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Abstract

We study statistical inference and distributionally robust solution methods for stochas-
tic optimization problems, focusing on confidence intervals for optimal values and solutions
that achieve exact coverage asymptotically. We develop a generalized empirical likelihood
framework—based on distributional uncertainty sets constructed from nonparametric f -divergence
balls—for Hadamard differentiable functionals, and in particular, stochastic optimization prob-
lems. As consequences of this theory, we provide a principled method for choosing the size
of distributional uncertainty regions to provide one- and two-sided confidence intervals that
achieve exact coverage. We also give an asymptotic expansion for our distributionally robust
formulation, showing how robustification regularizes problems by their variance. Finally, we
show that optimizers of the distributionally robust formulations we study enjoy (essentially) the
same consistency properties as those in classical sample average approximations. Our general
approach applies to quickly mixing stationary sequences, including geometrically ergodic Harris
recurrent Markov chains.

1 Introduction

We study statistical properties of distributionally robust solution methods for the stochastic opti-
mization problem

minimize
x∈X

EP0 [ℓ(x; ξ)] =

∫

Ξ
ℓ(x; ξ)dP0(ξ). (1)

In the formulation (1), the feasible region X ⊂ R
d is a nonempty closed set, ξ is a random vector

on the probability space (Ξ,A, P0), where the domain Ξ is a (subset of) a separable metric space,
and the function ℓ : X × Ξ → R is a lower semi-continuous (loss) function. In most data-based
decision making scenarios, the underlying distribution P0 is unknown, and even in scenarios, such as
simulation optimization, where P0 is known, the integral EP0 [ℓ(x; ξ)] may be high-dimensional and
intractable to compute. Consequently, one typically [78] approximates the population objective (1)

using the sample average approximation (SAA) based on a sample ξ1, . . . , ξn
iid∼ P0

minimize
x∈X

E
P̂n

[ℓ(x; ξ)] =
1

n

n∑

i=1

ℓ(x; ξi), (2)

where P̂n denotes the usual empirical measure over the sample {ξi}ni=1.
We study approaches to constructing confidence intervals for problem (1) and demonstrating

consistency of its approximate solutions. We develop a family of convex optimization programs,
based on the distributionally robust optimization framework [26, 5, 12, 6], which allow us to provide
confidence intervals with asymptotically exact coverage for optimal values of the problem (1). Our
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approach further yields approximate solutions x̂n that achieve an asymptotically guaranteed level
of performance as measured by the population objective EP0 [ℓ(x; ξ)]. More concretely, define the
optimal value functional Topt that acts on probability distributions on Ξ by

Topt(P ) := inf
x∈X

EP [ℓ(x; ξ)].

For a fixed confidence level α, we show how to construct an interval [ln, un] based on the sample
ξ1, . . . , ξn with (asymptotically) exact coverage

lim
n→∞

P (Topt(P0) ∈ [ln, un]) = 1− α. (3)

This exact coverage indicates the interval [ln, un] has correct size as the sample size n tends to
infinity. We also give sharper statements than the asymptotic guarantee (3), providing expansions
for ln and un and giving rates at which un − ln → 0.

Before summarizing our main contributions, we describe our approach and discuss related meth-
ods. We begin by recalling divergence measures for probability distributions [1, 23]. For a lower
semi-continuous convex function f : R+ → R∪{+∞} satisfying f(1) = 0, the f -divergence between
probability distributions P and Q on Ξ is

Df (P ||Q) =

∫
f

(
dP

dQ

)
dQ =

∫

Ξ
f

(
p(ξ)

q(ξ)

)
q(ξ)dµ(ξ),

where µ is a σ-finite measure with P,Q ≪ µ, and p := dP/dµ and q := dQ/dµ. With this definition,
we will show that for f ∈ C3 near 1 with f ′′(1) = 2, the upper and lower confidence bounds

un := inf
x∈X

sup
P≪P̂n

{
EP [ℓ(x; ξ)] : Df (P ||P̂n) ≤

ρ

n

}
(4a)

ln := inf
x∈X

inf
P≪P̂n

{
EP [ℓ(x; ξ)] : Df (P ||P̂n) ≤

ρ

n

}
(4b)

yield asymptotically exact coverage (3). In the formulation (4), the parameter ρ = χ2
1,1−α is chosen

as the (1− α)-quantile of the χ2
1 distribution.

The upper endpoint (4a) is a natural distributionally robust formulation for the sample average
approximation (2), proposed by Ben-Tal et al. [6] for distributions P with finite support. The ap-
proach in the current paper applies to arbitrary distributions, and we are therefore able to explicitly
link (typically dichotomous [5]) robust optimization formulations with stochastic optimization. We
show how a robust optimization approach for dealing with parameter uncertainy yields solutions
with a number of desirable statistical properties, even in situations with dependent sequences {ξi}.
The exact coverage guarantees (3) give a principled method for choosing the size ρ of distributional
uncertainty regions to provide one- and two-sided confidence intervals.

We now summarize our contributions, unifying the approach to uncertainty based on robust
optimization with classical statistical goals.

(i) We develop an empirical likelihood framework for general smooth functionals T (P ), applying
it in particular to the optimization functional Topt(P ) = infx∈X EP [ℓ(x; ξ)]. We show how the
construction (4a)–(4b) of [ln, un] gives a confidence interval with exact coverage (3) for Topt(P0)
when the minimizer of EP0 [ℓ(x; ξ)] is unique. To do so, we extend Owen’s empirical likelihood
theory [63, 62] to suitably smooth (Hadamard differentiable) nonparametric functionals T (P )
with general f -divergence measures (the most general that we know in the literature); our
proof is different from Owen’s classical result even when T (P ) = EP [X] and extends to
stationary sequences {ξi}.
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(ii) We show that the upper confidence set (−∞, un] is a one-sided confidence interval with exact
coverage when ρ = χ2

1,1−2α = inf{ρ′ : P(Z2 ≤ ρ′) ≥ 1 − 2α,Z ∼ N(0, 1)}. That is, under
suitable conditions on ℓ and P0,

lim
n→∞

P

(
inf
x∈X

EP0 [ℓ(x; ξ)] ∈ (−∞, un]

)
= 1− α.

This shows that the robust optimization problem (4a), which is efficiently computable when
ℓ is convex, provides an upper confidence bound for the optimal population objective (1).

(iii) We show that the robust formulation (4a) has the (almost sure) asymptotic expansion

sup
P≪P̂n

{
EP [ℓ(x; ξ)] : Df (P ||P̂n) ≤

ρ

n

}
= EP̂n

[ℓ(x; ξ)] + (1 + o(1))

√
ρ

n
VarP (ℓ(x; ξ)), (5)

and that this expansion is uniform in x under mild restrictions. Viewing the second term in the
expansion as a regularizer for the SAA problem (2) makes concrete the intuition that robust
optimization provides regularization; the regularizer accounts for the variance of the objective
function (which is generally non-convex in x even if ℓ is convex), reducing uncertainty. We give
weak conditions under which the expansion is uniform in x, showing that the regularization
interpretation is valid when we choose x̂n to minimize the robust formulation (4a).

(iv) Lastly, we prove consistency of estimators x̂n attaining the infimum in the problem (4a) under
essentially the same conditions for consistency of SAA (see Assumption E). More precisely,
for the sets of optima defined by

S⋆ := argmin
x∈X

EP0 [ℓ(x; ξ)] and S⋆
n := argmin

x∈X
sup

P≪P̂n

{
EP [ℓ(x; ξ)] : Df (P ||P̂n) ≤

ρ

n

}
,

the distance from any point in S⋆
n to S⋆ tends to zero so long as ℓ has more than one moment

under P0 and is lower semi-continuous.

Background and prior work

The nonparametric inference framework for stochastic optimization we develop in this paper is
the empirical likelihood counterpart of the normality theory that Shapiro develops [74, 76]. While
an extensive literature exists on statistical inference for stochastic optimization problems (see, for
example, the line of work [32, 74, 44, 75, 46, 76, 45, 77, 78]), Owen’s empirical likelihood frame-
work [64] has received little attention in the stochastic optimization literature save for notable
recent exceptions [51, 50]. In its classical form, empirical likelihood provides a confidence set for
a d-dimensional mean EP0 [Y ] (with a full-rank covariance) by using the set Cρ,n := {EP [Y ] :

Df (P ||P̂n) ≤ ρ
n} where f(t) = −2 log t. Empirical likelihood theory shows that if we set ρ =

χ2
d,1−α := inf

{
ρ′ : P(‖Z‖22 ≤ ρ′) ≥ 1− α for Z ∼ N(0, Id×d)

}
, then Cρ,n is an asymptotically ex-

act (1 − α)-confidence region, i.e. P(EP0 [Y ] ∈ Cρ,n) → 1 − α. Through a self-normalization
property, empirical likelihood requires no knowledge or estimation of unknown quantities, such as
variance. We show such asymptotically pivotal results also apply for the robust optimization for-
mulation (4). The empirical likelihood confidence interval [ln, un] has the desirable characteristic
that when ℓ(x; ξ) ≥ 0, then ln ≥ 0 (and similarly for un), which is not necessarily true for confidence
intervals based on the normal distribution.
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Using confidence sets to robustify optimization problems involving randomness is common (see
Ben-Tal et al. [5, Chapter 2]). A number of researchers extend such techniques to situations in
which one observes a sample ξ1, . . . , ξn and constructs an uncertainty set over the data directly,
including the papers [26, 83, 6, 12, 11]. The duality of confidence regions and hypothesis tests [52]
gives a natural connection between robust optimization, uncertainty sets, and statistical tests.
Delage and Ye [26] made initial progress in this direction by constructing confidence regions based
on mean and covariance matrices from the data, and Jiang and Guan [42] expand this line of
research to other moment constraints. Bertsimas, Gupta, and Kallus [12, 11] develop uncertainty
sets based on various linear and higher-order moment conditions. They also propose a robust SAA
formulation based on goodness of fit tests, showing tractability as well as some consistency results
based on Scarsini’s linear convex orderings [71] so long as the underlying distribution is bounded;
they further give confidence regions that do not have exact coverage. The formulation (4) has
similar motivation to the preceding works, as the uncertainty set

{
EP [ℓ(x; ξ)] : Df (P ||P̂n) ≤

ρ

n

}

is a confidence region for EP0 [ℓ(x; ξ)] for each fixed x ∈ X (as we show in the sequel). Our results
extend this by showing that, under mild conditions, the values (4a) and (4b) provide upper and
lower confidence bounds for T (P ) = infx∈X EP [ℓ(x; ξ)] with (asymptotically) exact coverage.

Ben-Tal et al. [6] explore a similar scenario to ours, focusing on the robust formulation (4a), and
they show that when P0 is finitely supported, the robust program (4a) gives a one-sided confidence
interval with (asymptotically) inexact coverage (that is, they only give a bound on the coverage
probability). In the unconstrained setting X = R

d, Lam and Zhou [51] used estimating equations to
show that standard empirical likelihood theory gives confidence bounds for stochastic optimization
problems. Their confidence bounds have asymptotically inexact confidence regions, although they
do not require unique solutions of the optimization problem as our results sometimes do. The
result (i) generalizes these works, as we show how the robust formulation (4) yields asymptotically
exact confidence intervals for general distributions P0, and general constrained (X ⊂ R

d) stochastic
optimization problems.

Ben-Tal et al.’s robust sample approximation [6] and Bertsimas et al.’s goodness of fit testing-
based procedures [11] provide natural motivation for formulations similar to ours (4). However,
by considering completely nonparametric measures of fit we can depart from assumptions on the
structure of Ξ (i.e. that it is finite or a compact subset of Rm). The f -divergence formulation (4)
allows for a more nuanced understanding of the underlying structure of the population problem (1),
and it also allows the precise confidence statements, expansions, and consistency guarantees outlined
in (i)–(iii). Concurrent with the initial arXiv version of this work, Lam [49, 50] develops variance
expansions similar to ours (5), focusing on the KL-divergence and empirical likelihood cases (i.e.
f(t) = −2 log t with i.i.d. data). Our methods of proof are different, and our expansions hold
almost-surely (as opposed to in probability), apply to general f -divergences, and generalize to
dependent sequences under standard ergodicity conditions.

The recent line of work on distributionally robust optimization using Wasserstein distances [65,
84, 33, 72, 15, 79] is similar in spirit to the formulation considered here. Unlike f -divergences,
uncertainty regions formed by Wasserstein distances contain distributions that have support dif-
ferent to that of the empirical distribution. Using concentration results for Wasserstein distances
with light-tailed random variables [35], Esfahani and Kuhn [33] gave finite sample guarantees with
nonparametric rates O(n−1/d). The f -divergence formulation we consider yields different statistical
guarantees; for random variables with only second moments, we give confidence bounds that achieve
(asymptotically) exact coverage at the parametric rate O(n−1/2). Further, the robustification ap-
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proach via Wasserstein distances is often computationally challenging (with current techology), as
tractable convex formulations are available [72, 33] only under stringent conditions on the func-
tional ξ 7→ ℓ(x; ξ). On the other hand, efficient solution methods [6, 56] for the robust problem (4a)
are obtainable without restriction on the objective function ℓ(x; ξ) other than convexity in x.

Notation We collect our mostly standard notation here. For a sequence of random variables

X1,X2, . . . in a metric space X , we say Xn
d
 X if E[f(Xn)] → E[f(X)] for all bounded continuous

functions f . We write Xn
P ∗

→ X for random variables Xn converging to a random variable X
in outer probability [82, Section 1.2]. Given a set A ⊂ R

d, norm ‖·‖, and point x, the distance
dist(x,A) = infy{‖x− y‖ : y ∈ A}. The inclusion distance, or the deviation, from a set A to B is

d⊂(A,B) := sup
x∈A

dist(x,B) = inf {ǫ ≥ 0 : A ⊂ {y : dist(y,B) ≤ ǫ}} . (6)

For a measure µ on a measurable space (Ξ,A) and p ≥ 1, we let Lp(µ) be the usual Lp space, that is,
Lp(µ) := {f : Ξ → R |

∫
|f |pdµ < ∞}. For a deterministic or random sequence an ∈ R, we say that

a sequence of random variables Xn is OP (an) if limc→∞ lim supn P (|Xn| ≥ c · an) = 0. Similarly,
we say that Xn = oP (an) if lim supP (|Xn| ≥ c · an) = 0 for all c > 0. For α ∈ [0, 1], we define χ2

d,α

to be the α-quantile of a χ2
d random variable, that is, the value such that P(‖Z‖22 ≤ χ2

d,α) = α for

Z ∼ N(0, Id×d). The Fenchel conjugate of a function f is f∗(y) = supx{yTx− f(x)}. For a convex

function f : R → R, we define the right derivative f ′
+(x) = limδ↓0

f(x+δ)−f(x)
δ , which must exist [39].

We let IA(x) be the {0,∞}-valued membership function, so IA(x) = ∞ if x 6∈ A, 0 otherwise. To
address measurability issues, we use outer measures and corresponding convergence notions [82,
Section 1.2-5]. Throughout the paper, the sequence {ξi} is i.i.d. unless explicitly stated.

Outline

In order to highlight applications of our general results to stochastic optimization problems, we first
present results for the optimal value functional Topt(P ) := infx∈X EP [ℓ(x; ξ)], before presenting
their most general forms. In Section 2, we first describe the necessary background on generalized
empirical likelihood and establish our basic variance expansions. We apply these results in Section 3
to stochastic optimization problems, including those involving dependent data, and give computa-
tionally tractable procedures for solving the robust formulation (4a). In Section 4, we develop the
connections between distributional robustness and principled choices of the size ρ in the uncertainty
sets {P : Df (P ||P̂n) ≤ ρ/n}, choosing ρ to obtain asymptotically exact bounds on the population
optimal value (1). To understand that the cost of the types of robustness we consider is reasonably
small, in Section 5 we show consistency of the empirical robust optimizers under (essentially) the
same conditions guaranteeing consistency of SAA. We conclude the “applications” of the paper to
optimization and modeling with numerical investigation in Section 6, demonstrating benefits and
drawbacks of the robustness approach over classical stochastic approximations. To conclude the
paper, we present the full generalization of empirical likelihood theory to f -divergences, Hadamard
differentiable functionals, and uniform (Donsker) classes of random variables in Section 7.

2 Generalized Empirical Likelihood and Asymptotic Expansions

We begin by briefly reviewing generalized empirical likelihood theory [64, 59, 41], showing classical
results in Section 2.1 and then turning to our new expansions in Section 2.2. Let Z1, . . . , Zn be
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independent random vectors—formally, measurable functions Z : Ξ → B for some Banach space B—
with common distribution P0. Let P be the set of probability distributions on Ξ and let T : P → R

be the statistical quantity of interest. We typically consider Topt(P ) = infx∈X EP [ℓ(x; ξ)] with
Z(ξ) := ℓ(·; ξ), although our theory applies in more generality (see Section 7). The generalized
empirical likelihood confidence region for T (P0) is

Cn,ρ :=
{
T (P ) : Df (P ||P̂n) ≤

ρ

n

}
,

where P̂n is the empirical distribution of Z1, . . . , Zn. The set Cn,ρ is the image of T on an f -

divergence neighborhood of the empirical distribution P̂n. We may define a dual quantity, the
profile divergence Rn : R → R+ (called the profile likelihood [64] when f(t) = −2 log t), by

Rn(θ) := inf
P≪P̂n

{
Df (P ||P̂n) : T (P ) = θ

}
.

Then for any P ∈ P, we have T (P ) ∈ Cn,ρ if and only if Rn(T (P )) ≤ ρ
n . Classical empirical

likelihood [63, 62, 64] considers f(t) = −2 log t so that Df (P ||P̂n) = 2Dkl(P̂n||P ), in which case the
divergence is the nonparametric log-likelihood ratio. To show that Cn,ρ is actually a meaningful
confidence set, the goal is then to demonstrate that (for appropriately smooth functionals T )

P(T (P0) ∈ Cn,ρ) = P

(
Rn(T (P0)) ≤

ρ

n

)
→ 1− α(ρ) as n → ∞,

where α(ρ) is a desired confidence level (based on ρ) for the inclusion T (P0) ∈ Cn,ρ.

2.1 Generalized Empirical Likelihood for Means

In the classical case in which the vectors Zi ∈ R
d and are i.i.d., Owen [62] shows that empirical

likelihood applied to the mean T (P0) := EP0 [Z] guarantees elegant asymptotic properties: when

Cov(Z) has rank d0 ≤ d, as n → ∞ one has Rn(EP0 [Z])
d
 χ2

d0
, where χ2

d0
denotes the χ2-

distribution with d0 degrees of freedom. Then Cn,ρ(α) is an asymptotically exact (1−α)-confidence
interval for T (P0) = EP0 [Z] if we set ρ(α) = inf{ρ′ : P(χ2

d0
≤ ρ′) ≥ 1− α}. We extend these results

to more general functions T and to a variety of f -divergences satisfying the following condition,
which we henceforth assume without mention (each of our theorems requires this assumption).

Assumption A (Smoothness of f -divergence). The function f : R+ → R is convex, three times
differentiable in a neighborhood of 1, and satisfies f(1) = f ′(1) = 0 and f ′′(1) = 2.

The assumption that f(1) = f ′(1) = 0 is no loss of generality, as the function t 7→ f(t) + c(t − 1)
yields identical divergence measures to f , and the assumption that f ′′(1) = 2 is a normalization for
easier calculation. We make no restrictions on the behavior of f at 0, as a number of divergence
measures, such as KL with f(t) = −2 log t+ 2t− 2, approach infinity as t ↓ 0.

The following proposition is a generalization of Owen’s results [62] to smooth f -divergences.
While the result is essentially known [4, 21, 9], it is also an immediate consequence of our uniform
variance expansions to come.

Proposition 1. Let Assumption A hold. Let Zi ∈ R
d be drawn i.i.d. P0 with finite covariance of

rank d0 ≤ d. Then

lim
n→∞

P

(
EP0 [Z] ∈

{
EP [Z] : Df (P ||P̂n) ≤

ρ

n

})
= P

(
χ2
d0 ≤ ρ

)
. (7)

When d = 1, the proposition is a direct consequence of Lemma 1 to come; for more general
dimensions d, we present the proof in Appendix B.5. If we consider the random variable Zx(ξ) :=
ℓ(x; ξ), defined for each x ∈ X , Proposition 1 allows us to construct pointwise confidence intervals
for the distributionally robust problems (4).
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2.2 Asymptotic Expansions

To obtain inferential guarantees on T (P ) = infx∈X EP [ℓ(x; ξ)], we require stronger results than
the pointwise guarantee (7). We now develop an asymptotic expansion that essentially gives all
of the major distributional convergence results in this paper. Our results on convergence and
exact coverage build on two asymptotic expansions, which we now present. In the statement of
the lemma, we recall that a sequence {Zi} of random variables is ergodic and stationary if for all
bounded functions f : Rk → R and g : Rm → R we have

lim
n→∞

E[f(Zt, . . . , Zt+k−1)g(Zt+n, . . . , Zt+n+m−1)] = E[f(Z1, . . . , Zk)]E[g(Z1, . . . , Zm)].

We then have the following lemma.

Lemma 1. Let Z1, Z2, . . . be a strictly stationary ergodic sequence of random variables with E[Z2
1 ] <

∞, and let Assumption A hold. Let s2n = E
P̂n
[Z2]−E

P̂n
[Z]2 denote the sample variance of Z. Then

∣∣∣∣ sup
P :Df (P ||P̂n)≤ ρ

n

EP [Z]− E
P̂n

[Z]−
√

ρ

n
s2n

∣∣∣∣ ≤
εn√
n

(8)

where εn
a.s.→ 0.

See Appendix A for the proof. For intuition, we may rewrite the expansion (8) as

sup
P :Df (P ||P̂n)≤ ρ

n

EP [Z] = EP̂n
[Z] +

√
ρ

n
VarP̂n

(Z) +
ε+n√
n

(9a)

inf
P :Df (P ||P̂n)≤ ρ

n

EP [Z] = EP̂n
[Z]−

√
ρ

n
VarP̂n

(Z) +
ε−n√
n

(9b)

with ε±n
a.s.→ 0, where the second equality follows from symmetry. Applying the classical central

limit theorem and Slutsky’s lemma, we then obtain

P

(√
n
∣∣∣EP0 [Z]− E

P̂n
[Z]
∣∣∣ ≤

√
ρVar

P̂n
(Z)
)

→
n↑∞

P(|N(0, 1)| ≤ √
ρ) = P(χ2

1 ≤ ρ),

yielding Proposition 1 in the case that d = 1. Concurrently with the original version of this paper,
Lam [50] gives an in-probability version of the result (9) (rather than almost sure) for the case
f(t) = −2 log t, corresponding to empirical likelihood. Our proof is new, gives a probability 1
result, and generalizes to ergodic stationary sequences.

Next, we show a uniform variant of the asymptotic expansion (9) which relies on local Lips-
chitzness of our loss. While our results apply in significantly more generality (see Section 7), the
following assumption covers many practical instances of stochastic optimization problems.

Assumption B. The set X ⊂ R
d is compact, and there exists a measurable function M : Ξ → R+

such that for all ξ ∈ Ξ, ℓ(·; ξ) is M(ξ)-Lipschitz with respect to some norm ‖·‖ on X .

Theorem 2. Let Assumption B hold with EP0 [M(ξ)2] < ∞ and assume that EP0 [|ℓ(x0; ξ)|2] < ∞
for some x0 ∈ X . If ξi

iid∼ P0, then

sup
P :Df (P ||P̂n)≤ ρ

n

EP [ℓ(x, ξ)] = E
P̂n

[ℓ(x, ξ)] +

√
ρ

n
Var

P̂n
(ℓ(x, ξ)) + εn(x), (10)

where supx∈X
√
n|εn(x)| P

∗

→ 0.
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This theorem is a consequence of the more general uniform expansions we develop in Section 7, in
particular Theorem 9. In addition to generalizing classical empirical likelihood theory, these results
also allow a novel proof of the classical empirical likelihood result for means (Proposition 1).

3 Statistical Inference for Stochastic Optimization

With our asymptotic expansion and convergence results in place, we now consider application of
our results to stochastic optimimization problems and study the mapping

Topt : P → R, P 7→ Topt(P ) := inf
x∈X

EP [ℓ(x; ξ)].

Although the functional Topt(P ) is nonlinear, we can provide regularity conditions guaranteeing
its smoothness (Hadamard differentiability), so that the generalized empirical likelihood approach
provides asymptotically exact confidence bounds on Topt(P ). Throughout this section, we make a
standard assumption guaranteeing existence of minimizers [e.g. 69, Theorem 1.9].

Assumption C. The function ℓ(·; ξ) is proper and lower semi-continuous for P0-almost all ξ ∈ Ξ.
Either X is compact or x 7→ EP0 [ℓ(x; ξ)] is coercive, meaning EP0 [ℓ(x; ξ)] → ∞ as ‖x‖ → ∞.

In the remainder of this section, we explore the generalized empirical likelihood approach to
confidence intervals on the optimal value for both i.i.d. data and dependent sequences (Sections 3.1
and 3.1, respectively), returning in Section 3.3 to discuss a few computational issues, examples,
and generalizations.

3.1 Generalized Empirical Likelihood for Stochastic Optimization

The first result we present applies in the case that the data is i.i.d.

Theorem 3. Let Assumptions A, B hold with EP0 [M(ξ)2] < ∞ and EP0 [|ℓ(x0; ξ)|2] < ∞ for some

x0 ∈ X . If ξi
iid∼ P0 and the optimizer x⋆ := argminx∈X EP0 [ℓ(x; ξ)] is unique, then

lim
n→∞

P

(
Topt(P0) ∈

{
Topt(P ) : Df

(
P ||P̂n

)
≤ ρ

n

})
= P

(
χ2
1 ≤ ρ

)
.

This result follows from a combination of two steps: the generalized empirical likelihood theory
for smooth functionals we give in Section 7, and a proof that the conditions of the theorem are
sufficient to guarantee smoothness of Topt. See Appendix C for the full derivation.

Setting X = R
d, meaning that the problem is unconstrained, and assuming that the loss

x 7→ ℓ(x; ξ) is differentiable for all ξ ∈ Ξ, Lam and Zhou [51] give a similar (but different) result
to Theorem 3 for the special case that f(t) = −2 log t, which is the classical empirical likelihood
setting. They use first order optimality conditions as an estimating equation and apply standard
empirical likelihood theory [64]. This approach gives a non-pivotal asymptotic distribution; the lim-
iting law is a χ2

r-distribution with r = rank(CovP0(∇ℓ(x⋆; ξ)) degrees of freedom, though x⋆ need
not be unique in this approach. The resulting confidence intervals are too conservative and fail
to have (asymptotically) exact coverage. The estimating equations approach also requires the loss
ℓ(·; ξ) to be differentiable and the covariance matrix of (ℓ(x⋆; ξ),∇xℓ(x

⋆; ξ)) to be positive definite
for some x∗ ∈ argminx∈X EP0 [ℓ(x; ξ)]. In contrast, Theorem 3 applies to problems with general con-
straints, as well as more general objective functions ℓ and f -divergences, by leveraging smoothness
properties (over the space of probability measures) of the functional Topt(P ) := infx∈X EP [ℓ(x; ξ)].
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A consequence of the more general losses, divergences, and exact coverage is that the theorem
requires the minimizer of EP0 [ℓ(x; ξ)] to be unique.

Shapiro [74, 76] develops a number of normal approximations and asymptotic normality theory
for stochastic optimization problems. The normal analogue of Theorem 3 is that

√
n

(
inf
x∈X

E
P̂n

[ℓ(x; ξ)]− inf
x∈X

EP0 [ℓ(x; ξ)]

)
d
 N (0,VarP0(ℓ(x

⋆; ξ))) (11)

which holds under the conditions of Theorem 3. The normal approximation (11) depends on the
unknown parameter VarP0(ℓ(x

⋆; ξ)) and is not asymptotically pivotal. The generalized empirical
likelihood approach, however, is pivotal, meaning that there are no hidden quantities we must
estimate; generally speaking, the normal approximation (11) requires estimation of VarP0(ℓ(x

⋆; ξ)),
for which one usually uses Var

P̂n
(ℓ(x̂n; ξ)) where x̂n minimizes the sample average (2).

When the optimum is not unique, we can still provide an exact asymptotic characterization
of the limiting probabilities that ln ≤ Topt(P0) ≤ un, where we recall the definitions (4) of ln =

infP{Topt(P ) : Df (P ||P̂n) ≤ ρ/n} and un = supP {Topt(P ) : Df (P ||P̂n) ≤ ρ/n}, which also shows
a useful symmetry between the upper and lower bounds. The characterization depends on the
excursions of a non-centered Gaussian process when x⋆ is non-unique, which unfortunately makes
it hard to evaluate. To state the result, we require the definition of a few additional processes. Let
G be the mean-zero Gaussian process with covariance

Cov(x1, x2) = E[G(x1)G(x2)] = Cov(ℓ(x1; ξ), ℓ(x2; ξ))

for x1, x2 ∈ X , and define the non-centered processes H+ and H− by

H+(x) := G(x) +
√

ρVarP0(ℓ(x; ξ)) and H−(x) := G(x)−
√

ρVarP0(ℓ(x; ξ)). (12)

Letting S⋆
P0

:= argminx∈X EP0 [ℓ(x; ξ)] be the set of optimal solutions for the population problem (1),
we obtain the following theorem. (It is possible to extend this result to mixing sequences, but we
focus for simplicity on the i.i.d. case.)

Theorem 4. Let Assumptions A, B, and C hold, where the Lipschitz constant M satisfies EP0 [M(ξ)2] <

∞. Assume there exists x0 ∈ X such that EP0 [|ℓ(x0; ξ)|2] < ∞. If ξi
iid∼ P0, then

lim
n→∞

P

(
inf
x∈X

EP0 [ℓ(x; ξ)] ≤ un

)
= P

(
inf

x∈S⋆
P0

H+(x) ≥ 0

)

and

lim
n→∞

P

(
inf
x∈X

EP0 [ℓ(x; ξ)] ≥ ln

)
= P

(
inf

x∈S⋆
P0

H−(x) ≤ 0

)
.

If S⋆
P0

is a singleton, both limits are equal to 1− 1
2P
(
χ2
1 ≥ ρ

)
.

We defer the proof of the theorem to Appendix C.3, noting that it is essentially an immediate
consequence of the uniform results in Section 7 (in particular, the uniform variance expansion of
Theorem 9 and the Hadamard differentiability result of Theorem 10).

Theorem 4 provides us with a few benefits. First, if all one requires is a one-sided confidence
interval (say an upper interval), we may shorten the confidence set via a simple correction to the
threshold ρ. Indeed, for a given desired confidence level 1−α, setting ρ = χ2

1,1−2α (which is smaller

than χ2
1,1−α) gives a one-sided confidence interval (−∞, un] with asymptotic coverage 1− α.

9



3.2 Extensions to Dependent Sequences

We now give an extension of Theorem 3 to dependent sequences, including Harris recurrent Markov
chains mixing suitably quickly. To present our results, we first recall β-mixing sequences [16, 34,
Chs. 7.2–3] (also called absolute regularity in the literature).

Definition 1. The β-mixing coefficient between two sigma algbras B1 and B2 on Ξ is

β(B1,B2) =
1

2
sup

∑

I×J
|P(Ai ∩Bj)− P(Ai)P(Bj)|

where the supremum is over finite partitions {Ai}i∈I , {Bj}j∈J of Ξ such that Ai ∈ B1 and Bj ∈ B2.

Let {ξ}i∈Z be a sequence of strictly stationary random vectors. Given the σ-algebras

G0 := σ(ξi : i ≤ 0) and Gn := σ(ξi : i ≥ n) for n ∈ N,

the β-mixing coefficients of {ξi}i∈Z are defined via Definition 1 by

βn := β(G0,Gn). (13)

A stationary sequence {ξi}i∈Z is β-mixing if βn → 0 as n → ∞. For Markov chains, β-mixing has
a particularly nice interpretation: a strictly stationary Markov chain is β-mixing if and only if it is
Harris recurrent and aperiodic [16, Thm. 3.5].

With these preliminaries, we may state our asymptotic convergence result, which is based on a
uniform central limit theorem that requires fast enough mixing [29].

Theorem 5. Let {ξn}∞n=0 be an aperiodic, positive Harris recurrent Markov chain taking values on
Ξ with stationary distribution π. Let Assumptions A and B hold and assume that there exists r > 1

and x0 ∈ X satisfying
∑∞

n=1 n
1

r−1βn < ∞, the Lipschitz moment bound Eπ[|M(ξ)|2r ] < ∞, and
Eπ[|ℓ(x0; ξ)|2r] < ∞. If the optimizer x⋆ := argminx∈X Eπ[ℓ(x; ξ)] is unique then for any ξ0 ∼ ν

lim
n→∞

Pν

(
Topt(π) ∈

{
Topt(P ) : Df

(
P ||P̂n

)
≤ ρ

n

})
= P

(
χ2
1 ≤

ρVarπ ℓ(x
⋆; ξ)

σ2
π(x

⋆)

)
(14)

where σ2
π(x

⋆) = Varπ ℓ(x
⋆; ξ) + 2

∑∞
n=1Covπ(ℓ(x

⋆; ξ0), ℓ(x
⋆; ξn)).

Theorem 5 is more or less a consequence of the general results we prove in Section 7.3 on ergodic
sequences, and we show how it follows from these results in Appendix D.3.

We give a few examples of Markov chains satisfying the mixing condition
∑∞

n=1 n
1

r−1βn < ∞
for some r > 1.
Example 1 (Uniform Ergodicity): If an aperiodic, positive Harris recurrent Markov chain is
uniformly ergodic then it is geometrically β-mixing [54, Theorem 16.0.2], meaning that βn = O(cn)
for some constant c ∈ (0, 1) In this case, the Lipschitzian assumption in Theorem 5 holds whenever
Eπ[M(ξ)2 log+M(ξ)] < ∞. ⋄

As our next example, we consider geometrically β-mixing processses that are not necessarily uni-
formly mixing. The following result is due to Mokkadem [55].
Example 2 (Geometric β-mixing): Let Ξ = R

p and consider the affine auto-regressive process

ξn+1 = A(ǫn+1)ξn + b(ǫn+1)

10



where A is a polynomial p×p matrix-valued function and b is a R
p-valued polynomial function. We

assume that the noise sequence {ǫn}n≥1
iid∼ F where F has a density with respect to the Lebesgue

measure. If (i) eigenvalues of A(0) are inside the open unit disk and (ii) there exists a > 0 such
that E ‖A(ǫn)‖a + E ‖b(ǫn)‖a < ∞, then {ξn}n≥0 is geometrically β-mixing. That is, there exists
c ∈ (0, 1) such that βn = O(sn). ⋄

See Doukhan [28, Section 2.4.1] for more examples of β-mixing processes.
Using the equivalence of geometric β-mixing and geometric ergodicity for Markov chains [61, 54,

Chapter 15], we can give a Lyapunov criterion.
Example 3 (Lyapunov Criterion): Let {ξn}n≥0 be an aperiodic Markov chain. For shorthand,
denote the regular conditional distribution of ξm given ξ0 = z by Pm(z, ·) := Pz(ξm ∈ ·) =
P(ξm ∈ ·|ξ0 = z). Assume that there exists a measurable set C ∈ A, a probability measure ν
on (Ξ,A), a potential function w : Ξ → [1,∞), and constants m ≥ 1, λ > 0, γ ∈ (0, 1) such
that (i) Pm(z,B) ≥ λν(B) for all z ∈ C,B ∈ A, (ii) Ezw(ξ1) ≤ γw(z) for all z ∈ Cc, and (iii)
supz∈C Ezw(ξ1) < ∞. (The set C is a small set [54, Chapter 5.2].) Then {ξn}n≥0 is aperiodic,
positive Harris recurrent, and geometrically ergodic [54, Theorem 15.0.1]. Further, we can show
that {ξn}n≥0 is geometrically β-mixing: there exists c ∈ (0, 1) with βn = O(cn). For completeness,
we include a proof of this in Appendix D.1. ⋄

For dependent sequences, the asymptotic distribution in the limit (14) contains unknown terms
such as σ2

π and Varπ(ℓ(x
⋆; ξ)); such quantities need to be estimated to obtain exact coverage. This

loss of a pivotal limit occurs because
√
n(P̂n − P0) converges to a Gaussian process G on X with

covariance function

Cov(x1, x2) := Cov(G(x1), G(x2)) =
∑

n≥1

Covπ (ℓ(x1; ξ0), ℓ(x2; ξn)) ,

while empirical likelihood self-normalizes based on Covπ (ℓ(x1; ξ0), ℓ(x2; ξ0)). (These covariances
are identical if ξi are i.i.d.) As a result, in Theorem 5, we no longer have the self-normalizing
behavior of Theorem 3 for i.i.d. sequences. To remedy this, we now give a sectioning method that
yields pivotal asymptotics, even for dependent sequences.

Let m ∈ N be a fixed integer. Letting b := ⌊n/m⌋, partition the n samples into m sections

{ξ1, . . . , ξb}, {ξb+1, . . . , ξ2b}, · · · , {ξ(m−1)b+1, . . . , ξmb}

and denote by P̂ j
b the empirical distribution on each of the blocks for j = 1, . . . ,m. Let

U i
b := sup

P≪P̂ j
b

{
Topt(P ) : Df

(
P ||P̂ j

b

)
≤ ρ

n

}

and define

U b :=
1

m

m∑

j=1

U j
b and s2m(Ub) :=

1

m

m∑

j=1

(
U j
b − U b

)2
.

Letting x̂∗n ∈ argminx∈X EP̂n
[ℓ(x; ξ)], we obtain the following result.

Proposition 6. Under the conditions of Theorem 5, for any initial distribution ξ0 ∼ ν

lim
n→∞

Pν

(
Topt(π) ≤ U b −

√
ρ

b
VarP̂n

ℓ(x̂∗n; ξ) + sm(Ub)t

)
= P(Tm−1 ≥ −t)

where Tm−1 is the Student-t distribution with (m− 1)-degress of freedom.

See Section D.4 for the proof of Proposition 6. Thus, we recover an estimable quantity guaranteeing
an exact confidence limit.
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3.3 Computing the Confidence Interval and its Properties

For convex objectives, we can provide efficient procedures for computing our desired confidence
intervals on the optimal value Topt(P0). We begin by making the following assumption.

Assumption D. The set X ⊂ R
d is convex and ℓ(·; ξ) : X → R is a proper closed convex function

for P0-almost all ξ ∈ Ξ.

For P finitely supported on n points, the functional P 7→ Topt(P ) = infx∈X EP [ℓ(x; ξ)] is
continuous (on R

n) because it is concave and finite-valued; as a consequence, the set

{
Topt(P ) : Df (P ||P̂n) ≤ ρ/n

}
=

{
inf
x∈X

n∑

i=1

piℓ(x; ξi) : p
⊤
1 = 1, p ≥ 0,

n∑

i=1

f(npi) ≤ ρ

}
, (15)

is an interval, and in this section we discuss a few methods for computing it. To compute the
interval (15), we solve for the two endpoints un and ln of expressions (4a)–(4b).

The upper bound is computable using convex optimization methods under Assumption D, which
follows from the coming results. The first is a minimax theorem [38, Theorem VII.4.3.1].

Lemma 2. Let Assumptions C and D hold. Then

un = inf
x∈X

sup
p∈Rn

{
n∑

i=1

piℓ(x; ξi) : p
⊤
1 = 1, p ≥ 0,

n∑

i=1

f(npi) ≤ ρ

}
. (16)

By strong duality, we can write the minimax problem (16) as a joint minimization problem.

Lemma 3 (Ben-Tal et al. [6]). The following duality holds:

sup
P≪P̂n

{
EP [ℓ(x; ξ)] : Df

(
P ||P̂n

)
≤ ρ

n

}
= inf

λ≥0,η∈R

{
EP̂n

[
λf∗

(
ℓ(x; ξ)− η

λ

)]
+

ρ

n
λ+ η

}
. (17)

When x 7→ ℓ(x; ξ) is convex in x, the minimization (16) is a convex problem because it is the
supremum of convex functions. The reformulation (17) shows that we can compute un by solving
a problem jointly convex in η, λ, and x.

Finding the lower confidence bound (4b) is in general not a convex problem even when the
loss ℓ(·; ξ) is convex in its first argument. With that said, the conditions of Theorem 4, coupled
with convexity, allow us to give an efficient two-step minimization procedure that yields an es-
timated lower confidence bound l̂n that achieves the asymptotic pivotal behavior of ln whenever
the population optimizer for problem (1) is unique. Indeed, let us assume the conditions of The-
orem 4 and Assumption D, additionally assuming that the set S⋆

P0
is a singleton. Then standard

consistency results [78, Chapter 5] guarantee that under our conditions, the empirical minimizer
x̂n = argminx∈X EP̂n

[ℓ(x; ξ)] satisfies x̂n
a.s.→ x⋆, where x⋆ = argminx∈X EP0 [ℓ(x; ξ)]. Now, consider

the one-step estimator
l̂n := inf

P :Df (P ||P̂n)≤ρ/n
EP [ℓ(x̂n; ξ)]. (18)

Then by Theorem 2, we have

l̂n =
1

n

n∑

i=1

ℓ(x̂n; ξi)−
√

ρ

n
VarP̂n

(ℓ(x̂n; ξ)) + oP0(n
− 1

2 )

12



because x̂n is eventually in any open set (or set open relative to X ) containing x⋆. Standard limit
results [82] guarantee that Var

P̂n
(ℓ(x̂n; ξ))

a.s.→ VarP0(ℓ(x
⋆; ξ)), because x 7→ ℓ(x; ξ) is Lipschitzian

by Assumption B. Noting that E
P̂n

[ℓ(x̂n; ξ)] ≤ E
P̂n

[ℓ(x⋆; ξ)], we thus obtain

inf
P :Df (P ||P̂n)≤ρ/n

EP [ℓ(x̂n; ξ)] ≤ EP̂n
[ℓ(x⋆; ξ)]−

√
ρ

n
VarP0(ℓ(x

⋆; ξ)) + oP0(n
− 1

2 )

Defining σ2(x⋆) = VarP0(ℓ(x
⋆; ξ)) for notational convenience and rescaling by

√
n, we have

√
n

(
E
P̂n

[ℓ(x⋆; ξ)]− EP0 [ℓ(x
⋆; ξ)]−

√
ρ

n
σ2(x⋆) + oP0(n

− 1
2 )

)
d
 N

(
−
√

ρσ2(x⋆), σ2(x⋆)
)
.

Combining these results, we have that that
√
n(ln−EP0 [ℓ(x

⋆; ξ)])
d
 N(−

√
ρσ2(x⋆), σ2(x⋆)) (looking

forward to Theorem 9 and using Theorem 3), and

ln ≤ l̂n ≤ E
P̂n

[ℓ(x⋆; ξ)]−
√

ρ

n
σ2(x⋆) + oP0(n

− 1
2 ).

Summarizing, the one-step estimator (18) is upper and lower bounded by quantities that, when
shifted by −EP0 [ℓ(x

⋆; ξ)] and rescaled by
√
n, are asymptotically N(−

√
ρσ2(x⋆), σ2(x⋆)). Thus

under the conditions of Theorem 3 and Assumption B, the one-step estimator l̂n defined by expres-
sion (18) guarantees that

lim
n→∞

P

(
l̂n ≤ EP0 [ℓ(x

⋆; ξ)] ≤ un

)
= P

(
χ2
1 ≤ ρ

)
,

giving a computationally feasible and asymptotically pivotal statistic. We remark in passing that
alternating by minimizing over P : Df (P ||P̂n) ≤ ρ/n and x (i.e. more than the single-step minimizer)

simply gives a lower bound l̃n satisfying ln ≤ l̃n ≤ l̂n, which will evidently have the same convergence
properties.

4 Connections to Robust Optimization and Examples

To this point, we have studied the statistical properties of generalized empirical likelihood esti-
mators, with particular application to estimating the population objective infx∈X EP0 [ℓ(x; ξ)]. We
now make connections between our approach of minimizing worst-case risk over f -divergence balls
and approaches from the robust optimization and risk minimization literatures. We first relate our
approach to classical work on coherent risk measures for optimization problems, after which we
briefly discuss regularization properties of the formulation.

4.1 Upper Confidence Bounds as a Risk Measure

Sample average approximation is optimistic [78], because infx∈X E[ℓ(x; ξ)] ≥ E[infx∈X
1
n

∑n
i=1 ℓ(x; ξi)].

The robust formulation (4a) addresses this optimism by looking at a worst case objective based
on the confidence region {P : Df (P ||P̂n) ≤ ρ/n}. It is clear that the robust formulation (4a) is a
coherent risk measure [78, Ch. 6.3] of ℓ(x; ξ): it is convex, monotonic in the loss ℓ, equivariant to
translations ℓ 7→ ℓ+ a, and positively homogeneous in ℓ. A number of authors have studied coher-
ent risk measures measures [3, 68, 48, 78], and we study their connections to statistical confidence
regions for the optimal population objective (1) below.
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As a concrete example, we consider Krokhmal’s higher-order generalizations [48] of conditional
value at risk, where for k∗ ≥ 1 and a constant c > 0 the risk functional has the form

Rk∗(x;P ) := inf
η∈R

{
(1 + c)EP

[
(ℓ(x; ξ)− η)k∗+

] 1
k∗ + η

}
.

The risk Rk∗ penalizes upward deviations of the objective ℓ(x; ξ) from a fixed value η, where the
parameter k∗ ≥ 1 determines the degree of penalization (so k∗ ↑ ∞ implies substantial penalties
for upward deviations). These risk measures capture a natural type of risk aversion [48].

We can recover such formulations, thus providing asymptotic guarantees for their empirical
minimizers, via the robust formulation (4a). To see this, we consider the classical Cressie-Read
family [22] of f -divergences. Recalling that f∗ denotes the Fenchel conjugate f∗(s) := supt{st −
f(t)}, for k ∈ (−∞,∞) with k 6∈ {0, 1}, one defines

fk(t) =
tk − kt+ k − 1

2k(k − 1)
so f∗

k (s) =
2

k

[(
k − 1

2
s+ 1

)k∗

+

− 1

]
(19)

where we define fk(t) = +∞ for t < 0, and k∗ is given by 1/k + 1/k∗ = 1. We define f1 and
f0 as their respective limits as k → 0, 1. (We provide the dual calculation f∗

k in the proof of
Lemma 4.) The family (19) includes divergences such as the χ2-divergence (k = 2), empirical
likelihood f0(t) = −2 log t+ 2t− 2, and KL-divergence f1(t) = 2t log t− 2t+ 2. All such fk satisfy
Assumption A.

For the Cressie-Read family, we may compute the dual (17) more carefully by infimizing over
λ ≥ 0, which yields the following duality result. As the lemma is a straightforward consequence of
Lemma 3, we defer its proof to Appendix C.4.

Lemma 4. Let k ∈ (1,∞) and define Pn := {P : Dfk(P ||P̂n) ≤ ρ/n}. Then

sup
P∈Pn

EP [ℓ(x; ξ)] = inf
η∈R

{(
1 +

k(k − 1)ρ

2n

) 1
k

EP̂n

[
(ℓ(x; ξ)− η)k∗+

] 1
k∗ + η

}
(20)

The lemma shows that we indeed recover a variant of the risk Rk∗ , where taking ρ ↑ ∞ and k ↓ 1
(so that k∗ ↑ ∞) increases robustness—penalties for upward deviations of the loss ℓ(x; ξ)—in a
natural way. The confidence guarantees of Theorem 4, on the other hand, show how (to within first
order) the asymptotic behavior of the risk (20) depends only on ρ, as each value of k allows upper
confidence bounds on the optimal population objective (1) with asymptotically exact coverage.

4.2 Variance Regularization

We now consider the asymptotic variance expansions of Theorem 2, which is that

sup
P :Df(P ||Pn)≤ ρ

n

EP [ℓ(x; ξ)] = EPn [ℓ(x; ξ)] +

√
ρ

n
VarPn(ℓ(x; ξ)) + εn(x) (21)

where
√
n supx∈X |εn(x)| P

∗

→ 0. In a companion to this paper, Duchi and Namkoong [30, 57] explore
the expansion (21) in substantial depth for the special case f(t) = 1

2 (t− 1)2. Eq. (21) shows that
in an asymptotic sense, we expect similar results to theirs to extend to general f -divergences, and
we discuss this idea briefly.
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The expansion (21) shows that the robust formulation (4a) ameliorates the optimism bias of
standard sample average approximation by penalizing the variance of the loss. Researchers have in-
vestigated connections between regularization and robustness, including Xu et al. [85] for standard
supervised machine learning tasks (see also [5, Chapter 12]), though these results consider uncer-
tainty on the data vectors ξ themselves, rather than the distribution. Our approach yields a qualita-
tively different type of (approximate) regularization by variance. In our follow-up work [30, 57], we
analyze finite-sample performance of the robust solutions. The naive variance-regularized objective

EP̂n
[ℓ(x; ξ)] +

√
ρ

n
VarP̂n

ℓ(x; ξ) (22)

is neither convex (in general) nor coherent, so that the expansion (21) allows us to solve a convex
optimization problem that approximately regularizes variance.

In some restricted situations, the variance-penalized objective (22) is convex—namely, when
ℓ(x; ξ) is linear in x. A classical example of this is the sample version of the Markowitz portfolio
problem [53].
Example 4 (Portfolio Optimization): Let x ∈ R

d denote investment allocations and ξ ∈ R
d

returns on investiment, and consider the optimization problem

maximize
x∈Rd

EP0

[
ξ⊤x

]
subject to x⊤1 = 1, x ∈ [a, b]d.

Given a sample {ξ1, . . . , ξn} of returns, we define µn := EP̂n
[ξ] and Σn := CovP̂n

(ξ) to be the sample
mean and covariance. Then the Lagrangian form of the Markowitz problem is to solve

maximize
x∈Rd

µ⊤
n x−

√
ρ

n
x⊤Σnx subject to x⊤1 = 1, x ∈ [a, b]d.

The robust approximation of Theorem 9 (and Eq. (21)) shows that

inf
{
EP [ξ

⊤x] : Df (P ||P̂n) ≤ ρ/n
}
= µ⊤

n x−
√

ρ

n
x⊤Σnx+ op(n

− 1
2 ),

so that distributionally robust formulation approximates the Markowitz objective to op(n
− 1

2 ). There
are minor differences, however, in that the Markowitz problem penalizes both upward deviations
(via the variance) as well as the downside counterpart. The robust formulation, on the other hand,
penalizes downside risk only and is a coherent risk measure. ⋄

5 Consistency

In addition to the inferential guarantees—confidence intervals and variance expansions—we have
thus far discussed, we can also give a number of guarantees on the asymptotic consistency of
minimizers of the robust upper bound (4a). We show that robust solutions are consistent under
(essentially) the same conditions required for that of sample average approximation, which are more
general than that required for the uniform variance expansions of Theorem 2. We show this in two
ways: first, by considering uniform convergence of the robust objective (4a) to the population risk
EP0 [ℓ(x; ξ)] over compacta (Section 5.1), and second by leveraging epigraphical convergence [69]
to allow unbounded feasible region X when ℓ(·; ξ) is convex (Section 5.2). In the latter case, we
require no assumptions on the magnitude of the noise in estimating EP0 [ℓ(x; ξ)] as a function of
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x ∈ X ; convexity forces the objective to be large far from the minimizers, so the noise cannot create
minimizers far from the solution set.

Bertsimas et al. [11] also provide consistency results for robust variants of sample average
approximation based on goodness-of-fit tests, though they require a number of conditions on the
domain Ξ of the random variables for their results (in addition to certain continuity conditions on
ℓ). In our context, we abstract away from this by parameterizing our problems by the n-vectors
{P : Df (P ||P̂n) ≤ ρ/n} and give more direct consistency results that generalize to mixing sequences.

5.1 Uniform Convergence

For our first set of consistency results, we focus on uniform convergence of the robust objective to
the population (1). We begin by recapitulating a few standard statistical results abstractly. Let H
be a collection of functions h : Ξ → R. We have the following definition on uniform strong laws of
large numbers.

Definition 2. A collection of functions H, h : Ξ → R for h ∈ H, is Glivenko-Cantelli if

sup
h∈H

∣∣∣EP̂n
[h]− EP0 [h]

∣∣∣ a.s.∗→ 0.

There are many conditions sufficient to guarantee Glivenko-Cantelli properties. Typical approaches
include covering number bounds on H [82, Chapter 2.4]; for example, Lipschitz functions form a
Glivenko-Cantelli class, as do continuous functions that are uniformly dominated by an integrable
function in the next example.
Example 5 (Pointwise compact class [81], Example 19.8): Let X be compact and ℓ(·; ξ) be
continuous in x for P0-almost all ξ ∈ Ξ. Then H = {ℓ(x; ·) : x ∈ X} is Glivenko-Cantelli if there
exists a measurable envelope function Z : Ξ → R+ such that |ℓ(x; ξ)| ≤ Z(ξ) for all x ∈ X and
EP0 [Z] < ∞. ⋄

If H is Glivenko-Cantelli for ξ
iid∼ P0, then it is Glivenko-Cantelli for β-mixing sequences [60] (those

with coefficients (13) βn → 0). Our subsequent results thus apply to β-mixing sequences {ξi}.
If there is an envelope function for objective ℓ(x; ξ) that has more than one moment under P0,

we can show that the robust risk converges uniformly to the population risk (compared to just the
first moment for SAA).

Assumption E. There exists Z : Ξ → R+ with |ℓ(x; ξ)| ≤ Z(ξ) for all x ∈ X and ǫ > 0 such that
EP0 [Z(ξ)1+ǫ] < ∞.

Under this assumption, we have the following theorem.

Theorem 7. Let Assumptions A and E hold, and assume the class {ℓ(x; ·) : x ∈ X} is Glivenko-
Cantelli. Then

sup
x∈X

sup
P≪P̂n

{
|EP [ℓ(x; ξ)] − EP0 [ℓ(x; ξ)]| : Df

(
P ||P̂n

)
≤ ρ

n

}
a.s.∗→ 0

See Appendix E.1 for a proof of the result.
When uniform convergence holds, the consistency of robust solutions follows. As in the previous

section, we define the sets of optima

S⋆
P0

:= argmin
x∈X

EP0 [ℓ(x; ξ)] and S⋆
P̂n

:= argmin
x∈X

sup
P≪P̂n

{
EP [ℓ(x; ξ)] : Df (P ||P̂n) ≤

ρ

n

}
. (23)

Then we immediately attain the following corollary to Theorem 7. In the corollary, we recall the
definition of the inclusion distance, or deviation, between sets (6).
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Corollary 1. Let Assumptions A and E hold, let X be compact, and assume ℓ(·; ξ) is continuous
on X . Then

inf
x∈X

sup
P≪P̂n

{
EP [ℓ(x; ξ)] : Df (P ||P̂n) ≤

ρ

n

}
− inf

x∈X
EP0 [ℓ(x; ξ)]

P ∗

→ 0

and d⊂(S⋆
P̂n

, S⋆
P0
)
P ∗

→ 0.

Proof The first conclusion is immediate by Theorem 7 and Example 5. To show convergence of
the optimal sets, we denote by Aǫ = {x : dist(x,A) ≤ ǫ} the ǫ-enlargement of A. By the uniform
convergence given in Theorem 7 and continuous mapping theorem [82, Theorem 1.3.6], for all ǫ > 0

lim sup
n→∞

P
∗
(
d⊂(S

⋆
P̂n

, S⋆
P0
) ≥ ǫ

)
≤ lim sup

n→∞
P
∗
(

inf
x∈S⋆ǫ

P0

F̂n(x) > inf
x∈X

F̂n(x)

)

= P
∗
(

inf
x∈S⋆ǫ

P0

F (x) > inf
x∈X

F (x)

)
= 0

where F̂n(x) := supP≪P̂n
{EP [ℓ(x; ξ)] : Df (P ||P̂n) ≤ ρ

n} and F (x) := EP0 [ℓ(x; ξ)].

5.2 Consistency for convex problems

When the function ℓ(·; ξ) is convex, we can give consistency guarantees for minimizers of the
robust upper bound (4a) by leveraging epigraphical convergence theory [46, 69], bypassing the
uniform convergence and compactness conditions above. Analogous results hold for sample average
approximation [78, Chapter 5.1.1].

In the theorem, we let S⋆
P0

and S⋆
P̂n

be the solution sets (23) as before. We require a much

weaker variant of Assumption E: we assume that for some ǫ > 0, we have E[|ℓ(x; ξ)|1+ǫ] < ∞ for all
x ∈ X . We also assume there exists a function g : X × Ξ → R such that for each x ∈ X , there is a
neighborhood U of x with infz∈U ℓ(z; ξ) ≥ g(x, ξ) and E[|g(x, ξ)|] < ∞. Then we have the following
result, whose proof we provide in Appendix E.2.

Theorem 8. In addition to the conditions of the previous paragraph, let Assumptions A, C, and D
hold. Assume that EP̂n

[|ℓ(x; ξ)|1+ǫ]
a.s.→ EP0 [|ℓ(x; ξ)|1+ǫ] for x ∈ X . Then

inf
x∈X

sup
P≪P̂n

{
EP [ℓ(x; ξ)] : Df (P ||P̂n) ≤

ρ

n

}
P ∗

→ inf
x∈X

EP0 [ℓ(x; ξ)]

and d⊂(S⋆
P̂n

, S⋆
P0
)
P ∗

→ 0.

By comparison with Theorem 7 and Corollary 1, we see that Theorem 8 requires weaker conditions
on the boundedness of the domain X , instead relying on the compactness of the solution set S⋆

P0

and the growth of EP0 [ℓ(x; ξ)] off of this set, which means that eventually S⋆
P̂n

is nearly contained

in S⋆
P0
. When {ξi} are not i.i.d., the pointwise strong law for |ℓ(x; ξ)|1+ǫ holds if {ξi} is strongly

mixing (α-mixing) [40], so the theorem immediately generalizes to dependent sequences.
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6 Simulations

We present three simulation experiments in this section: portfolio optimization, conditional value-
at-risk optimization, and optimization in the multi-item newsvendor model. In each of our three
simulations, we compute and compare the following approaches to estimation and inference:

(i) We compute the generalized empirical likelihood confidence interval [ln, un] as in expres-
sion (4), but we use the (computable) estimate l̂n of Eq. (18) in Section 3.3. With these,
we simulate the true coverage probability P(infx∈X EP0 [ℓ(x; ξ)] ∈ [l̂n, un]) (because we control
the distribution P0 and ℓ(x; ξ)) of our confidence intervals, and we compare it to the nominal
χ2-confidence level P(χ2

1 ≤ ρ) our asymptotic theory in Section 3 suggests.

(ii) We compute the coverage rates of the normal confidence intervals (11) at the same level as
our χ2 confidence level.

Throughout our simulations (and for both the normal and generalized empirical likelihood/robust
approximations), we use the nominal 95% confidence level, setting ρ = χ2

1,0.95, so that we attain

the asymptotic coverage P
(
χ2
1 ≤ ρ

)
= 0.95. We focus on i.i.d. sequences and assume that ξi

iid∼ P0

in the rest of the section.
To solve the convex optimization problems (17) and (18) to compute un and l̂n, respectively, we

use the Julia package convex.jl [80]. Each experiment consists of 1250 independent replications
for each of the sample sizes n we report, and we vary the sample size n to explore its effects
on coverage probabilities. In all of our experiments, because of its computational advantages,
we use the χ2-squared divergence f2(t) = 1

2(t − 1)2. We summarize our numerical results in
Table 1, where we simulate runs of sample size up to n = 10, 000 for light-tailed distributions,
and n = 100, 000 for heavy-tailed distributions; in both cases, we see that actual coverage very
closely approximates the nominal coverage 95% at the largest value of sample size (n) reported.
In Figure 1, we plot upper/lower confidence bounds and mean estimates, all of which are averaged
over the 1250 independent runs.

6.1 Portfolio Optimization

Our first simulation investigates the standard portfolio optimization problem (recall Example 4,
though we minimize to be consistent with our development). We consider problems in dimension
d = 20 (i.e. there are 20 assets). For this problem, the objective is ℓ(x; ξ) = x⊤ξ, we set X =
{x ∈ R

d | 1⊤x = 1,−10 ≤ x ≤ 10} as our feasible region (allowing leveraged investments), and we

simulate returns ξ
iid∼ N(µ,Σ). Within each simulation, the vector µ and covariance Σ are chosen

as µ ∼ N(0, Id) and Σ is standard Wishart distributed with d degrees of freedom. The population
optimal value is infx∈X µ⊤x. As µ ∈ R

d has distinct entries, the conditions of Theorem 3 are
satisfied because the population optimizer is unique. We also consider the (negative) Markowitz
problem

minimize
x∈X

E
P̂n

[x⊤ξ] +

√
ρ

n
Var

P̂n
(x⊤ξ),

as the variance-regularized expression is efficiently minimizable (it is convex) in the special case
of linear objectives. In Figure 1a, we plot the results of our simulations. The vertical axis is the
estimated confidence interval for the optimal solution value for each of the methods, shifted so
that 0 = µ⊤x⋆, while the horizontal axis is the sample size n. We also plot the estimated value of
the objective returned by the Markowitz optimization (which is somewhat conservative) and the
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Table 1: Coverage Rates (nominal = 95%)

% Portfolio Newsvendor CVaR Normal CVaR tail a = 3 CVaR tail a = 5
sample size EL Normal EL Normal EL Normal EL Normal EL Normal

20 75.16 89.2 30.1 91.38 91.78 95.02 29 100 35.4 100
40 86.96 93.02 55.24 90.32 93.3 94.62 48.4 100 59.73 100
60 89.4 93.58 69.5 88.26 93.8 94.56 42.67 100 51.13 100
80 90.46 93.38 74.44 86.74 93.48 93.94 47.73 100 57.73 100
100 91 93.8 77.74 85.64 94.22 94.38 46.33 100 55.67 99.87
200 92.96 93.68 86.73 95.27 94.64 95.26 48.4 99.8 56.73 98.93
400 94.28 94.52 91 94.49 94.92 95.06 48.67 98.93 55.27 97.93
600 94.48 94.7 92.73 94.29 94.8 94.78 51.13 98.53 56.73 97.67
800 94.36 94.36 93.02 93.73 94.64 94.64 51.67 97.93 57.47 97.6
1000 95.25 95.15 92.84 94.31 94.62 94.7 53.07 98.47 58.6 97.33
2000 95.48 95.25 93.73 95.25 94.92 95.04 54.07 96.8 59.07 96.53
4000 96.36 95.81 95.1 95.78 95.3 95.3 58.6 96 62.07 96.6
6000 96.33 95.87 94.61 95 94.43 94.51 61.8 95.8 66.07 95.73
8000 96.46 95.9 94.56 94.71 94.85 94.85 64.67 95.67 69 95.33
10000 96.43 95.51 94.71 94.85 94.43 94.43 66.87 94.73 69.4 96.13
20000 74.27 95.8 76.8 96.13
40000 81.8 94.2 84.87 94.87
60000 86.87 93.93 89.47 94.47
80000 91.4 93.67 92.33 95
100000 94.2 94.33 95.07 95.2

estimated value given by sample average approximation (which is optimistic), averaging the con-
fidence intervals over 1250 independent simulations. Concretely, we see that the robust/empirical
likelihood-based confidence interval at n = 20 is approximately [−150, 40], and the Markowitz
portfolio is the line slightly above 0, but below each of the other estimates of expected returns. In
Table 1, we give the actual coverage rates— the fraction of time the estimated confidence interval
contains the true value µ⊤x⋆. In comparison with the normal confidence interval, generalized empir-
ical likelihood undercovers in small sample settings, which is consistent with previous observations
for empirical likelihood (e.g., [64, Sec 2.8]).

6.2 Conditional Value-at-Risk

For a real-valued random variable ξ, the conditional value-at-risk α (CVaR) is the expectation of
ξ conditional on it taking values above its 1− α quantile [68]. More concisely, the CVaR (at α) is

E[ξ | ξ ≥ q1−α]
(i)
= inf

x

{
1

1− α
E[(ξ − x)+] + x

}
where q1−α = inf{x ∈ R : 1− α ≤ P(ξ ≤ x)}.

Conditional Value-at-Risk is of interest in many financial applications [68, 78].
For our second simulation experiment, we investigate three different distributions: a mixture

of normal distributions and two different mixtures of heavy-tailed distributions. For our nor-
mal experiments, we draw ξ from an equal weight mixture of normal distributions with means
µ ∈ {−6,−4,−2, 0, 2, 4, 6} and variances σ2 ∈ {2, 4, 6, 8, 10, 12, 14}, respectively. In keeping with
our financial motivation, we interpret µ as negative returns, where σ2 increases as µ increases,
reminiscent of the oft-observed tendency in bear markets (the leverage effect) [14, 19]. For the
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Figure 1: Average confidence sets for infx∈X EP0 [ℓ(x; ξ)] for normal approximations (11) (“Nor-
mal”) and the generalized empirical likelihood confidence set (4) (“EL”). The true value being
approximated in each plot is centered at 0. The optimal objective computed from the sample
average approximation (“SAA”) has a negative bias.

heavy-tailed experiments, we take ξ = µ + Z for Z symmetric with P(|Z| ≥ t) ∝ min{1, t−a}, and
we we take an equal weight mixture of distributions centered at µ ∈ {−6,−4,−2, 0, 2, 4, 6}.

Our optimization problem is thus to minimize the loss ℓ(x; ξ) = 1
1−α (ξ − x)+ + x, and we

compare the performance of the generalized empirical likelihood confidence regions we describe and
normal approximations. For all three mixture distributions, the cumulative distribution function is
increasing, so there is a unique population minimizer. To approximate the population optimal value,
we take n = 1,000,000 to obtain a close sample-based approximation to the CVaR EP0 [ξ | ξ ≥ q1−α].
Although the feasible region X = R is not compact, we compute the generalized empirical likelihood
interval (4) and compare coverage rates for confidence regions that asymptotically have the nominal
level 95%. In Table 1, we see that the empirical likelihood coverage rates are generally smaller
than the normal coverage rates, which is evidently (see Figure 1b) a consequence of still remaining
negative bias (optimism) in the robust estimator (4a). In addition, the true coverage rate converges
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to the nominal level (95%) more slowly for heavy-tailed data (with β ∈ {3, 5}).

6.3 Multi-item Newsvendor

Our final simulation investigates the performance of the generalized empirical likelihood integral (4)
for the multi-item newsvendor problem. In this problem, the random variables ξ ∈ R

d denote
demands for items j = 1, . . . , d, and for each item j, there is a backorder cost bj per unit and
inventory cost hj per unit. For a given allocation x ∈ R

d of items, then, the loss upon receiving
demand ξ is ℓ(x; ξ) = b⊤ (x− ξ)+ + h⊤ (ξ − x)+, where (·)+ denotes the elementwise positive-part
of its argument.

For this experiment, we take d = 20 and set X = {x ∈ R
d : ‖x‖1 ≤ 10}, letting ξ

iid∼ N(0,Σ)
(there may be negative demand), where Σ is again standard Wishart distributed with d degrees of
freedom. We choose b, h to have i.i.d. entries distributed as Exp( 1

10 ). For each individual simulation,
we approximate the population optimum using a sample average approximation based on a sample
of size n = 105. As Table 1 shows, the proportion of simulations in which [l̂n, un] covers the true
optimal value is still lower than the nominal 95%, though it is less pronounced than other cases.
Figure 1c shows average confidence intervals for the optimal value for both generalized empirical
likelihood-based and normal-based confidence sets.

7 General Results

In this section, we abstract away from the stochastic optimization setting that motivates us. By
leveraging empirical process theory, we give general results that apply to suitably smooth functionals
(Hadamard differentiable) and classes of functions {ℓ(x; ·) : x ∈ X} for which a uniform central
limit theorem holds (P0-Donsker). Our subsequent development implies the results presented in
previous sections as corollaries. We begin by showing results for i.i.d. sequences and defer extensions
to dependent sequences to Section 7.3. Let Z1, . . . , Zn be independent random vectors with common
distribution P0. Let P be the set of probability distributions on Ξ and let T : P → R be a functional
of interest.

First, we show a general version of the uniform asymptotic expansion (10) that applies to P0-
Donsker classes in Section 7.1. In Section 7.2 we give a generalized empirical likelihood theory for
Hadamard differentiable functionals T (P ), which in particular applies to Topt(P ) = infx∈X EP [ℓ(x; ξ)]
(cf. Theorem 3). The general treatment for Hadamard differentiable functionals is necessary as
Frechét differentiability is too stringent for studying constrained stochastic optimization [76]. Fi-
nally, we present extensions of the above results to (quickly-mixing) dependent sequences in Sec-
tion 7.3.

7.1 Uniform Asymptotic Expansion

A more general story requires some background on empirical processes, which we now briefly sum-
marize (see van der Vaart and Wellner [82] for a full treatment). Let P0 be a fixed probability
distribution on the measurable space (Ξ,A), and recall the space L2(P0) of functions square inte-

grable with respect to P0, where we equip functions with the L2(P0) norm ‖h‖L2(P0)
= EP0 [h(ξ)

2]
1
2 .

For any signed measure µ on Ξ and h : Ξ → R, we use the functional shorthand µh :=
∫
h(ξ)dµ(ξ)

so that for any probability measure we have Ph = EP [h(ξ)]. Now, for a set H ⊂ L2(P0),
let L∞(H) be the space of bounded linear functionals on H equipped with the uniform norm
‖L1 − L2‖H = suph∈H |L1h−L2h| for L1, L2 ∈ L∞(H). To avoid measurability issues, we use outer
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probability and expectation with the corresponding convergence notions as necessary [e.g. 82, Sec-
tion 1.2]. We then have the following definition [82, Eq. (2.1.1)] that describes sets of functions on
which the central limit theorem holds uniformly.

Definition 3. A class of functions H is P0-Donsker if
√
n(P̂n − P0)

d
 G in the space L∞(H),

where G is a tight Borel measurable element of L∞(H), and P̂n is the empirical distribution of

ξi
iid∼ P0.

In Definition 3, the measures P̂n, P0 are considered as elements in L∞(H) with P̂nf = EP̂n
f ,

P0f = EP0f for f ∈ H.
With these preliminaries in place, we can state a general form of Theorem 2. We let H be a

P0-Donsker collection of functions h : Ξ → R with L2-integrable envelope, that is, M2 : Ξ → R+

with h(ξ) ≤ M2(ξ) for all h ∈ H with EP0 [M2(ξ)
2] < ∞. Assume the data ξi

iid∼ P0. Then we have

Theorem 9. Let the conditions of the preceding paragraph hold. Then

sup
P :Df (P ||P̂n)≤ ρ

n

EP [h(ξ)] = EP̂n
[h(ξ)] +

√
ρ

n
VarP̂n

(h(ξ)) + εn(h),

where suph∈H
√
n|εn(h)| P

∗

→ 0.

See Appendix B, in particular Appendix B.3, for the proof.
Theorem 9 is useful, and in particular, we can derive Theorem 2 as a corollary:

Example 6 (Functions Lipschitz in x): Suppose that for each ξ ∈ Ξ, the function x 7→ ℓ(x; ξ)
is L(ξ)-Lipschitz, where E[L(ξ)2] < ∞. If in addition the set X is compact, then functions H :=
{ℓ(x; ·)}x∈X satisfy all the conditions of Theorem 9. (See also [82, Chs. 2.7.4 and 3.2].) ⋄

7.2 Hadamard Differentiable Functionals

In this section, we present an analogue of the asymptotic calibration in Proposition 1 for smooth
functionals of probability distributions, which when specialized to the optimization context yield
the results in Section 3. Let (Ξ,A) be a measurable space, and H be a collection of functions
h : Ξ → R, where we assume that H is P0-Donsker with envelope M2 ∈ L2(P0) (Definition 3). Let
P be the space of probability measures on (Ξ,A) bounded with respect to the supremum norm ‖·‖H
where we view measures as functionals on H. Then, for T : P → R, the following definition captures
a form of differentiability sufficient for applying the delta method to show that T is asymptotically
normal [82, Chapter 3.9]. In the definition, we let M denote the space of signed measures on Ξ
bounded with respect to ‖·‖H, noting that M ⊂ L∞(H) via the mapping µh =

∫
h(ξ)dµ(ξ).

Definition 4. The functional T : P → R is Hadamard directionally differentiable at P ∈ P
tangentially to B ⊂ M if for all H ∈ B, there exists dTP (H) ∈ R such that for all convergent
sequences tn → 0 and Hn → H in L∞(H) (i.e. ‖Hn −H‖H → 0) for which P + tnHn ∈ P, and

T (P + tnHn)− T (P )

tn
→ dTP (H) as n → ∞.

Equivalently, T is Hadamard directionally differentiable at P ∈ P tangentially to B ⊂ M if for
every compact K ⊂ B,

lim
t→0

sup
H∈K,P+tH∈P

∣∣∣∣
T (P + tH)− T (P )

t
− dTP (H)

∣∣∣∣ = 0. (24)
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Moreover, T : P → R is Hadamard differentiable at P ∈ P tangentially to B ⊂ L∞(H) if
dTP : B → R is linear and continuous on B.

By restricting ourselves very slightly to a nicer class of Hadamard differentiable functionals, we
may present a result on asymptotically pivotal confidence sets provided by f -divergences. To that
end, we say that T : P → R has influence function T (1) : Ξ× P → R if

dTP (Q− P ) =

∫

Ξ
T (1)(ξ;P )d(Q− P )(ξ) (25)

and T (1) satisfies EP [T
(1)(ξ;P )] = 0.1 If we let B = B(H, P ) ⊂ L∞(H) be the set of linear

functionals on H that are ‖·‖L2(P )-uniformly continuous and bounded, then this is sufficient for the

existence of the canonical derivative T (1), by the Riesz Representation Theorem for L2 spaces (see
[81, Chapter 25.5] or [47, Chapter 18]).

We now extend Proposition 1 to Hadamard differentiable functionals T : P → R. Owen [63]
shows a similar result for empirical likelihood (i.e. with f(t) = −2 log t+2t−2) for the smaller class
of Frechét differentiable functionals. Bertail et al. [8, 9] also claim a similar result under certain
uniform entropy conditions, but their proofs are incomplete.2 Recall that M is the (vector) space
of signed measures in L∞(H).

Theorem 10. Let Assumption A hold and let H be a P0-Donsker class of functions with an L2-

envelope M . Let ξi
iid∼ P0 and let B ⊂ M be such that G takes values in B where G is the limit√

n(P̂n − P0)
d
 G in L∞(H) given in Definition 3. Assume that T : P ⊂ M → R is Hadamard

differentiable at P0 tangentially to B with infludence function T (1)(·;P0) and that dTP is defined
and continuous on the whole of M. If 0 < Var(T (1)(ξ;P0)) < ∞, then

lim
n→∞

P

(
T (P0) ∈

{
T (P ) : Df (P ||Pn) ≤

ρ

n

})
= P

(
χ2
1 ≤ ρ

)
, (26)

We use Theorem 9 to show the result in Appendix B.4.

7.3 Extensions to Dependent Sequences

In this subsection, we show an extension of the empirical likelihood theory for smooth functionals
(Theorem 10) to β-mixing sequence of random variables. Let {ξ}i∈Z be a sequence of strictly
stationary random variables taking values in the Polish space Ξ. We follow the approach of Doukhan
et al. [29] to prove our results, giving bracketing number conditions sufficient for our convergence
guarantees (alternative approaches are possible [60, 2, 86, 67]).

We first define bracketing numbers.

Definition 5. Let ‖·‖ be a (semi)norm on H. For functions l, u : Ξ → R with l ≤ u, the bracket
[l, u] is the set of functions h : Ξ → R such that l ≤ h ≤ u, and [l, u] is an ǫ-bracket if ‖l − u‖ ≤ ǫ.
Brackets {[li, ui]}mi=1 cover H if for all h ∈ H, there exists i such that h ∈ [li, ui]. The bracketing
number N[ ](ǫ,H, ‖·‖) is the minimum number of ǫ-brackets needed to cover H.

1A sufficient condition for T (1)(·;P ) to exist is that T be Hadamard differentiable at P tangentially to any set
B including the measures 1ξ − P for each ξ ∈ P : indeed, let Hξ := 1ξ − P , then the

∫
HξdP (ξ) = 0, and the

linearity of dTP : B → R guarantees that
∫
dTP (Hξ)dP (ξ) =

∫
dTP (1ξ − P )dP (ξ) = dTP (P − P ) = 0, and we define

T (1)(ξ;P ) = dTP (1ξ − P ).
2Their proofs [8, pg. 308] show that confidence sets converge to one another in Hausdorff distance, which is not

sufficient for their claim. The sets An := {v/n : v ∈ Z
d} and B = R

d have Hausdorff distance 1
2n

, but for any random
variable Z with Lebesgue density, we certainly have P(Z ∈ An) = 0 while P(Z ∈ B) = 1.
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For i.i.d. sequences, if the bracketing integral is finite,
∫ ∞

0

√
logN[ ](ǫ,H, ‖·‖L2(P0)

) dǫ < ∞,

then H is P0-Donsker [82, Theorem 2.5.6]. For β-mixing sequences, a modification of the L2(P0)-
norm yields similar result. To state the required bracketing condition in full, we first provide
requisite notation. For any h ∈ L1(P0), we let

Qh(u) = inf{t : P(|h(ξ0)| > t) ≤ u}.

be the quantile function of |h(ξ0)|. Define β(t) := β⌊t⌋ where βn are the mixing coefficients (13),
and define the norm

‖h‖L2,β(P0)
=

√∫ 1

0
β−1(u)Qh(u)2du, (27)

where β−1(u) = inf{t : β(t) ≤ u}. When {ξi}i∈Z are i.i.d., the (2, β)-norm ‖·‖L2,β(P0)
is the

L2(P0)-norm as β−1(u) = 1 for u > 0. Lastly, we let Γ be the covariance function

Γ(h1, h2) :=
∑

i∈Z
Cov(h1(ξ0), h2(ξi)). (28)

We then have the following result, which extends bracketing entropy conditions to β-mixing se-
quences.

Lemma 5 (Doukhan et al. [29, Theorem 1]). Let {ξ}i∈Z be a strictly stationary sequence of random
vectors taking values in the Polish space Ξ with common distribution P0 satisfying

∑∞
n=1 βn < ∞.

Let H be a class of functions h : Ξ → R with envelope M(·) such that ‖M‖L2,β(P0)
< ∞. If

∫ 1

0

√
logN[ ](ǫ,H, ‖·‖L2,β(P0)

) dǫ < ∞,

then the series
∑

iCov(h(ξ0), h(ξi)) is absolutely convergent to Γ(h, h) < ∞ uniformly in h, and

√
n(P̂n − P0)

d
 G in L∞(H)

where G is a Gaussian process with covariance function Γ and almost surely uniformly continuous
sample paths.

The discussion following [29, Theorem 1] provides connections between ‖·‖L2,β(P0)
and other norms,

as well as sufficient conditions for Lemma 5 to hold. For example, if the bracketing integral with

respect to the norm ‖·‖L2r(P0)
is finite with

∑
n≥1 n

1
r−1βn < ∞, the conditions of Lemma 5 are

satisfied.
We now give an extension of Theorem 10 for dependent sequences. Recall that M is the (vector)

space of signed measures in L∞(H). Let B ⊂ M be such that G takes values in B.

Theorem 11. Let Assumption A and the hypotheses of Lemma 5 hold. Let B ⊂ M be such that G

takes values in B, where
√
n(P̂n−P0)

d
 G in L∞(H) as in Lemma 5. Assume that T : P ⊂ M → R

is Hadamard differentiable at P0 tangentially to B with influence function T (1)(·;P0) as (Eq. (25))
and that dTP is defined and continuous on the whole of M. If 0 < Var(T (1)(ξ;P0)) < ∞, then

lim
n→∞

P

(
T (P0) ∈

{
T (P ) : Df (P ||Pn) ≤

ρ

n

})
= P

(
χ2
1 ≤

ρVarPξ
T (1)(ξ;P0)

Γ(T (1), T (1))

)
. (29)

See Section D.2 for the proof. We show in Section D.3 that Theorem 5 follows from Theorem 11.
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8 Conclusion

We have extended generalized empirical likelihood theory in a number of directions, showing how
it provides inferential guarantees for stochastic optimization problems. The upper confidence
bound (4a) is a natural robust optimization problem [5, 6], and our results show that this ro-
bust formulation gives exact asymptotic coverage. The robust formulation implements a type of
regularization by variance, while maintaining convexity and risk coherence (Theorem 9). This
variance expansion explains the coverage properties of (generalized) empirical likelihood, and we
believe it is likely to be effective in a number of optimization problems [30].

There are a number of interesting topics for further research, and we list a few of them. On
the statistical and inferential side, the uniqueness conditions imposed in Theorem 3 are stringent,
so it is of interest to develop procedures that are (asymptotically) adaptive to the size of the
solution set S⋆

P0
without being too conservative; this is likely to be challenging, as we no longer

have normality of the asymptotic distribution of solutions. On the computational side, interior
point algorithms are often too expensive for large scale optimization problems (i.e. when n is very
large)—just evaluating the objective or its gradient requires time at least linear in the sample
size. While there is a substantial and developed literature on efficient methods for sample average
approximation and stochastic gradient methods [66, 58, 31, 25, 43, 37], there are fewer established
and computationally efficient solution methods for minimax problems of the form (4a) (though see
the papers [58, 20, 7, 73, 56] for work in this direction). Efficient solution methods need to be
developed to scale up robust optimization.

There are two ways of injecting robustness in the formulation (4a): increasing ρ and choosing
a function f defining the f -divergence Df (·||·) that grows slowly in a neighborhood of 1 (recall the
Cressie-Read family (19) and associated dual problems). We characterize a statistically principled
way of choosing ρ to obtain calibrated confidence bounds, and we show that all smooth f -divergences
have the same asymptotic (n → ∞) behavior to first-order. We do not know, however, the extent
to which different choices of the divergence measure f impact higher order or finite-sample behavior
of the estimators we study. While the literature on higher order corrections for empirical likelihood
offers some answers for inference problems regarding the mean of a distribution [27, 4, 21, 17, 18],
the more complex settings arising in large-scale optimization problems leave a number of open
questions.
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A Proof of Lemma 1

We assume without loss of generality for both that Z is mean-zero and that Var(Z) > 0, as if
Var(Z) = 0 then sn = 0 and the lemma is trivial. We prove the result by approximating the
function f with simpler functions, which allows a fairly immediate proof.

The starting point of the proof of each of Lemma 1 is the following lemma, which gives sufficient
conditions for the robust expectation to be well approximated by the variance.

Lemma 6. Let 0 ≤ ǫ < 1 and define the event

En :=

{
max
i≤n

|Zi − Zn|√
n

≤ ǫsn

√
1− Cǫ

ρ

}
.

Then on En,

E
P̂n

[Z] +

√
ρ

n
s2n

1√
1 + Cǫ

≤ sup
P :Df (P ||P̂n)≤ ρ

n

EP [Z] ≤ E
P̂n

[Z] +

√
ρ

n
s2n

1√
1− Cǫ

.

This result gives a nearly immediate proof of Lemma 1, as we require showing only that En holds
eventually (i.e. for all large enough n). We defer its proof to Section A.1.

To that end, we state the following result, due essentially to Owen [62, Lemma 3].

Lemma 7. Let Zi be (potentially dependent) identically distributed random variables with E[|Z1|k] <
∞ for some k > 0. Then for all ǫ > 0, P(|Zn| ≥ ǫn1/k i.o.) = 0 and maxi≤n |Zi|/n1/k a.s.→ 0.

Proof A standard change of variables gives E[|Z1|k] =
∫∞
0 P(|Z1|k ≥ t)dt &

∑∞
n=1 P(|Zn|k ≥ n).

Thus for any ǫ > 0 we obtain

∞∑

n=1

P(|Zn|k ≥ ǫn) .
1

ǫ
E[|Z1|k] < ∞,

and the Borel-Cantelli lemma gives the result.

Birkhoff’s Ergodic Theorem and that the sequence {Zn} is strictly stationary and ergodic with
E[Z2

1 ] < ∞ implies that

Zn =
1

n

n∑

i=1

Zi
a.s.→ E[Z1] and Z2

n =
1

n

n∑

i=1

Z2
i

a.s.→ E[Z2
1 ].

Thus we have that s2n = Z2
n − Z

2
n

a.s.→ Var(Z) > 0 and by Lemma 7, the event En holds eventually.
Lemma 6 thus gives Lemma 1.

A.1 Proof of Lemma 6

We require a few auxiliary functions before continuing with the arguments. First, for ǫ > 0 define
the Huber function

hǫ(t) = inf
y

{
1

2
(t− y)2 + ǫ|y|

}
=

{
1
2t

2 if |t| ≤ ǫ

ǫ|t| − 1
2ǫ

2 if |t| > ǫ.
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Now, because the function f is C3 in a neighborhood of 1 with f ′′(1) = 2, there exist constants
0 < c,C < ∞, depending only on f , such that

2(1 −Cǫ)hǫ(t) ≤ f(t+ 1) ≤ (1 +Cǫ)t2 + I[−ǫ,ǫ](t) for all t ∈ R, and |ǫ| ≤ c, (30)

where the first inequality follows because t 7→ f ′(t) is non-decreasing and f ′(1) = 0 and f ′′(1) = 2,
and the second similarly because f is C3 near 1.

With the upper and lower bounds (30) in place, let us rewrite the supremum problem slightly.
For ǫ < 1, define the sets

Usm :=
{
u ∈ R

n | 1Tu = 0, ‖nu‖∞ ≤ ǫ, (1 + Cǫ) ‖nu‖22 ≤ ρ
}
⊂ . . .

U :=

{
u ∈ R

n | 1Tu = 0, u ≥ −1/n,
n∑

i=1

f(nui + 1) ≤ ρ

}
⊂ . . . (31)

Ubig :=

{
u ∈ R

n | 1Tu = 0,

n∑

i=1

hǫ(nui) ≤
ρ

2(1 − Cǫ)

}
.

Then for any vector z ∈ R
n, by inspection (replacing p ∈ R

n
+ with 1

Tp = 1 with u ∈ R
n with

1

Tu = 0 and u ≥ −(1/n)), we have

sup
u∈Usm

uT z ≤ sup
p

{
pT z | Df (p||(1/n)1) ≤ ρ/n

}
− 1

n
1

T z = sup
u∈U

uT z ≤ sup
u∈Ubig

uT z. (32)

To show the lemma, then, it suffices to lower bound supu∈Usm
uT z and upper bound supu∈Ubig

uT z.
To that end, the next two lemmas control both the upper and lower bounds in expression (32).

In the lemmas, we let z2n = 1
n

∑n
i=1 z

2
i and zn = 1

n

∑n
i=1 zi.

Lemma 8. Let sn(z)
2 = z2n − z2n. If ‖z − zn‖∞ /

√
n ≤ ǫsn(z)

√
(1 + Cǫ)/ρ, then

sup
u∈Usm

uT z =

√
ρ

n
sn(z)2

1√
1 + Cǫ

.

Proof We can without loss of generality replace z with z − zn1 in the supremum, as 1Tu = 0
so uT z = uT (z − zn1), and so we simply assume that 1T z = 0 and thus ‖z‖2 =

√
nsn(z). By

the Cauchy-Schwarz inequality, supu∈Usm
uT z ≤ √

ρ ‖z‖2 /(n
√
1 + Cǫ). We claim that under the

conditions of the lemma, it is achieved. Indeed, let

u =

√
ρ

n
√
1 + Cǫ ‖z‖2

z =

√
ρ

n3/2

√
(1 + Cǫ)z2n

z,

so ‖nu‖2 = ρ and uT z = ρ ‖z‖2 /(n
√
1 + Cǫ). Then u satisfies uT1 = 0, ‖u‖22 ≤ ρ/(n2(1 + Cǫ)),

and because ‖z‖∞ /
√
n ≤ ǫ

√
1 +Cǫsn(z)/

√
ρ by assumption, we have u ∈ Usm, which gives the

result.

Lemma 9. Let sn(z)
2 = z2n − z2n. If ‖z − zn‖∞ /

√
n ≤ ǫsn(z)

√
(1− Cǫ)/ρ, then

sup
u∈Ubig

uT z ≤
√

ρ

n
sn(z)2

1√
1− Cǫ

.
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Proof We have uT z = uT (z − 1zn) for u
T
1 = 0. Thus, we always have upper bound that

sup
u∈Ubig

uT z ≤ sup
u∈Rn

{
uT (z − 1zn) |

n∑

i=1

hǫ(nui) ≤
ρ

2(1− Cǫ)

}
.

Let us assume w.l.o.g. (as in the proof of Lemma 8) that zn = 0 so that ‖z‖2 =
√
nsn(z). Introducing

multiplier λ ≥ 0, the Lagrangian for the above maximization problem is

L(u, λ) = uT z − λ

n∑

i=1

hǫ(nui) + λ
ρ

2(1 − Cǫ)
.

Let us supremize over u. In one dimension, we have

sup
ui

{uizi − λhǫ(nui)} = λ sup
vi

sup
y

{
vi

zi
λn

− 1

2
(vi − y)2 − ǫ|y|

}

= λ sup
y

{
z2i

2λ2n2
+ y

zi
λn

− ǫ|y|
}

=
z2i

2λn2
+ I[−ǫ,ǫ]

( zi
λn

)
.

We obtain

sup
u∈Ubig

uT z ≤ inf
λ≥0

sup
u

L(u, λ) = inf
λ

{
‖z‖22
2λn2

+
ρ

2(1 −Cǫ)
λ | λ ≥ ‖z‖∞

ǫn

}
. (33)

Now, by taking

λ =

√
1− Cǫ

ρ

‖z‖2
n

,

we see that under the conditions of the lemma, we have λ ≥ ‖z‖∞ /(ǫn) and substituting into the
Lagrangian dual (33), the lemma follows.

Combining Lemmas 8 and 9 gives Lemma 6.

B Uniform convergence results

In this section, we give the proofs of theorems related to uniform convergence guarantees and the
uniform variance expansions. The order of proofs is not completely reflective of that we present in
the main body of the paper, but we order the proofs so that the dependencies among the results
are linear. We begin by collecting important technical definitions, results, and a few preliminary
lemmas. In Section B.3, we then provide the proof of Theorem 9, after which we prove Theorem 10
in Section B.4. Based on Theorem 10, we are then able to give a nearly immediate proof (in
Section B.5) we of Proposition 1.

B.1 Preliminary results and definitions

We begin with several definitions and assorted standard lemmas important for our results, focusing
on results on convergence in distribution in general metric spaces. See, for example, the first section
of the book by van der Vaart and Wellner [82] for an overview.
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Definition 6 (Tightness). A random variable X on a metric space (X , d) is tight if for all ǫ > 0,
there exists a compact set Kǫ such that P(X ∈ Kǫ) ≥ 1−ǫ. A sequence of random variables Xn ∈ X
is asymptotically tight if for every ǫ > 0 there exists a compact set K such that

lim inf
n

P∗(Xn ∈ Kδ) ≥ 1− ǫ for all δ > 0,

where Kδ = {x ∈ X : dist(x,K) < δ} is the δ-enlargement of K and P∗ denotes inner measure.

Lemma 10 (Prohorov’s theorem [82], Theorem 1.3.9). Let Xn ∈ X be a sequence of random
variables in the metric space X . Then

1. If Xn
d
 X for some random variable X where X is tight, then Xn is asymptotically tight

and measurable.

2. If Xn is asymptotically tight, then there is a subsequence n(m) such that Xn(m)
d
 X for some

tight random variable X.

Thus, to show that a sequence of random vectors converges in distribution, one necessary step is to
show that the sequence is tight. We now present two technical lemmas on this for random vectors
in L∞(H). In each, H is some set (generally a collection of functions in our applications), and Ωn

is a sample space defined for each n. (In our applications, we take Ωn = Ξn.) We let Xn(h) ∈ R

denote the random realization of Xn evaluated at h ∈ H.

Lemma 11 (Van der Vaart and Wellner [82], Theorem 1.5.4). Let Xn : Ωn → L∞(H). Then
Xn converges weakly to a tight limit if and only if Xn is asymptotically tight and the marginals
(Xn(h1), . . . ,Xn(hk)) converge weakly to a limit for every finite subset {h1, . . . , hk} of H. If Xn

is asymptotically tight and its marginals converge weakly to the marginals of (X(h1), . . . ,X(hk)) of

X, then there is a version of X with uniformly bounded sample paths and Xn
d
 X.

Although the convergence in distribution in outer probability does not require measurability of
the pre-limit quantities, the above lemma guarantees it.

Lemma 12 (Van der Vaart and Wellner [82], Theorem 1.5.7). A sequence of mappings Xn : Ωn →
L∞(H) is asymptotically tight if and only if (i) Xn(h) is asymptotically tight in R for all h ∈ H,
(ii) there exists a semi-metric ‖·‖ on H such that (H, ‖·‖) is totally bounded, and (iii) Xn is
asymptotically uniformly equicontinuous in probability, i.e., for every ǫ, η > 0, there exists δ > 0

such that lim supn→∞ P

(
sup‖h−h′‖<δ |Xn(h)−Xn(h

′)| > ǫ
)
< η.

B.2 Technical lemmas

With these preliminary results stated, we provide two technical lemmas. Recall the definition

Pn,ρ = {P : Df (P ||P̂n) ≤
ρ

n
} (34)

The first, Lemma 13, shows that the vector np is close to the all-ones vector for all vectors p ∈ Pn,ρ.
The second (Lemma 14) gives conditions for tightness of classes of functions h : Ξ → R.

Lemma 13. Let Assumption A hold. Then

√
ρcf ≤ sup

n∈N
sup
p∈Rn

{
‖np− 1‖2 : p⊤1 = 1, p ≥ 0,

n∑

i=1

f(npi) ≤ ρ
}
≤
√

ρCf

for some Cf ≥ cf > 0 depending only on f .
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Proof By performing a Taylor expansion of f around 1 for the point npi and using f(1) =
f ′(1) = 0, we obtain

f(npi) =
1

2
f

′′

(si)(npi − 1)2

for some si between npi and 1. As f is convex with f ′′(1) > 0, it is strictly increasing on [1,∞).
Thus there exists a unique M > 1 such that f(M) = ρ. If f(0) = ∞, there is similarly a unique
m ∈ (0, 1) such that f(m) = ρ (if no such m exists, because f(0) < ρ, define m = 0). Any
p ∈ {p ∈ R

n : p⊤1 = 1, p ≥ 0,
∑n

i=1 f(npi) ≤ ρ} must thus satisfy npi ∈ [m,M ]. Because f is
C2 and strictly convex, C−1

f := infs∈[m,M ] f
′′
(s) and c−1

f := sups∈[m,M ] f
′′
(s) exists, are attained,

and are strictly positive. Using the Taylor expansion of the f -divergence, we have (npi − 1)2 =
2f(npi)/f

′′(si) for each i, and thus

n∑

i=1

(npi − 1)2 =
n∑

i=1

2f(npi)

f ′′(si)
≤ 2Cf

n∑

i=1

f(npi) ≤ 2Cfρ

and similarly
∑n

i=1(npi − 1)2 ≥ 2cfρ. Taking the square root of each sides gives the lemma.

Lemma 14. Let H be P0-Donsker with L2-integrable envelope M2, i.e. |h(ξ)| ≤ M2(ξ) for all h ∈ H
with EP0 [M

2
2 (ξ)] < ∞. Then for any sequence Qn ∈ Pn,ρ, the mapping

√
n(Qn −P0) : L∞(H) → R

is asymptotically tight.

Proof We use the charactization of asymptotic tightness in Lemma 12. With that in mind,
consider an arbitrary sequence Qn ∈ Pn,ρ. We have

P

(
sup

‖h−h′‖<δ

∣∣∣
√
n(Qn − P̂n)(h− h′)

∣∣∣ ≥ ǫ

)
(a)

≤ P

(
sup

‖h−h′‖<δ
‖nq − 1‖2

∥∥h− h′
∥∥
L2(P̂n)

≥ ǫ

)

(b)

≤ P

(√
ρ

γf
sup

‖h−h′‖<δ

∥∥h− h′
∥∥
L2(P̂n)

≥ ǫ

)

where inequality (a) follows from the Cauchy-Schwarz inequality and inequality (b) follows from
Lemma 13. Since H is P0-Donsker, the last term goes to 0 as n → ∞ and δ → 0. Note that

lim sup
δ→0

lim sup
n→∞

P

(
sup

‖h−h′‖<δ

∣∣√n(Qn − P )(h − h′)
∣∣ ≥ ǫ

)

≤ lim sup
δ,n

{
P

(
sup

‖h−h′‖<δ

∣∣∣
√
n(Qn − P̂n)(h− h′)

∣∣∣ ≥ ǫ

2

)
+ P

(
sup

‖h−h′‖<δ

∣∣∣
√
n(P̂n − P )(h− h′)

∣∣∣ ≥ ǫ

2

)}
.

As
√
n(P̂n − P0) is asymptotically tight in L∞(H) [82, Theorem 1.5.4], the second term vanishes

by Lemma 12. Applying Lemma 12 again, we conclude that
√
n(Qn−P0) is asymptotically tight.
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B.3 Proof of Theorem 9

The proof of the theorem uses Lemma 1 and standard tools of empirical process theory to make the
expansion uniform. Without loss of generality, we assume that each h ∈ H mean-zero (as we may
replace h(ξ) with h(ξ) − E[h(ξ)]). We use the standard characterization of asymptotic tightness
given by Lemma 11, so we show the finite dimensional convergence to zero of our process. It is
clear that there is some random function εn such that

sup
P∈Pρ,n

EP [h(ξ)] = EP̂n
[h(ξ)] +

√
ρ

n
VarP0(Zh(ξ)) + εn(h),

but we must establish its uniform convergence to zero at a rate o(n− 1
2 ).

To establish asymptotic tightness of the collection {supP∈Pρ,n
EP [h(ξ)]}h∈H, first note that we

have finite dimensional marginal convergence. Indeed, we have
√
nεn(h)

p→ 0 for all h ∈ H by

Lemma 1, and so for any finite k and any h1, . . . , hk ∈ H,
√
n (εn(h1), . . . , εn(hk))

p→ 0. Further, by
our Donsker assumption on H we have that {h(·)2, h ∈ H} is a Glivenko-Cantelli class [82, Lemma
2.10.14], and

sup
h∈H

∣∣∣VarP̂n
(h(ξ)) −VarP0(h(ξ))

∣∣∣ P
∗

→ 0. (35)

Now, we write the error term εn as

√
nεn(h) =

√
n sup

{
EP [h(ξ)]− EP0 [h(ξ)] | Df (P ||P̂n) ≤ ρ/n

}

︸ ︷︷ ︸
(a)

−
√
n
(
EP̂n

[h(ξ)] − EP0 [h(ξ)]
)

︸ ︷︷ ︸
(b)

−
√
ρVarP̂n

(h(ξ))
︸ ︷︷ ︸

(c)

.

Then term (a) is asymptotically tight (as a process on h ∈ H) in L∞(H) by Lemma 14. The
term (b) is similarly tight because H is P0-Donsker by assumption, and term (c) is tight by the
uniform Glivenko-Cantelli result (35). In particular,

√
nεn(·) is an asymptotically tight sequence in

L∞(H). As the finite dimensional distributions all converge to 0 in probability, Lemma 11 implies

that
√
nεn

d
 0 in L∞(H) as desired. Of course, convergence in distribution to a constant implies

convergence in probability to the constant.

B.4 Proof of Theorem 10

We first state a standard result that the delta method applies for Hadamard differentiable func-
tionals, as given by van der Vaart and Wellner [82, Section 3.9]. In the lemma, the sets Ωn denote
the implicit sample spaces defined for each n. For a proof, see [82, Theorem 3.9.4].

Lemma 15 (Delta method). Let T : P ⊂ M → R be Hadamard differentiable at W tangentially
to B with dTQ linear and continuous on the whole of M. Let Qn : Ωn → R be maps (treated as

random elements of M ⊂ L∞(H)) with rn(Qn − Q)
d
 Z in L∞(H), where rn → ∞ and Z is a

separable, Borel-measurable map. Then rn(T (Qn)− T (Q))− dTQ (rn(Qn −Q))
P ∗

→ 0.

For a probability measure P , define κ(P ) := T (P ) − T (P0) − EP [T
(1)(ξ;P0)]. Since H was

assumed to be P0-Donsker, we have
√
n(P̂n−P0)

d
 G in L∞(H). Recalling the canonical derivative

T (1), we have from Lemma 15 that

T (P̂n) = T (P0) + EP̂n
[T (1)(ξ, P0)] + κ(P̂n) (36)
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where κ(P̂n) = oP (n
− 1

2 ). Next, we show that this is true uniformly over {P : Df (P ||P̂n) ≤ ρ
n}. We

return to prove the lemma in Section B.4.1 for the proof.

Lemma 16. Under the assumptions of Theorem 10, for any ǫ > 0

lim sup
n

P

(
sup
P

{
|κ(P )| : Df (P ||P̂n) ≤

ρ

n

}
≥ ǫ√

n

)
= 0 (37)

where κ(P ) := T (P )− T (P0)− EP [T
(1)(ξ;P0)].

We now see how the theorem is a direct consequence of Theorem 9 and Lemma 16. Taking sup
over {P : Df (P ||P̂n) ≤ ρ

n} in the definition of κ(·), we have

∣∣∣∣∣∣
sup

P :Df (P ||P̂n)≤ ρ
n

T (P )− T (P0)− sup
P :Df (P ||P̂n)≤ ρ

n

EP [T
(1)(ξ;P0)]

∣∣∣∣∣∣
≤ sup

P :Df(P ||P̂n)≤ ρ
n

|κ(P )| .

Now, multiply both sides by
√
n and apply Theorem 9 and Lemma 16 to obtain

∣∣∣∣∣∣
√
n


 sup

P :Df(P ||P̂n)≤ ρ
n

T (P )− T (P0)


−

√
nE

P̂n
[T (1)(ξ;P0)]−

√
ρVar

P̂n
T (1)(ξ;P0)

∣∣∣∣∣∣
= op(1).

Since EP0 [T
(1)(ξ;P0)] = 0 by assumption, the central limit theorem then implies that

√
n


 sup

P :Df(P ||P̂n)≤ ρ
n

T (P )− T (P0)


 d
 

√
ρVar T (1)(ξ;P0) +N

(
0,Var T (1)(ξ;P0)

)
.

Hence, we have P

(
T (P0) ≤ sup

P :Df(P ||P̂n)≤ ρ
n

T (P )
)

→ P (N(0, 1) ≥ −√
ρ). By an exactly sym-

metric argument on −T (P0), we similarly have P

(
T (P0) ≥ inf

P :Df(P ||P̂n)≤ ρ
n

T (P )
)
→ P (N(0, 1) ≤

√
ρ). We conclude that

P

(
T (P0) ∈

{
T (P ) : Df

(
P ||P̂n

)
≤ ρ

n

})
→ P (χ2

1 ≤ ρ).

B.4.1 Proof of Lemma 16

Let Pn,ρ := {P : Df (P ||P̂n) ≤ ρ
n}. Recall that {Xn} ⊂ L∞(H) is asymptotically tight if for

every ǫ > 0, there exists a compact K such that lim infn→∞ P
(
Xn ∈ Kδ

)
≥ 1 − ǫ for all δ > 0

where Kδ := {y ∈ L∞(H) : d(y,K) < δ} (e.g., [82, Def 1.3.7]). Now, for an arbitrary δ > 0,
let Qn ∈ Pn,ρ such that |κ(Qn)| ≥ (1 − δ) supQ∈Pn,ρ

|κ(Q)|. Since the sequence
√
n(Qn − P0) is

asymptotically tight by Lemma 14, every subsequence has a further subsequence n(m) such that√
n(m)(Qn(m) − P0)

d
 X for some tight and Borel-measurable map X. It then follows from

Lemma 15 that
√

n(m)κn(m)(Qn(m)) → 0 as m → ∞. The desired result follows since

P

(
(1− ǫ)

√
n sup

Q∈Pn,ρ

|κn(m)(Q)| ≥ ǫ

)
≤ P

(√
n|κn(m)(Qn)| ≥ ǫ

)
→ 0.
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B.5 Proof of Proposition 1

Let Z ∈ R
d be random vectors with covariance Σ, where rank(Σ) = d0. From Theorem 10, we have

that if we define
Ts,n(λ) := s sup

P :Df(P ||Pn)≤ρ/n

{
sEP [Z

Tλ]
}
, s ∈ {−1, 1},

then
[ √

n(T1,n(λ)− EP0 [Z
Tλ])√

n(T−1,n(λ)− EP0 [Z
Tλ])

]
=

[√
n(EPn [Z]Tλ− EP0 [Z]Tλ) +

√
ρλTΣλ√

n(EPn [Z]Tλ− EP0 [Z]Tλ)−
√
ρλTΣλ

]
+ oP (1)

uniformly in λ such that ‖λ‖2 = 1. (This class of functions is trivially P0-Donsker.) The latter
quantity converges (uniformly in λ) to

[
λTW +

√
ρλTΣλ

λTW −
√

ρλTΣλ

]

for W ∼ N(0,Σ) by the central limit theorem. Now, we have that

EP0 [Z] ∈ {EP [Z] : Df (P ||Pn) ≤ ρ/n}︸ ︷︷ ︸
=:Cρ,n

if and only if

inf
λ:‖λ‖2≤1

{T1,n(λ)− EP0 [Z
Tλ]} ≤ 0 and sup

λ:‖λ‖2≤1
{T−1,n(λ)− EP0 [Z

Tλ]} ≥ 0

by convexity of the set Cρ,n. But of course, by convergence in distribution and the homogeneity of

λ 7→ λTW +
√

ρλTΣλ, the probabilities of this event converge to

P

(
inf
λ
{λTW +

√
ρλTΣλ} ≥ 0, sup

λ
{λTW −

√
ρλTΣλ} ≤ 0

)
= P (‖W‖Σ† ≥

√
ρ) = P(χ2

d0 ≥ ρ)

by the continuous mapping theorem.

C Proofs of Statistical Inference for Stochastic Optimization

In this appendix, we collect the proofs of the results in Sections 3 and 4 on statistical inference for
the stochastic optimization problem (1). We first give a result explicitly guaranteeing smoothness
of Topt(P ) = infx∈X EP [ℓ(x; ξ)]. The following variant of Danskin’s theorem [24] gives Hadamard
differentiability of Topt tangentially to the space B(H, P0) ⊂ L∞(H) of bounded linear functionals
continuous w.r.t. L2(P0) (which we may identify with measures, following the discussion after
Definition 4). The proof of Lemma 17—which we include in Appendix C.2 for completeness—
essentially follows that of Römisch [70].

Lemma 17. Let Assumption C hold and assume x 7→ ℓ(x; ξ) is continuous for P0-almost all ξ ∈ Ξ.
Then the functional Topt : P → R defined by Topt(P ) = infx∈X EP [ℓ(x; ξ)] is Hadamard directionally
differentiable on P tangentially to B(H, P0) with derivative

dTP (H) := inf
x∈S⋆

P

∫
ℓ(x; ξ)dH(ξ)

where S⋆
P = argminx∈X EP [ℓ(x; ξ)].
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C.1 Proof of Theorem 3

By Example 6, we have that {ℓ(x; · : x ∈ X} is P0-Donsker with envelope function M2(ξ) =
|ℓ(x0; ξ)| + M(ξ) diam(X ). Further, Lemma 17 implies that the hypotheses of Theorem 10 are
satisfied. Indeed, when the set of P -optima S⋆

P is a singleton, Lemma 17 gives that dTP is a linear
functional on the space of bounded measures M,

dTP0(H) =

∫
ℓ(x⋆; ξ)dH(ξ)

where x⋆ = argminx∈X EP0 [ℓ(x; ξ)] and the canonical gradient of Topt is given by T (1)(ξ;P0) =
ℓ(x⋆; ξ)− EP0 [ℓ(x

⋆; ξ)].

C.2 Proof of Lemma 17

For notational convenience, we identify the set H := {ℓ(x; ·) : x ∈ X} as a subset of L2(P0), viewed
as functions mapping Ξ → R indexed by x. Let H ∈ B(H, P0), where for convenience we use the
notational shorthand

H(x) := H(ℓ(x; ·)) =
∫

ℓ(x; ξ)dH(ξ),

where we have identified H with a measure in M, as in the discussion following Definition 4. We
have the norm ‖H‖ := supx∈X |H(x)|, where ‖H‖ < ∞ for H ∈ B(H, P0). In addition, we denote
the set of ǫ-minimal points for problem (1) with distribution P by

S⋆
P (ǫ) :=

{
x ∈ X : EP [ℓ(x; ξ)] ≤ inf

x∈X
EP [ℓ(x; ξ)] + ǫ

}
,

where we let S⋆
P = S⋆

P (0).
We first show that for Hn ∈ B(H, P0) with ‖H −Hn‖ → 0, we have for any sequence tn → 0

that

lim sup
n

1

tn
(Topt(P0 + tnHn)− Topt(P0)) ≤ inf

x⋆∈S⋆
P0

H(x⋆). (38)

Indeed, let x⋆ ∈ S⋆
P0
. Then

Topt(P0 + tnHn)− Topt(P0) ≤ EP0 [ℓ(x
⋆; ξ)] + tnHn(x

⋆)− EP0 [ℓ(x
⋆; ξ)] ≤ tnHn(x

⋆).

By definition, we have |Hn(x
⋆)−H(x⋆)| ≤ ‖Hn −H‖ → 0 as n → ∞, whence

lim sup
n

1

tn
(Topt(P0 + tnHn)− Topt(P0)) ≤ lim sup

n

1

tn
tnHn(x

⋆) = H(x⋆).

As x⋆ ∈ S⋆
P0

is otherwise arbitrary, this yields expression (38).
We now turn to the corresponding lower bound that

lim inf
n

1

tn
(Topt(P0 + tnHn)− Topt(P0)) ≥ inf

x⋆∈S⋆
P0

H(x⋆). (39)

Because ‖H‖ < ∞ and ‖Hn −H‖ → 0, we see that

Topt(P0 + tnHn) = inf
x∈X

{EP0 [ℓ(x; ξ)] + tnHn(x)} ≤ inf
x∈X

{EP0 [ℓ(x; ξ)] + tn ‖Hn −H‖+ tn ‖H‖}

≤ inf
x∈X

EP0 [ℓ(x; ξ)] +O(1) · tn.
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Thus, for any yn ∈ S⋆
P0+tnHn

we have yn ∈ SP0(ctn) for a constant c < ∞. Thus each subsequence
of yn has a further subsequence converging to some x⋆ ∈ S⋆

P0
by the assumed compactness of SP0(ǫ),

and the dominated convergence theorem implies that ‖ℓ(yn; ·)− ℓ(x⋆; ·)‖L2(P0)
→ 0 if yn → x⋆. In

particular, we find that
lim inf

n
EP0 [ℓ(yn; ξ)] = EP0 [ℓ(x

⋆; ξ)]

for any x⋆ ∈ S⋆
P0
. Letting yn ∈ S⋆

P0+tnHn
, then, we have

Topt(P0 + tnHn)− Topt(P0) ≥ EP0 [ℓ(yn; ξ)] + tnHn(yn)− EP0 [ℓ(yn; ξ)] = tnHn(yn).

Moving to a subsequence if necessary along which yn → x⋆, we have Hn(yn)−H(x⋆) ≤ ‖Hn −H‖+
|H(yn) − H(x⋆)| → 0, where we have used that H is continuous with respect to L2(P0). Thus
tnH(yn) ≥ tnH(x⋆)− o(tn), which gives the lower bound (39).

C.3 Proof of Theorem 4

We prove only the asymptotic result for the upper confidence bound un, as the proof of the lower
bound is completely parallel. By Theorem 9, we have that

√
n


 sup

P :Df(P ||P̂n)≤ ρ
n

EP [ℓ(·; ξ)] − EP0 [ℓ(·; ξ)]


 d
 H+(·) in L∞(H),

where we recall the definition (12) of the Gaussian processes H+ and H−. Applying the delta
method as in the proof of Theorem 3 (see Section C.1 and Lemma 17, noting that this is essentially
equivalent to the continuity of the infimum operator in the sup-norm topology) we obtain

√
n

(
un − inf

x∈X
EP0 [ℓ(x; ξ)]

)
d
 inf

x∈S⋆
P0

H+(x)

where S⋆
P0

= argminx∈X EP0 [ℓ(x; ξ)]. This is equivalent to the first claim of the theorem, and the
result when S⋆

P0
is a singleton is immediate.

C.4 Proof of Lemma 4

We first show the calculation to derive expression (19) of the conjugate f∗
k . For k > 1, we when

t ≥ 0 we have
∂

∂t
[st− fk(t)] = s− 1

2(k − 1)
(tk−1 − 1).

If s < 0, then the supremum is attained at t = 0, as the derivative above is < 0 at t = 0. If
s ≥ − 1

2(k−1) , then we solve ∂
∂t [st− fk(t)] = 0 to find t = ((k − 1)s/2 + 1)1/(k−1), and substituting

gives

st− f(t) =
2

k

(
k − 1

2
s+ 1

) k
k−1

− 2

k

which is our desired result as 1 − 1/k = 1/k∗. When k < 1, a completely similar proof gives the
result.
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We now turn to computing the supremum in the lemma. For shorthand, let Z = ℓ(x; ξ). By
the duality result of Lemma 3, for any P0 and ρ ≥ 0 we have

sup
P∈Df (P ||P0)≤ρ

EP [Z] = inf
λ≥0,η

{
λEP0

[
f∗
k

(
Z − η

λ

)]
+ λρ+ η

}

= inf
λ≥0,η

{
21−k∗ (k − 1)k∗

k
λ1−k∗EP0

[(
Z − η +

2λ

k − 1

)k∗

+

]
+ λ

(
ρ− 2

k

)
+ η

}

= inf
λ≥0,η̃

{
21−k∗(k − 1)k∗

k
λ1−k∗EP0

[
(Z − η̃)k∗+

]
+ λ

(
ρ+

2

k(k − 1)

)
+ η̃

}

where in the final equality we set η̃ = η− 2λ
k−1 , because η is unconstrained. Taking derivatives with

respect to λ to infimize the preceding expression, we have (noting that k∗−1
k∗

= 1
k )

2

(
k − 1

2λ

)k∗ 1− k∗
k

EP0

[
(Z − η̃)k∗+

]
+

(
ρ+

2

k(k − 1)

)
= 0

or λ = 2
1
k (k − 1)(2 + ρk(k − 1))−

1
k∗ EP0

[
(Z − η̃)k∗+

] 1
k∗ .

Substituting λ into the preceding display and mapping ρ 7→ ρ/n gives the claim of the lemma.

D Proofs for Dependent Sequences

In this section, we present proofs of our results on dependent sequences (Example 3, Theorem 5,
Proposition 6, and Theorem 11). We begin by giving a proof of claims in Example 3 in Sec-
tion D.1. Then, for logical consistency, we first present the proof of the general result Theo-
rem 11 in Section D.2, which is an extension of Theorem 10 to β-mixing sequences. We apply
this general result for Hadamard differentiable functionals to stochastic optimization problems
Topt(P ) = infx∈X EP [ℓ(x; ξ)] and prove Theorem 5 in Section D.2. Finally, we prove Proposition 6
in Section D.4, a sectioning result that provides exact coverages even for dependent sequences.

D.1 Proof of Example 3

First, we note from Meyn and Tweedie [54, Theorem 15.0.1] that {ξn}n≥0 is aperiodic, positive
Harris recurrent and geometrically ergodic. Letting π be the stationary distribution of {ξn}, it
follows that for some s ∈ (0, 1) and R ∈ (0,∞), we have

∞∑

n=1

sn ‖Pn(z, ·) − π(·)‖w ≤ Rw(z) for all z ∈ Ξ (40)

where the distance ‖P −Q‖w betwen two probabilities P and Q is given by

‖P (·) −Q(·)‖w := sup

{∣∣∣∣
∫

Ξ
f(y)P (dy)−

∫

Ξ
f(y)Q(dy)

∣∣∣∣ : f measurable, |f | ≤ w

}
.

Now, let {Ai}i∈I and {Bj}j∈J be finite partitions of Ξ such that Ai, Bj ∈ A for all i ∈ I and
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j ∈ J . By definition, the β-mixing coefficient can be written as

βn =
1

2
sup

∑

i∈I,j∈J
|Pπ (X0 ∈ Ai, ξn ∈ Bj)− π (Ai)π (Bj)|

=
1

2
sup

∑

i∈I,j∈J

∣∣∣∣
∫

Ai

(Pz(ξn ∈ Bj)− π(Bj)) π(dz)

∣∣∣∣ =
1

2
sup

∑

i∈I,j∈J

∣∣∣∣
∫

Ai

νn(z,Bj)π(dz)

∣∣∣∣ (41)

where νn(z, ·) is the signed measure on (Ξ,A) given by νn(z,B) := Pz(ξn ∈ B) − π(B). From the
Hahn-Jordan decomposition theorem, there exists a positive and negative set, Pn,z and Nn,z, for
the signed measure νn(z, ·) so that we can write

νn(z,B) = νn(z,B ∩ Pn,z) + νn(z,B ∩Nn,z) for all B ∈ A.

Now, note that

∑

j∈J
|νn(z,Bj)| =

∑

j∈J
νn(z,Bj ∩ Pn,z)−

∑

j∈J
νn(z,Bj ∩Nn,z)

= νn(z, Pn,z)− νn(z,Nn,z) = 2νn(z, Pn,z)

where second equality follows since {Bj}j∈J is a partition of Ξ and the last inequality follows from
definition of νn(z, ·).

Since w ≥ 1, we further have that 2νn(z, Pn,z) ≤ 2 ‖Pn(x, ·)− π(·)‖w. Collecting these bounds,
we have from inequality (40) that

∑
j∈J |νn(z,Bj)| ≤ snRw(z). From the representation (41), we

then obtain βn ≤ s−nREπw(ξ0). Now, from the Lyapunov conditions

Ezw(ξ1) ≤ γw(z) + b for all z ∈ Ξ

where we let b := supz′∈C Ez′w(ξ1). By taking expectations over ξ0 ∼ π, note that Eπw(ξ0) ≤
b/(1− γ) < ∞ (see, for example, Glynn and Zeevi [36]). This yields our final claim βn = O(sn).

D.2 Proof of Theorem 11

Armed with Lemma 1 and its uniform counterpart given in Theorem 9 (the proof goes through,
mutatis mutandis, under the hypotheses of Theorem 11), we proceed similarly as in the proof of
Theorem 10. Only now, Lemma 5 implies that

√
n
(
EP̂n

[T (1)(ξ;P0)]− EPξ
[T (1)(ξ;P0)]

)
d
 N

(
0,Γ(T (1), T (1))

)
,

we have

√
n

(
sup

P :Df (P ||P̂n)≤ρ/n

T (P )− T (P0)

)
d
 

√
ρVar

(
T (1)(ξ;P0)

)
+N

(
0,Γ(T (1), T (1))

)
(42)

and

P

(
T (P0) ≤ sup

P
{T (P ) | Df (P ||P̂n) ≤ ρ/n}

)
→ P

(
W ≥ −

√
ρVarPξ

(
T (1)(ξ;P0)

)

Γ(T (1), T (1))

)
,

where W ∼ N(0, 1). From a symmetric argument for inf, we obtain the desired result.
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D.3 Proof of Theorem 5

Case 1: ξ0 ∼ π We first show the result for ξ0 ∼ π. Since P 7→ Topt(P ) = infx∈X EP [ℓ(x; ξ)]
is Hadamard differentiable by Lemma 17, it suffices to verify the hypothesis of Theorem 11. Note
from the discussion following Theorem 1 in Doukhan et al. [29] that if H ⊂ L2r(π) satisfies∑

n≥1 n
1

r−1βn < ∞ and ∫ 1

0

√
logN[ ](ǫ,H, ‖·‖L2r(π)) dǫ < ∞,

then the hypotheses of Lemma 5 holds. Since the other assumptions of Theorem 11 hold from
Lemma 17, we need only show that this bracketing integral is finite. Conveniently, that ℓ(·; ξ) is
M(ξ)-Lipschitz by Assumption B implies [82, Chs. 2.7.4 & 3.2]

∫ 1

0

√
logN[ ](ǫ,H, ‖·‖L2r(π)) ≤ C ‖M‖L2r(π)

∫ 1

0

√
d log ǫ−1 dǫ < ∞

for a compact set X ⊂ R
d.

Case 2: ξ0 ∼ ν for general measures ν. As ℓ(·; ξ) is continuous, we can ignore issues of outer
measure and treat convergence in the space C(X ) of continuous functions on X . We will show

√
n

(
sup

P :Df (P ||P̂n)≤ ρ
n

T (P )− T (P0)

)
d
 W := N

(√
ρVarπ T (1)(ξ;P0),Γ(T

(1), T (1))

)
(43)

under any initial distribution ξ0 ∼ ν. The result for infima of T (P ) over {P : Df (P ||P̂n) ≤ ρ/n} is
analogous, so that this implies the theorem.

We abuse notation and let Wn(ξ
j+n
j ) =

√
n(supP :Df(P ||P̂n)≤ ρ

n

T (P ) − T (P0)), except that we

replace the empirical P̂n with the empirical distribution over ξj, . . . , ξj+n. To show the limit (43),

it suffices to show Wn(ξ
n+mn
mn

)
d
 W for appropriate increasing sequences mn:

Lemma 18. For any initial distribution ξ0 ∼ ν, Wn(ξ
n+mn
mn

) − Wn(ξ
n
0 )

a.s.→ 0 whenever mn → ∞
and mn/

√
n → 0.

Proof By Lemma 13, there exists C > 0 depending only on the choice of f and ρ such that

∣∣Wn(ξ
n+mn
mn

)−Wn(ξ
n
0 )
∣∣ ≤

√
n
C

n
sup
x∈X

mn∑

i=0

|ℓ(x; ξi)− ℓ(x; ξn+i)|

≤ Cmn√
n

1

mn

mn∑

i=0

(
sup
x∈X

|ℓ(x; ξi)|+ sup
x∈X

|ℓ(x; ξn+i)|
)
.

By hypothesis, we have supx∈X |ℓ(x; ξ)| ≤ |ℓ(x0; ξ)|+M(ξ)diam(X ) where E|ℓ(x0; ξ)|+ E[M(ξ)] <
∞, and as {M(ξi)}∞i=1 are β-mixing, the law of large numbers holds for any initial distribution [54,

Proposition 17.1.6]. Then 1√
n

∑mn

i=0 supx∈X |ℓ(x; ξi)| a.s.→ 0 so long as mn/
√
n → 0.

Fix an arbitrary initial distribution ξ0 ∼ ν. Letting mn = n1/4, Case 1 and Lemma 18 yield

Wn(ξ
n+mn
mn

)
d
 W when ξ0 ∼ π.
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Let Lν(ξ
n+mn
mn

) denote the law of (ξmn , . . . , ξn+mn) when ξ0 ∼ ν, and let Qn(ξ, ·) be the distribution
of ξn conditional on ξ0 = ξ and ν ◦Qm =

∫
Qm(ξ, ·)dν(·). The Markov property then implies

∥∥Lν(ξ
n+mn
mn

)− Lπ(ξ
n
0 )
∥∥
TV

= ‖ν ◦Qmn − π ◦Qmn‖TV .

By positive Harris recurrence and aperiodicity [54, Theorem 13.0.1], ‖ν ◦Qmn − π ◦Qmn‖TV → 0

for any mn → ∞. We conclude that Wn(ξ
n+mn
mn

)
d
 W for any ν; Lemma 18 gives the final result.

D.4 Proof of Proposition 6

We first show the result for ν = π. The general result follows by a similar argument as in the
second part of the proof of Theorem 5, which we omit for conciseness. To ease notation, define
N j

b =
√
b(U j

b − T (π)). From the proof of Theorem 11, we have the asymptotic expansion

N j
b =

√
b

(
1

b

b∑

k=1

ℓ(x⋆; ξ(j−1)b+k)− Eπ[ℓ(x
⋆; ξ)]

)
+
√

ρVarπℓ(x⋆; ξ) + ǫb,j

where ǫb,j is a remainder term that satisfies ǫb,j
p→ 0 as b → ∞. From Cramer’s device [13], we have

that (N j
b )

m
j=1 jointly converges in distribution to a normal distribution with marginals given by

N j
b

d
 
√

ρVarπ ℓ(x∗; ξ) +N
(
0, σ2

π

)

for all j = 1, . . . ,m. If we can show that N j
b have asymptotic covariance equal to 0, then we have

1
m

∑m
j=1N

j
b −

√
ρVarπℓ(x∗; ξ)√

bs2m(Ub)

d
 Tm−1

by the continuous mapping theorem. Since VarP̂n
ℓ(x∗n; ξ)

p→ Varπℓ(x
∗; ξ) from Corollary 1, this

gives our desired result. We now show that N j
b have asymptotic covariance equal to 0.

Since β-mixing coefficients upper bound their strongly mixing counterparts, we have from Ethier
and Kurtz [34, Corollary 2.5.5]

Covπ(N
1
b , N

j
b ) ≤ 22r+1β

1−1/r
b

(
Eπ|N j

b |2r
) 1

2r

for j ≥ 3 (we deal with j = 2 case separately below). The below lemma controls moments of N j
b .

Lemma 19. Let Assumption B hold with Eπ[M(ξ)2r] < ∞. Then, for all j = 1, . . . ,m,

Eπ[|N j
b |2r] ≤ Cf,ρ,r,X

(
Eπ

[
M(ξ)2r

]
+ Eπ

[
|ℓ(x0; ξ)|2r

])

where diam(X ) = supx,x′ ‖x− x′‖ and Cf,ρ,r,X is a constant that only depends on f , ρ, r and
diam(X ).

We defer the proof of the lemma to Section D.4.1. We conclude that Covπ(N
1
b , N

i
b) → 0 for i ≥ 3.

To show that Covπ(N
1
b , N

2
b ) → 0, define N2

b,ǫb
identically as N2

b , except now we leave ⌊ǫbb⌋
number of samples in the beginning. Letting ǫb = 1/

√
b, we still obtain Covπ(N

1
b , N

2
b,ǫb

) → 0

from an identical argument as above. Since Covπ(N
1
b , N

2
b,ǫb

) − Covπ(N
1
b , N

2
b ) → 0 by dominated

convergence theorem, we obtain the result.
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D.4.1 Proof of Lemma 19

First, we consider the following decomposition

N j
b =

√
b

(
sup

P∈Pn,ρ,j

T (P )− T (P̂ j
b )

)
+

√
b
(
T (P̂ j

b )− T (π)
)
. (44)

To bound the moments of the first term, note that

0 ≤
√
b

(
sup

P∈Pn,ρ,j

T (P )− T (P̂ j
b )

)
=

√
b

(
inf
x∈X

sup
P∈Pn,ρ,j

EP [ℓ(x; ξ)] − inf
x∈X

E
P̂ j
b

[ℓ(x; ξ)]

)

≤
√
b sup
x∈X

(
sup

P∈Pn,ρ,j

EP [ℓ(x; ξ)] − E
P̂ j
b

[ℓ(x; ξ)]

)
(45)

From Lemma 13, for some constant Cf depending only on f , we have

Pn,ρ,j ⊆
{
P ≪ P̂ j

b : Dχ2(P ||P̂ j
b ) ≤

Cfρ

n

}
=: P2,n,ρ,j.

The right hand side of the bound (45) is then bounded by

√
b sup
x∈X

(
sup

P∈P2,n,ρ,j

EP [ℓ(x; ξ)] − E
P̂ j
b

[ℓ(x; ξ)]

)
.

Now, the following lemma bounds the error term in the variance expansion (8).

Lemma 20 ([30, 57, Theorem 1]). Let f(t) = 1
2 (t− 1)2. Then

sup
P

{
EP [Z] : Df (P ||P̂n) ≤

ρ

n

}
≤ E

P̂n
[Z] +

√
2ρ

n
Var

P̂n
(Z).

We conclude that

0 ≤
√
b

(
sup

P∈Pn,ρ,j

T (P )− T (P̂ j
b )

)
≤ sup

x∈X

√
2CfρVarP̂ j

b

(ℓ(x; ξ))

≤ 2
√

Cfρ
(
E
P̂ j
b

|ℓ(x0; ξ)|+ diam(X )E
P̂ j
b

[M(ξ)]
)

and hence

brE

∣∣∣∣∣ sup
P∈Pn,ρ,j

T (P )− T (P̂ j
b )

∣∣∣∣∣

2r

≤ 24r−1(Cfρ)
r
(
Eπ|ℓ(x0; ξ)|2r + diam(X )2rEπ[M(ξ)]2r

)
. (46)

To bound the second term in the decomposition (44), note that

√
b
∣∣∣T (P̂ j

b )− T (π)
∣∣∣ =

√
b

∣∣∣∣ infx∈X
E
P̂ j
b

[ℓ(x; ξ)] − inf
x∈X

Eπ[ℓ(x; ξ)]

∣∣∣∣

≤
√
b sup
x∈X

∣∣∣EP̂ j
b

[ℓ(x; ξ)] − Eπ[ℓ(x; ξ)]
∣∣∣

45



Now, from a standard symmetrization argument [82, Section 2.3], we have

brE

[
sup
x∈X

∣∣∣EP̂ j
b

[ℓ(x; ξ)]− Eπ[ℓ(x; ξ)]
∣∣∣
2r
]
≤ E


sup
x∈X

∣∣∣∣∣
1√
b

b∑

i=1

ǫiℓ(x; ξi)

∣∣∣∣∣

2r



where ǫi’s are i.i.d. random signs so that P(ǫi = +1) = P(ǫi = −1) = 1
2 . The following standard

chaining bound controls the right hand side [82].

Lemma 21. Under the conditions of Proposition 6, for j = 1, . . . ,m,

Eǫ


sup
x∈X

∣∣∣∣∣
1√
b

b∑

i=1

ǫiℓ(x; ξi)

∣∣∣∣∣

2r



≤ Cr

(
dr diam (X ) ‖M(ξ)‖2r

L2(P̂ j
b
)
+
(√

ddiam(X ) + 1
)2r

‖ℓ(x0; ξ)‖2rL2(P̂ j
b
)

)

for a constant Cr > 0 depending only on r ≥ 1.

Taking expectations with respect to ξi’s in the preceeding display, we obtain

E


sup
x∈X

∣∣∣∣∣
1√
b

b∑

i=1

ǫiℓ(x; ξi)

∣∣∣∣∣

2r



≤ Cr

(
dr diam (X )E[M(ξ)2r] +

(√
ddiam(X ) + 1

)2r
E[|ℓ(x0; ξ)|2r ]

)
.

Using the bound (46) to bound the first term in the decomposition (44), and using the preceeding
display to bound the second term, we obtain the final result.

E Proofs of Consistency Results

In this appendix, we collect the proofs of the major theorems in Section 5 on consistency of mini-
mizers of the robust objective (4a).

E.1 Proof of Theorem 7

Let Pn,ρ := {P : Df (P ||P̂n) ≤ ρ
n} be the collection of distributions near P̂n. We use Lemma 13 to

prove the theorem. Let ǫ > 0 be as in Assumption E, and define p and q by q = min{2, 1 + ǫ},
p = max{2, 1 + 1

ǫ}. Then defining the likelihood ratio L(ξ) := dP
dP̂n

(ξ) and Ln,ρ the likelihood ratio

set corresponding to Pn,ρ, we have

sup
P∈Pn,ρ

|EP [ℓ(x; ξ)]− EP0 [ℓ(x; ξ)]|

≤ sup
L∈Ln,ρ

E
P̂n

[|L(ξ)− 1| ℓ(x; ξ)] +
∣∣∣EP̂n

[ℓ(x; ξ)]− EP0 [ℓ(x; ξ)]
∣∣∣

≤ sup
L∈Ln,ρ

E
P̂n

[|L(ξ)− 1|p]1/p · E
P̂n

[|ℓ(x; ξ)|q ]1/q +
∣∣∣EP̂n

[ℓ(x; ξ)]− EP0 [ℓ(x; ξ)]
∣∣∣ (47)

where inequality (47) is a consequence of Hölder’s inequality. Applying Lemma 13, we have that

E
P̂n

[|L(ξ)− 1|p]1/p = n−1/p ‖np− 1‖p ≤ n−1/p ‖np− 1‖2 ≤ n−1/p
√

ρ

γf
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where γf is as in the lemma. Combining this inequality with Assumption E, the first term in the
upper bound (47) goes to 0. Since the second term converges uniformly to 0 (in outer probability)
by the Glivenko-Cantelli property, the desired result follows.

E.2 Proof of Theorem 8

Before giving the proof proper, we provide a few standard definitions that are useful.

Definition 7. Let {An} be a sequence of sets in R
d. The limit supremum (or limit exterior or

outer limit) and limit infimum ( limit interior or inner limit) of the sequence {An} are

lim sup
n

An :=
{
x ∈ R

d | lim inf
n→∞

dist(x,An) = 0
}

lim inf
n

An :=

{
x ∈ R

d | lim sup
n→∞

dist(x,An) = 0

}
.

Moreover, we write An → A if lim supn An = lim infnAn = A.

The last definition of convergence of An → A is Painlevé-Kuratowski convergence. With this
definition, we may define epigraphical convergence of functions.

Definition 8. Let gn : Rd → R be a sequence of functions, and g : Rd → R. Then gn epi-converges
to a function g if

epi gn → epi g (48)

in the sense of Painlevé-Kuratowski convergence, where epi g = {(x, r) ∈ R
d × R : g(x) ≤ r}.

We use gn
epi→ g to denote the epi-convergence of gn to g. If g is proper (meaning that dom g 6= ∅),

the following lemma characterizes epi-convergence for closed convex functions.

Lemma 22 (Rockafellar and Wets [69], Theorem 7.17). Let gn, g be convex, proper, and lower
semi-continuous. The following are equivalent.

(i) gn
epi→ g

(ii) There exists a dense set A ⊂ Rd such that gn(x) → g(x) for all x ∈ A.

(iii) For all compact C ⊂ dom g not containing a boundary point of dom g,

lim
n→∞

sup
x∈C

|gn(x)− g(x)| = 0.

The last characterization says that epi-convergence is equivalent to uniform convergence on com-
pacta. Before moving to the proof of the theorem, we give one more useful result.

Lemma 23 (Rockafellar and Wets [69], Theorem 7.31). Let gn
epi→ g, where gn and g are extended

real-valued functions and infx g(x) ∈ (−∞,∞). Then infx gn(x) → infx g(x) if and only if for all
ǫ > 0, there exists a compact set C such that

inf
x∈C

gn(x) ≤ inf
x
gn(x) + ǫ eventually.
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We now show that the sample-based robust upper bound converges to the population risk. For
notational convenience, based on a sample ξ1, . . . , ξn (represented by the empirical distribution P̂n),
define the functions

F (x) := EP0 [ℓ(x; ξ)] and F̂n(x) := sup
P≪P̂n

{
EP [ℓ(x; ξ)] : Df (P ||P̂n) ≤

ρ

n

}
.

These are both closed convex: F by [10] and F̂n as it is the supremum of closed convex functions.
We now show condition (ii) of Lemma 22 holds. Indeed, let ǫ > 0 be such that EP0 [|ℓ(x; ξ)|1+ǫ] < ∞
for all x ∈ X , and define q = min{2, 1 + ǫ} and p = max{2, 1 + ǫ−1} to be its conjugate. Then the
bound (47) in the proof of Theorem 7 implies that for any x ∈ X we have

|F (x)− F̂n(x)| ≤ n−1/p
√

ρ

γf
EP̂n

[|ℓ(x; ξ)|q]
1
q +

∣∣∣EP̂n
[ℓ(x; ξ)] − EP0 [ℓ(x; ξ)]

∣∣∣ .

The strong law of large numbers and continuous mapping theorem imply that EP̂n
[|ℓ(x; ξ)|q ]1/q a.s.→

EP0 [|ℓ(x; ξ)|q ]1/q for each x, and thus for each x ∈ X , we have F̂n(x)
a.s.→ F (x). Letting X̂ denote

any dense but countable subset of X , we then have

F̂n(x) → F (x) for all x ∈ X̂
except on a set of P0-probability 0. This is condition (ii) of Lemma 22, whence we see that

F̂n
epi→ F with probability 1.

With these convergence guarantees, we prove the claims of the theorem. Let us assume that

we are on the event that F̂n
epi→ F , which occurs with probability 1. For simplicity of notation

and with no loss of generality, we assume that F (x) = F̂n(x) = ∞ for x 6∈ X . By Assumption C,
the sub-level sets {x ∈ X : EP0 [ℓ(x; ξ)] ≤ α} are compact, and S⋆

P0
= argminx∈X EP0 [ℓ(x; ξ)] is

non-empty (F is closed), convex, and compact. Let C ⊂ R
d be a compact set containing S⋆

P0
in its

interior. We may then apply Lemma 22(iii) to see that

sup
x∈C

|F̂n(x)− F (x)| → 0.

Now, we claim that S⋆
P̂n

⊂ int C eventually. Indeed, because F is closed and S⋆
P0

⊂ int C, we know

that on the compact set bdC, we have infx∈bdC F (x) > infx F (x). The uniform convergence of F̂n

to F on C then implies that eventually infx∈bdC F̂n(x) > infx∈C F̂n(x), and thus S⋆
P̂n

⊂ int C. This

shows that for any sequence xn ∈ S⋆
P̂n

, the points xn are eventually in the interior of any compact

set C ⊃ S⋆
P0

and thus supxn∈S⋆

P̂n

dist(xn, S
⋆
P0
) → 0.

The argument of the preceding paragraph shows that any compact set C containing S⋆
P0

in

its interior guarantees that, on the event F̂n
epi→ F , we have infx∈C F̂n(x) ≤ infx F̂n(x) + ǫ and

S⋆
P̂n

⊂ int C eventually. Applying Lemma 23 gives that infx F̂n(x)
P ∗

→ infx F (x) as desired. To

show the second result, we note that from the continuous mapping theorem [82, Theorem 1.3.6]

and F̂n
P ∗

→ F uniformly on C

lim sup
n→∞

P
∗
(
d⊂(S

⋆
P̂n

, S⋆
P0
) ≥ ǫ

)
≤ lim sup

n→∞
P
∗
(

inf
x∈S⋆ǫ

P0

F̂n(x) > inf
x∈X

F̂n(x)

)

= P
∗
(

inf
x∈S⋆ǫ

P0

F (x) > inf
x∈X

F (x)

)
= 0

where Aǫ = {x : dist(x,A) ≤ ǫ} denotes the ǫ-enlargement of A.
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