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Abstract

Let D be the set of n × n positive semidefinite matrices of trace equal to one, also known
as the set of density matrices. We prove two results on the hardness of approximating D with
polytopes. First, we show that if 0 < ǫ < 1 and A is an arbitrary matrix of trace equal to one,
any polytope P such that (1− ǫ)(D−A) ⊂ P ⊂ D−A must have linear programming extension
complexity at least exp(c

√
n) where c > 0 is a constant that depends on ǫ. Second, we show that

any polytope P such that D ⊂ P and such that the Gaussian width of P is at most twice the
Gaussian width of D must have extension complexity at least exp(cn1/3). The main ingredient
of our proofs is hypercontractivity of the noise operator on the hypercube.

1 Introduction

Let D be the set of positive semidefinite matrices of trace equal to one, also known as the set of
density of matrices:

D =
{

X ∈ Sn
+,Tr(X) = 1

}

= conv
{

xxT : x ∈ R
n, ‖x‖2 = 1

}

where Sn
+ is the set of n × n real symmetric positive semidefinite matrices. It is well-known that

D is not polyhedral. We consider the following question: how well can we approximate D with a
polytope of small complexity?

To make this question precise, we need to specify the notion of approximation, as well as the
measure of complexity of polytopes. For the latter we use the extension complexity of polytopes
defined as follows:

Definition 1. The extension complexity of a polytope P is the smallest integer k such that P can
be expressed as the linear image of a polytope with k facets.

The extension complexity was first studied systematically by Yannakakis in [Yan91] and has re-
cently attracted a lot of attention, see e.g., [BV06, Kai11, Pas12, LRTJ14, FMP+15, Rot14, Faw16,
KMR17]. This definition is motivated by computational aspects: if P has extension complexity
N , then optimizing a linear function on P can be formulated as a linear program of size N . The
extension complexity is always smaller than the number of vertices and facets, and in fact it can
be exponentially smaller (see comments below for more on this). The extension complexity is also
invariant under polarity.

For the definition of approximation, we consider in this paper two different notions. First, we
consider polytopes P that satisfy (1 − ǫ)(D − A) ⊂ P ⊂ D −A where A is an arbitrary matrix of
trace equal to one. We now state our first result:
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Theorem 1. For any 0 < ǫ < 1, there exists a constant c > 0 such that the following is true.
Let A be an n × n real symmetric matrix of trace equal to one. If P is a polytope such that
(1 − ǫ)(D −A) ⊂ P ⊂ D −A then the extension complexity of P is at least ec

√
n.

Our second theorem deals with a different notion of approximation. Recall that the Gaussian
width of a set S in Euclidean space is defined as

wG(S) := Eg

[

max
x∈S

〈g, x〉
]

where g is a standard Gaussian random vector. In the theorem below, we consider polytopes P
that contain D and such that the Gaussian width of P is not much larger than that of D. We
prove:

Theorem 2. If P is a polytope such that D ⊂ P and wG(P ) ≤ 2wG(D) then the extension

complexity of P is at least ecn
1/3

, where c > 0 is an absolute constant.

We now comment on the statement of these theorems and related work.

• We do not know if the lower bounds in Theorems 1 and 2 are tight. For the setting of Theorem
1, and with the origin at A = 1

nIn, the best construction we know of has size exp(cn) and
corresponds to P being the convex hull of {xixTi } where {xi} is a well-chosen δ-net of the
unit sphere Sn−1 with δ > 0 being a constant that depends on ǫ, see [AS17b, Proposition
10].1 If we measure the complexity of a polytope by the number of vertices, then this is the
best possible construction; in other words any polytope contained between (1 − ǫ)(D − 1

nIn)
and D − 1

nIn for constant ǫ must have an exponential number of vertices.

• Let Bn be the unit Euclidean ball in R
n. It is known (e.g., by lower bounds on δ-nets of the

sphere) that any polytope P that satisfies (1 − ǫ)Bn ⊂ P ⊂ Bn must have an exponential
number of vertices, for constant ǫ > 0. In constrast, Ben-Tal and Nemirovski [BTN01] showed
that there is a polytope P of extension complexity linear in n (more precisely O(n log(1/ǫ)))
that satisfies (1 − ǫ)Bn ⊂ P ⊂ Bn. Unlike the ball Bn, Theorem 1 shows that D is hard to
approximate even in terms of extension complexity. We note in passing that for n = 2 the
set of density matrices coincides precisely with B2, the disk.

• In [BFPS12] it was shown that there is a convex set S ⊂ R
n×n that has positive semidefinite

rank2 n + 1 and such that any polytope P that satisfies S ⊂ P ⊂ Sǫ must have extension
complexity at least exp(cn) for some constant c > 0, where Sǫ = {y : ∃x ∈ S, ‖y−x‖1 ≤ ǫ} is
the ǫ-widening of S in the ℓ1 norm and ǫ > 0 is a constant. We omit the exact definition of S
here and we refer the reader to [BFPS12] for the details; we can just mention that S satisfies
Tr(X) ≤ n for all X ∈ S. The lower bound on S does not, as far as we know, directly imply
a lower bound for approximating D.

• In quantum information theory the set of density matrices is defined as the set of Hermitian
positive semidefinite matrices of trace equal to one. We have considered here real symmetric
matrices for convenience, but the results easily apply to the Hermitian case too.

1We note that the δ-net has to be chosen suitably for this construction to work and we refer to [AS17b, Proposition
10] where it is proved that a random net works. The trivial construction consists in taking a δ-net where δ ≈

1

n
which

gives a polytope with exp(cn log n) vertices
2A convex set S has positive semidefinite rank k if it can be written as the linear image of an affine section of the

k × k positive semidefinite cone. See e.g., [FGP+15].
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• Theorems 1 and 2 are also true (with the same proof) if we replace D with the (scaled)
elliptope E = {X ∈ Sn : X � 0 and Xii = 1/n ∀i = 1, . . . , n} ⊂ D. This is because the
matrix we consider in Equation (4) is also a submatrix of the slack matrix of the elliptope,
and because the Gaussian width of E is, up to a constant, the same as that of D.

Organization Our main tool to prove Theorems 1 and 2 is hypercontractivity for the noise
operator on the hypercube. Hypercontractivity has been a major tool in theoretical computer
science [O’D14] and was used in particular to derive lower bound on communication complexity.
Our proof draws inspiration from some of these works, particularly [KR11]. In Section 2 we present
some background material on hypercontractivity as well as nonnegative factorizations and slack
matrices. Theorem 1 is proved in Section 3 and Theorem 2 is proved in Section 4.

2 Background

We review necessary background material on hypercontractivity, and the connection between ex-
tension complexity and the nonnegative rank of slack matrices.

2.1 Hypercontractivity

Let Hn = {−1, 1}n be the discrete hypercube in n dimensions. Any function f : Hn → R has a
Fourier expansion

f = f0 + f1 + · · · + fn

where each fi is a homogeneous multilinear polynomial of degree i.

Noise operator Given ρ ∈ [0, 1] the noise (or smoothing) operator Tρ acts on a function f :
Hn → R by multiplying the i’th Fourier term by ρi, namely:

Tρf = f0 + ρf1 + ρ2f2 + · · · + ρnfn.

By attenuating the high-frequency terms, the function Tρf is a “smoother” version of f . The
parameter ρ ∈ [0, 1] controls the level of the smoothing operation: for ρ = 0 the resulting function
Tρf is constant equal to E[f ], and for ρ = 1 no smoothing happens.

The hypercontractive inequality gives us a quantitative estimate of how smoother Tρf is com-
pared to f . Before stating the result, let µ be the uniform probability measure on Hn, and for
f : Hn → R and p ≥ 1, define

‖f‖p =

(

E
x∼µ

[|f(x)|p]

)1/p

.

Note that ‖f‖p ≤ ‖f‖q for p ≤ q. The ratios ‖f‖q/‖f‖p for q > p quantify the smoothness (or
flatness) of a function f . The hypercontractive inequality for Tρ, due to Bonami and Beckner, can
then be stated as follows [Bon70, Bec75].

Theorem 3 (Hypercontractivity of the noise operator on the hypercube). For any 0 < ρ ≤ 1,
f : Hn → R, and p ≥ 1 we have ‖Tρf‖q ≤ ‖f‖p where q = 1 + ρ−2(p − 1) ≥ p.

Hypercontractivity has been a major tool in theoretical computer science and we refer the reader
to [O’D14] for more details.
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2.2 Slack matrices, nonnegative rank

In this section we briefly review some background material concerning the extension complexity
(Definition 1) and its connection to the nonnegative rank of matrices. For more details, we refer to
e.g., [GPT13].

Consider two convex bodies K ⊂ L ⊂ R
d with the origin in the interior of K. Let L◦ be the

polar of L so that L has the following inequality description:

L =
{

x ∈ R
d : 〈y, x〉 ≤ 1 ∀y ∈ L◦

}

. (1)

Define the (potentially infinite) slack matrix of the pair (K,L) as the matrix

SK,L(x, y) 7→ 1 − 〈x, y〉 (2)

where rows are indexed by extreme points x of K, and columns are indexed by extreme points y
of L◦. Since K ⊂ L, SK,L(x, y) ≥ 0 for all x, y. The definition of nonnegative rank for elementwise
nonnegative matrices will be crucial for the rest of the paper:

Definition 2 (Nonnegative rank). Let M be an elementwise nonnegative matrix. The nonnegative
rank of M is the smallest k such that M can be written as a sum of k rank-one matrices that are
elementwise nonnegative.

The following theorem relates the extension complexity of any polytope P contained between
K and L to the nonnegative rank of SK,L. It is due to Yannakakis for the special case K = L
[Yan91]; the proof of the more general case is essentially the same and can be found e.g., in [Pas12,
Section 4.1].

Theorem 4 (Generalized Yannakakis theorem). Let K ⊂ L be two convex bodies and assume that
the origin lies in the interior of K. Let SK,L be the slack matrix of the pair (K,L) as defined in
Equation (2). The smallest extension complexity of a polytope P that satisfies K ⊂ P ⊂ L is equal
to the nonnegative rank of SK,L.

3 Proof of Theorem 1

Reduction to the case A = 1
nIn We first show that it suffices to consider the case A = 1

nIn.
The following argument is due to Guillaume Aubrun and we are including it with his permission.
Assume P is a polytope such that (1 − ǫ)(D − A) ⊂ P ⊂ D − A where A is a symmetric matrix
of trace equal to one. By applying a rotation we can assume without loss of generality that A is
diagonal. Let S be the permutation matrix for the cycle (1, 2, . . . , n). Since A is diagonal we have
1
nIn = 1

n

∑n
i=1 S

iAS−i. Since, furthermore SiDS−i = D, we get (1 − ǫ)(D − 1
nIn) ⊂ Q ⊂ D − 1

nIn
where Q = 1

n

∑n
i=1 S

iPS−i (Minkowski sum). It is known and easy to verify that the extension
complexity of the Minkowski sum of two polytopes is at most the sum of the extension complexities.
If we denote the extension complexity by xc this yields xc(Q) ≤ nxc(P ). Thus if xc(Q) ≥ ec

√
n

we get xc(P ) ≥ exp(c
√
n)/n ≥ exp(c′

√
n).

Remark 1 (Elliptope). If we consider the elliptope E instead of D then the argument above needs
to be slightly modified since applying a rotation matrix to make A diagonal will change E. We thus
give an alternative argument for this case. Assume A is a symmetric matrix of trace equal to one,
and assume that (1 − ǫ)(E − A) ⊂ P ⊂ E − A. Since the identity matrix lies in the convex hull
of {xxT : x ∈ {−1, 1}n} there exist numbers λ1, . . . , λK ≥ 0 and vectors x1, . . . , xK ∈ {−1, 1}n

4



such that such that
∑K

i=1 λi = 1 and
∑K

i=1 λixix
T
i = In, with K ≤ n2 (by Carathéodory theorem).

Note that
∑K

i=1 λi diag(xi)Adiag(xi) = diag(A) and that
∑K

i=1 λi diag(xi)E diag(xi) = E. Thus

if we let P ′ =
∑K

i=1 λi diag(xi)P diag(xi) then (1 − ǫ)(E − diag(A)) ⊂ P ′ ⊂ E − diag(A) and
xc(P ′) ≤ n2 xc(P ). Using the same argument as above with the cyclic permutation matrix we get
that (1 − ǫ)(E − 1

nIn) ⊂ Q ⊂ E − 1
nIn with xc(Q) ≤ nxc(P ′) ≤ n3 xc(P ). Thus if xc(Q) ≥ ec

√
n

we get that xc(P ) ≥ ec
′
√
n.

In the rest of this section we thus focus on the case A = 1
nIn.

Slack matrix We start by computing the slack matrix of the pair ((1−ǫ)C,C) where C = D− 1
nIn.

The extreme points of C are the xxT − 1
nIn where x ∈ Sn−1. One can verify that the polar of C

(computed in the space of trace-zero matrices) is C◦ = −nC, and its extreme points are In −nyyT

where y ∈ Sn−1. By checking that 1 −
〈

(1 − ǫ)(xxT − 1
nIn), In − nyyT

〉

= (1 − ǫ)n(xT y)2 + ǫ we
are thus led to study the nonnegative rank of the following infinite matrix:

(x, y) 7→ (1 − ǫ)n(xT y)2 + ǫ, (x ∈ Sn−1, y ∈ Sn−1) (3)

where rows and columns are indexed by elements of the (n − 1)-sphere. It will be enough for us
to consider the submatrix indexed by elements of the hypercube {− 1√

n
,+ 1√

n
}n. In other words we

will work with the 2n × 2n matrix:3

(x, y) 7→ (1 − ǫ)
1

n
(xT y)2 + ǫ (x ∈ {−1, 1}n, y ∈ {−1, 1}n). (4)

Nonnegative factorization We now proceed to prove a lower bound on the nonnegative rank
of (4). Assume we can write the matrix (4) as a sum of N rank-one nonnegative terms:

(1 − ǫ)
1

n
(xT y)2 + ǫ =

N
∑

i=1

fi(x)gi(y) ∀x, y ∈ Hn, (5)

where fi, gi : Hn → R+ are nonnegative functions on Hn. Since Ex∈Hn [(1 − ǫ) 1
n(xT y)2 + ǫ] = 1 for

all fixed y ∈ Hn, we can scale the fi so that E[fi] = 1 for all i = 1, . . . , N , and
∑N

i=1 gi ≡ 1.
For each fixed y, let qy(x) = 1

n(xT y)2. We can apply the noise operator Tρ on both sides of (5),
seen as functions of x ∈ Hn (for y fixed), to get:

(1 − ǫ)Tρqy(x) + ǫ =

N
∑

i=1

Tρfi(x)gi(y) ∀x, y ∈ Hn. (6)

It is easy to verify that for fixed y, Tρqy(x) = 1+ρ2(qy(x)−1). Using this fact, and plugging x = y
in (6) we get that, using qy(y) = n:

(1 − ǫ)(1 + ρ2(n− 1)) + ǫ =

N
∑

i=1

Tρfi(y)gi(y).

3We can also work directly with the full matrix (3) defined on S
n−1

× S
n−1 and use hypercontractivity of the

Poisson kernel on the sphere [Bec92] instead of the noise operator on the hypercube. The proof is identical and gives
the same bounds. We decided to work on the hypercube to avoid technical issues having to do with convergence of
Fourier series for functions on S

n−1.
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For concreteness we will assume in the rest of the proof that ǫ = 1/3 (it is easy to see that the
proof works with any constant 0 < ǫ < 1). Then if we take ρ =

√

5/n we get:

4 ≤ 2

3

(

1 +
5

n
(n− 1)

)

+
1

3
=

N
∑

i=1

Tρfi(y)gi(y) ∀y ∈ Hn. (7)

Since
∑N

i=1 gi(y) = 1, Equation (7) implies that for all y ∈ Hn there is at least one i ∈ {1, . . . , N}
such that (Tρfi)(y) ≥ 4. We now invoke hypercontractivity to show that the functions Tρfi must
be highly concentrated around their mean E[Tρfi] = E[fi] = 1, provided fi is not too “spiked” to
start with. This is the content of the next lemma, which is key to our proof:

Lemma 1. Assume f : Hn → R with f ≥ 0 such that E[f ] = 1 and max f ≤ e
√
n. Assume

ρ =
√

5/n. Then
µ{x ∈ Hn : (Tρf)(x) ≥ 4} ≤ exp(−c

√
n)

for some absolute constant c > 0.

Proof. For any choice of p ≥ 1 and q = 1 + ρ−2(p− 1) we have, by Markov’s inequality:

µ{x ∈ Hn : (Tρf)(x) ≥ t} = µ{x ∈ Hn : (Tρf)(x)q ≥ tq} ≤ E[(Tρf)q]

tq
≤ ‖f‖qp

tq
.

Let M = max f . Note that

‖f‖p = (E[f(x)p])1/p ≤ (Mp−1E[f ])1/p ≤ M (p−1)/p ≤ Mp−1.

Putting this in the previous inequality gives us

µ{x : (Tρf)(x) ≥ t} ≤ M q(p−1)

tq
.

We take p = 1 + 1
logM so that q = 1 + 1

5
n

logM . With this choice we have Mp−1 = exp(1) so that

µ{x : (Tρf)(x) ≥ t} ≤
(e

t

)1+ n
5 logM

.

Using the fact that logM =
√
n and e/t = e/4 < 1 we get the desired result.

If all our functions fi satisfy max fi ≤ e
√
n then the previous lemma concludes the argument.

Indeed, from (7) we know that for each y ∈ Hn there is at least i such that Tρfi(y) ≥ 4. But since
for all i, µ{y : Tρfi ≥ 4} ≤ exp(−c

√
n) it must be that we have at least exp(c

√
n) functions fi.

The rest of the proof is to deal with the case where some of the functions have a large maximum,
larger than exp(

√
n). In this case the idea is to go back to the identity (5) and to note that, since

fi, gi ≥ 0 it must be that ‖fi‖∞‖gi‖∞ ≤ n for all i = 1, . . . , N . It thus follows that if ‖fi‖∞ is large,
then ‖gi‖∞ is small and as such the weight of the i’th function in (7) is “negligible”. We make this
precise now.

Let I = {i ∈ {1, . . . , N} : ‖fi‖∞ ≥ e
√
n}. We rewrite (7) as follows:

∀y ∈ Hn, 4 ≤
∑

i∈I
gi(y)(Tρfi)(y) +

∑

i∈Ic
gi(y)(Tρfi)(y). (8)

6



We can assume that |I| ≤ e
√
n/4, because otherwise there is nothing to show. We will show that

the contribution of the first term in (8) is negligible for most values of y, because ‖gi‖∞ ≤ ne−
√
n

for i ∈ I. Let A = {y ∈ Hn : (Tρfi)(y) ≤ e
√
n/2 ∀i ∈ I}. For any y ∈ A we have

∑

i∈I
gi(y)(Tρfi)(y) ≤ ne−

√
ne

√
n/2e

√
n/4 ≤ 1

for large enough n. So for all y ∈ A we have
∑

i∈Ic
gi(y)(Tρfi)(y) ≥ 4 − 1 = 3.

Using the concentration lemma (Lemma 1, where we use t = 3 > e in the proof instead of t = 4)
we know that for i ∈ Ic, µ{y : Tρfi(y) ≥ 3} ≤ exp(−c

√
n). Thus this tells us that we must have:

|Ic| ≥ µ(A) exp(c
√
n). (9)

It remains to evaluate µ(A). This can be done by a simple application of Markov’s inequality.
We know that for any i, µ{Tρfi ≥ e

√
n/2} ≤ e−

√
n/2 thus by the union bound we get µ(A) ≥

1 − |I|e−
√
n/2. Combining with (9)

|Ic| ≥ (1 − |I|e−
√
n/2) exp(c

√
n).

This yields |I|e−
√
n/2 + |Ic| exp(−c

√
n) ≥ 1 and so this shows that we must have |I| + |Ic| ≥ eC

√
n

where C > 0 is an absolute positive constant. This completes the proof.

4 Proof of Theorem 2

Before starting the proof, we need to recall some preliminary facts about the Gaussian width.

Preliminaries Since the Gaussian width is translation invariant, it will be more convenient
to work with C = D − 1

nIn = {X − 1
nIn : X � 0,Tr(X) = 1} which lives in the space Sn

0

of n × n symmetric matrices of trace zero. We endow this space with the trace inner product
〈A,B〉 = Tr(AB) and we call N0 the standard Gaussian distribution associated to this inner
product. A matrix G ∼ N0 can also be defined as G = 1√

2
(A − TrA

n In) where A ∼ GOE(n), the

Gaussian Orthogonal Ensemble. Note that if G ∼ N0 then the off-diagonal entries Gij for i < j
are independent and follow the distribution 1√

2
N(0, 1).

The Gaussian width of C is easily computed by known results on the spectral norm of random
matrices. Indeed we have:

wG(C) = E
G∼N0

[

max
x∈Sn−1

〈

G,xxT − 1

n
In

〉]

= E
G∼N0

[λmax(G)] ≤
√

2n.

We will also need the following result on the concentration of the support function of a convex
set around its mean. It can be proved using standard Gaussian concentration results. The proof is
given later.

Lemma 2. Assume K ⊂ R
d is a convex set with Gaussian width wG(K). Then

Pr
g∼N(0,Id)

[

max
x∈K

〈g, x〉 ≤ (1 + α)wG(K)

]

≥ 1 − exp(−α2/(4π)). (10)

We are now ready to prove Theorem 2. Assume P is a polytope such that C ⊂ P and wG(P ) ≤
2wG(C) ≤ 2

√
2n ≤ 3

√
n. We will show that the extension complexity of P is at least exp(cn1/3)

for some absolute constant c > 0.
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Slack matrix The upper bound on wG(P ) allows us to generate valid inequalities for P . Indeed
with large probability on G ∼ N0 we know that maxX∈P 〈G,X〉 ≤ (1 + α)wG(P ). Also since we
know that C ⊂ P this allows us to construct a submatrix of the slack matrix of P . More precisely,
define the following event:

G =

{

G ∈ Sn
0 : −(1 + α)wG(P ) ≤ min

X∈P
〈G,X〉 and max

X∈P
〈G,X〉 ≤ (1 + α)wG(P )

}

. (11)

For large enough α > 0, Lemma 2 tells us that G has positive probability when G ∼ N0. If we fix
α = 4 for concreteness (for which Pr[G] > 0), and recall that wG(P ) ≤ 3

√
n we get that for any

G ∈ G, 〈G,X〉 + 15
√
n ≥ 〈G,X〉 + (1 + α)wG(P ) ≥ 0 is a valid inequality for X ∈ P . Since by

assumption C ⊂ P then the (infinite) matrix

(G,x) ∈ G× Sn−1 7→
〈

G,xxT − 1

n
In

〉

+ 15
√
n (12)

is a submatrix of the slack matrix of P . By Yannakakis theorem, it follows that the extension
complexity of P is at least the nonnegative rank of the matrix (12). For the proof, it will be
enough for us to consider x ∈ 1√

n
{−1, 1}n. Also note that since Tr(G) = 0 for G ∈ G then

〈

G,xxT − 1
n

〉

= xTGx. The rest of the proof will thus be devoted to proving a lower bound on the
nonnegative rank of the matrix:

S(G,x) =
1

15n
√
n
xTGx + 1 (G ∈ G, x ∈ Hn). (13)

Nonnegative rank of S Consider a nonnegative factorization of S of size N :

S(G,x) =

N
∑

i=1

gi(G)fi(x) ∀G ∈ G, x ∈ Hn (14)

where gi, fi ≥ 0. Since Ex∈Hn [S(G,x)] = 1 for all G ∈ Sn
0 , we can normalize the fi and gi so that

E[fi] = 1 and
∑N

i=1 gi ≡ 1.
For any G ∈ Sn

0 and x ∈ Hn, let qG(x) = xTGx = 2
∑

i<j Gijxixj . The inner product of any
two functions f, g : Hn → R is defined as 〈f, g〉 = Ex∈Hn [f(x)g(x)]. If we take the inner product of
Equation (14) with qG we get (using the definition of S(G,x) in (13)):

1

15n
√
n
‖qG‖22 =

N
∑

i=1

gi(G)〈fi, qG〉 ∀G ∈ G. (15)

We then take the expectation with respect to G ∼ N0|G to get:

1

15n
√
n

E
G∼N0|G

‖qG‖22 = E
G∼N0|G

[

N
∑

i=1

gi(G) 〈fi, qG〉
]

. (16)

We now analyze the left-hand and right-hand sides of Equation (16).

• Left-hand side of (16): For any fixed G ∈ Sn
0 we have ‖qG‖22 = 4

∑

i<j G
2
ij . If G ∼ N0 (without

conditioning on G), then each Gij ∼ 1√
2
N(0, 1) and so we get EG∼N0

‖qG‖22 = 4
(n
2

)

1
2 =

n(n − 1). Now since G is an event that has positive constant probability, and since ‖qG‖22

8



concentrates around its mean (by standard concentration results for the squared Euclidean
norm of Gaussian vectors), we know that we can assume EG∼N0|G[‖qG‖22] ≥ cn(n−1) for some
constant 0 < c < 1, at the expense of replacing G with the event G∩{G : ‖qG‖22 ≥ cn(n− 1)}
whose probability can still be bounded below by a positive constant. With this, the left-hand
side of (16) is ≥ 1

15n
√
n
cn(n− 1) ≥ c′

√
n where c, c′ are positive constants.

• Right-hand side of (16): Just like in the proof of Theorem 1, we will need to separately
consider functions fi with large ‖ · ‖∞ norms from others. Let M > 0 be a parameter to be
fixed later and let I = {i ∈ {1, . . . , N} : ‖fi‖∞ ≥ M}. From the nonnegative factorization
(14) we have, for any (G,x) ∈ G ×Hn, gi(G)fi(x) ≤ S(G,x) ≤ 2 which gives gi(G) ≤ 2/M
for all i ∈ I and G ∈ G. Thus for i ∈ I and any G ∈ G we have:

gi(G) 〈fi, qG〉 ≤
2

M
E[fi] max

x∈Hn

qG(x) ≤ 2

M
15
√
n

where in the last inequality we used the fact that E[fi] = 1 and maxx∈Hn qG(x) ≤ 15
√
n from

the definition G ∈ G in Equation (11). We can upper bound the RHS of (16) as follows:

E
G∼N0|G

[

N
∑

i=1

gi(G) 〈fi, qG〉
]

≤
∑

i∈I

2

M
15
√
n + E

G∼N0|G

[

∑

i∈Ic
gi(G) 〈fi, qG〉

]

≤ 30

M

√
nN + E

G∼N0|G

[

max
i∈Ic

|〈fi, qG〉|
]

≤ 30

M

√
nN +

1

Pr[G]
E

G∼N0

[

max
i∈Ic

|〈fi, qG〉|
]

,

where in the second line we used the fact that gi(G) ≥ 0 and
∑

i∈Ic gi(G) ≤ 1. For any
function f : Hn → R, the random variable 〈fi, qG〉, where G ∼ N0, is a centered Gaussian
and its variance is given by

E
G

[(〈f, qG〉)2] = 4
∑

i<j

E
G

[G2
ij ]〈f, χij〉2 =

1

2

∑

i<j

〈f, χij〉2 =
1

2
‖proj2 f‖22

where we used the notation χij(x) = xixj and where proj2 f is the homogeneous degree 2
component in the Fourier expansion of f . It is a well-known fact that if X1, . . . ,Xk are
centered Gaussian random variables with variance at most σ2 then E[maxi=1,...,k |Xi|] ≤√

2 log k. Using this we get that the RHS of (16) is at most:

30

M

√
nN +

1

Pr[G]

1√
2

(

max
i∈Ic

‖proj2 fi‖2
)

√

2 logN. (17)

It remains to evaluate ‖proj2 fi‖2 for i ∈ Ic. This is where we will use hypercontractivity
and use the fact that ‖fi‖∞ ≤ M for i ∈ Ic. The following lemma appears in [KR11, Lemma
2.3] and we include the proof below for convenience.

Lemma 3. Assume f : Hn → R satisfies f ≥ 0, and E[f ] = 1. Assume furthermore that
max f ≤ M . Then ‖proj2 f‖2 ≤ e log(M).

We can use this lemma to upper bound (17) by:

30

M

√
nN +

1

Pr[G]

1√
2
e log(M)

√

2 logN. (18)
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To finish the proof we put together the lower and upper bounds above to get, recalling that Pr[G]
is a positive constant:

c
√
n ≤ 30

M

√
nN + c′

1√
2
e log(M)

√

2 logN.

If we take M = 30
c/2N then the first term on the RHS is equal to (c/2)

√
n. This yields:

(c/2)
√
n ≤ c′′ log(N)

√

log(N)

which gives N ≥ exp(cn1/3) as desired.
To finish it remains to prove Lemma 3 and Lemma 2:

Proof of Lemma 3. If f has Fourier expansion f = f0 + f1 + f2 + · · · + fn then

‖proj2 f‖22 =
1

ρ4
(ρ2‖f2‖2)2 ≤ 1

ρ4

∑

k

ρ2k‖fk‖22 =
1

ρ4
‖Tρf‖22.

Choose ρ =
√
p− 1 with 1 ≤ p ≤ 2 so that ‖Tρf‖2 ≤ ‖f‖p by hypercontractivity. Then we get:

‖proj2 f‖2 ≤
1

p− 1
‖f‖p.

We have ‖f‖p = (E[fp])1/p ≤ M (p−1)/p ≤ Mp−1 where we used the fact that f ≥ 0 and E[f ] = 1.
This gives ‖proj2 f‖2 ≤ 1

p−1M
p−1. Choosing p = 1 + 1

logM gives us ‖proj2 f‖2 ≤ e logM .

Proof of Lemma 2. We can assume without loss of generality that the origin is in the interior of K.
Let hK(u) = maxx∈K〈u, x〉 = ‖u‖K◦ be the support function of K. The function hK is L-Lipschitz
with L =

√
2πwG(K). Indeed, by [Ver18, Proposition 7.5.2], K ⊆ B(0,

√
2πwG(K)) where B(0, R)

is the Euclidean ball centered at the origin with radius R. It thus follows that B(0, 1
L) ⊂ K◦. Thus

for any u, v, |hK(u) − hK(v)| = |‖u‖K◦ − ‖v‖K◦ | ≤ ‖u− v‖K◦ ≤ L‖u− v‖2 as needed.
Gaussian concentration tells us that if f : R

d → R is L-Lipschitz then Prg∼N(0,Id)[f(g) ≥
E f + t] ≤ exp

(

− t2

2L2

)

, see e.g., [AS17a, Theorem 5.25]. We apply this result with f = hK and

t = αwG(K) which gives Pr[hK(g) ≥ (1 + α)wG(K)] ≤ exp(−−α2

4π ) as desired.
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