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We consider a model of intertemporal choice where time is a continuum, the set of instantaneous outcomes
(e.g. consumption bundles) is a topological space, and where intertemporal plans (e.g. consumption streams)
must be continuous functions of time. We assume the agent can form preferences over plans defined on open
time intervals. We axiomatically characterize the intertemporal preferences that admit a representation via
discounted utility integrals. In this representation, the utility function is continuous and unique up to positive
affine transformations, and the discount structure is represented by a unique Riemann-Stieltjes integral plus
a unique linear functional measuring the long-run asymptotic utility.
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De natura Rationis est, res sub quadam æternitatis specie percipere.
—Spinoza

1. Introduction In most models of intertemporal choice, time is assumed to be discrete, and
intertemporal preferences are represented by a discounted utility sum. But if time is a continuum,
then such a discounted sum must be replaced with a discounted utility integral. Formally, let X
be a space of instantaneous outcomes, and suppose we represent time by the interval [0, T ]. Let us
refer to a function α : [0, T ]−→X as a trajectory; it represents a flow of outcomes over time. Let
u : X−→R be a function representing instantaneous utility, and let δ : [0, T ]−→R+ be a function
representing pure time preferences. Then the discounted utility integral of the trajectory α is given
by ∫ T

0

δ(t)u[α(t)] dt. (1)

Recently, several papers have axiomatically characterized such discounted utility integral represen-
tations [13, 15, 18, 24, 30, 36, 45] (see Section 6 for a review). These papers assume a very large
space of feasible trajectories, allowing all piecewise continuous functions or even all measurable
functions from [0, T ] to X . However, in many decision problems, discontinuous trajectories are
not feasible. The purpose of the present paper is to axiomatically characterize discounted utility
integral representations like (1) when only continuous trajectories are feasible.

In some cases, it is reasonable to truncate the planning interval, either by ignoring all outcomes
before a certain moment in time, or by ignoring all outcomes after some other moment, or both,
because the trajectory in these regions is fixed at some value and beyond the agent’s control.
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Formally, if 0< r < s< T , then the agent may wish to restrict attention to continuous trajectories
α : (r, s)−→X . Her preferences over such trajectories would then be given by∫ s

r

δ(t)u[α(t)] dt. (2)

Some intertemporal decisions involve an infinite planning horizon —for example, decisions regard-
ing economic or environmental policy that will have implications for many future generations. In
this case, the representation (1) becomes∫ ∞

0

δ(t)u[α(t)] dt. (3)

But representations like (3) are poor at compromising between near future and far future genera-
tions. If δ decays too quickly, then the welfare of far future generations is essentially ignored, which
seems ethically indefensible [35]. If δ decays too slowly, then the interests of near-future people
are completely overwhelmed by their far more numerous descendants, which also seems unjust
[28]. A sizable literature has evolved in response to this dilemma (see Section 6). In particular,
Chichilnisky and Heal [5, 6, 7] have proposed intertemporal social welfare functions of the form∫ ∞

0

δ(t)u[α(t)] dt + M · l̃im
t→∞

u[α(t)]. (4)

Here, the first summand is a standard discounted utility integral, biased towards the near future,
while the second term is a correction factor that gives some weight to the long-term asymptotic
trend in social welfare, reflecting the interests of far future generations. The tilde over the “lim”
reflects the fact that the limit at infinity may not exist, in which case we must use a more sophis-
ticated measure of the long-term asymptotic social welfare.

This paper considers intertemporal preferences over continuous trajectories, and provides an
axiomatic characterization of discounted utility representations like (1) or (2) in the finite-horizon
case, and (3) or (4) in the infinite-horizon case. The proofs of these characterization theorems
use results from two earlier papers [32, 33]. The paper [32] develops a theory of integration for
measures defined on the Boolean algebra of regular open subsets of a topological space. The paper
[33] then applies this theory to develop subjective expected utility representations for preferences
under uncertainty, when the state space and the outcome space are topological spaces. The present
paper adapts the results of [32] and [33] to the special case when the underlying topological space
is an interval in R; using the topological properties of R, we can reduce the SEU representations
of [33] to discounted utility representations with a much simpler structure.

The remainder of this paper is organized as follows: Section 2 introduces notation and termi-
nology. Section 3 introduces the axioms used in all our results. Section 4 gives two representation
theorems for the finite-horizon case, while Section 5 gives three representation theorems for the
infinite-horizon case. Section 6 reviews prior literature. All the proofs are in the Appendices.

2. Framework

Trajectories. Let T be a closed interval in [0,∞) with nonempty interior —either a bounded
closed interval like [0, T ] (for some T > 0) or an unbounded closed interval like [0,∞). Elements of
T represent moments in time. Let X be any connected topological space (for example, a convex
subset of RN); elements of X represent instantaneous outcomes. A function α : T −→X is called
a trajectory. Intertemporal preferences are preferences over such trajectories. However, we will
suppose that only bounded continuous trajectories are feasible, as we now explain.
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A subset Y ⊆ X is relatively compact if its closure clos(Y) is compact. In particular, if X is a
metric space and Y is relatively compact, then Y is a bounded subset of X . A function α : T −→X
is bounded if its image α(T ) is relatively compact in X . If X is a metric space, then this implies
the usual definition of “bounded”. But this definition makes sense even if X is nonmetrizable.

Let C(T ,X ) be the set of all continuous functions from T into X , and let Cb(T ,X ) be the set
of all bounded continuous functions from T into X . Let A ⊆ Cb(T ,X ) denote the set of feasible
trajectories. Trajectories may be subject to further feasibility constraints beyond continuity. For
example, if X ⊆RN , then A may contain only differentiable functions from T to X . In particular,
A must satisfy a condition called (LV) that will be introduced below, which rules out excessively
volatile trajectories. ButA cannot be too small; it must be large enough to satisfy another structural
condition called (R) (also introduced below). Also, A must contain all constant functions; these
represent static trajectories.

Time intervals. A time interval is a subinterval I ⊆ R (either open, closed, or half-open)
that is relatively open as a subset of T . We will indicate such a time interval by br, se, where r
and s denote the right-hand and left-hand end points. For example, if T = [0,∞), then for any
r ∈ (0,∞), we have b0, re := [0, r), while for any s ∈ (r,∞], we have br, se := (r, s); furthermore,
any time interval in (0,∞) has one of these two forms. Meanwhile, if T = [a, b], then ba, be := [a, b],
and for any r ∈ (a, b), we have ba, re := [a, r) and br, be := (r, b], while for any s ∈ (r, b), we have
br, se := (r, s); furthermore, any time interval in [a, b] has one of these four forms.1 More generally,
“br, s)” represents [a, s) if r = a, and (r, s) if r > a; likewise, “(r, se” represents (r, b] if s= b, and
(r, s) if s < b. Two time intervals I,J ⊂ T are adjacent if I and J are disjoint but share a common
endpoint —that is, there exist r < s< t such that either I = br, se and J = bs, te, or J = br, se and
I = bs, te. In either case, we define I ∨J := br, te. Let I(T ) denote the family of all time intervals
of T ; when there is no ambiguity, we will simply call this set I.

Time spans. Let S ⊆ T be an open subset, and let ∂S denote its boundary. We say that S is
a time span if S is a disjoint union of a finite or countable collection of time intervals with distinct
endpoints, and ∂S has no cluster points in R. In other words, either

S = bs1, t1)t (s2, t2)t · · · t (sN , tNe, (5)

where 0≤ s1 < t1 < s2 < t2 < · · ·< sN < tN ≤∞, or

S = bs1, t1)t (s2, t2)t (s3, t3)t · · · (6)

where 0 ≤ s1 < t1 < s2 < t2 < · · · and lim
n→∞

sn =∞. (If T is bounded, then only option (5) is

possible.) In either case, we refer to bs1, t1), (s2, t2) . . . as the component intervals of S. Let S(T )
denote the family of all time spans of T ; when there is no ambiguity, we will simply call this set
S. Note that the intersection of two time spans is also a time span. However, the union of two
time spans is generally not a time span. Likewise, the complement of a time span is generally not
a time span. If S1 and S2 are time spans, then we define S1∨S2 := int[clos(S1∪S2)].2 For example,
if r < s < t, S1 = br, s) and S2 = (s, te, then S1 ∨ S2 = br, te; thus, this notation agrees with the
notation for time intervals. Intuitively, the operation ∨ plays the role of “union”, but with the
extra proviso that a single isolated time instant is not perceptible, so we should treat the disjoint
union br, s)t (s, te as indistinguishible from the interval br, te.

1 To understand this, note that [a, r), (s, b], and [a, b] are relatively open subsets of [a, b], even though they are not
open subsets of R itself.

2 Here, for any S ⊆ T , int(S) and clos(S) denotes the relative interior and relative closure of S in T .
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If S is a time span, then we define ¬S := int[S{]. For example, if T = [0, T ] and S is as in (5),
then ¬S = [0, s1)t (t1, s2)t (t2, s3)t· · ·t (tN−1, sN)t (tN , T ]. Observe that (¬S)∨S = T . Thus, ¬S
plays the role of the “complement” of S, once we regard ∨ as playing the role of “union”.3 For any
S ∈S and α∈A, let α�S denote the restriction of α to S. Let A(S) := {α�S ; α∈A} be the set of
S-restricted trajectories. We will posit a preference order on A(S), as we now explain.

Intertemporal preferences. For any I ∈ I, let �I be a preference order on A(I); we refer
to these as intertemporal preferences.4 Suppose I = bs, te. As explained in Section 1, �I represents
the intertemporal preferences of an agent over trajectories whose value outside of I is fixed and
beyond her control.5 For brevity, let � denote �T —that is, intertemporal preferences over A itself.
We will refer to the collection {�I}I∈I as an intertemporal preference structure; this will be the
primitive data of the model. Our goal is to axiomatically characterize a discounted utility integral
representation for {�I}I∈I.

Separability and intermittent preferences. We will require the intertemporal preference
structure {�I}I∈I to satisfy the following separability axiom.

(LSep) (Limited separability) For any time span S ∈S, and all α,α′, β, β′ ∈A such that α�S = α′�S
and β�S = β′�S , while α�I ≈I β�I and α′�I ≈I β′�I for every component interval I of ¬S, we have α� β
if and only if α′ � β′.

The normative justification for this axiom is straightforward: if the trajectories α and β are
indifferent to one another when they are restricted to any component interval of ¬S, then the
agent’s preferences between α and β should be entirely determined by comparing α�S to β�S . For the
same reason, the agent’s preferences between α′ and β′ should be entirely determined by comparing
α′�S to β′�S . But if α and α′ are identical when restricted to S, and β and β′ are identical when
restricted to S, then the comparison between α�S and β�S is equivalent to a comparison between
α′�S and β′�S . Thus, the agent’s preferences between α and β should be identical to her preferences
between α′ and β′. Although its normative import is clear, the formal statement of (LSep) is
somewhat obscure. Fortunately, it is equivalent to the following, more transparent axiom:

(LSep*) For any S ∈S, there is a preference order �S on A(S) such that, for any α,β ∈A with
α�I ≈I β�I for every component interval I of ¬S, we have α� β if and only if α�S �S β�S .

Axiom (LSep*) has the same normative justification as (LSep): if α�I ≈I β�I for every component
interval I of ¬S, then the agent’s preferences between α and β should be determined by comparing
α�S to β�S . But axiom (LSep*) goes further, and asserts that this comparison between α�S and β�S
is itself governed by a preference order �S defined on A(S). This seems like a stronger requirement
than (LSep). But under a mild richness condition (which will be part of the framework in Section
3), axioms (LSep) and (LSep*) are logically equivalent (see Lemma A.4 in Appendix A).

We will refer to the preference order �S defined by axiom (LSep*) as an intermittent prefer-
ence order. If the intertemporal preference structure {�I}I∈I satisfies (LSep*), then we obtain a
collection {�S}S∈S, which we will refer to as an intermittent preference structure. Note that this

3 In fact, S is a Boolean algebra with these three operations. But this is not important for this discussion.

4 Here by preference order we mean a binary relation that is complete, transitive, and reflexive. We do not require it
to be antisymmetric.

5 This involves an implicit separability assumption, since we suppose that �I is independent of the way in which
trajectories are fixed outside of I. One solution, previously used by [18], is to suppose that trajectories outside of I are
always fixed at some “neutral” value, representing status quo, death, or unconsciousness. This may make trajectories
discontinuous at the boundaries of I, but it would be compatible with our feasibility constraints if we only required
these constraints to apply inside I.
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Figure 1. The richness condition (R).
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Figure 2. Left. The trajectory α satisfies axiom (LV). The horizontal axis represents T , and the grey intervals
on this axis represent X (�sy x). (Here, the synchronic preference �sy corresponds to height on the vertical axis
representing X .) Right. The trajectory β violates axiom (LV).

intermittent preference structure is entirely determined by {�I}I∈I; we will say that {�S}S∈S is
induced by {�I}I∈I. In the special case when S itself is a time interval, the intermittent preference
order on A(S) induced by axiom (LSep*) is in fact identical with the intertemporal preference
order (see Lemma A.5 in Appendix A). Thus, we will use the same symbol to refer to both, and
regard the system {�S}S∈S as an extension of the system {�I}I∈I. The discounted utility integral
representations we introduce below apply to all elements of {�S}S∈S, not only those in {�I}I∈I.
Likewise, many of our axioms are stated directly in terms of {�S}S∈S rather than {�I}I∈I. Thus,
we could just as easily take the intermittent preference structure {�S}S∈S itself to be the primitive
data of the model. We started with the intertemporal preference structure {�I}I∈I only because
it has a more transparent economic interpretation.

3. Axioms We will assume that each order �I in the intertemporal preference structure
{�I}I∈I is complete (for any α,β ∈A(I), α�I β or β �I α), transitive (for any α,β, γ ∈A(I), if
α�I β and β �I γ, then α�I γ), and nontrivial (there exist α,β ∈A(I) such that α�I β). We will
need {�I}I∈I to satisfy eight axioms. We will also impose two structural conditions that involve
both {�I}I∈I and A.

Richness. The first structural condition says that A contains a rich enough variety of trajec-
tories that certain vicissitudes of fortune are realizable by trajectories in A.

(R) For all q≤ r≤ s≤ t in T , and any α∈Abq, re, β ∈Abr, se, and γ ∈Abs, te, there exists some
φ∈Abq, te such that φ�bq,re = α, φ�br,se ≈br,se β, and φ�bs,te = γ.

In other words, the values of a trajectory during bq, re and bs, te do not restrict the indifference
class of that trajectory during br, se, in spite of the continuity requirement on feasible trajectories.
Figure 1 illustrates this idea.

Example 1. Let X = R, and let A be the set of all piecewise linear functions from T into R. For
any time interval I = br, se in I, and any α,β ∈A, suppose that α�I β if and only if

∫ s
r
α(t) dt≥
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r
β(t) dt. (Thus, {�I}I∈I has a discounted utility integral representation, where the discount

factor is constant, and the utility function is u(x) = x for all x∈R.) It is easily verified that A and
{�I}I∈I satisfy (R). ♦

Synchronic preferences and limited variation. For any x ∈ X , let κx be the constant
x-valued trajectory on T . Let K := {κx; x∈X}. We have assumed K⊆A, so the preference order
�, restricted to K, induces a preference order �sy on X as follows: for any x, y ∈X ,(

x�sy y
)
⇐⇒

(
κx � κy

)
. (7)

We interpret �sy as preferences over outcomes; we will call it the synchronic preference order. For
any x∈X , let X (�sy x) := {y ∈X ; y�sy x} and X (�sy x) := {y ∈X ; y�sy x} be the (weak) upper
and lower contour sets of x with respect to these synchronic preferences. Our second structural
condition says feasible trajectories have “limited variation” with respect to these contour sets.

(LV) For all x∈X and α∈A, int (α−1 [X (�sy x)]) and int (α−1 [X (�sy x)]) are elements of S.

This condition relates the objective variations of feasible trajectories to the agent’s subjective
experience of these variations. It says that α does not oscillate too wildly between good and bad
outcomes from the perspective of the agent. In particular, α can only move back and forth between
the interior of X (�sy x) and the interior of X (�sy x) finitely many times in any finite time interval.
For example, let T = [0, T ] and X =R; then (LV) rules out a situation where u(x) = x for all x∈X
while α(t) = t sin(1/t) for all t ∈ T . It also rules out a situation where u(x) = x sin(1/x) for all
x∈X while α(t) = t for all t∈ T .6 See Figure 2.

Example 2. Let X = R and let T = [0, T ]. A function α : T −→R is piecewise polynomial if there
exists t0, . . . , tN ∈ T with 0 = t0 < t1 < · · · < tN−1 < tN = T such that α�[tn−1,tn] is a polynomial
function for all n∈ [1 . . .N ]. (Piecewise linear functions are a special case.) Let A be the set of all
piecewise polynomial functions on T . Let u :R−→R be continuous and strictly increasing. For any
time interval I = br, se in I and α,β ∈A, suppose that(

α�I β
)
⇐⇒

(∫ s

r

u[α(t)] dt≥
∫ s

r

u[β(t)] dt

)
.

It is easily verified that A and {�I}I∈I satisfy both (LV) and (R). ♦
Note that (LV) need only be satisfied by the set of trajectories used in the axiomatic characteri-

zation of the discounted utilility integral representation. The intertemporal preferences themselves
—and their discounted utilility integral representation —can apply to a much larger set of trajec-
tories, as shown by Theorem 3 at the end of Section 4.

Continuity, Dominance and Separability. Having stated the structural conditions, we can
now proceed with the axioms. We will require {�I}I∈I to satisfy the axiom (LSep) stated in Section
2. Thus, {�I}I∈I induces a unique intermittent preference structure {�S}S∈S via the equivalent
axiom (LSep*). Although {�I}I∈I is the underlying primitive data of the model, it will be simpler
to formulate most of the axioms directly in terms of {�S}S∈S. The first four axioms are standard
axioms in decision theory, so we present them without explanation.

(C) (Continuity) �sy is continuous in the topology on X . That is: for all x∈X , the contour sets
X (�sy x) and X (�sy x) are closed subsets of X .

6 In both cases we adopt the convention that 0 · sin(1/0) := 0.
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(Dom) (Dominance) For any S ∈S and any α,β ∈A(S), if α(s)�sy β(s) for all s∈ S, then α�S β.
Furthermore, if α(s)�sy β(s) for all s∈ S, then α�S β.

(StEq) (Static equivalents) For any time span S ∈S and any trajectory α ∈ A(S), there exists
some x∈X such that κx�S ≈S α.

(ISep) (Interval separability) For any adjacent time intervals I,J ⊂ T with H := I ∨J , and any
α,β ∈A(H) with α�I ≈I β�I , we have α�H β if and only if α�J �J β�J .

Axiom (ISep) is relatively weak: it only requires separability between adjacent time intervals,
rather than between arbitrary subsets of T (as would be the case with the standard separability
axiom). But (ISep) and (LSep*) together imply the following, stronger separability property:

(Sep) For any time span S ∈S, any disjoint Q,R∈S such that Q∨R= S, and any trajectories
α,β ∈A(S) with α�Q ≈Q β�Q, we have α�S β if and only if α�R �R β�R.

We will not require (Sep) explicitly in our axiomatic framework, but it is worth noting that
it is a consequence of (ISep) and (LSep*) (see Proposition A.1 in Appendix A). If Q,R ∈S are
disjoint and S = Q ∨R, then (Sep) says that the �S-ranking of two trajectories α,β ∈ A(S) is
partly determined by the �Q-ranking of α�Q versus β�Q and the �R-ranking of α�R versus β�R. The
next axiom says that this dependency is continuous.

(CIP) (Continuity of intertemporal preferences) Let S =Q∨R as in axiom (Sep). Let β,α,β ∈
A(S) be three trajectories with β ≺S α≺S β. Then there exist δ, δ ∈ A(Q) and ε, ε ∈ A(R), with

δ≺Q α�Q ≺Q δ and ε≺R α�R ≺R ε such that, for any α′ ∈A(S), if δ≺Q α′�Q ≺Q δ and ε≺R α′�R ≺R ε
then β ≺S α′ ≺S β.

The intuition here is that a small variation in α�Q and α�R (relative to the order topologies on
A(Q) and A(R)) should not affect the �S- ranking of α versus β and β.

Tradeoff consistency. The next axiom was introduced by Wakker, who used it to characterize
additive representations in several settings [40, 41, 42, 43, 19].7 First we need some notation. Let
S ∈S, and let Q :=¬S. Consider an outcome x∈X and a trajectory α∈A(Q). If A and {�I}I∈I
satisfy (R), (ISep), and (LSep*), then there exists a trajectory (xSα)∈A with two properties:

(B1) (xSα)�S ≈S κx�S , and (B2) (xSα)�Q ≈Q α.

(See Lemma A.8 in Appendix A.) In general, (xSα) is not uniquely defined by (B1) and (B2). But
if (xSα) and (xSα)′ are two trajectories satisfying (B1) and (B2), then axiom (Sep) implies that
(xSα)≈ (xSα)′. So we shall use “(xSα)” to refer to any trajectory satisfying (B1) and (B2).

Now fix x, y, v,w ∈X , and S ∈S. Let Q :=¬S. We write (x S
; y)� (v S;w) if there exist α,β ∈

A(Q) such that (xSα)� (ySβ) while (vSα)� (wSβ). If (xSα)� (ySβ), then the “gain” obtained by
changing x to y during S is at least enough to compensate for the “loss” incurred by changing α
to β during Q. In contrast, if (vSα)� (wSβ), then the gain obtained by changing v to w during
S is at most enough to compensate for the loss incurred by changing α to β during Q. Together,
these two observations imply that the gain obtained from changing x to y during S is at least as
large as the gain from changing v to w during S; hence the notation (x S

; y)� (v S;w). If � has
a discounted utility integral representation with utility function u, then (x S

; y)� (v S;w) means
that u(y)−u(x)≥ u(w)−u(v).

7 In the first four publications, the axiom is called triple cancellation. In the last paper (jointly written with
Köbberling), it is called Tradeoff Consistency and formulated slightly differently, but conceptually very similar.
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Conversely, we write (x S
; y)≺ (v S;w) if there exist γ, δ ∈A(Q) such that (xSγ)� (ySδ) while

(vSγ)≺ (wSδ). If � had a discounted utility integral representation, then this means that u(y)−
u(x)<u(w)−u(v). Thus, if � had a discounted utility integral representation, then we could not
have both (xSα)� (ySβ) and (x S

; y)≺ (v S;w). This observation motivates the next axiom.

(TC) (Tradeoff Consistency) For any two time spans S1,S2 ∈S, there are no outcomes x, y, v,w ∈
X such that (x

S1
; y)� (v

S1
;w) while (x

S2
; y)≺ (v

S2
;w).

Ephemera. If time is a continuum, then any single instant is ephemeral, and cannot have any
importance for intertemporal preferences. The next axiom formalizes this observation.

(Eph) For any t∈ T , and any outcomes w,x, y, z ∈X with y�sy z, there is some S ∈S with t∈ S
such that (wSy)� (xSz).

Thus, if S is small enough, then it is relatively unimportant for the agent’s intertemporal assess-
ments: her preferences between (wSy) and (xSz) are determined by the fact that y �sy z. In par-
ticular, this holds even if w≺sy x. We can construct such a neighbourhood S for any w,x, y, z ∈X ;
thus the agent cannot place any special weight on t; it is ephemeral.

Stationarity. Our last axiom is not necessary to obtain a discounted utility representation.
But by adding it to the other axioms, we ensure that the discounting is exponential. To state
this axiom, we need some notation. For any time interval ba, be in I, and any t ∈ R, we define
ba, be+t := ba+ t, b+ te whenever ba+ t, b+ te itself is a time interval in I. (Thus, if t > 0, and
T = [0, T ] and 0 < a < b < T − t, then (a, b)+t = (a+ t, b+ t), while [0, b)+t = (t, b+ t). However,
if b = T − t, then (a, b)+t = (a+ t, T ].) If S ∈ S has component intervals I1,I2, . . . ,IN , then we
likewise define S+t := I+t

1 t · · · t I+t
N —another element of S. In effect, this is the time span S

“shifted forwards in time” by t time units. For any function α∈ C(S,X ), define α+t ∈ C(S+t,X ) by
setting α+t(s) := α(s− t) for all s∈ S+t. Thus, if α is a trajectory on time span S, then α+t is the
same trajectory “shifted forwards in time” by t time units, so as to become a trajectory on S+t.

The set of feasible trajectories may not be closed under such time-shifts; we must add an addi-
tional structural condition to guarantee this. Let A(S)+t := {α+t; α ∈ A(S)}. If we required
A(S)+t ⊆A(S+t), then we would be stipulating that trajectories feasible during time span S remain
feasible at any later time span. On the other hand, if we required A(S)+t ⊇A(S+t), then we would
be stipulating that any trajectory feasible during time span S+t was already feasible at the earlier
time span S. Either assumption is too restrictive. Instead, we make the following assumption.

(Core) There is a subset A0 ⊆A such that, for all S ∈S, and all t∈ [0,∞) such that S+t ⊆T , we
have A0(S)+t ⊆A(S+t). Furthermore, A0 satisfies condition (R).

Intuitively, A0 is a stable “core” of trajectories that remain feasible at all times. Note that A0

is always nonempty, because all constant trajectories are in A0; the key part of (Core) is that A0

is large enough that it satisfies (R). Clearly, if A = Cb(T ,X ), then (Core) is automatically true.
Given this condition, we can formulate a stationarity axiom.

(Stat) (Stationarity) Let A0 be as in (Core). For all S ∈S, all t ∈ [0,∞) such that S+t ⊆ T , and

all α,β ∈A0(S), we have
(
α�S β

)
⇐⇒

(
α+t �S+t β+t

)
.

4. Finite horizon intertemporal decisions Throughout this section, we suppose that T =
[0, T ] for some T <∞. Let I := I[0, T ]. Let X be a connected topological space, let A⊆Cb([0, T ],X ),
and let {�I}I∈I be an intertemporal preference structure on A, which induces an intermittent



Marcus Pivato: Intertemporal choice with continuity constraints
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 9

preference structure {�S}S∈S through axiom (LSep*). A discounted utility integral (DUI) represen-
tation for {�I}I∈I is given by a continuous, strictly increasing bijection ρ : [0, T ]−→[0,1] and a
continuous utility function u :X−→R, such that, for all S ∈S and all α,β ∈A(S),(

α�S β
)
⇐⇒

(∫
S
u ◦α dρ ≥

∫
S
u ◦β dρ

)
, (8)

where the expressions on the right-hand side are Riemann-Stieltjes integrals.8 In particular, if
S = [0, T ], then (8) simplifies to(

α� β
)
⇐⇒

(∫ T

0

u[α(t)] dρ[t] ≥
∫ T

0

u[β(t)] dρ[t]

)
.

Here, ρ is a “generalized discount factor”; it encodes the relative importance that the agent assigns
to each moment in time. To be precise, the weight she assigns to the interval bt1, t2e is just ρ(t2)−
ρ(t1). Any time duration of nonzero length has nonzero weight (because ρ is strictly increasing).
But any single instant in time always gets zero weight (because ρ is continuous). In the special
case when � admits a representation like (1), ρ is an antiderivative of the discount function δ. But
we do not assume in general that ρ is differentiable. We also do not require dρ to be exponentially
decaying, or even monotonically decreasing. Our first main result provides a characterization of
DUI representations in terms of the axioms of Section 3.

Theorem 1. Let X be a connected topological space, let A ⊆ C([0, T ],X ), and let {�I}I∈I
be an intertemporal preference structure on A satisfying (R) and (LV). Then {�I}I∈I satisfies
(ISep), (LSep), (StEq), (C), (Dom), (CIP), (TC) and (Eph) if and only if it admits a discounted
utility integral representation (8). Furthermore, ρ is unique, and u is unique up to positive affine
transformation.

An exponentially discounted utility integral representation for {�I}I∈I is given by a constant δ ∈ (0,1)
and a continuous utility function u :X−→R, such that, for all S ∈S and all α,β ∈A(S),(

α�S β
)
⇐⇒

(∫
S
δt u[α(t)] dt ≥

∫
S
δt u[β(t)] dt

)
. (9)

We obtain such a representation if we replace (Eph) with (Stat) in Theorem 1.

Theorem 2. Let X be a connected topological space, let A ⊆ C([0, T ],X ), and let {�I}I∈I
be an intertemporal preference structure on A satisfying (R), (LV) and (Core). Then {�I}I∈I
satisfies (ISep), (LSep), (StEq), (C), (Dom), (CIP), (TC) and (Stat) if and only if it admits an
exponential DUI representation (9). Furthermore, δ is unique, and u is unique up to positive affine
transformation.

Domain extension. Theorems 1 and 2 may appear limited due to the structural condition
(LV), which restricts the set of feasible trajectories. For example, an intertemporal preference
structure on C([0, T ],X ) will typically violate (LV), even if it has a DUI representation. But this
problem is more apparent than real; (LV) is only required for the set of trajectories used in the
axiomatic characterization. The intertemporal preference structure and its DUI representation can
have a much larger scope, as we now explain.

8 Note that these integrals are always well-defined, because α and β are bounded functions (by the definition of A),
so that u ◦α and u ◦β are also bounded (because u is continuous). Since ρ ranges over [0,1], the magnitudes of these
integrals are bounded by ‖u ◦α‖∞ and ‖u ◦β‖∞ respectively. For the same reason, all the other integrals that appear
later in the paper are well-defined.
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Let (X , d) be a metric space, and let A ⊆ C(T ,X ). For any S ∈ S and any α,β ∈ A(S), let
dS(α,β) := sups∈S d[α(s), β(s)]; this is the metric of uniform convergence on A(S). Let {�I}I∈I be
an intertemporal preference structure on A. We will say that {�I}I∈I is uniformly continuous if,
for any S ∈S, and any α ∈ A(S), the upper and lower contour sets of α with respect to �S are
closed in the topology of uniform convergence. In other words, for any β ∈A(S) and any sequence
{βn}∞n=1 ∈A(S), if limn→∞ dS(βn, β) = 0 and βn �S α for all n∈N, then β �S α; likewise if βn �S α
for all n∈N, then β �S α. For example, if {�I}I∈I admits a DUI representation (8) in which u is
uniformly continuous, then {�I}I∈I is uniformly continuous.

Let �∗ be a preference order on X , and let A⊂A′ ⊆C([0, T ],X ). We will say that A is uniformly
�∗-dense in A′ if, for any α′ ∈A′ there is a sequence {αn}∞n=1 ∈A such that limn→∞ dT (αn, α

′) =
0 with αn(t) �∗ α(t) for all n ∈ N and t ∈ T , and likewise a sequence {αn}∞n=1 ∈ A such that
limn→∞ dT (αn, α

′) = 0 with αn(t)�∗ α(t) for all n∈N and t∈ T . In other words, there are sequences
in A converging uniformly to any element of A′ “from above” and “from below”, relative to �∗. (It
follows that A(S) is uniformly �∗-dense in A′(S) for every S ∈S.) For example, if X =R and �∗
is the standard ordering, then many familiar collections of continuous real-valued functions (e.g.
the set of polynomials, the set of piecewise linear functions, etc.) are dense in C(T ,R) in this sense.

Theorem 3. Let X be a metric space, let A′ ⊆ C([0, T ],X ) be a set containing all constant
trajectories. Let {�′I}I∈I be a uniformly continuous intertemporal preference structure on A′ that
satisfies axiom (Dom) with respect to a preference order �sy on X . Let A ⊂ A′, let {�I}I∈I be
the restriction of {�′I}I∈I to A, and suppose {�I}I∈I has a DUI representation (8) for some
continuous functions ρ and u. If A is uniformly �sy-dense in A′, and u is uniformly continuous,
then {�′I}I∈I also has a DUI representation (8) given by ρ and u.

This result means that an intertemporal preference structure need only satisfy the conditions of
Theorem 1 on the smaller domain A, in order for us to obtain a DUI representation on a much
larger domain A′. For example, let X =R, and let {�′I}I∈I be a uniformly continuous intertemporal
preference structure on C(T ,R) that satisfies axiom (Dom) with respect to the standard ordering of
R. Thus, any restriction of {�′I}I∈I satisfies (C). Let A be the set of piecewise polynomial functions
from Example 2. Then A satisfies (R) and (LV), and it is uniformly ≥-dense in C(T ,R) by the
Stone-Weierstrass Theorem. Thus, if the restriction of {�′I}I∈I toA satisfies (ISep), (LSep), (StEq),
(CIP), (TC) and (Eph), then Theorems 1 and 3 yield a discounted utility integral representation
(8) that applies to all trajectories in C(T ,R). If instead, the restriction of {�′I}I∈I to A satisfies
(Core), (ISep), (LSep), (StEq), (CIP), (TC) and (Stat), then Theorems 2 and 3 yield an exponential
DUI representation (9) that applies to all trajectories in C(T ,R).

5. Infinite horizon intertemporal decisions Throughout this section, we assume T =
[0,∞). Let A⊆ Cb([0,∞),X ) be a set of bounded, continuous trajectories, and let {�I}I∈I be an
intertemporal preference structure on A. An exponentially discounted utility integral representation
for {�I}I∈I is given by a constant δ ∈ (0,1) and a continuous utility function u :X−→R, such that
statement (9) holds for all S ∈S and all α,β ∈A(S). In particular(

α� β
)
⇐⇒

(∫ ∞
0

δt u[α(t)] dt ≥
∫ ∞

0

δt u[β(t)] dt

)
.

Our third result gives an axiomatic characterization for these preferences. But in an infinite-horizon
environment, we must replace (ISep) with the following separability axiom.

(ISep*) Let H ∈ I, and suppose H=Q∨R, where Q,R∈S are disjoint time spans. Let α,β ∈
A(H). If α�I �I β�I for every component interval I of Q and every component interval I of R,
then α�H β. If furthermore α�I �I β�I for some component interval I of Q or R, then α�H β.
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If T is a finite interval, then (ISep*) and (ISep) are logically equivalent (Lemma A.3). But
when T is infinite, (ISep*) is stronger. Likewise, when T is infinite, we must replace (R) with the
following richness condition.

(R*) For any disjoint time spans Q,R ∈S, with S =Q∨R, and any α,β ∈ A(S), there exists
φ∈A(S) such that φQ = αQ, while for every component interval J of R, we have φ�J ≈J β�J .

If T is a finite interval, then (R*) and (R) are logically equivalent (Lemma A.1). But when T is
infinite, (R*) is stronger. This leads to a slightly modified version of (Core):

(Core*) There is a subset A0 ⊆A such that, for all S ∈S, and all t ∈ [0,∞) such that S+t ⊆ T ,
we have A0(S)+t ⊆A(S+t). Furthermore, A0 satisfies axiom (R*).

Here is the extension of Theorem 2 to infinite-horizon decisions.

Theorem 4. Let X be a connected Hausdorff space, and let A⊆CL([0,∞),X ). Let {�I}I∈I be
an intertemporal preference structure on A that satisfies (R*), (LV) and (Core*). Then {�I}I∈I
satisfies (ISep*), (LSep), (StEq), (C), (Dom), (CIP), (TC) and (Stat) if and only if it has an expo-
nential DUI representation. Here, δ is unique and u is unique up to positive affine transformation.

The extension of Theorem 1 to infinite-horizon decisions is somewhat more complicated, because
without the axiom (Stat), the intertemporal decision may be sensitive to the asymptotic behaviour
of trajectories “at eternity”. This sensitivity, in turn, depends on the structure of the time span
under consideration. In a finite-horizon environment, every time span has only finitely many com-
ponent intervals. But in an infinite horizon environment, we must distinguish between three types
of time spans. Let Sb be the set of bounded time spans in [0,∞) —that is, those of the form
bs1, t1e t bs2, t2e t · · · t bsN , tNe for some 0 ≤ s1 < t1 < · · · < sN < tN <∞. Meanwhile, let Su :=
S[0,∞) \Sb be the set of unbounded time spans in [0,∞). Let Sa := {S ∈ S; ¬S ∈ Sb}; then
Sa ⊆Su. We will refer to elements of Sa as abiding time spans. A typical abiding time span has
the form bs1, t1) t (s2, t2) t · · · t (sN ,∞), where 0 ≤ s1 < t1 < s2 < t2 < · · · < sN <∞. Finally, let
Sp := Su \Sc; we will refer to elements of Sp as perennial time spans. A typical perennial time
span is an infinite disjoint union of open intervals, as shown in formula (6).

A perennial partition of [0,∞) is a collection S1, . . . ,SN ∈ Sp of disjoint, perennial time spans
such that [0,∞) = S1 ∨ · · · ∨ SN . For example, for each of the twelve calendar months of the year,
let Sn be the set of all future moments in time occuring in month n (so S1 corresponds to all
future Januaries, etc.). Then S1, . . . ,S12 is a perennial partition of [0,∞). A coeternity structure is
a collection {cS}S∈Sp of non-negative real numbers indexed by Sp, such that, for any perennial
partition {S1, . . . ,SN}, we have cS1 + · · ·+ cSN = 1. Heuristically, a coeternity structure describes
what “fraction of eternity” is covered by each of S1, . . . ,SN . For example, if λ is the Lebesgue
measure on [0,∞), then we could partly define a coeternity structure by assigning to each S ∈Sp

its Cesàro density

cS := lim
T→∞

λ [S ∩ [0, T )]

T
, (10)

whenever this limit exists. But the limit (10) does not exist for all S ∈Sp, and for other perennial
sets, we would need to define cS in some other way.9

We will now present two DUI representations for infinite horizon intertemporal decisions. The
first one is easier to state, and is a special case of the second one. For any Hausdorff space X ,
let CL([0,∞),X ) be the set of all continuous functions α : [0,∞)−→X that converge to a limit at
infinity in the following sense: there is some x ∈X such that, for any open neighbourhood O⊆X

9 Also, nothing forces us to define cs by the limit (10), even when this limit does exist.
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around x, there exists T > 0 with α(t)∈O for all t > T . When it exists, this limit x is unique and
denoted lim

t→∞
α(t).

Now, letA⊆CL([0,∞),X ), and let {�I}I∈I be an intertemporal preference structure onA, which
induces an intermittent preference structure {�S}S∈S through axiom (LSep*). An extended DUI
representation for {�I}I∈I is given by a continuous, strictly increasing bijection ρ : [0,∞)−→[0,1),
a coeternity structure {cS}S∈Sp , a constant M ≥ 0, and a continuous utility function u : X−→R,
such that, for all α,β ∈A, the following three statements hold:

For all S ∈Sb,
(
α�S β

)
⇐⇒

(∫
S
u ◦α dρ ≥

∫
S
u ◦β dρ

)
. (11)

For all S ∈Sa,(
α�S β

)
⇐⇒

(∫
S
u ◦α dρ+M lim

t→∞
u[α(t)] ≥

∫
S
u ◦β dρ+M lim

t→∞
u[β(t)]

)
. (12)

Finally, for all S ∈Sp,(
α�S β

)
⇐⇒

(∫
S
u ◦α dρ+ cSM lim

t→∞
u[α(t)] ≥

∫
S
u ◦β dρ+ cSM lim

t→∞
u[β(t)]

)
. (13)

As in Section 4, the integrals on the right hand sides of these statements are Riemann-Stieltjes
integrals. In particular, for any α,β ∈A, formula (12) yields:(

α� β
)
⇐⇒

(∫ ∞
0

u ◦α dρ+M lim
t→∞

u[α(t)]≥
∫ ∞

0

u ◦β dρ+M lim
t→∞

u[β(t)]

)
.

Thus, the discount structure consist of three components. As in Section 4, ρ is a “generalized
discount factor” encoding the relative importance of each moment in [0,∞). Meanwhile, M is an
additional coefficient weighting the asymptotic utility of the trajectories “at eternity”. If M > 0,
then the agent assigns a nonzero weight to the asymptotic utility of the trajectories at eternity,
even if limt→∞ dρ(t) = 0. An abiding time span assigns a weight of M to eternity, but a perennial
time span may assign less. The coeternity structure encodes how much weight each perennial time
span assigns to eternity. This weighting could be decided by a natural formula like (10), but it
is essentially arbitrary. For example, if {S1, . . . ,S12} is the perennial partition with respect to the
twelve calendar months, then it may be that cS1 = 1 while cSn = 0 for all n ∈ [2 . . .12]. Note that
M could be zero (meaning that the agent totally ignores the asymptotic utilities of trajectories);
in this case, the formulae (12) and (13) reduce to formula (11), and {cS}S∈Sp plays no role. Here
is the first extension of Theorem 1 to infinite-horizon decisions.

Theorem 5. Let X be a connected Hausdorff space, and let A⊆CL([0,∞),X ). Let {�I}I∈I be
an intertemporal preference structure on A that satisfies (R*) and (LV). Then {�I}I∈I satisfies
Axioms (ISep*), (LSep), (StEq), (C), (Dom), (CIP), (TC) and (Eph) if and only if it has an
extended DUI representation (11)-(13). Here, ρ and M are unique, {cS}S∈Sp is unique (if M > 0),
and u is unique up to positive affine transformation.

The problem with Theorem 5 is that the intertemporal preference structure can only compare
trajectories that converge to a limit at infinity. This is because an intertemporal preference structure
defined over any larger domain of trajectories may be sensitive to the asymptotic behaviour of
these trajectories in a way that eludes an extended DUI representation. In particular, it could
respond in different ways to the asymptotic behaviour of trajectories along different sequences in
[0,∞) —for example, it may give different weight to limn→∞ u ◦α(2n) and limn→∞ u ◦α(2n+ 1)
(assuming these limits exist). Intuitively, to capture such sensitivity with a DUI representation, we
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would need to introduce distinct “limit points” for these two sequences, and then assign different
discount weights to these endpoints. But no such distinct limit points exist in [0,∞]. To solve this
problem, we must add a plethora of new endpoints to [0,∞), each acting like a distinct “moment
at the end of time”. To be precise, we must extend [0,∞) to its Stone-Čech compactification. This
is a unique compact Hausdorff space T̂ with the following properties.
(SČ1) [0,∞) is an open, dense subset of T̂ , and the native topology of [0,∞) is the same as the
subspace topology it inherits from T̂ .
(SČ2) For any compact Hausdorff space X , and any continuous function α : [0,∞)−→X , there is
a unique continuous function α̂ : T̂ −→X such that α̂�[0,∞) = α.

Let Ω := T̂ \ [0,∞); heuristically, this is the set of limit points “at eternity”.10 It is an uncountably
infinite, compact topological space. For any S ∈Sp, let closT̂ (S) be its closure as a subset of T̂ ,
and then let Ŝ := intT̂ [closT̂ (S)] be the interior of this closure in T̂ . Then Ŝ is an open subset of
T̂ , and Ŝ ∩ [0,∞) = S [32, Lemma 7.4(a)]. Let S∞ := Ω∩ Ŝ; this is a relatively open subset of Ω.
Let ∂Ŝ be the boundary of Ŝ in T̂ , and then let ∂∞S := Ω∩ ∂Ŝ; this is a relatively closed subset
of Ω. If Ω is the set of “limit points at eternity”, then ∂∞S is the set of such limit points that can
be reached both by a sequence of times in S and a sequence of times in ¬S. In contrast, S∞ is the
set of the set of such limit points that can be reached by a sequence in S, but not a sequence in
¬S. If S is abiding, then S∞ = Ω. Meanwhile, ∂∞S 6= ∅ if and only if S is perennial.

Let η be a Borel measure on Ω, and for all S ∈Sp, let φS : ∂∞S−→R+ be a Borel measurable
function. We will call the collection {φS}S∈Sp an amaranthine structure if, for any perennial partition
{S1, . . . ,SN} of [0,∞), we have φS1(ω)+ · · ·+φSN (ω) = 1 for η-almost all ω ∈ (∂∞S1)∪· · ·∪(∂∞SN).
This is like the coeternity structure that appeared in the extended DUI representation (13), but
now we must contend with the fact that Ω is not a single point, but an uncountably infinite
topological space.

Let X be another Hausdorff space. For any α ∈ Cb([0,∞),X ), assertion (SČ2) yields a unique
function α̂∈ C(T̂ ,X ) such that α̂�[0,∞) = α. Let A⊆Cb([0,∞),X ), and let {�I}I∈I be an intertem-
poral preference structure on A, which induces an intermittent preference structure {�S}S∈S
through axiom (LSep*). A Stone-Čech DUI representation for {�I}I∈I is given by a continuous
utility function u : X−→R, a continuous, strictly increasing bijection ρ : [0,∞)−→[0,1), a normal
Borel measure η on Ω, and an amaranthine structure {φS}S∈Sp such that, for all α,β ∈A(S), the
following three statements hold:

For all S ∈Sb,
(
α�S β

)
⇐⇒

(∫
S
u ◦α dρ ≥

∫
S
u ◦β dρ

)
. (14)

For all S ∈Sa,
(
α�S β

)
⇐⇒

(∫
S
u ◦α dρ+

∫
Ω

u ◦ α̂ dη ≥
∫
S
u ◦β dρ+

∫
Ω

u ◦ β̂ dη

)
. (15)

Finally, for all S ∈Sp,(
α�S β

)
⇐⇒

(∫
S
u ◦α dρ+

∫
S∞

u ◦ α̂ dη+

∫
∂∞S

(u ◦ α̂) ·φS dη (16)

≥
∫
S
u ◦β dρ+

∫
S∞

u ◦ β̂ dη+

∫
∂∞S

(u ◦ β̂) ·φS dη

)
.

Here, the ρ-integrals over subsets of [0,∞) are Riemann-Stieltjes integrals, while in (15) and (16),
the η-integrals over subsets of Ω are Lebesgue integrals. In particular, for any α,β ∈ A, formula
(15) becomes(

α� β
)
⇐⇒

(∫ ∞
0

u ◦α dρ+

∫
Ω

u ◦ α̂ dη ≥
∫ ∞

0

u ◦β dρ+

∫
Ω

u ◦ β̂ dη

)
.

10 Formally, Ω is called the corona of the space [0,∞).
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There is a clear analogy between formulae (11), (12) and (13) and formulae (14), (15) and (16).
But the latter are more complex, due to the greater complexity of the Stone-Čech compactifica-
tion. The measure η plays the same role in representations (15) and (16) that the coefficient M
played in the representation (12) and (13): it assigns some weight to the asymptotic utility of
trajectories at eternity. But η is much more complicated than a single coefficient, because now we
can assign a different weight to each point in Ω; heuristically, this means that the intertemporal
preference structure can exhibit different sensitivity to different aspects of the asymptotic utility
of trajectories. If S is an abiding time span, then η completely describes the agent’s attitudes
towards these asymptotic utilities, as shown in formula (15). But if S is a perennial time span,
then we also need the amaranthine structure {φS}S∈Sp , as shown in formula (16). To understand
this, note that ∂∞S = ∂∞(¬S). Heuristically, the amaranthine structure describes the way that
S and ¬S “share” the η-mass of their common boundary at eternity. For example, suppose that
S = [0,1)t (2,3)t (4,5)t · · · , so that ¬S = (1,2)t (3,4)t (5,6)t · · · . Suppose that φS = 1Ω while
φ¬S = 0. Then �S is quite sensitive to the asymptotic utilities of trajectories, while �¬S is totally
insensitive to this information. Note that η could be trivial (if the agent ignores the asymptotic
utilities of trajectories); in this case, the formulae (15) and (16) reduce to (14), and {cS}S∈Sp is
irrelevant. Here is our last main result.

Theorem 6. Let X be a connected Hausdorff space, and let A ⊆ Cb([0,∞),X ). Let {�I}I∈I
be an intertemporal preference structure on A satisfying (R*) and (LV). Then {�S}S∈S satisfies
(ISep*), (LSep), (StEq), (C), (Dom), (CIP), (TC) and (Eph) if and only if it admits a Stone-
Čech DUI representation (14)-(16). Furthermore, η and ρ are unique, each element of {φS}S∈Sp is
unique η-almost everywhere, and u is unique up to positive affine transformation.

6. Prior literature The first axiomatic characterization of exponentially discounted util-
ity sums was by Koopmans [21, 22]. Since then, there have been other axiomatizations, such as
[23], [27] or [41, Theorem IV.4.4]; see Bleichrodt et al. [4] for a good summary of this literature.
Meanwhile, empirically observed deviations from exponential discounting led to the investigation
of nonexponentially discounted utility sums, such as quasihyperbolic discounting [31], including
axiomatic characterizations [3, 16, 29]. Likewise, dissatisfaction with exponential discounting as
a normative criterion led to axiomatic characterizations of discounted sum representations with
more slowly decaying discount terms [9, 14].

However, this literature is entirely concerned with discrete time. Only recently has there been
an investigation of preference axiomatizations of continuous-time intertemporal preferences. As
observed by Wakker [44], a subjective expected utility (SEU) representation can be interpreted as
a discounted utility integral representation, if the underlying state space T is isomorphic to a real
interval. In the particular case where the outcome space X is a connected topological space, Wakker
[39] axiomatically characterized such an SEU representation with a continuous utility function;
see also [44, Corollary 2.14]. But Wakker did not impose a topology on T , so he did not require
trajectories to be continuous. Likewise, Kopylov [24] obtained a representation of intertemporal
preferences on R as an exponentially discounted utility integral, by adapting his axiomatization of
SEU representations with countably additive probability measures. But Kopylov assumed that A
contains all simple functions (i.e. measurable step functions with finite range). Also, in his model,
X has no topology, so it is meaningless to ask whether the utility function u is continuous.

Kahneman et al. [18, Theorem A.1] axiomatically characterized utility integral representations
with a continuous utility function and no discounting, in the special case when X is an interval of
real numbers. Like the present paper, they consider not only trajectories defined on time intervals
(which they call episodes), but also trajectories defined on disjoint unions of time intervals (which
they call temporally extended outcomes). Harvey and Østerdal [15] and Sagara [36] assumed that
X =RN , and obtained discounted utility integral representations with continuous utility functions.
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However, all three axiomatizations require the possibility to “splice” two trajectories together at
some moment in time, so they cannot restrict to continuous functions, and must instead allow
the space A of feasible trajectories to include piecewise continuous functions. (In fact, Sagara
allows A to be any subset of Lp([0,∞),RN) that is closed under splicing.) Harvey and Østerdal
emphasize the importance of such domain restrictions, writing: “....it may be impossible for the
analyst to visualize an outcome stream that is discontinuous at an uncountable number of times
and thus impossible for him or her to judge whether the conditions on preferences are satisfied by
such functions.” They insist: “...in a prescriptive policy study the analyst should choose a set of
alternatives that encompasses the possible alternatives and excludes alternatives that differ greatly
from the possible alternatives and thus are difficult to compare with them.” Harvey and Østerdal
obtain a discounted utility representation in terms of a Riemann integral. Because Sagara and
Kahneman et al. allow much larger sets of trajectories, their representations use Lebesgue integrals.

Hara [13] allows X to be any separable metric space, and restricts A to càdlàg11 functions from
[0,∞) into X . He characterizes exponentially discounted utility integral representations, along with
a generalization of the recursive discounting model of Uzawa [38]. Finally, Webb [45] characterizes
quasihyperbolic discounted utility integrals on [0,∞). But in his model, A contains only step
functions, and like Kopylov [24], the outcome space X has no topology, so the utility function
cannot be continuous. Pan et al. [30] also characterize quasihyperbolic discounting in continuous
time, but in their model, alternatives are dated outcomes (as in [10]) rather than consumption
streams. So their results are not strictly comparable to the present paper.

As Spinoza observed, “It is in the nature of Reason to perceive things from the aspect of eter-
nity.” Suppose we interpret an infinite-horizon intertemporal choice problem as an intergenerational
choice problem. Ethical considerations of impartiality suggest that we should not discount future
utility relative to present utility. But starting with Koopmans [23] and Diamond [8], a series of
papers showed that such “intertemporal impartiality” is inconsistent with other compelling axioms,
such as weak Pareto and continuity. This has led to a large literature on intergenerational social
choice based on weaker impartiality criteria; see Asheim [2] for a good review. To respect the
concerns of the very far future, Chichilnisky and Heal [5, 6, 7] introduced an intergenerational
social welfare function like formula (4), which combined a discounted utility sum with a limit term
obtained from the Stone-Čech compactification of N. More recently, Sakai [37] has characterized
a similar construction. This is philosophically similar to Stone-Čech DUI representation that we
characterize in Theorem 6, but there are important differences. First, Chichilnisky and Sakai work
with discrete time, while we assume time is a continuum. Second, they assume X = R or RN ,
whereas we allow X to be any connected Hausdorff space. Third, their representations do not use
an amaranthine structure —this is because they only consider preferences over trajectories defined
on all of N, and not on perennial time spans.

Unfortunately, intergenerational preferences defined using the Stone-Čech compactification are
not constructible. Indeed, to construct the Stone-Čech compactification itself, we need the Axiom
of Choice. This does not mean that such preferences are useless. We can prove that they exist
and have certain properties, and in many cases we can decide whether one trajectory is prefered
to another. But there will always exist pairs of trajectories for which the comparison cannot be
decided. Indeed, this is inevitable in any infinite-horizon intertemporal preference order satisfying
desirable properties [25, 26, 46].

Appendix A: Proofs of minor claims from Sections 2, 3 and 5 This appendix collects
the proofs of some claims that were made informally in the text, and that are important for the
proofs of our main results. The first of these claims appeared in Section 5. It says we can use the

11 That is: functions that are continuous from the right at have a left-hand limit at each point in [0,∞).
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hypothesis (R*) in place of (R) without any loss of generality when proving results from Section 4.
As a consequence, conditions (Core) and (Core*) are equivalent when proving these results. Thus,
it is useful to state it first.

Lemma A.1. If T is a finite interval, then (R*) and (R) are equivalent.

Proof. Clearly, (R*) implies (R), because (R) is just the special case when R= br, se and Q=
bq, re∨bs, te. We must show the reverse implication. Since T itself is an interval of finite length, R
and ¬R must each have a finite number of intervals. Find α∗, β∗ ∈A such that α= α∗�S and β = β∗�S .
By inductive application of (R), we obtain φ∗ ∈A such that φ∗�¬R = α∗�¬R, while for every component
interval J of R, we have φ∗�J ≈J β∗�J . Now let φ := φ∗�S . Then φQ = αQ (because Q⊆¬R), and for
every component interval J of R, we have φ�J = φ∗�J ≈J β∗�J = β�J , as desired. 2

The next lemma yields a slightly enhanced version of the axiom (ISep).

Lemma A.2. Suppose A and {�I}I∈I satisfy (R) and (ISep). Let I,J ∈ I be adjacent time
intervals and let H= I ∨J . Let α,β ∈A(H).

(a) If α�I �I β�I and α�J �J β�J , then α�H β.
(b) If α�I �I β�I and α�J �J β�J , then α�H β.

Proof. (b) Use (R) to find γ ∈A(H) such that γ�J = β�J and γ�I ≈I α�I . Since γ�I ≈I α�I �I β�I ,
thus γ�I �I β�I by transitivity. Since γ�J = β�J , (ISep) yields γ �H β. Meanwhile, as α�J �J β�J =
γ�J , thus α�J �J γ�J . Since α�I ≈I γ�I , (ISep) yields α�H γ. Now we have α�H γ �H β, and thus
α�H β by transitivity.

(a) Suppose α�J �J β�J . If α�I ≈I β�I , then (ISep) yields α�H β. On the other hand, if α�I �I β�I ,
then part (b) yields α�H β. 2

The next lemma says we can use (ISep*) in place of (ISep) when proving results from Section 4.

Lemma A.3. (ISep*) implies (ISep). Furthermore, suppose T is a finite interval, and A and
{�I}I∈I satisfy (R). Then they satisfy (ISep) if and only if they satisfy (ISep*).

Proof. “(ISep*)=⇒(ISep)” Let I,J ∈ I be adjacent time intervals, let H := I ∨ J , and let
α,β ∈A(H) with α�I ≈I β�I . We must show that (α�H β) ⇐⇒ (α�J �J β�J ).

“⇐=” As α�I ≈I β�I , thus α�I �I β�I . So if α�J �J β�J , then (ISep*) yields α�H β.
“=⇒” Suppose α�H β. If α�J ≺J β�J , then invoking α�I ≈I β�I and the second part of (ISep*)

yields α≺H β, a contradiction. Thus, we must have α�J �J β�J .

“(ISep)=⇒(ISep*)” If T is finite, and Q,R∈S, then Q and R must each have a finite number of
component intervals. Furthermore, if Q and R are disjoint, and Q∨R is the interval H, then the
component intervals of Q and R must alternate and touch at their endpoints.

First suppose that α�I �I β�I for every component interval I ofQ andR. By inductively applying
Lemma A.2(a), we conclude that α�H β.

Now, further suppose that α�I �I β�I for some component interval I of Q or R. Then at some
step in the previous inductive argument, use Lemma A.2(b) to get a strict preference. Then invoke
Lemma A.2(b) for all remaining steps in the argument, to eventually conclude that α�H β. 2

Lemma A.4. If A and {�I}I∈I satisfy (R*), then (LSep*) and (LSep) are equivalent.

Proof. It is obvious that (LSep*) implies (LSep). We must show the reverse implication. So,
suppose (LSep) holds. For any S ∈S, define �S on A(S) as follows. Let α,β ∈A(S). By definition
of A(S), there is some α′ ∈A such that α′�S = α. Condition (R*) yields β′ ∈A such that β′�S = β,
while β′�I ≈I α′�I for every component interval I of ¬S. Then define α�S β if and only if α′ � β′.
By axiom (LSep), the relation �S defined in this way is independent of the choice of extensions α′

and β′. Thus, it determines a well-defined binary relation on A(S).
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The binary relation �S defined in this way is reflexive and complete because � itself is reflexive
and complete. To see that �S is transitive, let α,β, γ ∈A(S), and suppose that α�S β and β �S γ.
By the definition of �S in the previous paragraph, there exist α′, β′ ∈A such that α= α′�S , β = β′�S ,
and α′�I ≈I β′�I for every component interval I of ¬S, and α′ � β′. Condition (R*) yields γ′ ∈ A
such that γ = γ′�S , while γ′�I ≈I β′�I for every component interval I of ¬S. Then β′ � γ′, because
β �S γ and this is how �S was defined in the previous paragraph. Thus, by transitivity, α′ � γ′.
But for every component interval I of ¬S, we have γ′�I ≈I β′�I ≈I α′�I by construction, and hence
γ′�I ≈I α′�I by transitivity. Thus, we must have α�S γ, by the definition of �S given in the previous
paragraph. 2

The next lemma shows that {�S}S∈S is an extension of {�I}I∈I.

Lemma A.5. Suppose A and {�I}I∈I satisfy (R*), (ISep), and (LSep*). Let J ∈ I. The
intertemporal preference order associated with J is equal to the intermittent preference order defined
on A(J ) by Axiom (LSep*).

Proof. Let �J be the intertemporal preference order associated with J . Let �∗J be the inter-
mittent preference order defined on A(J ) by Axiom (LSep*). We must show they are the same.

Either T = [q, t] for some q < t <∞, or T = [q,∞), in which case we define t :=∞. Suppose
J = br, se, where q ≤ r < s≤ t. Let I := bq, re and K := bs, te (one of these may be empty). Then
¬J = I∨K, and these are the component intervals of ¬J . Let α,β ∈A, and suppose that α�I ≈I β�I
and α�K ≈K β�K. Then according the definition of �∗J in Axiom (LSep*), we have(

α�J �∗J β�J
)
⇐⇒

(
α� β

)
. (A1)

Now, let H := I ∨J = bq, se. By axiom (ISep), we have(
α�H �H β�H

)
⇐⇒

(
α�J �J β�J

)
. (A2)

Next, note that T =H∨K. Thus, by applying (ISep) again (this time to H), we have(
α� β

)
⇐⇒

(
α�H �H β�H

)
. (A3)

Combining (A1), (A2) and (A3), we see that α�J �∗J β�J if and only if α�J �J β�J . 2

Proposition A.1. If A and {�I}I∈I satisfy (R*), (ISep*) and (LSep*), then they satisfy
(Sep).

The proof of Proposition A.1 requires two lemmas.

Lemma A.6. Suppose A and {�I}I∈I satisfy (R*), (ISep), and (LSep*). Let S ∈S, and let
Q,R⊆ S be disjoint time spans such that S =Q∨R. Let α,β ∈A(S) be such that α�I ≈I β�I for
every component interval I of R. Then α�S β if and only if α�Q �Q β�Q.

Proof. Find α∗ ∈A with α= α∗�S . Condition (R*) yields β∗ ∈A such that β = β∗�S , while

α∗�J ≈J β∗�J for every component interval J of ¬S. (A4)

From the definition of �S in Axiom (LSep*), it follows that(
α�S β

)
⇐⇒

(
α∗ � β∗

)
. (A5)

From the hypothesis of the lemma, we also have

α∗�I ≈I β∗�I , for every component interval I of R, (A6)

because α∗�I = α�I and β�I = β∗�I for any such component interval, because R⊆S.
Note that ¬Q= (¬S)∨R. Thus, if K is any component interval of ¬Q, then either
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(i) K is a component interval of ¬S; or
(ii) K is a component interval of R; or
(iii) K= I ∨J , where I is a component interval of R and J is a component interval of ¬S, and

these two intervals are adjacent.
In Case (i), statement (A4) says α∗�K ≈K β∗�K. In Case (ii), statement (A6) says α∗�K ≈K β∗�K. In Case
(iii), combining statements (A4), (A6) and Axiom (ISep) yields α∗�K ≈K β∗�K. So we conclude that

α∗�K ≈K β∗�K, for every component interval K of ¬Q. (A7)

From statement (A7) and the definition of �Q in Axiom (LSep*), it follows that(
α�Q �Q β�Q

)
⇐⇒

(
α∗ � β∗

)
. (A8)

Combining (A5) and (A8), we see that α�S β if and only if α�Q �Q β�Q. 2

Lemma A.7. Suppose A and {�I}I∈I satisfy (R*), (ISep*) and (LSep*). Let Q ∈S and let
α,β ∈A(Q). If α�I ≈I β�I for every component interval I of Q, then α≈Q β.

Proof. Find α′ ∈A with α′�Q = α. Let R :=¬Q. Condition (R*) yields β′ ∈A such that

β′�Q = β, and β′�I ≈I α′�I , for every component interval I of R. (A9)

Combining (A9) and Lemma A.6, we have α′�Q ≈Q β′�Q if and only if α′ ≈ β′. Since α′�Q = α and
β′�Q = β, we deduce that α≈Q β if and only if α′ ≈ β′. Thus, it remains to show that α′ ≈ β′. Now,
for every component interval I of Q, we have

α′�I = α�I ≈I β�I = β′�I , (A10)

where “≈I” is by hypothesis, and the equalities are because α′�Q = α and β′�Q = β. Meanwhile, for
every component interval I of R, we have α′�I ≈I β′�I by statement (A9). At this point, axiom
(ISep*) yields α′ ≈ β′. 2

Proof of Proposition A.1. Let S =Q∨R and α,β ∈A(S) be as in the statement of (Sep). Con-
dition (R*) yields α′ ∈A(S) such that

α′�R = α�R, (A11)
while α′�I ≈I β�I , for every component interval I of Q. (A12)

Lemma A.7 and statement (A12) imply that α′�Q ≈Q β�Q. Meanwhile, α�Q ≈Q β�Q by hypothesis.
Thus, by transitivity, we get

α′�Q ≈Q α�Q. (A13)

Meanwhile, equation (A11) implies that

α′�I = α�I and hence α′�I ≈I α�I , for every component interval I of R. (A14)

Combining statements (A13) and (A14) with Lemma A.6, we deduce that

α′ ≈S α. (A15)

Meanwhile, statement (A12) and Lemma A.6 (with the roles of R and Q reversed) yields(
α′ �S β

)
⇐⇒

(
α′�R �R β�R

)
. (A16)

By (A15), the left hand side of (A16) is equivalent to “α �S β”. By equation (A11), the right
hand side of (A16) is equivalent to “α�R �R β�R”. With these transformations, statement in (A16)
becomes “α�S β if and only if α�R �R β�R,” as desired. 2
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In the formulation of the Tradeoff Consistency axiom (TC) at the end of Section 3, we claimed
that it was possible to construct a trajectory (xSα) satisfying properties (B1) and (B2). In fact,
this claim is a special case of a richnesss property that will be important in the proofs in Appendix
B, and which is closely related to condition (R*).

Lemma A.8. If A and {�I}I∈I satisfy (R*), (LSep*) and (ISep*), then they satisfy the fol-
lowing axiom:
(Rch) Let Q,R∈S be disjoint time spans, and let S :=Q∨R. For any α∈A(Q) and β ∈A(R),
there exists some γ ∈A(S) such that γ�Q = α and γ�R ≈R β.

Proof. Condition (R*), yields some γ ∈A such that γ�Q = α�Q, while γ�I ≈I βI for every compo-
nent interval I of R. Then Lemma A.7 implies that γ�R ≈R β. 2

Appendix B: Technical background on contents This appendix introduces some machin-
ery needed for the proofs of the main results. Let X be a topological space. A regular open subset
of X is a subset R⊆X such that X = int[clos(X )]. Every regular open set is open. But not every
open set is regular. For example, if Z ⊂R is closed and nowhere dense (in particular, if Z is finite
or countable), then R\Z is open, but not regular. Let RO(X ) be the set of all regular open subsets
of X . For any Q,R∈RO(X ), let Q∨R := int[clos(Q∪R)] and ¬R := int[X \R]. Then RO(X ) is
a Boolean algebra with operations ∨, ∩ and ¬ [12, Thm. 314P].

Now let T ⊆R, and let S be the family of all time spans on T . As noted in footnote 3, S is a
Boolean algebra under the operations ∨, ∩ and ¬ —indeed, it is a Boolean subalgebra of RO(T ).
If B is any Boolean subalgebra of RO(T ), then a content on B is a function µ : B−→[0,1] with
µ(T ) = 1, which is “finitely additive” in the following sense:

µ[R∨S] = µ[R] +µ[S], for all R,S ∈B with R∩S = ∅. (B1)

For any S ∈B, a B-partition of S is a collection S1, . . . ,SN ∈B of disjoint sets such that S =
S1 ∨ · · · ∨ SN . It follows from (B1) that µ[S] = µ[S1] + · · ·+µ[SN ].

The proofs in this appendix draw heavily on results from a companion paper [32], which studies
contents and their representations by classical probability measures, as well as “integration” with
respect to contents. We will refer to results in the companion paper with the prefix “PV”. Thus,
“Theorem PV-4.4” should be read as, “Theorem 4.4 from [32].”

A content µ has full support if µ[S]> 0 for any nonempty S ∈S. We say that µ is nonatomic if,
for any t∈ T and ε > 0, there is some element S ∈S with t∈ S and µ[S]< ε. Finally, we say that
µ is exponential if, for any R,S ∈S with R⊆S and any t∈ [0,∞) such that S+t ∈S, we have

µ[R]

µ[S]
=

µ[R+t]

µ[S+t]
, (B2)

where R+t and S+t are defined as in the formulation of the axiom (Stat) in Section 3.
A function f : T −→R is comeasurable with respect to S if int (f−1(−∞, r]) ∈ S and

int (f−1[r,∞)) ∈S for all r ∈ R. Let Cb(T ,R) be the Banach space of bounded, continuous, real-
valued functions, with the uniform norm ‖·‖∞. Let GS(T ) be the linear subspace of Cb(T ,R)
spanned by all S-comeasurable functions in Cb(T ,R). For any subset S ⊆ T , let GS(S) := {g�S ;
g ∈ GS(T )}. An integrator on S is a collection I := {IS}S∈S, where for all S ∈S,
• IS : GS(S)−→R is a bounded linear functional that is weakly monotonic —that is, for any

f, g ∈ GS(S), if f(s)≤ g(s) for all s∈ S, then IB[f ]≤ IB[g];
• For any S-partition {Sn}Nn=1 of S, and for any g ∈ GS(S), we have

IS [g] =
N∑
n=1

ISn [g�Sn ] . (B3)
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If g ∈ GS(T ) and S ∈S, we will abuse notation and write “IS [g]” to mean IS [g�S ]. Meanwhile, we we
will write “I[g]” to mean IT [g]. Given a content µ on S, we can define an integrator Iµ = {IµS}S∈S
as follows. Let S ∈S. A function f : S−→R is simple if there is some S-partition {S1, . . . ,SN} of S
such that f is constant on each of the sets S1, . . . ,SN . (We place no constraints on the behaviour
of f on the boundaries of these sets; it is not important.) For any such simple function, we define∫ �

S
f dµ :=

N∑
n=1

rn µ[Sn], (B4)

where rn is the value that f takes on Sn. Let F(S) be the set of all simple functions on S. Given
any g ∈ GS(S), define

IµS [g] := sup
f∈Fg(S)

∫ �
S
f dµ, where Fg(S) := {f ∈F(S) ; f(s)≤ g(s), for all s∈ S}. (B5)

Theorem PV-4.4 states that this is the unique integrator that is “compatible” with µ in the sense
that IS [1] = µ[S] for all S ∈S (where 1 is the constant unit function).

Let u :X−→R be a continuous function representing the synchronic preference relation �sy, and
let µ be a content on S. The pair (u,µ) is a content-utility representation for the intermittent
preference structure {�S}S∈S if, for any S ∈S and any α,β ∈A(S), we have(

α�S β
)
⇐⇒

(
IµS [u ◦α]≥ IµS [u ◦β]

)
. (B6)

One minor issue here is that it is not clear, a priori, that the expressions on the right-hand side
are well-defined, because it is not clear that the functions u ◦α and u ◦ β are in GS(S). The next
lemma takes care of this problem.

Lemma B.1. Let X be a connected topological space, let u : X−→R be a continuous function
representing the synchronic preference order �sy, and let A⊆Cb(T ,X ). If A satisfies (LV) relative
to �sy, then for any α∈A, the function u ◦α : T −→R is comeasurable.

Proof. Let U := u(X ); then U is an interval, because X is connected and u is continuous.
Let r ∈ R. We must show that int ((u ◦α)−1(−∞, r]) ∈ S. There are three cases. If r < u(x) for
all x ∈ X , then u−1(−∞, r] = ∅. But int (∅) = ∅, which is an element of S. On the other hand,
if r > u(x) for all x ∈ X , then u−1(−∞, r] = X . But int (X ) = X , which is an element of S.
Finally, suppose r ∈ U . Then there exists x ∈ X such that r := u(x). Then u−1(−∞, r] = X (�sy

x), because u represents �sy. Thus, (u ◦ α)−1(−∞, r] = α−1 (u−1(−∞, r]) = α−1 [X (�sy x)]. Thus,
int ((u ◦α)−1(−∞, r]) = int (α−1 [X (�sy x)]), which is an element of S by (LV), because α ∈A. In
all three cases, int ((u ◦α)−1(−∞, r]) ∈S. By a similar argument, int ((u ◦α)−1[r,∞)) ∈S. This
holds for all r ∈R. Thus, u ◦α is comeasurable. 2

Another companion paper [33] considers decisions under uncertainty with imperfect perception.
The main result of [33] is an axiomatic characterization of subjective expected utility representa-
tions based on content-utility representations like (B6). The next theorem is an adaptation of this
characterization theorem to the setting of intertemporal choice. It can also be seen as a “content”
version of the DUI representations for intertemporal preferences that appear in the body of the
present paper. It is a key result, from which we will derive all of our main results.

Theorem B.1. Let T ⊆R be any union of open and/or closed intervals with nonempty interi-
ors. Let X be a connected topological space, and let A⊆Cb(T ,X ). Let {�I}I∈I be an intertemporal
preference structure on A that satisfies conditions (R*) and (LV).
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(a) {�I}I∈I satisfies axioms (ISep), (LSep), (StEq), (C), (Dom), (CIP), and (TC) if and only
if it has a content-utility representation (u,µ), where u is a continuous function on X and µ is
a content on S with full support.
(b) {�I}I∈I satisfies the seven axioms in part (a) and also (Eph) if and only if it has a
content-utility representation, and furthermore, µ is nonatomic.
(c) Suppose that {�I}I∈I and A also satisfy condition (Core*). Then {�I}I∈I satisfies the
seven axioms in part (a) and also (Stat) if and only if it has a content-utility representation,
and furthermore, µ is exponential.

In all three cases, µ is unique, and u is unique up to positive affine transformation.

Proof. (a) Let {�S}S∈S be the intermittent preference structure induced by {�I}I∈I through
axiom (LSep*). The proof strategy is almost verbatim identical to the proof of Theorem 1 in
[33], but with T and S playing the role of the state space S and the Boolean algebra B in
that paper. (Hereafter we will simply call this “Theorem 1”.) What is called an “intermittent
preference structure” in this paper is called a “conditional preference structure” in Theorem 1, and
the “synchronic” preference order �sy in this paper is called an “ex post” preference order �xp in
Theorem 1. What is called a “content” in this paper is called a “credence” in Theorem 1, since it
represents the “beliefs” of a subjective expected utility maximizer.

Theorem 1 requires the condition (Rch) introduced at the end of Appendix A. But (Rch) follows
from condition (R*), by Lemma A.8. Theorem 1 also uses the axiom (Sep) that appears in Section
3. But this is implied by the conjunction of axioms (ISep*) and (LSep*), by Proposition A.1. Axiom
(StEq) in this paper corresponds to axiom (CEq) in Theorem 1. All the other axioms (C), (Dom),
(CIP), and (TC) are identical.

It remains to resolve two discrepancies between the framework of the present paper and that of
[33]. Theorem 1 makes a key structural assumption:

(CM) There is a Boolean algebra D of regular open subsets of X such that all the functions in A
are “comeasurable” with respect to S and D.

(The definition of “comeasurable” is not important here.) Theorem 1 also uses one other axiom:

(M) For any x∈X , the sets {y ∈X ; y�sy x} and {y ∈X ; y≺sy x} are in D.

Assuming the structural conditions (Rch) and (CM), Theorem 1 shows that a conditional pref-
erence structure {�B}B∈B satisfies axioms (StEq), (C), (Dom), (Sep), (CIP), (TC) and (M) if and
only if it admits a content-utility representation (B6), and furthermore, the function u is “measur-
able” with respect to D. However, in Theorem 1, the D-measurability of the utility function u only
serves to obtain axiom (M), and not the other axioms. To prove the necessity of the other axioms,
we can therefore proceed here exactly as in the proof of Theorem 1.

Conversely, in the proof of Theorem 1, axiom (M) only serves to obtain the D-measurability of u.
(See Claim 6 in the proof of Proposition A.3 in [33] for details.) Meanwhile, assumption (CM) and
the D-measurability of u are only used to make sure that u ◦α is S-comeasurable for any α ∈A.
But given structural condition (LV), Lemma B.1 already guarantees that u ◦α is S-comeasurable
for any α ∈A. Thus, we do not need either structural condition (CM) or axiom (M) to prove the
sufficiency of the axioms for the representation. Finally, the uniqueness of the representation can be
obtained exactly as in Theorem 1, since the argument invoked there uses neither condition (CM),
nor axiom (M) nor D-measurability.

(b) “=⇒” Suppose {�I}I∈I satisfies the seven axioms in part (a) and also (Eph). Let (µ,u)
be the content-utility representation obtained in part (a). We must show that µ is non-atomic.
Suppose T = [0, T ]. (The same argument works if T = [0,∞) but is even simpler in that case.)
By contradiction, suppose there exists t ∈ T and ε > 0, such that µ[S] ≥ ε for every S ∈S with
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t ∈ S. Let w,x ∈ X , with w ≺sy x. Thus, u(w) < u(x), because u represents �sy. Without loss of
generality (applying an affine transform to u if necessary) assume u(x) = 1 and u(w) = 0. Since u is
continuous and X is connected, the Intermediate Value Theorem yields some y ∈X with u(y) = ε;
thus, y�sy w. Find z ∈X with z ≈w; then u(z) = 0 and y�sy z.

Let S ∈S and letR :=¬S. Then (xSz)�S ≈S κx, and thus, the content-utility representation (B6)
yields IµS [u ◦ (xSz)�S ] = IµS [u ◦ κx] = IµS [1] = µ[S]. Meanwhile, (xSz)�R ≈R κz, and thus, the content-
utility representation (B6) yields IµR[u ◦ (xSz)�R] = IµR[u ◦ κz] = IµS [0] = 0. Thus, since T = S ∨R,
equation (B3) implies that

Iµ[u ◦ (xSz)] = IµS [u ◦ (xSz)�S ] + IµR[u ◦ (xSz)�R]
= µ[S] + 0 = µ[S]. (B7)

By a very similar argument, IµS [u ◦ (wSy)�S ] = IµR[0] = 0 and IµR[u ◦ (wSy)�R] = IµR[ε] = εµ[R]; thus,
equation (B3) implies that

Iµ[u ◦ (wSy)] = 0 +µ[R] · ε = ε · (1−µ[S]). (B8)

Now, if t ∈ S, then µ[S]> ε (by hypothesis). Thus, (B7) yields Iµ[u ◦ (xSz)]> ε, while (B8) yields
Iµ[u ◦ (wSy)] < ε − ε2 < ε. Thus, Iµ[u ◦ (wSy)] < Iµ[u ◦ (xSz)], and thus, (wSy) ≺T (xSz) by the
content-utility representation (B6). This holds for any S ∈S with t∈ S, contradicting axiom (Eph).
By contradiction, if {�I}I∈I satisfies (Eph), then µ must be nonatomic.

“⇐=” Suppose {�I}I∈I admits a content-utility representation where µ is nonatomic. From part
(a), we already know that {�S}S∈S satisfies the axioms (LSep), (ISep), (StEq), (C), (Dom), (CIP),
and (TC). We must show that {�I}I∈I also satisfies (Eph).

Let t ∈ T , and let w,x, y, z ∈ X with y �sy z. We must find some S ∈S with t ∈ S such that
(wSy) � (xSz). If w �sy x, then this is automatically true by axioms (Dom) and (Sep) — (Sep)
itself being a consequence of (LSep) and (ISep) via Proposition A.1. So, suppose w ≺sy x. Given
the content-utility representation (B6), it is sufficient to obtain Iµ[u ◦ (wSy)] > Iµ[u ◦ (xSz)]. Let
A := u(y)−u(z) and B := u(x)−u(w). Then A and B are positive. For any S ∈S, straightforward
computations similar to (B7) yield

Iµ[u ◦ (wSy)] = u(y) + (u(w)−u(y)) µ[S]
and Iµ[u ◦ (xSz)] = u(z) + (u(x)−u(z)) µ[S],

thus Iµ[u ◦ (wSy)]− Iµ[u ◦ (xSz)] = u(y)−u(z) + (u(w)−u(y)−u(x) +u(z)) µ[S]
= A− (A+B)µ[S]. (B9)

Since µ is nonatomic, there exists some S ∈ S containing t such that µ[S] < A/(A+ B). From
this, it follows that A− (A+B)µ[S]> 0. Thus, (B9) yields Iµ[u ◦ (wSy)]> Iµ[u ◦ (xSz)], and hence
(wSy)� (xSz), as desired.

(c) “=⇒” Suppose {�I}I∈I satisfies the axioms in part (a) and also (Stat). Let (µ,u) be the
content-utility representation from part (a). We must show that µ is exponential.

Let S ∈ S, and let t ∈ [0,∞) be such that S+t ⊆ T . Let R := {R ∈ S; R ⊆ S}. Let A0 ⊆ A
be the set of trajectories identified by the (Core*) condition, let A′ := A0(S), and consider the
“restricted” intertemporal preference structure {�R}R∈R defined on A′ (with S playing the role
of T ). It is easily verified that this preference structure satisfies (LV), (StEq), (C), (Dom), (Sep),
(CIP), and (TC). By hypothesis, it satisfies (R*). Thus, part (a) yields a content µ′ on R and
a continuous function u′ :X−→R that give a content-utility representation (B6) for {�R}R∈R on
A′. Furthermore, µ′ is unique, and u′ is unique up to positive affine transformation. (Here, it is
important that part (a) was formulated to allow T to be any union of open intervals and closed
intervals in R —not necessarily a single closed interval, as in our main results.)
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Now, define the content µ1 on R by setting µ1(R) := µ(R)/µ(S) for all R∈R. Then it is easily
verified that (u,µ1) is also a content-utility representation for {�R}R∈R on A′, because of the
fact that (u,µ) is a content-utility representation for {�S}S∈S on A. Thus, by the aforementioned
uniqueness, we must have µ1 = µ′.

Finally, define the content µ2 on R by setting µ2(R) := µ(R+t)/µ(S+t) for all R ∈ R. Then
(u,µ2) is another a content-utility representation for {�R}R∈R on A′. To see this, let α,β ∈ A′;
then for any R∈R,(

α�R �R β�R
)
⇐

(∗)
⇒
(
α+t
�R+t �R+t β+t

�R+t

)
⇐

(†)
⇒
(
IµR+t [u ◦α+t]≥ IµR+t [u ◦β+t]

)
⇐

(�)
⇒
(
Iµ2R [u ◦α]≥ Iµ2R [u ◦β]

)
, as desired.

Here (∗) is by axiom (Stat), and uses the fact that α+t
�R+t , β

+t
�R+t ∈ A(R+t) because α�R, β�R ∈

A0(R) because α,β ∈A′ =A0(S). Next, (†) is because (u,µ) is a content-utility representation for
{�S}S∈S, and (�) is by the definition of µ2 and Proposition PV-5.3(b) (a “change of variables”
theorem for integration with respect to contents).

Thus, (u,µ2) is a another content-utility representation for {�R}R∈R; therefore, by the afore-
mentioned uniqueness, we must also have µ2 = µ′, which means that µ2 = µ1. But then, for any
R∈R, we have:

µ[R]

µ[S]
= µ1[R] = µ2[R] =

µ[R+t]

µ[S+t]
,

so equation (B2) is satisfied. This works for any S, R and t; thus, µ is exponential.

“⇐=” Suppose {�I}I∈I admits a content-utility representation (B6), where µ is exponential. From
part (a), we already know that {�I}I∈I satisfies the axioms (ISep), (LSep), (StEq), (C), (Dom),
(CIP), and (TC). We must show that {�I}I∈I also satisfies (Stat). To see this, let S ∈S and let
t ∈ T be such that S+t ∈S. Let C := µ[S+t]/µ[S]. Then equation (B2) says µ[R+t] = C µ[R] for
all R ∈S with R⊆ S (because µ is exponential). Thus, for any α,β ∈ A0(S), an application of
Proposition PV-5.3(b) yields

IµS+t [u ◦α+t] = C IµS [u ◦α] and IµS+t [u ◦β+t] = C IµS [u ◦β]. (B10)

Thus, (
α�S β

)
⇐

(∗)
⇒
(
IµS [u ◦α]≥ IµS [u ◦β]

)
,

⇐
(†)
⇒
(
IµS+t [u ◦α+t]≥ IµS+t [u ◦β+t]

)
⇐

(∗)
⇒

(
α+t �S+t β+t

)
,

as desired. Here, both (∗) are by the content-utility representation (B6), and (†) is by (B10). 2

Let ν be a Borel measure on R. Say ν is nonatomic if ν[{t}] = 0 for all t∈R. It follows that ν[Z] = 0
for any countable subset Z ⊂ R. Say ν has full support if ν[O]> 0 for any open subset of R. The
following results will be used repeatedly in Appendices C and D.

Lemma B.2. Let T ⊆R be a closed interval.
(a) Let ρ : T −→[0,1] be a nondecreasing function, and let ν be a normal Borel probability
measure on T . The following are equivalent:

(a1) For any Borel measurable S ⊆ T , we have ν[S] =
∫
S 1 dρ (where this is a Lebesgue-

Stieltjes integral). Furthermore, ν is nonatomic and has full support.
(a2) ρ(t) = ν[(−∞, t)] for all t ∈ T . Furthermore, ρ : T −→[0,1] is continuous and strictly

increasing, with inf(ρ(T )) = 0 and sup(ρ(T )) = 1.
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If these statements are true, then for any S ∈S and any g ∈ Cb(S,R), we have∫
S
g dν =

∫
S
g dρ, (B11)

where the left side is a Lebesgue integral, and the right side is a Riemann-Stieltjes integral.
(b) Suppose ν is a nonatomic Borel measure on T . For all S ∈S, define µ[S] = ν[S]. Then µ is
a nonatomic content on S. If ν has full support, then so does µ. For any S ∈S and g ∈ GS(S),

IµS [g] =

∫
S
g dν. (B12)

(c) If ν1 and ν2 are two nonatomic Borel measures on T , and ν1(I) = ν2(I) for all open
intervals I ⊆ T (in particular, if ν1[S] = ν2[S] for all S ∈S), then ν1 = ν2.

Proof. (a) See [11, Theorem 1.16, p.34] or [1, Theorems 10.48 and 10.49, pp. 393-394].12

(c) Let A be the Boolean algebra consisting of all finite disjoint unions of open intervals in R. (So
S(A, but A also includes unions of the form (a, b)t (b, c), for example.) Observe that A generates
the Borel sigma algebra on R. Thus, any finite premeasure on A extends to a unique Borel measure
on R; see [11, Theorem 1.14, p.30] or [1, Theorem 10.10, p.377]. But ν1 and ν2 define identical
premeasures when restricted to A, because they agree on all open intervals. Thus, ν1 = ν2.

(b) Let S1,S2 ∈ S be disjoint. Then S1 ∨ S2 = S1 t S2 t Z, where Z ⊆ (∂S1) ∪ (∂S2). But ∂S1

and ∂S2 are countable, by the definition of S. Thus, ν[∂S1] = ν[∂S2] = 0, because ν is nonatomic.
Thus, ν[Z] = 0. Thus, ν[S1 ∨S2] = ν[S1] + ν[S2]. This shows that µ is a content. Furthermore, µ is
nonatomic, because ν is a nonatomic, normal Borel measure. Finally, µ has full support if ν does.

To verify equation (B12), let ε > 0. Then Proposition PV-4.3 yields a simple function f : S−→R
such that g(s)− ε < f(s)≤ g(s) for all s∈ S. Thus,∣∣∣∣∫

S
g dν−

∫
S
f dν

∣∣∣∣ ≤ ε · ν[S]. (B13)

Suppose f is subordinate to the S-partition {S1, . . . ,SN} of S, let r1, . . . , rN be the constant values
that f takes on S1, . . . ,SN . Let Z := S \ (S1 t · · · t SN); then Z ⊆ (∂S1)∪ · · · ∪ (∂SN), so that Z is
countable, and hence ν[Z] = 0. Thus,∫

S
f dν =

∫
Z
f dν+

N∑
n=1

∫
SN
f dν = 0 +

N∑
n=1

rn ν[Sn]
(∗)

N∑
n=1

rn µ[Sn]
(†)

∫ �
S
f dµ. (B14)

where (∗) is by the definition of µ, and (†) is by (B4). Finally, by (B5), we can choose f so that∣∣∣∣IµS [g]−
∫ �
S
f dµ

∣∣∣∣< ε. (B15)

Combining formulae (B13)-(B15), we deduce that∣∣∣∣∫
S
g dν− IµS [g]

∣∣∣∣ ≤ ε · (1 + ν[S]).

This holds for any ε > 0, so we deduce that
∫
S g dν = IµS [g], as claimed. 2

12 Strictly speaking, (a1) should say “ν(s, t] = ρ(t)− ρ(s) for all s, t∈ T ”, while (a2) should say “ρ(t) = ν[(−∞, t]] for
all t∈ T ”. But including the endpoint t makes no difference, because ν is nonatomic —equivalently, ρ is continuous.
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Appendix C: Proofs from Section 4
Proof of Theorem 1. “⇐=” Suppose that ρ and u : X−→R provide a DUI representation of

{�S}S∈S as in equation (8). Define the Borel measure ν from ρ as in Lemma B.2(a1), and then for
any S ∈S, define µ[S] := ν[S]. Lemma B.2(b) says that µ is a nonatomic content with full support
on S, and for any S ∈S, IµS [u◦α] =

∫
S u◦α dν =

∫
S u◦α dρ; thus, (u,µ) provides a content-utility

representation (B6). Thus, {�S}S∈S must satisfy all of (ISep), (LSep), (StEq), (C), (Dom), (CIP),
(TC) and (Eph), by Theorem B.1(b).

“=⇒” Recall that T = [0, T ]. If {�I}I∈I satisfies Axioms (ISep), (LSep), (StEq), (C), (Dom), (CIP),
(TC), and (Eph) then Theorem B.1(b) says it has a content-utility representation (B6), given by
a nonatomic content µ on S with full support, and a continuous utility function u : X−→R. The
Horn-Tarski Extension Theorem [17, Thm. 1.22] yields a content µ0 on RO(T ) that extends µ.
Next, since T is compact, Corollary PV-6.7 yields a normal Borel measure ν on T , together with
a collection of non-negative, Borel-measurable functions {φR}R∈RO(T ) on T (a “liminal density
structure”), such that for any R∈RO(T ),

µ0[R] = ν[R] +

∫
∂R
φR dν. (C1)

and for any f ∈ C(T ,R),

Iµ0R [f ] =

∫
R
f dν+

∫
∂R
f ·φR dν. (C2)

Claim 1: ν is nonatomic.
Proof. We must show that ν[{t}] = 0 for all t ∈ T . First, suppose t ∈ (0, T ). Recall that µ is non-

atomic; thus, for any ε > 0, there is some δ > 0 such that µ[R]< ε, where R := (t−δ, t+δ). Thus,
µ0[R]< ε because µ0 is an extension of µ. Thus, equation (C1) implies that ν[R]< ε (because
φR is non-negative). Thus, ν[{t}]< ε. This holds for all ε > 0; thus, ν[{t}] = 0.

The same proof works if t = 0 or t = T ; simply replace “(t − δ, t + δ)” with “[0, δ)” or
“(T − δ,T ]” throughout the previous paragraph. 3 Claim 1

Claim 2: ν has full support.
Proof. Suppose R := (a, b) for some a < b <∞. Then ∂R = {a, b} so that ν[∂R] = 0 by Claim 1.

Thus, (C1) simplifies to µ0[R] = ν[R]. But µ0[R] = µ[R]> 0 for all nonempty R∈S, because µ
has full support. Thus, ν also has full support. 3 Claim 2

Define ρ : [0, T ]−→[0,1] from the measure ν as in Lemma B.2(a2). Then ρ is a continuous and
strictly increasing, because ν is a nonatomic probability measure with full support. Also, ρ achieves
its infimum 0 and supremum 1 on [0, T ], because [0, T ] is compact. Thus, ρ is a bijection from [0, T ]
to [0,1]. If S ∈S, then for any f ∈ C(T ,R),

IµS [f ]
(∗)

Iµ0S [f ]
(†)

∫
S
f dν

(�)

∫
S
f dρ. (C3)

Here (∗) is because µ0 is an extension of µ, and (†) is by equation (C2), because the ν-integral
over ∂S is zero because ν(∂S) = 0, because ∂S is finite (by the definition of S) and ν is nonatomic
(by Claim 1). Finally, (�) is by equation (B11) in Lemma B.2(a). Now combine (C3) with the
content-utility representation (B6) to obtain the discounted utility integral representation (8).

Uniqueness. Suppose that both (u,ρ) and (u′, ρ′) provide DUI representations of {�I}I∈I. Let ν
and ν ′ be the Borel probability measures obtained from ρ and ρ′ to S via Lemma B.2(a1). Let µ
and µ′ be the contents obtained by restricting ν and ν ′ to S, as in Lemma B.2(b). Then (u,µ) and
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(u′, µ′) both provide content-utility representations as in formula (B6), as explained in the proof
of “⇐=”. By uniqueness in Theorem B.1(a), u and u′ are positive affine transformations of each
other, while µ= µ′. Thus, ν and ν ′ agree on S. Thus, ν = ν ′, by Lemma B.2(c). Thus, ρ= ρ′. 2

Proof of Theorem 2. “⇐=” Suppose that δ and u :X−→R provide an exponentially discounted
utility integral representation of {�S}S∈S as in equation (9). Let λ be the Lebesgue measure on
[0, T ], and define the nonatomic, normal Borel measure ν by setting ν[B] :=

∫
B δ

t dλ[t] for all Borel-
measurable subsets B ⊆ [0, T ]. Now, for any S ∈S, define µ[S] := ν[S]. Lemma B.2(b) says that µ
is a nonatomic content with full support on S, and for any S ∈S,

IµS [u ◦α] =

∫
S
u ◦α dν =

∫
S
δt u ◦α(t) dλ[t]. (C4)

Now combine representation (9) with equation (C4) to obtain a content-utility representation (B6).
It is easily verified that the content µ is exponential. Thus, {�S}S∈S must satisfy all of axioms
(ISep), (LSep), (StEq), (C), (Dom), (CIP), (TC) and (Stat), by Theorem B.1(c).

“=⇒” If {�I}I∈I satisfies Axioms (ISep), (LSep), (StEq), (C), (Dom), (CIP), (TC), and (Stat)
then Theorem B.1(c) says it has an content-utility representation (B6), given by a continuous
utility function u : X−→R and a content µ on S with full support, which is exponential in the
sense of equation (B2).

Claim 1:
(a) For any t ∈ (−T,T ), there exists C(t)> 0 such that, for all R∈S with R+t ∈S we have
µ[R+t] =C(t) ·µ[R].
(b) For all t1, t2 ∈ (−T,T ) such that t1 + t2 ∈ (−T,T ) also, we have C(t1 + t2) =C(t1) ·C(t2).
(c) lim

ε→0
sup

s∈(ε,T−ε)
µ[(s− ε, s+ ε)] = 0.

(d) C is continuous.
(e) µ is nonatomic.
(f) There is some δ > 0 such that C(t) = δt for all t∈ (−T,T ).

Proof. (a) First suppose t ∈ (0, T ). Let S := [0, T − t); then S+t = (t, T ]. For any R∈S, we have
R+t ∈S if and only if R⊆S. In this case, R+t ⊆S+t, and

µ[R]

µ[S]
=

µ[R+t]

µ[S+t]
, (C5)

because µ is exponential. Let C(t) := µ[S+t]/µ[S]. Then equation (C5) says that µ[R+t] :=
C(t)µ[R] for all R⊆ S. If t ∈ (−T,0), then the argument is similar, only with S := (−t, T ] so
that S+t = [0, T + t). Finally, it is obvious that C(0) = 0.

(b) Let t1, t2 ∈ (−T,T ), and suppose t= t1 + t2 ∈ (−T,T ) also. Let R∈S be any time span such
that R+t ∈S and R+t1 ∈S. Then R+t = (R+t1)+t2 . Thus, we have

C(t)µ[R] = µ[R+t] = µ[(R+t1)+t2 ] = C(t2)µ[R+t1 ] = C(t2)C(t1)µ[R]. (C6)

Now, µ[R]> 0 because µ has full support. So cancel µ[R] from (C6) to get C(t) =C(t1) ·C(t2).

(c) (by contradiction) Let T0 ∈ (0, T ), and let α :=C(T0). So α> 0. For any N ∈N, part (b) says
C(T0/2N) = α1/2N . Thus, for any n∈ [0 . . .N ], part (b) says C

(
n

2N
T0

)
= αn/2N . If α 6= 1, then

N−1∑
n=0

C
( n

2N
T0

)
=

N−1∑
n=0

αn/2N =
1−αN/2N

1−α1/2N
=

1−
√
α

1−α1/2N
.

Thus, lim
N→∞

N−1∑
n=0

C
( n

2N
T0

)
= lim

N→∞

1−
√
α

1−α1/2N
= ∞, (C7)
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because the denominator converges to zero. This holds whether α> 1 or α ∈ (0,1). Through an
almost identical computation, we obtain:

lim
N→∞

N−1∑
n=0

C

(
−n
2N

T0

)
= lim

N→∞

1−
√
α−1

1−α−1/2N
= ∞. (C8)

Finally, note that if α= 1, then C( n
M
T0) = 1 for all n and M , and thus once again

lim
N→∞

N−1∑
n=0

C
( n

2N
T0

)
= lim

N→∞
N = ∞ and lim

N→∞

N−1∑
n=0

C

(
−n
2N

T0

)
= ∞. (C9)

To obtain a contradiction suppose there exists c > 0 such that, for all ε > 0, there is s∈ (ε,T − ε)
with µ[(s− ε, s+ ε)]> c. Let N ∈N, and let ε := T0/2N . Find s ∈ ( ε

2
, T − ε

2
) such that µ[Q]> c,

where Q := (s− ε
2
, s+ ε

2
). The intervals Q,Q+ε,Q+2 ε, . . . ,Q+N ε are all disjoint from one another,

and from Q+(−ε),Q+(−2 ε), . . . ,Q+(−N ε). For all n∈ [−N . . .N ], if Q+nε ⊆ [0, T ], then

µ[Q+nε]
(∗)

C(nε)µ[Q] > C(nε) c
(†)

C
( n

2N
T0

)
c, (C10)

where (∗) is by part (a) and (†) is by the definition of ε. Now, if s ∈ [0, T
2
], then

Q,Q+ε,Q+2 ε, . . . ,Q+(N−1) ε are all contained in [0, T ]. Thus,

µ[[0, T ]] ≥ µ

[
N−1∨
n=0

Q+nε

]
(∗)

N−1∑
n=0

µ
[
Q+nε

]
>
(†)

N−1∑
n=0

C
( n

2N
T0

)
c, (C11)

where (∗) is by equation (B1) and (†) is by inequality (C10). On the other hand, if s ∈ [T
2
, T ],

then Q+(−ε),Q+(−2 ε), . . . ,Q+(−(N−1) ε) ⊆ [0, T ], so a computation very similar to (C11) yields

µ[[0, T ]] ≥ µ

[
N−1∨
n=0

Q+(−nε)

]
>

N−1∑
n=0

C

(
−n
2N

T0

)
c. (C12)

For any N ∈N, we get either inequality (C11) or inequality (C12). Combining these with (C7),
(C8) and (C9), we conclude that µ[[0, T ]] =∞. This contradicts the fact that µ is a content.

(d) Let R ∈S. Then C(t) = µ[R+t]/µ[R] for all t with R+t ∈S. To show C is continuous, it
suffices to show the function t 7→ µ[R+t] is continuous for someR∈R. To see this, letR= (r, s) for
some 0< r < s< T , and let 0≤ t1 < t2 < (s−r). SoR+t1 = (r+t1, s+t1) andR+t2 = (r+t2, s+t2).
Let Q :=R+t1 ∩R+t2 = (r+ t2, s+ t1). Let Q1 := (r+ t1, r+ t2) and let Q2 := (s+ t1, s+ t2). Then
R+t1 =Q1 ∨Q and R+t2 =Q∨Q2, so µ[R+t1 ] = µ[Q1] + µ[Q] and µ[R+t2 ] = µ[Q] + µ[Q2]. So
µ[R+t1 ]−µ[R+t2 ] = µ[Q1]−µ[Q2] = µ[(r+ t1, r+ t2)]−µ[(s+ t1, s+ t2)]. Thus,

lim
|t1−t2|→0

(
µ[R+t1 ]−µ[R+t2 ]

)
= lim
|t1−t2|→0

µ[(r+ t1, r+ t2)]− lim
|t1−t2|→0

µ[(s+ t1, s+ t2)]
(∗)

0,

as desired, where (∗) is by part (c). Thus, C is continuous on [0, T ). For all t ∈ [0, T ), part (b)
implies that C(−t) = 1/C(t); thus, C is also continuous on (−T,0].

(e) This follows immediately from part (c).

(f) Define F (t) := log[C(t)] for all t∈ (−T,T ). Then part (b) implies that F satisfies the Cauchy
functional equation: F (t1 + t2) = F (t1) +F (t2) for all t1, t2 ∈ (−T,T ) such that these values are
defined. Meanwhile part (d) implies that F is continuous. Thus Corollary 3 of [34] yields a linear
function L :R−→R such that F (t) =L(t) for all t∈ (−T,T ). Suppose L(t) = c t for all t∈R. Let
δ := exp(c). Then C(t) = exp[F (t)] = exp[c t] = δt for all t∈ (−T,T ), as claimed. 3 Claim 1
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Claim 1(e) says that µ is nonatomic. Now follow the proof of Theorem B.1(b) “⇐=” to deduce
that {�I}I∈I satisfies Axiom (Eph). Now that we know that {�I}I∈I satisfies Axioms (ISep),
(LSep), (StEq), (C), (Dom), (CIP), (TC), and (Eph), Theorem 1 implies that {�I}I∈I has a DUI
representation (8) for some (u′, ρ). It remains to show that dρ is an exponential function on [0, T ].

Recall from the proof of Theorem 1 that the function ρ was obtained from a Borel probability
measure ν via Lemma B.2(a); meanwhile, ν was obtained from a content µ′ that was part of a
content-utility representation (µ′, u′) for {�I}I∈I from Theorem B.1(b). But we already had a
content-utility representation (µ,u) from Theorem B.1(c). The “uniqueness” part of Theorem B.1
implies that µ′ = µ. Thus, for any r, s∈ (0, T ) with r < s, we have µ[(r, s)] = ν[(r, s)] = ρ(s)− ρ(r).
Meanwhile, let δ > 0 be the constant from Claim 1(a,f); thus, µ[S+t] = δt µ[S] for all S ∈S and t∈
[0, T ). For any t∈ [0, T ), define ρt : [0, T − t)−→[0,1) by setting ρt(s) := ρ(s+ t) for all s∈ [0, T − t).

Claim 2: For any t∈ [0, T ), there is a constant kt such that ρt(s) = δt ρ(s)+kt for all s∈ [0, T−t).
Proof. Fix r ∈ (0, T − t), and let kt := ρ(r+ t)− δt ρ(r). For any s ∈ (r,T − t), we have ρ(s+ t)−
ρ(r+ t) = ν[(r+ t, s+ t)] = µ[(r+ t, s+ t)]

(∗)
δt µ[(r, s)] = δt ν[(r, s)] = δt

(
ρ(s)− ρ(r)

)
, where (∗)

is by Claim 1(a,f). Thus,

ρt(s) = ρ(s+ t)
(∗)

δt
(
ρ(s)− ρ(r)

)
+ ρ(r+ t) = δt ρ(s) + kt, (C13)

for all s > r. Note that the left-hand side of (C13) does not depend on r. Thus, kt must also be
independent of r. Thus, we can repeat this argument while letting r↘ 0. Thus, equation (C13)
holds for all s∈ (0, T − t). The case when s= 0 follows from the continuity of ρ and ρt. 3 Claim 2

Claim 3: ρ is differentiable everywhere on (0, T ), and there is a constant K > 0 such that
ρ′(t) =K δt for all t∈ (0, T ).
Proof. Since ρ is continuous and strictly increasing, it is differentiable almost everywhere on [0, T )

[20, Thm.6, §31.2, p.321]. Let q ∈ (0, T ) be such that ρ is differentiable at q. For any t ∈ (0, q)
and any small ε > 0, we have ρt(q− t+ ε) = ρ(q+ ε); thus, ρt must be differentiable at q− t, with

ρ′t(q− t) = ρ′(q). (C14)

But Claim 2 says that ρt(s) = δt ρ(s) + kt for all s ∈ [0, T ). Thus, if ρt is differentiable at q− t,
then ρ must also be differentiable at q− t, with

ρ′t(q− t) = δt ρ′(q− t). (C15)

Combining (C14) and (C15), we obtain

ρ′(q) = δt ρ′(q− t). (C16)

Let s := q− t, and define K := ρ′(q)/δq. Then

ρ′(s) = ρ′(q− t)
(∗)

ρ′(q)

δt
=

ρ′(q)

δq
δq−t = K δs, (C17)

where (∗) is obtained by rearranging equation (C16). This argument works for any t ∈ (0, q).
Thus, we conclude that ρ is differentiable everywhere on the interval (0, q), and equation (C17)
holds for all s ∈ (0, q). Note that the left-hand side of (C17) is independent of q. Thus, the
constant K must also be independent of q.

In the above argument, q is any point where ρ is differentiable. But ρ is differentiable almost
everywhere on [0, T ), so we can choose q to be arbitrarily large. By repeating the above argument
for increasingly large values of q, we deduce that ρ is differentiable everywhere on (0, T ), and
equation (C17) holds for all s∈ (0, T ). 3 Claim 3
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For any S ∈S, and any function f ∈ Cb(S,R), Claim 3 implies that∫
S
f dρ = K

∫
S
δt f(t) dt.

Substitute this into DUI representation (8) to obtain the exponential DUI representation (9). 2

Proof of Theorem 3. A′ contains all constant trajectories, so we can define a synchronous pref-
erence order �′sy on X by formula (7). But {�′I}I∈I satisfies axiom (Dom) with respect to �sy;
thus, �′sy must be identical with �sy.

Let S ∈ S, and let α′, β′ ∈ A′(S). We must prove the biconditional (8). Since A is uniformly
�sy-dense in A′, there exist {αn}∞n=1 ∈A(S) and {βn}∞n=1 ∈A(S) such that

lim
n→∞

dS(αn, α
′) = 0 and lim

n→∞
dS(βn, β

′) = 0, (C18)

with αn(s) �sy α′(s) and β′(s) �sy βn(s), for all n∈N and s∈ S. (C19)

“=⇒” Suppose α′ �′S β′. Since {�′I}I∈I satisfies axiom (Dom), statement (C19) implies

αn �′S α′ �′S β′ �′S βn,

and thus αn �S βn, for all n∈N. Thus,∫
S
u ◦αn dρ ≥

∫
S
u ◦βn dρ, for all n∈N, (C20)

by the assumed DUI representation (8) for {�I}I∈I. Meanwhile, since u is uniformly continuous,
the uniform convergence equations (C18) imply that

lim
n→∞

∥∥∥u ◦αn−u ◦α′∥∥∥
∞

= 0 and lim
n→∞

∥∥∥u ◦βn−u ◦β′)∥∥∥
∞

= 0. (C21)

Thus, ∫
S
u ◦α′ dρ

(∗)
lim
n→∞

∫
S
u ◦αn dρ ≥

(†)
lim
n→∞

∫
S
u ◦βn dρ

(∗)

∫
S
u ◦β′ dρ.

Here, both (∗) are by (C21), while (†) is by (C20).

“⇐=” Since �sy is the synchronic preference order associated with {�I}I∈I, and u comes from a
DUI representation for {�I}I∈I, we must have(

x�sy y
)
⇐⇒

(
u(x)≥ u(y)

)
, for all x, y ∈X . (C22)

Now, suppose that
∫
S u ◦α

′ dρ≥
∫
S u ◦ β

′ dρ. For all n,m ∈N, statements (C19) and (C22) yields
u[αn(s)]≥ u[α′(s)] and u[β′(s)]≥ u[βm(s)] for all s∈ S, and thus,∫

S
u ◦αn dρ ≥

∫
S
u ◦α′ dρ ≥

∫
S
u ◦β′ dρ ≥

∫
S
u ◦βm dρ.

Thus, αn �S βm for all n,m∈N, by the assumed DUI representation (8) for {�I}I∈I. Since {�′I}I∈I
is uniformly continuous, we can use the first limit in (C18) to deduce that α�′S βm for all m∈N.
Next, using the second limit in (C18) and the uniform continuity of {�′I}I∈I, we deduce that
α�′S β, as claimed. 2
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Appendix D: Proofs from Section 5 Theorem 4 is actually a consequence of Theorem 6,
so we will prove it last.

Proof of Theorem 5. “⇐=” The proof is similar to the proof of Theorem 1 “⇐=”.

“=⇒” Let [0,∞] be the Alexandroff compactification of [0,∞). Any α∈ CL([0,∞),X ) has a unique
extension α∈ C([0,∞],X ) defined by α�[0,∞) := α and α(∞) := lim

t→∞
α(t).

For any time span S ∈S, we define the subset S ⊂ [0,∞] as follows: if S is bounded or perennial,
then S := S. If S is abiding, then S = bs1, t1)t (s2, t2)t· · ·t (sN ,∞) for some 0≤ s1 < t1 < · · ·< sN .
In this case, we define S := bs1, t1)t (s2, t2)t · · · t (sN ,∞]. In either case, we define ∂S to be the
boundary of S in [0,∞]. There are two cases to consider. If S is bounded or abiding, then ∂S = ∂S,
a finite subset of [0,∞). Otherwise, if S is perennial, then ∂S = ∂S t{∞}, which is countable.

The proof strategy is now very similar to the proof of Theorem 1 “=⇒”: first, obtain a content-
utility representation from Theorem B.1(b) given by a nonatomic content µ with full support on S.
Then extend µ to a content µ0 on RO(T ), via the Horn-Tarski Extension Theorem [17, Thm. 1.22].
But now, instead of Corollary PV-6.7, we use Theorem PV-7.2 to obtain a normal Borel probability
measure ν on [0,∞], together with a collection of Borel-measurable functions {φR}R∈RO(T ) on
[0,∞], such that for any R∈RO(T ),

µ0[R] = ν[R] +

∫
∂R
φR dν. (D1)

and for any f ∈ CL(T ,R),

Iµ0R [f ] =

∫
R
f dν+

∫
∂R
f ·φR dν. (D2)

As in Claims 1 and 2 in the proof of Theorem 1, we establish that ν is nonatomic and has full
support on [0,∞) —but now the argument uses equation (D1) rather than equation (C1). Let
M := ν[{∞}], and for all S ∈Sp, define cS := φS(∞). If M > 0, then for any perennial partition
{S1, . . . ,SN}, Theorem PV-7.2, says that

∑N

n=1 cSn = 1. Thus, the collection {cS}S∈S is a coeternity
structure. Now there are three cases.

Case 1. Suppose S ∈ Sb. Then S = S, so that ∂S = ∂S is a finite subset of [0,∞), which gets
ν-measure 0. Thus, the second integral in (D2) is trivial, so that (D2) becomes

IµS [f ] = Iµ0S [f ] =

∫
S
f dν =

∫
S
f dν. (D3)

Case 2. Suppose S ∈Sa. Then S = St{∞} so that again ∂S = ∂S is a finite subset of [0,∞), which
gets ν-measure 0. So again the second integral in (D2) is trivial. But in this case, (D2) becomes

IµS [f ] =

∫
S
f dν =

∫
S
f dν+ f(∞)ν[{∞}] =

∫
S
f dν+M · lim

t→∞
f(t). (D4)

Case 3. Suppose S ∈Sp. Then S = S, and ν[[0,∞)∩ ∂S] = 0, but ∂S also contains ∞, so that∫
∂S
f ·φS dν = f(∞) ·φS(∞) · ν[{∞}] =

(
lim
t→∞

f(t)
)
· cS ·M.

Thus, (D2) becomes:

IµS [f ] =

∫
S
f dν+

∫
∂S
f ·φS dν =

∫
S
f dν+ cSM lim

t→∞
f(t). (D5)
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Now define a function ρ : [0,∞)−→[0,1) from ν as in Lemma B.2(a2). Then ρ is a continuous,
strictly increasing bijection, because ν is a nonatomic probability measure with full support. By
applying equation (B11) in Lemma B.2, we can convert all the Lebesgue integrals with respect to
ν in equations (D3), (D4) and (D5) into Riemann-Stieltjes integrals with respect to dρ. Combining
these modified versions of (D3), (D4) and (D5) with the content-utility representation (B6) obtained
from Theorem B.1(b), we obtain the formulae (11), (12) and (13) which comprise the extended
DUI representation. The proof of Uniqueness is similar to Theorem 1. 2

Proof of Theorem 6. For any S ∈ S, recall that Ŝ := intT̂ [closT̂ (S)] is an open subset of T̂ .
Furthermore, Ŝ ∩ [0,∞) = S, by Lemma PV-7.4. If S ∈Sp, then Ŝ was already described in Section
5. If S ∈Sb, then Ŝ = S. Finally, if S ∈Sa, then Ŝ = S tΩ. In any of these cases, let ∂Ŝ denote
the boundary of Ŝ in T̂ .

At this point, the proof is very similar to the proof of Theorem 5. However, instead of using the
Alexandroff compactification [0,∞], we now use the Stone-Čech compactification T̂ . First, obtain
a content-utility representation from Theorem B.1(b) given by a nonatomic content µ with full
support on S, by following the same argument as in the proof of Theorem 1. Extend µ to a content
µ0 on RO(T ), via the Horn-Tarski Extension Theorem [17, Thm. 1.22]. Use Theorem PV-7.2 to
obtain a normal Borel probability measure η on T̂ , together with a collection of Borel-measurable
functions {φR}R∈RO(T ) on T̂ , such that for any R∈RO(T ),

µ0[R] = η[R̂] +

∫
∂R̂
φR dη, (D6)

where R̂ := intT̂ [closT̂ (R)] and ∂R̂ is the boundary of R̂ in T̂ . Meanwhile, for any f ∈ Cb(T ,R),

Iµ0R [f ] =

∫
R̂
f̂ dη+

∫
∂R̂
f̂ ·φR dη, (D7)

where f̂ ∈ C(T̂ ,R) is the unique continuous extension of f defined in property (SČ2).
Let ν be the restriction of η to [0,∞). Then ν is a normal Borel measure (not necessarily a

probability measure). As in Claims 1 and 2 in the proof of Theorem 1, we establish that ν is
nonatomic and has full support on [0,∞) —but now the proof uses equation (D6) instead of
equation (C1). At this point, there are three cases.

Case 1. Suppose S ∈ Sb. Then Ŝ = S, so that ∂Ŝ = ∂S is a finite subset of [0,∞), which gets
ν-measure 0 (because ν is nonatomic) and hence, η-measure 0. Thus, the second integral in (D7)
is trivial, so that (D7) becomes

IµS [f ] =

∫
Ŝ
f̂ dη =

∫
S
f dη =

∫
S
f dν. (D8)

Case 2. Suppose S ∈Sa. Then Ŝ = S tΩ so that ∂Ŝ = ∂S is again a finite subset of [0,∞), which
again gets η-measure zero. So again the second integral in (D7) is trivial. But in this case, Ω⊂ Ŝ,
so that (D7) becomes

IµS [f ] =

∫
Ŝ
f̂ dη =

∫
S
f dν+

∫
Ω

f̂ dη. (D9)

Case 3. Suppose S ∈Sp. Define ∂∞S := Ω∩∂Ŝ, as in Section 5. Meanwhile, note that [0,∞)∩∂Ŝ =
∂S. Thus, ∂Ŝ = (∂S)t (∂∞S), so that we can write the second integral in (D7) as∫

∂Ŝ
f̂ ·φS dη =

∫
∂S
f̂ ·φS dη+

∫
∂∞S

f̂ ·φS dη
(∗)

∫
∂∞S

f̂ ·φS dη. (D10)
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Here, (∗) is because ν is non-atomic and ∂S is a countable subset of [0,∞), so it gets ν-measure
0, and hence, η-measure zero.

Meanwhile, define S∞ := Ω∩ Ŝ as in Section 5. Then Ŝ = S tS∞, so that we can write the first
integral in (D7) as ∫

Ŝ
f̂ dη =

∫
S
f̂ dη+

∫
S∞

f̂ dη =

∫
S
f dν+

∫
S∞

f̂ dη. (D11)

Substituting (D10) and (D11) into (D7), we obtain

IµS [f ] =

∫
S
f dν+

∫
S∞

f̂ dη+

∫
∂∞S

f̂ ·φS dη. (D12)

Define ρ : [0,∞)−→[0,1) from ν as in Lemma B.2(a1). Then ρ is a continuous, strictly increasing
bijection, because ν is a nonatomic probability measure with full support. By applying equation
(B11) in Lemma B.2, we can convert all the Lebesgue integrals with respect to ν in equations
(D8), (D9) and (D12) into Riemann-Stieltjes integrals with respect to to dρ. Combining these
modified versions of (D8), (D9) and (D12) with the content-utility representation (B6) obtained
from Theorem B.1(b), we obtain the formulae (14), (15) and (16) which comprise the Stone-Čech
DUI representation. The proof of Uniqueness is similar to Theorem 1. 2

Proof of Theorem 4. “⇐=” The proof is similar to the proof of Theorem 2 “⇐=”.

“=⇒” The first part of the proof is identical to the proof of Theorem 2, except for two changes.
First, replace “T” with “∞” everywhere (and likewise replace expressions like “T − t” with “∞”).
Second, after Claim 1, instead of invoking Theorem 1 to obtain a DUI representation of the form
(8) for some u and ρ, we invoke Theorem 6 to obtain a Stone-Čech DUI representation of the form
(14)-(16) for some u, ρ, η, and {φS}S∈Sp . The proofs of Claims 2 and 3 are as before (replacing
“T” with “∞” everywhere), and yield some δ ∈ (0,1) such that ρ′(t) = δt for all t∈ [0,∞).

It remains to show that η= 0. To see this, let M := η[Ω]. Suppose α∈A is such that lim
t→∞

α(t) = x

for some x∈X . Then α̂(ω) = x for all ω ∈Ω. Thus,∫
Ω

u ◦ α̂ dη =

∫
Ω

u(x) dη = u(x) ·M. (D13)

Let α,β ∈A0, and suppose that limt→∞α(t) and limt→∞ β(t) exist. For any T > 0,(∫ ∞
0

δt u[α(t)] dt+M lim
t→∞

u[α(t)]≥
∫ ∞

0

δt u[β(t)] dt+M lim
t→∞

u[β(t)]

)
(D14)

⇐
(∗)
⇒
(
α� β

)
⇐

(�)
⇒
(
α+T �[T,∞) β

+T
)

⇐
(∗)
⇒
(∫ ∞

T

δt u[α+T (t)] dt+M lim
t→∞

u[α(t)]≥
∫ ∞
T

δt u[β+T (t)] dt+M lim
t→∞

u[β(t)]

)
⇐

(†)
⇒
(
δT
∫ ∞

0

δt u[α(t)] dt+M lim
t→∞

u[α(t)]≥ δT
∫ ∞

0

δt u[β(t)] dt+M lim
t→∞

u[β(t)]

)
Here, both (∗) are by the Stone-Čech DUI representation (15), substituting dρ[t] = δt into the
integrals over [0,∞), and using equation (D13) to simplify the integrals over Ω. Meanwhile, (�) is
by (Stat), and (†) is because∫ ∞

T

δt u[α+T (t)] dt = δT
∫ ∞
T

δt−T u[α(t−T )] dt
(])

δT
∫ ∞

0

δs u[α(s)] ds,
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where (]) by the change of variables s := t−T , and likewise,∫ ∞
T

δt u[β+T (t)] dt = δT
∫ ∞

0

δs u[β(s)] ds.

Let

A :=

∫ ∞
0

δt u[α(t)] dt, a := lim
t→∞

u[α(t)], B :=

∫ ∞
0

δt u[β(t)] dt, and b := lim
t→∞

u[β(t)].

Then statement (D14) simplifies to(
A+M a≥B+M b

)
⇐⇒

(
δT A+M a≥ δT B+M b

)
, for all T > 0. (D15)

By assuming M > 0, we will derive a contradiction from (D15). Let λ :=− ln(δ)> 0. By applying an
affine transformation to u if necessary, we can assume there exist x, y, z ∈X such that u(x) = 2M λ,
u(y) = 0, and u(z) = 1. Now (Core*) stipulates that A0 satisfies (R*). Thus, for any L> 0, there
exist α ∈A0 such that α�[0,L] ≈[0,L] κ

x
�[0,L] while α�[L,∞) = κy�[L,∞). In other words, u[α(t)] = 0 for all

t > L. Thus, a= 0, while

A =

∫ ∞
0

δt u[α(t)] dt
(∗)

∫ L

0

δt u[α(t)] dt
(†)

∫ L

0

δt u[κx(t)] dt (D16)

=

∫ L

0

δt u(x) dt
(�)

∫ L

0

2M λδt dt = 2M (1− δL).

Here, (∗) is because u[α(t)] = 0 for all t > L, (†) is by the DUI representation (14), because
α�[0,L] ≈[0,L] κ

x
�[0,L], and (�) is because u(x) = 2M λ.

Likewise, for any L> 0, there exist β ∈A0 such that β�[0,L] ≈[0,L] κ
y
�[0,L] while β�[L,∞) = κz�[L,∞). In

other words, u[β(t)] = 1 for all t > L. Thus, b= 1, while

B =

∫ ∞
0

δt u[β(t)] dt
(∗)

∫ L

0

δt u[β(t)] dt+

∫ ∞
L

δt dt (D17)

(†)

∫ L

0

δt u[κy(t)] dt+
δL

λ
=

∫ L

0

δt u(y) dt+
δL

λ (�)

δL

λ
.

Here, (∗) is because u[β(t)] = 1 for all t > L, (†) is by the DUI representation (14), because
β�[0,L] ≈[0,L] κ

y
�[0,L], and (�) is because u(y) = 0, so that the integral is zero.

Now, suppose M > 0. Recall that 0 < δ < 1. Thus, if L is sufficiently large, then (D16) yields
A≈ 2M while (D17) yields B ≈ 0. Thus, A+M a≈ 2M + 0 = 2M while B+M b≈ 0 +M · 1 =M ;
hence A+M a>B+M b. Meanwhile, for any T > 0, δT A+M a≈ 2 δTM while δT B+ M b≈M .
But if T is sufficiently large, then δT ≈ 0, and then δT A+M a≈ 0<M ≈ δT B +M b. Thus, we
have A+M a>B+M b while δT A+M a< δT B+M b, contradicting statement (D15).

To avoid a contradiction, we need M = 0; hence η = 0. Thus, {φS}S∈Sp is irrelevant, and the
Stone-Čech DUI representations (14) - (16) reduce to the exponential DUI representation (9). 2

Acknowledgments. I thank Geir Asheim, Jean-Pierre Drugeon, Simon Grant, Kazuhiro
Hara, Charles Harvey, Thai Ha-Huy, Urmee Khan, Hendrik Rommeswinkel, Colin Rowat, Peter
Wakker, Jingyi Xue, and Horst Zank for their comments, as well as the participants of SAET 2018
(Taipei). I especially thank Vassili Vergopoulos for many valuable conversations during the prepa-
ration of this paper. This research was supported by Labex MME-DII (ANR11-LBX-0023-01) and
CHOp (ANR-17-CE26-0003).



Marcus Pivato: Intertemporal choice with continuity constraints
34 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

References
[1] Aliprantis CD, Border KC (2006) Infinite dimensional analysis: A hitchhiker’s guide (Springer, Berlin),

third edition.

[2] Asheim G (2010) Intergenerational equity. Annual Review of Economics 2:197–222.

[3] Attema A, Bleichrodt H, Rohde K, Wakker P (2010) Time trade-off sequences for analyzing discounting
and time inconsistency. Manage. Sci 56(11):2015–2030.

[4] Bleichrodt H, Rohde KIM, Wakker PP (2008) Koopman’s constant discounting for intertemporal choice:
a simplification and a generalization. J. Math. Psych. 52(6):341–347.

[5] Chichilnisky G (1996) An axiomatic approach to sustainable development. Soc. Choice Welf. 13(2):231–
257.

[6] Chichilnisky G (1997) What is sustainable development? Land Economics 73(4):467–91.

[7] Chichilnisky G, Heal G (1997) Social choice with infinite populations: construction of a rule and impos-
sibility results. Soc. Choice Welf. 14(2):303–318.

[8] Diamond PA (1965) The evaluation of infinite utility streams. Econometrica 33:170–177.

[9] Fishburn P, Edwards W (1997) Discount-neutral utility models for denumerable time streams. Theory
and Decision 43(2):139–166.

[10] Fishburn PC, Rubinstein A (1982) Time preference. Internat. Econom. Rev. 23(3):677–694.

[11] Folland GB (1984) Real Analysis (New York: John Wiley & Sons).

[12] Fremlin DH (2004) Measure theory. Vol. 3: Measure Algebras (Colchester, U.K.: Torres Fremlin).

[13] Hara K (2016) Characterization of stationary preferences in a continuous time framework. J. Math.
Econom. 63:34–43.

[14] Harvey CM (1986) Value functions for infinite-period planning. Management Sci. 32(9):1123–1139.

[15] Harvey CM, Østerdal LP (2012) Discounting models for outcomes over continuous time. J. Math.
Econom. 48(5):284–294, ISSN 0304-4068.

[16] Hayashi T (2003) Quasi-stationary cardinal utility and present bias. J. Econom. Theory 112(2):343–352.

[17] Horn A, Tarski A (1948) Measures in Boolean algebras. Trans. Amer. Math. Soc. 64:467–497.

[18] Kahneman D, Wakker PP, Sarin R (1997) Back to bentham? explorations of experienced utility. The
quarterly journal of economics 112(2):375–406.
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