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Abstract

This paper is concerned with finding an optimal algorithm for minimizing a composite convex
objective function. The basic setting is that the objective is the sum of two convex functions: the
first function is smooth with up to the d-th order derivative information available, and the second
function is possibly non-smooth, but its proximal tensor mappings can be computed approximately
in an efficient manner. The problem is to find – in that setting – the best possible (optimal) iteration
complexity for convex optimization. Along that line, for the smooth case (without the second non-
smooth part in the objective) Nesterov proposed ([25], 1983) an optimal algorithm for the first-order
methods (d = 1) with iteration complexity O

(

1/k2
)

, while high-order tensor algorithms (using up to

general dth order tensor information) with iteration complexity O
(

1/kd+1
)

were recently established
in [3, 27]. In this paper, we propose a new high-order tensor algorithm for the general composite case,
with the iteration complexity of O

(

1/k(3d+1)/2
)

, which matches the lower bound for the d-th order
methods as established in [27, 31], and hence is optimal. Our approach is based on the Accelerated
Hybrid Proximal Extragradient (A-HPE) framework proposed by Monteiro and Svaiter in [24], where
a bisection procedure is installed for each A-HPE iteration. At each bisection step a proximal tensor
subproblem is approximately solved, and the total number of bisection steps per A-HPE iteration is
shown to be bounded by a logarithmic factor in the precision required.
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1 Introduction

In this paper, we consider the following composite unconstrained convex optimization:

min
x∈Rn

F (x) := f(x) + h(x), (1.1)

where f is differentiable and convex, and h is convex but possibly non-smooth. In this context, we
assume that convex tensor (polynomial) proximal mappings regarding h can be approximately computed
efficiently. Given that structure, a fundamental quest is to find an optimal algorithm that solves the
above problem, using the available derivative information of the smooth part f .

In case F (x) = f(x), and only the gradient information of f is available, Nesterov [25] proposed a
gradient-type algorithm, which achieves the overall iteration complexity of O(1/k2), matching the lower
bound on the iteration complexity of this class of solution methods, hence is known to be an optimal
algorithm among all the first-order methods. Since Nesterov’s seminal work [25], especially in the
recent years when the large scale machine learning applications have come under the spotlight, there
has been a surge of research effort to extend Nesterov’s approach to more general settings; see e.g. [4,
12, 19, 14, 30], and/or to incorporate certain adaptive strategies to enhance the practical performances
of the acceleration; see e.g. [20, 29, 13]. At the same time, there has also been a considerable research
effort to fully understand the underpinning mechanism of the first-order acceleration phenomenon; see
e.g. [7, 32, 33, 34].

When the Hessian information is available, Nesterov [26] proposed an acceleration scheme for cubic reg-
ularized Newton’s method, and he showed that the iteration complexity bound improves from O

(

1/k2
)

to O
(

1/k3
)

. A few years later, Monteiro and Svaiter [24] proposed a totally different acceleration
scheme, which they termed as Accelerated Hybrid Proximal Extragradient Method (A-HPE) framework,
and they proved that if the second-order information is incorporated into the A-HPE framework then
the corresponding accelerated Newton proximal extragradient method has a superior iteration complex-
ity bound of O

(

1/k7/2
)

over O
(

1/k3
)

. In 2018, Arjevani, Shamir and Shiff [31] showed that O
(

1/k7/2
)

is actually a lower bound for the oracle complexity of the second-order methods for convex smooth
optimization. This shows that the accelerated Newton proximal extragradient method is an optimal
second-order method.

As evidenced by the special cases d = 1 and d = 2, there is a clear tradeoff between the level of derivation
information required and the overall iteration complexity improved. Therefore, a natural and important
question arises:

What is the exact tradeoff relationship between d and the worst-case iteration
complexity?

Such question has been in fact raised and addressed in some way in recent works [5, 10, 11, 22] in
the context of nonconvex optimization. For convex optimization, the accelerated cubic regularized
Newton method was generalized to the general high-order case [3, 27] with the iteration complexity
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being O
(

1/kd+1
)

, where d is the order of derivative information used in the algorithm. Jiang, Lin
and Zhang [18] extended Nesterov’s approach to accommodate the composite optimization (1.1) and
relaxed the requirement on the knowledge of problem parameters such as the Lipschitz constants and
the requirement on the exact solutions of the subproblems while maintaining the same iteration bound
as in [3, 27]. Along the line of bounding the worst case iteration complexity using up to the d-th
order derivative information, there have also been significant progresses as well. Arjevani, Shamir and
Shiff [31] showed that the worst case iteration complexity of any algorithm in that setting cannot be
better than O

(

1/k(3d+1)/2
)

. A simplified analysis of the bound can be found in Nesterov [27]. So,
there was a gap between the achieved iteration bound O

(

1/kd+1
)

and the best possible bound of

O
(

1/k(3d+1)/2
)

. Clearly at least one of the two bounds is improvable. In this paper, we aim to settle
the above theoretical quest by providing a new implementable algorithm whose iteration complexity is
precisely O

(

1/k(3d+1)/2
)

. As a result, the tradeoff relationship discussed above is pinned down to be

exactly O
(

1/k(3d+1)/2
)

.

Our algorithm is based on the A-HPE framework of Monteiro and Svaiter [24], which is presented as
Algorithm 1 in this paper. In fact, our algorithm specifies a way to generate an approximate solution
through the use of high order derivative information by Taylor expansion. In each iteration, such
approximate solution is computed by means of a bisection process. At each bisection step, a regulated
convex tensor (polynomial) optimization subproblem is approximately solved. Moreover, we show that,
to implement one A-HPE iteration, the number of bisection steps – each calling to solve a convex tensor
subproblems – is upper bounded by a logarithmic factor in the inverse of the required precision. Our
bisection procedure is similar to the one proposed in [24] for the case d = 2; however, a key modification
is applied which enables the removal of the so-called “bracketing stage” used in [24]. After submitting
the first version of the paper, we became aware of two other independent works [15, 8] establishing
similar iteration bounds as ours, with the main difference being that the focus of [15, 8] is on the
smooth case: F (x) = f(x), while our method accommodates a composite objective function. The
common theoretical development by the three groups was subsequently jointly announced in the form
of abstract at Conference on Learning Theory (COLT) [17]. It is also worth mentioning that other
than the afore-mentioned three papers there are some other related works on high-order optimization
methods [6, 1, 2] based on large-step A-HPE framework.

The rest of the paper is organized as follows. In Section 2, we introduce some preliminaries including
the assumptions and the high-order oracle model used throughout this paper. Then we present our
optimal tensor method and its iteration complexity analysis in Section 3. The line search subroutine
being used in the main procedure of our optimal tensor method is presented and analyzed in Section 4.
Finally, some technical proofs and lemmas are provided in the appendix.
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2 Preliminaries

2.1 Notations

We denote ∇df(x) to be the d-th order derivative tensor at point x of function f with the (i1, ..., id)
component given as:

∇df(x)i1,...,id =
∂df

∂xi1 · · · ∂xid
(x), ∀1 ≤ i1, ..., id ≤ n.

Given a d-th order tensor T and vectors z1, . . . , zd ∈ R
n, we denote

T [z1, . . . , zd] :=
n
∑

i1,...,id=1

Ti1,...,idz1i1 . . . z
d
id
.

The operator norm associated with T is defined as:

‖T ‖ := max
‖zi‖=1, i=1,...,d

T [z1, ..., zd].

For given zk+1, . . . , zd, T [zk+1, . . . , zd] is a k-th order tensor with the associated (i1, · · · , ik) component
defined as:

T [zk+1, . . . , zd]i1,··· ,ik :=

n
∑

ik+1,...,id=1

Ti1,...,ik,ik+1,...,idz
k+1
ik+1

. . . zdid

for 1 ≤ i1, ..., ik ≤ n. Denote

(z1∗ , . . . , z
k
∗ ) := argmax

‖yi‖=1, i=1,...,k

(

T [zk+1, ..., zd]
)

[y1, ..., yk].

One has
‖T [zk+1, ..., zd]‖ = T [z1∗ , . . . , zk∗ , zk+1, ..., zd] ≤ ‖T ‖‖zk+1‖ · · · ‖zd‖. (2.1)

As a matter of convention, for quantities x and y, we use the notation y = Θ(x) to indicate the relation
that there are positive constants a and b such that ax ≤ y ≤ bx. If a is absent, then we shall indicate
the relation as y = O(x).

2.2 High-Order Oracle Model and Regularized Tensor Approximation

In this paper, we consider the following high-order oracle model and the algorithm we are going to
propose is such oracle model.
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d-th Order Oracle Model

• f is d times Lipschitz-continuous and differentiable with Lipschitz con-
stant Ld for d-th order derivative tensor; i.e.

‖∇df(x)−∇df(y)‖ ≤ Ld‖x− y‖ ∀x, y ∈ R
n, (2.2)

where the left side is the d-th order tensor operator norm.

• Given any x, the oracle returns f(x),∇f(x),∇2f(x), ...,∇df(x).

• At iteration k, xk is generated from a deterministic function h and
the oracle’s responses at any linear combination of x1, x2, ..., xk−1 and
∇if(x1),∇if(x2), ...,∇if(xk−1), where 1 ≤ i ≤ d.

Recall that the exact proximal minimization at point x with stepsize λ > 0 is defined as

min
y∈Rn

f(y) + h(y) +
1

2λ
‖y − x‖2. (2.3)

To utilize all the derivative information, we consider the regularized tensor approximation of f(y) at
point x:

fx(y) := f(x)+∇f(x)⊤(y−x)+ 1

2
∇2f(x)[y−x]2+ · · ·+ 1

d!
∇df(x)[y−x]d+ M

(d+ 1)!
‖y−x‖d+1, (2.4)

where M > 0 is the parameter of the high-order regularization term ‖y − x‖d+1. Then, by (2.2) and
the Taylor expansion, we can bound the gap between fx(·) and f(·) for any x (see Nesterov [27]):

Lemma 2.1 For every x, y ∈ R
n,

‖∇f(y)−∇fx(y)‖ ≤
Ld +M

d!
‖y − x‖d.

Therefore, it is natural to consider the tensor approximation of (2.3):

min
y∈Rn

fx(y) + h(y) +
1

2λ
‖y − x‖2. (2.5)

In fact, (2.5) is the subproblem to be solved in the Optimal Tensor Method that will be introduced
later. Note that similar subproblems have appeared in [24] and [27]. Specifically, the one used in [24]
corresponds to d = 2 in (2.5) without the term involving ‖y − x‖d+1 (i.e., M = 0), while [27] uses
the subproblem that only minimizes fx(y) (i.e., without the nonsmooth term h(y) and the quadratic
regularization term 1

2λ‖y − x‖2). In contrast, our above subproblem installs both the high-order and
quadratic regularization terms.

Note that the unique solution y of (2.5) is characterized by the following optimality condition:

u ∈ (∇fx + ∂h)(y), λu+ y − x = 0. (2.6)
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For a scalar ǫ ≥ 0, the ǫ-subdifferential of a proper closed convex function h is defined as:

∂ǫh(x) := {u | h(y) ≥ h(x) + 〈y − x, u〉 − ǫ, ∀ y ∈ R
n}.

With the above notion in mind, let us consider the following approximate solution for (2.6) (hence
(2.5)).

Definition 2.1 Given (λ, x) ∈ R++ × R
n and σ̂ ≥ 0, the triplet (y, u, ǫ) ∈ R

n × R
n × R+ is called a

σ̂-approximate solution of (2.5) at (λ, x) if

u ∈ (∇fx + ∂ǫh)(y) and ‖λu+ y − x‖2 + 2λǫ ≤ σ̂2‖y − x‖2. (2.7)

Obviously, if (y, u) is the solution pair of (2.6), then (y, u, 0) is a σ̂-approximate solution of (2.5) at
(λ, x) for any σ̂ ≥ 0. In the rest of our analysis, we assume the availability of a subroutine which, for
given (λ, x) and σ̂ > 0, returns a σ̂-approximate solution (y, u, ǫ). Let us call this subroutine ATS
(Approximate Tensor Subroutine). Different from [27], where a similar subproblem as (2.5) without a
possible nonsmooth function h(·) and regularization term 1

2λ‖y− x‖2 is exactly solved, we only assume
an approximate solution in the form of (2.7) is available and no further assumption on h(·) is required.
Note that the possibly nonsmooth function h(·) can be viewed as a fixed parameter in ATS. Once h(·)
is given, ATS could be called in each step of the bisection search, which itself is a subroutine in the
main procedure of our algorithm.

3 The Optimal Tensor Method

3.1 The tensor algorithm and its iteration complexity

Our bid to the optimal tensor algorithm is based on the so-called Accelerated Hybrid Proximal Extragra-
dient (A-HPE) framework proposed by Monteiro and Svaiter [24] for problem (1.1), whose main steps
can be schematically sketched below:
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Algorithm 1 A-HPE framework

STEP 1. Let x0, y0 ∈ R
n, 0 < σ < 1 be given, and set A0 = 0 and k = 0.

STEP 2. If 0 ∈ ∂F (yk), then STOP.

STEP 3. Otherwise, find λk+1 > 0 and a triplet (ỹk+1, vk+1, ǫk+1) such that

vk+1 ∈ ∂ǫk+1
F (ỹk+1), (3.1)

‖λk+1vk+1 + ỹk+1 − x̃k‖2 + 2λk+1ǫk+1 ≤ σ2‖ỹk+1 − x̃k‖2 (3.2)

where

x̃k =
Ak

Ak + ak+1
yk +

ak+1

Ak + ak+1
xk,

ak+1 =
λk+1 +

√

λ2k+1 + 4λk+1Ak

2
.

STEP 4. Choose yk+1 such that F (yk+1) ≤ F (ỹk+1) and let

Ak+1 = Ak + ak+1,

xk+1 = xk − ak+1vk+1.

STEP 5. Set k ← k + 1, and go to STEP 2.

Note that in STEP 2, the stopping condition is 0 ∈ ∂F (yk). However, in practice, the condition is
replaced by an approximate version of it (see Algorithm 2 below). In the following, we quote some
technical results derived in [24] for A-HPE. Since our proposed algorithm is within that framework, the
results in Lemma 3.1 hold true for our method as well, and they will be used in the subsequent analysis.

Lemma 3.1 Suppose the sequence {xk, yk, x̃k, ỹk} is genernated from Algorithm 1. Let x∗ be the pro-
jection of x0 onto the set of optimal value points X∗, F∗ be the optimal value, and D be the distance
from x0 to X∗. Then for any integer k ≥ 1, it holds that (Theorem 3.6 in [24]),

1

2
‖x∗ − xk‖2 +Ak(F (yk)− F∗) +

1− σ2
2

k
∑

j=1

Aj

λj
‖ỹj − x̃j−1‖2 ≤

1

2
D2. (3.3)

Therefore,
k
∑

j=1

Aj

λj
‖ỹj − x̃j−1‖2 ≤

D2

1− σ2 . (3.4)

Furthermore, Ak and λk has the following relation (Lemma 3.7 in [24])

Ak ≥
1

4





k
∑

j=1

√

λj





2

. (3.5)
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If yk is chosen as ỹk for all k, the distance between yk and x∗ can be bounded as follows (Theorem 3.10
in [24]),

‖yk − x∗‖ ≤
(

2√
1− σ2

+ 1

)

D. (3.6)

Now we are ready to propose our optimal tensor method in Algorithm 2.

Algorithm 2 The optimal tensor method

STEP 1. Let x0 = y0 ∈ R
n, v0 ∈ ∂f(x0), ǫ0 = 0, k = 0 and set 0 < ǭ, ρ̄ < 1, M ≥ Ld. Let σ̂ ≥ 0,

0 < σl < σu < 1 such that σ := σ̂ + σu < 1 and σl(1 + σ̂)d−1 < σu(1− σ̂)d−1.

STEP 2. If ‖vk‖ ≤ ρ̄ and ǫk ≤ ǭ, then STOP. Else, go to STEP 3.

STEP 3. Find λk+1 and a σ̂-approximate solution
(yk+1, uk+1, ǫk+1) ∈ R

n × R
n × R+ of (2.5) at (λk+1, x̃k) such that either

d!σl
Ld +M

≤ λk+1‖yk+1 − x̃k‖d−1 ≤ d!σu
Ld +M

(3.7)

or ‖∇f(yk+1) + uk+1 −∇fx̃k
(yk+1)‖ ≤ ρ̄ and ǫk+1 ≤ ǭ hold, where

x̃k =
Ak

Ak + ak+1
yk +

ak+1

Ak + ak+1
xk (3.8)

and

ak+1 =
λk+1 +

√

λ2k+1 + 4λk+1Ak

2
. (3.9)

(Note that λk+1 appears in both (3.7) and (3.9), and seeking a proper λk+1 requires a bisection
procedure, to be called Algorithm 3 in Section 4.)
STEP 4. Let

vk+1 = ∇f(yk+1) + uk+1 −∇fx̃k
(yk+1), (3.10)

Ak+1 = Ak + ak+1,

xk+1 = xk − ak+1vk+1.

Set k ← k + 1 and go to STEP 2.

At this point, neither Algorithm 1 nor Algorithm 2 has been shown to be implementable. In fact, STEP
3 in both algorithms presented above remain unspecified. Since λk+1 appears in both (3.7) and (3.9),
it is even unclear why such solutions as required by STEP 3 exist at all. Actually, the double roles
played by λk+1 in (3.7) and (3.9) are crucial for the overall O

(

1/k(3d+1)/2
)

convergence rate. As a
tradeoff, such λk+1 is not easy to find. In Section 4, we shall discuss a practical method to find a proper
λk+1 (and thus establish a practical implementation of STEP 3 in Algorithm 2) via the Approximate
Tensor Subroutine (ATS) in combination with a line-search subroutine.

First, let us remark that Algorithm 2 is indeed a specialization of A-HPE. For simplicity, we let yk+1 =

8



ỹk+1 in STEP 4 of Algorithm 1. Because (yk+1, uk+1, ǫk+1) is a σ̂-approximate solution at (λk+1, x̃k),
one has that uk+1 ∈ (∇fx̃k

+ ∂ǫk+1
h)(yk+1), and so we have

vk+1 ∈ ∇f(yk+1)−∇fx̃k
(yk+1) + (∇fx̃k

+ ∂ǫk+1
h)(yk+1)

= ∇f(yk+1) + ∂ǫk+1
h(yk+1) ⊆ ∂ǫk+1

(f + h)(yk+1)

which satisfies (3.1). To establish (3.2), we need the following proposition.

Proposition 3.2 Let (y, u, ǫ) be a σ̂-approximate solution of (2.5) at (λ, x̃) such that (3.7) holds. Define
v := ∇f(y) + u−∇fx̃(y). Then,

‖λv + y − x̃‖2 + 2λǫ ≤
(

σ̂ + λ
Ld +M

d!
‖y − x̃‖d−1

)2

‖y − x̃‖2. (3.11)

Consequently,
‖λv + y − x̃‖2 + 2λǫ ≤ σ2‖y − x̃‖2 with σ = σu + σ̂, (3.12)

where σu is a input paramter in Algorithm 2 and also appears in (3.7).

Proof. First of all, according to Lemma 2.1, it follows that

λ‖u− v‖ = λ‖∇f(y)−∇fx̃(y)‖ ≤ λ
Ld +M

d!
‖y − x̃‖d.

Combining the above inequality with (2.7), one has that

‖λv + y − x̃‖2 + 2λǫ

≤ (‖λu+ y − x̃‖+ λ‖u− v‖)2 + 2λǫ

=
(

‖λu+ y − x̃‖2 + 2λǫ
)

+ 2λ‖u − v‖‖λu + y − x̃‖+ λ2‖u− v‖2

≤ σ̂2‖y − x̃‖2 + 2

(

λ
Ld +M

d!
‖y − x̃‖d

)

σ̂‖y − x̃‖+
(

λ
Ld +M

d!
‖y − x̃‖d

)2

=

(

σ̂ + λ
Ld +M

d!
‖y − x̃‖d−1

)2

‖y − x̃‖2,

proving the first inequality. Then, by the right hand side of (3.7), λLd+M
d! ‖y − x̃‖d−1 ≤ σu, and so the

second inequality follows. �

We summarize the above discussion in the theorem below.

Theorem 3.3 Algorithm 2 is a manifestation of the A-HPE framework, and thus the results of Lemma
3.1 hold for the sequence generated by Algorithm 2.

Before addressing the implementation of STEP 3 in Algorithm 2, let us first present the overall iteration
complexity of Algorithm 2, assuming STEP 3 could be implemented.

9



Theorem 3.4 Let D be the distance of x0 to X∗. Then, for any integer k ≥ 1, the iterate yk generated
by Algorithm 2 satisfies:

F (yk)− F∗ ≤
(

d+ 1

2

)
3d+1

2 2d

(1− (σ̂ + σu)2)
d−1
2 d!σl

Dd+1(Ld +M)k−
3d+1

2 .

The above theorem establishes the O(1/k
3d+1

2 ) iteration complexity for Algorithm 2. Since Algorithm 2
falls into the category of the High-Order Oracle Model, whose iteration complexity has a lower bound of

O(1/k
3d+1

2 ); see Arjevanim, Shamir and Shiff [31] and Nesterov [27]. The worst-case iteration complexity
of Algorithm 2 matches this lower bound and it is therefore an optimal method.

3.2 Proof of Theorem 3.4

We first provide a recursive bound on Ak as an intermediate step.

Proposition 3.5 Let D be the distance of x0 to X∗. Suppose {Ak}∞k=1 is generated from Algorithm 2,
then

Ak ≥
1

4
C− 2p

q





k
∑

j=1

A
1
q

j





2p

(3.13)

where q = 3d+1
d−1 , p = 3d+1

2d+2 and C = D2

(1−(σ̂+σu)2)

(

d!σl
Ld+M

)− 2
d−1

.

Proof. Suppose {xk, yk, x̃k} is the sequence generated by Algorithm 2. Then, according to (3.4) and
Proposition 3.2, it holds that

k
∑

j=1

Aj

λj
‖yj − x̃j−1‖2 ≤

D2

1− (σ̂ + σu)2
,

which together with the left hand side of (3.7) implies

k
∑

j=1

Aj

λ
d+1
d−1

j

=
k
∑

j=1

Aj‖yj − x̃j−1‖2
λj

· 1

λ
2

d−1

j ‖yj − x̃j−1‖2

≤ D2

(1− (σ̂ + σu)2)

(

d!σl
Ld +M

)− 2
d−1

= C. (3.14)

By the definition of p and q, we have 1
p + 1

q = 1. Using Hölder’s inequality, together with (3.14), we
have





k
∑

j=1

√

λj





1
p

C
1
q ≥





k
∑

j=1

√

λj





1
p




k
∑

j=1

Aj

λ
d+1
d−1

j





1
q

≥
k
∑

j=1

λ
1
2p

j

A
1
q

j

λ
d+1

q(d−1)

j

=
k
∑

j=1

A
1
q

j .

10



Finally, by (3.5) we obtain

Ak ≥
1

4





k
∑

j=1

√

λj





2

≥ 1

4
C

− 2p
q





k
∑

j=1

A
1
q

j





2p

.

�

Proof of Theorem 3.4. Let p, q and C be defined as in Proposition 3.5. Construct {Bk} such that

B1 = A1 and Bi = T
1−(2p/q)i−1

1−2p/q (A1)
(2p/q)i−1

for i ≥ 2, where T := 1
4 (

1
C )

2p
q ( 2

d+1)
2p. Next, we shall apply

induction to show that for any k ≥ 1,

Ak ≥ Bik
ri , ∀ i ≥ 1, (3.15)

where ri =
3d+1
2

[

1− (2p/q)i−1
]

. When i = 1, this is obvious because Ak ≥ A1 = B1k
r1 . Now suppose

that for any k ≥ 1, Ak ≥ Bik
ri for some i. Then, by the induction hypothesis and (3.13) it holds that

Ak ≥ 1

4
C− 2p

q





k
∑

j=1

A
1
q

j





2p

≥ 1

4
C− 2p

q





k
∑

j=1

(Bij
ri)

1
q





2p

=
1

4

(

Bi

C

)
2p
q





k
∑

j=1

j
ri
q





2p

≥ 1

4

(

Bi

C

)
2p
q
(∫ k

0
x

ri
q dx

)2p

=
1

4

(

Bi

C

)
2p
q
(

1

1 + ri/q
k

ri
q
+1
)2p

=
1

4

(

Bi

C

)
2p
q
(

q

q + ri

)2p

k
2p

(

ri
q
+1

)

≥ 1

4

(

Bi

C

)
2p
q
(

2

d+ 1

)2p

k
2p

(

ri
q
+1

)

, (3.16)

where the last inequality follows from

q

q + ri
=

3d+1
d−1

3d+1
d−1 + 3d+1

2 [1− (2p/q)i−1]
=

1

1 + d−1
2 [1− (2p/q)i−1]

≥ 1

1 + d−1
2

=
2

d+ 1
.

Let us further simplify the expression. First of all, from the definition of T and Bi, one observes that

1

4

(

Bi

C

)
2p
q
(

2

d+ 1

)2p

= B
2p
q

i T =

[

T
1−(2p/q)i−1

1−2p/q A
(2p/q)i−1

1

]

2p
q

T

= T
2p/q−(2p/q)i

1−2p/q
+1
A

(2p/q)i

1

= T
1−(2p/q)i

1−2p/q A
(2p/q)i

1 = Bi+1. (3.17)
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Then, the construction of q and ri implies that

2p

(

ri
q
+ 1

)

=
3d+ 1

d+ 1

(

1 +
3d+1
2 (1− (2p/q)i−1)

3d+1
d−1

)

=
3d+ 1

d+ 1

(

1 +
d− 1

2

(

1− (2p/q)i−1
)

)

=
3d+ 1

d+ 1

(

d+ 1

2
− d− 1

2
(2p/q)i−1

)

=
3d+ 1

2

(

1− (2p/q)i
)

= ri+1, (3.18)

where the second last equality holds true due to the fact that 2p/q = (d− 1)/(d + 1). Now the desired
inequality (3.15) follows by combining (3.16), (3.17) and (3.18). Observe that 2p/q = (d−1)/(d+1) < 1,

and so lim
i→∞

Bi = T
1

1−2p/q = T
d+1
2 and lim

i→∞
ri =

3d+1
2 . Finally, by letting i→∞ in (3.15) and using the

definition of C in (3.14), we have

Ak ≥ T
d+1
2 k

3d+1
2 =

[

1

4

(

1

C

)
d−1
d+1
(

2

d+ 1

)
3d+1
d+1

]

d+1
2

k
3d+1

2

=

(

1

2

)d+1 d!σl
Ld +M

(

1− σ2
D2

)
d−1
2
(

2

d+ 1

)
3d+1

2

k
3d+1

2 .

Combining it with (3.3), we have

F (yk)− F∗ ≤
1

2Ak
D2 ≤

(

d+ 1

2

)
3d+1

2 2d

(1− (σ̂ + σu)2)
d−1
2 d!σl

Dd+1(Ld +M)k−
3d+1

2 .

�

3.3 Comparison with Nesterov’s Accelerated Tensor Method

In Nesterov’s accelerated tensor method [27], an auxiliary function

ψk(x) = lk(x) +M‖x− x0‖d+1 (3.19)

with lk being some linear function, is constructed to satisfy

R1
k : βk := min

x
ψk(x)−AkF (yk) ≥ 0,

R2
k : ψk(x) ≤ AkF (x) +M‖x− x0‖d+1, ∀x ∈ R

n

where Ak = Θ(kd+1). In fact, the function ψk(x) serves as a bridge to guarantee the following relation:

AkF (yk) ≤ min
x
ψk(x) ≤ ψk(x∗) ≤ AkF∗ +M‖x∗ − x0‖d+1. (3.20)
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As a result, F (yk)− F∗ ≤ M
Ak
‖x∗ − x0‖d+1 yielding the iteration complexity of O(1/kd+1).

In the implementation of high-order A-HPE framework, it is crucial to ensure that condition (3.7) is
satisfied. In the remainder of the paper, we shall focus on how to satisfy (3.7) in STEP 3 of Algorithm
2. Our bid is to use bisection on a parameter λ (to be introduced later), while calling an Approximate
Tensor Subroutine (ATS). Observe that x̃, which is the point to define fx̃(y) in (2.4) to approximate
the smooth function f(y), is indeed heavily dependent on λ. In other words, we need to search for the
point where the Taylor expansion (2.4) is to be computed. This is a key difference between the A-HPE
framework and Nesterov’s approach [27]. Once condition (3.7) is satisfied, then inequality (3.3) would
follow, which leads to the following tighter estimation than (3.20):

AkF (yk) + βk ≤ AkF∗ +
1

2
‖x∗ − x0‖2,

as βk = 1−σ2

2

∑k
j=1

Aj

λj
‖ỹj − x̃j−1‖2 ≥ 0 is totally missing in (3.20). The above inequality also gives an

upper bound on βk. Together with the lower bound (3.6) this gives a better lower bound on Ak, namely

Ak ≥ O(k
3d+1

2 ), which leads to the optimal iteration complexity presented in Theorem 3.4.

4 A Line Search Subroutine and Its Iteration Complexity

After establishing the overall iteration complexity for Algorithm 2, it remains to find a way to implement
STEP 3 of the algorithm. In this section we discuss how this can be done, from a special case to the
general one. The idea is better illustrated by considering the special case. Finally, for the general
composite objective function, assuming the tensor proximal mapping regarding h(x) is possible, our
approach is based on a line-search procedure for the point on which the Taylor expansion is computed.

4.1 The Non-Composite Case

Let us first consider a special case for Algorithm 2 where F (x) = f(x) in the objective function and
yk+1 is the exact solution of the following convex tensor proximal point problem:

min
y
fx̃k

(y) +
1

2λk+1
‖y − x̃k‖2.

We shall discuss how to find λk+1 to satisfy the alternative condition in STEP 3 of Algorithm 2.

Note that for fixed xk and yk, x̃k and yk+1 are uniquely determined by λk+1. Therefore the functions
x̃k(λ) and yk+1(λ) are continuous with respect to λ (where we denote λk+1 to be λ). Next, we show
that:

(i) λ‖yk+1(λ)− x̃k(λ)‖d−1 → 0, as λ→ 0;

(ii) Either there exists an increasing sub-sequence λj ↑ ∞, such that λj‖yk+1(λj) − x̃k(λj)‖d−1 → ∞
as j →∞, or there exists λ̂ such that ‖∇f(yk+1(λ))‖ ≤ ρ̄ for any λ ≥ λ̂.
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Observe that

fx̃k(λ)(yk+1(λ)) +
1

2λ
‖yk+1(λ)− x̃k(λ)‖2

= min
y
fx̃k(λ)(y) +

1

2λ
‖y − x̃k(λ)‖2

≤ fx̃k(λ)(x̃k(λ))

= f(x̃k(λ)) <∞, ∀λ > 0

where f(x̃k(λ)) is bounded, since x̃k(λ) is a convex combination of xk and yk. Letting λ → 0 in the
above inequality leads to ‖yk+1(λ)− x̃k(λ)‖2 → 0, which implies λ‖yk+1(λ)− x̃k(λ)‖d−1 → 0 as λ→ 0,
proving (i).

To prove (ii), it suffices to show that if the “either” part does not hold, then the “or” part must hold.
In this case, there must exist C1 > 0 such that when λ → ∞, λ‖yk+1(λ) − x̃k(λ)‖d−1 ≤ C1, and thus
‖yk+1(λ)− x̃k(λ)‖ → 0. Moreover, for any λ > 0 the optimality condition is

∇fx̃k(λ)(yk+1(λ)) +
1

λ
(yk+1(λ)− x̃k(λ)) = 0.

Letting λ→∞ in the above identity yields that ∇fx̃k(λ)(yk+1(λ))→ 0. Recall that in this case we have
‖yk+1(λ)− x̃k(λ)‖ → 0, thus ∇f(yk+1(λ))→ 0 proving the “or” part.

To summarize, either we have λ‖yk+1(λ)−x̃k(λ)‖d−1 → 0 as λ→ 0 and λj‖yk+1(λj)−x̃k(λj)‖d−1 →∞ as
j →∞, which guarantees the existence of λ to satisfy (3.7) due to the continuity of λ‖yk+1(λ)−x̃k(λ)‖d−1

on λ. Or we have a λk+1 such that ‖∇f(yk+1(λ))‖ ≤ ρ̄. In this case, since h(x) is not present,
uk+1 = ∇fx̃k

(yk+1) and ‖∇f(yk+1)+uk+1−∇fx̃k
(yk+1)‖ = ‖∇f(yk+1)‖ ≤ ρ̄. Therefore, we have shown

that the alternative condition in STEP 3 is actually satisfied.

4.2 A Bisection Subroutine

To present the algorithm that computes λ satisfing the conditions in STEP 3, we first construct βk+1 =
ak+1

Ak+ak+1
. From (3.9), we can see that λk+1 =

a2k+1

Ak+ak+1
. Therefore, we are able to represent λk+1 and x̃k

by means of βk+1:
{

λk+1 = Ak
β2
k+1

1−βk+1
,

x̃k = βk+1xk + (1− βk+1)yk.

In the k-th iteration, we denote

λ(β) = Ak
β2

1− β , β ∈ (0, 1). (4.1)

Its inverse on the domain λ > 0 is

β(λ) =

√

λ2 + 4λAk − λ
2Ak

,

which is monotonically increasing.
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We shall perform bisection on β instead of λ in STEP 3 of Algorithm 2 to search for λk+1. In that way,
the initial interval for the bisection is [0, 1]. (Monteiro and Svaiter [24] presented a bisection process for
their A-HPE algorithm too. However, we can skip what they called the bracketing stage in [24]).

Algorithm 3 Bisection on β based on the subroutine ATS

INPUT:M ≥ Ld, σ̂ ≥ 0, 0 < σl < σu < 1 such that σ := σ̂+σu < 1 and σl(1+ σ̂)
d−1 < σu(1− σ̂)d−1,

tolerance ρ̄ > 0 and ǭ > 0.
STEP 1. Let α+ = d!σu

Ld+M and α− = d!σl
Ld+M .

STEP 2. (Bisection Setup) Set β− = 0, β+ = 1, λ+ = λ(β+) = +∞, λ− = λ(β−).
2.a. Let β = β−+β+

2 and let
λβ = λ(β), xβ = (1− β)yk + βxk, (4.2)

and use ATS to compute (yβ, uβ, ǫβ) as a σ̂-approximate solution at (λβ , xβ), and vβ = ∇f(yβ) −
∇fxβ

(yβ)+uβ.
2.b.
if ‖vβ‖ ≤ ρ̄ and ǫβ ≤ ǭ then

output (λβ, xβ , yβ, uβ , ǫβ) and STOP.
else if λβ‖yβ − xβ‖d−1 ∈ [α−, α+] then

set (βk+1, x̃k, yk+1, vk+1) = (β, xβ , yβ, vβ) and STOP.
else if λβ‖yβ − xβ‖d−1 > α+ then

set β+ ← β, and go to STEP 2.a.
else if λβ‖yβ − xβ‖d−1 < α− then

set β− ← β, and go to STEP 2.a.
end if

We remark that the conditions on ρ̄ and ǭ are only used in the final stage of the algorithm to decide the
point that is close to optimum. In the implementation, it is reasonable to set a lower precision at the
beginning stage of the algorithm. Now an upper bound for the overall number of iterations required
by Algorithm 3 is presented in the following theorem, whose proof will be postponed to the subsequent
section.

Theorem 4.1 Algorithm 3 needs to perform no more than

Θ
(

max{log2(ǭ−1), log2(ρ̄
−1)}

)

(4.3)

bisection steps before reaching λk+1 > 0 and a σ̂-approximate solution (yk+1, uk+1, ǫk+1) at (λk+1, x̃k(λk+1))
satisfying

α− ≤ λk+1‖x̃k(λk+1)− yk+1‖d−1 ≤ α+,

or to return vk+1 and ǫk+1 such that ‖vk+1‖ ≤ ρ̄ and ǫk+1 ≤ ǭ.

4.3 The Iteration Complexity Analysis

In this subsection, we establish the iteration bound of Algorithm 3 and give a proof for Theorem 4.1.
First, we review some facts for maximal monotone operator. For a point-to-set operator T : Rn ⇒ R

n,
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its graph is defined as:
Gr(T ) = {(z, v) ∈ R

n × R
n | v ∈ T (z)},

and the operator T is called monotone if

〈v − ṽ, z − z̃〉 ≥ 0 ∀ (z, v), (z̃, ṽ) ∈ Gr(T ),

and T is maximal monotone if it is monotone and maximal in the family of monotone operators with
respect to the partial order of inclusion. Given a maximal monotone operator T : Rn ⇒ R

n and a scalar
ǫ, the associated ǫ-enlargement T ǫ : Rn ⇒ R

n is defined as:

T ǫ(z) = {v ∈ R
n | 〈z − z̃, v − ṽ〉 ≥ −ǫ, ∀ z̃ ∈ R

n, ṽ ∈ T (z̃)}, ∀z ∈ R
n.

For a convex function f , its subdifferential ∂f is monotone if f is a proper function. If f is a proper
lower semicontinuous convex function, then ∂f is maximal monotone [28].

Recall that the optimality condition of subproblem (2.5) is characterized by (2.6), which is:

0 ∈ λ(∇fx + ∂h)(y) + y − x = (λ(∇fx + ∂h) + I) (y)− x.

Furthermore, x is optimal to (1.1) if and only if y = x. Therefore, it is natural to consider the residual

ϕ(λ;x) := λ
∥

∥

∥(I + λ(∇fx + ∂h))−1 (x)− x
∥

∥

∥

for any λ > 0, x ∈ R
n. The above residual was adopted in [24] for the quadratic subproblem. In this

paper, to accommodate the high-order information, we consider the following modified residual:

ψ(λ;x) := λ
∥

∥

∥
(I + λ(∇fx + ∂h))−1 (x)− x

∥

∥

∥

d−1
.

We have an immediate property regarding ψ(·).

Proposition 4.2 Let x ∈ R
n, λ > 0 and σ̂ ≥ 0. If (y, u, ǫ) is a σ̂-approximate solution of (2.5) at

(λ, x), then
λ(1− σ̂)d−1‖y − x‖d−1 ≤ ψ(λ;x) ≤ λ(1 + σ̂)d−1‖y − x‖d−1. (4.4)

Proof. From proposition 7.3 in [24], it holds that

(λ(1− σ̂)‖y − x‖)d−1 ≤ ϕd−1(λ;x) ≤ (λ(1 + σ̂)‖y − x‖)d−1 . (4.5)

Notice ϕd−1(λ;x) = λd−2ψ(λ;x), and so (4.4) readily follows by combining the above inequalities and
identity. �

Lemma 4.3 Let scalars ρ̄ > 0, ǭ > 0, σ̂ ≥ 0 and α > 0 be given and satisfy σ̂ + Ld+M
d! α := σ < 1.

Suppose

λ ≥ max







α1/d

[

1

ρ̄

(

1 + σ̂ +
Ld +M

d!
α

)]1− 1
d

,

(

σ2α
2

d−1

2ǭ

)
d−1
d+1







, (4.6)

and (y, u, ǫ) is a σ̂-approximate solution of (2.5) at (λ, x) for some vector x ∈ R
n. Then, one of the

following holds: either (a) λ‖y − x‖d−1 > α; or (b) the vector v := ∇f(y)−∇fx(y) + u satisfies

v ∈ (∇f + (∂h)ǫ)(y), ‖v‖ ≤ ρ̄, ǫ ≤ ǭ. (4.7)
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Proof. Suppose that λ satisfies (4.6) but not (a), namely

λ‖y − x‖d−1 ≤ α. (4.8)

In that case, recall that ∂hǫ is the ǫ-subdifferential of h and (∂h)ǫ is the ǫ-enlargement of operator ∂h.
According to Proposition 3 in [9], one has ∂hǫ(x) ⊆ (∂h)ǫ(x) for any ǫ ≥ 0 and x ∈ R

n. Therefore, the
inclusion in (4.7) directly follows from Proposition 3.2. Moreover, inequality (3.11) leads to

λ‖v‖ − ‖y − x‖ ≤ ‖λv + y − x‖ ≤
(

σ̂ + λ
Ld +M

d!
‖y − x‖d−1

)

‖y − x‖.

Together with (4.6) and (4.8), the above inequality yields

‖v‖ ≤ 1

λ

(

1 + σ̂ +
Ld +M

d!
λ‖y − x‖d−1

)

‖y − x‖

≤ 1

λ

(

1 + σ̂ +
Ld +M

d!
α

)

(α

λ

) 1
d−1

≤ ρ̄.

On the other hand, inequality (3.11) also implies that

2λǫ ≤
(

σ̂ +
Ld +M

d!
λ‖y − x‖d−1

)2

‖y − x‖2 ≤
(

σ̂ +
Ld +M

d!
α
)2
‖y − x‖2 ≤ σ2‖y − x‖2.

Combined with (4.6) and (4.8) this leads to

ǫ ≤ σ2‖y − x‖2
2λ

≤ σ2

2λ

(α

λ

) 2
d−1 ≤ ǭ.

Hence, (b) must hold in this case. �

In the rest of this section, we simply let α = α− in Lemma 4.3 and denote

λ̄ = max











α
1/d
−

[

1

ρ̄
(1 + σ̂ +

Ld +M

d!
α−)

]1− 1
d

,





σ2α
2

d−1
−

2ǭ





d−1
d+1











. (4.9)

Lemma 4.3 implies that if λ is sufficiently large, then either Algorithm 3 stops because (4.7) is satisfied,
or λ‖y − x‖d−1 ≥ α−, which achieves half of the bisection goal. Now we are ready to prove Theorem
4.1.

17



Proof of Theorem 4.1. Suppose that Algorithm 3 has performed j bisection steps before triggering
the stopping criteria. We aim to show j ≤ Θ

(

max{log2(ǭ−1), log2(ρ̄
−1)}

)

. At that iteration let us
denote x+ = xβ+, x− = xβ−

, y+ = yβ+ and y− = yβ−
, and we also have β+ − β− = 1

2j
. Denote

β̄ = β(λ̄), where λ̄ is as defined in (4.9). If β̄ ≤ 1
2 then 1

1−β̄
≤ 2; if β̄ > 1

2 , then (4.1) gives

1

1− β̄ =
λ̄

Akβ̄2
<

4λ̄

Ak
≤ max

{

Θ
(

(ρ̄−1)
d−1
d

)

,Θ
(

(ǭ−1)
d−1
d+1

)}

.

Therefore, in the rest of the proof we may assume j ≥ log2(2/(1−β̄)), for otherwise j < log2(2/(1−β̄)) ≤
Θ(max{log2(ρ̄−1), log2(ǭ

−1)}) already holds.

Note that the bisection search starts with β+ = 1, corresponding to λ+ = +∞ according to (4.1) when
β+ is not updated during the procedure. However, the following lemma tells us that after running
Algorithm 3 for a number of iterations, λ+ will be reduced and upper bounded by some constant
depending on ǭ and ρ̄.

Lemma 4.4 Suppose that Algorithm 3 has performed j bisection steps with j ≥ log2(2/(1− β̄)), where
β̄ = β(λ̄) and λ̄ are as defined in (4.9). Then we have

λ+ ≤ max
{

9Ak/4, 8λ̄
}

= max
{

Θ(ǭ−1), Θ
(

(ρ̄−1)
d+1
d

)}

. (4.10)

We shall continue our discussion without disruption here and leave the proof of Lemma 4.4 to the
appendix. Since Algorithm 3 did not stop before iteration j, the bound on β+ must have been previously
updated, and so

λ+‖yβ+ − xβ+‖d−1 > α+, λ−‖yβ−
− xβ−

‖d−1 < α−,

where λ+ is upper bounded due to Lemma 4.4.

By Proposition 4.2, we have that

ψ+ := ψ(λ+;x+) ≥ λ+(1− σ̂)d−1‖y+ − x+‖d−1 > (1− σ̂)d−1α+,

ψ− := ψ(λ−;x−) ≤ λ−(1 + σ̂)d−1‖y− − x−‖d−1 < (1 + σ̂)d−1α−.

Consequently,
ψ+ − ψ− > (1− σ̂)d−1α+ − (1 + σ̂)d−1α−. (4.11)

The parameters α+ and α− are pre-specified. Therefore, it suffices to show that ψ+ − ψ− is upper
bounded by β+ − β− multiplied by some constant factor and hence the number of bisection search j
can be bounded as well. To this end, denote

ȳ+ =
(

I + λ+(∇fx+ + ∂h)
)−1

(x+) and ȳ− =
(

I + λ−(∇fx−
+ ∂h)

)−1
(x−). (4.12)

Then, there exist

ū+ ∈ (∇fx+ + ∂h)(ȳ+), s.t. λ+ū+ = x+ − ȳ+,
ψ+ = λ+‖ȳ+ − x+‖d−1 = λd+‖ū+‖d−1 (4.13)
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and

ū− ∈ (∇fx−
+ ∂h)(ȳ−), s.t. λ−ū− = x− − ȳ−,

ψ− = λ−‖ȳ− − x−‖d−1 = λd−‖ū−‖d−1. (4.14)

To proceed, we have the following bound on λ2−‖ū+ − ū−‖ whose proof can be found in the appendix.

Lemma 4.5 It holds that

λ2−‖ū+ − ū−‖ ≤ 2λ2−‖∇fx+(ȳ+)−∇fx−
(ȳ+)‖+ |λ+ − λ−|‖ȳ+ − x+‖+ λ−‖x+ − x−‖. (4.15)

Note that
∣

∣

∣ad−1 − bd−1
∣

∣

∣ =
∣

∣

∣(a− b)(ad−2 + ad−3b+ · · · + bd−2)
∣

∣

∣ ≤ (d− 1)|a− b|max{a, b}d−2, (4.16)

for any a, b > 0. Now combining (4.13), (4.14), (4.15) and (4.16) we have

|ψ+ − ψ−|
=

∣

∣

∣
λd+‖ū+‖d−1 − λd−‖ū−‖d−1

∣

∣

∣

≤
∣

∣

∣
λd+ − λd−

∣

∣

∣
‖ū+‖d−1 +

∣

∣

∣
‖ū+‖d−1 − ‖ū−‖d−1

∣

∣

∣
λd−

≤ |λ+ − λ−| dλd−1
+ ‖ū+‖d−1 + ‖ū+ − ū−‖(d− 1)max{‖ū+‖, ‖ū−‖}d−2λd−

= |λ+ − λ−| dλd−1
+ ‖ū+‖d−1 + (d− 1)‖ū+ − ū−‖max{‖λ−ū+‖, ‖λ−ū−‖}d−2λ2−

≤ |λ+ − λ−| dλd−1
+ ‖ū+‖d−1 + (d− 1)‖ū+ − ū−‖max{‖λ+ū+‖, ‖λ−ū−‖}d−2λ2−

= d |λ+ − λ−| ‖ȳ+ − x+‖d−1 + (d− 1)‖ū+ − ū−‖max{‖x+ − ȳ+‖, ‖x− − ȳ−‖}d−2λ2−
≤ d |λ+ − λ−| ‖ȳ+ − x+‖d−1 + (d− 1)max{‖x+ − ȳ+‖, ‖x− − ȳ−‖}d−2

×
(

2λ2−‖∇fx+(ȳ+)−∇fx−
(ȳ+)‖+ |λ+ − λ−|‖ȳ+ − x+‖+ λ−‖x+ − x−‖

)

. (4.17)

Next, by applying (1.9), (4.9), Lemma A.2, Lemma A.5 and Lemma A.6, we have

λ− ≤ λ̄ = max
{

Θ
(

ǭ−
d−1
d+1

)

,Θ
(

ρ̄−
d−1
d

)}

≤ max
{

Θ(ǭ−1), Θ
(

ρ̄−
d+1
d

)}

,

λ+ − λ− ≤ max
{

Θ
(

ǭ−2
)

,Θ
(

ρ̄−
2(d+1)

d

)}

(β+ − β−),

‖x+ − ȳ+‖ ≤ max
{

Θ(ǭ−1), Θ
(

ρ̄−
d+1
d

)}

,

‖x− − ȳ−‖ ≤ max
{

Θ
(

ǭ−
d−1
d+1

)

, Θ
(

ρ̄−
d−1
d

)}

≤ max
{

Θ(ǭ−1), Θ
(

ρ̄−
d+1
d

)}

,

‖∇fx+(ȳ+)−∇fx−
(ȳ+)‖ ≤ max

{

Θ
(

ǭ−d+1
)

, Θ
(

ρ̄−
(d−1)(d+1)

d

)}

(β+ − β−).
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Combining the bounds above with (4.17) yields

|ψ+ − ψ−|

≤ dmax

{

Θ
(

ǭ−d−1
)

, Θ

(

ρ̄−
(d+1)2

d

)}

(β+ − β−) + (d− 1)max
{

Θ
(

ǭ−d+2
)

, Θ
(

ρ̄−
(d+1)(d−2)

d

)}

×
(

2max

{

Θ
(

ǭ−d−1
)

, Θ

(

ρ̄−
(d+1)2

d

)}

+max
{

Θ
(

ǭ−3
)

, Θ
(

ρ̄−
3(d+1)

d

)}

+max
{

Θ
(

ǭ−1
)

, Θ
(

ρ̄−
(d+1)

d

)}

)

(β+ − β−)

≤ max
{

Θ
(

ǭ−2d+1
)

, Θ
(

ρ̄−
(2d−1)(d+1)

d

)}

(β+ − β−),

where the last inequality is due to d ≥ 2. Because β+ − β− = 1
2j
, from (4.11) we have

(1− σ̂)d−1α+ − (1 + σ̂)d−1α− ≤ max
{

Θ
(

ǭ−2d+1
)

, Θ
(

ρ̄−
(2d−1)(d+1)

d

)} 1

2j
.

The left hand side of the above inequality is a positive constant. Therefore,

j ≤ Θ
(

max{log2(ǭ−1), log2(ρ̄
−1)}

)

as required. �

Remark 4.6 In fact, we can quantify the constants in the proof of Theorem 4.1 more explicitly, and
obtain the exact form of the bound Θ

(

max{log2(ǭ−1), log2(ρ̄
−1)}

)

. Recall that

λ̄ = max







α
1/d
−

[

1

ρ̄
(1 + σ̂ +

Ld +M

d!
α−)

]1−1/d

,

(

σ2α
2/(d−1)
−
2ǭ

)
d−1
d+1







and D1 =

(

2 +
2√

1− σ2
D

)

.

Introduce the following constants

G1 =
4(λ̄+ 4C̄)2

Ĉ
,

G2 = D +
LdD

d!
max(

9

4
C̄, 8λ̄),

G3 = (1 + σ̂)

[

D1 +
LdD

d+1
1

d!
λ̄

]

,

G4 =
d
∑

l=2

[

(l − 1)BlD1(D1 +G2)
l−2 +Bl+1D1(D1 +G2)

l−1
]

+B2D1,

where

Ĉ =
d!σl

(Ld +M)Dd−1
1

, C̄ = max







σ2D

2(1 − σ2)ǭ ,
D(3d−1)/(2d)(1 + σ)1/d

(1− σ)α
d−1

d(d−2)

−

(

1

ρ̄

)
d+1
d






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and B1, ..., Bd is a sequence defined by

Bd = ‖∇df(x∗)‖, Bl−1 = ‖∇l−1f(x∗)‖+ 2D1Bl, l = 2, ..., d.

Then the complexity bound in Theorem 4.4 can be explicitly expressed by

log

(

dG1λ̄
d−1 + (d− 1)max(G2, G3)

d−2λ̄2(2λ̄2G4 +G1G2 + λ̄D1)

(1− σ̂)d−1α+ − (1 + σ̂)d−1α−

)

. (4.18)

It is clear that the dependence of the resulting bound depends logarithmically on the parameters Ld,D,
and input parameters α+, α−, σu, and polynomially on d. The derivation of (4.18) is skipped for the
sake of succinctness.

Now, for a given ǫ > 0, we denote

D̄ǫ := sup{‖x− x∗‖ : ∃y ∈ ∂F (x) s.t. ‖y‖ < ǫ}.

Combining the bounds provided in Theorem 3.4, Theorem 4.1 and (4.18), we obtain the overall iteration
bound for Algorithm 2 in terms of the ATS calls as follows:

Theorem 4.7 Given ǫ > 0. Assume that Algorithm 2 is implemented with M ≤ 2Ld. Set ǭ = ǫ/2,

ρ̄ ≤ min
{

ǫ
2D̄ǫ

, ǫ
}

, and define

Kǫ :=

⌈

d+ 1

2

(

2d

(1− (σ̂ + σu)2)(d−1)/2d!σl

)

2
3d+1

(

(Ld +M)Dd+1

ǫ

)

2
3d+1

Tǫ

⌉

where

Tǫ = log

(

dG1λ̄
d−1 + (d− 1)max(G2, G3)

d−2λ̄2(2λ̄2G4 +G1G2 + λ̄D1)

(1− σ̂)d−1α+ − (1 + σ̂)d−1α−

)

.

Then, a point z ∈ R
n satisfying

F (z) − F∗ ≤ ǫ
can be found by Algorithm 2 with no more than Kǫ calls of ATS.

Proof. We consider two cases separately. In the first case, Algorithm 2 terminates because we find a
k ≤ Kǫ such that ‖vk‖ ≤ ρ̄ and ‖ǫk‖ ≤ ǭ. As vk = ∇f(yk)−∇fxk

(yk)+uk and uk ∈ ∇fxk
(yk)+∂ǫkh(yk),

we have vk ∈ ∇f(yk) + ∂ǫkh(yk). Let x∗ be the projection of x0 onto X∗. By the convexity of f and h,

f(x∗) ≥ f(yk) + 〈∇f(yk), x∗ − yk〉
h(x∗) ≥ h(yk) + 〈vk −∇f(yk), x∗ − yk〉 − ǫk.

Summing up the two inequalities above yields

F∗ ≥ F (yk) + 〈vk, x∗ − yk〉 − ǫk ≥ F (yk)− ρ̄‖yk − x∗‖ − ǭ.
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By the construction of ρ̄, we have that ‖vk‖ ≤ ρ̄ ≤ ǫ. Together with the definition of D̄ǫ, this implies
that ‖yk − x∗‖ ≤ D̄ǫ. Again, by evoking the construction of ρ̄ and ǭ, it holds

F∗ ≥ F (yk)−
ǫ

2
− ǫ

2
= F (yk)− ǫ.

In the other case, condition (3.7) holds for every k ≤ Kǫ. Then, according to Theorem 3.4, for all
k ≤ Kǫ we have

F (yk)− F∗ ≤
(

d+ 1

2

)
3d+1

2 2d

(1− (σ̂ + σu)2)
d−1
2 d!σl

Dd+1(Ld +M)k−
3d+1

2 .

By the definition of Kǫ and letting k = Kǫ in the above inequality, one has

F (yKǫ)− F∗ ≤ ǫ.

�

Note that the implementation of our framework is based on the assumption that the ATS can be
efficiently computed. By the construction, the objective in (2.5) has a 1

λ -strongly convex smooth part,
which can be solved by many start-of-the-art optimization algorithms. However, there is few efficient
algorithms customized for problem (2.5). Without further knowledge of the problem structure, the
proposed approach is not necessarily more efficient as compared to, e.g., a direct application of a
general-purpose convex optimization algorithm on (1.1). At the end of the paper, we shall briefly
discuss a method for the subroutine in the special case d = 3 introduced by Nesterov [27], which opens
the door for this line of research. Of course, how to efficiently solve ATS in general remains a further
research topic.

5 Concluding Remark

To conclude this paper, we shall discuss how to compute ATS efficiently with d = 3. Note that in STEP
2.a of Algorithm 3, an Approximate Tensor Subroutine (ATS) is required, which can be implemented
in polynomial time in the case of convex optimization. In some applications, ATS may be implemented
efficiently if some additional structures on the tensor (Taylor) expansion and/or the h function exist.
In this subsection, we show how ATS (i.e., solve problem (2.5)) may be computed efficiently in the
absence of the non-smooth part, i.e. F (x) = f(x), when d = 3. Note that since h = 0, the ǫβ in the
bisection subroutine may be simply set to 0.

In this case, the objective function in (2.5) becomes: fx(y) +
1
λ‖y − x‖2 = f(x) + Ω(y − x) where

Ω(z) = z⊤∇f(x) + 1

2
z⊤
(

∇2f(x) +
1

λ
I

)

z +
1

3!
∇3f(x)[z]3 +

M

4!
‖z‖4.

Therefore, the subproblem (2.5) is equivalent to minz∈Rn Ω(z). Let M = 3κ2L3 with κ > 1. Then, a
similar argument as in Lemma 4 of [27] implies that function Ω(z) satisfies the strong relative smoothness
condition

∇2ρ(z) � ∇2Ω(z) � κ+ 1

κ− 1
∇2ρ(z) (5.1)
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with respect to function

ρ(z) = z⊤
(

κ− 1

2κ
∇2f(x) +

κ− 1

2λ(κ+ 1)
I

)

z +
M − 3κL3

6
‖z‖4.

Such condition allows to minimize Ω(z) efficiently by a gradient method described in [21, 27], where
we need to solve the following problem in every iteration:

min
z∈Rn

(

a⊤z +
1

2
z⊤Az +

γ

4
‖z‖4

)

, A � 0, γ > 0,

which was considered at the end of Section 5 in [27]. According to a min-max argument in [27], the
above problem is shown to be equivalent to

min
τ>0

(

γτ2 +
1

2
a⊤(γτI +A)−1a

)

,

which is actually a univariate optimization problem with a strongly convex and analytic objective
function, hence is easily solvable in practice. Note that a matrix inverse operation is required in the
univariate optimization above. Since in all iterations of the gradient method described in [21, 27],
the matrix A is exactly ∇2f(x) throughout and only the vector a varies, the matrix inverse operation
needs to be performed only once. As the gradient method in [21, 27] is linearly convergent, the total
computational cost of an ATS call is in the order of O(n3 + n2 log(ρ̄−1)).
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A Proofs of the lemmas in Section 4

We first establish an uniform lower bound as well as an upper bound for the sequence {Ak}.
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Lemma A.1 Let D be the distance of x0 to X∗. Suppose {Ak}ℓk=1 is generated from Algorithm 2, and
the algorithm has not stopped at iteration ℓ. Then for any integer 1 ≤ k ≤ ℓ, it holds that

Ak ≥
d!σl

(Ld +M)
(

2√
1−σ2

+ 2
)d−1

Dd−1

, (1.1)

and

Ak ≤ max







σ2D

2ǭ(1− σ2) ,
D

3d−1
2d (1 + σ)

1
d

(1− σ)(α−)
(d−1)
d(d−2)

(

1

ρ̄

)
d+1
d







. (1.2)

Proof. We first establish the lower bound. Since {Ak} is monotonically increasing, it suffices to lower
bound A1. Recall that A0 = 0 and A1 = A0+a1 = λ1, and the choice of large-step (3.7) in Algorithm 2
leads to

d!σl
Ld +M

≤ λ1‖y1 − x̃0‖d−1.

Moreover, Lemma 3.1 implies that

‖xk − x∗‖ ≤ D, and ‖yk − x∗‖ ≤
( 2√

1− σ2
+ 1
)

D, (1.3)

where x∗ is the projection of x0 onto the optimal solution set X∗. Combining the above two inequalities
with the fact that x̃0 = x0, it follows that

‖y1 − x̃0‖ ≤ ‖y1 − x∗‖+ ‖x∗ − x̃0‖ ≤
( 2√

1− σ2
+ 2
)

D.

Therefore,

A1 = λ1 ≥
d!σl

(Ld +M)
(

2√
1−σ2

+ 2
)d−1

Dd−1

,

which is a uniform lower bound of the sequence {Ak}.

Next, we provide the upper bound. By invoking (3.12) to (yk, vk, ǫk, λk, x̃k−1), it holds that

λk‖vk‖ ≤ (1 + σ)‖yk − x̃k−1‖, (1.4)

2λkǫk ≤ σ2‖yk − x̃k−1‖2. (1.5)

Then, combining (1.4) with (3.4) leads to

Akλk‖vk‖2 ≤ (1 + σ)2
Ak

λk
‖yk − x̃k−1‖2 ≤ (1 + σ)2

D2

1− σ2 . (1.6)

Moreover, it follows from (3.14) that

Ak

λ
d+1
d−1

k

≤
k
∑

j=1

Aj

λ
d+1
d−1

j

≤ D2

(1− σ2)(α−)
2

d−2
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where α− = d!σl
Ld+M . Combining the above two inequalities yields

(

Ak(1− σ2)(α−)
2

d−2

D2

)
d−1
d+1

‖vk‖2Ak ≤ λk‖vk‖2Ak ≤
1 + σ

1− σD,

or equivalently,

Ak ≤
D

3d−1
2d (1 + σ)

1
d

(1− σ)(α−)
(d−1)
d(d−2)

(

1

‖vk‖

)
d+1
d

. (1.7)

On the other hand, (1.5) together with (3.4) implies that

2Akǫk ≤
Ak

λk
σ2‖yk − x̃k−1‖2 ≤

σ2D

1− σ2 .

Consequently,

Ak ≤
σ2D

2(1− σ2)
1

ǫk
. (1.8)

Now, since the algorithm has not been terminated, we have either ‖vk‖ ≥ ρ̄ or ǫk ≥ ǭ, which combined
with (1.7) and (1.8) yields that

Ak ≤ max







σ2D

2ǭ(1− σ2) ,
D

3d−1
2d (1 + σ)

1
d

(1− σ)

(

1

α1

)
(d−1)
d(d−2)

(

1

ρ̄

)
d+1
d







,

and the conclusion follows. �

Below we prove Lemma 4.4 and Lemma 4.5 respectively.

Proof of Lemma 4.4. We first demonstrate that

β− ≤ β̄ = β(λ̄). (1.9)

Otherwise, we have β− ≥ β̄ and λ− > λ̄ as the function λ(β) is strictly increasing in β. This together
with Lemma 4.3 and the fact that λ−‖y− − x−‖ ≤ α−, implies that the vector vβ−

= ∇f(y−) −
∇fx−

(y−) + uβ−
satisfies

vβ−
∈ (∇f + (∂h)ǫ)(y−), ‖vβ−

‖ ≤ ρ̄, ǫ ≤ ǭ,

and thus the algorithm would have been terminated, yielding a contradiction. So we have β− ≤ β̄.
Since j ≥ log2(2/(1 − β̄)), we have

β+ = β− +
1

2j
≤ β̄ +

1− β̄
2

=
1 + β̄

2
< 1. (1.10)

Together with the monotonicity of the function λ(β) this implies that

λ+ ≤ λ
(

1 + β̄

2

)

= Ak

(

(1 + β̄)/2
)2

1− (1 + β̄)/2
= Ak

(

1 + β̄
)2

2(1 − β̄) = λ̄

(

1 + β̄
)2

β̄2
.
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Therefore, λ+ ≤ Ak
(1+β̄)

2

2(1−β̄)
≤
(

3
2

)2
Ak when β̄ ≤ 1

2 and λ+ ≤ λ̄
(1+β̄)

2

β̄2 ≤
(

2
1/2

)2
λ̄ when β̄ ≥ 1

2 .

Combining the bounds in both cases, we have

λ+ ≤ max
{

9Ak/4, 8λ̄
}

≤ max
{

Θ(ǭ−1), Θ
(

(ρ̄−1)
d+1
d

)

, Θ
(

(ǭ−1)
d−1
d+1

)

, Θ
(

(ρ̄−1)
d−1
d

)}

= max
{

Θ(ǭ−1), Θ
(

(ρ̄−1)
d+1
d

)}

,

where the second inequality is due to the upper bounds of λ̄ and Ak in (4.9) and (1.2) respectively. �

Proof of Lemma 4.5. Let v̄ := ū+ −∇fx+(ȳ+) +∇fx−
(ȳ+). Then v̄ ∈ (∇fx−

+ ∂h)(ȳ+). By (4.13)
and (4.14), it holds that

ȳ+ − ȳ− + λ+ū+ − λ−ū− = x+ − x−
⇐⇒ ȳ+ − ȳ− + λ−(ū+ − ū−) = (λ− − λ+)ū+ + x+ − x−
⇐⇒ ȳ+ − ȳ− + λ−(v̄ − ū−) = λ−(v̄ − ū+) + (λ− − λ+)ū+ + x+ − x−.

Recall that v̄ ∈ (∇fx−
+∂h)(ȳ+) and ū− ∈ (∇fx−

+∂h)(ȳ−), and from the convexity of fx−
+h it holds

that
〈ȳ+ − ȳ−, v̄ − ū−〉 ≥ 0.

Therefore,

λ−‖v̄ − ū−‖ ≤ ‖ȳ+ − ȳ− + λ−(v̄ − ū−)‖

=
∥

∥

∥
λ−(v̄ − ū+) + (λ− − λ+)ū+ + x+ − x−

∥

∥

∥

≤ λ−‖v̄ − ū+‖+
∣

∣λ− − λ+
∣

∣‖ū+‖+ ‖x+ − x−‖.

Using the previous identity and the triangle inequality of the norms implies that

λ2−‖ū+ − ū−‖ ≤ λ2−(‖ū+ − v̄‖+ ‖v̄ − ū−‖)
≤ 2λ2−‖v̄ − ū+‖+

∣

∣λ− − λ+
∣

∣λ−‖ū+‖+ λ−‖x+ − x−‖
≤ 2λ2−‖∇fx+(ȳ+)− fx−

(ȳ+)‖+
∣

∣λ− − λ+
∣

∣‖ȳ+ − x+‖+ λ−‖x+ − x−‖.

�

Next we shall present the lemmas with proofs that were used in Section 4.

Lemma A.2 Suppose λ+, λ−, β+ and β− are generated from Algorithm 3. When the nubmer of
iteration j in Algorithm 3 satisfying j ≥ log2(2/(1− β̄)) with β̄ = β(λ̄) and λ̄ defined in (4.9), we have

λ+ − λ− ≤
(

max
{

Θ
(

ǭ−1
)

, Θ
(

ρ̄−
d+1
d

)})2
(β+ − β−). (1.11)

Proof. Since j ≥ log2(2/(1− β̄)), inequality (1.10) holds. By the mean-value theorem and the definition
of λ(β), there exists η ∈ (β−, β+) such that

λ+ − λ− = Ak

(

1

(1− η)2 − 1

)

(β+ − β−) ≤ Ak

(

4

(1− β̄)2 − 1

)

(β+ − β−),
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where the inequality is due to (1.10). Recall that

β̄ =

√

λ̄2 + 4λ̄Ak − λ̄
2Ak

=
2λ̄

√

λ̄2 + 4λ̄Ak + λ̄
.

The relation of β and λ in (4.1) gives

Ak

(1− β̄)2 =
λ̄2

Akβ̄4
=

(
√

λ̄2 + 4λ̄Ak + λ̄)4

16Akλ̄2
≤ (λ̄+ 4Ak)

2

Ak
.

Therefore, by invoking (4.9), (1.1) and (1.2), we have

λ+ − λ−

≤ Ak

(

4

(1− β̄)2 − 1

)

(β+ − β−)

≤ 4Ak

(1− β̄)2 (β+ − β−)

≤ 4(λ̄+ 4Ak)
2

Ak
(β+ − β−)

≤
(

max
{

Θ
(

(ǭ−1)
d−1
d+1

)

, Θ
(

(ρ̄−1)
d−1
d

)}

+max
{

Θ
(

ǭ−1
)

, Θ
(

(ρ̄−1)
d+1
d

)})2
(β+ − β−)

≤
(

max
{

Θ
(

ǭ−1
)

, Θ
(

(ρ̄−1)
d+1
d

)})2
(β+ − β−).

�

The following lemma is exactly Proposition 4.5 in [23].

Lemma A.3 Let A : Rs ⇒ R
s be a maximal monotone operator. Then for any x, x̃ ∈ R

s, we have

‖(I + λA)−1(x)− (I + λA)−1(x̃)‖ ≤ ‖x− x̃‖. (1.12)

Moreover, if x∗ ∈ A−1(0) then

max{‖(I + λA)−1(x)− x‖, ‖(I + λA)−1(x)− x∗‖} ≤ ‖x− x∗‖. (1.13)

Now we can bound the residual in terms of the distance between current iterate and an optimal solution.

Lemma A.4 Let T := ∇f + ∂h and Tx := ∇fx+ ∂h. Assume that x∗ ∈ T−1(0) = (∇f + ∂h)−1(0) and
let x̄, x ∈ R

n be given. Then,

‖x− (I + λTx̄)
−1(x)‖ ≤ ‖x− x∗‖+

λ(Ld +M)

d!
‖x̄− x∗‖d. (1.14)

As a consequence, for every x ∈ R
n, x∗ ∈ T−1(0), and λ > 0, it holds that

λ‖x− (I + λTx̄)
−1(x)‖d−1 ≤ λ

(

‖x− x∗‖+
λ(Ld +M)

d!
‖x− x∗‖d

)d−1

. (1.15)
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Proof. Let r be a constant mapping such that r(x) = ∇f(x∗)−∇fx̄(x∗) for any x ∈ R
n. Then, construct

A := Tx̄ + r, where A is also a maximal monotone operator. By Lemma A.3,

‖(I + λA)−1(x)− x‖ ≤ ‖x− x∗‖. (1.16)

Let y = x+ λ(∇f(x∗)−∇fx̄(x∗)) and z = (I + λr + λTx̄)
−1 (y). We have

x+ λ(∇f(x∗)−∇fx̄(x∗)) = y = (I + λr + λTx̄) (z) = z + λ(∇f(x∗)−∇fx̄(x∗)) + λTx̄(z).

Canceling λ(∇f(x∗)−∇fx̄(x∗)) on both sides leads to

(I + λTx̄)
−1(x) = z = (I + λr + λTx̄)

−1 (y) = (I + λA)−1(y).

Combining the above inequality with (1.16) and Lemma 2.1 we have

‖x− (I + λTx̄)
−1(x)‖ = ‖x− (I + λA)−1(y)‖

≤ ‖x− (I + λA)−1(x)‖ + ‖(I + λA)−1(x)− (I + λA)−1(y)‖
≤ ‖x− x∗‖+ λ‖∇f(x∗)−∇fx̄(x∗)‖

≤ ‖x− x∗‖+
λ(Ld +M)

d!
‖x̄− x∗‖d,

which proves (1.14), and (1.15) follows from (1.14) straightforwardly. �

Lemma A.5 Suppose x+ = xβ+ and x− = xβ−
are generated from Algorithm 3, and ȳ+, ȳ− are defined

in (4.12). When the number of iterations j in Algorithm 3 satisfies j ≥ log2(2/(1 − β̄)) with β̄ = β(λ̄)
and λ̄ defined in (4.9), we have

‖x+ − x−‖ ≤
(

2 +
2√

1− σ2
)

D(β+ − β−), ‖x+ − ȳ+‖ ≤ max
{

Θ(ǭ−1), Θ
(

ρ̄−
d+1
d

)}

and
‖x− − ȳ−‖ ≤ max

{

Θ
(

ǭ−
d−1
d+1

)

, Θ
(

ρ̄−
d−1
d

)}

.

Proof. Let x∗ be the projection of x0 onto the optimal solution set X∗. According to Lemma 3.1, it
holds that

‖xk − x∗‖ ≤ D and ‖yk − x∗‖ ≤
( 2√

1− σ2
+ 1
)

D.

By (4.2), we have x+ = (1− β+)yk + β+xk and x− = (1− β−)yk + β−xk. Therefore,

‖x+ − x∗‖ ≤ D, and ‖x− − x∗‖ ≤
( 2√

1− σ2
+ 1
)

D, (1.17)

and

‖x+ − x−‖ = ‖(β+ − β−)(xk − yk)‖ ≤ (‖xk − x∗‖+ ‖yk − x∗‖)(β+ − β−)

≤
(

2 +
2√

1− σ2
)

D(β+ − β−).
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Recall that in the proof of Theorem 4.1, we showed that when j ≥ log2(2/(1−β̄)), β− ≤ β̄ and inequality
(4.10) holds. Applying Lemma A.4 with x = x̄ = x+, inquality (4.10) and (4.5), we have

‖x+ − y+‖ ≤ (1 + σ̂)‖x+ − x∗‖+ (1 + σ̂)
λ+Ld

d!
‖x+ − x∗‖d+1 ≤ max

{

Θ(ǭ−1), Θ
(

ρ̄−
d+1
d

)}

.

Since λ(β) is monotonically increasing in β, β− ≤ β̄ amounts to

λ− ≤ λ̄ = max
{

Θ
(

ǭ−
d−1
d+1

)

, Θ
(

ρ̄−
d−1
d

)}

.

Finally, applying Lemma A.4 again with x = x̄ = x− and using (4.5) yields

‖x− − y−‖ ≤ (1 + σ̂)‖x− − x∗‖+ (1 + σ̂)
λ−Ld

d!
‖x− − x∗‖d+1 ≤ max

{

Θ
(

ǭ−
d−1
d+1

)

, Θ
(

ρ̄−
d−1
d

)}

.

�

Lemma A.6 Suppose that x+ = xβ+ and x− = xβ−
are generated by Algorithm 3, and ȳ+, ȳ− are

defined in (4.12). If the number of iterations j in Algorithm 3 satisfies j ≥ log2(2/(1 − β̄)) with
β̄ = β(λ̄) and λ̄ defined in (4.9), then we have

‖∇fx+(ȳ+)−∇fx−
(ȳ+)‖ ≤ max

{

Θ
(

ǭ−d+1
)

, Θ
(

ρ̄−
(d−1)(d+1)

d

)}

(β+ − β−).

Proof. According to the definition of function fx(·) in (2.4), it holds that

‖∇fx−
(ȳ+)−∇fx+(ȳ+)‖

=

∥

∥

∥

∥

∥

d
∑

ℓ=1

1

(ℓ− 1)!

(

∇ℓf(x+)[ȳ+ − x+]ℓ−1 −∇ℓf(x−)[ȳ+ − x−]ℓ−1
)

+
M

d!

(

‖ȳ+ − x−‖d−1(y+ − x−)− ‖ȳ+ − x+‖d−1(ȳ+ − x+)
)

∥

∥

∥

∥

∥

≤
d
∑

ℓ=1

1

(ℓ− 1)!

∥

∥

∥
∇ℓf(x+)[ȳ+ − x+]ℓ−1 −∇ℓf(x−)[ȳ+ − x−]ℓ−1

∥

∥

∥
(1.18)

+
M

d!

∥

∥

∥
‖ȳ+ − x−‖d−1(y+ − x−)− ‖ȳ+ − x+‖d−1(ȳ+ − x+)

∥

∥

∥
. (1.19)
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Note that (1.19) can be further bounded as follows:

M

d!

∥

∥

∥
‖ȳ+ − x−‖d−1(ȳ+ − x−)− ‖ȳ+ − x+‖d−1(ȳ+ − x+)

∥

∥

∥

=
M

d!

∥

∥

∥
(‖ȳ+ − x−‖d−1 − ‖ȳ+ − x+‖d−1)(ȳ+ − x−) + ‖ȳ+ − x+‖d−1(x+ − x−)

∥

∥

∥

≤ M

d!

(

(d− 1)
∣

∣

∣‖ȳ+ − x−‖ − ‖ȳ+ − x+‖
∣

∣

∣max {‖ȳ+ − x−‖, ‖ȳ+ − x+‖}d−2 ‖ȳ+ − x−‖

+‖ȳ+ − x+‖d−1‖x+ − x−‖
)

≤ M

d!

(

(d− 1)max {‖ȳ+ − x−‖, ‖ȳ+ − x+‖}d−2 ‖ȳ+ − x−‖+ ‖ȳ+ − x+‖d−1
)

‖x+ − x−‖

≤ M

d!

(

d
(

‖ȳ+ − x+‖+ ‖x+ − x−‖
)d−1

)(

2 +
2√

1− σ2
)

D(β+ − β−)

≤ max
{

Θ
[

(ǭ−1)d−1
]

,Θ
[

(ρ̄−1)
(d+1)(d−1)

d

]

}

(β+ − β−) (1.20)

where the first inequality is due to (4.16), and the second last inequality is from Lemma A.5, and that
‖ȳ+ − x−‖ ≤ ‖ȳ+ − x+‖+ ‖x+ − x−‖.

It remains to bound (1.18). We first show by induction that for 1 ≤ ℓ ≤ d and any convex combination
of x−, x+ and x∗ denoted by z,

‖∇ℓf(z)‖ ≤ Θ(1), (1.21)

‖∇ℓf(x+)−∇ℓf(x−)‖ ≤ Θ(1)(β+ − β−). (1.22)

Our induction works backwardly starting from the base case: ℓ = d. Recall that z is a convex combina-
tion of x−, x+ and x∗. By (1.17) we have

‖z − x∗‖ ≤ max{‖x+ − x∗‖, ‖x− − x∗‖} ≤ Θ(1).

Therefore,

‖∇df(z)‖ ≤ ‖∇df(x∗)‖+ ‖∇df(x∗)−∇df(z)‖
≤ ‖∇df(x∗)‖+ Ld‖z − x∗‖
≤ Θ(1).

Moreover, by invoking (2.2) and Lemma A.5, we have

‖∇df(x+)−∇df(x−)‖ ≤ Ld‖x+ − x−‖

≤ Ld

(

2 +
2√

1− σ2
)

D(β+ − β−) ≤ Θ(1)(β+ − β−).

Now suppose that the conclusion holds for some ℓ+ 1. Consider

z = t1x− + t2x+ + (1 − t1 − t2)x∗, ∀ 0 ≤ t1, t2 ≤ 1.
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Denote D1 :=
(

2 + 2√
1−σ2

)

D. By letting xt = t1
t1+t2

x− + t2
t1+t2

x+ and (1.17), we have ‖xt − x∗‖ ≤

‖x− − x∗‖+ ‖x+ − x∗‖ ≤
(

2 + 2√
1−σ2

)

D = D1. Consequently,

‖∇ℓf(z)−∇ℓf(x∗)‖ = ‖∇ℓf(x∗ + (t1 + t2)(xt − x∗))−∇ℓf(x∗)‖

=

∥

∥

∥

∥

∫ t1+t2

0
∇ℓ+1f (x∗ + u(xt − x∗)) [xt − x∗]du

∥

∥

∥

∥

≤
∫ t1+t2

0
‖∇ℓ+1f (x∗ + u(xt − x∗)) ‖‖xt − x∗‖du

≤ (t1 + t2)D1Θ(1),

where the second last inequality is due to (2.1) and the last inequality follows from the induction
hypothesis on (1.21). Then, it follows that

‖∇ℓf(z)‖ ≤ ‖∇ℓf(x∗)‖+ (t1 + t2)D1Θ(1) ≤ Θ(1).

Now by induction on (1.21), applying Lemma A.5 and using (2.1) we have

‖∇ℓf(x+)−∇ℓf(x−)‖ =
∥

∥

∥

∫ 1

0
∇ℓ+1f(x− + t(x+ − x−))[x+ − x−]dt

∥

∥

∥

≤ Θ(1)D1(β+ − β−)
≤ Θ(1)(β+ − β−).

Therefore, by induction it follows that (1.21) and (1.22) hold for any 1 ≤ ℓ ≤ d.

Now we come back to bound (1.18). For 2 ≤ ℓ ≤ d,
∥

∥

∥∇ℓf(x+)[ȳ+ − x+]ℓ−1 −∇ℓf(x−)[ȳ+ − x−]ℓ−1
∥

∥

∥

≤
∥

∥

∥
∇ℓf(x+)[ȳ+ − x+]ℓ−1 −∇ℓf(x+)[ȳ+ − x−]ℓ−1

∥

∥

∥

+
∥

∥

∥
∇ℓf(x+)[ȳ+ − x−]ℓ−1 −Dℓf(x−)[ȳ+ − x−]ℓ−1

∥

∥

∥
. (1.23)

Applying Lemma A.5 and (1.21), the first term on the right hand side of (1.23) can be further upper
bounded as follows:

∥

∥

∥
∇ℓf(x+)[ȳ+ − x+]ℓ−1 −∇ℓf(x+)[ȳ+ − x−]ℓ−1

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

ℓ−1
∑

j=1

∇ℓf(x+)
[

[ȳ+ − x+]j−1[x− − x+][ȳ+ − x−]ℓ−j−1
]

∥

∥

∥

∥

∥

∥

≤
ℓ−1
∑

j=1

‖∇ℓf(x+)‖‖ȳ+ − x+‖j−1‖ȳ+ − x−‖ℓ−j−1‖x+ − x−‖

≤
ℓ−1
∑

j=1

Θ(1)‖ȳ+ − x+‖j−1
(

‖x+ − ȳ+‖+ ‖x− − x+‖
)ℓ−j−1

‖x+ − x−‖

≤ (ℓ− 1)Θ(1)
(

‖x+ − x−‖+ ‖x+ − ȳ+‖
)ℓ−2

D1(β+ − β−)

≤ max
{

Θ
[

(ǭ−1)ℓ−2
]

,Θ
[

(ρ̄−1)
(d+1)(ℓ−2)

d
]

}

(β+ − β−). (1.24)
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Moreover, applying Lemma A.5, (1.21) and (2.1) to the second term on the right hand side of (1.23)
gives that

∥

∥

∥
∇ℓf(x+)[ȳ+ − x−]ℓ−1 −∇ℓf(x−)[ȳ+ − x−]ℓ−1

∥

∥

∥

≤ ‖∇ℓf(x+)−∇ℓf(x−)‖‖ȳ+ − x−‖ℓ−1

≤ Θ(1)(β+ − β−)
(

‖x+ − x−‖+ ‖x+ − ȳ+‖
)ℓ−1

≤ max
{

Θ
[

(ǭ−1)ℓ−1
]

,Θ
[

(ρ̄−1)
(d+1)(ℓ−1)

d

]

}

(β+ − β−). (1.25)

Putting (1.23), (1.24) and (1.25) together yields

∥

∥

∥∇ℓf(x+)[y+ − x+]ℓ−1 −∇ℓf(x−)[y+ − x−]ℓ−1
∥

∥

∥

≤ max
{

Θ
[

(ǭ−1)ℓ−1
]

,Θ
[

(ρ̄−1)
(d+1)(ℓ−1)

d
]

}

(β+ − β−)

for ℓ = 2, ..., d. When ℓ = 1, (1.22) guarantees that

‖∇f(x+)−∇f(x−)‖ ≤ Θ(1)(β+ − β−).

Therefore, the quantity in (1.18) can be bounded as

d
∑

ℓ=1

1

(ℓ− 1)!

∥

∥

∥
∇ℓf(x+)[ȳ+ − x+]ℓ−1 −∇ℓf(x−)[ȳ+ − x−]ℓ−1

∥

∥

∥

≤ max
{

Θ
[

(ǭ−1)d−1
]

,Θ
[

(ρ̄−1)
(d+1)(d−1)

d
]

}

(β+ − β−). (1.26)

Finally, replacing (1.19) and (1.18) with (1.20) and (1.26) respectively leads to the desired conclusion.
�
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