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Abstract:

In multi-period stochastic optimization problems, the future optimal decision

is a random variable whose distribution depends on the parameters of the opti-

mization problem. We analyze how the expected value of this random variable

changes as a function of the dynamic optimization parameters in the context

of Markov decision processes. We call this analysis stochastic comparative

statics. We derive both comparative statics results and stochastic comparative

statics results showing how the current and future optimal decisions change in

response to changes in the single-period payoff function, the discount factor,

the initial state of the system, and the transition probability function. We ap-

ply our results to various models from the economics and operations research

literature, including investment theory, dynamic pricing models, controlled

random walks, and comparisons of stationary distributions.
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1 Introduction

A question of interest in a wide range of problems in economics and operations research is

whether the solution to an optimization problem is monotone with respect to its parame-

ters. The analysis of this question is called comparative statics.1 Following Topkis’ seminal

work (Topkis, 1978), comparative statics methods have received significant attention in

the economics and operations research literature.2 While comparative statics methods

are usually applied to static optimization problems, they can also be applied to dynamic

optimization problems. In particular, these methods can be used to study how the policy

function3 changes with respect to the current state of the system or with respect to other

parameters of the dynamic optimization problem.4 That is, for multi-period optimization

models, comparative statics methods can be used to determine how the current period’s

optimal decision changes with respect to the parameters of the optimization problem. For

example, in a Markov decision process, under suitable conditions on the payoff function

and on the transition function, comparative statics methods can be applied to show that

the optimal decision is increasing in the discount factor when the state of the system is

fixed. But since the model is dynamic and includes uncertainty, the states’ evolution is

different under different discount factors, and thus, it is not clear whether the future op-

timal decision is increasing in the discount factor even when the current optimal decision

is increasing in the discount factor for a fixed state.

The state of the system in period t > 1 is a random variable from the point of view

of period 1, and thus, the optimal decision in period t, which depends on the state of the

system in period t, is a random variable given the information available in period 1. In

this paper, we analyze how the expected value of the optimal decision in period t changes

as a function of the optimization problem parameters in the context of Markov decision

processes (MDP). We call this analysis stochastic comparative statics. More precisely,

let (E,�) be a partially ordered set that contains some parameters of the MDP. For

1 See Topkis (2011) for a comprehensive treatment of comparative statics methods.
2 See for example LiCalzi and Veinott (1992), Milgrom and Shannon (1994), Athey (2002),

Echenique (2002), Antoniadou (2007), Quah (2007), Quah and Strulovici (2009), Shirai (2013), Nocetti
(2015), Wang and Li (2015), Barthel and Sabarwal (2018), and Koch (2019).

3Müller (1997) and Smith and McCardle (2002) study how the optimal value function changes with
respect to the parameters of the dynamic optimization problem, such as the single-period payoff func-
tion and the transition probability function. In contrast, in this paper, we analyze the optimal policy
function.

4 For comparative statics results in dynamic optimization models see Serfozo (1976), Lovejoy
(1987), Amir et al. (1991), Hopenhayn and Prescott (1992), Mirman et al. (2008), Topkis (2011),
Krishnamurthy (2016), Smith and Ulu (2017), Lehrer and Light (2018), and Dziewulski and Quah
(2019).
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example, E can be the set of all transition probability functions, the set of all discount

factors, and/or a set of parameters that influence the payoff function. Suppose that under

the parameters e ∈ E a stationary policy function is given by g(s, e) where s is the state of

the system. Given the policy function g and the system’s initial state, the system’s states

follow a stochastic process. Suppose that the states’ distribution in period t is described

by the probability measure µt(ds, e). We are interested in finding conditions that ensure

that the expected decision in period t, Et(g(e)) =
∫
g(s, e)µt(ds, e) is increasing in the

parameters e on E.

The expected value Et(g(e)) is interpreted in two different ways. From a probabilistic

point of view, Et(g(e)) is the expected optimal decision in period t as a function of the pa-

rameters e. For example, in investment theory, this expected value usually represents the

expected capital accumulation in the system in period t (Stokey and Lucas, 1989). In in-

ventory management, it represents the expected inventory in period t (Krishnan and Winter,

2010), and in income fluctuation problems it represents the expected wealth accumula-

tion (see Huggett (2004) and Bommier and Grand (2018)) in period t. From a deter-

ministic point of view, if we consider a population of ex-ante identical agents whose

states evolve independently according to the stochastic process that governs the states’

dynamics, then µt represents the empirical distribution of states in period t. In this case,

E
t(g(e)) corresponds to the average decision in period t of this population given the pa-

rameters e. This latter interpretation is common in the growing literature on stationary

equilibrium models and mean field equilibrium models. In this literature, while the fo-

cus is on the analysis of equilibrium, some stochastic comparative statics results have

been obtained (see Adlakha and Johari (2013) and Acemoglu and Jensen (2015)). These

stochastic comparative statics results are useful in analyzing the equilibrium of these mod-

els. In particular, proving comparative statics results and establishing the uniqueness of

an equilibrium (see Hopenhayn (1992), Light (2018b), Acemoglu and Jensen (2018), and

Light and Weintraub (2019)).

The goal of this paper is to provide general stochastic comparative statics results in

the context of an MDP. In particular, we provide various sufficient conditions on the

primitives of MDPs that guarantee stochastic comparative statics results with respect

to important parameters of MDPs, such as the discount factor, the single-period payoff

function, and the transition probability function. We also provide novel comparative

statics results with respect to these parameters. For example, we show that under a

standard set of conditions that implies that the policy function is increasing in the state,

the policy function is increasing the discount factor also (see Section 3.2). We apply our
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results in capital accumulation models with adjustment costs (Hopenhayn and Prescott,

1992), in dynamic pricing models with reference effects (Popescu and Wu, 2007), and in

controlled random walks. As an example, consider the following controlled random walk

st+1 = st + at + ǫt+1 where st is the state of the system in period t, at is the action

chosen in period t, and {ǫt}
∞
t=1 are random variables that are independent and identically

distributed across time. In each period, a decision maker receives a reward that depends

on the current state of the system and incurs a cost that depends on the action that the

decision maker chooses in that period. The reward function is increasing in the state

of the system and the cost function is increasing in the decision maker’s action. The

decision maker’s goal is to maximize the expected sum of rewards. We provide sufficient

conditions on the reward function and on the cost function that guarantee that the decision

maker’s current action and the expected future actions increase when the distribution of

the random noise ǫ is higher in the sense of stochastic dominance. Since our results

are intuitive and the sufficient conditions that we provide in order to derive stochastic

comparative statics results are satisfied in some dynamic programs of interest, we believe

that our results hold in other applications as well.

The rest of the paper is organized as follows. Section 2 presents the dynamic opti-

mization model. Section 2.1 presents definitions and notations that are used throughout

the paper. In Section 3.1 we present our main stochastic comparative statics results. In

Section 3.2 we study changes in the discount factor and in the single-period payoff func-

tion. In Section 3.3 we study changes in the transition probability function. In Section 4

we apply our results to various models. In Section 5 we provide a summary, followed by

an Appendix containing proofs.

2 The model

In this section we present the main components and assumptions of the model. For con-

creteness, we focus on a standard discounted dynamic programming model, sometimes

called a Markov decision process.5 For a comprehensive treatment of dynamic program-

ming models, see Feinberg and Shwartz (2012) and Puterman (2014).

We define a discounted dynamic programming model in terms of a tuple of elements

(S,A,Γ, p, r, β). S ⊆ R
n is a Borel set called the state space. B(S) is the Borel σ-algebra

on S. A ⊆ R is the action space. Γ is a measurable subset of S × A. For all s ∈ S,

5 All our results can be applied to other dynamic programming models, such as positive dynamic
programming and negative dynamic programming.
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the non-empty and measurable s-section Γ(s) of Γ is the set of feasible actions in state

s ∈ S. p : S×A×B(S) → [0, 1] is a transition probability function. That is, p(s, a, ·) is a

probability measure on S for each (s, a) ∈ S×A and p(·, ·, B) is a measurable function for

each B ∈ B(S). r : S × A → R is a measurable single-period payoff function. 0 < β < 1

is the discount factor.

There is an infinite number of periods t ∈ N := {1, 2, ...}. The process starts at some

state s(1) ∈ S. Suppose that at time t the state is s(t). Based on s(t), the decision maker

(DM) chooses an action a(t) ∈ Γ(s(t)) and receives a payoff r(s(t), a(t)). The probability

that the next period’s state s(t+ 1) will lie in B ∈ B(S) is given by p(s(t), a(t), B).

Let H = S × A and H t := H × . . .×H
︸ ︷︷ ︸

t−1 times

×S. A policy σ is a sequence (σ1, σ2, . . .) of

Borel measurable functions σt : H
t → A such that σt(s(1), a(1), . . . , s(t)) ∈ Γ(s(t)) for

all t ∈ N and all (s(1), a(1), . . . , s(t)) ∈ H t. For each initial state s (1), a policy σ and a

transition probability function p induce a probability measure over the space of all infinite

histories H∞.6 We denote the expectation with respect to that probability measure by

Eσ, and the associated stochastic process by {s(t), a(t)}∞t=1. The DM’s goal is to find a

policy that maximizes his expected discounted payoff. When the DM follows a strategy

σ and the initial state is s ∈ S his expected discounted payoff is given by

Vσ(s) = Eσ

∞∑

t=1

βt−1r(s(t), a(t)).

Define

V (s) = sup
σ

Vσ(s).

We call V : S → R the value function.

Define the operator T : B(S) → B(S) where B(S) is the space of all functions f :

S → R by

Tf(s) = max
a∈Γ(s)

h(s, a, f),

where

h(s, a, f) = r(s, a) + β

∫

S

f(s′)p(s, a, ds′). (1)

Under standard assumptions on the primitives of the MDP,7 standard dynamic program-

6 The probability measure on the space of all infinite histories H∞ is uniquely defined by the
Ionescu Tulcea theorem (for more details, see Bertsekas and Shreve (1978) and Feinberg (1996)).

7The state and action spaces can be continuous or discrete. When we discuss convex functions on S

we assume that S is a convex set.
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ming arguments show that the value function V is the unique function that satisfies

TV = V . In addition, there exists an optimal stationary policy and the optimal policies

correspondence

G(s) = {a ∈ Γ(s) : V (s) = h(s, a, V )}

is nonempty, compact-valued and upper hemicontinuous. Define g(s) = maxG(s). We

call g(s) the policy function. For the rest of the paper, we assume that the value function

is the unique and continuous function that satisfies TV = V , T nf converges uniformly to

V for every f ∈ B(S), and that the policy function exists.8

2.1 Notations and definitions

In this paper we consider a parameterized dynamic program. Let (E,�) be a partially

ordered set that influences the DM’s decisions. We denote a generic element in E by e.

Throughout the paper, we slightly abuse the notations and allow an additional argument

in the functions defined above. For instance, the value function of the parameterized

dynamic program V is denoted by

V (s, e) = max
a∈Γ(s,e)

h(s, a, e, V ).

Likewise, the policy function is denoted by g(s, e); r(s, a, e) is the single-period payoff

function; and h(s, a, e, V ) is the h function associated with the dynamic program problem

with parameters e, as defined above in Equation (1). For the rest of the paper, we let Ep

be the set of all transition functions p : S × A× B(S) → [0, 1].

When the DM follows the policy function g(s) and the initial state is s(1), the stochas-

tic process (s(t)) is a Markov process. The transition function of (s(t)) can be described

by the policy function g and by the transition function p as follows: For all B ∈ B(S),

define µ1(B) = 1 if s(1) ∈ B and 0 otherwise, and µ2(B) = p(s(1), g(s(1)), B). µ2(B)

is the probability that the second period’s state s(2) will lie in B. For t ≥ 3, define

µt(B) =
∫

S
p(s, g(s), B)µt−1(ds) for all B ∈ B(S). Then µt(B) is the probability that s(t)

will lie in B ∈ B(S) in period t when the initial state is s(1) ∈ S and the DM follows the

policy function g. For notational convenience, we omit the reference to the initial state.

All the results in this paper hold for every initial state s(1) ∈ S.

8These conditions are usually satisfied in applications. Conditions that ensure the existence and
continuity of the value function and the existence of a stationary policy function are widely stud-
ied in the literature. See Hinderer et al. (2016) for a textbook treatment. For recent results, see
Feinberg et al. (2016) and references therein.
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We write µt
i(B) to denote the probability that s will lie in B ∈ B(S) in period t, when

ei ∈ E are the parameters that influence the DM’s decisions and the DM follows the

policy function g(s, ei), i = 1, 2. For ei ∈ E, define

E
t
i(g(ei)) =

∫

S

g(s, ei)µ
t
i(ds).

As we discussed in the introduction, Et
i(g(ei)) can be interpreted in two ways. According

to the first interpretation, the DM’s optimal decision in period t is a random variable

from the point of view of period 1. The expected value E
t
i(g(ei)) is the DM’s expected

decision in period t, given that the parameters that influence the DM’s decisions are

ei ∈ E. Alternately, the expected value Et
i(g(ei)) can be interpreted as the aggregate of the

decisions of a continuum of DMs facing idiosyncratic shocks. In the latter interpretation,

each DM has an individual state and µt is the distribution of the DMs over the states

in period t. This interpretation is often used in stationary equilibrium models and in

mean field equilibrium models (see more details in Section 4.4). We are interested in

the following stochastic comparative statics question: is it true that e2 � e1 implies

E
t
2(g(e2)) ≥ E

t
1(g(e1)) for all t ∈ N (and for each initial state)? We note that for t = 1,

the stochastic comparative statics question reduces to a comparative statics question: is

it true that e2 � e1 implies g(s, e2) ≥ g(s, e1)?

We now introduce some notations and definitions that will be used in the next sections.

For two elements x, y ∈ R
n we write x ≥ y if xi ≥ yi for each i = 1, ..., n. We say that

f : Rn → R is increasing if x ≥ y implies f(x) ≥ f(y).

Let D ⊆ R
S where R

S is the set of all functions from S to R. When µ1 and µ2 are

probability measures on (S,B(S)), we write µ2 �D µ1 if

∫

S

f(s)µ2(ds) ≥

∫

S

f(s)µ1(ds)

for all Borel measurable functions f ∈ D such that the integrals exist.

In this paper we will focus on two important stochastic orders: the first order stochastic

dominance and the convex stochastic order. When D is the set of all increasing functions

on S, we write µ2 �st µ1 and say that µ2 first order stochastically dominates µ1. If D is

the set of all convex functions on S, we write µ2 �CX µ1 and say that µ2 dominates µ1 in

the convex stochastic order. If D is the set of all increasing and convex functions on S,
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we write µ2 �ICX µ1. Similarly, for p1, p2 ∈ Ep, we write p2 �D p1 if

∫

S

f(s′)p2(s, a, ds
′) ≥

∫

S

f(s′)p1(s, a, ds
′)

for all Borel measurable functions f ∈ D ⊆ R
S and all (s, a) ∈ S × A such that the

integrals exist.9 If D is the set of all increasing functions, convex functions, and convex

and increasing functions, we write p2 �st p1, p2 �CX p1, and p2 �ICX p1, respectively. For

comprehensive coverage of stochastic orders and their applications, see Müller and Stoyan

(2002) and Shaked and Shanthikumar (2007).

Definition 1 (i) We say that p ∈ Ep is monotone if for every increasing function f the

function
∫

S
f(s′)p(s, a, ds′) is increasing in (s, a).

(ii) We say that p ∈ Ep is convexity-preserving if for every convex function f the

function
∫

S
f(s′)p(s, a, ds′) is convex in (s, a).

(iii) Define Pi(s, B) =: pi(s, g(s, ei), B). Let D ⊆ R
S. We say that Pi is D-preserving

if f ∈ D implies that
∫

S
f(s′)Pi(s, ds

′) ∈ D. If D is the set of all increasing functions,

convex functions, and convex and increasing functions, we say that Pi is I-preserving,

CX-preserving, and ICX-preserving, respectively.

3 Main results

In this section we derive our main results. In Section 3.1 we provide stochastic comparative

statics results. In Section 3.2 and in Section 3.3 we provide conditions on the primitives of

the MDP that guarantee comparative statics and stochastic comparative statics results.

3.1 Stochastic comparative statics

In this section we provide conditions that ensure stochastic comparative statics. Our

approach is to find conditions that imply that the states’ dynamics generated under e2

stochastically dominate the states’ dynamics generated under e1 whenever e2 � e1. Theo-

rem 1 shows that if P2 is D-preserving and P2(s, ·) �D P1(s, ·) for all s ∈ S, then µt
2 �D µt

1

for all t ∈ N. A proof of Theorem 1 can be found in Chapter 5 in Müller and Stoyan (2002)

where the authors study stochastic comparisons of general Markov chains. For complete-

ness, because our setting is slightly different, we provide the proof of Theorem 1 in the

9 In the rest of the paper, all functions are assumed to be integrable.
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Appendix for completeness.10

The focus of the rest of the paper is on finding sufficient conditions on the primitives

of the MDP in order to apply Theorem 1. Corollary 1 and Theorem 2 provide sufficient

conditions for P2 to beD-preserving and P2(s, ·) �D P1(s, ·) whenD is the set of increasing

functions or the set of increasing and convex functions. The results in this section require

conditions on the policy function and on the primitives of the MDP. In Sections 3.2 and

3.3, we provide comparative statics and stochastic comparative statics results that depend

only on the primitives of the model (e.g., the transition probabilities and the single-period

payoff function).

Theorem 1 Let (E,�) be a partially ordered set and let D ⊆ R
S. Let e1, e2 ∈ E and

suppose that e2 � e1. Assume that P2 is D-preserving and that P2(s, ·) �D P1(s, ·) for all

s ∈ S. Then µt
2 �D µt

1 for all t ∈ N.

In the case that p2 = p1 = p and (E,�) is a partially ordered set that influences

the agent’s decisions, Theorem 1 yields a simple stochastic comparative statics result.

Corollary 1 shows that if g(s, e) is increasing in e, g(s, e2) is increasing in s, and p is

monotone, then E
t
2(g(e2)) ≥ E

t
1(g(e1)) whenever e2 � e1. This result is useful when E is

the set of all possible discount factors between 0 and 1, or is a set that includes parameters

that influence the single-period payoff function (see Section 3.2).

Corollary 1 Let e1, e2 ∈ E and suppose that e2 � e1. Assume that g(s, e) is increasing

in e for all s ∈ S, g(s, e2) is increasing in s, p1 = p2 = p, and p is monotone. Then

E
t
2(g(e2)) ≥ E

t
1(g(e1))

for all t ∈ N and for each initial state s(1) ∈ S.

In some dynamic programs we are interested in knowing how a change in the initial

state will influence the DM’s decisions in future periods. Corollary 2 shows that a higher

initial state leads to higher expected decisions if the policy function is increasing in the

state of the system and the transition probability function is monotone. The proof follows

from the same arguments as those in the proof of Corollary 1. Recall that we denote the

initial state by s(1).

10A similar result to Theorem 1 for the case of �st and �ICX can be found in Huggett (2004),
Adlakha and Johari (2013), Balbus et al. (2014), and Acemoglu and Jensen (2015).
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Corollary 2 Consider two MDPs that are equivalent except for the initial states si(1),

i = 1, 2. Assume that s2(1) ≥ s1(1), g(s) is increasing in s, and p is monotone. Then

E
t
2(g(s2(1))) ≥ E

t
1(g(s1(1))) for all t ∈ N.

We now derive stochastic comparative statics results with respect to the transition

probability function that governs the states’ dynamics. Part (i) of Theorem 2 provides

conditions that ensure that p2 �st p1 implies E
t
2(g(p2)) ≥ E

t
1(g(p1)) for all t ∈ N. Part

(ii) provides conditions that ensure that p2 �CX p1 implies E
t
2(g(p2)) ≥ E

t
1(g(p1)) for

all t ∈ N. In Section 4 we apply these results to various commonly studied dynamic

optimization models.

Theorem 2 Let p1, p2 ∈ Ep.

(i) Assume that p2 is monotone, g(s, p2) is increasing in s, and g(s, p2) ≥ g(s, p1) for

all s ∈ S. Then p2 �st p1 implies that Et
2(g(p2)) ≥ E

t
1(g(p1)) for all t ∈ N.

(ii) Assume that p2 is monotone and convexity-preserving, g(s, p2) is increasing and

convex in s, and g(s, p2) ≥ g(s, p1) for all s ∈ S. Then p2 �CX p1 implies that Et
2(g(p2)) ≥

E
t
1(g(p1)) for all t ∈ N.

3.2 A change in the discount factor or in the payoff function

In this section we provide sufficient conditions for the monotonicity of the policy function

in the state variable, and for the monotonicity of the policy function in other parameters

of the MDP, including the discount factor and the parameters that influence the single-

period payoff function. Our stochastic comparative statics results in Section 3.1 rely on

these monotonicity properties. Thus, we provide conditions on the model’s primitives

that ensure stochastic comparative statics results.

The monotonicity of the policy function in the state variable follows from the condi-

tions on the model’s primitives provided in Topkis (2011). We note that these conditions

are not necessary for deriving monotonicity results regarding the policy function, and in

some specific applications one can still derive these monotonicity results using different

techniques or under different assumptions.11

Recall that a function f : S ×E → R is said to have increasing differences in (s, e) on

11 For example, see Lovejoy (1987) and Hopenhayn and Prescott (1992). See also
Smith and McCardle (2002) for conditions that guarantee that the value function is monotone and
has increasing differences.
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S × E if for all e2, e1 ∈ E and s2, s1 ∈ S such that e2 � e1 and s2 ≥ s1, we have

f(s2, e2)− f(s2, e1) ≥ f(s1, e2)− f(s1, e1).

A function f has decreasing differences if −f has increasing differences.

A set B ∈ B(S) is called an upper set if s1 ∈ B and s2 ≥ s1 imply s2 ∈ B. The transi-

tion probability p ∈ Ep has stochastically increasing differences if p(s, a, B) has increasing

differences for every upper set B. See Topkis (2011) for examples of transition probabili-

ties that have stochastically increasing differences. The optimal policy correspondence G

is said to be ascending if s2 ≥ s1, b ∈ G(s1), and b′ ∈ G(s2) imply max{b, b′} ∈ G(s2)

and min{b, b′} ∈ G(s1). In particular, if G is ascending, then minG(s) and maxG(s)

are increasing functions. Topkis (2011) provides conditions under which the optimal pol-

icy correspondence G is ascending. These conditions are summarized in the following

assumption:

Assumption 1 (i) r(s, a) is increasing in s and has increasing differences.

(ii) p is monotone and has stochastically increasing differences.

(iii) For all s1, s2 ∈ S, s1 ≤ s2 implies Γ(s1) ⊆ Γ(s2).

Theorem 3 shows that under Assumption 1, the policy function g(s, β) is increasing

in the discount factor. Furthermore, if the single period payoff function r(s, a, c) depends

on some parameter c and has increasing differences, then the policy function is increasing

in the parameter c.

Theorem 3 Suppose that Assumption 1 holds and that Γ(s) is ascending.

(i) Let 0 < β1 ≤ β2 < 1. Then g(s, β2) ≥ g(s, β1) for all s ∈ S and E
t
2(g(β2)) ≥

E
t
1(g(β1)) for all t ∈ N.

(ii) Let c ∈ E be a parameter that influences the payoff function. If the payoff function

r(s, a, c) has increasing differences in (a, c) and in (s, c), then g(s, c2) ≥ g(s, c1) for all

s ∈ S, and E
t
2(g(c2)) ≥ E

t
1(g(c1)) for all t ∈ N whenever c2 � c1.

3.3 A change in the transition probability function

In this section we study stochastic comparative statics results related to a change in

the transition function. We provide conditions on the transition function and on the

payoff function that ensure that p2 �st p1 implies comparative statics results and stochas-

tic comparative statics results. We assume that the transition function pi is given by
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pi(s, a, B) = Pr(m(s, a, ǫ) ∈ B) for all B ∈ B(S), where ǫ is a random variable with law v

and support V ⊆ R
k. Theorem 4 provides conditions on the function m that imply that

the policy function is higher when v is higher in the sense of stochastic dominance. In

Section 4.3, we provide an example of a controlled random walk where the conditions on

m are satisfied.

Theorem 4 Suppose that pi(s, a, B) = Pr(m(s, a, ǫi) ∈ B) where m is convex, increasing,

continuous, and has increasing differences in (s, a), (s, ǫ) and (a, ǫ); and ǫi has the law

vi, i = 1, 2. r(s, a) is convex and increasing in s and has increasing differences. For all

s1, s2 ∈ S, we have Γ(s1) = Γ(s2).

If v2 �st v1 then

(i) g(s, p2) ≥ g(s, p1) for all s ∈ S and g(s, p2) is increasing in s.

(ii) E
t
2(g(p2)) ≥ E

t
1(g(p1)) for all t ∈ N.

4 Applications

In this section we apply our results to several dynamic optimization models from the

economics and operations research literature.

4.1 Capital accumulation with adjustment costs

Capital accumulation models are widely studied in the investment theory literature (Stokey and Lucas,

1989). We consider a standard capital accumulation model with adjustment costs (Hopenhayn and Prescott,

1992). In this model, a firm maximizes its expected discounted profit over an infinite hori-

zon. The single-period revenues depend on the demand and on the firm’s capital. The

demand evolves exogenously in a Markovian fashion. In each period, the firm decides on

the next period’s capital level and incurs an adjustment cost that depends on the current

capital level and on the next period’s capital level. Using the stochastic comparative stat-

ics results developed in the previous section, we find conditions that ensure that higher

future demand, in the sense of first order stochastic dominance, increases the expected

long run capital accumulated. We provide the details below.

Consider a firm that maximizes its expected discounted profit. The firm’s single-period

payoff function r is given by

r(s, a) = R(s1, s2)− c(s1, a)

12



where s = (s1, s2). The revenue function R depends on an exogenous demand shock

s2 ∈ S2 ⊆ R
n−1, and on the current firm’s capital stock s1 ∈ S1 ⊆ R+. The state space

is given by S = S1 × S2. The demand shocks follow a Markov process with a transition

function Q. The firm chooses the next period’s capital stock a ∈ Γ(s1) and incurs an

adjustment cost of c(s1, a). The transition probability function p is given by

p(s, a, B) = 1D(a)Q(s2, C),

where D×C = B, D is a measurable set in R, C is a measurable set in R
n−1, and Q is a

Markov kernel on S2 ⊆ R
n−1.

It is easy to see that if Q is monotone then p(s, a, B) = 1D(a)Q(s2, C) is monotone

and that Q2 �st Q1 implies p2 �st p1.

Assume that the revenue function R is continuous and has increasing differences,

that c is continuous and has decreasing differences, and that Γ(s) is ascending. Under

these conditions, Hopenhayn and Prescott (1992) show that the policy function g(s, p) is

increasing in s if Q is monotone. If, in addition, Q2 �st Q1, then g(s, p2) ≥ g(s, p1) for

all s (see Corollary 7 in Hopenhayn and Prescott (1992)). Thus, part (i) in Theorem 2

implies that Et
2(g(p2)) ≥ E

t
1(g(p1)) for all t ∈ N.

Proposition 1 Let Q1 and Q2 be two Markov kernels on S2. Assume that R is continuous

and has increasing differences, c is continuous and has decreasing differences, Γ(s) is

ascending, and Γ(s1) ⊇ Γ(s′1) whenever s1 ≥ s′1. Assume that Q2 is monotone and that

Q2 �st Q1. Then under Q2 the expected capital accumulation is higher than under Q1,

i.e., Et
2(g(p2)) ≥ E

t
1(g(p1)) for all t ∈ N.

4.2 Dynamic pricing with a reference effect and an uncertain

memory factor

In this section we consider a dynamic pricing model with a reference effect as in Popescu and Wu

(2007). In this model the demand is sensitive to the firm’s pricing history. In particular,

consumers form a reference price that influences their demand. As in Popescu and Wu

(2007), we consider a profit-maximizing monopolist who faces a homogeneous stream of

repeated customers over an infinite time horizon. In each period, the monopolist decides

on a price a ∈ A := [0, a] to charge the consumers. Assume for simplicity that the

13



marginal cost is 0. The resulting single-period payoff function is given by

r(s, a) = aD(s, a)

where s ∈ S ⊆ R is the current reference price and D(s, a) is the demand function that

depends on the reference price s and on the price that the monopoly charges a. We assume

that the function D(s, a) is continuous, non-negative, decreasing in p, increasing in s, has

increasing differences, and is convex in s. If the current reference price is s and the firm

sets a price of a then the next period’s reference price is given by γs + (1 − γ)a (see

Popescu and Wu (2007) for details on the micro foundations of this structure). γ is called

the memory factor. In contrast to the model of Popescu and Wu (2007), we assume that

the memory factor γ is not deterministic. More precisely, we assume that the memory

factor γ is a random variable on [0, 1] with law v. So the transition probability function

p is given by

p(s, a, B) = v{γ ∈ [0, 1] : (γs+ (1− γ)a) ∈ B}

for all B ∈ B(S). We show that even when the memory factor γ is a random variable, the

result of Popescu and Wu (2007) holds in expectation, i.e., the long run expected prices

are increasing in the current reference price. We also show that an increase in the discount

factor increases the current optimal price and the long run expected prices.

Proposition 2 Suppose that the function D(s, a) is continuous, non-negative, decreasing

in p, increasing and convex in s, and has increasing differences.

(i) The optimal pricing policy g(s) is increasing in the reference price s.

(ii) The expected optimal prices in each period are higher when the initial reference

price is higher.

(iii) 0 < β1 ≤ β2 < 1 implies that g(s, β2) ≥ g(s, β1) for all s ∈ S and E
t
2(g(β2)) ≥

E
t
1(g(β1)) for all t ∈ N.

4.3 Controlled random walks

Controlled random walks are used to study controlled queueing systems and other phe-

nomena in applied probability (for example, see Serfozo (1981)). In this section we con-

sider a simple controlled random walk on R. At any period, the state of the system

s ∈ R determines the current period’s reward c1(s). The next period’s state is given by

m(s, a, ǫ) = a + s + ǫ where ǫ is a random variable with law v and support V ⊆ R, and

a ∈ A is the action that the DM chooses. Thus, the process evolves as a random walk
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s + ǫ plus the DM’s action a. When the DM chooses an action a ∈ A, a cost of c2(a)

is incurred. We assume that A ⊆ R is a compact set, c1(s) is an increasing and convex

function, and c2 is an increasing function. That is, the reward and the marginal reward

are increasing in the state of the system and the costs are increasing in the action that

the DM chooses.

The single-period payoff function is given by r(s, a) = c1(s)− c2(a) and the transition

probability function is given by

p(s, a, B) = v{ǫ ∈ V : a+ s+ ǫ ∈ B}

for all B ∈ B(R). In this setting, when choosing an action a, the DM faces the following

trade-off between the current payoff and future payoffs: while choosing a higher action a

has higher current costs, it increases the probability that the state of the system will be

higher in the next period, and thus, a higher action increases the probability of higher

future rewards.

We study how a change in the random variable ǫ affects the DM’s current and future

optimal decisions. When c1(s) is convex and increasing in s, it is easy to see that the

transition function m(s, a, ǫ) = a + s+ ǫ and the single-period function r(s, a) = c1(s)−

c2(a) satisfy the conditions of Theorem 4. Thus, the proof of the following proposition

follows immediately from Theorem 4.

Proposition 3 Suppose that pi(s, a, B) = Pr(a + s + ǫi ∈ B) where ǫi has the law vi,

i = 1, 2. Suppose that c1(s) is convex and increasing in s. Assume that v2 �st v1.

Then g(s, p2) ≥ g(s, p1) for all s ∈ S, g(s, p2) is increasing in s, and E
t
2(g(p2)) ≥

E
t
1(g(p1)) for all t ∈ N.

4.4 Comparisons of stationary distributions

Stationary equilibrium is the preferred solution concept for many models that describe

large dynamic economies (see Acemoglu and Jensen (2015) for examples of such models).

In these models, there is a continuum of agents. Each agent has an individual state

and solves a discounted dynamic programming problem given some parameters e (usually

prices). The parameters are determined by the aggregate decisions of all agents. Infor-

mally, a stationary equilibrium of these models consists of a set of parameters e, a policy

function g, and a probability measure λ on S such that (i) g is an optimal stationary

policy given the parameters e, (ii) λ is a stationary distribution of the states’ dynamics
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P (s, B) given the parameters e, and (iii) the parameters e are determined as a function

of λ and g.12

The existence and uniqueness of a stationary probability measure λ on S in the sense

that

λ(B) =

∫

S

p(s, g(s), B)λ(ds)

for all B ∈ B(S) are widely studied.13 We now derive comparative statics results relating

to how the stationary distribution λ changes when the transition function p changes. We

denote the least stationary distribution by λ and the greatest stationary distribution by

λ.

Proposition 4 Suppose that S is a compact set in R.

(i) Let Ep,i be the set of all monotone transition probability functions p. Assume that

g(s, p) is increasing in (s, p) on S × Ep,i where Ep,i is endowed with the order �st. Then

the greatest stationary distribution λ and the least stationary distributions λ are increasing

in p on Ep,i with respect to �st.
14

(ii) Let Ep,ic be the set of all monotone and convexity-preserving transition probability

functions p. Assume that g(s, p) is convex in s and is increasing in (s, p) on S × Ep,ic

where Ep,ic is endowed with the order �CX . Then the greatest stationary distribution λ

and the least stationary distributions λ are increasing in p on Ep,ic with respect to �ICX .

We apply Proposition 4 to a standard stationary equilibrium model (Huggett, 1993).

There is a continuum of ex-ante identical agents with mass 1. The agents solve a

consumption-savings problem when their income is fluctuating. Each agent’s payoff func-

tion is given by r(s, a) = u(s− a) where s denotes the agent’s current wealth, a denotes

the agent’s savings, s − a is the agent’s current consumption, and u is the agent’s util-

ity function. Thus, when an agent consumes s − a, his single-period payoff is given by

u(s− a).15 Recall that a utility function is in the class of hyperbolic absolute risk aver-

sion (HARA) utility functions if its absolute risk aversion A (c) is hyperbolic. That is, if

12 Stationary equilibrium models are used to study a wide range of economic phenomena. Exam-
ples include models of industry equilibrium (Hopenhayn, 1992), heterogeneous agent macro models
(Huggett, 1993) and (Aiyagari, 1994), and many more.

13 For example, see Hopenhayn and Prescott (1992), Kamihigashi and Stachurski (2014), and
Foss et al. (2018).

14 The existence of the greatest fixed point is guaranteed from the Tarski fixed-point theorem. For
more details, see the Appendix and Topkis (2011).

15For simplicity we assume that all the agents are ex-ante identical, i.e., the agents have the same
utility function and transition function. The model can be extended to the case of ex-ante heterogene-
ity.
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A(c) := −u′′(c)
u′(c)

= 1
ac+b

for c > −b
a
. We assume that u is in the HARA class and that the

utility function’s derivative u′ is convex.

Savings are limited to a single risk-free bond. When the agents save an amount a their

next period’s wealth is given by Ra+ y where R is the risk-free bond’s rate of return and

y ∈ Y = [y, y] ⊂ R+ is the agents’ labor income in the next period. The agents’ labor

income is a random variable with law ν. Thus, the transition function is given by

p(s, a, B) = ν{y ∈ Y : Ra + y ∈ B}.

The set from which the agents can choose their savings level is given by Γ(s) =

[s,min{s, s}] where s < 0 is a borrowing limit and s > 0 is an upper bound on savings.

A stationary equilibrium is given by a probability measure λ on S = [s, (1 + r)s+ y],

a rate of return R, and a stationary savings policy function g such that (i) g is optimal

given R, (ii) λ is a stationary distribution given R, i.e., λ(B) =
∫

S
p(s, g(s), B)λ(ds), and

(iii) markets clear in the sense that the total supply of savings equals the total demand

for savings, i.e.,
∫
g(s)λ(ds) = 0.

If the agents’ utility function is in the HARA class then the savings policy function

g(s) is convex and increasing (see Jensen (2017)). It is easy to see that p is convexity-

preserving and monotone. Furthermore, when u′ is convex then the policy function g(s, p)

is increasing in p with respect to the convex order, i.e., g(s, p2) ≥ g(s, p1) whenever

p2 �CX p1 (see Light (2018a)). Thus, part (ii) of Proposition 4 implies that when the

labor income uncertainty increases (i.e., p2 �CX p1), both the highest partial equilibrium

(when R is fixed) wealth inequality and the lowest partial equilibrium wealth inequality

increase (i.e., λ2 �ICX λ1).

5 Summary

This paper studies how the current and future optimal decisions change as a function of

the optimization problem’s parameters in the context of Markov decision processes. We

provide simple sufficient conditions on the primitives of Markov decision processes that

ensure comparative statics results and stochastic comparative statics results. We show

that various models from different areas of operations research and economics satisfy our

sufficient conditions.
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6 Appendix

6.1 Proofs of the results in Section 3.1

Proof of Theorem 1. For t = 1 the result is trivial since µ1
2 = µ1

1. Assume that

µt
2 �D µt

1 for some t ∈ N. First note that for every measurable function f : S → R and

i = 1, 2 we have ∫

S

f(s′)µt+1
i (ds′) =

∫

S

∫

S

f(s′)Pi(s, ds
′)µt

i(ds). (2)

To see this, assume first that f = 1B where B ∈ B(S) and 1 is the indicator function of

the set B. We have

∫

S

f(s′)µt+1
i (ds′) = µt+1

i (B)

=

∫

S

pi(s, g(s, ei), B)µt
i(ds)

=

∫

S

∫

S

1B(s
′)pi(s, g(s, ei), ds

′)µt
i(ds)

=

∫

S

∫

S

f(s′)Pi(s, ds
′)µt

i(ds).

A standard argument shows that equality (2) holds for every measurable function f .

Now assume that f ∈ D. We have

∫

S

f(s′)µt+1
2 (ds′) =

∫

S

∫

S

f(s′)P2(s, ds
′)µt

2(ds)

≥

∫

S

∫

S

f(s′)P2(s, ds
′)µt

1(ds)

≥

∫

S

∫

S

f(s′)P1(s, ds
′)µt

1(ds)

=

∫

S

f(s′)µt+1
1 (ds′).

The first inequality follows since f ∈ D, P2 is D-preserving and µt
2 �D µt

1 . The second

inequality follows since P2(s, ·) �D P1(s, ·). Thus, µt+1
2 �D µt+1

1 . We conclude that

µt
2 �D µt

1 for all t ∈ N.

Proof of Corollary 1. We show that P2 is I-preserving and that P2(s, ·) �st P1(s, ·)

for all s ∈ S. Let f : S → R be an increasing function and let e2 � e1.
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Since p is monotone and g(s, e2) is increasing in s, if s2 ≥ s1 then

∫

S

f(s′)p(s2, g(s2, e2), ds
′) ≥

∫

S

f(s′)p(s1, g(s1, e2), ds
′).

Thus, P2 is I-preserving.

Let s ∈ S. Since g(s, e2) ≥ g(s, e1) and p is monotone, we have

∫

S

f(s′)p(s, g(s, e2), ds
′) ≥

∫

S

f(s′)p(s, g(s, e1), ds
′).

Thus, P2(s, ·) �st P1(s, ·).

From Theorem 1 we conclude that µt
2 �st µ

t
1 for all t ∈ N. We have

∫

S

g(s, e2)µ
t
2(ds) ≥

∫

S

g(s, e2)µ
t
1(ds) ≥

∫

S

g(s, e1)µ
t
1(ds),

which proves the Corollary.

Proof of Theorem 2. (i) Assume that p2 �st p1. We show that P2 is I-preserving and

that P2(s, ·) �st P1(s, ·) for all s ∈ S. Let f : S → R be an increasing function.

Assume that s2 ≥ s1. Since g(s2, p2) ≥ g(s1, p2) and p2 is monotone we have

∫

S

f(s′)p2(s2, g(s2, p2), ds
′) ≥

∫

S

f(s′)p2(s1, g(s1, p2), ds
′),

which proves that P2 is I-preserving.

Let s ∈ S. Since p2 is monotone, g(s, p2) ≥ g(s, p1) for all s ∈ S, and p2 �st p1 we

have

∫

S

f(s′)p2(s, g(s, p2), s, ds
′) ≥

∫

S

f(s′)p2(s, g(s, p1), ds
′)

≥

∫

S

f(s′)p1(s, g(s, p1), ds
′),

which proves that P2(s, ·) �st P1(s, ·) for all s ∈ S.

From Theorem 1 we conclude that µt
2 �st µ

t
1 for all t ∈ N. Since g(s, p2) is increasing,

we have ∫

S

g(s, p2)µ
t
2(ds) ≥

∫

S

g(s, p2)µ
t
1(ds) ≥

∫

g(s, p1)µ
t
1(ds),

which proves part (i).

(ii) Assume that p2 �CX p1. We show that P2 is ICX-preserving and that P2(s, ·) �ICX
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P1(s, ·) for all s ∈ S.

Let f : S → R be an increasing and convex function. Let s1, s2 ∈ S and sλ =

λs1 + (1− λ)s2 for 0 ≤ λ ≤ 1. We have

λ

∫

S

f(s′)p2(s1, g(s1, p2), ds
′) + (1− λ)

∫

S

f(s′)p2(s2, g(s2, p2), ds
′)

≥

∫

S

f(s′)p2(sλ, λg(s1, p2) + (1− λ)g(s2, p2), ds
′)

≥

∫

S

f(s′)p2(sλ, g(sλ, p2), ds
′).

The first inequality follows since p2 is convexity-preserving. The second inequality follows

since g(s, p2) is convex and p2 is monotone. Thus,
∫

S
f(s′)P2(s, ds

′) is convex. Part (i)

shows that
∫

S
f(s′)P2(s, ds

′) is increasing. We conclude that P2 is ICX-preserving.

Fix s ∈ S. We have

∫

S

f(s′)p2(s, g(s, p2), ds
′) ≥

∫

S

f(s′)p2(s, g(s, p1), ds
′)

≥

∫

S

f(s′)p1(s, g(s, p1), ds
′).

The first inequality follows since g(s, p2) ≥ g(s, p1) and p2 is monotone. The second

inequality follows since p2 �CX p1. We conclude that P2(s, ·) �ICX P1(s, ·).

From Theorem 1 we conclude that µt
2 �ICX µt

1 for all t ∈ N. Since g(s, p2) is increasing

and convex, we have

∫

S

g(s, p2)µ
t
2(ds) ≥

∫

S

g(s, p2)µ
t
1(ds) ≥

∫

g(s, p1)µ
t
1(ds),

which proves part (ii).

6.2 Proofs of the results in Section 3.2

In order to prove Theorem 3 we need the following two results:

Proposition 5 Suppose that Assumption 1 holds. Then

(i) h(s, a, f) has increasing differences whenever f is an increasing function.

(ii) G(s) is ascending. In particular, g(s) = maxG(s) is an increasing function.

(iii) Tf(s) = maxa∈Γ(s) h(s, a, f) is an increasing function whenever f is an increasing

function. V (s) is an increasing function.
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Proof. See Theorem 3.9.2 in Topkis (2011).

Proposition 6 Let (E,�) be a partially ordered set. Assume that Γ(s) is ascending. If

h(s, a, e, f) has increasing differences in (s, a), (s, e), and (a, e), then

Tf(s, e) = max
a∈Γ(s)

h(s, a, e, f)

has increasing differences in (s, e).

Proof. See Lemma 1 in Hopenhayn and Prescott (1992) or Lemma 2 in Lovejoy (1987).

Proof of Theorem 3. (i) Let E = (0, 1) be the set of all possible discount factors,

endowed with the standard order: β2 ≥ β1 if β2 is greater than or equal to β1. Assume

that β1 ≤ β2. Let f ∈ B(S × E) and assume that f has increasing differences in (s, β)

and is increasing in s. Let a2 ≥ a1. Since f has increasing differences, the function

f(s, β2)− f(s, β1) is increasing in s. Since p is monotone we have

∫

S

(f(s′, β2)− f(s′, β1))p(s, a2, ds
′) ≥

∫

S

(f(s′, β2)− f(s′, β1))p(s, a1, ds
′).

Rearranging the last inequality yields

∫

S

f(s′, β2)p(s, a2, ds
′)−

∫

S

f(s′, β2)p(s, a1, ds
′) ≥

∫

S

f(s′, β1)p(s, a2, ds
′)−

∫

S

f(s′, β1)p(s, a1, ds
′).

Since f is increasing in s and p is monotone, the right-hand-side and the left-hand-

side of the last inequality are nonnegative. Thus, multiplying the left-hand-side of the

last inequality by β2 and the right-hand-side of the last inequality by β1 preserves the

inequality. Adding to each side of the last inequality r(a2, s)− r(a1, s) yields

h(s, a2, β2, f)− h(s, a1, β2, f) ≥ h(s, a2, β1, f)− h(s, a1, β1, f).

That is, h has increasing differences in (a, β). An analogous argument shows that h has

increasing differences in (s, β). Proposition 5 guarantees that h has increasing differences

in (s, a) and that Tf is increasing in s.

Proposition 6 implies that Tf has increasing differences. We conclude that for all n =

1, 2, 3...., T nf has increasing differences and is increasing in s. From standard dynamic

programming arguments, T nf converges uniformly to V . Since the set of functions that

has increasing differences and is increasing in s is closed under uniform convergence, V
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has increasing differences and is increasing in s. From the same argument as above,

h(s, a, β, V ) has increasing differences in (a, β). Theorem 6.1 in Topkis (1978) implies

that g(s, β) is increasing in β for all s ∈ S. Proposition 5 implies that g(s, β) is increasing

in s for all β ∈ E. We now apply Corollary 1 to conclude that Et
2(g(β2)) ≥ E

t
1(g(β1)) for

all t ∈ N.

(ii) The proof is similar to the proof of part (i) and is therefore omitted.

6.3 Proofs of the results in Section 3.3

Proof of Theorem 4. Suppose that the function f ∈ B(S×Ep) is convex and increasing

in s, and has increasing differences where Ep is endowed with the stochastic dominance

order �st. Let v2 �st v1.

Note that m has increasing differences in (s, a), (s, ǫ) and (a, ǫ) if and only if m is

supermodular (see Theorem 3.2 in Topkis (1978)).

From the fact that the composition of a convex and increasing function with a convex,

increasing and supermodular function is convex and supermodular (see Topkis (2011)) the

function f(m(s, a, ǫ), p2) is convex and supermodular in (s, a) for all ǫ ∈ V. Since convexity

and supermodularity are preserved under integration, the function
∫
f(m(s, a, ǫ), p2)v2(dǫ)

is convex and supermodular in (s, a). Thus,

h(s, a, p2, f) = r(s, a) + β

∫

V

f(m(s, a, ǫ), p2)v2(dǫ) (3)

is convex and supermodular in (s, a) as the sum of convex and supermodular functions.

This implies that Tf(s, p2) = maxa∈Γ(s) h(s, a, p2, f) is convex. Since h is increasing in s

it follows that Tf(s, p2) is increasing in s.

Note that for any increasing function f : S → R we have

∫

S

f(s′)p2(s, a, ds
′) =

∫

V

f(m(s, a, ǫ))v2(dǫ) ≥

∫

V

f(m(s, a, ǫ))v1(dǫ) =

∫

S

f(s′)p1(s, a, ds
′),

so p2 �st p1.

Fix a ∈ A, and let s2 ≥ s1. Since f(m(s, a, ǫ), p2) is supermodular in (s, ǫ), the
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function f(m(s2, a, ǫ), p2)− f(m(s1, a, ǫ), p2) is increasing in ǫ. We have

∫

V

(f(m(s2, a, ǫ), p2)− f(m(s1, a, ǫ), p2))v2(dǫ) ≥

∫

V

(f(m(s2, a, ǫ), p2)− f(m(s1, a, ǫ), p2))v1(dǫ)

≥

∫

V

(f(m(s2, a, ǫ), p1)− f(m(s1, a, ǫ), p1))v1(dǫ).

The first inequality follows since v2 �st v1. The second inequality follows from the facts

that m is increasing in s and f has increasing differences. Adding r(s2, a) − r(s1, a) to

each side of the last inequality implies that h has increasing differences in (s, p). Similarly,

we can show that h has increasing differences in (a, p).

Proposition 6 implies that Tf has increasing differences. We conclude that for all

n = 1, 2, 3...., T nf is convex and increasing in s and has increasing differences. From

standard dynamic programming arguments, T nf converges uniformly to V . Since the set

of functions that have increasing differences and are convex and increasing in s is closed

under uniform convergence, V has increasing differences and is convex and increasing in

s. From the same argument as above, h(s, a, p, V ) has increasing differences in (a, p) and

(s, a). An application of Theorem 6.1 in Topkis (1978) implies that g(s, p2) ≥ g(s, p1)

for all s ∈ S and g(s, p2) is increasing in s. The fact that m is increasing implies that p

is monotone. We now apply Corollary 1 to conclude that E
t
2(g(p2)) ≥ E

t
1(g(p1)) for all

t ∈ N.

6.4 Proofs of the results in Sections 4.2 and 4.4

Proof of Proposition 2. (i) Let f ∈ B(S) be a convex function. The facts that D(s, a)

is convex in s and that convexity is preserved under integration imply that the function

aD(s, a) + β
∫
f(γs+ (1− γ)a)v(dγ) is convex in s. Thus, the function Tf(s) given by

Tf(s) = max
a∈A

aD(s, a) + β

∫

f(γs+ (1− γ)a)v(dγ)

is convex in s. A standard dynamic programming argument (see the proof of Proposition

3) shows that the value function V is convex. The convexity of V implies that for all γ, the

function V (γs+ (1− γ)a) has increasing differences in (s, a). Since increasing differences

are preserved under integration,
∫ 1

0
V (γs + (1 − γ)a)v(dγ) has increasing differences in

(s, a). Since D(s, a) is nonnegative and has increasing differences, the function aD(s, a)
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has increasing differences. Thus, the function

aD(s, a) + β

∫ 1

0

V (γs+ (1− γ)a)v(dγ)

has increasing differences as the sum of functions with increasing differences. Now apply

Theorem 6.1 in Topkis (1978) to conclude that g(s) is increasing.

(ii) Follows from Corollary 1.

(iii) Follows from a similar argument to the arguments in the proof of Theorem 3.

We now introduce some notations and a result that is needed in order to prove Propo-

sition 4. Recall that a partially ordered set (Z,≥) is said to be a lattice if for all x, y ∈ Z,

sup{x, y} and inf{y, x} exist in Z. (Z,≥) is a complete lattice if for all non-empty sub-

sets Z ′ ⊆ Z the elements supZ ′ and inf Z ′ exist in Z. We need the following Proposition

regarding the comparison of fixed points. For a proof, see Corollary 2.5.2 in Topkis (2011).

Proposition 7 Suppose that Z is a nonempty complete lattice, E is a partially ordered

set, and f(z, e) is an increasing function from Z ×E into Z. Then the greatest and least

fixed points of f(z, e) exist and are increasing in e on E.

Proof of Proposition 4. Let P(S) be the set of all probability measures on S. The

partially ordered set (P(S),�st) and the partially ordered set (P(S),�ICX) are complete

lattices when S ⊆ R is compact (see Müller and Scarsini (2006)).

(i) Define the operator Φ : P(S)× Ep,i → P(S) by

Φ(λ, p)(·) =

∫

S

p(s, g(s, p), ·)λ(ds).

The proof of Theorem 2 implies that Φ is an increasing function on P(S) × Ep,i with

respect to �st. That is, for p1, p2 ∈ Ep,i and λ1, λ2 ∈ P(S) we have Φ(λ2, p2) �st Φ(λ1, p1)

whenever p2 �st p1 and λ2 �st λ1. Proposition 7 implies the result.

(ii) The proof is analogous to the proof of part (i) and is therefore omitted.
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