if Beven = {2n − 2, 2n} and B is a minimal cover not containing either of 2n − 3, 2n − 1, then either

en−1, en are both feasible, or
∣∣{j ∈ [k] : B ∩ Codd

j = ∅
}∣∣ = 1 or 2.

Proof of Claim. (1) Suppose otherwise. Then k = 1. Pick an element c ∈ Codd
1 . Then {c} is a minimal cover by

Remark 7.2. However,

w({c}) = wc ≤ τ − 1

by (c2), a contradiction as every cover has weight at least τ .

(2) As B − {2n} = Bodd is not a cover, it follows from Remark 7.2 that Bodd is disjoint from one of

C1, . . . , Ck, say B ∩ Codd
k = Bodd ∩ Ck = ∅. We need to show that

B ∩ Codd
j 6= ∅ ∀j ∈ [k − 1].

Suppose otherwise; say B ∩Codd
k−1 = ∅. Since B is a cover, it intersects both Ck−1 and Ck, so 2n ∈ Ck−1 ∩Ck

and in turn pk−1n = pkn = 0. Moreover, as the cover B does not contain 2n − 1, the point en is infeasible.

Consider the valid pairs [0, pk−1], [0, pk] as well as the valid sequence (n) for 0. Let

qk−1 := im[0, pk−1](n) ∈
{
pk−1, pk−14en

}
and qk := im[0, pk](n) ∈

{
pk, pk4en

}
.
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By Remark 4.9 and Theorem 4.11, the points qk−1, qk are distinct, feasible and seen by en. As S is resistant,

the points qk−14en, qk4en have disjoint supports. Hence, since pk−1n = pkn = 0, either qk−1 = pk−14en or

qk = pk4en. In particular, one of Ck−14{2n−1, 2n}, Ck4{2n−1, 2n} is a member of cuboid(S). However,

since B ∩ Ck−1 = B ∩ Ck = {2n}, both Ck−14{2n − 1, 2n}, Ck4{2n − 1, 2n} are disjoint from the cover

B, a contradiction. Thus,
{
j ∈ [k] : B ∩ Codd

j = ∅
}

= {k}.

(3) SinceB∩Ck = {2n}, the inequality holds (strictly) for j = k. It therefore suffices to prove the inequality

for j = 1. By Remark 7.2, Codd
1 , . . . , Codd

k−1 are pairwise disjoint, so

w(B) ≥ w2n +

k−1∑

i=1

w(B ∩ Codd
i )

≥ w2n + w
((
B ∩ Codd

1

)
− c1

)
+

k−1∑

i=1

wci ∀ci ∈ B ∩ Codd
i

≥ w2n + w
((
B ∩ Codd

1

)
− c1

)
+ τ − wck ∀ck ∈ Codd

k

≥
∣∣(B ∩ Codd

1

)
− c1

∣∣+ τ + w2n − wck
=
∣∣B ∩ Codd

1

∣∣− 1 + τ + w2n − wck
≥ |B ∩ C1| − |Beven| − 1 + τ + w2n − wck

= |B ∩ C1| − 2 + τ +
(
w2n −

τ

2

)
+
(τ

2
− wck

)

≥ |B ∩ C1| − 2 + τ,

where the third inequality follows from the inequality
∑k
i=1 wci ≥ τ which holds because {c1, . . . , ck} is a

cover of cuboid(S) by Remark 7.2, and the last inequality holds becausew2n ≥ τ
2 ≥ wck due to our assumption.

Thus, w(B) ≥ |B ∩C1| − 2 + τ . Suppose that equality holds here. Then equality must hold in every line of the

inequalities above. (4) follows from the last inequality above holding at equality. (5) Pick ck ∈ Codd
k . Since the

third inequality holds at equality, we have that
∑k−1
i=1 wci = τ − wck = τ

2 by (4), as required.

(6) Assume that one of en−1, en, say en−1, is infeasible. Since B does not contain either of 2n− 3, 2n− 1,

the point en−1 + en is also infeasible. Thus, the three points 0, en−1, en−1 + en are infeasible, and so the

sequence (n− 1, n) is valid for 0.

As B−{2n−2, 2n} = Bodd is not a cover, Remark 7.2 tells us that Bodd is disjoint from one of C1, . . . , Ck,

say B ∩ Codd
k = Bodd ∩ Ck = ∅. We need to show that

∣∣{j ∈ [k − 1] : B ∩ Codd
j = ∅

}∣∣ ≤ 1.

Suppose otherwise; say B ∩ Codd
k−2 = B ∩ Codd

k−1 = ∅. For each j ∈ {k − 2, k − 1, k}, take the valid pair [0, pj ]

and let

qj := im[0, pj ](n− 1, n) ∈
{
pj , pj4en−1, pj4en, pj4en−14en

}
.
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By Remark 4.9 and Theorem 4.11, the points qk−2, qk−1, qk are distinct, feasible and seen by en−14en. Thus,

as S is resistant, the three points qk−24en−14en, qk−14en−14en, qk4en−14en have pairwise disjoint sup-

ports. In particular, for one of the three points, coordinates n − 1 and n are both set to 0. Thus, for some

j ∈ {k − 2, k − 1, k},
qjn−1 = qjn = 1.

Let C be the member of cuboid(S) corresponding to qj . Then Codd = Codd
j ∪ {2n − 3, 2n − 1} and Ceven ∩

{2n− 2, 2n} = ∅. But then B ∩ C = ∅, a contradiction. ♦

Claim 2. There is a minimum weight cover B of cuboid(S), different from {1, 2}, . . . , {2n− 1, 2n}, such that

|B| = 2 and the two elements in B have weight τ2 .

Proof of Claim. Assume in the first case that there is a twisting of S such thatw2i ≥ τ
2 ≥ w2i−1 for each i ∈ [n],

and 0 is feasible. Let C := {2i : i ∈ [n]} be the member of cuboid(S) corresponding to 0. By (c4), there exists

a minimal cover B such that w(B) ≤ τ − 2 + |B ∩ C|. Clearly, |B ∩ C| ≥ 2, so
∣∣∣
{
c ∈ [2n] : wc ≥

τ

2

}∣∣∣ ≥ |B ∩ C| ≥ 2.

By (c5), B has at most two elements of weight at least τ2 , so |B ∩C| = 2. However, by (c6), B ⊆ C so |B| = 2,

and the two elements in B have weight τ2 , as required.

Assume in the remaining case that

(�) for every twisting of S such that w2i ≥ τ
2 ≥ w2i−1 for each i ∈ [n], the point 0 is infeasible.

Consider such a twisting. We may therefore apply Claim 1. Let p1, . . . , pk be the feasible points of S of minimal

support, and let C1, . . . , Ck be the corresponding members in cuboid(S). By Claim 1 (1), k ≥ 2. We will show

that k = 2.

Suppose for a contradiction that k ≥ 3. After a possible relabeling of C1, . . . , Ck, we may assume that

(?) if every element ofCodd
j has weight τ2 for some j ∈ [k], then every element ofCodd

1 has weight τ2 .

By (c4), there is a minimal cover B such that

w(B) ≤ τ − 2 + |B ∩ C1|.

In particular, |B ∩ C1| ≥ 2, implying in turn that B does not contain any of {1, 2}, . . . , {2n − 1, 2n}, and

Beven 6= ∅ by Remark 7.2. Thus, Beven contains exactly one or two elements, by (c5).

Assume in the first case that Beven contains exactly one element, say 2n. Then 2n− 1 /∈ B. By Claim 1 (2),

we may assume that B ∩ Codd
k = ∅ and so B ∩ Ck = {2n}. The inequality above, together with Claim 1 (3),

implies that

w(B) = τ − 2 + |B ∩ C1|.
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By Claim 1 (4), every element of Codd
k has weight τ

2 , so by (?), every element of Codd
1 has weight τ

2 . By

Claim 1 (2), B ∩ Codd
i 6= ∅ for each i ∈ [k − 1], and by Claim 1 (5), for each i ∈ [k − 1] and ci ∈ B ∩ Codd

i ,

wc1 + wc2 ≤
k−1∑

i=1

wci =
τ

2
,

as k ≥ 3. However, wc1 = τ
2 and wc2 ≥ 1 by (c2), a contradiction.

Assume in the remaining case that Beven contains exactly two elements, say 2n − 2, 2n. Then by (c6),

B ⊆ C1 and w2n−3 = w2n−2 = w2n−1 = w2n = τ
2 . Since the twists of S obtained after twisting either

coordinates n − 1, n satisfy (�), it follows that both points en−1, en are infeasible. It therefore follows from

Claim 1 (6) that
∣∣{j ∈ [k] : B ∩ Codd

j = ∅
}∣∣ = 1 or 2.

On the other hand, as Codd
1 , . . . , Codd

k are pairwise disjoint by Remark 7.2, and B ⊆ C1, it follows that

∣∣{j ∈ [k] : B ∩ Codd
j = ∅

}∣∣ ⊇ {2, . . . , k}.

Thus, k ∈ {2, 3}. Since k ≥ 3, it follows that k = 3 and B ∩ Codd
1 6= ∅. Fix an element c1 ∈ B ∩ Codd

1 , and for

j ∈ {2, 3}, pick an arbitrary element cj ∈ Codd
j . By Remark 7.2, {c1, c2, c3} is a minimal cover of cuboid(S),

so

wc1 + wc2 + wc3 ≥ τ.

However, wc1 = 1 by (c6), so

wc2 + wc3 ≥ τ − 1 ∀c2 ∈ Codd
2 ,∀c3 ∈ Codd

3 .

As a result, for some j ∈ {2, 3}, every element in Codd
j has weight at least d τ−12 e = τ

2 . Our twisting of S

implies that every element in Codd
j has weight exactly τ

2 . Thus, by (?), every element in Codd
1 has weight τ2 , so

1 = wc1 = τ
2 , a contradiction to (c3).

As a result, k = 2. For i ∈ [2], pick ci ∈ Codd
i . By Remark 7.2, {c1, c2} is a minimal cover. Moreover,

τ =
τ

2
+
τ

2
≥ wc1 + wc2 ≥ τ,

so wc1 = wc2 = τ
2 . As a result, {c1, c2} is the desired minimal cover, thereby proving the claim. ♦

After a possible twisting and relabeling, we may assume that {1, 3} is a minimal cover of cuboid(S) and

w1 = w3 = τ
2 . In particular, the hypercube {x : x1 = x2 = 0} is infeasible. By the Plane Propagation Lemma,

the two sets S ∩ {x : x1 = 1, x2 = 0}, S ∩ {x : x1 = 0, x2 = 1} are hypercubes. Choose I, J ⊆ {3, . . . , n}
and I ′, J ′ ⊆ {3, . . . , n} such that

S ∩ {x : x1 = 1, x2 = 0} = {x : x1 = 1, x2 = 0, xi = 1 ∀i ∈ I, xj = 0 ∀j ∈ J}

and

S ∩ {x : x1 = 0, x2 = 1} = {x : x1 = 0, x2 = 1, xi = 1 ∀i ∈ I ′, xj = 0 ∀j ∈ J ′}.
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Claim 3. The following statements hold:

(1) w2i−1 ≥ τ
2 for each i ∈ I ∪ I ′,

(2) w2j−1 ≤ τ
2 for each j ∈ J ∪ J ′,

(3) w2i−1 = τ
2 if i ∈ I ∩ J ′ or i ∈ I ′ ∩ J ,

(4) I ∩ I ′ = ∅ and J ∩ J ′ = ∅.

Proof of Claim. (1) For each i ∈ I , {3, 2i − 1} forms a cover, so w2i−1 ≥ τ − w3 = τ
2 . For each i ∈ I ′,

{1, 2i − 1} forms a cover, so w2i−1 ≥ τ − w1 = τ
2 , so (1) follows. (2) For each j ∈ J , {3, 2j} forms a cover,

so w2j ≥ τ − w3 = τ
2 , so w2j−1 ≤ τ

2 . For each j ∈ J ′, {1, 2j} forms a cover, so w2j ≥ τ − w1 = τ
2 , so

w2j−1 ≤ τ
2 , so (2) follows. (3) follows from (1) and (2). (4) Suppose for a contradiction that I ∩ I ′ 6= ∅ or

J ∩J ′ 6= ∅. Then for some element c ∈ [2n]−{1, 3}, the two sets {1, c}, {3, c} form minimal covers. However,

{1, 3} is also a minimal cover, implying in turn that

cuboid(S)/ ([2n]− {1, 3, c}) ∼= ∆3,

so cuboid(S) is non-ideal by Remark 7.3, a contradiction to Corollary 1.5. ♦

Claim 3 implies that there are feasible points x1, . . . , xτ (repetition allowed) in the two hypercubes S ∩ {x :

x1 = 1, x2 = 0}, S ∩ {x : x1 = 0, x2 = 1} such that
∣∣∣
{
j ∈ [τ ] : xji = 1

}∣∣∣ = w2i−1 ∀i ∈ [n].

Since w2i−1 + w2i = τ for each i ∈ [n], the members C1, . . . , Cτ of cuboid(S) corresponding to x1, . . . , xτ

yield a w-weighted packing, so ν(cuboid(S), w) ≥ τ , a contradiction.

8 Concluding remarks

We showed in Theorem 1.17 that {Rk,1 : k ≥ 1} ∪ {R5} are, up to isomorphism, the only strictly non-polar

resistant sets that are half-dense. Question 1.16, asking for all of the resistant strictly non-polar sets, remains

open. In fact, we cannot even answer the following question:

Question 8.1. Is there a non-polar resistant set S ⊆ {0, 1}n such that |S| < 2n−1?

It seems to us that to answer Questions 1.16 and 8.1, we need to have a structure theorem for resistant sets.

In two sequel papers [1, 2], we provide structure theorems for natural classes of resistant sets – the structure

theorems in turn answer Questions 1.16 and 8.1 for those classes.

Many of the theorems proved in this paper stemmed from propagations running in resistant sets. Do cube-

ideal sets in general have propagation features? The answer is yes; a weaker form of the Sight Propagation
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Figure 6: An illustration of Corollary 8.3, where
{
z ∈ S : z ≤ y + e1, z1 = 1

}
has a unique minimal point.

Lemma holds for cube-ideal sets. To elaborate, take an integer n ≥ 3. A delta of dimension n is the clutter over

ground set [n] whose members are

∆n :=
{
{1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n}

}
.

∆n is a non-ideal clutter as
(
n−2
n−1

1
n−1 · · ·

1
n−1

)
is a fractional extreme point of the corresponding set covering

polyhedron. As a result, ideal clutters do not have a delta minor by Remark 7.3. We will need the following tool

for finding delta minors:

Theorem 8.2 ([4], Theorem 2.1). Let C be a clutter. If there are distinct members C1, C2, C and an element e

such that e ∈ C1 ∩ C2, e /∈ C and C1 ∪ C2 ⊆ {e} ∪ C, then C has a delta minor through e.

As a consequence, we get the following weakening of Remark 4.7 for cube-ideal sets, which is illustrated in

Figure 6.

Corollary 8.3. Take an integer n ≥ 1 and a cube-ideal set S ⊆ {0, 1}n, where 0, e1 are infeasible. Assume

that y is a minimal feasible point such that y1 = 0. Then
{
z ∈ S : z ≤ y+ e1, z1 = 1

}
has at most one minimal

point.

Proof. Observe that every minimal point of
{
z ∈ S : z ≤ y + e1, z1 = 1

}
, other than y + e1, is also a minimal

point of S. Suppose for a contradiction that z1, z2 are distinct minimal points of
{
z ∈ S : z ≤ y + e1, z1 = 1

}
.

Then z1, z2 must be different from y + e1, so they are minimal points of S. Pick members C,C1, C2 ∈ ind(S)

such that y = χC , z
1 = χC1

, z2 = χC2
. Notice that 1 ∈ C1 ∩C2, 1 /∈ C and C1 ∪C2 ⊆ {1} ∪C. Theorem 8.2

implies that ind(S) has a delta minor, so ind(S) is non-ideal. Theorem 1.2 now applies and tells us that S is not

cube-ideal, a contradiction.
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