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1. Introduction We consider the nonconvex constrained optimization problem

minimize
x

f(x)

s.t. g(x)≤ 0

x∈K,

(P)

where K ⊆Rn is a nonempty closed and convex set, and f :Rn→R and g :Rn→Rm are C1,1 (i.e.,

continuously differentiable with locally Lipschitz gradients) functions on an open set containing K.

Penalty functions (differentiable or nondifferentiable, exact or sequential) are part of the folklore in

optimization and have been widely used in analyzing optimality conditions, stability and sensitivity

properties and in developing solution methods. In this paper we put forward a new use of penalty
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functions in the design of algorithms for the solution of (P). In particular, we consider the classical
nondifferentiable penalty function

W (x;ε), f(x)+
1

ε
max

i
{gi(x)+},

where α+ ,max{0, α} and ε is a positive penalty parameter. We propose a novel use of W (x;ε)
in that, contrary to usual penalty algorithms, the penalty function only enters in the theoretical
analysis of convergence while the algorithm itself is penalty-free, whence the term ghost penalty.
We establish (subsequential) convergence to “generalized stationary points" under essentially no
assumptions beyond the C1,1 requirement on the problem functions. In particular, we assume neither
feasibility of the problem nor any constraint qualification and therefore (subsequential) convergence
to generalized stationary point is the natural target for a well-behaved algorithm, see for example
[8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 29, 30, 40, 41, 44, 67]. Once our main convergence result
has been established, the role played by further classical assumptions, like feasibility or constraint
qualifications, for example, is easily understood and can be taken into account in a straightforward
way.

Our framework is of a generalized Sequential Quadratic Programming (SQP)-type. At each itera-
tion xν we generate a search direction d(xν) by solving a strongly convex optimization subproblem
constructed along the lines discussed in the seminal papers [11, 13] and also taking into account the
developments in [31, 57]. The direction-finding subproblem reads as follows:

minimize
d

f̃(d;xν) s.t. g̃(d;xν)≤ κ(xν) e, ‖d‖∞ ≤ β, d∈K −xν , (1)

where f̃(•;xν) and g̃i(•;x
ν) are strongly convex and convex approximations of f and g, respectively,

κ(xν) ∈R is nonnegative and defined to make the subproblem feasible, β is a user-chosen positive
constant, and e ∈Rm is the vector with all components being one. The classical SQP subproblem
is a particular instance of (1), when g̃ is just a linearization of g and f̃ a positive definite quadratic
approximation of f . Our more general approach leaves room for much flexibility in tailoring the
direction finding subproblem to the problem at hand and to exploit any available specific structure
in (P), see Section 3 for more details.

A step γν is then taken along this direction so that

xν+1 = xν + γνd(xν). (2)

We consider both classical Diminishing Stepsize Methods (DSMs) wherein γν is a positive stepsize
such that

lim
ν→∞

γν = 0 and

∞∑

ν=0

γν = ∞, (3)

and stepsize selection rules where γν is chosen in a more problem-tailored way, typically fixed for at
least a subsequence of iterations if not for the entire sequence. Note that, while the algorithms in
this paper generate the search direction in a (generalized) SQP-fashion, they differ markedly from
classical SQP methods in the way they select stepsizes. Indeed, SQP methods traditionally have
adopted effective globalization procedures based e.g. on line-search or trust-region strategies. Here,
instead, we mostly study different techniques that may be useful, for example, in very large-scale
or distributed settings and that, in addition, allow us to perform an iteration complexity analysis.
Given the effectiveness of the SQP approach in handling nonconvex constraints, our results hopefully
provide an alternative to expand the applicability of SQP-like methods.

It may be interesting to mention at this juncture the two papers [2] and [9] where, in the context
of an extended SQP-like scheme, a stepsize of one is always taken, thus also foregoing line-search,
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trust-region or other standard globalization techniques. The possibility to use a fixed (large) stepsize
derives from the fact that the methods in [2] and [9] are feasible methods and the surrogate for
the objective function is always an upper convex approximation; in fact, the algorithms analyzed
in these two interesting works belong to the class of SQP-type majorization-minimization schemes.
The essential ingredient in developing such methods is the ability to build approximations that
majorize both the constraints and the objective function; we will discuss the consequences of this
setting in the context of our scheme in Sections 5 and 6.

Some other related papers in the contemporary literature include [1, 15, 34, 59], where penalty
algorithms are analyzed. The methods discussed in these works aim at minimizing directly the
penalty function by resorting to composite optimization approaches; this results in a double-loop
structure whereby the penalty function is (approximatively) minimized for a certain value of the
penalty parameter, and then the penalty parameter is possibly updated. Although there are some
similarities in the analysis, the algorithms presented in our paper rely on a pure “SQP-like” sub-
problem and penalty parameters enter only in the theoretical analysis, and not in the subproblem
definition.

Based on our ghost penalty approach, our main contributions are
(a) the first (subsequential) convergence result for a wide class of DSMs for general nonconvex

constrained optimization problems;
(b) iteration complexity results for some suitable choices of the stepsize γν leading, among other

things, to the first iteration complexity analysis for SQP-type methods in a general setting.

The results related to (a) considerably widen the scope of applicability of DSMs. DSMs are part
of the core techniques in optimization and their advantages and disadvantages are well known,
see for example [6, 50, 58]. However, DSMs are not yet fully understood when it comes to non-
convex problems. Indeed, the very recent paper [24] is the first study to establish convergence
results for DSMs applied to unconstrained, nonsmooth, and nonconvex problems. The results in
the present paper, therefore, close a surprising gap in the literature, since DSMs have never been
proved to lead to convergence when addressing problems with nonconvex constraints except in
some specialized settings where feasibility of the iterates can be maintained throughout the opti-
mization process and constraint qualifications are assumed [31, 55]. We show that every limit
point of the sequence {xν} produced according to (2) and (3) is a generalized stationary solu-
tion for (P). By generalized stationary, we intend a point that can be: an infeasible stationary
solution of the violation-of-the-constraint problem associated to (P), a Fritz-John or a KKT point
of (P). As mentioned above, this is the natural target of an algorithm for constrained optimiza-
tion when neither blanket assumptions about feasibility of (P) are made, nor constraint qualifi-
cations are assumed to hold. Many consider DSMs a “necessary evil" and nevertheless they are
currently used in many settings, for example in parallel and distributed optimization, in stochas-
tic optimization, in multi-agent settings, in incremental methods, and whenever the computation
of the objective function is very expensive or the problem is affected by noise, see for example
[5, 6, 7, 10, 21, 22, 23, 24, 25, 26, 31, 33, 35, 38, 45, 46, 49, 50, 55, 56, 57, 63, 65, 68]. In some cases
it might be hoped that soon more effective alternatives will be found, in other cases alternatives
are harder to anticipate. In any case, as DSMs evolve to deal with new classes of problems of con-
temporary interest, the need to tackle nonconvex constraints and to relax the conditions needed to
analyze convergence emerges. The developments in this paper, dealing with a standard nonconvex
optimization problem, are a first step in this direction and will hopefully pave the way for further
advancements in the more challenging settings mentioned above.

Results indicated in (b) add to a thus-far sparse, but thriving literature that just recently began
appearing on the topic of complexity analysis for nonconvex optimization problems. Disregarding
classical results on the gradient method, see e.g. [47], this chapter was opened by the largely ignored
Vavasis’ paper [64], but gained momentum only with Nesterov and Polyak’s work [48] on a cubic
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regularization method for the unconstrained minimization of a nonconvex, smooth function. An
excellent review of results in this field is contained in [18], to which we refer the interested reader for
a broader view on the subject. Here we only discuss results on algorithms for nonconvex, inequality
constrained problems aimed at locating generalized stationary points using first-order information,
similarly to what we do in the present paper.

By using our ghost penalty approach we are able to establish that O(δ−4) iterations are needed
at worst to find a δ−approximate generalized stationary point, see Definition 3; this definition
of δ−approximate generalized stationarity relaxes the notion of an exact generalized stationary
point and parallels similar developments in [8, 17, 18, 19]. In line with what discussed above, we
remark that our notion of (approximate) stationarity is naturally broader than the more standard
(approximate) KKT conditions. The bound of O(δ−4) can be reduced to O(δ−3) if a feasible point is
known in advance and to O(δ−2) if some further conditions are met (see Section 5 for details). As far
as we are aware of, these are the first iteration complexity results for SQP-type methods in a general
setting, i.e. without assuming, for example, feasibility of iterates, see the discussion about [2] and [9]
below. Indeed, with the exception [15], all other results for general nonconvex, constrained problems
obtained so far in the literature are based on Phase I - Phase II type methods wherein an almost
feasible point is first sought and then a second phase is started. More specifically, in [15] a penalty
approach is shown to take either O(δ−2) or O(δ−5) iterations to reach an approximate generalized
stationary point, depending on the behavior of the penalty parameter during the minimization
process. Cartis, Gould and Toint also describe in [16] a Phase I - Phase II cubic regularization
method, possibly using Hessian information, for the solution of equality constrained problems and
show that the number of iterations needed to reach an approximate generalized stationary point
varies between O(δ−3/2) and O(δ−2) depending on certain algorithmic choices. Building on the
algorithm in [16], and using a different definition of approximate generalized stationary point, Birgin
et al. show in [8] that a Phase I - Phase II algorithm takes between O(δ−3) and O(δ−5) iterations
to declare a point approximate generalized stationary, according to the choice of an algorithmic
parameter. Finally, Cartis, Gould, and Toint establish in [17] a bound of O(δ−2), once again for
a Phase I - Phase II method and using first-order information only. A detailed comparison of all
these results is not straightforward, because of the many subtleties involved, and we defer a more
detailed discussion on this issue to Remark 5 in Section 5. We conclude mentioning, once again,
the SQP-like majorization-minimization methods proposed in [2] and [9]. Differently to what we
propose here, these two papers discuss only feasible-type methods and assume standard constraint
qualifications. In this framework, interesting results are obtained concerning the convergence rate
to zero of the distance of the point generated by the method to a KKT solution (as opposed to the
more algorithmically oriented results in the papers discussed above, where bounds are obtained on
the number of iterations needed to satisfy a given stopping criterion). Note that the distinction of
iteration complexity and convergence rate is a subtle and sometimes blurred one. In a nutshell, the
difference is that when we talk about complexity we are assuming that the constants appearing in
the complexity bound are conceptually known a priori (e.g. Lipschitz constants), while in the case
of a convergence rate the bounds include constants that are possibly unknown in advance (e.g. the
diameter of the region that contains all iterates). In [2], linear convergence of the sequence of iterates
to the optimal solution is obtained for strongly convex problems. The more general results in [9]
dispense with convexity by assuming the Kurdyka-Łojasiewicz property and obtaining a convergence
rate that depends on the Łojasiewicz exponent.

The paper is organized as follows. In Section 2 we introduce some mathematical preliminaries
and, in particular, the appropriate definition of a generalized stationary point for nonconvex, con-
strained problems. In Section 3 we discuss in detail the direction finding subproblem and introduce
some assumptions that will be used to establish convergence. In Section 4 we show convergence
to generalized stationary points for DSMs, while in Section 5 we perform the iteration complexity
analysis. We finish in Section 6 with a discussion on the boundedness of the sequence of iterates.
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2. Generalized Stationary Points We consider Problem (P), under the blanket assumptions
indicated in the Introduction, and denote the feasible set of (P) by

X , {d∈Rn : g(x)≤ 0, d∈K} .

Note that we do not assume that problem (P) is feasible, let alone that it has a solution. Therefore,
we aim at deriving convergence results for both feasible and infeasible problems, in some suitable
sense.

A general constrained problem (P) can be viewed as a combination of two problems: (i) the
feasibility one, i.e., the problem of finding a feasible point; and (ii) the problem of finding a local
minimum point of the objective function over the feasible set. Even just the former problem is a hard
one, since it essentially requires computing a global minimum of the generally nonconvex function
expressing the violation of the constraints. Consistently, we design our algorithm to converge to
stationary solutions in a generalized sense, that is to points that either are stationary for (P) or are
infeasible and stationary for the following violation-of-the-constraints optimization problem:

minimize
x

max
i
{gi(x)+},

x∈K
(4)

where, we recall, α+ ,max{0, α} for all α ∈R. Let

M1(x),
{
ξ | ξ ∈NRm

−
(g(x)), 0 ∈∇f(x)+∇g(x)ξ+NK(x)

}

and
M0(x),

{
ξ | ξ ∈NRm

−
(g(x)−max

i
{gi(x)+}e), 0∈∇g(x)ξ+NK(x)

}
,

where NRm
−
(y) and NK(x) are the classical normal cones to the convex sets Rm

− and K at y and
x, respectively, ∇f is the gradient of f and ∇g is the transposed Jacobian of g. If g(x) ≤ 0, the
condition ξ ∈NRm

−
(g(x)) can be more familiarly rewritten as ξi ≥ 0, ξigi(x) = 0 for all i (a similar

reasoning applies to the normal cone expression in the definition of M0(x)). We note explicitly that
if x is not feasible, the set M1(x) is empty. Let x̂ be a local minimum point of (P), then it is well-
known that either M1(x̂) 6= ∅, (the point is a KKT point) or M0(x̂) 6= {0} (the point is a Fritz-John
point), or both. On the contrary, it is classical to show that if x̂∈K is not feasible, i.e. if gi(x̂)> 0
for at least one index i ∈ {1, . . . ,m}, in view of the regularity of the functions involved, then the
stationarity condition for problem (4),

0 ∈ ∂max
i
{gi(x̂)+}+NK(x̂), (5)

is equivalent to M0(x̂) 6= {0}. Hence, the (generalized) stationarity criteria for the original problem
(P) can naturally be specified by using the sets M1 and M0, as detailed in Definition 1.

Definition 1. A point x̂∈K is, for problem (P),
• a KKT solution if g(x̂)≤ 0 and M1(x̂) 6= ∅;
• a Fritz-John (FJ) solution if g(x̂)≤ 0 and M0(x̂) 6= {0};
• an External Stationary (ES) solution if gi(x̂)> 0 for some i ∈ {1, . . . ,m} and M0(x̂) 6= {0}.

We call x̂∈K a generalized stationary solution of (P) if any of these cases occurs.
Since we did not make any regularity or feasibility assumptions on problem (P), finding a gener-

alized stationary solution in the sense just described is the appropriate requirement for a solution
algorithm; we show that our method does converge to generalized stationary points as defined above.
It also turns out that, under classical regularity conditions, our algorithm actually converges to
KKT points. The constraint qualification (CQ) we use is the Mangasarian-Fromovitz one, suitably
extended to (possibly) infeasible points.
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Definition 2. We say that the extended Mangasarian-Fromovitz Constraint Qualification
(eMFCQ) holds at x̂∈K if

M0(x̂) = {0}.

If x̂ is feasible and K = Rn, this condition reduces to the classical MFCQ and in turn, whenever
the constraints are convex, it is well-known that the MFCQ is equivalent to Slater’s CQ, i.e. to the
existence of a point x̃ such that g(x̃) < 0. The eMFCQ is rather standard and its definition goes
back at least to [27, 28], having its roots in [52]; since its introduction it has been used rather often,
especially in the analysis of penalty and SQP algorithms, because it arises quite naturally in these
contexts. By using [20, Motzkin’s theorem of alternative 2.5.2], we see that the eMFCQ holds at
x̂∈K if and only if

∃ d̂ ∈ TK(x̂) : ∇gi(x̂)
T d̂ < 0, ∀i : gi(x̂) =max

j
{gj(x̂)+}. (6)

Since K is convex, simple continuity arguments show that the latter condition is equivalent to

∃ x̃ ∈ K : ∇gi(x̂)
T (x̃− x̂)< 0, ∀i : gi(x̂) =max

j
{gj(x̂)+}. (7)

We state below a result that extends a standard property of the MFCQ for feasible points.

Proposition 1. If the eMFCQ holds at x̂ ∈K, then there exists a neighborhood V of x̂ such
that, for every x∈K ∩V, the eMFCQ is satisfied.

Proof. If x̂∈K is feasible, this is a classical result. If x̂∈K is not feasible, the condition M0(x̂) =
{0} implies that x̂ is not a stationary point for the feasibility problem (4), i.e. 0 6∈ ∂maxi{gi(x̂)+}+
NK(x̂). The assertion then easily follows from the outer semicontinuity and local boundedness of the
subdifferential mapping ∂maxi{gi(•)+} and by (see [54, Proposition 6.6]) the outer semicontinuity
relative to K of the set valued mapping NK (see [54] for the definition of outer semicontinuity). �

3. Direction Finding Subproblem At each iteration of our algorithm we move from the
current iteration xν along the direction d(xν) with a stepsize γν , see (2). While the stepsize is chosen
according to several rules to be discussed in the following sections, the direction d(xν) is the solution
of the strongly convex subproblem (1), briefly described in the Introduction, that we repeat here
for the reader’s convenience.

Given a (base) point x∈K (which will actually be the current iterate xν in the algorithm), d(x)
is the unique solution of the following strongly convex optimization problem:

minimize
d

f̃(d;x)

s.t. g̃(d;x)≤ κ(x)e

‖d‖∞ ≤ β,

d∈K −x

(Px)

where e∈Rm is the vector with all components being one and β is a user-chosen positive constant.
Moreover, f̃ is a strongly convex surrogate of the original objective function f , while g̃ is a convex
surrogate of the original constraints g (see Assumption A below for the conditions these surrogates
must obey). Finally, following [11], the quantity κ(x) in the surrogate constraints, which serves
to suitably enlarge the feasible set of the subproblem in order to ensure it is always nonempty, is
defined, for every x∈K, as follows:

κ(x), (1−λ)max
i
{gi(x)+}+λmin

d

{
max

i
{g̃i(d;x)+} | ‖d‖∞ ≤ ρ, d∈K −x

}
, (8)



Author: Article Short Title

Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 7

with λ ∈ (0,1) and ρ ∈ (0, β). Note that (8) requires the computation of the optimal value of the
convex problem

min
d

{
max

i
{g̃i(d;x)+} | ‖d‖∞ ≤ ρ, d∈K −x

}
(9)

that always has an optimal solution because the feasible set is nonempty and compact. Note also
that if x is feasible for (P), κ(x) = 0. The additional constraint ‖d‖∞ ≤ β allows us to avoid issues
of ever-increasing search directions. Overall, in the sequel we denote by X̃ (x) and d(x) the convex
feasible set and the unique solution of subproblem (Px), respectively, i.e.

X̃ (x) , {d∈Rn : g̃(d;x)≤ κ(x) e, ‖d‖∞ ≤ β, d∈K −x}

d(x) , argmind{f̃(d;x) |d∈ X̃ (x)},

and we equivalently refer to constraint ‖d‖∞ ≤ β as d ∈ βBn
∞, where Bn

∞ is the closed unit ball in
Rn associated with the infinity-norm.

For our approach to be legitimate and lead to useful convergence results, we obviously need to
make assumptions on the surrogate functions f̃ and g̃.

Assumption A

Let Od and Ox be open neighborhoods of βBn
∞ and K, respectively, and f̃ : Od ×Ox→ R and g̃i :

Rn × Ox → R for every i = 1, . . . ,m be continuously differentiable on Od with respect to the first
argument and such that
A1) f̃(•;x) is a strongly convex function on Od for every x ∈K with modulus of strong convexity
c > 0 independent of x;
A2) f̃(•;•) is continuous on Od×Ox;
A3) ∇1f̃(•;•) is continuous Od×Ox;
A4) ∇1f̃(0;x) =∇f(x) for every x∈K;
A5) g̃i(•;x) is a convex function on Od for every x∈K;
A6) g̃i(•;•) is continuous on Rn×Ox;
A7) g̃i(0;x) = gi(x) for every x∈K;
A8) ∇1g̃i(•;•) is continuous on Od×Ox;
A9) ∇1g̃i(0;x) =∇gi(x), for every x∈K;
where ∇1f̃(u;x) and ∇1g̃i(u;x) denote the partial gradient of f̃(•;x) and g̃i(•;x) evaluated at u.
These conditions are easily satisfied in practice and have been employed in many recent papers.
While we refer the reader to [31, 57] as good sources of examples, we nevertheless pause to consider
some possible choices for the surrogate functions f̃ and g̃ and to make a few general considerations.

3.1. On the choice of f̃ and g̃ The direction finding subproblem (Px) is a direct generalization
of traditional SQP subproblems and, in particular, of the subproblems considered in [11]. The most
classical choice for f̃ and g̃ are

f̃(d;x),∇f(x)Td+
1

2
dTH(x)d, g̃(d;x), g(x)+∇g(x)Td, (10)

where H(x) is a positive definite symmetric matrix. With this choice, Assumption A can be easily
satisfied provided that, classically, the smallest eigenvalue of the positive definite matrix H(x) is
uniformly bounded away from zero. Note that if we use the surrogates (10) in (Px), and assuming
K =Rn, (Px) becomes the more classical SQP-type subproblem

minimize
d

f(x)+∇f(x)Td+ 1
2
dTH(x)d

s.t. g(x)+∇g(x)Td≤ κ(x)

‖d‖∞ ≤ β.
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Regarding κ, we remark that, with the classical choice given in (10), problem (9) in its definition
reduces to a linear program if K is polyhedral, and thus can be efficiently solved.

While the discussion above shows that we can cover classical SQP schemes by using lin-
ear/quadratic approximations, it is interesting to at least hint at how the flexibility allowed by
Assumption A can be exploited to define better approximations to the original problem (P). Sup-
pose for example that f(x) = f1(x)+f2(x) with both functions C1,1, but with f1 convex and f2 not
necessarily so. Instead of approximating the whole function with a quadratic model, we could well
“preserve” the convex part and only approximate the nonconvex one, therefore setting

f̃(d;x) = f1(x+ d)+ f2(x)+∇f2(x)
Td+

1

2
dTH(x)d

with H(x) as before. It is clear that this f̃ satisfies Assumption A and is presumably a better
approximation to f than ∇f(x)Td+ 1

2
dTH(x)d considered above.

As a further example, assume that f is the product of two functions f1(x)f2(x) with f1 and f2
convex and (for simplicity of presentation) positive. This is a rather frequent case in applications,
see for example [56]. Since we have ∇f(x) = f2(x)∇f1(x)+ f1(x)∇f2(x), it seems rather natural to
set

f̃(d;x) = f2(x)f1(x+ d)+ f1(x)f2(x+ d)+
1

2
dTH(x)d,

which, again, should result in a sensibly tailored approximation that preserves part of the structure
of the objective function.

Of course, an underlying assumption of our approach is that subproblem (Px) can be solved
efficiently. We do not insist on this point because it is very dependent on the choice of f̃ and g̃,
which in turn is dictated by the original problem (P). But the use of models that go beyond the
classical quadratic/linear one in constrained optimization is emerging consistently in the literature
since it permits one to exploit any potentially favorable structure in problem (P) and, in any case,
to better tailor the subproblems to the original problem, see for example [4, 31, 39, 57, 61, 62].
This use is also motivated by the possibility to solve efficiently more complex subproblems than the
classical quadratic ones, sometimes even in closed form, and by the desire for faster convergence
behaviors, see e.g. [31, 36, 43, 44, 51, 56, 61] and references therein.

Among all the possible choices for the approximating functions, the case where we take the g̃is to
be Upper Convex Approximations (UCA) of gis is worth to be pointed out. More precisely, suppose
that, in addition to Assumption A, for every x∈K we have

g̃i(d;x) ≥ gi(x+ d), ∀i= 1, . . . ,m, ∀d ∈ K −x. (11)

The main consequence of this choice is that if x∈X , then 0∈ X̃ (x) and, by (11), x+ X̃ (x)⊆X . This
means that if xν ∈X and, according to (2), we set xν+1 = xν +γνd(xν) with γν ∈ (0,1] (a condition
that will always be satisfied by all algorithms considered in this paper), also xν+1 is feasible, i.e.
xν+1 ∈ X . This simple observations has important algorithmic ramifications that will be explored
further in the next three sections. The main issue if one wants to use UCAs is finding suitable
majorants. It turns out this can be done in a host of situations; the interested reader can find a
very rich array of examples in [31, 36, 37, 51, 55, 56, 61]. Here, we just consider two examples.

The simplest case is possibly the one in [2], where a feasible SQP-like approach is developed
that rests on the assumption (among others) that the gi have Lipschitz continuous gradients (with
constant L∇gi) and the descent lemma is used for defining suitable majorants as

g̃i(d;x) = gi(x)+∇gi(x)
Td+

a

2
‖d‖2. (12)
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By taking a ≥ L∇gi , (12) provides an UCA for gi. A second example of a case in which we can
very easily build majorants is when the function has a DC structure. Specifically, suppose that
gi = g+i −g−i , with both g+i and g−i convex. In this case we can build an upper convex approximation
by setting

g̃i(d;x) = g+i (x+ d)− (g−i (x)+∇g
−
i (x)

Td).

3.2. Main properties of (Px) In this section we state the main properties of subproblem
(Px). Starting from feasibility, we remark, as already mentioned, that the term κ(x) plays a key
role in guaranteeing that our subproblems (Px) have a nonempty feasible set X̃ (x). Since κ(x) is
always nonnegative, being the sum of two nonnegative quantities, it restores feasibility by enlarging
(with respect to the SQP choice g̃(d;x)≤ 0) the range of admissible values, see Figure 1. In fact,

Rm
− Rm

− +κBm
∞

Figure 1. From Rm
− to Rm

− + κBm
∞: the enlargement in the feasible region of (Px)

the feasible set of problem (Px), for every x ∈K, is nonempty: choosing d̂ at which the minimum
in the expression of κ(x) is attained, we have

g̃(d̂;x)≤min
d

{
max

i
{g̃i(d;x)+} | ‖d‖∞ ≤ ρ, d∈K −x

}
e=max

i
{g̃i(d̂;x)+}e,

and, in turn,

g̃(d̂;x) = (1−λ)g̃(d̂;x)+λg̃(d̂;x)

≤ [(1−λ)maxi{g̃i(0;x)+}+λmind {maxi{g̃i(d;x)+} | ‖d‖∞ ≤ ρ, d∈K −x}]e= κ(x)e.

In Lemma 1, we establish some preliminary properties concerning the feasible set of problem (Px).

Lemma 1. (i) For every x̂ ∈ K, and for every α > 0 and d ∈ αBn
∞ ∩ (K − x̂), the constraint

qualification

[−NαBn
∞
(d)]∩NK−x̂(d) = {0} (13)

holds and, in turn, NαBn
∞∩(K−x̂)(d) =NαBn

∞
(d)+NK−x̂(d);

(ii) for every α> 0, the set-valued mapping αBn
∞ ∩ (K −•) is continuous on K relative to K;

(iii) letting C , {(d,x) ∈ βBn
∞ × K : d + x ∈ K}, the set-valued mapping NβBn

∞∩(K−•)(•) is outer
semicontinuous on C relative to C.

Proof. (i) Let 0 6= η ∈ [−NαBn
∞
(d)]∩NK−x̂(d). Thanks to the convexity of the sets αBn

∞ and K− x̂,
we have −ηT (v− d)≤ 0 ∀v ∈ αBn

∞ and ηT (y− d)≤ 0 ∀y ∈ (K − x̂). Choosing y = 0 ∈ (K − x̂), one
gets the following contradiction:

0<α max
v
{−ηTv |v ∈Bn

∞} ≤−η
Td≤ 0,

thus proving relation (13). As a consequence, the other claim in (i) follows from [54, Theorem 6.42].
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(ii) The property is due to the continuity (relative to K) of the set-valued mapping K − • at
every x∈K and to the fact that αBn

∞ ∩ (K −x) 6= ∅ for every x∈K.
(iii) Suppose by contradiction that (dν, xν)→

C
(d̄, x̄), ην ∈ NβBn

∞∩(K−xν)(d
ν), ην → η̄ with η̄ /∈

NβBn
∞∩(K−x̄)(d̄). Hence, z̄ ∈ βBn

∞∩(K− x̄) exists such that η̄T (z̄− d̄)> 0. By the inner semicontinuity
relative to K (see [54] for the definition of inner semicontinuity) of βBn

∞∩(K−•) at x̄, zν exists such
that zν→ z̄ and zν ∈ βBn

∞∩ (K−xν). In turn, eventually we get (ην)T (zν−dν)> 0 in contradiction
to the inclusion ην ∈NβBn

∞∩(K−xν)(d
ν). �

The function κ(x) is obviously continuous and, under a very weak additional requirement, also
locally Lipschitz continuous. This result has been shown in [11] whenever g̃ is the linear approxi-
mation in (10) and readily generalizes to the case of the surrogate g̃ we consider here.

Proposition 2. Under Assumption A, κ(•) is continuous on K relative to K. If, in addition,
g̃(•;•) is locally Lipschitz continuous on Od×Ox, then κ(•) is also locally Lipschitz continuous on
K.

Proof. The continuity of κ(•) follows readily from the continuity (relative to K) of the set-valued
mapping ρBn

∞ ∩ (K −•) at every x∈K: this in turn follows from (ii) in Lemma 1 with α= ρ.
The Lipschitz continuity under the additional condition derives from, e.g., [53, Theorem 3.1].

Suffice it to observe that the constraint qualification (13) with α = ρ holds for every x ∈K and
d∈ ρBn

∞∩K−x, and the problem in the definition of κ is solvable for every x in a neighborhood of
K. �

Note that the local Lipschitz continuity of g̃(•;•) is part of Assumption C to be introduced shortly.
The following technical lemma is very useful for the subsequent developments.

Lemma 2. Under Assumption A, the following results hold for any x̂∈K:
(i) if maxi{gi(x̂)+}> 0 and κ(x̂)<maxi{gi(x̂)+}, then, for all ρ∈ (0, β), there exists d∈ int(βBn

∞)∩
rel int(K − x̂) such that g̃(d; x̂)<κ(x̂)e;

(ii) if maxi{gi(x̂)+}> 0 and κ(x̂) =maxi{gi(x̂)+}, then x̂ is an ES point for (P);
(iii) if maxi{gi(x̂)+}= 0, then either x̂ is a FJ point for (P) or, for all ρ ∈ (0, β), there exists d ∈

int(βBn
∞)∩ rel int(K − x̂) such that g̃(d; x̂)< 0.

Proof. (i) Choosing d̂ ∈ argmind {maxi{g̃i(d; x̂)+} | ‖d‖∞ ≤ ρ, d∈K − x̂}, we can infer g̃(d̂; x̂) ≤
mind {maxi{g̃i(d; x̂)+} | ‖d‖∞ ≤ ρ, d∈K − x̂}e, while g̃(d̂; x̂)≤ κ(x̂)e <maxi{gi(x̂)+}e and, thus,

g̃(d̂; x̂) = λg̃(d̂; x̂)+ (1−λ)g̃(d̂; x̂)<κ(x̂)e,

with d̂∈ ρBn
∞ ∩ (K − x̂). The claim follows by continuity since ρ < β.

(ii) Equality κ(x̂) = maxi{gi(x̂)+} holds if and only if d= 0 solves the minimization problem in
the definition of κ and, in turn, M0(x̂) 6= {0} by (13) with α= ρ, A7 and A9.

(iii) With maxi{gi(x̂)+} being equal to zero, we have κ(x̂) = 0 and g(x̂)≤ 0. If M0(x̂) 6= {0}, then,
by definition, x̂ is a FJ point for (P) and the result holds.

Thus, let us suppose M0(x̂) = {0}. For those j ∈ {1, . . . ,m} such that gj(x̂)< 0, we have g̃j(0; x̂) =
gj(x̂)< 0; as for indices k ∈ {1, . . . ,m} with gk(x̂) = 0, by (6), there exists d̂ ∈ TK(x̂) such that

0>∇gk(x̂)
T d̂=∇1g̃k(0; x̂)

T d̂= lim
τ↓0

g̃k(τ d̂; x̂)− g̃k(0; x̂)

τ
.

Thus, there exists a sequence {dν} of feasible directions for K at x̂ such that dν ∈ TK(x̂) and dν→ d̂.
Choosing τ ν sufficiently small, we get x̂+ τ νdν ∈K for every ν and the claim follows by continuity,
observing that g̃i(τ d̂; x̂)< 0 for every i and for any τ sufficiently small. �
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The quantity

θ(x),max
i
{gi(x)+}−κ(x) = λ

(
max

i
{gi(x)+}−min

d

{
max

i
{g̃i(d;x)+} | ‖d‖∞ ≤ ρ, d∈K −x

})

(14)
plays a key role in the previous lemma and in all the subsequent developments. As shown in the
following proposition, θ turns out to be a stationarity measure for the violation-of-the-constraints
problem (4).

Proposition 3. Under Assumption A,
(i) the nonnegative function θ(•) is continuous on K relative to K;
(ii) θ(x̂) = 0 if and only if x̂ is a stationary point for problem (4);
(iii) we have, for every x∈K,

θ(x)≤‖∇g(x)‖∞‖d(x)‖. (15)

Proof. (i) By the definition (8) of κ, κ(x̂)≤maxi{gi(x̂)+} since d= 0 is feasible for the minimiza-
tion problem in (8) and A7 holds. The continuity follows from Proposition 2.

(ii) It is also clear that at any feasible point x̂ for (P), θ(x̂) = 0; of course, every feasible point
for (P) is stationary for problem (4). Consider now an infeasible point x̂ for (P) and suppose that
θ(x̂) = 0. By (ii) in Lemma 2, x̂ turns out to be an ES point for (P). Hence, we are left to show
that if x̂ is an ES point for (P), then θ(x̂) = 0. For x̂ to be ES, it is necessary and sufficient (see
condition (5)) to have M0(x̂) 6= {0} which in turn, by the Motzkin’s alternative theorem (see e.g.
[20, 2.5.2]), holds if and only if

∄d∈ TK(x̂) : ∇gi(x̂)
Td < 0, ∀i∈ I+(x̂), {i : gi(x̂) =max

j
{gj(x̂)+}}. (16)

Suppose by contradiction that θ(x̂)> 0. Then, noting that d ∈K − x̂ implies d ∈ TK(x̂), Lemma 2
(i) states that d ∈ TK(x) exists such that g̃i(d; x̂)< κ(x̂) for all i ∈ I+(x̂). But then, using A5, A7,
and A9, we can write, for every i∈ I+(x̂),

max
i
{gi(x̂)+} > κ(x̂) > g̃i(d; x̂) ≥ g̃i(0; x̂)+∇1g̃i(0; x̂)

T (d− 0) ≥ gi(x̂)+∇gi(x̂)
Td.

Since i∈ I+(x̂), this implies ∇gi(x̂)
Td< 0, contradicting (16).

(iii) Furthermore,

0 ≤ θ(xν) =max
i
{gi(x

ν)+}−κ(xν)
(a)

≤ max
i
{gi(x

ν)+}−max
i
{g̃i(d(x

ν);xν)+}

(b)

≤ max
i
{gi(x

ν)+}−max
i
{(gi(x

ν)+∇gi(x
ν)Td(xν))+}

(c)

≤ max
i
{(gi(x

ν)− gi(x
ν)−∇gi(x

ν)Td(xν))+} ≤ ‖∇g(x
ν)Td(xν)‖∞ ≤‖∇g(x

ν)‖∞‖d(x
ν)‖,

where (a) holds since g̃(d(xν);xν)≤ κ(xν)e, (b) is due to A5, A7 and A9, and (c) follows observing
that max{0, α1}−max{0, α2} ≤max{0, α1−α2} for any α1, α2 ∈R. �

Leveraging Lemma 2 and resorting to standard results in parametric optimization, we can estab-
lish a key continuity property for the solution mapping d(•) of subproblem (Px).

Proposition 4. Under Assumption A, let the eMFCQ hold at x̂∈K for problem (P). Then,
(i) the MFCQ holds at every point of X̃ (x̂) for subproblem (Px̂);
(ii) a neighborhood V of x̂ exists such that, for every point x ∈ K ∩ V, the function d(•) is

continuous relative to K.
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Proof. If the eMFCQ holds at x̂ for problem (P), case (ii) in Lemma 2 cannot occur. On the other
hand, as for both cases (i) and (iii) in Lemma 2, Slater’s constraint qualification holds for X̃ (x̂) and,
since X̃ (x̂) is convex, this proves (i). Thanks to A6 and (ii) in Lemma 1, the set-valued mapping
X̃ (•) = [βBn

∞ ∩ (K − •)]∩ {d∈R
n : g̃(d;•)≤ κ(•)e} is outer semicontinuous at x̂ relative to K by

[3, Theorem 3.1.1], having taken into account that κ(•) is continuous by Proposition 2. Moreover,
X̃ (•), by virtue of the Slater’s constraint qualification, A5, A6 and (ii) in Lemma 1, is also inner
semicontinuous (see [3, Theorem 3.1.6]) at x̂ relative to K. Hence, thanks to A1, the continuity
(relative to K) of d(•), leveraging [3, Theorems 3.1.1 and 4.3.3], follows from [54, Corollary 5.20].
�

To prove some refinements of the convergence results in the next section, we need d(•) to be
not only continuous, but also Hölder continuous on compact sets: for this reason, we introduce
Assumption B.

Assumption B

For any compact set S ⊆K, two positive constants θ and α exist such that

‖d(y)− d(z)‖≤ θ‖y− z‖α, ∀y, z ∈ S.

Since it is not immediately obvious when this condition is satisfied, below we give a set of simple
sufficient conditions on f̃ and g̃ for Assumption B to hold.

Assumption C

C1) ∇1f̃(•;•) is locally Lipschitz continuous on Od×Ox;
C2) each g̃j(•;•) is locally Lipschitz continuous on Od×Ox.

The following proposition, which builds on the results in [66], shows the desired result.

Proposition 5. Under Assumptions A and C, let S ⊆K be compact. Suppose further that the
eMFCQ holds at every x̂∈ S. Then, there exists θ > 0 such that, for every y, z ∈ S,

‖d(y)− d(z)‖≤ θ‖y− z‖
1
2 . (17)

Proof. Preliminarily, observe that by Proposition 2, κ(•) is locally Lipschitz continuous. Further-
more, by Proposition 4 (i), we have that the MFCQ holds at every point in X̃ (x̂) and, in particular
at d(x̂). In turn, the MFCQ at d(x̂)∈ X̃ (x̂), for every x̂∈ S, implies, by [53, Theorem 3.2], that the
set-valued mapping X̃ has the Aubin property relative to S at x̂ for d(x̂) for every x̂ ∈ S (see [54]
for the definition of the Aubin property). Therefore, in view of [66, Theorem 2.1], for every x̂ ∈ S,
there exist θ′ > 0, θ′′ > 0 and a neighborhood V of x̂ such that, for every y, z ∈ V ∩S

‖d(y)− d(z)‖≤ θ′‖y− z‖+ θ′′‖y− z‖
1
2 .

By the previous relation and the compactness of set S, (17) holds. �

Remark 1. Assumptions A and C may look tediously detailed, but this is necessary to correctly
identify the minimal conditions that make our method work. We emphasize that these conditions
are trivially satisfied when one uses as f̃ and g̃ the classical quadratic/linear approximations (10)
of standard SQP methods. Assumption C reinforces some of the requirements in Assumption A; we
refer the reader to [31] for some examples of surrogate g̃s satisfying (Assumption A and) Assumption
C beyond the obvious case of linear approximations.

We conclude this section discussing the KKT conditions for problem (Px). Observe preliminarily
that the constraint ‖d‖∞ ≤ β corresponds to 2n bounds of the type −β ≤ di ≤ β. However, in what
follows we are interested only in the multipliers corresponding to the constraints g̃(d;x) ≤ κ(x)e,
and therefore we find it expedient to write the KKT conditions as

0∈∇1f̃(d(x);x)+∇1g̃(d(x);x)ξ+NβBn
∞∩(K−x)(d(x)),
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with the KKT multipliers ξ satisfying the conditions ξ ≥ 0 and ξT (g̃(d(x);x)−κ(x)e)= 0. We now
establish the local boundedness of these KKT multipliers.

Proposition 6. Under Assumption A, let x̂ belong to K and suppose that d̂ ∈ βBn
∞ ∩ (K − x̂)

exists such that g̃(d̂; x̂) < κ(x̂)e. Then, a neighborhood V of x̂ exists such that, for every point
x ∈K ∩ V, the unique solution d(x) of (Px) is a KKT point for problem (Px) and the set-valued
mapping of the KKT multipliers is locally bounded at x̂ relative to K.

Proof. The condition g̃(d̂; x̂)<κ(x̂)e with d̂∈ βBn
∞∩ (K− x̂) is nothing else but the Slater’s CQ

for problem (Px̂), which obviously implies that the MFCQ holds at the unique solution of problem
(Px̂). The derivation of the result is then rather classical and follows easily from, e.g., [32, Proposition
5.4.3] taking into account Lemma 1 (ii), Propositions 2 and 4, and the outer semicontinuity of
NβBn

∞∩(K−•)(•), see Lemma 1 (iii). �

4. Convergence of DSMs We are now ready to introduce the proposed scheme, as given in
Algorithm 1.

Algorithm 1: DSM Algorithm for (P)

Data: γν ∈ (0,1] such that (3) holds, x0 ∈K, ν←− 0;
repeat

(S.1) if xν is generalized stationary for (P) then
stop and return xν ;

end
(S.2) compute κ(xν) and the solution d(xν) of problem (Pxν );
(S.3) set xν+1 = xν + γνd(xν), ν←− ν+1;

end

The algorithm is always well defined if Assumption A, which guarantees existence and uniqueness
of d(xν), holds. The main (and essentially only) computational burden is given by the computation
of κ(xν) and the solution of the strongly convex subproblem (Pxν ). This difficulty can range from
that necessary to solve an LP and a strongly convex quadratic problem, whenever quadratic/linear
approximations are used, to that of solving two convex optimization problems. Theorem 1 below
establishes the main convergence properties of Algorithm 1. In a nutshell, the theorem shows that,
unless xν is a generalized stationary point, d(xν) is a descent direction for W (xν ;ε) if ε is sufficiently
small. Elaborating on this simple fact we can then show, without ever computing W or actually
determining a value for ε, that the sequence generated eventually lands on a generalized stationary
point. The results in Theorem 1 do not exclude the possibility that Algorithm 1 generates an
unbounded sequence. In Section 6 we discuss the meaning of this possible outcome and, more
importantly, give several conditions under which we can guarantee that the sequence generated by
Algorithm 1 (and also by the two algorithms we introduce in the next section) is bounded.

Theorem 1. Consider the sequence {xν} generated by Algorithm 1 with f̃ and g̃ such that
Assumption A holds. Then, the whole sequence {xν} is contained in K. Furthermore, either the
sequence {xν} is unbounded or the following assertions hold:
(i) at least one limit limit point x̂ of {xν} is generalized stationary for problem (P); in particular,
if the eMFCQ holds at x̂, then x̂ is a KKT point for problem (P);
(ii) if, in addition, the eMFCQ holds at every limit point of {xν}, under Assumption B, every limit
point of {xν} is a KKT solution for problem (P).
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Proof. Since the starting point x0 belongs to the convex set K, the stepsize γν ≤ 1 and, by the
last constraint in (Pxν ), x

ν + d(xν) ∈K for all ν, it is easily seen that all points xν generated by
the algorithm belong to K. We now assume, without loss of generality, that the sequence {xν} is
bounded. Preliminarily, observe that, at each step, the solution d(xν) of subproblem (Pxν ) is also a
KKT point for (Pxν ). In fact, suppose that at a certain iteration ν̄, d(xν̄) does not satisfy the KKT
conditions for (Pxν̄ ). The subproblem is always feasible by construction; let us analyze the three
exhaustive cases considered in Lemma 2. In case (i), Slater’s condition holds for (Pxν̄ ) and d(xν̄) is
a KKT point. In case (ii), xν̄ is an ES point of (P): hence, we would have stopped at step (S.1). In
case (iii), either Slater’s condition holds for (Pxν̄ ) and d(xν̄) is a KKT point, or xν̄ is a FJ point for
(P), in which case we would have stopped at step (S.1).

Thus, d(xν) is a KKT point for (Pxν ) and multipliers {ξν} exist such that ξν ∈NRm
−
(g̃(d(xν);xν)−

κ(xν)e) and

0 ∈∇1f̃(d(x
ν);xν)+∇1g̃(d(x

ν);xν)ξν +NβBn
∞∩(K−xν)(d(x

ν)). (18)

Thanks to A1 and A4, we have

∇1f̃(d(x
ν);xν)Td(xν) = [∇1f̃(d(x

ν);xν)−∇1f̃(0;x
ν)+∇1f̃(0;x

ν)]Td(xν)

≥ c‖d(xν)‖2 +∇f(xν)Td(xν).
(19)

Moreover, in view of A5, for every i=1, . . . ,m,

−∇1g̃i(d(x
ν);xν)Td(xν)≤ g̃i(0;x

ν)− g̃i(d(x
ν);xν) (20)

and, by A7, since ξν is nonnegative, in turn,

− ξνi∇1g̃i(d(x
ν);xν)Td(xν)≤ ξνi [g̃i(0;x

ν)− g̃i(d(x
ν);xν)] = ξνi [gi(x

ν)−κ(xν)], (21)

where the equality follows observing that ξν belongs to NRm
−
(g̃(d(xν);xν)−κ(xν)e).

Therefore, by (18), (19) and (21), we have, for some ζν ∈NβBn
∞∩(K−xν)(d(x

ν)),

c‖d(xν)‖2 +∇f(xν)Td(xν) ≤ ∇1f̃(d(x
ν);xν)Td(xν) =−ξνT∇1g̃(d(x

ν);xν)Td(xν)− ζνTd(xν)

≤ ξνT [g(xν)−κ(xν)e]≤ ξνT [maxi{gi(x
ν)+}−κ(xν)]e,

where the second inequality is due to 0 ∈ βBn
∞ ∩ (K−xν). Therefore, recalling definition (14),

∇f(xν)Td(xν)≤−c‖d(xν)‖2 + θ(xν) ξνTe. (22)

We also notice that, since d(xν) is feasible for problem (Pxν ), by A5, A7 and A9,

κ(xν)≥ g̃i(d(x
ν);xν)≥ g̃i(0;x

ν)+∇g̃i(0;x
ν)Td(xν) = gi(x

ν)+∇gi(x
ν)Td(xν). (23)

Let us now consider the nonsmooth (ghost) penalty function already described in the introduction

W (x;ε), f(x)+
1

ε
max

i
{gi(x)+}, (24)

with a positive penalty parameter ε. This function plays a key role in the subsequent convergence
analysis although it does not appear anywhere in the algorithm itself.

In the following analysis we will freely invoke some properties of function (•)+ ,max{0,•}, namely
max{0, α1} ≤max{0, α2} for any α1, α2 ∈R such that α1 ≤ α2, max{0, aα}= a max{0, α} for any
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α∈R and nonnegative scalar a, and max{0, α1+α2} ≤max{0, α1}+max{0, α2} and max{0, α1}−
max{0, α2} ≤max{0, α1−α2} for any α1, α2 ∈R. We have

W (xν+1;ε) − W (xν ;ε)

= f(xν + γνd(xν))− f(xν)+ 1
ε

[
max

i
{gi(x

ν + γνd(xν))+}−max
i
{gi(x

ν)+}
]

(a)

≤ γν∇f(xν)Td(xν)+
(γν)2L∇f

2
‖d(xν)‖2 + 1

ε

[
max

i
{(gi(x

ν)+ γν∇gi(x
ν)Td(xν))+}

−max
i
{gi(x

ν)+}+
(γν)2maxi{L∇gi}

2
‖d(xν)‖2

]

(b)

≤ γν∇f(xν)Td(xν)+ 1
ε

[
max

i
{(1− γν)gi(x

ν)+ + γνκ(xν)}−max
i
{gi(x

ν)+}
]

+ (γν)2

2
(L∇f +

maxi{L∇gi
}

ε
)‖d(xν)‖2

≤ γν∇f(xν)Td(xν)− γν

ε

[
max

i
{gi(x

ν)+}−κ(xν)
]
+

(γν)2

2
(L∇f +

maxi{L∇gi}

ε
)‖d(xν)‖2

≤ γν∇f(xν)Td(xν)− γν

ε
θ(xν)+ (γν)2

2
(L∇f +

maxi{L∇gi
}

ε
)‖d(xν)‖2,

(25)
where (a) follows applying the descent lemma to f and gi for every i= 1, . . . ,m, with L∇f and L∇gi

being the Lipschitz moduli of ∇f and ∇gi on the bounded set containing all iterates; (b) holds for
any positive γν ≤ 1 since, in view of (23), ∇gi(x

ν)Td(xν)≤ κ(xν)− gi(x
ν). Furthermore, we observe

that

∇f(xν)Td(xν)− 1
ε
θ(xν)≤−c‖d(xν)‖2 + θ(xν) ξνTe− 1

ε
θ(xν)≤−c‖d(xν)‖2 +(m‖ξν‖∞−

1
ε
) θ(xν),

(26)
where the first inequality is entailed by (22).

By (26), for any fixed xν and for any η ∈ (0,1], there exists ε̄ν > 0 such that

∇f(xν)Td(xν)−
1

ε
θ(xν)≤−ηc‖d(xν)‖2 ∀ε∈ (0, ε̄ν]. (27)

We now distinguish two cases.
(I) Suppose that (27) does not hold uniformly for every xν , that is η ∈ (0,1], and a subsequence
{xν}N exists, where N ⊆ {0,1,2, . . .} such that we can construct a corresponding subsequence
{εν}N ∈R+ with εν ↓ 0 on N and

∇f(xν)Td(xν)−
1

εν
θ(xν)>−ηc‖d(xν)‖2 (28)

for every ν ∈ N . For (28) to hold, relying on (26), the multipliers’ subsequence {ξν}N must be
unbounded. Combining (26) and (28), we get

0≤ c(1− η)‖d(xν)‖2 <

(
m‖ξν‖∞−

1

εν

)
θ(xν),

and, thus, θ(xν)> 0 for every ν ∈N . By the previous relation and (28), we also have

1

εν
<
∇f(xν)Td(xν)+ ηc‖d(xν)‖2

θ(xν)
. (29)

As εν ↓ 0 on N , the right hand side of (29) goes to infinity: by the boundedness of the numerator,

θ(xν)→
N

0. (30)
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Let x̂ be a cluster point of the subsequence {xν}N . By (30), only cases (ii) and (iii) in Lemma 2
can occur at x̂∈K. The existence of a d as stipulated in Lemma 2 (iii) would entail, by Proposition
6, the boundedness of the KKT multipliers ξν for ν ∈N large enough, thus giving a contradiction.
Therefore, by Lemma 2 (ii), we conclude that x̂ is either an ES or FJ point for (P).

(II) As opposed to (I), consider the case in which relation (27) holds uniformly for every xν : that
is, for any η ∈ (0,1], there exists ε̄ > 0 such that

∇f(xν)Td(xν)−
1

ε
θ(xν)≤−ηc‖d(xν)‖2 ∀ε∈ (0, ε̄], ∀ν. (31)

Combining relations (25) and (31), we get

W (xν+1; ε̃)−W (xν ; ε̃) ≤ −γνηc‖d(xν)‖2 + (γν)2

2
(L∇f +

maxi{L∇gi
}

ε̃
)‖d(xν)‖2

= −γν
[
ηc− γν

2
(L∇f +

maxi{L∇gi
}

ε̃
)
]
‖d(xν)‖2,

(32)

for any ε̃ ∈ (0, ε̄]. Since limν γ
ν = 0, there exists a positive constant ω such that, by (32), for ν ≥ ν̄

sufficiently large,
W (xν+1; ε̃)−W (xν; ε̃)≤−ωγν‖d(xν)‖2. (33)

With W being bounded from below, by (33), the sequence {W (xν ; ε̃)} converges and

lim
ν

ν∑

t=ν̄

γt‖d(xt)‖2 <+∞.

Therefore, since
∑∞

ν=0 γ
ν =+∞, we have

lim inf
ν→∞

‖d(xν)‖=0. (34)

Recalling relation (15), taking the limit on a subsequence N such that ‖d(xν)‖ →
N

0, we have

‖∇g(xν)‖∞‖d(x
ν)‖→

N
0 and θ(xν)→

N
0. Finally, let again x̂ be a cluster point of subsequence {xν}N .

Since θ(xν)→
N

0 implies κ(x̂) =maxi{gi(x̂)+}, cases (ii) or (iii) in Lemma 2 may occur: specifically, x̂

is either an ES, or a FJ, or a KKT point for (P). In particular, if the eMFCQ holds at x̂, case (ii) in
Lemma 2 is ruled out and maxi{gi(x̂)+} cannot be strictly positive; then, κ(x̂) =maxi{gi(x̂)+}=0.
Furthermore, taking the limit in (18), we obtain, by A3, A4, A6-A9, KKT multipliers’ boundedness
and outer semicontinuity property (see Lemma 1 (iii)) of the normal cone mapping NβBn

∞∩(K−•)(•),

−∇f(x̂)−∇g(x̂)ξ̂ ∈NβBn
∞∩(K−x̂)(0) = {0}+NK−x̂(0) =NK(x̂),

with ξ̂ ∈NRm
−
(g(x̂)−κ(x̂)e) =NRm

−
(g(x̂)) and where the first equality follows from Lemma 1 (i). In

turn, x̂ is a KKT point for problem (P). This concludes the proof of case (i).
Consider now point (ii). Note that if the eMFCQ holds at every limit point of {xν}, then case (I)

above cannot occur since this would contradict the last sentence before (II); hence, we are in case
(II). Observe that if, instead of the weaker (34),

lim
ν→∞

‖d(xν)‖=0 (35)

holds, we can reason similarly to what done above after (34) for any convergent subsequence of
{xν}, and conclude that (ii) holds. Therefore, it is enough to show that Assumption B entails (35).

Consider now the compact set containing all iterates xν . While lim infν→∞ ‖d(x
ν)‖= 0, suppose

by contradiction that limsupν→∞ ‖d(x
ν)‖> 0. Then, there exists δ > 0 such that ‖d(xν)‖> δ and
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‖d(xν)‖< δ/2 for infinitely many νs. Therefore, there is an infinite subset of indices N such that,
for each ν ∈N , and some iν > ν, the following relations hold:

‖d(xν)‖< δ/2, ‖d(xiν )‖> δ (36)

and, if iν > ν+1,
δ/2≤ ‖d(xj)‖ ≤ δ, ν < j < iν . (37)

Hence, for all ν ∈N , we can write

δ/2 < ‖d(xiν )‖−‖d(xν)‖ ≤ ‖d(xiν )− d(xν)‖
(a)

≤ θ‖xiν −xν‖α

(b)

≤ θ
[∑iν−1

t=ν γt‖d(xt)‖
]α (c)

≤ θδα
(∑iν−1

t=ν γt
)α

,

(38)

where (a) is due to Assumption B with α and θ positive scalars, (b) comes from the triangle
inequality and the updating rule of the algorithm and in (c) we used (37). By (38) we have

lim inf
ν→∞

θδα

(
iν−1∑

t=ν

γt

)α

> 0. (39)

We prove next that (39) is in contradiction with the convergence of {W (xν ; ε̃)} for any ε̃ ∈ (0, ε̄],
where ε̄ is defined around (31). To this end, we first show that ‖d(xν)‖ ≥ δ/4, for sufficiently large
ν ∈N . Reasoning as in (38), we have

‖d(xν+1)‖−‖d(xν)‖ ≤ θ‖xν+1−xν‖α ≤ θ(γν)α‖d(xν)‖α,

for any given ν. For ν ∈N large enough so that θ(γν)α(δ/4)α < δ/4, suppose by contradiction that
‖d(xν)‖< δ/4; this would give ‖d(xν+1)‖< δ/2 and, thus, condition (37) (or (36)) would be violated.
Then, it must be ‖d(xν)‖≥ δ/4. From this, and using (33), we have, for sufficiently large ν ∈N ,

W (xiν ; ε̃)≤W (xν ; ε̃)−ω

iν−1∑

t=ν

γt‖d(xt)‖2 ≤W (xν ; ε̃)−ω
δ2

16

iν−1∑

t=ν

γt. (40)

Since {W (xν ; ε̃)} converges, as established above immediately after (33), renumbering if necessary,
relation (40) implies

∑iν−1

t=ν γt → 0, in contradiction with (39). This shows that (35) holds and
concludes the proof of the theorem. �

The convergence properties in Theorem 1 (i) are very much in the spirit of analogous results for
constrained optimization where no regularity conditions are made, see for example [11, 12, 13, 30].
A key difference between our approach and those in, e.g., [11, 12, 13, 30] is that we do not use any
penalty parameter in the algorithm. Indeed, we use the penalty function and penalty parameter only
in the proof of Theorem 1, as a tool of theoretical analysis, and thus we do not need to calculate any
careful penalty parameter update, allowing for convergence for the conceptually simple procedure
defined above. We believe that this ghost approach is a novelty in the literature and represents a
new interesting use of penalty functions. Note that while our approach has some similarities to a
classical Lyapunov function approach, it is different from it. Indeed, while, in case (II) considered in
the proof, the penalty can be viewed as a Lyapunov function for the algorithm, the analysis of case
(I) is rather different and more involved. Indeed the proof hinges on the behavior of the penalty
function, of θ, and of the penalty parameter and on how these quantities are connected.

Remark 2. All the developments in the proof of Theorem 1 up to equation (32) are valid
independent of the updating rule for the stepsize γν ∈ (0,1]. In the light of this observation, in the
next section we invoke some of the relations in the proof of Theorem 1 even when stepsizes not
satisfying (3) are employed.
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Remark 3. Algorithm 1 can easily be made into a feasible method, i.e. a method that only
generates feasible iterates, if we take g̃is to be UCAs, see (11). As discussed in Section 3.1, in this
case, if xν is feasible, then xν+1 is also feasible, so that, if x0 ∈X , Algorithm 1 generates only feasible
iterates. This shows that Algorithm 1 contains as special cases some recent feasible methods that
were shown to be rather effective, see for example [55, 56] (and also [31]).

If, furthermore, we require f̃ to be an UCA for f , i.e.,

f̃(d;x) ≥ f(x+ d), ∀d ∈ K −x, (41)

we turn our scheme into a Majorization-Minimization (MM)-like method, see for example [2, 4, 9,
36, 37, 43, 51, 61]. In classical MM approaches the stepsize γν is taken to be always one, while
Algorithm 1 with UCAs for f and gis gives a diminishing stepsize version of the method. In Section
5.3 we show that not only can we also guarantee convergence by setting the stepsize equal to one,
but we can actually obtain, in this case, an iteration complexity result.

5. Iteration Complexity Analysis We introduce some new rules for choosing the stepsize
γν at each iteration as an alternative to the diminishing one analyzed in the previous section. For
these rules we are able to perform a detailed iteration complexity analysis. Our analysis is in line
with recent works on this topic, see [18] for an up-to-date review. The purpose of the iteration
complexity analysis is to give a bound on the number of iterations needed by an algorithm to reach a
desired level of accuracy. This bound is expressed in terms of parameters of the algorithm and some
problem constants, for example Lipschitz moduli of the functions involved on a prescribed region
or maximum or minimum values of the functions in the same region. This section is organized as
follows. Theorem 2 gives our more general complexity result for Algorithm 2; subsection 5.1 explores
in detail the meaning of the stopping criteria used in Algorithm 2 and gives the definition of δ-
stationary point. The following three short subsections examine some particular scenarios in which
improved complexity bounds (or, in one case, global convergence rate) can be obtained. Finally,
subsection 5.5 describes a variant of Algorithm 2 that can be implemented and analyzed without
any knowledge of any problem-related constants.

In order to perform our analysis in this section we make the following assumptions.

Assumption D
D1) the set K is bounded;
D2) ∇1g̃(•;•) is locally Lipschitz continuous on Od×Ox.

Assumption D1 serves to guarantee boundedness of the iterations and is made for simplicity of
presentation. In Section 6 we shall discuss some alternative assumptions that make the iterates
belong to a compact set defined by means of possibly known quantities, as required in order to
perform a complexity analysis, see in particular Table 2 and the surrounding comments. As the
discussion pertains to the algorithms presented in both the previous and current sections, we found
that a detailed analysis of this condition is best deferred in order to not complicate the formal
presentation of the results, as the insight involved is essentially modular, separate from the main
ideas of analysis here and in Section 4.
Assumption D2, instead, depends essentially on the choice of g̃ and therefore is not an assumption
on the problem itself, but a condition on our algorithmic choices. Clearly, since g has a locally
Lipschitz gradient, D2 is always satisfied if we take as g̃ the linearization of g.

From now on, we employ some problem dependent constants: we collect their definitions in Table
1 for the reader’s convenience.

We observe that if the eMFCQ holds everywhere in K, all generalized stationary solutions are
KKT points for problem (P) and, as in classical SQP methods, the norm of the direction d(xν) is
a natural stationarity measure, see Theorem 3. But if the eMFCQ is not valid at every point in K,
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Table 1. Problem dependent constants

β ∈R+ user-set constant in the definition of (Px)

η ∈ (0,1] user-set constant

λ∈ (0,1) user-set constant in the definition of κ, see (8)

c∈R+ modulus of strong convexity of f̃(•;x), see Assumption A1

B maxx∈K ‖∇f(x)‖β+ ηcβ2

fm minx∈K f(x)

gM+ maxx∈K maxi{gi(x)+}

L max(d,x)∈βBn
∞

×K ‖∇1g̃(d;x)‖∞

L∇f Lipschitz modulus of ∇f on K

L∇gi Lipschitz modulus of ∇gi on K

L∇f̃ Lipschitz modulus of ∇1f̃(•;•) on βBn
∞ ×K

L∇g̃ Lipschitz modulus of ∇1g̃(•;•) on βBn
∞ ×K

we cannot rely solely on ‖d(xν)‖ to monitor progress towards stationarity, since the problem may

admit KKT points but also FJ and ES solutions. For this reason, we use in combination ‖d(xν)‖

and θ(xν) as measures of stationarity. We observe that, actually, ‖d(xν)‖ and θ(xν) are linked to

each other in view of the following relation, which is due to (15):

θ(xν)≤‖∇g(xν)‖∞‖d(x
ν)‖ ≤L‖d(xν)‖, (42)

where L,max(d,x){‖∇1g̃(d;x)‖∞ | (d,x)∈ βB
n
∞×K}. However, there is no reverse implication and

thus the two functions ‖d(xν)‖ and θ(xν) must be suitably combined to provide reliable stopping

criteria. The effect of monitoring both ‖d(xν)‖ and θ(xν) on the outcome of the algorithm is analyzed

in detail in Section 5.1.

To derive complexity results, we consider first Algorithm 2 with a piecewise constant choice of

stepsizes. By this we mean that Algorithm 2 starts with a certain γ−1 and keeps it fixed until a

certain test is met; when this happens, the stepsize is reduced to a new prescribed value and then

kept fixed until possibly the test is met again, and so on. We underline that the only difference

between this scheme and Algorithm 1 is in the rules for choosing γν at each iteration and, of course,

in the presence of suitable stopping criteria: specifically, the steps (S.1) and (S.7) correspond to the

previous Algorithm 1, while everything in between, from (S.2) to (S.6), is aimed at deciding whether

to decrease the stepsize γν and whether we should terminate (note that Algorithm 1, which is aimed

at an asymptotic analysis, does not contain any practical stopping criterion).
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Algorithm 2: Modified Algorithm for (P)

Data: δ > 0, η ∈ (0,1], x0 ∈K, T−1 ∈
(
0,

2maxi{L∇gi
}

max{L∇f ,ηc}

]
, γ−1 = T−1ηc

2maxi{L∇gi
}
, ν←− 0;

repeat
(S.1) compute κ(xν), the solution d(xν) of problem (Pxν ) and θ(xν);

(S.2) if ‖d(xν)‖≤ δ then
stop and return xδ = xν ;

end
(S.3) if ∇f(xν)Td(xν)+ ηc‖d(xν)‖2 > 0 and T ν−1 > θ(xν)

∇f(xν)T d(xν)+ηc‖d(xν)‖2
then

(S.4) if θ(xν)≤ δ then
stop and return xδ = xν ;

else
(S.5) set γν = Tνηc

2maxi{L∇gi
}
, where T ν = 1

2

θ(xν)

∇f(xν)T d(xν)+ηc‖d(xν)‖2
;

end
else

(S.6) set T ν = T ν−1 and γν = γν−1;
end

(S.7) set xν+1 = xν + γνd(xν), ν←− ν+1;
end

We first note that the value of T−1 guarantees that γ−1 ≤ 1. Also, the variable T ν is introduced just
for notational purposes, in order to make the statement of the algorithm and the proof of Theorem
2 easier to follow. The tests we must perform to decide whether to reduce the stepsize are very
simple and involve quantities that are readily available once the direction finding subproblem (Pxν )
has been solved. The following theorem provides the announced complexity result in this general
case. For simplicity of presentation we assume δ ≤ 1. This is by no means necessary but avoids the
necessity of complicating the statement by considering uninteresting cases.

Theorem 2. Let {xν} be the sequence generated by Algorithm 2 under Assumptions A, C1 and
D and suppose that δ ≤ 1. Then, in at most O(δ−4) iterations, Algorithm 2 stops either at step (S.2)
or at step (S.4); more precisely, the maximum number of iterations is given by the maximum between
the expressions (50) and (52).

Proof. Suppose that Algorithm 2 performs N iterations without stopping1. We first count how
many times γν can be updated in step (S.5) of the algorithm: let

I , {0<νi ≤N |T νi andγνi are updated in (S.5)} ∪ {0}

be the set of iterations’ indices ν (in increasing order) at which the need to modify γν and T ν

emerges, union iteration 0. Therefore, for example, if we update T and γ in (S.5) at iterations 3,
4 and 8, we have I = {ν0 = 0, ν1 = 3, ν2 = 4, ν3 = 8}; note that we always have by definition ν0 = 0
and that the set I does not include repeated indices. We show that I has finite cardinality. If νi 6=0
belongs to I , we have

T νi =
1

2

θ(xνi)

∇f(xνi)Td(xνi)+ ηc‖d(xνi)‖2
, (43)

and the procedure did not stop at step (S.4): thus, θ(xνi)> δ and (43) entails

T νi >
δ

2B
, (44)

1 We consider an iteration completed when we reach (S.7).
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with B ,maxx {‖∇f(x)‖β+ ηcβ2 |x∈K} ≥ ∇f(xν)Td(xν) + ηc‖d(xν)‖2. By the updating rule in

(S.5), we also have T νi ≤ T−1

2i
; thus, in view of (44), δ

2B
<T νi ≤ T−1

2i
, so that

i < log2
T−12B

δ
.

Therefore, if we do not stop, i.e. if θ(xν)> δ for all iterations up to N − 1, the cardinality of I , i.e.,

the times γν is reduced, is at most
⌈
log2

T−12B
δ

⌉
.

Let us set I , |I|−1; with this convention note that the largest element in I is νI . Counting from
νi ∈ I \{last element in I}, let now Ni be the number of iterations in which γν remains unchanged:
T ν = T νi and γν = γνi for every ν ∈ {νi, . . . , νi+Ni}. In other words, Ni is the number of iterations
after νi in which step (S.5) is not reached; in the example given above where I = {ν0 = 0, ν1 =3, ν2 =
4, ν3 = 8}, we have N0 = 2, N1 = 0, N2 = 3. Therefore νi +Ni is simply the last iteration after νi
before γ and T are updated. The last index NI is defined, with the same rationale, as the number of
iterations performed after νI , before we reach the iteration where we stop. Considering the example
above, and supposing that we stop at iteration 11, we have N3 = 2.

We observe that, by virtue of the condition in step (S.3) and the updating rule in step (S.5)
or (S.6), T ν is non increasing. Hence, again by the updating rule in (S.5) or (S.6), since γ−1 =

T−1ηc
2maxi{L∇gi

}
, also γν is non increasing. Moreover,by the definitions of T−1 and γ−1, on the one hand,

ηc− γν

2
L∇f ≥ ηc− γ−1

2
L∇f ≥ ηc− ηc

2
, while, on the other hand, −γν

2

maxi{L∇gi
}

Tν =− ηc
4
. Thanks to the

previous relations, we have for every ν

ηc−
γν

2

(
L∇f +

maxi{L∇gi}

T ν

)
≥

ηc

4
, (45)

and, in turn, by (25),

W (xν+1;T ν)−W (xν;T ν)≤ γν

[
∇f(xν)Td(xν)−

θ(xν)

T ν
+

3ηc

4
‖d(xν)‖2

]
, (46)

where we took εν = T ν . We now distinguish two cases. If the condition in step (S.3) is satisfied and
γ is updated in (S.5),

∇f(xν)Td(xν)−
θ(xν)

T ν
=−∇f(xν)Td(xν)− 2ηc‖d(xν)‖2≤−ηc‖d(xν)‖2, (47)

where the inequality follows from the first condition in (S.3). If, on the contrary, γ need not be
reduced,

∇f(xν)Td(xν)+ ηc‖d(xν)‖2 ≤ 0 or T ν ≤
θ(xν)

∇f(xν)Td(xν)+ ηc‖d(xν)‖2
,

and, again, relation (47) is easily seen to hold. Therefore, in view of (46) and (47), we get for every
ν,

W (xν+1;T ν)−W (xν ;T ν)≤−γν ηc

4
‖d(xν)‖2. (48)

Note that N =
∑

i∈I(Ni+1), since the algorithm did not stop until iteration N , ‖d(xν)‖> δ for all
iterates up to N − 1. Therefore, recalling definition (24) with εν = T ν , and observing that for every
ν ∈ {νi, . . . , νi +Ni}, νi ∈ I , γ

ν is not reduced and T ν = T νi , we get

δ2N =
I∑

i=0

δ2(Ni +1)<
I∑

i=0

νi+Ni∑

ν=νi

‖d(xν)‖2 ≤
I∑

i=0

W (xνi ;T νi)−W (xνi+Ni+1;T νi)

γνi ηc
4

≤ 1
γνI ηc

4

[
f(x0)− f(xνI+NI+1)+ 1

T0 maxi{gi(x
0)+}

− 1

TνI+NI+1 maxi{gi(x
νI+NI+1)+}+

I∑

i=1

(
1

T νi
−

1

T νi−1

)
max

j
{gj(x

νi)+}
]
,

(49)
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where the second inequality is due to (48) while, observing that γνI ≤ γνi , the last inequality is
valid as a result of a telescopic series argument since νi +Ni +1= νi+1. Note that it is understood
that if I = 0 the last summation in (49) has no terms. Letting gM+ ,maxx{maxi{gi(x)+} |x ∈K}
and fm ,minx{f(x) |x∈K}, we distinguish two cases: (i) step (S.5) has never been reached, i.e. T
has never been diminished; (ii) case (i) did not occur. In case (i), observing that I = 0, by (49), the
algorithm stops after at most

⌈
8

(ηc)2T−1
max

i
{L∇gi}[f(x

0)− fm +
1

T−1
max

i
{gi(x

0)+}]
1

δ2

⌉
(50)

iterations. In case (ii), by (49) we can write instead

δ2N
(a)

< 1
γνI ηc

4

(
f(x0)− fm+ 1

T0 g
M
+ −

1
T0 g

M
+ + 1

TνI
gM+
) (b)
= 8

(ηc)2TνI
maxi{L∇gi}(f(x

0)− fm+ 1
TνI

gM+ )

(51)
where (a), since T νi ≤ T νi−1 , follows again from the summation of a telescopic series, (b) is due to
the updating rule for γν in (S.5) at iteration νI . In turn, taking into account that since we updated
T at least once, we have

T νI =
1

2

θ(xνI )

∇f(xνI )Td(xνI )+ ηc‖d(xνI )‖2
>

δ

2B
,

and, in turn,

δ2N <
16B

(ηc)2δ
max

i
{L∇gi}(f(x

0)− fm+
2B

δ
gM+ ),

thus meaning that the procedure halts in at most

⌈
16B

(ηc)2
max

i
{L∇gi}

[
f(x0)− fm

δ3
+

2BgM+
δ4

]⌉
(52)

iterations. If δ ≤ 1, this gives an overall complexity of O(δ−4). �

5.1. On the meaning of the stopping criteria at (S.2) and (S.4) The following theorem
elucidates the meaning of the stopping criteria in steps (S.2) and (S.4). This result and the ensuing
discussion show that (S.2) and (S.4) guarantee that the algorithm stops in a finite number of
iterations once a δ−stationary point has been reached. To simplify the proof, we assume that
δ <min{1, β}; this is very sensible since on the one hand we are mainly interested in what happens
when δ is “small" and, on the other hand, β is chosen by the user and is intended to be “large", β
being simply a safeguard on the maximum length of the direction d(xν).

Preliminarily, we recall that the KKT conditions at a point xν ∈ K for problem (P) can be
rewritten as

∥∥∥PK

(
xν − ∇f(xν)+∇g(xν )ξν

1+‖ξν‖

)
−xν

∥∥∥= 0, maxi

∣∣∣gi(xν)
ξνi

1+‖ξν‖

∣∣∣= 0, maxi{gi(x
ν)+}=0, (53)

where PK denotes the projection on the closed convex set K and ξν ≥ 0 are suitable multipliers. We
also recall that θ is a stationarity measure for the violation-of-the-constraint problem (4): θ(xν) = 0
if and only if xν is stationary for (4), see (ii) Proposition 3.

Theorem 3. Let Assumptions A, C1 and D hold, and consider δ <min{1, β}. If Algorithm 2
(i) stops at step (S.2), xν is either infeasible almost stationary for the violation-of-the-constraints

problem, i.e.,

max
i
{gi(x

ν)+}>
L

λ
δ, 0<θ(xν)≤Lδ, (54)
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or it is a scaled-KKT point, i.e.,

maxi{gi(x
ν)+} ≤

L
λ
δ

∥∥∥PK

(
xν −

[
1

1+‖ξν‖
∇f(xν)+∇g(xν) ξν

1+‖ξν‖

])
−xν

∥∥∥≤ (2+L∇f̃ +L∇g̃) δ,

maxi

∣∣∣gi(xν)
ξνi

1+‖ξν‖

∣∣∣≤ 1+λ
λ

Lδ,

(55)

for some ξν ≥ 0, or either an ES or a FJ point;
(ii) stops at step (S.4), xν is either an ES or a FJ point, or it is infeasible almost stationary for

the violation-of-the-constraints problem, i.e.,

max
i
{gi(x

ν)+}> 0, 0< θ(xν)≤ δ. (56)

Before proving the theorem, some comments are in order. Theorem 3 shows that Algorithm 2 stops
with a KKT, FJ or ES solution, or a point that, at least, satisfies either (54), or (55) or (56).
This outcome is in line with many recent results in the literature. Relations (55), and (54) and
(56) are similar to classical conditions such as (i) and (ii) in [17, Theorem 2.9], (3.27) and (3.26)
(respectively) in [19, Theorem 3.8], or (10) and (9) (respectively) in [18, Theorem 4.5]. Specifically,
we obtain the scaled-type conditions (55): we refer the interested reader to [17, Section 2.1], but
also [8, 16, 19] for rather exhaustive discussions on this point. On the other hand, the “degenerate”
cases (54) and (56) indicate, although in slightly different ways, that a stationarity condition for the
violation-of-the-constraint problem is approximately satisfied at an infeasible point. In order to get
more insight into the meaning of the stopping criteria, we discuss, in the same spirit as the analysis
in [8], what happens when δ goes to zero with fixed initial data. Thus, suppose we have a sequence
{xk} each point of which satisfies at least one of (54), (55) or (56) for a sequence of values δk ↓ 0: in
fact, we recall that, in view of Theorem 2, for every k the algorithm stops, providing xk, either at
step (S.2) or at step (S.4) in a finite number of iterations N =Nk (which is obviously nondecreasing
with respect to k). Accordingly, let I = Ik be the corresponding number of times T ν and γν have
been reduced, apart from iteration 0. Moreover, since {xk} is contained in K, it is bounded and
therefore we can assume, without loss of generality, that it converges to a point x̄∈K.

Suppose first that xk satisfies the scaled-KKT condition (55) for every k ∈ K ⊆ {0,1,2, . . .} for
some K. Passing to the limit in (55), if the corresponding sequence ξk is bounded, x̄ is a KKT point
of problem (P). If, instead, ξk is unbounded, x̄ must be a FJ point, since it is feasible by the first
inequality in (55) and the eMFCQ cannot hold there, otherwise the sequence ξk would be bounded
by Proposition 4 (i) and Proposition 6.

Suppose now that one of the two degenerate cases (54) or (56) occurs at each xk with k ∈K. We
show that, for both cases, x̄ is a point where the eMFCQ does not hold and therefore it is either
a FJ or an ES point. Let the algorithm stop at step (S.2) providing xk that satisfies (54) for all
k ∈ K, and assume by contradiction that the eMFCQ holds at x̄. It follows that d(xk)→ d(x̄) =
0 and θ(xk)→ θ(x̄) = 0, due to the condition d(xk) ≤ δk for every k ∈ K and to the continuity
relative to K of function d(•) (on a neighborhood of x̄, see Proposition 4) and θ(•) (see Proposition
3), respectively. Besides, relying on Lemma 2 (iii), d̄ ∈ ρBn

∞ ∩ (K − x̄) exists such that g̃(d̄; x̄) <
0. Thus, by the continuity relative to K of the set-valued mapping K − • at x̄ (see Lemma 1
(ii)), there exists dk ∈ ρBn

∞ ∩ (K − xk) such that, for every k ∈ K sufficiently large, g̃(dk;xk) <
0. In turn, mind {maxi{g̃i(d;xk)+} | ‖d‖∞ ≤ ρ, d∈K −xk}= 0, κ(xk) = (1− λ)maxi{gi(xk)+}, and
θ(xk) = λmaxi{gi(xk)+} ≤ Lδk in contradiction with maxi{gi(xk)+}>

L
λ
δk. Therefore the eMFCQ

does not hold at x̄.
Suppose now that the algorithm stops at step (S.4) for all k ∈ K and assume by contradiction

that the eMFCQ holds at x̄. We have, without loss of generality, Nk >Nk−1 for every k ∈ K and
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θ(xk)→ θ(x̄) = 0, due to the condition θ(xk)≤ δk for every k ∈K and to the continuity relative to

K of function θ(•). Furthermore, it holds Ik ≥ Ik−1 +1 for every k ∈K and, in turn, TNk

↓ 0 on K,

since TNk

= T ν
Ik ≤ T−1

2I
k for every k ∈K. If the eMFCQ holds at x̄, for any k ∈K sufficiently large,

d(xk) is a KKT point for (Pxk) by Proposition 1 and, in turn, by (26), we get

∇f(xk)
Td(xk)−

1

TNk θ(xk)+ ηc‖d(xk)‖
2 ≤
(
m‖ξN

k

‖∞−
1

TNk

)
θ(xk). (57)

Thanks to the local boundedness of the set of KKT multipliers and because TNk

↓ 0 on K, even-
tually the right hand side of (57) is nonpositive, in contradiction to the condition ∇f(xk)

Td(xk)+

ηc‖d(xk)‖
2 > 0 and TNk

> θ(xk)

∇f(xk)
T d(xk)+ηc‖d(xk)‖

2 for every k ∈ K in (S.3). Therefore the eMFCQ
does not hold at x̄. All the above discussion motivates us to define a point at which Algorithm 2
stops a δ−(generalized) stationary point.

Definition 3. A point generated by the algorithm is a δ−(generalized) stationary point if it
is either a scaled-KKT point satisfying (55) or an infeasible approximate stationary point for the
violation-of-the-constraints-problem satisfying (54) or (56).

It may also be interesting to remark that if the eMFCQ holds at every point in K, (54) and (56)
cannot occur if δ is small enough (see the discussion above), and ξν that, we shall see in the proof
below, are the multipliers of the direction finding subproblems (Pxν ), are bounded by Propositions
4 (i) and 6. In turn, this means that the algorithm stops at (S.2) with a point xν approximately
satisfying the KKT conditions for (P) with ξν being nothing else but approximate KKT multipliers
(see [17, Section 2.1] for further details).

Proof of Theorem 3. (i) Suppose first that the algorithm stops because ‖d(xν)‖≤ δ. Regardless of
the validity of the constraint qualification, d(xν), which certainly satisfies the Fritz-John conditions,
may satisfy or not the KKT conditions for the subproblem (Pxν ). We now distinguish two cases,
remarking that the following results hold whatever the choice of γν .

(I) If d(xν) does not satisfy the KKT conditions for subproblem (Pxν ), in view of Proposition 4,
xν does not satisfy the eMFCQ and, thus, is either an ES or a FJ point.

(II) If, on the contrary, d(xν) satisfies the KKT conditions for subproblem (Pxν ), letting ξν ∈
NRm

−
(g̃(d(xν);xν)−κ(xν)e), we get the following relation which is equivalent to (18) that still holds

with NβBn
∞
= {0} because ‖d(xν)‖ ≤ δ:

xν + d(xν) = PK

(
xν + d(xν)−

∇1f̃(d(x
ν);xν)+∇1g̃(d(x

ν);xν)ξν

1+ ‖ξν‖

)
. (58)

Let us bound now the terms in relations (53). As for the gradient of the Lagrangian-related condition
for problem (P), we have the following bound:

∥∥∥PK

(
xν − ∇f(xν)+∇g(xν )ξν

1+‖ξν‖

)
−xν

∥∥∥ =
∥∥∥PK

(
xν − ∇f(xν )+∇g(xν )ξν

1+‖ξν‖

)
− [xν + d(xν)]+ d(xν)

∥∥∥
(a)
=
∥∥∥d(xν)+PK

(
xν − ∇f(xν )+∇g(xν )ξν

1+‖ξν‖

)

−PK

(
xν + d(xν)− ∇1f̃(d(x

ν);xν)+∇1g̃(d(x
ν);xν)ξν

1+‖ξν‖

)∥∥∥
(b)

≤ ‖d(xν)‖+
∥∥∥−d(xν)+ ∇1f̃(d(x

ν);xν)−∇1f̃(0;x
ν)

1+‖ξν‖

+∇1g̃(d(x
ν);xν)ξν−∇1g̃(0;x

ν)ξν

1+‖ξν‖

∥∥∥
(c)

≤ (2+L∇f̃ +L∇g̃)‖d(x
ν)‖

where (a) follows from (58), (b) holds thanks to A4, A9 and since the projection mapping is nonex-
pansive, and (c) is due to C1 and D2. As for the complementarity conditions, consider ı̄∈ {1, . . . ,m}
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such that |gı̄(x
ν)ξνı̄ | = maxi |gi(x

ν)ξνi | with g̃ı̄(d(x
ν);xν) = κ(xν), otherwise ξνı̄ = 0. Note that, if

gı̄(x
ν)≥ 0, gı̄(x

ν)≤maxi{gi(x
ν)+}, whereas if gı̄(x

ν)< 0,

|gı̄(x
ν)|=−gı̄(x

ν)− g̃ı̄(d(x
ν);xν)+ g̃ı̄(d(x

ν);xν)≤∇1g̃ı̄(d(x
ν);xν)Td(xν),

where the inequality is due to (20) and −g̃ı̄(d(x
ν);xν) =−κ(xν)≤ 0. Overall,

max
i
|gi(x

ν) ξνi | ≤ (max
i
{gi(x

ν)+}+L‖d(xν)‖)‖ξν‖.

In turn, if maxi{gi(x
ν)+} ≤

L
λ
δ, then

max
i

∣∣∣∣gi(x
ν)

ξν

1+ ‖ξν‖

∣∣∣∣≤
1+λ

λ
Lδ.

If, on the contrary, maxi{gi(x
ν)+}>

L
λ
δ, nonetheless, by (42) we have θ(xν)≤Lδ.

(ii) In order to exit at step (S.4), either xν is an ES or a FJ point, or θ(xν) must be strictly
positive. In fact, under the eMFCQ, by (22), if θ(xν) = 0, then ∇f(xν)Td(xν)≤−ηc‖d(xν)‖2 and
the first condition in step (S.3) does not hold. In turn, for θ(xν) to be strictly positive, we must
have maxi{gi(x

ν)}> 0. �

5.2. O(δ−3) complexity with constant stepsize if a feasible starting point is known
If a feasible starting point is available, then by choosing a sufficiently small initial T−1 or, cor-
respondingly, a sufficiently small initial stepsize γ−1, the iteration complexity of Algorithm 2 can
be reduced to O(δ−3). Actually, it turns out that in this case, as well as in the cases analyzed in
the next two subsections, the stepsize is never reduced, so that the updating step of Algorithm 2
actually becomes a fixed stepsize iteration

xν+1 = xν + γ̄d(xν). (59)

A reduction of the iteration complexity when a feasible point is available seems rather sensible
because if we start with a feasible point, we have already solved the feasibility problem which is a part
of the constrained optimization. Nevertheless, it was in principle not clear that our algorithm could
take advantage of this fact, since the search for feasibility and that for optimality are combined in a
single step, unlike typical methods designed for strong complexity results for constrained nonconvex
problems that use two distinct phases.

Corollary 1. Assume the same setting of Theorem 2, fix a prescribed tolerance δ and set,

according to this value, T−1 =min{ δ
B
,
2maxi{L∇gi

}

max{L∇f ,ηc}
}. If the starting point x0 is feasible, then, in at

most ⌈
8

(ηc)2
max

i
{L∇gi}max

{
B,

max{L∇f , ηc}

2maxi{L∇gi}

}
(f(x0)− fm)

1

δ3

⌉

iterations, Algorithm 2 stops either at step (S.2) or at step (S.4). Furthermore, the stepsize is never
updated and is constant throughout the algorithm.

Proof. We use the same notation and terminology introduced in the proof of Theorem 2. We first
observe that Algorithm 2 never updates γν and T ν . Indeed, suppose that the test in (S.3) is met for
the first time at iteration ν. The claim follows noting that if the condition in (S.3) is verified, then

δ

B
≥ T−1 = T ν−1 >

θ(xν)

∇f(xν)Td(xν)+ ηc‖d(xν)2‖
≥

θ(xν)

B
,

so that θ(xν)≤ δ and the algorithm stops. Hence, step (S.5) is never reached and the stepsize is never
updated. Looking back at the corresponding case (i) in Theorem 2, in view of (50) and recalling
that δ ≤ 1, the procedure is shown to stop after the claimed number of iterations, at worst. �

Note the somewhat unusual feature that algorithmic choices, i.e. T−1, are linked to the desired
accuracy.
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5.3. O(δ−2) complexity with constant stepsize if a feasible starting point is known
and upper approximations are used Suppose again that a feasible starting point is available
and, in addition, assume that UCAs for the gis are used, (see Section 3.1 and (11) in particular).
Then, not only can we get O(δ−2) complexity, but, differently from the previous subsection, there is
no dependence of T−1 on δ. Also in this case it turns out that the stepsize need not be updated, and
the algorithm reduces to the fixed stepsize scheme (59). Furthermore, if we are in an MM setting,
i.e. if we choose an UCA also for f (see Remark 3 and (41)), we can take the fixed stepsize to be
one, provided some minimal assumptions on f̃ are satisfied.

Corollary 2. Assume the same setting of Theorem 2. If the starting point x0 is feasible and
the g̃is are upper convex approximations for the gis, then, in at most

⌈
8

(ηc)2T−1
max

i
{L∇gi}[f(x

0)− fm]
1

δ2

⌉

iterations, Algorithm 2 stops either at step (S.2) or at step (S.4). Furthermore, the stepsize is never
updated, is constant throughout the algorithm progress, and can be set equal to one provided that
ηc≥L∇f .

Proof. The algorithm only produces feasible iterates, see the discussion after (11). Therefore, we
have θ(xν) = 0 for all ν. As a consequence, step (S.5) is never reached and the stepsize is never
updated: in fact, if the test in (S.3) is met, then the algorithm immediately stops at (S.4) since
θ(xν) = 0. Then, reasoning again as in case (i) in Theorem 2, thanks to (50), we see that the
algorithm stops after at most the claimed number of iterations. Suppose further that ηc≥L∇f , then
it is easy to see from the instructions in Data that we can choose γ−1 = 1. �

We remark that it is easy to show that the condition ηc ≥ L∇f implies that f̃ is an UCA and
therefore the requirement in the corollary imposes that we use not any arbitrary UCA, but only
UCAs that additionally satisfy ηc ≥ L∇f . At the same time, in standard MM algorithms it is
usually possible to show convergence with a unitary stepsize without requiring ηc≥L∇f , or similar
assumptions. But we must observe that the constants η and c are algorithmic choices and therefore
the condition ηc≥ L∇f can always be enforced. For example, if analogously to what done in (12),
we set

f̃(d;x) = f(x)+∇f(x)Td+
c

2
‖d‖2, (60)

it is enough to choose c so that ηc≥ L∇f . Additionally, and more importantly, the condition ηc≥
L∇f is needed here in order to establish for the first time, as far as we are aware of, the iteration
complexity for an MM method. Our iteration complexity complements the convergence rate obtained
in [9]. In that paper, assuming a Kurdyka-Łojasiewicz property plus other technical conditions,
the authors show that, under suitable constraint qualifications, that we do not require, the whole
sequence produced by an MM method converges to a KKT point x∞ and give expressions for the
convergence rate of ‖xν −x∞‖.

5.4. A O(δ−2) global convergence rate when eMFCQ holds If the eMFCQ holds at every
point in K, then we can prove that Algorithm 2 has a global convergence rate of O(δ−2). Once again,
under suitable assumptions, one can show that in Algorithm 2 the stepsize is never updated, so that
the algorithm reduces to the fixed stepsize iteration (59).

Corollary 3. Assume the same setting of Theorem 2 and, in addition, suppose that the
eMFCQ holds at every point in K. If we choose T−1 and, correspondingly, γ−1 sufficiently small (as
will be specified in the proof, see also the comments below), being M an upper bound on the norm
of multipliers for the subproblems (Pxν), in at most

⌈
8mM

(ηc)2
max

i
{L∇gi}[f(x

0)− fm+mM max
i
{gi(x

0)+}]
1

δ2

⌉
(61)
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iterations, Algorithm 2 stops at step (S.2). Furthermore, the stepsize is never updated and is constant
throughout the algorithm.

Note that since we never reach (S.4), the only stopping criterion actually used is the one based on
‖d(xν)‖ in (S.2), in accordance with what happens in classical SQP-type methods when constraint
qualifications are assumed to hold everywhere.

Proof of Corollary 3. We first recall that, thanks to the eMFCQ, by Propositions 4 (i) and 6,
taking into account the compactness of K, the norm of multipliers ξν of the subproblems (Pxν )
is bounded from above by some constant M . By (26), which, in view of the eMFCQ, is still valid
because it is derived from the optimality conditions for subproblem (Pxν ), we have

∇f(xν)Td(xν)− 1
Tν θ(x

ν)+ ηc‖d(xν)‖2 ≤
(
m‖ξν‖∞−

1
Tν

)
θ(xν)≤

(
mM − 1

T−1

)
θ(xν)≤ 0 (62)

if T−1 ≤ 1/mM , and, in turn, for all ν it never happens that ∇f(xν)Td(xν) + ηc‖d(xν)‖2 > 0 and
T ν > θ(xν)

∇f(xν)T d(xν)+ηc‖d(xν)‖2
in (S.3), and therefore, (S.4) and (S.5) are never reached. Looking back

at the proof of Theorem 2, we then see that only case (i) therein can occur and, setting, for example,
T−1 = 1

mM
in (50), the algorithm stops at worst after the claimed number of iterations. �

The fixed stepsize iteration (59) is valid provided that γ̄ ≤ ηc
2mM maxi{L∇gi

}
. Finally, we remark

that the bound given by (61) is different from those seen so far, in that it depends on the usually
unknown quantity M . The bound given by (61) should therefore be regarded as a global convergence
rate (see the introduction).

5.5. Problem constants are not used The implementation of Algorithm 2 requires the use
of some of the problem constants in Table 1. Hence, the question arises whether we can modify the
algorithm to avoid the use of potentially difficult to compute constants, while retaining complexity
results similar to those in Theorem 2. The answer is positive, at the price of a “small amount”
of additional function evaluations. Moreover, differently from all previous developments, we must
make a numerical, although simple, use of the penalty function W . Observe that in Algorithm 2
the problem constants are used to set some initial values in Data and, more critically, in (S.5).
Referring to the proof of Theorem 2, the updating of γν in (S.5) guarantees condition (48), i.e. the
sufficient decrease of the (ghost) penalty function. But, at a more basic level, this sufficient decrease
condition can always be reached if the step γν is sufficiently small. So, one could choose at each
iteration the stepsize γν so as to guarantee that the sufficient decrease condition (48) is satisfied.
This can be accomplished without any knowledge of the problem constants; we only need to know
the user-set quantities c and η as shown in Algorithm 3.

In Data we no longer need to set the initial T and γ to some small values that depend on prob-
lem constants. Indeed, whatever the initial values, it is the algorithm itself that sets them to the
appropriate quantities. In Algorithm 2, updating the stepsize at (S.5) makes (48) satisfied at all
subsequent iterations, until the if section at (S.3) is possibly re-entered. In Algorithm 3 instead, we
do not have such a guarantee, and thus we perform the “line-search” in (S.7) at each iteration. The
following theorem shows that Algorithm 3 needs an amount of iterations which is similar (likely
smaller, see the comments after the proof) to that required by Algorithm 2. However, while for
Algorithm 3 this quantity is also equal to the number of function and constraints evaluations, we
now may need some extra objective and constraint function evaluations, as detailed next.

Theorem 4. Let {xν} be the sequence generated by Algorithm 3 under Assumptions A, C1 and
D and suppose that δ ≤ 1. Then, in at most O(δ−4) iterations, Algorithm 3 stops either at step
(S.2) or at step (S.4); more precisely, the maximum number of iterations is given by the maximum
between the expressions (69) and (71). Moreover, the algorithm needs a number of objective and
constraint function evaluations that is equal to the number of iterations plus at most O (log2(δ

−1))
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Algorithm 3: Algorithm for (P) without constants

Data: δ > 0, η ∈ (0,1], x0 ∈K, T−1 > 0, γ−1 =1, ν←− 0;

repeat
(S.1) compute κ(xν), the solution d(xν) of problem (Pxν ) and θ(xν);

(S.2) if ‖d(xν)‖≤ δ then
stop and return xδ = xν ;

end
(S.3) if ∇f(xν)Td(xν)+ ηc‖d(xν)‖2 > 0 and T ν−1 > θ(xν)

∇f(xν)T d(xν)+ηc‖d(xν)‖2
then

(S.4) if θ(xν)≤ δ then
stop and return xδ = xν ;

else
(S.5) set T ν = 1

2

θ(xν)

∇f(xν)T d(xν)+ηc‖d(xν)‖2
;

end
else

(S.6) set T ν = T ν−1;
end

(S.7) while W (xν + γνd(xν);T ν)−W (xν;T ν)>−γν ηc
4
‖d(xν)‖2 do

set γν←− 1
2
γν ;

end
(S.8) set xν+1 = xν + γνd(xν), ν←− ν+1;

end

further evaluations, with the precise expression of this additional number of evaluations given by
(66).

Proof. The proof is a variant of that of Theorem 2, to which we refer for notation and terminology.
Suppose that Algorithm 3 performs N iterations without stopping. We first count how many times
T ν can be updated in step (S.5): let

I , {0<νi ≤N |T νi is updated in (S.5)} ∪ {0}

be the set of iterations’ indices ν (in increasing order) at which we need to modify T ν , union iteration
0. Repeating verbatim the first part in the proof of Theorem 2, one can show that I has finite
cardinality and, if νi ∈ I then

i < log2
T−12B

δ
.

Define now I and Ni as in the proof of Theorem 2. Clearly T ν = T νi for every ν ∈ {νi, . . . , νi +Ni}.
Following the same line of reasoning as in the proof of Theorem 2, one can readily show that

∇f(xν)Td(xν)−
θ(xν)

T ν
≤−ηc‖d(xν)‖2, (63)

for every ν, which, in turn, by (25), implies

W (xν+1;T ν)−W (xν;T ν)≤−γν

[
ηc−

γν

2
(L∇f +

maxi{L∇gi}

T ν
)

]
‖d(xν)‖2, (64)

where we took εν = T ν . We now note that for every ν ∈ {νi, . . . , νi+Ni}, νi ∈ I , we have γν ≥G(δ),
with

G(δ),min

{
1

2
,
3ηc

4

δ

L∇fδ+2Bmaxi{L∇gi}

}
. (65)
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Indeed, this is trivial for ν0 = 0, since we assumed γ−1 =1 and G(δ)≤ 1
2
. Suppose by contradiction

that 0 6= νi ∈ I and γν <G(δ). By the definition (65) of G(δ), if we set γν < 2G(δ), we get, recalling
(64) and T νi > δ

2B
, W (xν+1;T νi)−W (xν ;T νi)≤−γν ηc

4
‖d(xν)‖2, i.e. the test at (S.7) is surely not

satisfied if γν < 2G(δ). This, in turn, contradicts γν < G(δ), since it shows that in the loop (S.7)
we should have stopped at the previous iterate of the cycle. Therefore, taking into account that γν

is obtained at (S.7) after a certain number (possibly zero) of halvings of the current value of the
stepsize, at each iteration γν ≥G(δ) for every δ. We conclude that γν , globally, needs to be halved

no more than log2
γ−1

G(δ)
times: hence, after at most

log2

(
γ−1max

{
2,

4

3ηc

(
L∇fδ+2Bmax

i
{L∇gi}

)} 1

δ

)
(66)

halvings, one achieves the sought decrease condition

W (xν+1;T ν)−W (xν;T ν)≤−γν ηc

4
‖d(xν)‖2 ≤−G(δ)

ηc

4
‖d(xν)‖2, (67)

for every ν. Recalling definition (24), and similarly to (49),

δ2N =
I∑

i=0

δ2(Ni +1)<
I∑

i=0

νi+Ni∑

ν=νi

‖d(xν)‖2 ≤
I∑

i=0

W (xνi ;T νi)−W (xνi+Ni+1;T νi)

G(δ) ηc
4

≤ 1
G(δ) ηc4

[
f(xν0)− f(xνI+NI+1)+ 1

Tν0
maxi{gi(x

ν0)+}

− 1

TνI+NI+1 maxi{gi(x
νI+NI+1)+}+

I∑

i=1

(
1

T νi
−

1

T νi−1

)
max

j
{gj(x

νi)+}
]
,

(68)

where the second inequality is due to (67), while the last inequality is valid as a result of a tele-
scopic series argument since νi + Ni + 1 = νi+1. Setting gM+ , maxx{maxi{gi(x)+} |x ∈ K} and
fm ,minx{f(x) |x∈K}, as in the proof of Theorem 2, we distinguish two cases: (i) step (S.5) has
never been reached, thus I = 0 and, by (68), the algorithms stops after at most

⌈
4

ηc
max

{
2,

4

3ηc

(
L∇fδ+2Bmax

i
{L∇gi}

)}(
f(x0)− fm+

1

T−1
max

i
{gi(x

0)+}

)
1

δ3

⌉
(69)

iterations, in view of the definition of G and δ≤ 1. If case (i) did not occur, by (68) we can write

δ2N <
1

G(δ) ηc
4

(
f(x0)− fm+

1

T ν0
gM+ −

1

T ν0
gM+ +

1

T νI
gM+

)
, (70)

where the inequality follows, recalling that T νi ≤ T νi−1 , from the summation of a telescopic series.
In turn, since

T νI =
1

2

θ(xνI )

∇f(xνI )Td(xνI )+ ηc‖d(xνI )‖2
>

δ

2B
,

by (70), the procedure halts in at most

⌈
4

ηc
max

{
2,

4

3ηc

(
L∇fδ+2Bmax

i
{L∇gi}

)}[f(x0)− fm

δ3
+

2BgM+
δ4

]⌉
(71)

iterations. Since δ ≤ 1, one can take the overall complexity to be of O(δ−4). �
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It is interesting to compare the worst-case bounds (52) (for Algorithm 2) and (71) (for Algorithm
3). It is clear that, at least for a small δ (see the definition of G), the bound (71) is approximatively 2

3

of the bound (52). This better behaviour of Algorithm 3 has a simple explanation. The steps used in
Algorithm 3 are generally larger than those used in Algorithm 2, where problem constants are used
to define a “pessimistic” step-length. In Algorithm 3, instead, local information is gathered through
the line-search in (S.7) that permits the definition of a stepsize better adapted to the problem.
Algorithm 3 also has the additional merit of not requiring the knowledge of the problem constants.
We pay a price for this better result in that the algorithm is marginally more complex, requires
a numerical use of the penalty function and calls for additional objective function and constraint
evaluations that may increase the computational effort. However, note that this increase is negligible
when δ is small, since the additional number of function evaluations is O (log2(δ

−1)), implying that
the overall order of function evaluations is maintained to be O (δ−4).

Remark 4. It is easy to see that the results in Sections 5.2-5.4 for Algorithm 2 can be extended
to Algorithm 3, but we do not pursue this for lack of space.

Remark 5. While the analysis in this section is about SQP-type approaches, a few other com-
plexity bounds are available in the literature for different methods using first-order information in
the context of nonconvex, constrained optimization (see the introduction). A direct comparison of
all these results is difficult, since different assumptions and, in some cases, different concepts of
(approximate) generalized stationary points are called for; furthermore, the various methods dif-
fer markedly in the overall structure (penalty vs. Phase I - Phase II vs. SQP schemes) and in
the algorithmic computational effort required at each iteration, not to mention that in some cases
results are given for equality constraints only. With this in mind, here we try to briefly highlight
the main features of [8, 15, 16, 17]. The analysis provided in [15, Section 3.2] is for a penalty-based
approach and gives the “first worst-case global evaluation bounds for constrained optimization when
both the objective and the constraints are allowed to be nonconvex". The main similarity with our
analysis is in the use of a nondifferentiable penalty function, which however is employed according
to a classical double-loop scheme: at each outer iteration a penalty parameter is chosen and then
the penalty function is minimized inexactly using a trust-region-like method for which complexity
results are provided. This should be contrasted with our “ghost" use of penalties where the penalty
function and the penalty parameter are not used in the algorithm itself. Another difference is in the
subproblems to be solved at each iteration. Our method follows the standard SQP approach and
the subproblems should be regarded as (simple) approximations of the original problem and as such
do not involve any penalty parameter. The subproblems in [15], instead, aim at approximating the
penalty function and, as such, necessarily include the penalty parameter. On the one hand, avoiding
the use of the penalty parameter in the subproblems is a favourable numerical feature, we believe, on
the other hand approximating directly the penalty function, as done in [15], nicely avoids the issue
of the feasibility of subproblems, since the minimization of the penalty function is unconstrained.
Putting together a judicious analysis of the parameter-updating scheme and of the inner penalty
minimization, the authors of [15] can then give estimates for the number of iterations necessary to
reach an approximate generalized stationary point. If, during the minimization process, the penalty
parameter grows unbounded, a complexity of O(δ−5) is obtained. If, on the other hand, an upper
bound, which in principle is unknown in advance, for the penalty parameter exists, a condition
that should be interpreted as a constraint qualification, then, using the terminology of the present
paper, a convergence rate of O(δ−2) is obtained. Note that (a) the issue of the boundedness of the
iterates is not dealt with (for our algorithm see also next section), and (b) the objective function f
is assumed to be bounded from below on Rn.

The Phase I - Phase II approach in [16, Sections 4 and 5] is for equality constrained problems,
and relies on target-following and (inner) trust-region techniques. Both phases are based on a cubic
regularization method involving the use of second order derivatives, with subproblems to be solved at
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each iterations that are potentially expensive. However, a remarkable complexity bound of O(δ−3/2),
matching the one for the cubic regularization method in the unconstrained case, is achieved.

The high-level scheme put forward in [8] for nonconvex problems with (equality and) inequality
constraints falls also within a Phase I - Phase II (of target-following-type) framework: the uncon-
strained nonlinear minimization problems to be solved in each phase are assumed to be dealt with
by some minimization algorithm with known complexity guarantees. Once this algorithm is given,
the analysis derives bounds that range between O(δ−3) and O(δ−5) according to the choice of an
algorithmic parameter, with the better complexity corresponding to “weaker" notions of almost gen-
eralized stationary points. It has to be remarked that, as a major departure from all other works, in
[8] an emphasis is given to unscaled KKT conditions, i.e. to an approximate notion of stationarity
that does not depend on the magnitude of the multipliers involved.

Finally, in [17], a Phase I - Phase II (of target-following-type) method is presented, which resorts
again to an inner trust-region approach in both phases. Assuming the objective function to be upper
and lower bounded on the feasible set, and the gradient of the objective and the Jacobian of the
constraint functions to be Lipschitz continuous on Rn and on a suitable extended neighbourhood
of the feasible region, respectively, the algorithm is proven to reach an approximate generalized
stationary point in at most O(δ−2) iterations. These results are currently the most advanced for a
first order Phase I - Phase II method and, remarkably, the bounds obtained there match the best
result for first-order unconstrained minimization methods.

6. Boundedness of iterates Boundedness of the sequence generated by an SQP-type method
is a difficult issue. With a few earlier exceptions, see e.g. [30], this topic probably came to a wider
attention only with the important paper [60], that motivated researchers to look better into this
issue, see [1, 2, 9, 42] (with the latter reference dealing only with equality constraints, however). In
our framework, generating an unbounded sequence is a natural possibility that cannot and should
not be excluded in principle, since we do not make any standard assumption such as feasibility,
existence of an optimal solution, or regularity of the constraints; quoting from [9], where a similar
possibility is considered, “The divergence property... is a positive result, a convergence result, which
does not correspond to a failure of the method but rather to the absence of minimizers in a given
zone." To clarify this point consider

minimize
x

x2

s.t. ex ≤ 0,

which is an infeasible convex problem and has no ES, FJ or KKT solutions. Nevertheless, we can
apply one of the algorithms studied in this paper to it and the only sensible outcome is “an attempt
to minimize infeasibility" with the generation of an unbounded sequence. Indeed, if the sequence
generated by the algorithm were bounded, every limit point should be critical, but since there are no
critical points, the sequence must necessarily be unbounded. And yet, also in the spirit of the works
mentioned at the beginning of this subsection, it is of course of great interest to see under what
conditions we can guarantee the boundedness of the sequence {xν} for the algorithms presented
in this paper. Below we analyze this point identifying some settings where boundedness can be
guaranteed. This discussion, which in no way tries to be exhaustive, is also useful to illustrate some
of the characteristics of our methods. We remark that the properties of Algorithms 2 and 3 have
been studied in the previous section under the assumption that K is bounded. But it is easy to see
from the proofs that this condition can be substituted by any of the assumptions studied in this
section that still guarantee boundedness of the sequence generated by Algorithms 2 and 3. The only
adjustment that needs to be made is that the Lipschitz constants used in the proofs of Theorems 2
and 4 are no longer the Lipschitz constants on K but rather the ones on the compact set S, which
is shown to contain the sequence {xν}, and that any reference to the boundedness of K should
be substituted by a reference to the compactness of S. Of course, in order for this approach to be



Author: Article Short Title

32 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

sensible as a complexity bound, the set S must be determined a priori and should not depend on
the sequence generated by the algorithm.

1. [Valid for Algorithms 1, 2 and 3] The boundedness of K obviously guarantees the boundedness
of {xν} for all the algorithms we considered. We already used this fact for Algorithms 2 and 3, but
the same result holds also for Algorithm 1: we report this case here for completeness and uniformity
of presentation. In fact, for all the three algorithms we have that γν ∈ (0,1] and therefore the
constraint d∈K−xν in (Px) and the convexity of K guarantee that if xν ∈K then also xν+γνd(xν)
belongs to K. This case covers most instances of practical interest since, in basically all real-world
problems, variables are naturally limited by lower and upper bounds and we can take K to be the
rectangle defined by these quantities.

2. [Valid for Algorithms 1, 2 and 3] Another setting in which we can guarantee the boundedness
of the iterations is when we turn our schemes into feasible methods by choosing g̃is that are UCAs
of the gis and a feasible starting point x0, see Section 3.1.

2a. In this setting, assume that the following classical condition holds:

L1 , {x ∈K : g(x) ≤ 0, f(x) ≤ f(x0)} is bounded, (72)

i.e., the level set of value f(x0) for the objective function intersected with the feasible set is bounded.
Then, if we also assume that f̃ is an UCA of f , see Remark 3, we can show that the sequence
{xν} generated by any of the Algorithms 1, 2 and 3 is contained in the bounded set L1. Since
the sequence {xν} belongs to X , it is enough to show that, at each iteration, f(xν+1)≤ f(xν). To
this end, observe that, since each xν is feasible, we always have maxi{gi(x

ν)+}= κ(xν) = θ(xν) =
0, and d = 0 is feasible for (Pxν ). Therefore, applying the minimum principle to (Pxν ), we have
∇1f̃(d(x

ν);xν)T (0− d(xν)) ≥ 0 and, in turn

∇1f̃(d(x
ν);xν)Td(xν) ≤ 0. (73)

Since f̃ is (strongly) convex, we get

f(xν) = f̃(0;xν) ≥ f̃(γνd(xν);xν)+∇1f̃(γ
νd(xν);xν)T (0− γνd(xν))

≥ f(xν + γνd(xν))− γν∇f̃(γνd(xν);xν)Td(xν),
(74)

where the second inequality follows from (41). By the strong convexity with modulus c of f̃ , see A1,
we can also write

(
∇1f̃(d(x

ν);xν)−∇1f̃(γ
νd(xν);xν)

)T

(d(xν)− γνd(xν)) ≥ c(1− γν)2‖d(xν)‖2,

which, with simple manipulations, yields

−γν∇1f̃(γ
νd(xν);xν)Td(xν) ≥ −γν∇1f̃(d(x

ν);xν)Td(xν)+ cγν(1− γν)‖d(xν)‖2.

Plugging this inequality in (74) we get

f(xν + γνd(xν)) ≤ f(xν)+ γν∇1f̃(d(x
ν);xν)Td(xν)

which, in view of (73), shows that f(xν+1)≤ f(xν) as desired for any choice of γν .
2b. The requirement that f̃ be an upper approximation of f is actually not needed for Algorithm

3. In fact, noting that W (xν ;ε) = f(xν) for any feasible xν and for any positive ε, step (S.7) in
Algorithm 3 guarantees f(xν+1)≤ f(xν). In fact, in the current setting, a suitable stepsize can be
found in step (S.7) because of (63) (that still holds even if K is not bounded, see the conditions in



Author: Article Short Title

Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 33

the if-block at step (S.3)), recalling that θ(xν) = 0 for any feasible xν . It is therefore clear that the
whole sequence {xν} is contained in L1.

2c. We can avoid the UCA requirement on f̃ also for Algorithm 2, provided we assume that ∇f
is Lipschitz continuous on K (with modulus L∇f ). By the descent lemma we can write

f(xν + γνd(xν))− f(xν)≤ γν∇f(xν)Td(xν)+ (γν)2
L∇f

2
‖d(xν)‖2.

In turn, we get from (47) (which, again, is easily seen to hold in the current setting), taking into
account that θ(xν) = 0 because xν is feasible,

f(xν + γνd(xν))− f(xν)≤−γν

(
ηc−

γν

2
L∇f

)
‖d(xν)‖2, (75)

for every ν. The instructions in Data of Algorithm 2 are easily seen to entail γν ∈
(0,min{1,2ηc/L∇f}], so that (75) implies that {xν} is all contained in L1, and therefore that {xν}
is bounded if L1 is bounded.

2d. If we want to eliminate the UCA property of f̃ also for Algorithm 1, we need again ∇f to be
Lipschitz continuous on K and to strengthen condition (72), requiring that

Lα
2 , {x∈K : g(x)≤ 0, f(x)≤ α} is bounded for every α∈R. (76)

Then, invoking (22), as soon as γν becomes smaller than 2c
L∇f

, we stay in the set Lα
2 for some value

of α; by (76) this implies the boundedness of {xν}.
2e. Finally, it is worth observing that if the feasible set X is bounded, the use of UCAs for the

constraints g is enough to guarantee the boundedness of {xk} since, if we start with a feasible point,
{xν} remains feasible whatever the algorithm we use, see Section 3.1.

3. [Valid for Algorithms 1, 2 and 3] Knowing a feasible point x0 to start the algorithm from can
be difficult in some applications. But fortunately, the results in point 2 above can be generalized in
order to avoid the feasibility requirement.

3a. Suppose that we start the algorithm with a possibly infeasible point x0 ∈K. Assume that

L3 , {x∈K : g(x) ≤ max
i
{gi(x

0)+}} is bounded. (77)

If we use g̃is that are UCAs for the gis, we can show by induction that the whole sequence {xν}
generated by Algorithms 1, 2 and 3 is contained in L3. In fact, the starting point x0 of course belongs
to L3. Suppose now that xν ∈L3, meaning that

g̃i(0;x
ν) = gi(x

ν)≤max
i
{gi(x

0)+}.

We also have
g̃i(d(x

ν);xν) ≤ κ(xν) ≤ max
i
{gi(x

ν)+},

where the first inequality is just feasibility for subproblem (Pxν ), and the second one follows by the
definition of κ(xν). The last two displayed formulas show that, for any γν ∈ [0,1],

gi(x
ν + γνd(xν))≤ g̃i(γ

νd(xν);xν)≤max
i
{gi(x

ν)+},

where the first inequality is due to the UCA property (11), while the second relation derives from
the convexity of gi(·;x

ν).
3b. When the constraints gis are convex, it is well known that the boundedness of L3 holds

if and only if the feasible set is bounded. Then, in principle we can set g̃(d;x) = g(x + d) and
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only approximate the objective function. This particular g̃ is a UCA, indeed. This approach seems
particularly well suited to the case in which the gis are linear because the resulting subproblem
then has simple linear constraints. Note also that keeping the original (convex) constraints in the
subproblems is something routinely done in most MM methods.

4. [Valid for Algorithms 1, 2 and 3] Another interesting case arises if we suppose that the eMFCQ
holds and

Lα
4 , {x ∈K : max

i
{gi(x)+} ≤α} is bounded for every α ∈R+. (78)

Note that (78) simply states that the function maxi{gi(x)+} is coercive. We can therefore find
positive α1 and α2 such that if xν ∈Lα1

4 then xν + γνd(xν) ∈Lα2
4 for all γν ∈ (0,1]. Now, following

the same line of reasoning as relations (25), we have

max
i
{gi(x

ν + γνd(xν))+}−max
i
{gi(x

ν)+} ≤−γ
ν

(
θ(xν)−

γν

2
max

i
{L∇gi}‖d(x

ν)‖2
)

(79)

for every xν ∈Lα2
4 , where L∇gi are Lipschitz constants of the gradients of gi on Lα2

4 ; we remark that
since Lα2

4 is bounded, existence of these constants is a very mild requirement. Denote by θ̄ > 0 a
positive constant such that θ(x)≥ θ̄ for all points in the set ∆,Lα2

4 \ intL
α1
4 ; note that this set is

compact by (78). Such θ̄ surely exists because the eMFCQ implies there are no ES in the set ∆ and
therefore the continuous function θ(x) is positive on ∆. By (79), we can then write, for any xν ∈∆,

max
i
{gi(x

ν + γνd(xν))+}−max
i
{gi(x

ν)+} ≤−γ
ν

(
θ̄−

γν

2
max

i
{L∇gi}β

2

)
. (80)

It is then clear that a threshold value γ̄ > 0 exists such that, if γν ≤ γ̄, then maxi{gi(x
ν +

γνd(xν))+} ≤maxi{gi(x
ν)+}. Now, two cases can occur. If xν belongs to intLα1

4 , then, by how we
have chosen α2, x

ν+1 belongs to Lα2
4 . If instead xν belongs to ∆, by taking γν ≤ γ̄, we are again sure

that xν+1 still belongs to Lα2
4 . We can so conclude that by using stepsizes smaller that γ̄, iterations

never leave the set Lα2
4 and therefore stay bounded.

5. [Valid for Algorithms 2 and 3] The eMFCQ assumption in case 4 can be replaced by the
requirement that f be bounded from below on K if one employs Algorithm 3, a condition to which
the Lipschitz continuity of ∇f and ∇gi on K has to be added when Algorithm 2 is resorted to. For
both cases, the proof of the claim reduces to showing that, even without requiring K to be bounded,
we still have the sufficient descent condition

W (xν+1;T ν)−W (xν;T ν)≤−γν ηc

4
‖d(xν)‖2 (81)

for every ν. In fact, once relation (81) has been proven to be valid, in turn we get

T ν+1(f(xν+1)− f̄)+maxi{gi(x
ν+1)+} ≤ T ν(f(xν+1)− f̄)+maxi{gi(x

ν+1)+}

≤ T ν(f(xν)− f̄)+maxi{gi(x
ν)+}−T νγν ηc

4
‖d(xν)‖2,

where the first relation follows from observing that T ν is non increasing. The sequence generated
by the algorithms is now easily shown to be bounded. Indeed, the inequality above shows that the
nonnegative sequence {T ν(f(xν)− f̄)+maxi{gi(x

ν)+}} is non increasing and therefore convergent.
Suppose now by contradiction that {xk} is unbounded. By (78) this implies that maxi{gi(x

ν)+}
goes to infinity; since f(xν)− f̄ is nonnegative, this contradicts the convergence of the sequence
{T ν(f(xν)− f̄)+maxi{gi(x

ν)+}}.
Let us now show why, in the current setting, (81) is still satisfied for Algorithms 2 and 3.
5a. Concerning Algorithm 3, (81) is enforced as the algorithm progresses, see (S.7). We remark

that, even in the present setting, given an iterate xν , in (S.7) a sufficiently small stepsize γν still
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exists such that (81) is verified: this follows by standard reasoning ab absurdo in view of (63), which
still holds even if K is not bounded (see the conditions in the if-block at step (S.3)), and observing
that the directional derivative of maxi{gi(x

ν)+} is bounded from above by −θ(xν), thanks to (23).
5b. As for Algorithm 2, with ∇f and ∇gi assumed to be Lipschitz continuous on K, let L∇f and

L∇gi be the corresponding Lipschitz moduli. Again, without requiring K to be bounded as done
in Section 5, condition (81) is clearly satisfied, since (46) and (47) remain valid following the same
line of reasoning as relation (25) (here with K not assumed to be bounded, but under the Lipschitz
continuity of ∇f and ∇g), and as a straightforward consequence of the conditions in the if-block at
step (S.3), respectively.

Note that in both cases 5a and 5b, although {xν} is contained in Lα
4 for some α, this quantity is

possibly unknown in advance.

We summarize the above conditions implying boundedness in Table 2. We also clarify (see the last
column that only applies to Algorithms 2 and 3) on a case by case basis if these assumptions make
it possible to perform an Iteration Complexity (IC) or a Global Convergence Rate (GCR) analysis.
In fact, when the bounded set to which the sequence {xν} belongs is defined by means of quantities
that are known in advance, for example if it is L1, we can still speak of iteration complexity results
derived for Algorithms 2 and 3, as done in Theorems 2 and 4; when the set is known to exist, but is
not known beforehand (as for example in cases 5a and 5b), we obtain instead a global convergence
rate for the corresponding algorithms, since the constants involved in the big O bounds cannot be
determined a priori.

Table 2. Summary of conditions for boundedness of iterates

K f̃ g̃ x0 Other assumptions Algorithm IC or GCR

1 bounded - - - - 1, 2, 3 IC

2a - UCA (41) UCA (11) feasible L1 bounded, see (72) 1, 2, 3 IC

2b - - UCA (11) feasible L1 bounded, see (72) 3 IC

2c - - UCA (11) feasible L1 bounded, see (72), ∇f Lipschitz 2, 3 IC

2d - - UCA (11) feasible Lα
2 bounded, see (76), ∇f Lipschitz 1, 2, 3 IC

2e - - UCA (11) feasible X bounded 1, 2, 3 IC

3a - - UCA (11) - L3 bounded, see (77) 1, 2, 3 IC

3b - - g̃= g - gis convex, X bounded 1, 2, 3 IC

4 - - - - Lα
4 bounded, see (78), eMFCQ 1, 2, 3 GCR

5a - - - - Lα
4 bounded, see (78), f low. bounded 3 GCR

5b - - - - Lα
4 bounded, see (78), f low. bounded, 2, 3 GCR

∇f and ∇g Lipschitz
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