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Abstract. We present a new class of polynomial-time algorithms for submodular function
minimization (SFM) as well as a unified framework to obtain strongly polynomial SFM
algorithms. Our algorithms are based on simple iterative methods for the minimum-norm
problem, such as the conditional gradient and Fujishige–Wolfe algorithms. We exhibit two
techniques to turn simple iterative methods into polynomial-time algorithms. First, we
adapt the geometric rescaling technique, which has recently gained attention in linear pro-
gramming, to SFM and obtain a weakly polynomial bound O((n4 ·EO+ n5)log(nL)). Sec-
ond, we exhibit a general combinatorial black box approach to turn εL-approximate SFM
oracles into strongly polynomial exact SFM algorithms. This framework can be applied to
a wide range of combinatorial and continuous algorithms, including pseudo-polynomial
ones. In particular, we can obtain strongly polynomial algorithms by a repeated applica-
tion of the conditional gradient or of the Fujishige–Wolfe algorithm. Combined with the
geometric rescaling technique, the black box approach provides an O((n5 ·EO+ n6)log2n)
algorithm. Finally, we show that one of the techniques we develop in the paper can also be
combined with the cutting-plane method of Lee et al., yielding a simplified variant of their
O(n3log2n ·EO+ n4logO(1)n) algorithm.
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1. Introduction
Given a finite set V, a function f : 2V → R is submodular if

f X( ) + f Y( ) ≥ f X∩Y( ) + f X∪Y( ) ∀X,Y⊆V: (1)

We denote n :� |V|. Examples include the graph cut, coverage, and entropy functions. Submodularity can be in-
terpreted as a diminishing returns property and is, therefore, important in economics and game theory. Submod-
ular optimization is widely applied in machine learning and computer vision (see, e.g., Bach [1]).

We assume that the function f is given via an evaluation oracle: for every set S⊆V, we can query the value f (S)
in time EO. We assume throughout that f (∅) � 0; this is without loss of generality (w.l.o.g.). In the submodular
function minimization (SFM) problem, the objective is to find a minimizer of this function:

min
S⊆V

f S( ): (SFM)

The first weakly polynomial-time algorithm was given by Grötschel et al. [19] in 1981, whereas the first strongly
polynomial algorithm was given by the same authors in their 1988 book (Grötschel et al. [20]). Both algorithms
use the ellipsoid method. It remained an important goal to find a strongly polynomial combinatorial algorithm;
this question was resolved independently by Schrijver [32] and by Iwata et al. [25] in 2000. Currently the best
running time of a combinatorial algorithm is O(n5 ·EO+ n6) by Orlin [30]. In a recent breakthrough, Lee et al.
[29] provided a O(n3 log2n ·EO+ n4logO(1)n) algorithm based on a new cutting-planes method.

However, these algorithms do not appear to work well for large-scale instances that arise in applications such
as speech recognition or image segmentation. A recent line of work has focused on exploiting the special
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structures of specific submodular functions arising in these applications, such as decomposability (Ene and
Nguyen [12], Ene et al. [13], Jegelka et al. [27], Stobbe and Krause [35]), but for general functions, simple iterative
algorithms appear to outperform the provably polynomial algorithms (Fujishige and Isotani [17]). In particular,
the Fujishige–Wolfe minimum-norm point algorithm (Fujishige [14], Tardos [37]) appears to be among the best
ones in practice (Bach [1], Fujishige and Isotani [17]) despite the fact that the first pseudo-polynomial running
time bound was given as recently as 2014 by Chakrabarty et al. [4].

1.1. Our Contributions
This paper presents polynomial-time algorithms based on simple iterative methods, such as the conditional
gradient algorithm or the Fujishige–Wolfe algorithm. We exhibit two different techniques to improve the perfor-
mance of these algorithms to polynomially bounded. The first technique uses geometric rescaling, whereas the sec-
ond provides a unified combinatorial framework for strongly polynomial SFM algorithms. In what follows, we provide
an overview of both techniques.

Geometric rescaling has recently gained attention in the context of linear programming (LP). This is a general algo-
rithmic technique to turn simple iterative algorithms into polynomial-time algorithms for LP feasibility by adaptively
changing the scalar product. The first such algorithms were given by Betke [3], and Dunagan and Vempala [10], and a
number of papers have since appeared on the subject. We refer the reader to Dadush et al. [7] for an overview of the
literature. In this paper, we focus on one such algorithm, introduced by the authors in Dadush et al. [7] and named
there the full support image algorithm (the same algorithm was obtained independently by Hoberg and Rothvoß
[22]). We show how this algorithm can be adapted to (SFM). In Section 6, we see that the framework we introduce is
robust in the sense that it can be easily adapted to different rescaling algorithms so long as they are applicable to conic
problems in the separation oracle model, such as the algorithms in Belloni et al. [2], Chubanov [6], Dadush et al. [7],
and Peña and Soheili [31] (see, for example, a recent note from Fujishige [16] showing how an algorithm by Chubanov
[6] can be used in this framework). The reason for focusing on the image algorithm of Dadush et al. [7] is that, within
this framework, it provides the best running time bounds for (SFM) among the known algorithms in this class.

We introduce new techniques that enable our image algorithm to provide both primal and dual optimal solu-
tions for (SFM). The sliding technique is used to obtain a primal optimal solution: we reduce the optimization
problem (SFM) to a dynamically changing feasibility problem. The pull-back technique enables identifying a dual
optimality certificate. Moreover, the same technique allows us also to obtain approximate dual solutions, and it
is also applicable in the general LP feasibility setting.

For integer valued submodular functions, our geometric rescaling algorithm finds both primal and dual opti-
mal solutions in running time O((n4 ·EO+ n5) log(nL)), where the complexity parameter L denotes the largest
norm of a point in the base polytope. This matches the best weakly polynomial guarantees (Iwata [23], Iwata and
Orlin [24]) prior to the work of Lee et al. [29].

1.1.1. Unified Combinatorial Framework. Building on the geometric rescaling technique, we also obtain a strongly
polynomial O((n5 ·EO+ n6) log2n) algorithm. This is obtained from a unified combinatorial framework that allows
us to turn any algorithm that can produce a δL-approximate solution to (SFM) in pseudo-polynomial poly(n, 1=δ)
running time into an exact strongly polynomial algorithm. More specifically, if we are given an oracle that can
produce a set W⊆V and a point y in the base polytope such that f (W) ≤ y−(V) + δLf (where y−(V) is the sum of
all negative components of y and Lf is the largest one-norm of any point in the base polytope), then with the
choice δ ∈H (1=n3), we can find an optimal solution to (SFM) in roughly O(n2) calls to the oracle.

Hence, somewhat surprisingly, even pseudo-polynomial time algorithms, such as the conditional gradient or
the Fujishige–Wolfe algorithm, immediately give rise to strongly polynomial time algorithms.

We emphasize that our approach is black box: we explicitly formulate the approximate oracle requirement and
show that any routine fulfilling such requirements provides a strongly polynomial-time algorithm for (SFM). To
illustrate our point, we show that various routines in the literature, such as Iwata and Orlin [24], Iwata et al. [25],
and Lee et al. [29], satisfy such black box requirements. We believe that our approach is more modular than the
previous work in the sense that, in all previous papers, the combinatorial arguments on strongly polynomial pro-
gress were intertwined with the details of some “basic” routine.

We can also apply this unified framework to the cutting plane method. Using the general cutting plane algorithm
of Lee et al. [29], we show that our black box method can recover their running time bound O(n3 log2n ·EO+
n4 logO(1) n) for (SFM). This is made possible by the use of the same sliding technique developed for our geomet-
ric rescaling algorithm.
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The general combinatorial framework is based on maintaining a ring family guaranteed to contain all minimiz-
er sets, in which the size of the family decreases through the algorithm until a minimizer is found. This technique
was introduced by Iwata et al. [25] and used in multiple subsequent papers, such as Iwata and Orlin [24] and Lee
et al. [29]. We note that this technique ultimately traces back to strongly polynomial algorithms for minimum-
cost flows, pioneered by Tardos [36]. Our implementation also adopts a simplified variant of the bucketing tech-
nique of Lee et al. [29] that leads to a factor n improvement in the running time compared with the original
framework of Iwata et al. [25].

The rest of the paper is structured as follows. Section 2 contains definitions and the necessary background,
including an overview of the relevant iterative methods. Section 3 presents the weakly polynomial geometric
rescaling algorithm to solve (SFM), and in Section 3.5, we describe the pull-back technique that enables the
implementation of the approximate oracle using our geometric rescaling method. Section 4 presents the general
framework for strongly polynomial algorithms. Section 5 shows how cutting plane methods and, in particular,
the cutting plane algorithm in Lee et al. [29], can be used in the strongly polynomial framework. Finally, in Sec-
tion 6, we discuss variants of the weakly polynomial geometric rescaling algorithm.

2. Preliminaries
We refer the reader to Fujishige [15] and Schrijver [33, sections 44 and 45] for the basics of submodular optimiza-
tion; these references contain all definitions as well as the proof of the results presented next. The survey (Bach [1])
provides an overview of continuous algorithms for submodular function minimization.

For a vector z ∈ R
V, we denote by z(v) the component of z relative to v ∈ V and, for a subset S⊆V, we use the

notation z(S) � Rv∈Sz(v). We let ||z||1 :� Rv∈V |z(v)| and ||z||2 :� (Rv∈V |z(v)|2)1=2) denote the ℓ1- and ℓ2-norms,
respectively; we also use the simpler ||z|| :� ||z||2. For a number a ∈ R, we let a+ �max{0,a} and a− �min{0,a};
hence, a � a+ + a−. Similarly, given a vector z ∈ R

V, we denote z+ � (z(v)+)v∈V and z− � (z(v)−)v∈V.
We denote by S

n
++ the set of n × n symmetric positive definite real matrices. Every Q ∈ S

n
++ defines the scalar

product 〈x,y〉Q �def xTQy, inducing the norm ||x||Q �def ���������〈x,x〉Q
√

.

2.1. The Base Polytope and the Greedy Algorithm
Let f be a submodular function, in which we assume as usual that f (∅) � 0. The base polytope of f is defined as

B f
( )

:� x ∈ R
V : x S( ) ≤ f S( ) ∀S⊆V, x V( ) � f V( ){ }

:

This polytope B( f ) is nonempty for every submodular function f . Its elements are called bases, and its vertices are
the extreme bases. Extreme bases correspond to permutations of the ground set. More precisely, for any ordering
v1,v2, : : : ,vn of the elements of V, the following point is a vertex of B( f ), and every vertex is of this form for some
ordering

x v1( ) :� f v1{ }( ),
x vi( ) :� f v1, : : : ,vi{ }( ) − f v1, : : : ,vi−1{ }( ) ∀i � 2, : : : ,n:

(2)

Furthermore, given a weight function w : V → R, one can compute an extreme base minimizing wTx by the
greedy algorithm GREEDYMIN( f ,w) as follows: order the vertices in V so that w(v1) ≤ w(v2) ≤ : : : ≤ w(vn) and out-
put x defined by (2) as the optimal solution. The value of the minimum cost is then given by

min
x∈B f( )w

Tx �∑n−1
i�1

f v1, : : : ,vi{ }( ) w vi( ) −w vi+1( )( ) + f V( )w vn( ): (3)

The subroutine GREEDYMIN( f ,w) requires O(n ·EO+ n logn) arithmetic operations. If w has several entries with
the same value, then there are multiple ways to sort the elements of V in ascending value of w, each ordering
potentially giving rise to a different optimal extreme base of B( f ). The extreme bases corresponding to the possi-
ble tie breakings are the vertices of the face of B( f ) minimizing wTx.
If v1, : : : ,vn is the ordering computed by GREEDYMIN( f ,w), we define

MINSET f ,w
( ) �def argmin f S( ) : S � v1, : : : ,vi{ }∃i ∈ n[ ] or S � ∅{ }

: (4)

A min-max characterization of (SFM) is given by Edmonds [11]:
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Theorem 1. (Edmonds [11]). For any submodular function f : 2V → R,

max x− V( ) : x ∈ B f
( ){ } �min f S( ) : S⊆V

{ }
: (5)

We often use the following simple consequence. Assume that, for some x ∈ B( f ), S⊆V, and ε > 0, we have
f (S) ≤ x−(V) + ε. Then, f (S) ≤ f (T) + ε for any T⊆V.

2.2. Complexity Parameters
When dealing with weakly polynomial time algorithms for (SFM), various complexity parameters have been
considered in the literature to measure the running time. All these parameters turn out to be equivalent within
an O(n) factor. Nonetheless, in certain parts of the paper, different choices fit more easily; hence, we introduce all
of them. We define

Lf �defmax ||z||1 : z ∈ B f
( ){ }

, Lf ,2 �defmax ||z||2 : z ∈ B f
( ){ }

, Ff �defmax | f S( )| : S⊆V
{ }

:

Some of our algorithms require the explicit knowledge of these complexity parameters. Although these are hard
to compute, we introduce easily computable upper bounds that are essentially equivalent (see claim 1) to these.
These upper bounds are given by the norms of the vector α : V → R defined by

α v( ) :�max | f v{ }( )|, | f V( ) − f V\ v{ }( )|{ }
, v ∈ V:

In the following claim, we highlight that all these parameters are essentially equivalent within an O(n) factor.
Claim 1. states that, for any submodular function f : 2V → R such that f (∅) � 0, the following hold:
i. Lf ,2 ≤ Lf ≤ ��

n
√

Lf ,2.
ii. Lf �H (Ff ).
iii. For every z ∈ B( f ), |z(v)| ≤ α(v) for all v ∈ V. Hence, Lf ≤ ||α||1 � α(V) and Lf ,2 ≤ ||α||2.
iv. α(v) ≤ 2Ff for all v ∈ V.

For the proof, (i) is obvious. For (ii), see, for example, Chakrabarty et al. [5, lemma 5], and also Hazan and Kale
[21], and Jegelka and Bilmes [26]. For (iii), see Fujishige [15, section 3.3], and (iv) follows immediately from the
definition of α. w

Our running time bounds contain terms of the form log(nZ) for various choices of Z ∈ {Ff ,Lf ,Lf ,2, ||α||1, ||α||2}.
The preceding lemma shows that all these terms are within a constant factor of one another; hence, the specific
choice of complexity parameter does not matter.

2.3. The Minimum-Norm Point Problem
Fujishige [14] shows a reduction of (SFM) to the following convex quadratic optimization problem.

Theorem 2. (Fujishige [14]). Let z be the unique optimal solution to

min
1
2
||x||22 : x ∈ B f

( ){ }
: (6)

Then, the set S∗ � {v ∈ V : z(v) < 0} is the inclusion-wise minimal minimizer of (SFM), and f (S∗) � z−(V). Furthermore,
| f (S∗)| ≤ ��

n
√ ||z||2.

Note that, in the case of f (V) � 0, Theorems 1 and 2 imply that the minimizer of the two-norm also minimizes
the one-norm in B( f ). Indeed, in this case, for any y ∈ B( f )y−(V) � f (V) − y+(V) � −y+(V), implying ||y||1 �
−2y−(V), which gives ||z||1 � −2z−(V) � −2f (S∗) � −2max{x−(V) : x ∈ B( f )} �min{||x||1 : x ∈ B( f )}.

Note that z ∈ B( f ) is the minimum norm point if and only if z�x ≥ ||z||22 for all x ∈ B( f ). An approximate optimal
solution to (6) can be converted to an approximate optimal solution to (5) as stated here.

Theorem 3. (Bach [1]). Assume that z ∈ B( f ) satisfies ||z||22 ≤ zTx+ ε for all x ∈ B( f ) for some ε > 0. Let S �MINSET( f ,z).
Then, f (S) ≤ z−(V) + �����

2nε
√

. Consequently, f (S) ≤ f (T) + �����
2nε

√
for any T⊆V.

This is a consequence of the more general statement in Bach [1, proposition 10.5]. Because it might not be
immediate to see such an implication, for completeness, we provide a proof of the previous theorem in the appendix.

2.4. Iterative Methods for SFM
Convex optimization algorithms can be naturally applied to SFM, by either solving the quadratic formulation (6)
or minimizing the so-called Lovász extension, which we do not discuss here. We refer the reader to Bach [1] for an
overview of such algorithms. Here, we briefly outline two important algorithms based on (6).
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2.4.1. The Conditional Gradient Algorithm. The conditional gradient, or Frank–Wolfe algorithm, maintains a
point y ∈ B( f ), represented as a convex combination y � Rk

i�1λigi of extreme bases. It is initialized with y � g for
an arbitrary extreme base g. Every iteration runs GREEDYMIN( f ,y) to obtain an extreme base g′. If yTg′ ≥ ||y||22,
then y is the minimum-norm point in B( f ), and the algorithm terminates. Otherwise, y is replaced by the mini-
mum-norm point y′ on the line segment [y,g′]. This is also known as the von Neumann algorithm, described by
Dantzig [9]. The algorithm was first used to test membership in the base polytope by Sohoni [34]. The standard
convergence analysis of the conditional gradient algorithm and Theorem 3 provide the following convergence
bound (see, e.g., Bach [1, section 10.8]).

Theorem 4. For any δ > 0, within O(n=δ2) iterations, the conditional gradient algorithm computes y ∈ B( f ) such that, for
S �MINSET( f ,y), we have f (S) ≤ y−(V) +O(δLf ,2). The total running time is O((n2 ·EO+ n2logn)=δ2).

2.4.2. The Fujishige–Wolfe Algorithm. Wolfe [37] gave a finite algorithm for finding the minimum-norm point in
a polytope given by its vertices; his algorithm can also be interpreted as an active set method (Bach [1]). Fujishige
adapted Wolfe’s algorithm to SFM (Fujishige [14], Fujishige and Isotani [17]). We now give a brief sketch of the
algorithm; for a more detailed description, see Chakrabarty et al. [4], Fujishige and Isotani [17], and Wolfe [37].

An affinely independent set of points X ∈ R
n is called a corral if the orthogonal projection of zero onto the affine

hull of X is in the relative interior of the convex hull of X. In particular, the optimal solution to the minimum-
norm point problem can be obtained by a corral comprising vertices of the minimal face of the polytope contain-
ing the minimum-norm point.

Every major cycle of the Fujishige–Wolfe algorithm starts and ends with a corral formed by extreme bases in
B( f ). The algorithm is initialized with an arbitrary extreme base (note that every singleton set is a corral). Let X
be the corral at the beginning of a major cycle and let y be the projection of zero onto the affine hull of X; this can
be obtained by a closed-form formula. Let us run GREEDYMIN( f ,y) to obtain an extreme base g′ minimizing yTg′.
If yTg′ ≥ ||y||22, then the algorithm terminates, returning y as the minimum-norm point in B( f ). Otherwise, we con-
sider X′ � X∪{g′}, which is also affinely independent. We set x̄ � y and compute y′ as the projection of zero onto
the affine hull of X′. If y′ is in the relative interior of conv(X′), the major cycle terminates with the new corral X′.
Otherwise, we start a minor cycle: we replace X′ by the extreme points of the minimal face of conv(X′) intersecting
the line segment [x̄,y′]; the new x̄ is defined to be the unique intersection point. Minor cycles are repeated until a
corral is obtained. Finite convergence is guaranteed because ||x̄||2 decreases in every major and minor cycle and
the number of corrals is finite. However, a bound on the convergence rate, which we summarize in the following,
was only recently given in Chakrabarty et al. [4]. Further improvements on the analysis were observed by
Lacoste-Julien and Jaggi [28].

Theorem 5. (Chakrabarty et al. [4], Lacoste-Julien and Jaggi [28]). For any δ > 0, within O(n=δ2) iterations (major and
minor cycles), the Fujishige–Wolfe algorithm computes y ∈ B( f ) such that, for S � MINSET( f ,y), we have f (S) ≤ y−(V)+
O(δLf ,2). The total running time is O((n2 ·EO+ n3)=δ2).

3. Weakly Polynomial Algorithm via Rescaling
Throughout this section, we assume that f is an integer-valued submodular function. The assumption that f is
integer valued is needed in the context of weakly polynomial-time algorithms.

3.1. The Geometric Rescaling Algorithm
The full support image algorithm in Dadush et al. [7, section 3.2] is applicable to the following oracle setting. Let
R ⊆ R

n be a nonempty, full-dimensional cone; our aim is to find a feasible point in the interior. We are given a
separation oracle for int(R); that is, for any vector w, the oracle decides whether w ∈ int(R), and if not, it returns a
vector z such that zTw ≤ 0 but zTy > 0 for all y ∈ int(R). Then, the algorithm finds a point in int(R) in O(n3 logω−1)
calls to the separation oracle, where ω is a condition number that we define in Section 3.4. We remark that the
parameter ω can be lower bounded by the width of the cone R defined as the radius of the largest ball contained in
R and centered on the surface of the unit sphere.

Consider now a submodular function f with f (V) � 0. Assume we want to decide whether f (S) ≥ 0 for all S⊆V,
that is, if S � ∅ is an optimal solution to (SFM). It follows from the definition of the base polytope that 0 ≤ f (S) for
every S⊆V if and only if 0 ∈ B( f ) (note that f (V) � 0 is needed for this equivalence). Consider now the cone∑ � w ∈ R

n : wTy ≥ 0 ∀y ∈ B f
( ){ }

(7)

(that is, R is the negative of the polar cone of B( f )).
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Remark 1. The cone R has a nonempty interior if and only if 0 ∉ B( f ).
Proof. Observe that 0 ∉ B( f ) if and only if there exists a hyperplane weakly separating zero and B( f ), that is, 0 ∉
B( f ) if and only if there existsw ∈ R

n such that wTy > 0 for all y ∈ B( f ), that is, there exists w in the interior of R. w

A separation oracle for int(R) is provided by GREEDYMIN because, for every y ∈ R
V, we have y ∈ int(R) if and

only if minx∈B( f )yTx > 0. Consequently, if the algorithm does not terminate in the required running time bound,
we can conclude that f (S) ≥ 0 for all S⊆V. We could use this algorithm in a binary search framework to solve
(SFM). When querying minS⊆Vf (S) ≥ −µ for a µ > 0, we shift f (S) by f (S) +µ for every S(V, S≠ ∅.

The main drawback of the binary search scheme is that it only provides the optimum value and does not give
either an optimal set S or a dual certificate as in Theorem 1. Also, the binary search leads to an extra logFf factor
in the running time.

In this section, we describe a variant of this algorithm that provides a primal optimal solution and does not
require binary search. This is achieved by dynamically shifting or “sliding” the function f throughout the algo-
rithm as explained. However, the algorithm does not directly return a dual certificate of optimality. This can be
obtained using the pull-back technique introduced in Section 3.5; see also the remark after Theorem 7.

We start by describing the sliding framework. Besides the geometric rescaling algorithm described next, this
technique is also be useful for devising simple cutting plane algorithms for SFM in Section 5.

3.1.1. Sliding the Function. Throughout the algorithm, we maintain a value µ ∈ Z+, along with a set W, such that
f (W) � −µ. We initialize µ �max{0, − f (V)} and set W � ∅ or W � V accordingly. Hence, −µ gives an upper
bound on minS⊆V f (S). The algorithm terminates once it concludes that f (W) �minS⊆V f (S) for the current W. We
define the function fµ : 2V → Z as

fµ S( ) �def 0, if S � ∅ or S � V,
f S( ) +µ, otherwise:

{
(8)

This operation is known as the µ-enlargement of the function f (see Fujishige [15, section 3.1(d)]). The operation
has been used in the context of submodular function minimization in Fujishige and Iwata [18].

Lemma 1. For a submodular function f and a value µ ≥max{0, − f (V)}, the function fµ is submodular. If 0 ∈ B( fµ), then
−µ ≤ f (S) for every S⊆V. Furthermore, B( fµ)⊆B( fµ′ ) whenever µ ≤ µ′.

Proof. The function f ′ defined by f ′(S) � f (S) +µ for all S⊆V is clearly submodular. We obtain fµ from f ′ by
decreasing the value of f ′(∅) and f ′(V); note that the bound on µ guarantees that these are both nonnegative. Sub-
modularity is maintained because, for any choice of X and Y, the right-hand side in (1) decreases by at least as
much as the left-hand side when replacing f ′ by fµ. If 0 ∈ B( fµ), then 0 ≤ fµ(S) for any S⊆V. If S ∉ {∅,V}, then this
gives f (S) ≥ −µ; the choice of µ guarantees the same for S � ∅ and S � V. For µ′ ≥ µ, the containment B( fµ)⊆B( fµ′ )
follows because the constraints x(S) ≤ fµ′ (S) are implied by the constraints x(S) ≤ fµ(S). w

The following lemma is used to update the value of µ.

Lemma 2. Consider a value µ ≥max{0, − f (V)} and let w : V → R be a cost function such thatmin{wTx : x ∈ B( fµ)} > 0.
For S �MINSET (fµ,w), we have f (S) < −µ.
Proof. Let v1, : : : ,vn be the ordering of V returned by GREEDYMIN( fµ,w) such that w(v1) ≤ w(v2) ≤ : : : ≤ w(vn). From
(3) and the fact that fµ(V) � 0 (by construction), we see that the minimum value of wTx over B( fµ) can be written as

wTx �∑n−1
i�1

f v1, : : : ,vi{ }( ) +µ
( )

w vi( ) −w vi+1( )( ):

Because wTx > 0 and w(vi) −w(vi+1) ≤ 0 for i � 1, : : : ,n− 1, it follows that f ({v1, : : : ,vi}) < −µ for some value of i,
implying the claim. w

Lemma 3. Consider a value µ ≥max{0, − f (V)} such that µ � −f (W) for some W⊆V. Then, Lfµ ≤ 4Lf .

Proof. For any permutation of the ground set, let g and g′ be the corresponding extreme bases in B( f ) and in
B( fµ), respectively. These only differ in the first and last components, respectively, by +µ and −µ− f (V). Hence,
||g′||1 ≤ ||g||1 + 2µ+ | f (V)|. Note that µ ≤ Lf ; this is because µ � −f (W) for a certain set W, and therefore, any per-
mutation that starts with the elements of W gives an extreme base of one-norm at least | f (W)|. Similarly,
| f (V)| ≤ Lf . The claim follows. w
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Algorithm 1 (The sliding von Neumann Algorithm)
Input: A submodular function f : 2V → Z, a value µ ≥max{0, − f (V)}, a set

W⊆V with f (W) � −µ, a matrix Q ∈ S
n
++, and an ε > 0.

Output:
•A value µ′ ≥ µ and a setW′ ⊆V with f (W′) � −µ′.
• Bases g1, : : : ,gk ∈ B( fµ′ ), x ∈ R

k, y ∈ R
n such that y �∑k

i�1 xigi=||gi||Q, →eTx � 1, x ≥ 0, and ||y||Q ≤ ε.
1: Set µ′ :� µ,W′ :�W.
2: Pick g1 as an arbitrary vertex of B( fµ). Set x1 :� 1, y :� g1=||g1||Q.
3: Let k :� 2.
4: While ||y||Q > ε, do
5: Let gk ← GREEDYMIN( fµ′ ,Qy).
6: If yTQgk > 0, then . sliding
7: W′ :�MINSET( fµ′ ,Qy);δ :� −fµ′ (W′);µ′ :� −f (W′).
8: Set v1 and vn to be the first and last elements of V in increasing order by the weight vectorQy.
9: gk(v1) :� gk(v1) + δ; gk(vn) :� gk(vn) − δ.
10: end if
11:

λ :�
〈y − gk

||gk ||Q ,y〉Q
y − gk

||gk ||Q
∣∣∣ ∣∣∣∣∣∣ ∣∣∣2

Q

;

12: y :� (1−λ)y+λgk=||gk||Q; .minQ-norm point on [y,gk=||gk||Q].
13: xk :� λ.
14: For i � 1, : : : ,k− 1 do xi :� (1−λ)xi.
15: k :� k+ 1.

Return µ′,W′, the vectors g1, : : : ,gk, x, and y.

3.2. The Sliding von Neumann Algorithm
The full support image algorithm of Dadush et al. [7] uses the von Neumann algorithm as the basic subroutine. The
von Neumann algorithm is described in Dantzig [8] to find a feasible solution to the system ATy > 0 for a matrix
A ∈ R

n×p. At every iteration, y is maintained as a convex combination of columns of A normalized by their norm;
that is, y is maintained in the convex hull of a1=||a1||, : : : ,ap=||ap||. Initially y � ai=‖ai‖ for some arbitrary i ∈ [n]. At any
iteration, the algorithm terminates if ATy > 0; otherwise, a column ak such that aTk y ≤ 0 is selected, and y is updated
to be the point of minimum norm in the line segment [ak=||ak||,y]. The von Neumann algorithm can be seen as a var-
iant of the conditional gradient algorithm for the problem min{12‖y‖2 : y ∈ conv({a1=‖a1‖, : : : , ap=‖ap‖})}, differing in
the fact that the von Neumann algorithm only needs to decide whether the minimum value of the norm is positive.

Our sliding von Neumann algorithm (Algorithm 1) is a modification of the standard von Neumann algorithm adapted
to the context of submodular function minimization. The algorithm is applied to the extreme bases of B( f ) in order to
decide if there exists a point in the interior of the cone R defined in (7). The main differences are the following.

• The algorithm incorporates the adaptive shifting fµ described previously. In particular, when the current y
satisfies gTy > 0 for all g ∈ B(fµ), the algorithm does not stop, but it determines S⊆V with fµ(S) < 0 as in Lemma 2, it
updates µ :� −f (S), and it resumes from the current point y.

• Rather than maintaining y as a convex combination of the extreme bases of B(fµ) normalized by their two-norms,
the algorithm uses a more general norm defined by a symmetric positive definite matrix Q given as part of the input.
This is because the algorithm is used as a subroutine of Algorithm 2, in which the norm is periodically rescaled.

Lemma 4. Algorithm 1 terminates in �1=ε2� iterations, returning a correct output.
Proof. Correctness: at every iteration, the algorithm calls GREEDYMIN(fµ′ ,Qy) to obtain an extreme base gk ∈ B(fµ),
minimizing yTQx over B(fµ). If yTQgk ≤ 0, then we perform a von Neumann update; that is, we replace y with the
minimum Q-norm point on the line segment [y, gk

||gk ||Q] (which is given by the choice of λ in line 12).

Consider now the case yTQgk > 0. In this case, at line 7, the current value of µ′ is updated to a new value, say
µ′′. According to Lemma 2, the set W′ determined at line 7 satisfies fµ′ (W′) < 0; hence, µ′′ � −f (W′) �
µ′ − fµ′ (W′) > µ′. In particular, observe that δ � µ′′ −µ′ > 0. By definition, for all S⊆V,

fµ′′ S( ) � fµ′ S( ) + δ if S≠ ∅,V
0 if S � ∅ or S � V

{
(9)
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The vector gk is updated at line 9. Let us denote by g′k the updated vector. It follows from (2) and (9) that g′k is the
extreme base of B( fµ′′ ) defined by the same ordering of the elements v1, : : : ,vn of V that defined gk as an extreme
base of B( fµ′ ).

It follows that g′k is the solution output by GREEDYMIN( fµ′′ ,Qy); hence, it is an optimal solution for min{yTQz :
z ∈ B(fµ′′ )}. Because, by the choice of µ′′, f ({v1, : : : ,vi}) ≥ −µ′′ for all i ∈ {1, : : : ,n}, Lemma 2 implies that yTQg′k ≤ 0.

Because g′k is in B( fµ′′ ) and yTQg′k ≤ 0, we can perform a von Neumann update. Lemma 1 implies that
B( fµ′′ )⊇B( fµ′ ); hence, all vectors gi computed thus far are still contained in B( fµ′ ). Because the algorithm termi-
nates when ||y||Q ≤ ε, it follows that the t and the elements g1 , : : : ,gk returned by the algorithm satisfy the
requirements.

Running time: by the standard analysis of von Neumann’s algorithm given by Dantzig [8], 1=||y||2Q increases by
at least one at every update; hence, after k iterations, ||y||Q ≤ 1=

��
k

√
. We remark that, even though Dantzig’s analy-

sis applies to the case of the two-norm (i.e., Q � I), the case of a norm defined by a generic positive definite matrix
Q can be easily reduced to the two-norm case. Indeed, note that, for any vector z ∈ R

n, ||z||Q � ||Q1=2z||2. In particu-
lar, because at every iteration we maintain y � Rk

i�1xigi=||gi||Q, multiplying on both sides by Q1=2, this is equivalent

to Q1=2y � Rk
i�1xi(Q1=2gi)=||Q1=2gi||2. Hence, the steps of von Neumann algorithm for the norm defined by Q are

the same as the steps of the standard von Neumann algorithm applied to the vectors (Q1=2g)=||Q1=2gi||2, g ∈ B( f ),
where Q1=2y is maintained as a convex combination of such vectors. Dantzig’s analysis implies that 1=||Q1=2y||22 �
1=||y||2Q increases by at least one at every update. w

3.3. Geometric Rescaling Algorithm for SFM
In our geometric rescaling algorithm, algorithm rescaling-SFM shown in Algorithm 2, we set parameters

ε �def 1
20n

, T �def 5n log nLf ,2
( )

:

In the algorithm, we also maintain a set C collecting all the elements of the base polytope generated during the
sliding von Neumann iterations; its main purpose is for clarity during the analysis as we need to refer to it.

Algorithm 2 (Rescaling-SFM)
Input: A submodular function f : 2V → Z.
Output: A setW minimizing f (W).
1: SetQ :� In, R :� In. Set C :� ∅.
2: Set µ :�max{0, − f (V)}.
3: If f (V) < 0, thenW :� V, elseW :� ∅.
4: End if
5: For i � 1, : : : ,T, do
6: Call SLIDING VON NEUMANN( f ,µ,W,Q,ε) to obtain the new values of µ andW and vectors g1, : : : ,gk,x,y.
7: If y � 0, then stop; returnW.
8: Else rescale

R :� 1

1 + ε( )2 R +∑k
i�1

xi
||gi||2Q

gigTi

( )
; Q :� R−1: (10)

9: C :� C∪{g1, : : : ,gk}.
10: End for returnW.

Algorithm rescaling-SFM is the adaptation of the full support image algorithm to our submodular setting,
using the sliding von Neumann algorithm. We need to modify the algorithm and its analysis to reflect that the
feasible region keeps changing because of the updates to the value of µ.

The value µ keeps increasing during the algorithm; it is updated within the sliding von Neumann subroutine.
We also maintain a setW with f (W) � −µ. The algorithm stops after T rescalings. At this point, we conclude from
a volumetric argument that the currentW is the minimizer of f . We show the following running time bound.

Theorem 6. Algorithm rescaling-SFM finds an optimal solution to (SFM) in time O((n4 ·EO+ n5) log(nLf ,2)).
Note that, the definition of T requires knowing the value of Lf ,2; we can replace it by the bound ||α||2 as in

Section 2. As noted there, this changes the overall running time bound only by a constant factor.
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Remark 2. Rescaling Equation (10) uses the denominator (1+ ε)2, whereas in Dadush et al. [7], the denominator
1+ ε is used instead. This slightly different definition is needed in the proof of Lemma 12 in Section 3.5.
Nevertheless, the analysis in Dadush et al. [7] goes through essentially unchanged by choosing, as we did here,
ε � 1=(20n) instead of the choice ε � 1=(11n)made in Dadush et al. [7].

In the analysis of Algorithm 2, we refer to several lemmas from Dadush et al. [7]. Although the proofs are essen-
tially given in Dadush et al. [7], they differ slightly from the current context because of the different choice of
rescaling, mentioned in Remark 2, and the different notation. For completeness we provide proofs in the appendix.

3.4. Analysis
Let us define the ellipsoid

E R( ) �def x ∈ R
n : xTRx ≤ 1

{ }
:

Further, let ∑
µ �def w ∈ R

n : wTx ≥ 0 ∀x ∈ B fµ
( ){ }

, Fµ �def∑µ∩Bn, (11)

where Bn denotes the unit ball centered at the origin in R
n.

Rµ is the set of normal vectors of hyperplanes that weakly separate zero from B( fµ). A vector in the interior of
Rµ gives a strong separation and verifies that 0 ∉ B(fµ). This, in turn, implies that fµ(S) < 0 for some set S⊆V, and
thus, the minimum value of f is strictly less than the current estimate −µ.

The main ideas of the analysis are showing that (a) the ellipsoid E(R) contains the set Fµ at every iteration
(Lemma 7) and (b) the volume of E(R) keeps decreasing by a constant factor at every rescaling (Lemma 9). For an
integer valued f , one can lower bound the volume in terms of n and Lf ,2, assuming that Fµ has a nonempty interi-
or. Hence, at termination, one can conclude that the interior of Fµ is empty, which implies that fµ ≥ 0, or equiva-
lently, the minimum value of the function is −µ for the current µ.

The following analysis provides a slightly different argument than the volume analysis by bounding the
Q-norm of the bases used during the algorithm. This is needed for the “pull-back” argument for finding a dual
certificate of optimality in Section 3.5.

Clearly, GREEDYMIN( fµ,w) can be used as a separation oracle for Rµ. Further, if µ′ ≥ µ, then by Lemma 1,
B( fµ′ ) ⊇B( fµ), which implies that Rµ′ ⊆ Rµ and Fµ′ ⊆ Fµ by definition.

As in Dadush et al. [7], for a convex set X⊂R
n and a vector a ∈ R

n, we define the width

widthX a( ) �defmax aTz : z ∈ X{ }:
Further, we define the condition number

ωµ �def min
x∈B fµ( )\ 0{ }

widthFµ x( )
||x||2 :

A key estimate for the running time analysis is the following.

Lemma 5. Let f be an integer-valued submodular function and let µ ∈ Z satisfyminS⊆V f (S) < −µ ≤min{0, f (V)}. Then,
ωµ ≥ 1

4nLf ,2
:

Proof. Note that, by claim 1 and Lemma 3, Lfµ,2 ≤ Lfµ ≤ 4Lf ≤ 4
��
n

√
Lf ,2; hence, ||x||2 ≤ 4

��
n

√
Lf ,2 for every x ∈ B( fµ).

The claim follows by showing

widthFµ x( ) ≥ 1=
��
n

√
: (12)

To prove this, we note that the assumption of the lemma implies 0 ∉ B ( fµ). Let z denote the minimum norm point
in B( fµ) and let ẑ � z=||z||2. Because z is the minimum norm point in B( fµ), we have zTx ≥ ||z||22 for all x ∈ B( fµ).
Thus, for all x ∈ B( fµ),

ẑTx ≥ ||z||2,
and in particular, this implies ẑ ∈ Fµ. By Theorem 2, if S is the minimizer of fµ, fµ(S) ≤ −1 because f is integer
valued and µ is a nonnegative integer such that f (S) < −µ. It follows that 1 ≤ | fµ(S)| ≤ ��

n
√ ||z||2; thus, ẑTx ≥ 1=

��
n

√
.

Because ẑ ∈ Fµ, this provides the bound on widthFµ(x) for every x ∈ B( fµ). w
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Lemma 6. At every stage of algorithm rescaling-SFM, C⊆B( fµ). Furthermore, after t rescalings, the current matrix R is of
the form

R � αIn +
∑
g∈C

γg
ggT

||g||2 , (13)

where α � 1
(1+ε)2t and γg > 0 for all g ∈ C.

Proof. To see that C⊆B( fµ) throughout the algorithm, it suffices to observe that, when a new element g is includ-
ed in C, it is an extreme base for B( fµ) for the current value of µ, so in particular, it is an element of B( fµ), and
throughout the algorithm, B( fµ) can only become inclusion-wise larger as the value of µ never decreases. The
second part of the statement follows immediately from the recursive construction of R as defined in (10).

Lemmas 7, 8, and 10 follow essentially from Dadush et al. [7]; thus, we often refer to Dadush et al. [7] in the
proofs. To enable the reader to check the arguments in Dadush et al. [7], we first explain how the notation differs
between the two papers.

Lemma 7. (Dadush et al. [7, Lemma 10]). Throughout algorithm rescaling-SFM, Fµ⊆E(R) holds.
Proof. At initialization, we have Fµ ⊆ B

n � E(R) because, initially, R � In. During the algorithm, the value of
µ can increase (in the sliding von Neumann algorithm) or the matrix R can be updated (rescaling). In the former
case, as noted, Fµ becomes smaller (with respect to set inclusion) as µ increases in value; hence, the property is
maintained in these steps.

The proof that Fµ⊆E(R) whenever R is updated is essentially identical to the proof in Dadush et al. [7, Lemma
10]. For simplicity, we provide a proof in Lemma A.1 in the appendix. w

Lemma 8. Throughout algorithm rescaling-SFM, ||x||Q ≥ ωµ||x||2 must hold for every x ∈ B( f )\{0}.
Proof. Because Fµ⊆E by Lemma 7, for every x ∈ B( f )\{0}, we have widthFµ(x) ≤ widthE(R)(x). Furthermore,
widthE(R)(x) � ||x||Q (this is an easy fact; see Dadush et al. [7, lemma 2.15]). The statement now follows from the
definition of ωµ. w

Lemma 9. (Dadush et al. [7, Lemma 11]). The determinant of R increases at least by a factor 16=9 at every rescaling.

Proof. Proof in Appendix A.2. w

Lemma 10. (Dadush et al. [7, Lemma 4.11]). At any stage of algorithm rescaling-SFM, there exists a point ḡ ∈ C such
that

||ḡ||Q
�����������������
det R( )1=n − 1

√
≤ ||ḡ||2:

Proof. Proof in Appendix A.2. w

Proof of Theorem 6. One possibility is that the algorithm terminates at step 6 because y � 0. In this case, observe that
y � 0 is a conic combination of elements g1, : : : ,gk ∈ B( fµ), so it is also a convex combination of those elements, thus
showing that 0 ∈ B( fµ). It follows that minS fµ(S) � 0; hence, minS f (S) � −µ � f (W), showing thatW is a minimizer.

Otherwise, the algorithm performs T � 5nlog(nLf ,2) rescalings. Lemma 9 shows that, after T rescalings,
det(R) ≥ (16=9)T. It follows from Lemma 10 that, after T rescalings, there exists a point gh ∈ B(fµ) with ||gh||Q <
||gk||2=(4nLf ,2). By Lemma 8, we conclude that ωµ ≤ ||gk||Q=||gk||2 < 1=(4nLf ,2). Noting that µ is maintained to be an
integer throughout the execution of the algorithm, Lemma 5 implies that minS⊆V f (S) � −µ. Because the algo-
rithm maintains a set W with f (W) � −µ, we can conclude that W is a minimizer for (SFM). This shows that the
algorithm terminates with a correct solution.

The algorithm calls the sliding von Neumann subroutine T �O(n log(nLf ,2)) times; by Lemma 4, each call takes
at most �1=ε2� �O(n2) iterations. At the k th iteration of von Neumann, it takes time O(n ·EO+ n logn) to run
GREEDYMIN and time O(k) to update the coefficients x1, : : : ,xk. These give a bound of O(n3 ·EO+ n4) for each slid-
ing von Neumann subroutine.

Further, every rescaling has to compute O(n2) outer products gigTi , add their weighted sum to R, and compute
Q � R−1. The computation is dominated by computing the outer products, which take altogether O(n4) time.
Hence, the iterations between two subsequent rescalings take time O(n3 ·EO+ n4), yielding the claimed complex-
ity bound. w
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3.5. Finding Approximate Solutions via the Geometric Rescaling Algorithm
The main purpose of this section is to show how rescaling-SFM can be used to derive approximate solutions to
(SFM) in time that depends logarithmically on the desired precision. This also leads to a strongly polynomial
time based on rescaling-SFM as explained in Section 4. Furthermore, as a by-product, we are also able to generate
dual certificates of optimality for (SFM) from the output of rescaling-SFM.

Theorem 7. Setting T �O(n log(nδ−1)) in Algorithm 2, from its output, one can compute a set W⊆V and a point y ∈
B( f ) expressed as a convex combination of O(n) extreme bases of B( f ) such that f (W) ≤ y−(V) + δLf . In particular,
f (W) ≤minS⊆V f (S) + δLf . The overall running time is O((n4 ·EO+ n5)log(nδ−1)).

To prove this theorem, we use a pull-back technique. Recall that in rescaling-SFM, we keep modifying the
matrix Q defining the scalar product. Lemmas 9 and 10 guarantee that, after t rescalings, we can identify a vector
g ∈ B( fµ) that has a small Q-norm for the current Q, and the bound decreases geometrically with t. Our key tech-
nical claim, Lemma 12, shows a constructive way to identify a vector v ∈ B( fµ)with ||v||2 ≤ ||g||Q. Provided a vector
v with small two-norm (and, thus, small one-norm), we can easily satisfy the requirements of approx-SFM, using
the following lemma.

Lemma 11. Let µ ≥max{0, − f (V)} and W⊆V such that f (W) � −µ. Let C⊆B( fµ) be finite and {µg}g∈C ⊆ [0,µ] be such
that g is an extreme base of B( fµg

) for all g ∈ C. Given v � Rg∈Cλgg, where λg ≥ 0, g ∈ C, and Rg∈Cλg � 1, in time
O(n|C|), we can compute y ∈ B( f ) given as a convex combination of |C| extreme bases of B( f ) such that

f W( ) ≤ y− V( ) + ||v||1
2

:

Proof. For all g ∈ C, let g̃ be the extreme base of B( f ) defined by the same ordering that defined the extreme base
g of B( fµg

). Define y :� Rg∈Cλgg̃.
Observe that, given g ∈ C, if v1, : : : ,vn is the ordering defining g, then g̃(v1) � g(v1) −µg, g̃(vj) � g(vj) for

j � 2, : : : ,n− 1, and g̃(vn) � g(vn) +µg + f (V). Thus, computing g̃ for all g ∈ C requires time O(|C|), and computing
y requires time O(n|C|). Furthermore, we have that ||g̃ − g||1 � 2µg + f (V) ≤ 2µ+ f (V). This implies that

||y||1 � ||∑
g∈C

λgg̃||1 ≤ ||∑
g∈C

λgg||1 +
∑
g∈C

λg||g̃ − g||1 ≤ ||v||1 + 2µ+ f V( ) � ||v||1 − 2 f W( ) + f V( ):

Because ||y||1 � f (V) − 2y−(V), the preceding implies

f W( ) ≤ ||v||1 + f V( ) − ||y||1
2

� y− V( ) + ||v||1
2

: w

Our next lemma enables pulling back a vector with small Q-norm to a vector with no larger two-norm. This is
done gradually by pulling back at each rescaling of rescaling-SFM. The lemma is not specific to the context of
submodular function minimization. In our application, the columns of the matrix A are the bases used in the cur-
rent iteration of the sliding von Neumann algorithm. We also note that this technique is applicable to the general
full support image algorithm in Dadush et al. [7], enabling us to find approximate solutions as well as dual certif-
icates of infeasibility.

Lemma 12. Let A ∈ R
n×p, R ∈ S

n
++, Q � R−1, and ε > 0. Let x ∈ R

p
+ such that y :� Rp

i�1 xi
ai||ai ||Q satisfies ||y||Q ≤ ε. Define

R′ �def 1

1+ ε( )2 R+∑p
i�1

xi
||ai||2Q

aiaTi

( )
, (14)

and Q′ �def (R′)−1. For every v ∈ R
n, there exists ν ∈ R

p
+ such that ||v+Aν||Q ≤ ||v||Q′ . Moreover, such a vector ν can be com-

puted in time O(n2p).
Proof. For any given v ∈ R

n, we define u�def 1
(1+ε)2RQ

′v and let

β �defmax
i∈ p[ ]

〈ai,u〉Q
||ai||Q , νi �def xi

||ai||Q β− 〈ai,u〉Q
||ai||Q

( )
for i ∈ p[ ]: (15)

We show that the statement is satisfied by the choice of ν ∈ R
p
+ defined earlier. These values can be clearly com-

puted in O(n2p) time.
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First, we observe that, by substituting the definitions of R′ and u, we obtain

v � R′QRQ′v � u+∑p
i�1

xi
〈ai,u〉Q
||ai||Q

ai
||ai||Q ,

which, from the definition of ν and β, implies that

v+Aν � u+ βy: (16)Next, notice that

||v||Q′ � ���������������
vTQ′R′Q′v

√ � 1
1 + ε( ) vTQ′( )

R Q′v( ) + vTQ′ ∑p
i�1

xi
||ai||2Q

aiaTi

( )
Q′v

( )1
2

≥ 1
1 + ε( ) vTQ′R

( )
Q RQ′v( )( )1

2 � 1 + ε( )||u||Q:

From this and observing that |β| ≤ ||u||Q, from the definition of β, we have

||v+Aν||Q ≤ ||u||Q + |β| ||y||Q ≤ 1+ ε( )||u||Q ≤ ||v||Q′ ,

where the first inequality follows from (16) and the triangle inequality. w

Remark 3. If a vector y is expressed as a convex combination of κ extreme bases, then in time O(n2κ), we can re-
duce the number of extreme bases in the convex combination to O(n) by Carathéodory’s theorem.

We are ready to prove Theorem 7, showing how approx-SFM can be implemented using rescaling-SFM.

Proof of Theorem 7. For the second part of the statement, note that, if we are given y ∈ B( f ) andW⊂V such that
f (W) ≤ y−(V) + δLf , it follows from Theorem 1 that f (W) ≤minS⊆V f (S) + δ.

We now describe how to find such a vector y and set W. Run algorithm rescaling-SFM( f ), setting the limit on
the number of rescalings to a number T � cn log(nδ−1) for some constant c to be specified later. At the end of the
execution, we identify a value µ > 0 and a setW⊆V such that f (W) � −µ. Let C be the set of points in B( fµ) main-
tained throughout the algorithm.

By Lemma 10, for an appropriate choice of c, after T rescalings, there exists ḡ ∈ C such that

||ḡ||Q ≤ 2δ
4

��
n

√ ||ḡ||2:

Let ĝ � ḡ=||ḡ||2. The running time of rescaling-SFM( f ) with the preceding choice of T is O((n4EO+ n5)log(nδ−1)).
Note also that |C| ∈O(n3 log(nδ−1)); thus, finding ḡ requires time O(n5 log(nδ−1)) to compute the Q-norms of all
elements of C.

By applying Lemma 12 for T times (considering the rescaling matrices used in the algorithm in reverse order),
we can find a vector ν ∈ R

C
+ such that ||ĝ +Rg∈Cvgg||2 ≤ ||ĝ||Q. Recall that each rescaling matrix is defined by at

most n2 vectors in C; therefore, each application of Lemma 12 requires time O(n4) (assuming that the matrices Q
and R used at every rescaling are saved in memory so we do not need to recompute them). Thus, overall, the
time required to compute ν is O(n5 log(nδ−1)).

Define α � 1+ ||ḡ||2 ·Rh
i�1νg and λ ∈ R

C
+ by

λg �
‖ḡ‖2νg

α
, g ∈ C\{ḡ}

1+ ‖ḡ‖2νḡ
α

, g � ḡ
:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Define v :� Rg∈Cλgg. Observe that Rg∈Cλg � 1; thus, v ∈ B( fµ). Computing v requires time O(n4 log(nδ−1)) because
we need to sum |C|n-dimensional vectors.

Furthermore,

||v||1 ≤
��
n

√ ||v||2 �
��
n

√ ||ḡ||2
α

∣∣∣∣∣∣∣∣ĝ + ∑
g∈C

νgg
∣∣∣∣∣∣∣∣
2
≤ ��

n
√

L fµ,2||ĝ||Q ≤ 2δLf ,

Where the last inequality follows from the fact that Lfµ,2 ≤ Lfµ ≤ 4Lf by Lemma 3. By Lemma 11, in time
O(n4 log(nδ−1)), we can compute y ∈ B( f ), satisfying f (W) ≤ y−(V) + ||v||1

2 ≤ y−(V) + δLf .
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Finally, because y is expressed as a convex combination of |C| ∈O(n3log(nδ−1)) extreme bases, by Remark 3,
we can express y as a convex combination of O(n) extreme bases in time O(n5 log(nδ−1)). w

Remark 4. The boundO(n5 log(nδ−1)) for computing ν in the preceding proof is assuming O(n2) time for comput-
ing Q-scalar products 〈g,u〉Q. We note that this can be easily improved by a factor n: we can assume that Qg is
precomputed and stored during rescaling-SFM for all bases g used during the sequence of rescalings. Indeed, it
is necessary to compute the norms ||g||Q in the sliding von Neumann algorithm. Thus, the bound improves to
O(n4 log(nδ−1)); however, this does not change the overall running time estimate. w

3.5.1. Finding a Dual Certificate in Rescaling-SFM. For an integer-valued f , a pair W and y satisfying the require-
ments of approx-SFM( f , 1=Lf ) are an optimal pair of primal and dual solutions as in Theorem 1. Hence, the algo-
rithm of Theorem 7 for δ � 1=Lf provides a dual certificate of optimality in time O((n4 ·EO+ n5) log(nLf )), the
same as the complexity bound as in Theorem 6 (using that Lf ≤ ��

n
√

Lf ,2).

3.5.2. Approximate Infeasibility Certificates for Conic Linear Programs. Consider the feasibility problem for conic
linear programs of the form

ATz > 0, (17)

where A is a p × n matrix of rank n, whose columns a1, : : : ,ap are assumed to have unit ℓ2-norm. It is well known
that (17) is feasible if and only if zero is not contained in the convex hull of a1, : : : ,ap. Alternatively, one can say
that (17) is infeasible if and only min{||v||2 : v ∈ conv(A)} � 0. For any δ > 0, Lemma 12 allows us to compute in
time O(n2p2 log(δ−1)), via the image algorithm of Dadush et al. [7], either a solution to (17) or a δ-approximate cer-
tificate of infeasibility, that is, a point v ∈ conv(A) such that ||v||2 ≤ δ.

Just as in Algorithm 2 in this paper, the image algorithm maintains matrices R,Q ∈ S
n
++, Q � R−1, which are

updated at every rescaling. Initially R �Q � In. Between each rescaling, the algorithm uses von Neumann’s meth-

od to compute, in at most �ε−2� iterations, a vector x ∈ R
p
+, e→Tx � 1, such that the point y :� Rp

i�1 xi
ai||ai ||Q satisfies

either ATQy > 0 or ||y||Q ≤ ε for ε :� 1=(20n). In the former case, the algorithm stops because z :�Qy is a feasible
solution to (17). In the latter case, R is replaced with the matrix R′ given in (14), and Q � R−1 is recomputed. After
T �O(n log(δ−1)) rescalings, by Lemmas 9 and 10, there exists a column ak, k ∈ [p], such that ||ak||Q ≤ δ. By apply-
ing Lemma 12 for T times (considering the rescaling matrices used in the algorithm in reverse order), we can
find a vector ν ∈ R

p
+ such that ||ak +Aν||2 ≤ ||ak||Q ≤ δ. If we define

v � ak +Aν
1+ ||ν||1 ,

then v ∈ conv(A) and ||v||2 ≤ δ=(1+ ||ν||1) ≤ δ. Each call of the von Neumann algorithm requires O(np2) arithmetic
operations (see proof in Dadush et al. [7, theorem 3.2]), whereas each application of Lemma 12 requires O(n2p)
operations. It follows that the overall running time of the image algorithm is O(n2p2log(δ−1)).

4. Strongly Polynomial Algorithms
In this section, we provide a general scheme to convert an approximate SFM algorithm to a strongly polynomial
one. We assume that the SFM algorithm is provided via the following oracle.

Recall from Theorem 1 that f (S) ≥ y−(V) for any S⊆V. Consequently, the setW returned by the oracle is within
δLf from the optimal solution to (SFM).

The output of the oracle is used via the following lemma.

Lemma 13. Let y ∈ B( f ) and W⊆V such that f (W) ≤ y−(V) + δLf . If y(v) < −δLf , then v must be contained in every min-
imizer of f .

Oracle Approx-SFM
Input: A submodular function f : 2V ! R and � > 0.
Output: A set W � V and a vector y 2 BðfÞ such that

f W( ) ≤ y− V( ) + δLf :

Further, y is given as a convex combination of O(n) bases of B(f ).
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Proof. Let S⊆V\{v}. Then, f (S) ≥ y(S) ≥ y−(V\{v}) ≥ f (W) − y(v) − δLf > f (W): This shows that S cannot be an op-
timal solution to (SFM). w

For a y ∈ B( f ) returned by the approximate oracle and an element v as in the lemma, minimizing f can be
reduced to minimizing the contraction f ′ : 2V\{v} → Z, defined as f ′(S) �def f (S∪{v}) − f ({v}).

The existence of such a v is not always guaranteed. If we cannot immediately reduce the size of the ground set
by contraction, we are still able to identify structural properties of optimal solutions using the next simple lemma.

Lemma 14. Let y ∈ B( f ), U⊆V, and v ∈ V\U. Assume that y(v) > −y−(V\U). Then any minimizer to (SFM) that con-
tains v must contain some element of U.

Proof. Let S⊆V\U, v ∈ S. Then, f (S) ≥ y(v) + y−(V\U) > 0 � f (∅); hence, S cannot be a minimizer. w

During the algorithm, we maintain a partial order � , where u � v means that every minimizer to (SFM)
containing v must also contain u. New relations are derived using the preceding lemma. To guarantee either a
contraction or a new relation in every iteration, we need to call the oracle approx-SFM on a modified version f ↓
instead of the original f , introduced in the next section.

Section 4.2 introduces the machinery and notation. The strongly polynomial scheme, Algorithm 3, is given in
Section 4.3. It repeatedly calls approx-SFM with δ � 1=(3n3) and contracts elements of the ground set or learns
new relations concerning the optimal solutions to (SFM). Theorem 8 gives the running time bound that is poly-
nomial in n and the running time of the approximate oracle calls. Section 4.4 presents an enhanced version of the
algorithm with improved running times.

4.1. Approximate Oracle Implementations
The oracle approx-SFM has been used implicitly or explicitly in several papers in the literature:

• Our geometric rescaling algorithm (Algorithm 2), in timeO((n4 ·EO+ n5) log(nδ−1)), as explained in Theorem 7
in section 3.4.

• The conditional gradient method: Theorem 4 asserts that, in timeO((n2 ·EO+ n2 logn)δ−2), we can obtain a suit-
able y as a convex combination of O(n=δ2) extreme bases. According to Remark 3, we need O(n3=δ2) arithmetic
operations to reduce the support toO(n) extreme bases. This gives an overall running time ofO((n2 ·EO+ n3)δ−2).

• The Fujishige–Wolfe algorithm in timeO((n2 ·EO+ n4)δ−2) (Theorem 5).
• The Iwata–Fleischer–Fujishige weakly polynomial scaling algorithm (Iwata et al. [25]) in timeO(n5 ·EO log(nδ−1)).1
• The Iwata–Orlin weakly polynomial algorithm (Iwata and Orlin [24]) in timeO((n4 ·EO+ n5) log(nδ−1)).2
• The Sidford–Lee–Wong cutting planemethod inO(n2 ·EOlog(nδ−1) + n3 logO(1)(nδ−1)); this is shown in Section 5.

4.2. Ring Families and the Structure of Optimal Solutions
From every call to approx-SFM, our algorithm either finds an element v ∈ V as in Lemma 13 or at least one pair
(v,u) such that every optimal solution to (SFM) containing v must also contain u; these pairs are derived using Lem-
ma 14. In the former case, we can simply reduce the size of the ground set by contracting such an element. To make
use of the pairs (v,u) obtained in the latter case, we use the following framework, first introduced by Iwata et al.
[25] and, subsequently, used in several other algorithms, for example in Iwata and Orlin [24] and Lee et al. [29].

4.2.1. Directed Graph and Partial Order. We maintain a directed graph D � (V, F) with the property that if
(u,v) ∈ F, and S⊆V is an optimal solution to (SFM) with u ∈ S and then v ∈ S. In other words, for every minimizer
S⊆V to (SFM), δ+F (S) � ∅.
We can assume that D is acyclic. Indeed, given the set of vertices C of any strongly connected component of D,

every minimizer of f must either contain C or be disjoint from C; hence, we can contract all vertices of C into a
single new node vC. That is, we replace V with V′ :� V∪{vC}\C and f with the function f ′ : V′ → R defined by

f ′ S( ) �def f S( ), if S⊆V′\ vC{ },
f S∪C\ vC{ }( )

, if vC ∈ S⊆V′:

{
(18)

The acyclic graph D � (V,F) defines a partial order � F. We have u� Fv if there exists a directed path in F from v
to u (so, in particular, v� Fv for all v ∈ V). We say that an ordering of the vertices is consistent with � F if u is or-
dered before vwhenever u� Fv. We use the simpler notation u � v if F is clear from the context.

The transitive closure of the acyclic graph D � (V,F) is the graph D̄ � (V, F̄), where (u,v) ∈ F̄ if and only if there
is a directed path from u to v in F. D is said to be transitive if it coincides with its transitive closure. Clearly, D
and its transitive closure define the same partial order � F. We maintain the digraph D � (V,F) transitive
throughout the algorithm.
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4.2.2. Ring Families. In terms of the partial order ≺, every optimal solution to (SFM) is a lower ideal in the poset
(V, �). Let F denote the set of all lower ideals, namely S ∈ F if v ∈ S and u � v implies u ∈ S. Equivalently, in
terms of the digraph D � (V,F), we let

F :� X⊆V : δ+F X( ) � ∅{ }
: (19)

Thus, the family F contains all minimizers. The family F ⊆2V is a ring family; that is, for every X,Y⊆V, if
X,Y ∈ F , then X∩Y,X∪Y ∈ F .
We note that one can define submodular functions over ring families instead of the entire 2V. Submodular

function minimization over ring families is well studied and can be reduced to submodular function minimiza-
tion over 2V; see Fujishige [15, section 3] and Schrijver [33, chapter 49].

The following definitions and results are similar to those in Schrijver [33, section 49.3]. For any v ∈ V, let

v↓ �def u ∈ V : u � v{ }, v↑ �def u ∈ V : v � u{ }:
Note that v↓ is the unique minimal element of F containing v, and V\v↑ is the unique maximal element of F not

containing v. IfD � (V,F) is transitive, then for all v ∈ Vv↓ � {v}∪{u ∈ V : (v,u) ∈ F} and v↑ � {v}∪{u ∈ V : (u,v) ∈ F}.
For every X⊆V, we define

X↓ �def∪
v∈X v↓, X↑ �def∪

v∈X v↑;

That is, X↓ is the unique minimal element of F containing X, and V\X↑ is the unique maximal element of F dis-
joint from X.

4.2.2. The Lower Bound and f↓. Let us define the lower bound function

ℓ v( ) �def f V\v↑
( )

∪ v{ }
( )

− f V\v↑
( )

,

as in Fujishige [15, equation (3.95)]. Observe that (V\v↑)∪{v} ∈ F for every v ∈ V. It is easy to see that z ≥ ℓ for
every extreme basis z ∈ B( f ) defined by an ordering consistent with � . The next claim shows that ℓ yields lower
bounds on the function values of f . In particular, if ℓ(v) > 0, then no minimizer of (SFM) contains v.
Claim 2 states that, for every X,Y ∈ F with X⊆Y, we have ℓ(Y\X) + f (X) ≤ f (Y). In particular, if we let

P � {v ∈ V : ℓ(v) > 0}, we have that f (X) > f (X\P↑) for all X ∈ F .
For the proof, for the first part of the claim, let us take the elements of Y\X in a consistent order with � as

z1, : : : , zr. Then, Zi � X∪{z1, : : : ,zi} ∈ F for each i ∈ [r], and Zi ⊆ (V\zi↑)∪{zi}. Submodularity implies f (Zi)−
f (Zi−1) ≥ ℓ(zi). The claim follows by adding up all these inequalities.

The second part of the claim follows from first part of the statement if we choose Y � X\P↑ (note that X\P↑ ∈ F
because it is the intersection of X and V\P↑, which are both elements of F ). w

Next, we define a submodular function f ↓ : 2V → Z as

f ↓ X( ) �def f X↓( ) − ℓ−(X↓\X):
As shown in Lemma 15, this function is submodular, f ↓(S) � f (S) for every S ∈ F , and f ↓(S) ≥ f (S↓) for all S⊆V.
Consequently, f ↓ takes its minimum value on sets in F , and if all minimizers in f are contained in F , then mini-
mizing f ↓ is equivalent to minimizing f .

An important advantage of using f ↓ instead of f is that z ≥ ℓ− for all bases z ∈ B( f ↓) (claim 3), and therefore, the
complexity parameter Lf ↓ is bounded by |ℓ−(V)| (claim 4). This can be arbitrarily smaller than Lf , and therefore,
approx-SFM(f ↓,δ) returns a higher accuracy solution than approx-SFM( f ,δ).
We note that the definition of f ↓ only uses the function values of f on F . In fact, similar definitions can be used

to reduce submodular function minimization on ring families to minimize submodular functions on 2V; see, for
example, Schrijver [33, section 49.3].

Lemma 15. The function f ↓ is submodular on 2V with f ↓(S) ≥ f (S↓) for all S⊆V and f ↓(S) � f (S) for every S ∈ F .
Consequently, minimizing f on the ring family F is equivalent to minimizing f ↓ on 2V. The complexity of GREEDYMIN(f ↓,w)
can be bounded by O(n ·EO+ n2), where EO is the complexity to evaluating f .
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Proof of Lemma 15. To prove that f ↓ is submodular, we show that f ↓ � b, where b : 2V → Z is defined by

b X( ) �defmin f Y( ) − ℓ− Y\X( ) : X⊆Y,Y ∈ F
{ }

:

Observe that, by claim 2, ℓ−(Y) ≤ f (Y) for every Y ∈ F . In particular, b is the so-called contraction of f by vector ℓ−,
defined in Fujishige [15, equation (3.23)], where it is shown that b is submodular.

Let us show that b � f ↓. By definition, b(X) ≤ f ↓(X) for any X⊆V. Consider now Y ∈ F such that Y)X↓. Again by
claim 2, we have f (Y) ≥ f (X↓) + ℓ−(Y\X↓); this implies that X↓ is the minimizer in the definition of b; therefore, f ↓ � b.

The nonpositivity of ℓ− gives that f ↓(S) ≥ f (S↓) for all S(V; it is clear that f ↓(S) � f (S) for all S ∈ F , S≠ V. Re-
garding the complexity of GREEDYMIN, one needs to compute the values of f ↓({v1, : : : ,vi}) for every i ∈ [n] for a
given order of the vertices; thus, we need to find the sets Si � {v1,: : : ,vi}↓. When moving from i to i+ 1, we need to
compute Si+1 � Si∪vi↓, which can be done in O(n) time because F is maintained as a transitive digraph. Adding
the ℓ− values also takes O(n) time for each set. Hence, we obtain an overhead O(n2) over the O(n ·EO) oracle
queries and O(nlogn) time for sorting the ground set. w

Claim 3 states that, for every v ∈ V, f ↓(V) − f ↓(V\{v}) ∈ {ℓ−(v),ℓ(v)}. In particular, y(v) ≥ ℓ−(v) for every y ∈ B( f ↓).
For the proof, if V\{v} ∉ F , then (V\{v})↓ � V; therefore, f ↓(V) − f ↓(V\{v}) � f (V) − f (V) + ℓ−(v) by definition of

f ↓. If V\{v} ∈ F , then v↑ � {v}; therefore, f ↓(V) − f ↓(V\{v}) � f (V) − f (V\{v}) � f ((V\v↑)∪{v}) − f (V\v↑) � ℓ(v). For
the last part, note that, for any extreme base g of B(f ↓), g(v) � f ↓(S) − f ↓(S\{v}) for some S⊆V containing v, and by
submodularity f ↓(S) − f ↓(S\{v}) ≥ f ↓(V) − f ↓(V\{v}) ≥ ℓ−(v). w

We remark that the second part of claim 3 also follows from Fujishige [15, theorem 3.6]. The next claim shows
that |ℓ−(V)| is a good approximation of the complexity parameter Lf ↓ .

Claim 4 states, assuming that f (V) ≤ 0, we have |ℓ−(V)|=|V| ≤ Lf ↓ ≤ 2|ℓ−(V)|.
For the proof, by claim 3, y(v) ≥ ℓ−(v) for every v ∈ V and y ∈ B( f ↓); therefore, y−(V) ≥ ℓ−(V). Together with

f ↓(V) ≤ 0, this implies ||y||1 � f ↓(V) − 2y−(V) ≤ −2ℓ−(V).
For the lower bound, let us choose v ∈ V with lowest value of ℓ−(v). Thus, |ℓ−(v)| ≥ |ℓ−(V)|=|V|. Consider any

extreme base g of B(f ↓) from an order in which v comes last. Then, by the first part of claim 3 g(v) ∈ {ℓ−(v),ℓ(v)};
hence, |g(v)| ≥ |ℓ−(v)|, which implies Lf ↓ ≥ ||g||1 ≥ |g(v)| ≥ |ℓ−(v)| ≥ |ℓ−(V)|=|V|. w

4.3. The Basic Strongly Polynomial Scheme

Algorithm 3 (The Basic Strongly Polynomial Algorithm)
Input: A submodular function f : 2V → R with f (V) ≤ 0 and δ > 0.
Output: An optimal solution to (SFM).
1: Initialize F :� ∅, T :� ∅.
2:While ℓ−(V) < 0, do
3: Call approx-SFM( f ↓,δ) to obtainW and y ∈ B( f ↓) represented as a convex combination y � ∑k

i�1 xigi.
4: For z ∈ V such that f (V\z↑) > −|V| · y−(V\z↑), do
5: For i � 1, : : : , k, do, g′i ← PUSH(gi, f ↓, z↑).
6: y′ :� ∑k

i�1 xig
′
i .

7: For v ∈ V\z↑ such that y′(v) > −y′−(V\z↑), do
8: Add arc (v,z) to F.
9: For v ∈ V such that y(v) < 2ℓ−(V)δ, do . contraction.
10: Replace f by f (S∪v↓) − f (v↓) on the ground setV :� V\v↓.
11: Set f (V) :�min{0, f (V)}.
12: Set T :� T∪v↓.
13: Contract all strongly connected components of F to single nodes using (18).
14: Replace F by its transitive closure.
Return the preimage of T in the original ground set.

Algorithm 3 builds a ring family F represented by a directed graph F with the property that F contains all
optimal solutions to (SFM).

The subroutine PUSH(g,h,S) is defined for a submodular function h : 2V → Z, an extreme basis g ∈ B(h) given by
an ordering of the elements of V, and a subset S⊆V. It returns another extreme basis g′ ∈ B(g) by moving the set
S backward in the ordering defining g. That is, every element of V\S precedes every element in S, and the rela-
tive ordering of the elements inside V\S as well as those inside S remain unchanged.

In Theorem 8, we show that, for δ � 1=(3n3), the algorithm terminates within n2 iterations. Let AO↓( f ,δ) denote
the maximum of AO( f ↓,δ), where f ↓ ranges over all possible choices of ring families F .

Dadush, Végh, and Zambelli: Rescaling Algorithms for Submodular Minimization
1096 Mathematics of Operations Research, 2021, vol. 46, no. 3, pp. 1081–1108, © 2021 INFORMS



Recall that Lemma 15 provides an upper bound O(n2 ·EO+ n2) on the running time of GREEDY-MIN( f ↓,w) in
contrast to the running time bound O(n2 ·EO+ n logn) on GREEDY-MIN( f ,w). Thus, AO↓( f ,δ) can be upper bound-
ed by the worst-case running time bound on AO( f ,δ) plus O(n=logn) times the worst-case bound on the number
of calls to the greedy algorithm in AO( f ,δ).
Theorem 8. Using δ � 1=(3n3), Algorithm 3 finds the unique minimal optimal solution to (SFM) in time O

(
n2(AO↓

( f , 1=(3n3)) + n4 ·EO+ n5).
Using the bounds from Theorems 4 and 5, we obtain O(n10 ·EO+ n11) using the conditional gradient algorithm,

and O(n11 ·EO+ n12) using the Fujishige–Wolfe algorithm. Although these running times are high-degree poly-
nomials, we emphasize that they can be obtained by repeated applications of simple iterative methods without
using any form of scaling.

Theorem 7 gives a running time O((n6 ·EO+ n7)logn) using the rescaling-SFM algorithm. In Section 4.4, we
give an enhanced version of the algorithm with running time O((n5 ·EO+ n6)log2n).

Let us now give an overview of Algorithm 3. The ground set is reduced by contracting elements that must be
included in every optimal solution. The set T represents the current set of contracted elements. Thus, the sub-
modular function at the current stage is defined as f (S∪T) − f (T) for the original input function f with the possi-
ble exception of f (V). Therefore, the complexity of evaluating the current f is still EO. We use n to denote the size
of the original ground set V.

Once ℓ(v) ≥ 0 for all v ∈ V, we conclude that S � ∅ is the minimizer of the current function; we return T as the
unique minimal minimizer of the original function. Otherwise, as long as ℓ−(V) < 0, each main iteration calls the
oracle approx-SFM( f ↓,δ). Two types of contractions are used. All cycles in F can be contracted to single elements
using Operation (18) because an optimal solution can contain either all or no elements of a cycle (line 17). The
other type of contraction (in line 13) reduces the size of the ground set by eliminating elements that must be con-
tained in every optimal solution.

The other main step of the algorithm is adding new arcs to F. The following lemma shows the validity of these
steps and that either of these operations should occur in every iteration.

Lemma 16. The following properties are valid throughout Algorithm 3.
i.All minimizers to (SFM) are contained in the ring family F .
ii. If ℓ−(V) � 0, then f (Y) ≥ 0 for all Y⊆V.
iii. Every arc (v,z) added to F in line 8 satisfies the property that every minimizer that contains v must also contain z.
iv. Every v ∈ V contracted in line 10 must be contained in all minimizers of (SFM).
v. If δ ≤ 1=(3n3), then every iteration either contracts an element or adds a new arc to F.

Proof. We show all properties by induction on the number of iterations of the algorithm. Part (i) is trivially true
at the beginning because F � ∅. Part (iii) guarantees that it remains true whenever F is extended (and, thus, F is
restricted to a smaller ring family).

For (ii), claim 2 shows f (Y) ≥ ℓ(Y) ≥ ℓ−(V) for any Y ∈ F . Our assumption is ℓ−(V) � 0, that is ℓ ≥ 0, and thus,
f (Y) ≥ 0 for all Y ∈ F . By (i), it follows that f (Y) ≥ 0 on every set S⊆V. For the rest of the proof, we assume that
ℓ−(V) < 0.

For (iii), Lemma 14 implies that, for v selected in line 8, every minimizer of f ↓ that contains v must also contain
some element of z↑. Using (i) and the definition of f ↓, the minimizers of f are also minimizers of f ↓ and are con-
tained in F . Thus, if S minimizes f (S) and S∩z↑ ≠ ∅, then z ∈ S. It follows that every minimizer of f containing v
must also contain z; therefore, the new arc (v, z) is valid.

For (iv), consider a v such that y(v) < 2ℓ−(V)δ as in line 13. Lemma 13 and claim 4 imply that v is contained in
every minimizer of f ↓. By (i), v↓ must be contained in all elements of v↓.

We now turn to the proof of (v). Note that, if the algorithm enters the while loop when |V| � 1, say V � {v},
then y(v) � f (V) � ℓ({v}) � ℓ−(V) < 2ℓ−(V)δ, so the algorithm contracts v in line 13 and subsequently terminates.
Thus, we can assume that |V| ≥ 2. The argument is as follows: we note that, if no element is contracted in line 13,
then the condition in line 12 yields

y v( ) ≥ 2ℓ− V( )δ ∀v ∈ V: (20)

From this property, we derive that the condition in line 4 is true for at least one z ∈ V. Finally, we show that, in
this case, the condition in line 8 is true for some v ∈ V\z↑.
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In more detail, if no element is contracted in line 13, then from (20), we get the lower bound

f ↓ S( ) ≥ y S( ) ≥ y− V( ) ≥ 2|V| · ℓ− V( )δ ∀S ⊆ V: (21)

Because f ↓(S) � f (S) for S ∈ F by the definition of f ↓ and F contains all minimizers of f by (i), we have that

f S( ) ≥ 2|V| · ℓ− V( )δ ∀S⊆V: (22)

Next, we show that, if (21) holds, then at least one z ∈ V satisfies

f V\z↑
( )

> |V| · |y− V( )|, (23)

a bound that is slightly stronger than the condition f (V\z↑) > |V| · y−(V\z↑) in line 4. Select z ∈ V such that ℓ(z) is
the most negative possible. In particular, ℓ(z) ≤ ℓ−(V)=|V|. By (22), we have

ℓ− V( )
|V| ≥ ℓ z( ) � f V\z↑

( )
∪ z{ }

( )
− f V\z↑

( )
≥ 2|V| · ℓ− V( )δ− f V\z↑

( )
: (24)

Consequently,

f V\z↑
( )

≥ |V| · |ℓ− V( )| · 1
|V|2 − 2δ
( )

:

From the assumption δ ≤ 1=(3n3) ≤ 1=(3|V|3), we obtain 1=|V|2 − 2δ > 2|V|δ because |V| ≥ 2. Therefore, (23) follows
because

f V\z↑
( )

> 2|V|2 · |ℓ− V( )|δ ≥ |V| · |y− V( )|:
In the final inequality, we use (21) (recalling that ℓ−(V) and y−(V)0 are nonpositive).
It is left to show that, if z ∈ V satisfies the condition in line 4, then at least one v ∈ V\z↑ is selected in line 8. By

construction and from the fact that V\z↑ ∈ F , for every i ∈ [k], we have g′i (V\z↑) � f ↓(V\z↑) � f (V\z↑), and g′i (u) ≥
gi(u) for every u ∈ V\z↑. It follows that y′(V\z↑) � f (V\z↑) and y′(u) ≥ y(u) for all u ∈ V\z↑.

Assume that f (V\z↑) > −|V| · y−(V\z↑) as in the condition in line 4. It follows that

y′ V\z↑
( )

� f V\z↑
( )

> −|V| · y− V\z↑
( )

≥ −|V| · y′− V\z↑
( )

:

This, in turn, implies the existence of v ∈ V\z↑ such that y′(v) > −y′−(V\z↑) in line 8. w

Proof of Theorem 8. Lemma 16 justifies the contraction steps and the addition of new arcs to F and shows that
the number of main iterations is at most n2. Let us also note that, after every contraction, we decrease the value
of f (V) if it becomes positive (that is, if f (V) > f (v↑) before the contraction of v). This operation clearly maintains
submodularity. It is also safe in the sense that it may not lead to an incorrect output with respect to the original
function. Indeed, note that, at termination, the algorithm returns the current set of T, which are elements that
must be contained in every minimizer of the original function. Hence, the algorithm outputs the unique minimal
solution to (SFM). On the other hand, if f (V) was ever decreased, then we decrease it to the same value as f (∅).
Therefore, it can never become the unique minimizer. If the algorithm terminates with the entire ground set V,
then it follows that f (V) was never decreased during the algorithm.

Let us now estimate the running time. Besides the calls to approx-SFM, the running time is dominated by the
operations PUSH(g′i , f ↓,z↑), which altogether require O(n2 ·EO+ n3) for every iteration, and this is required O(n2)
times. Every time an arc (u,v) is added to F, recomputing the transitive closure requires adding arcs from u and
all its predecessors to v and all its descendants. This requires O(n2) operations per added arc, so it requires O(n4)
operations overall, which is within the stated running time bound. w

4.4. Speeding up the Algorithm
The algorithm described in the previous section needs to identify O(n2) arcs in F. In the worst case, each iteration
may only identify a single arc, resulting in O(n2) calls to approx-SFM.

On the other hand, if we are able to guarantee that |ℓ−(z)| is within a factor O(nb) from |ℓ−(V)| for a constant
fraction of all z ∈ V for some constant b ≥ 1, the analysis in the proof of Lemma 16 implies that, for δ � 1=O(nb+2),
we would guarantee f (V\z↑) ≥ −ny−(V\z↑) for all such z ∈ V. Thus, after running approx-SFM(f ↓, 1=O(nb+2)), we
could extend F byH (n) new arcs.
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If this property held in all iterations, then O(n) calls to approx-SFM would suffice. However, the number of z ∈
V with |ℓ−(z)| value “close” to |ℓ−(V)| can be o(n). To deal with this situation, we apply the bucketing technique of
Lee et al. [29]. Instead of the entire V, we restrict our function in every iteration to a suitably chosen V̄ ⊆V and
run approx-SFM restricted to this set with δ � n−O(logn). We obtain H (|V̄ |) new arcs in this iteration. Thus, if
approx-SFM has running time O((|V̄ |4 ·EO+ |V̄ |5) log2n), then the amortized cost of extending F by an arc is
O((n3 ·EO+ n4) log2n).

We note that this improvement is only applicable if AO( f ,δ) depends logarithmically on 1=δ. Because δ can
be quasi-polynomial, the conditional gradient or Fujishige–Wolfe methods would not even be polynomial in
this framework.

Another speed-up technique, also adapted from Lee et al. [29], enables saving on the running time of recom-
puting the extreme bases in line 7 of Algorithm 3. We can identify the new arc (z,v) by recomputing only one of
the g′i ’s instead of all of them at the expense of requiring a higher accuracy 2κδ instead of δ. Here, κ denotes an
upper bound on the number of extreme bases in the convex combination; hence, κ ∈O(n) by assumption.

The following lemma adapts the argument in Lee et al. [29, section 15.4.1].

Lemma 17. Let f : 2V → Z be a submodular function, F a ring family containing all minimizers of f , and f ↓ : 2V → Z be
the corresponding function defined by f and F . Then, in O(n ·EO) time, we can find a nonempty subset V̄ ⊆V and a posi-
tive integer b �O(logn) such that

• For every z ∈ V\V̄, we have ℓ(z) > 2ℓ−(V)=(4κn)4b.
• There exist at least |V̄ |=2 distinct z ∈ V̄ such that ℓ(z) ≤ 2ℓ−(V)=(4κn)4b−4.

Proof. Let us define Vt�def{z ∈ V : ℓ(z) ≤ 2ℓ−(V)=(4κn)4t)} for t � 1, 2, : : : . Note that V1⊆V2⊆ : : : because ℓ−(V) ≤ 0.
Furthermore, V1 ≠ ∅ as it contains z with the smallest ℓ(z) value. Let b be the smallest value such that
|Vb| ≤ 2|Vb−1|. Thus, b �O(logn), and choosing V̄ � Vb satisfies both requirements. w

For the set V̄ and value b as in the lemma, let f̄ : 2V̄ → Z denote the restriction of f ↓ to the ground set V̄. Let us set

δ̄ �def 1

4κn( )4b , δ �def 2n
2 + 1

4κn( )4b , (25)

and let us call approx-SFM( f̄ , δ̄) to obtain the vector ȳ ∈ B( f̄ ) defined as a convex combination of extreme bases
ḡ1, : : : , ḡk ∈ B( f̄ )with k ≤ κ and a setW⊆ V̄ such that f̄ (W) ≤ ȳ−(V̄) + δ̄Lf̄ .
Let us now extend ȳ ∈ RV̄ to y ∈ R

V as follows. For v ∈ V̄, we let y(v) � ȳ(v). Then, consider an arbitrary order
v1, : : : ,vn−|V̄ | of V\V̄ and set y(vj) :� f ↓(V̄ ∪{v1, : : : ,vj}) − f ↓(V∪{v1, : : : ,vj−1}). Let us also define g1, : : : ,gk ∈ R

V by
gi(v) � ḡi(v) for v ∈ V̄ and gi(v) � y(v) for v ∈ V\V̄ (i � 1, : : : ,k). Note that, by definition, g1, : : : ,gk are extreme bases
of B(f ↓), and y is a convex combination of g1, : : : ,gk.

Lemma 18. For the vector y and set W as before, we have that y ∈ B( f ↓) and f ↓(W) ≤ y−(V) + δLf ↓ .

Proof. By definition, f ↓(W) � f̄ (W) and Lf̄ ≤ Lf ↓ because f̄ is a restriction of f ↓. Therefore,

f ↓ W( ) ≤ ȳ− V̄( ) + δ̄Lf ↓ :

Claim 5 states that y(v) ≥ ℓ−(v) for every v ∈ V\V̄ .

For its proof, if v � vj, then y(v) � f ↓(V̄ ∪{v1, : : : ,vj}) − f ↓(V̄ ∪{v1, : : : ,vj−1}) ≥ f ↓(V) − f ↓(V\{v}) by submodular-
ity. Further, f ↓(V) − f ↓(V\{v}) ≥ ℓ−(v) by claim 3.

We have y−(V) � ȳ−(V̄) + y−(V\V̄). By the choice of V̄ , we have

ℓ− v( ) ≥ 2ℓ− V( )= 4κn( )4b � 2ℓ− V( )δ̄ ∀v ∈ V\V̄:

Using the preceding claim, we get y−(V\V̄) ≥ 2nℓ−(V)δ̄. Thus, y−(V) ≥ ȳ−(V̄) + 2nℓ−(V)δ̄ ≥ ȳ−(V̄) − 2n2δ̄Lf ↓ . Here,
the last inequality uses the lower bound in claim 4. Consequently,

f ↓ W( ) ≤ y− V( ) + 2n2 + 1( )δ̄Lf ↓ � y− V( ) + δLf ↓ :

This proof shows that we can implement approx-SFM( f ,δ) by calling approx-SFM( f̄ , δ̄) and adding the remain-
ing V\V̄ elements by O(n) value oracle queries for f ↓ and O(nκ) arithmetic operations. This gives a running time
overhead O(n ·EO+ n2).
We make two modifications to Algorithm 3 as follows. First, in every iteration, we compute V̄ and b as in Lem-

ma 17 and use this modified implementation of approx-SFM with δ as defined in (25).
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Second, we modify the selection of z as in line 4 to

f V\z↑
( )

> −2k|V| · y− V\z↑
( )

: (26)

In line 7, we change the computation of y′ as follows. We first compute xi( f (V\z↑) − gi(V\z↑)) for all i ∈ [k];
w.l.o.g., assume the maximum is taken for i � 1. We compute g′1 ←PUSH(g1, f ↓,z↑) and define

y′ :� y+ x1 g′1 − g1
( )

:

The rest of the algorithm remains unchanged.

Theorem 9. The described modification of Algorithm 3 finds an optimal solution to (SFM) in time O(n ·AO↓
( f ,n−O(logn)) + n3 ·EO+ n4). Using the implementation with rescaling-SFM, the running time is O((n5 ·EO+ n6) log2n).
Proof. Note that properties (i)–(iv) of Lemma 16 are maintained throughout the algorithm just as before. We
need to prove the following analogue of Lemma 16(v).

Claim 6 states that, after every call of the approximation oracle, either at least one node is contracted at line 13
or at least 1

2 |V̄ | new arcs are added to F.
For the proof, we first show that, if no node is contracted at line 13, then (26) holds for at least half of the ele-

ments z of V̄ . Subsequently, we show that, for every z satisfying (26), there exists v ∈ V\z↑ satisfying the condition
in line 7.

If no node is contracted at line 13, then as in the proof of Lemma 16(v), we can assume that y(v) ≥ 2ℓ−(V)δ for
all v ∈ V; further, (21) and (22) hold. By Lemma 17 and our choice of V̄ , at least half of the elements z of V̄ satisfy

ℓ z( ) ≤ 2ℓ− V( )= 4κn( )4b−4 � 2ℓ− V( )δ 4κn( )4= 2n2 + 1( ):
Consider any such z. As in (24), Assumption (22) implies that

f V\z↑
( )

≥ 2|V| · ℓ− V( )δ− ℓ z( ) ≥ 2|V|2 · |ℓ− V( )|δ 4κn( )4
|V|2 2n2 + 1( ) −

1
|V|

( )
:

Using (21), 2|V| · |ℓ−(V)|δ ≥ |y−(V)|, and it is easy to see that the expression in the brackets is > 2κ ≥ 2k for n ≥ 2. Thus,

f V\z↑
( )

≥ 2k|V| · |y− V( )|,
implying (26).

Let us now show that, for any z satisfying (26), there exists a v ∈ V\z↑ such that y′(v) > −y′−(V\z). Recall our
assumption that i � 1 maximizes xi( f (V\z↑) − gi(V\z↑)), and therefore,

x1 f V\z↑
( )

− g1 V\z↑
( )( )

≥ 1
k

f V\z↑
( )

− y V\z↑
( )( )

:

Also note that g′1 is defined so that g′1(V\z↑) � f ↓(V\z↑) � f (V\z↑). We get

y′ V\z↑( ) � y V\z↑( )+ x1 g′1 V\z↑( )− g1 V\z↑( )( )
� y V\z↑( )+ x1 f V\z↑( )− g1 V\z↑( )( )
≥ k− 1

k
y V\z↑
( )

+ 1
k
f V\z↑
( ) :

Using (26), we obtain

y′ V\z↑
( )

> −|V| · y− V\z↑
( )

≥ −|V| · y′− V\z↑
( )

,

guaranteeing the existence of v ∈ V\z↑ such that y′(v) > −y′−(V\z↑) in line 7. w

The running time of approx-SFM( f̄ , δ̄) is AO( f̄ , δ̄). There are at most n iterations in which a node gets con-
tracted; the total cost of the oracle calls in these iterations can be bounded by nAO↓( f , δ̄).
Consider now the iterations when no nodes get contracted. In these iterations, the amortized cost of an oracle

call per new arc is 2AO( f̄ , δ̄)=|V̄ |. Because AO depends at least linearly on |V̄ |, this can be upper bounded by
AO↓( f , δ̄)=|V|. Hence, the total time of the oracle calls is O(n ·AO( f , δ̄)).

After every call, there is an overhead O(n ·EO+ n2), totalling O(n3 ·EO+ n4). For every arc identified, it takes
O(EO+ κ) to identify which g′i needs to be computed, and it takes O(n ·EO+ n2) time to compute this g′i ; this
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takes O(n3 ·EO+ n4) time overall. As in the proof of Theorem 8, recomputing the transitive closures requires
O(n4) operations over the entire execution of the algorithm.

Finally, if we consider approx-SFM provided by algorithm rescaling-SFM as in Theorem 7, we obtain a run-
ning time bound O((n5 ·EO+ n6) log2n). w

5. Cutting Plane Method
The current best cutting plane method for finding a point in a convex set C⊆R

n provided by a separation oracle
is due to Lee et al. [29]. Assume that, for R > ε > 0, C is contained in a ball of radius R centered at the origin and
contains some ball of radius ε. Let κ :� nR=ε. In general, cutting plane methods maintain at each iteration k a
“simple” convex set K(k) such that C⊆K(k) and select a candidate point x(k) ∈ K(k). With a call to the separation ora-
cle for C, the method either terminates if x(k) ∈ int(C) or else it generates a valid inequality for C that weakly sepa-
rates x(k) from int(C) and uses this inequality to generate a new relaxation K(k+1) with smaller volume and a new
candidate point x(k+1).

The method of Lee et al. [29] maintains K(k) as the intersection of O(n) valid inequalities and guarantees that
the volume of K(k) decreases by a constant factor at every separation oracle call. This ensures that the number of
oracle calls is bounded by O(n logκ). The overall running time is O(n · SOlogκ+ n3 logO(1)κ), where SO is the
complexity of an (exact) separation oracle.

By contrast, the central-cut ellipsoid method maintains K(k) to be an ellipsoid, in which the volume of K(k)
decreases by a constant factor every n separation oracle calls (see Grötschel et al. [20, lemma 3.2.10]), ensuring a
O(n2logκ) bound on the number of oracle calls. The overall running time is O((n2 · SO+ n4)logκ).3

In Lee et al. [29, part III], they apply their cutting plane method to submodular function minimization and
obtain a strongly polynomial running time bound of O(n3 log2 n ·EO+ n4 logO(1)n), which is currently the best
(see Lee et al. [29, section 15.4]). This is obtained by combining their cutting plane algorithm with an improved
version of the combinatorial framework of ring families; one of their important new contributions is the bucket-
ing technique we also use in Section 4.

In this section, we present an alternative way of applying their cutting plane method to SFM. We prove the
same running time bound in a substantially simplified way. First, instead of using the Lovász extension s in
Grötschel et al. [20] and Lee et al. [29], we apply the cutting plane method to find a feasible solution in Fµ as
defined in (11). We use the sliding technique as in Section 3 for the cutting plane algorithm. Second, we employ
the combinatorial framework in a black box manner by implementing approx-SFM via the Lee–Sidford–Wong
algorithm. The combinatorial interpretation of the certificate returned by the cutting plane method turns out to
be much easier than in Lee et al. [29].

5.1. Weakly Polynomial Algorithm
Let us start by exhibiting a weakly polynomial O(n2 log(nLf ,2) ·EO+ n3 logO(1)(nLf ,2)) algorithm for SFM, which is
the same as the running time in Lee et al. [29]. We use a slight modification of the cutting plane algorithm
(Lee et al. [29, section 6.4, algorithm 2]).

We start with µ �max{0, − f (V)} and maintain a set W⊆V with f (W) � −µ throughout. The algorithm seeks a
point in int(Fµ), and the initial relaxation K(0) is the hypercube centered at the origin of side length 2

��
n

√
. For the

current iterate x(k), GREEDYMIN( fµ,x(k)) is used as the separation oracle for int(Fµ), which returns an extreme base
g of B( fµ). If gTx(k) > 0, then x(k) ∈ int(Fµ); thus, x(k) is feasible. In this case, instead of terminating, we modify the
value of µ as in the sliding von Neumann algorithm. That is, we set W�MINSET( fµ,x(k)) and set the new value
µ′ � −f (W). From Lemma 2, we see that x(k) ∉ int(Fµ′ ). Thus, we can continue with adding a new cutting plane.
Note that Fµ′ ⊆Fµ if µ′ > µ; hence, the current relaxation K(k) remains valid because Fµ′ ⊆Fµ⊆K(k). (Again, this is
similar to the sliding objective technique although we are changing all constraints of the polytope simultaneous-
ly.) When −µ is the minimum value of f , Lµ has no points in the interior; therefore, we stop when the volume of
the current relaxation becomes too small.

In this setting, we have SO � n ·EO+ n logn. For every value of µ, Fµ ⊆ B
n by definition, and Lemma 5 implies

that, as long as minS⊆V f (S) < −µ, Fµ contains a ball of radius 1=(4nLf ,2). Hence, κ �O(nLf ,2), giving the desired
running time bound.

Let us note that the framework just described does not depend on the specifics of how the relaxations K(k) or the
candidate point x(k) are constructed, but it can be applied to any cutting plane method. For example, for the cen-
tral-cut ellipsoid method, this framework gives an O((n3 ·EO+ n4)log(nLf ,2)) algorithm for submodular function
minimization. Indeed, as previously mentioned, the running time of the ellipsoid method is O((n2 · SO+ n4)logκ),
and as before, SO � n ·EO+ n logn and κ �O(nLf ,2). Interestingly, even such a simple and direct use of the
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standard ellipsoid method, compared with the usual approach of minimizing the Lovász extension, provides a
running time that is a factor n lower than any weakly polynomial SFM algorithm known prior to the work of Lee
et al. [29].

5.2. Strongly Polynomial Algorithm
Let us now show anO(n2 log(nδ−1)EO+ n3logO(1)(nδ−1)) implementation of approx-SFM( f ,δ) using the Lee–Sidford–
Wong cutting plane method. We use Lee et al. [29, theorem 31]. For K � Fµ (for any value of µ), by definition
Fµ⊆B

n⊆B
n
∞(1), that is, R � 1. Recall, as described, that we slide µ every time we find a feasible solution in Fµ. The fol-

lowing lemma shows that the algorithm always returns a thin direction as follows.

Theorem 10. (Lee et al. [29, Theorem 31]). For any ε ∈ [0, 1], in expected time O(n log(n=ε) · SO+ n3 logO(1)(n=ε)), the
(sliding) cutting plane method returns a value µ and constraints aTi x ≥ bi for i ∈ [h], where h �O(n), ||ai||2 � 1, which are
all valid for Fµ. Each of these constraints is either an original box constraint, that is, xj ≥ −1, or −xj ≥ −1, or an inequality
returned by the separation oracle. Let P denote the intersection of these hyperplanes.

Further, we obtain nonnegative numbers t1, t2, t3, : : : , th with t1 � 1 and a point x∗ ∈ P, which satisfy the following:
a. ||x∗||2 ≤ 3

��
n

√
.

b.
∣∣∣∣Rh

i�1 tiai
∣∣∣∣
2 �O( ��

n
√

ε log(1=ε)).
c. aT1x

∗ − b1 ≤ ε.

d. (Rh
i�2tiai)Tx∗ −Rh

i�2tibi ≤O( ��
n

√
ε log(1=ε)).

The output certifies that the region P∩B
n
∞(1) has small width in the direction of a1. Indeed, let ā :� Rh

i�2tiai and
b̄ :� Rh

i�2tibi. By Cauchy–Schwartz and (b), for all x ∈ R
n, |(a1 + ā)Tx| ≤ ||x||O( ��

n
√

ε log(1=ε)), so b1 + b̄ ≤ (a1 + ā)Tx∗ ≤
O(nε log(1=ε)). By (c) and (d), −b1 − b̄ ≤ −(a1 + ā)Tx∗ + ε+O( ��

n
√

ε log(1=ε)) ≤O(nε log(1=ε)). This shows |b1 + b̄| �
O(nε log(1=ε)). It follows that, for every x ∈ P∩B

n
∞(1),

b1 ≤ aT1x ≤ aT1x+ āTx− b̄ � a1 + āT
( )

x− b̄ − b1 + b1 ≤O nε log 1=ε
( )( )+ b1:

We show that for an appropriately chosen ε, this can be used to implement approx-SFM( f ,δ).
Lemma 19. For an appropriate ε such that δ �Ω(n3=2εlog(1=ε)), from the output of the cutting plane method, we can ob-
tain W and y as required for approx-SFM( f ,δ), that is, f (W) ≤ y−(V) + δLf .

Proof. Let [h] � Ib∪ Is, where Ib is the set of indices i such that aTi xi ≥ bi is a box constraint and Is is the set of indi-
ces corresponding to constraints from the separation oracle. Each constraint in Is is of the form ai � gi=||gi||2 and
bi � 0, where gi is an extreme base of B( fµi

), where µi ≤ µ was the value of µ at the time when this cutting plane
was added. The lemma easily follows from the next claim.

Claim 7 states that the index one is in Is, and ‖Ri∈Is tiai‖2 �O(nε log(1=ε)).
For the proof, first, we show that 1 ∈ Is. For a contradiction, assume that 1 ∈ Ib, that is, a1 � ej or a1 � −ej for

some j ∈ [n] and b1 � −1. As noted, |b1 + b̄| �O(nεlog(1=ε)); hence, b̄ > 0 follows (for small enough ε). This is a
contradiction because bi � −1 for all i ∈ Ib and bi � 0 for all i ∈ Is.

Thus, 1 ∈ Is, and therefore, b1 � 0. Thus, |b̄| �O(nεlog(1=ε)). Again, this implies that Ri∈Ib ti �O(nε log(1=ε)). To-
gether with

∣∣∣∣Ri∈Ib tiai +Ri∈Is tiai
∣∣∣∣
2 �O( ��

n
√

εlog(1=ε)) from (b), we get that ‖Ri∈Is tiai‖2 �O(nε log(1=ε)) as required.
Let v � (Ri∈Is

ti
||gi||2 g1)=(Ri∈Is

ti
||gi||2). Because 1 ∈ Is, we have Ri∈Is

ti
||gi||2 ≥

1
Lf ,2

≥ 1
Lf
. Hence, it follows that

||v||1 ≤
��
n

√ ||v||2 ≤ Lf
��
n

√ ∣∣∣∣∣∣∣∣∑
i∈Is

tiai

∣∣∣∣∣∣∣∣
2
�O Lfn3=2ε log 1=ε

( )( )
≤ 2δLf :

Then, Lemma 11 is applicable to provide the certificate for approx-SFM( f ,δ). Note that the set W with f (W) � −µ
has been maintained during the cutting plane algorithm. w

Combining Lemma 19 with Theorem 9 and noting that κ �O(n), we obtain the running time bound
O(n3 log2(n)EO+ n4 logO(1)(n)).

5.3. Comparison with the Lee–Sidford–Wong SFM Algorithm
Let us now compare the preceding approach to the SFM algorithm described in Lee et al. [29, part III]. We em-
ploy the same cutting plane method, and a common framework is using ring families; our bucketing argument
has been adapted from Lee et al. [29].
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Their combinatorial framework is more complex than ours: upper bounds analogous to the lower bounds ℓ(z)
are needed, and accordingly, their algorithm identifies both outgoing and incoming arcs as well as removes
elements that cannot be contained in any minimizer. The simple trick that enables us to work only with lower
bounds and identify only incoming arcs is repeatedly truncating the value of f (V); thus, we can bound Lf ↓ in
terms of ℓ−(V) as in claim 4.

Our black box approach clearly separates the combinatorial argument from the cutting plane method, which is
used only inside the oracle. In contrast, these two ingredients cannot be clearly separated in Lee et al. [29]. They
use the cutting plane method for the formulation using the Lovász extension and do not use sliding. Then, they
transform the cutting plane certificate to identify a small norm convex combination in the base polytope. This is
analogous to but substantially more complicated than our Lemma 19. In particular, it is not always possible to
identify such a combination because the constraints of the feasible region can have large coefficients. In such
cases, these large coefficients can be used to fix some of the variables to zero and one and, hence, make progress
in terms of the ring family. In contrast, the certificate from our sliding cutting plane algorithm on Fµ can be
straightforwardly translated in Lemma 19 to satisfy the requirements of the approximate oracle.

6. Variants of the Geometric Rescaling Algorithm
The framework of Algorithm 2 is fairly general in the sense that both the first-order method used to generate
short convex combinations of normalized vectors of B( fµ) and the rescaling used to update the matrix Q ∈ S

n
++

can be replaced with other alternatives. Here, we discuss some of these variants.

6.1. Replacing von Neumann with Fujishige–Wolfe
Within Algorithm 2, the role of Algorithm 1 is to determine a point y with ||y||Q ∈O(1=n) such that y is a convex
combination of points of the form g=||g||Q, g ∈ B( fµ). Any algorithm that can produce such output in time polyno-
mial in n can be used in place of the von Neumann algorithm. In particular, Fujishige–Wolfe can be adapted to
the rescaling setting of Algorithm 2.

As for von Neumann’s algorithm, the only modifications that are required are the following. First, given a ma-
trix Q ∈ S

n
++, we use the Q-norm and Q-scalar product to normalize the elements of B( fµ). We maintain a set X of

affinely independent elements of the form g=||g||Q, g ∈ B( fµ). At every major cycle—that is, when X is a corral—
the algorithm computes the projection y of the origin to the affine hull of X, which belongs to the relative interior
of conv(X) because X is a corral. At any major cycle, we are only interested in knowing whether Qy ∈ int(Rµ).
Therefore, we call GREEDYMIN( fµ,Qy), obtaining a minimizer g ∈ B( fµ) as output. If 〈g,y〉Q ≤ 0, then we set
X′ :� X∪{g=||g||Q}. If 〈g,y〉Q > 0 (that is, Qy ∈ int(Rµ)), then we determine W⊂V such that f (W) < −µ and slide f
by setting µ :� −f (W), just as in line 6 of the sliding von Neumann algorithm (Algorithm 1). We update g as in
line 9 and then set X′ � X∪{g=||g||Q}. In both cases, we proceed with either another major cycle if X′ is still a cor-
ral or a minor cycle if X′ is not a corral. Note, in particular, that in both cases, we only increase the set X when
〈g,y〉Q ≤ 0. The next statement follows immediately from Chakrabarty et al. [4, theorem 4] and from the same ar-
guments used in the proof of Lemma 4.

Theorem 11. Given a value µ ≥max{0, − f (V)}, a set W⊆V with f (W) � −µ, a matrix Q ∈ S
n
++, and an ε > 0, within

O(1=ε2) iterations (major and minor cycles), Wolfe’s algorithm computes a value µ′ ≥ µ and a set W′ ⊆V with f (W′) � −µ′,
bases g1, : : : ,gk ∈ B( fµ′ ), x ∈ R

k, y ∈ R
n such that k ≤ n, y � Rk

i�1 xigi=||gi||Q, →eTx � 1, x ≥ 0, and ||y||Q ≤ ε.

In particular, within Algorithm 2, we need to fix ε � 1=(20n), which implies that the number of iterations
required for each call of Fujishige–Wolfe is O(n2). Each iteration requires at most one call to GREEDYMIN, needing
O(n) oracle calls, plus O(n2) arithmetic operations (the iteration complexity is dominated by the computation of
the projection of the origin onto the affine hull of X). Given that the number of rescalings needed is
O(n log(nLf ,2)), the total running time of Algorithm 2 when the sliding von Neumann algorithm is replaced with
Fujishige–Wolfe is O((n4 ·EO+ n5) log(nLf ,2)).

6.2. Rank-1 Rescalings
The multirank rescaling (10) used in Algorithm 2 can be replaced by a rank-1 update. Here we discuss two possi-
ble such updates. In both cases, the analysis relies on the following lemma, which is an immediate consequence
of Hoberg and Rothvoß [22, lemmas 4 and 5] when applied within the setting of submodular function
minimization.
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Lemma 20. (Hoberg and Rothvoß [22]). Let µ ≥max{0, − f (V)} and Q ∈ S
n
++ such that, for R �Q−1, Fµ⊆E(R). Let

y � Rk
i�1 xigi=||gi||Q, where g1, : : : ,gk ∈ B( fµ), x ∈ R

k
+, →e

Tx � 1, and assume that there is a set I⊂[k] such that the vector z :�
Ri∈I xi gi

||gi ||Q satisfies

||y||Q
||z||Q ≤ 1

3
��
n

√ : (27)

Define

R′ :� 1
1 + 27n( ) R + 3

zzT

||z||2Q

( )
: (28)

Then, Fµ ⊆ E(R′) and det(R′) ≥ (9=4)det(R).
Next, we show two ways of using sliding von Neumann to produce vectors y and z as in the theorem. In particu-

lar, the rescaling defined by (28) can be used within Algorithm 2 in place of the multirank rescaling (10). Note that
the analysis of the algorithm is then identical to that of Algorithm 2 (simply replace Lemmas 7 and 9 by Lemma 20
in the analysis); hence, we can determine a minimizer for f withinO(n log(nLf ,2)) rescalings of the form (28).

6.2.1. Betke’s Rescaling. Betke [3] proposes the following rescaling. Within Algorithm 2, fix ε � 1=(3(n+ 1) ��
n

√ ).
Assume that the vector y � Rk

i�1xigi=||gi||Q returned by each call of sliding von Neumann( f ,µ,W,Q,ε) is expressed
as a convex combination of at most n+ 1 terms (this is not instantly guaranteed by the sliding von Neumann algo-
rithm, but it can be done a posteriori by Carathéodory’s theorem). Because Rk

i�1xi � 1, xi ≥ 0 for all i ∈ [k], it follows
that there exists h ∈ [k] such that xh ≥ 1=k ≥ 1=(n+ 1). The set I :� {h} satisfies condition (27) in Lemma 20; indeed,
in this case z � xh

gh
||gh ||Q, and we have

||y||Q
||z||Q � ||y||Q

xh
≤ 1= 3 n+ 1( ) ��

n
√( )

1= n+ 1( ) � 1
3

��
n

√ :

Observe that, with Betke’s rescaling, the sliding von Neumann algorithm requires �ε−2� �O(n3) iterations to pro-
duce such a vector. Recall that each iteration of the von Neumann algorithm requires time O(n ·E+ n2) for a total
running time ofO(n4 ·EO+ n5) for each call to sliding von Neumann. The vector y returned is expressed as a con-
vex combination ofO(n3) vectors of the form g=||g||Q, g ∈ B( fµ); hence, we need O(n5) operation to express the vec-
tor y as a convex combination of at most n+ 1 such terms. Finally, the total number of rescalings is
O(n log(nLf ,2)). This means that the variant of Algorithm 2 using Betke’s rescaling instead of (10) requires time
O((n5 ·EO+ n6)log(nLf ,2)) as opposed to the O((n4 ·EO+ n5)log(nLf ,2)) ensured by the multirank update (10).

6.2.2. Hoberg and Rothvoß Rescaling. Hoberg and Rothvoß [22] provide a randomized selection rule for the vec-
tor z in the rank-1 rescaling (28). The rule is based on the following.

Lemma 21 (Hoberg and Rothvoß [22, Section 2.1]). Let v1, : : : ,vk ∈ R
n be such that Rk

i�1 ‖vi‖2 � 1. Let u ∈ R
n, ||u||2 � 1, be

chosen uniformly at random, and let I � {i ∈ [k] : uTvi ≥ 0}. Then, with constant probability,∑
i∈I

vi

∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
2

≥ 1
4

����
πn

√ : (29)

Within Algorithm 2, fix ε ≤ 1=(12 ���
π

√
n). Given the vector y � Rk

i�1xigi=||gi||Q returned by a call of sliding von Neu-
mann( f ,µ,W,Q,ε), we let vi � xiQ1=2gi=||gi||Q for i � 1, : : : , k; by construction, Rk

i�1 ‖vi‖2 � 1. We can randomly sam-
ple the set I as in Lemma 21 that satisfies the requirements of Lemma 20; we repeat to sample I until Condition
(29) is satisfied. At this point, the vector z � Ri∈I xi gi

||gi ||Q satisfies Condition (27) because

||y||Q
||z||Q ≤ 4

����
πn

√ · ε ≤ 1
3

��
n

√ :

Observe that each call to sliding von Neumann( f ,µ,W,Q,ε) requires �ε−2� �O(n2) iterations for a total time ofO(n3 ·
EO+ n4) per call, just as for Algorithm 2. Checking if the random set I satisfies Condition (29) takes time O(mk),
where k is the number of vectors in the convex combination defining y, which is bounded by the number O(n2) of
iterations of von Neumann. The expected number of times we need to generate a random set I before Condition (29)
is verified is constant; hence, in an expectedO(n3) arithmetic operation, we can compute the rescaling direction z after

Dadush, Végh, and Zambelli: Rescaling Algorithms for Submodular Minimization
1104 Mathematics of Operations Research, 2021, vol. 46, no. 3, pp. 1081–1108, © 2021 INFORMS



each call to sliding von Neumann( f ,µ,W,Q,ε). Hence, the overall expected running time of the algorithm is
O((n4 ·EO+ n5) log(nLf ,2)), just as for Algorithm 2.

6.3. Rank-1 Pull-back
The pull-back framework described in Section 3.5 can also be adapted to the use of rank-1 updates of the form
(28). All arguments in Section 3.5 proceed without any modification provided that we replace Lemma 12 (used for
the multirank rescaling (10)) with the following analogous statement for the rank-1 rescaling (28).

Lemma 22. Let A ∈ R
n×p, R ∈ S

n
++, and Q � R−1. Let x ∈ R

p
+ and I⊆[p] such that the vectors y :� Rp

i�1 xi
ai||ai ||Q and z :�

Ri∈I xi
ai

||ai||Q satisfy

||y||Q
||z||Q ≤ γ:

Define

R′ :� 1
1 + 3γ2
( ) R + 3

zzT

||z||2Q

( )
,

and Q′ � (R′)−1. For every v ∈ R
n, there exists µ ∈ R

p
+ such that ||v+Aµ||Q ≤ ||v||Q′ .

Proof. First note that

Q′ :� 1 + 3γ2
( )

Q − 3
4
QzzTQT

||z||2Q

( )
:

Let v ∈ R
n, define

u � RQ′v
1+ 3γ2 ,

and note that

v � R′QRQ′v � u+ 3
〈z,u〉Q
||z||2Q

z:

Thus, if we define

µi �
3

xi
||ai||Q

|〈z,u〉Q|
||z||2Q

i ∉ I

max 0, − 6
xi

||ai||Q
〈z,u〉Q
||z||2Q

{ }
i ∈ I

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
we obtain

v + Aµ � u + 3
|〈z,u〉Q|
||z||2Q

y:

Note that µ ≥ 0 and

||v||2Q′ � vTQ′R QR′Q( )RQ′v � 1+ 3γ2
( )

uT
(
Q+ 3

QzzTQ

||z||2Q

)
u

� ||u||2Q 1+ 3γ2
( )

1+ 3α2( ),
where we define α :� 〈z,u〉Q

||z||Q ||u||Q. On the other hand,

||v+Aµ||Q ≤ ||u||Q + 3
|〈z,u〉Q|
||z||2Q

||y||Q � ||u||Q 1+ 3|α| ||y||Q||z||Q

( )
≤ ||u||Q 1+ 3|α|γ( )

:

The statement now follows by noting that (1+ 3γ2)(1+ 3α2) − (1+ 3|α|γ)2 � 3(|α| − γ)2 ≥ 0. w
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Appendix. Proofs of Technical Lemmas

A.1. Proofs of Section 2

Proof of Lemma 3. Assume w.l.o.g. that z(v1) ≤ z(v2) ≤ : : : ≤ z(vn) and denote Si � {v1, : : : ,vi}. The hypothesis of the state-
ment can be written as −minx∈B( f ) z�(x− z) ≤ ε. If we let f ′ : 2V�→R be the submodular function defined by f ′(S) � f (S) − z(S),
observing that x ∈ B( f ) if and only if x− z ∈ B( f ′), the previous expression implies −miny∈B( f ′) z�y ≤ ε. By (3) and observing
that f ′(V) � 0, this can be written as

ε ≥ ∑n−1
i�1

f Si( ) − z Si( )( )
z vi+1( ) − z vi( )( )

�
∫ +∞

−∞
f v : z v( ) ≤ t
{ }( )

− z v : z v( ) ≤ t
{ }( )

dt

≥
∫ +η

−η
f v : z v( ) ≤ t
{ }( )

− z v : z v( ) ≤ t
{ }( )

dt,

where the last inequality holds trivially for every η > 0 because f (S) − z(S) ≥ 0 for all S⊆V because z ∈ B( f ) and
where the equality holds because

v : z v( ) ≤ t
{ } � ∅ if t < z v1( )

Si if z vi( ) ≤ t < z vi+1( )
V if t ≥ z vn( ):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
It follows that, for every η > 0, there exists t ∈ [−η,η] such that f ({v : z(v) ≤ t}) − z({v : z(v) ≤ t}) ≤ ε=2η. Setting S :�
{v : z(v) ≤ t}, this implies

f S( ) − z− V( ) ≤ z+ S( ) − z− V\S( ) + ε=2η ≤ n|t| + ε=2η ≤ nη+ ε=2η:

Choosing η � �������
ε=2n

√
gives f (S) − z−(V) ≤ �����

2nε
√

as required.

A.2. Proofs of Section 3.4

Lemma A.1. The property that Fµ⊆E(R) is preserved whenever algorithm rescaling-SFM performs a rescaling.

Proof. Assume that, at a given step of the algorithm, Fµ⊆E(R) holds, and we rescale R to R′, where

R′ � 1

1+ ε( )2 R+∑k
i�1

xi
||gi||2Q

gigTi

( )

for the vector x returned by the sliding von Neumann algorithm.
We show Fµ⊆E(R′). Consider an arbitrary point z ∈ Fµ; then, gTi z ≥ 0 for all i ∈ [k], and by the induction hypothesis, ||z||2R ≤

1 because z ∈ E(R).
Recall that, in the algorithm, the vector y � Rk

i�1xi
gi

||gi ||Q satisfies ||y||Q ≤ ε. By the Cauchy–Schwartz inequality, we have
yTz � yTQ1=2Q−1=2z ≤ ||y||Q||z||R ≤ ε, and similarly, gTi z ≤ ||gi||Q||z||R ≤ ||gi||Q for every i ∈ [k]. We then have

||z||2R′ � 1

1+ ε( )2 z
T R+∑k

i�1
xi

||gi||2Q
gigTi

( )
z � 1

1+ ε( )2 ||z||2R +
∑k
i�1

xi
gTi z
||gi||Q

( )2⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ 1

1+ ε( )2 1+∑k
i�1

xi
gTi z
||gi||Q

( )
� 1+ yTz

1+ ε( )2 ≤ 1,

where the first inequality follows from the facts that ||z||R ≤ 1, x ≥ 0, and 0 ≤ gTi z ≤ ||gi||Q for all i ∈ [k], and the sec-
ond follows from yTz ≤ ε. Consequently, z ∈ E(R′), completing the proof. w

Proof of Lemma 9. Let R and R′ denote the matrix before and after the rescaling. Let X � Rk
i�1 xigig

T
i =‖gi‖2Q; hence,

R′ � (R+X)=(1+ ε)2. The ratio of the two determinants is

det R′( )
det R( ) � det R+X( )

1+ ε( )2ndet R( ) �
det In +R−1=2XR−1=2( )

1+ ε( )2n :
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Now, R−1=2 �Q1=2, and Q1=2XQ1=2 is a positive semidefinite matrix. From the preceding, the inequality det(In +M) ≥
1+ tr(M) for every M ∈ S

n
++, and by the linearity of the trace, we get

det R′( )
det R( ) ≥ 1+ tr Q1=2XQ1=2

( )
1+ ε( )2n � 1

1+ ε( )2n 1+∑k
i�1

xi
||gi||2Q

tr Q1=2gigTi Q
1=2

( )( )
:

Finally, tr(Q1=2gigTi Q
1=2) � tr(gTi Qgi) � ||gi||2Q. Therefore, we conclude

det R′( )
det R( ) ≥ 1+∑k

i�1xi
1+ ε( )2n � 2

1+ ε( )2n ≥ 16
9
,

where the last inequality follows from ε � 1
20n. w

Proof of Lemma 10. Let ḡ � argming∈C||g||Q=||g||2. Then, by (13),

||ḡ||2Q
||ḡ||22

∑
g∈C

γg ≤
∑
g∈C

γg

||g||2Q
||g||22

� ∑
g∈C

γg
gTQg

||g||22
� tr Q

∑
g∈C

γg
ggT

||g||22

( )
� tr Q R−αIn( )( ) � tr In −αQ( ) � n− αtr Q( ) < n: (A.1)

The final inequality holds because Q is positive definite.
Note from (13) that tr(R) � αn+Rg∈Cγg ≤ n+Rg∈Cγg. The latter and the inequality det(M)1=n ≤ tr(M)=n for every M ∈ S

n
++

imply that Rg∈Cγg ≥ tr(R) − n ≥ n(det(R)1=n − 1). The statement now follows from (A.1). w

Endnotes
1 The authors give both a weakly and a strongly polynomial algorithm; here, we are referring to the weakly polynomial algorithm of Iwata
et al. [25, section 3]. The observation we report here is explicitly stated by the authors in the last paragraph of Iwata et al. [25, section 3].
2 This is not explicitly stated in Iwata and Orlin [24]. However, the analysis in that paper shows that, in time O((n4 ·EO+ n5)log(nδ−1)), one
obtains a set W⊆V and a point x ∈ B( f ) such that x(W) � f (W), x(v) ≥ 0 for all v ∈ V\W, and U(x) :� Rv∈W(x+(v))2 ≤ δ2L2f =n. This implies that
f (w) � x−(W) + x+(W) ≤ x−(V) + ��������

nU(x)√ ≤ x−(V) + δLf .
3 Although not explicitly stated in Grötschel et al. [20], this running time bound follows immediately from the analysis.

References
[1] Bach F (2013) Learning with Submodular Functions: A Convex Optimization Perspective, Foundations and Trends in Machine Learning, vol. 6.
[2] Belloni A, Freund RM, Vempala S (2009) An efficient rescaled perceptron algorithm for conic systems. Math. Oper. Res. 34(3):621–641.
[3] Betke U (2004) Relaxation, new combinatorial and polynomial algorithms for the linear feasibility problem. Discrete Comput. Geometry 32(3):

317–338.
[4] Chakrabarty D, Jain P, Kothari P (2014) Provable submodular minimization using Wolfe’s algorithm. Ghahramani Z, Welling M, Cortes

C, Lawrence N, Weinberger KQ, eds. Adv. Neural Inform. Processing Systems 27:802–809.
[5] Chakrabarty D, Lee YT, Sidford A, Wong SCw (2017) Subquadratic submodular function minimization. ACM Sympos. Theory Comput.,

1220–1231.
[6] Chubanov S (2017) A polynomial algorithm for linear feasibility problems given by separation oracles. Accessed March 23, 2017, http://

www.optimization-online.org/DB_HTML/2017/01/5838.html.
[7] Dadush D, Végh LA, Zambelli G (2020) Rescaling algorithms for linear conic feasibility. Math. Oper. Res. 45:403–795.
[8] Dantzig GB (1991) Converting a converging algorithm into a polynomially bounded algorithm. Technical Report SOL 91-5, Stanford Uni-

versity, Stanford, CA.
[9] Dantzig GB (1992) An ε-precise feasible solution to a linear program with a convexity constraint in 1/ε2 iterations independent of prob-

lem size. Technical Report 92-5, Stanford University, Stanford, CA.
[10] Dunagan J, Vempala S (2008) A simple polynomial-time rescaling algorithm for solving linear programs. Math. Programming 114(1):101–114.
[11] Edmonds J (1970) Submodular functions, matroids, and certain polyhedra. Guy R, Hanani H, Sauer N, Schönheim J, eds. Combinatorial

structures and their applications. Proc. Calgary Internat Conf. Combinatorial Structures Their Appl. (Gordon and Breach, New York), 69–87.
[12] Ene AR, Nguyen HL (2015) Random coordinate descent methods for minimizing decomposable submodular functions. Proc. 32nd Inter-

nat. Conf. Machine Learn.
[13] Ene AR, Nguyen HL, Végh LA (2017) Decomposable submodular function minimization: Discrete and continuous. Guyon I, Luxburg

UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R, eds. Adv. Neural Inform. Processing Systems 30:2874–2884.
[14] Fujishige S (1980) Lexicographically optimal base of a polymatroid with respect to a weight vector. Math. Oper. Res. 5(2):186–196.
[15] Fujishige S (2005) Submodular Functions and Optimization, vol. 58 (Elsevier, Amsterdam).
[16] Fujishige S (2019) A note on submodular function minimization by Chubanov’s LP algorithm. Discrete Optim. 33:140–145.
[17] Fujishige S, Isotani S (2011) A submodular function minimization algorithm based on the minimum-norm base. Pacific J. Optim. 7(1):3–17.
[18] Fujishige S, Iwata S (2002) A descent method for submodular function minimization. Math. Programming 92(2):387–390.
[19] Grötschel M, Lovász L, Schrijver A (1981) The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2):

169–197.
[20] Grötschel M, Lovász L, Schrijver A (1988) Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics,

vol. 2 (Springer, Berlin).

Dadush, Végh, and Zambelli: Rescaling Algorithms for Submodular Minimization
Mathematics of Operations Research, 2021, vol. 46, no. 3, pp. 1081–1108, © 2021 INFORMS 1107

http://www.optimization-online.org/DB_HTML/2017/01/5838.html
http://www.optimization-online.org/DB_HTML/2017/01/5838.html


[21] Hazan E, Kale S (2012) Online submodular minimization. J. Machine Learn. Res. 13(Oct):2903–2922.
[22] Hoberg R, Rothvoß T (2017) An improved deterministic rescaling for linear programming algorithms. Internat. Conf. Integer Programming

Combin. Optim., 267–278.
[23] Iwata S (2003) A faster scaling algorithm for minimizing submodular functions. SIAM J. Comput. 32(4):833–840.
[24] Iwata S, Orlin JB (2009) A simple combinatorial algorithm for submodular function minimization. Proc. 20th Annual ACM-SIAM Sympos.

Discrete Algorithms, 1230–1237.
[25] Iwata S, Fleischer L, Fujishige S (2001) A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM

48(4):761–777.
[26] Jegelka S, Bilmes JA (2011) Online submodular minimization for combinatorial structures. Proc. 28th Internat. Conf. Machine Learn.,

345–352.
[27] Jegelka S, Lin H, Bilmes JA (2011) On fast approximate submodular minimization. Shawe-Taylor J, Zemel RS, Bartlett PL, Pereira F,

Weinberger KQ, eds. Adv. Neural Inform. Processing Systems, 24:460–468.
[28] Lacoste-Julien S, Jaggi M (2015) On the global linear convergence of Frank-Wolfe optimization variants. Proc. 28th Internat. Conf. Neural

Inform. Processing Systems, vol. 1 (MIT Press, Cambridge, MA), 496–504.
[29] Lee YT, Sidford A, Wong SC (2015) A faster cutting plane method and its implications for combinatorial and convex optimization. Pre-

print, submitted August 20, https://arxiv.org/abs/1508.04874.
[30] Orlin JB (2009) A faster strongly polynomial time algorithm for submodular function minimization. Math. Programming 118(2):237–251.
[31] Peña J, Soheili N (2016) A deterministic rescaled perceptron algorithm. Math. Programming 155(1–2):497–510.
[32] Schrijver A (2000) A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Combin. Theory Ser. B

80(2):346–355.
[33] Schrijver A (2003) Combinatorial Optimization—Polyhedra and Efficiency (Springer, Berlin).
[34] Sohoni MA (1992) Membership in submodular and other polyhedra. Technical Report TR-102-92, Indian Institute of Technology, Bom-

bay, India.
[35] Stobbe P, Krause A (2010) Efficient minimization of decomposable submodular functions. Lafferty J, Williams C, Shawe-Taylor J, Zemel

R, Culotta A, eds. Adv. Neural Inform. Processing Systems 23:2208–2216.
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