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Abstract. This paper suggests two novel ideas to develop new proximal variable-metric methods for solving
a class of composite convex optimization problems. The first idea is a new parameterization of the optimality
condition which allows us to develop a class of homotopy proximal variable-metric methods. We show that under
appropriate assumptions such as strong convexity-type and smoothness, or self-concordance, our new schemes can
achieve finite global iteration-complexity bounds. Our second idea is a primal-dual-primal framework for proximal-
Newton methods which can lead to some useful computational features for a subclass of nonsmooth composite
convex optimization problems. Starting from the primal problem, we formulate its dual problem, and use our
homotopy proximal Newton method to solve this dual problem. Instead of solving the subproblem directly in the
dual space, we suggest to dualize this subproblem to go back to the primal space. The resulting subproblem shares
some similarity promoted by the regularizer of the original problem and leads to some computational advantages.
As a byproduct, we specialize the proposed algorithm to solve covariance estimation problems. Surprisingly, our
new algorithm does not require any matrix inversion or Cholesky factorization, and function evaluation, while it
works in the primal space with sparsity structures that are promoted by the regularizer. Numerical examples on
several applications are given to illustrate our theoretical development and to compare with state-of-the-arts.
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1. Introduction.
Problem statement. We are interested in the following composite convex minimization tem-

plate that covers various of applications in different fields including statistics, machine learning,
image and signal processing, and engineering [3, 4, 8, 9, 15, 49]:

(1) F ? := min
x∈Rp

{
F (x) := f(x) + g(x)

}
,

where f : Rp → R∪{+∞} and g : Rp → R∪{+∞} are proper, closed, and convex functions. Here,
f often represents a loss function or a data fidelity term, while g is considered as a regularizer or
a penalty to promote some desired structures of the final solutions.

Motivation. This paper aims at addressing two questions arisen from numerical methods
for solving (1). The first question concerns the global iteration-complexity of second-order-type
methods. It is well-known that second-order methods such as Newton-type algorithms have fast
local convergence rates under certain assumptions. In particular, the classical Newton method
can achieve a local quadratic convergence rate under the local Lipschitz continuity of the Hessian
around an optimal solution and the regularity of such an optimal solution [14]. However, global
convergence behaviors as well as global convergence rates and iteration-complexity estimates
of second-order-type methods have not yet been well understood. Recent attempts to address
the aforementioned issues have been made for Newton-type methods [42, 44, 45], but they are
still limited to some subclasses of problems such as self-concordant and global Lipschitz Hessian
functions. In the first part of this paper, we address the following question.

• When can we design second-order-type methods that achieve global iteration-complexity?
Unfortunately, we do not have a complete answer for this question. However, we identify three
different subclasses of (1) where we can develop new proximal variable-metric methods to achieve
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a global iteration-complexity. Our algorithms can solve nonsmooth instances of (1), but require f
to be smooth and satisfy other additional mild conditions that are different from existing methods.

In the second part of this paper, we address another situation of (1). We observe that existing
methods for solving nonsmooth instances of (1) can be classified into the following categories:

(a) If f is smooth with the Lipschitz gradient and g is nonsmooth but proximally tractable
as defined in Subsection 2.2, then accelerated proximal-gradient methods achieve optimal
convergence rate of O

(
1
k2

)
, where k is the iteration counter. If f is twice differentiable,

and its Hessian is Lipschitz continuous [34] or self-concordant [41], then we can apply
proximal-Newton methods [34, 59, 61] to efficiently solve (1).

(b) If both f and g are proximally tractable, then operator splitting schemes such as Douglas-
Rachford’s methods can be used to efficiently solve (1) but with a sublinear rate [3, 12].

(c) If g(x) = ψ(Dx) for a given linear operator D, and both f and ψ are proximally tractable,
then primal-dual methods such as Chambolle-Pock’s and primal-dual hybrid gradient
methods, and alternating direction methods of multipliers (ADMM) can be applied to
(1). These methods also achieve a sublinear rate in general.

We instead consider the following subclass of (1), where
(d) f is self-concordant as defined in Definition 12; and g is given by g(x) = ψ(Dx), where

D is a linear operator, and ψ is nonsmooth and convex, but proximally tractable.
Under this setting, existing methods such as proximal-gradient-type schemes are often not

efficient for solving (1) due to the expensive evaluation of the proximal operator of g. We address
the following research question:

• What is an appropriate solution method to solve (1) under the conditions stated in the
subclass (d)?

This question may have multiple answers. One can apply some primal-dual methods to solve it.
However, these methods only have a sublinear convergence rate. We instead propose a primal-
dual-primal approach to solve (1) which consists of the following steps:

1. Construct the Fenchel dual problem of (1) when g(x) = ψ(Dx).
2. Apply our homotopy proximal-Newton method in the first part to solve the dual problem.
3. Instead of solving the dual subproblem, we dualize it to go back to the primal space.
4. Construct an approximate primal solution of (1) from its dual approximate solution.

The idea of using primal-dual approach is classical, but our primal-dual-primal method has various
computational advantages as well as a linear convergence rate when it is applied to the subclass
(d) of (1). As a motivating example, we will show in Section 6.6 that this approach is very suitable
for covariance estimation problem (2) below.

Examples. Apart from two research questions above, our paper is also motivated by several
prominent applications. Let us recall a few concrete examples of (1):

1. Covariance estimation models: If f(X) := − log det(X) + trace (ΣX) in (1), where
Σ is a given symmetric matrix, then (1) covers both covariance and inverse covariance
estimation problems in the literature depending on the choice of g [2, 18, 32]:

(2) φ? := min
X�0

{
φ(X) := trace (ΣX)− log det(X) + g(X)

}
,

2. Poisson log-likelihood models: If we choose f(x) :=
∑n
i=1

(
a>i x− yi log(a>i x)

)
, where

{(ai, yi)}ni=1 is a given dataset, then (1) covers Poisson log-likelihood models used in
medical imaging, see, e.g., [35].

3. Regularized logistic regression: If we choose f(x) := 1
n

∑n
i=1 log(1 + exp(−yi(a>i x))) +

µf
2 ‖x‖

2
2, where {(ai, yi)}ni=1 is a given dataset, and µf > 0 is a regularization parameter,

then (1) covers the well-known logistic models including both sparse and group sparse
settings under an appropriate choice of g.

4. Poisson regression: If f(x) := 1
n

∑n
i=1

(
−yi exp(− 1

2a
>
i x) + exp( 1

2a
>
i x)

)
+

µf
2 ‖x‖

2, where
{(ai, yi)}ni=1 is given, then we obtain a Poisson regression problem as studied in [27, 29].

5. Distance-weighted discrimination (DWD): If f(x) := 1
n

∑n
i=1

1
(a>i x+µi)q

+
µf
2 ‖x‖

2
2, for
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some fixed order q > 0, then this model can be considered as a slight modification of the
distance-weighted discrimination (DWD) for binary classification studied in [33, 40].

Many other applications of (1) that fit our assumptions can be found, for example in [11, 48, 61].
Literature review. Problem (1) is well studied in the literature under different assumptions

on f and g. Hitherto, several methods have been proposed for solving (1). Such methods include
disciplined convex programming [22, 64], proximal gradient and accelerated proximal gradient
[4, 41, 43], proximal Newton-type [6, 34, 61], splitting and alternating optimization [8, 15, 20, 68],
primal-dual [9, 58], coordinate descent [16, 50, 46, 65], conditional gradient [23, 28], stochastic
gradient-type methods [1, 13, 47, 53, 66], and incremental proximal gradient schemes [7].

Existing first-order methods for solving (1) heavily rely on the assumption that f has Lipschitz
gradient [41] and the proximal tractability of g [3, 49] as defined in Subsection 2.2. Another
common subclass of (1) is that g(x) = ψ(Dx) for a given linear operator D, and both f and
ψ are proximally tractable. Under this setting, operator splitting and primal-dual approaches
can be applied to solve (1). Notable works in this direction include primal-dual hybrid gradient
schemes, Chambolle-Pock’s methods, Douglas-Rachford and Vu-Condat splitting algorithms, and
alternating direction methods of multipliers [3, 8, 9, 15, 21]. While first-order methods offer a low
per-iteration computational complexity, they often require a large number of iterations and have
a sublinear convergence rate. In addition, their efficiency also depends sensitively on the scaling
and conditioning of the problem [19].

Proximal second-order methods such as proximal quasi-Newton [6, 30, 54] and proximal-
Newton methods [34, 61] often achieve a high accuracy solution and have good local convergence
rate but they usually have high per-iteration computational complexity. In proximal second-
order-type methods, the trade-off between iteration-complexity and per-iteration computational
complexity is crucial to obtain a good performance. Some existing works such as [6, 25, 26, 30, 59,
61] have provided evidence showing that second-order methods outperform first-order methods for
some important subclasses of (1). The recent work [31] also studied the global linear convergence
of Newton methods, but using a different concept called “c-Hessian stable”. Nevertheless, it is
completely different from our approach.

Our approach. Our approach here relies on a combination of different ideas. The first
idea is the homotopy method, which has been used in interior-point methods [41] and recently
in path-following proximal Newton algorithms [60], where the main iterations rely on a scaled
proximal Newton scheme [60]. The second idea is a new parameterization of the optimality
condition of (1) as presented in Subsection 3.1. Our third idea is inspired by the generalized
self-concordance concept introduced in [56]. The last one is a primal-dual-primal framework that
we have mentioned above.

Our contribution. Our contribution can be summarized as follows.
(a) We suggest a new parameterization for the optimality condition of (1) as a framework

to study homotopy proximal variable-metric methods for solving different subclasses of
(1). This framework covers homotopy proximal-gradient, proximal quasi-Newton, and
proximal-Newton methods, and their inexact variants as special cases.

(b) We propose a homotopy proximal variable-metric scheme, Algorithm 1, to solve (1) based
on our new parameterization strategy. We show that this scheme achieves a global linear
convergence rate under the strong convexity and Lipschitz gradient assumptions w.r.t.
a local norm, and the Lipschitz continuity of g. We also propose an inexact homotopy
proximal-Newton method to solve (1). Under the self-concordant property of f , and either
the Lipschitz continuity of g or the barrier property of f , our algorithm can also achieve
a finite global iteration-complexity estimate. With an appropriate choice of initial points
or suitable assumptions on f and/or g, our method can achieve a linear convergence rate.

(c) We propose a primal-dual-primal approach for a subclass of (1) where f is self-concordant.
This approach produces a new homotopy primal-dual proximal-Newton algorithm which
can also achieve a linear convergence rate under given assumptions.
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(d) We specialize our algorithm to solve a special case (2) of (1) known as a regularized
covariance estimation problems studied in [2, 18, 25, 26, 32, 59, 61]. This algorithmic
variant possesses the following new features compared to existing works [25, 26, 59, 61].
First, it is applicable to any regularizer g instead of just the `1-norm as in [25, 26]. Second,
it deals with the dual form of (2), while allowing one to reconstruct an approximate
primal solution for (2). Third, it does not require any Cholesky factorization or matrix
inversion as in [59] by working on the dual form. Fourth, the subproblem for computing
proximal Newton directions is in the primal space of X which has some special structures
as promoted by the regularizer g instead of in the dual space where the dual variable
has structures that are correspondingly promoted by the conjugate g∗. The last point is
important computationally when g promotes the sparsity or low-rankness of the solutions.

Let us emphasize the following aspects of our contribution. Firstly, our new parameterization
strategy can potentially be used to develop new numerical methods for different subclasses of
(1) instead of only the four cases studied in this paper. Secondly, our path-following scheme for
finding an appropriate initial point of Algorithm 1 is independent of a starting point as shown in
Theorem 9. Thirdly, even for a strongly convex and Lipschitz gradient function f , our homotopy
scheme has advantages in sparse optimization as discussed in Section 4.1. Fourthly, (1) is different
from the barrier formulation considered in [60], where we do not use any penalty parameter for f
in (1) as compared to [60]. In addition, [60] is aimed at solving constrained convex optimization
problems where the barrier is induced from the feasible set. Finally, for the covariance estimation
problem (2), our method shares some similarity with [25, 26, 59, 60], but it is still fundamentally
different. While [25, 26] focused on the sparse instance of (2), we consider a more general form in
(1) that covers this example as a special case. Our algorithm and its convergence guarantee are
completely different and rely on a different approach compared to [25, 26]. It has an iteration-
complexity analysis for a genera g, while the analysis in [25, 26] rely critically on the special
structure of the `1-norm for g.

Paper organization. In Section 2, we recall some preliminary results used in this paper. Sec-
tion 3 presents a new parameterization for the optimality condition of (1) and a conceptual three-
stage proximal variable-metric framework, Algorithm 1, for solving (1). Section 4 analyzes the
convergence of Algorithm 1 under three sets of assumptions. Section 5 proposes some procedures
to find an appropriate starting point for Algorithm 1. Section 6 proposes a primal-dual-primal
method for solving a nonsmooth subclass of (1), and its application to the covariance estimation
problem (2). Section 7 provides several numerical experiments to illustrate our theoretical results.
All technical proofs are deferred to the appendices.

2. Preliminaries: Scaled proximal operators and optimality condition. In this sec-
tion, we recall some basic concepts which will be used in the sequel.

2.1. Basic notation and concepts. We work on the vector space Rp equipped with the
standard inner product 〈·, ·〉 and the corresponding Euclidean norm ‖·‖2. We use Sp++ to denote
the set of all symmetric positive definite matrices in Rp×p. For a given H ∈ Sp++, we use ‖x‖H :=

〈Hx, x〉1/2 to denote the weighted norm. The corresponding dual norm is ‖y‖∗H = 〈H−1y, y〉1/2.
For a subset X , int (X ) denotes the interior of X , and ∂X denotes its boundary. Let f : Rp →

R ∪ {+∞} be a convex function. As usual, dom(f) denotes the effective domain of f , and ∂f
denotes its subdifferential [51]. If f is twice differentiable, then ∇f and ∇2f denote its gradient
and Hessian, respectively. For a given twice differentiable convex function f , if x ∈ dom(f) such
that ∇2f(x) � 0, we define a local norm and its dual norm associated with f as in [44]:

(3) ‖u‖x := 〈∇2f(x)u, u〉1/2 and ‖v‖∗x := 〈∇2f(x)−1v, v〉1/2,

for any u, v ∈ Rp. Clearly, 〈u, v〉 ≤ ‖u‖x ‖v‖
∗
x. This is the weighted norm with H = ∇2f(x). For a

real number a, we use bac to denote the integer less than or equal to a. We use [a]+ := max {0, a}
for any real number a.
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Given a nonempty convex set X in Rp, and a point x ∈ Rp, the distance from x to X
corresponding to the weighted-norm ‖·‖H is defined as dist (x,X ) := infy∈X ‖x− y‖H . For a

given convex function f , we say that f is µf -strongly convex if f(·) − µf
2 ‖·‖

2
2 remains convex,

where µf > 0 is called the strong convexity parameter of f . We say that f is Lf -smooth (i.e.,
Lipschitz gradient continuous) if f is differentiable on dom(f) and ∇f is Lipschitz continuous with
a Lipschitz constant Lf ∈ [0,+∞), i.e., ‖∇f(x) − ∇f(y)‖2 ≤ Lf‖x − y‖2 for all x, y ∈ dom(f).

We denote the class of µf -strongly convex and Lf -smooth functions by F1,1
L,µ. A convex function

g is Lipschitz continuous on dom(g) with a Lipschitz constant Lg ∈ [0,+∞) if |g(x) − g(y)| ≤
Lg‖y − x‖2 for all x, y ∈ dom(g).

2.2. Scaled proximal operators. Let g : Rp → R∪{+∞} be a proper, closed, and convex
function, and H ∈ Sp++. We define the following scaled proximal operator [17] of g:

(4) proxHg (x) := arg min
u∈Rp

{
g(u) + 1

2‖u− x‖
2
H

}
.

The optimality condition of this minimization problem is 0 ∈ H(proxHg (x)− x) + ∂g(proxHg (x)),

which can be written as x ∈ (I+H−1∂g)(proxHg (x)), or proxHg (x) = (I+H−1∂g)−1(x). When H =
1
γ I, where γ > 0 and I is the identity matrix, proxHg (·) becomes a classical proximal operator [3, 49],

and is usually denoted by proxγg(·). An important property of proxHg is its nonexpansiveness

(5) ‖proxHg (x)− proxHg (y)‖H ≤ ‖x− y‖H ,

for any x, y in Rp. We say that g is proximally tractable if proxHg (·) can be efficiently evaluated, e.g.,
in a closed form or by a low-order polynomial time algorithm (e.g., O (p log(p))). Computational
methods for evaluating this scaled proximal operator and its classical forms can be easily found
in the literature including [17, 49].

2.3. Lipschitz continuity w.r.t. local norm. Let ‖ ·‖x and its dual norm ‖·‖∗x be defined
by a strictly smooth convex function f : Rp → R, and g : Rp → R ∪ {+∞} be a proper, closed,
and convex function.

Definition 1. We say that g is Lg-Lipschitz continuous w.r.t. ‖·‖x with a Lipschitz constant
Lg ∈ [0,+∞), if for any x, y, z ∈ dom(f) ∩ dom(g), we have |g(y)− g(z)| ≤ Lg‖y − z‖x.

As a concrete example, assuming that f(x) = 1
2x
>Qx + q>x is a strongly convex quadratic

function, then g is Lipschitz continuous in `2-norm if and only if g is Lipschitz continuous w.r.t.
the local norm defined by f .

Lemma 2. A proper, closed, and convex function g is Lg-Lipschitz continuous w.r.t. ‖ · ‖x
with a Lipschitz constant Lg on dom(f) ∩ dom(g) if and only if ‖∇g(y)‖∗x ≤ Lg for any x, y ∈
dom(f) ∩ dom(g) and ∇g(y) ∈ ∂g(y).

In particular, if f is strongly convex with a strong convexity parameter µf > 0 and g is
Lipschitz continuous in `2-norm with a Lipschitz constant L̄g ≥ 0 (i.e. |g(y)− g(z)| ≤ L̄g‖y−z‖2
for any y, z ∈ dom(f)∩dom(g)), then g is Lg-Lipschitz continuous w.r.t. ‖·‖x on dom(f)∩dom(g)

with the Lipschitz constant Lg :=
L̄g√
µf

. However, the converse statement does not hold in general.

Proof. For any x, y ∈ dom(f) ∩ dom(g) and ∇g(y) ∈ ∂g(y), we have

‖∇g(y)‖∗x = max {〈∇g(y), z − y〉 | ‖z − y‖x ≤ 1}
≤ max {|g(z)− g(y)| | ‖z − y‖x ≤ 1}
≤ Lg max {‖z − y‖x | ‖z − y‖x ≤ 1} = Lg.

Conversely, by convexity of g, we have g(y) − g(z) ≤ 〈∇g(y), y − z〉 ≤ ‖∇g(y)‖∗x ‖y − z‖x ≤
Lg‖y − z‖x. By exchanging y and z, we finally get |g(z)− g(y)| ≤ Lg‖z − y‖x.
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If f is strongly convex with a strong convexity parameter µf > 0, then we have ∇2f(x) � µf I
for any x ∈ dom(f). Therefore, we have ‖y−z‖2 ≤ 1√

µf
‖y − z‖x. This shows that |g(y)−g(z)| ≤

L̄g‖y − z‖2 ≤ L̄g√
µf
‖y − z‖x. Hence, g is Lg-Lipschitz continuous w.r.t. ‖ · ‖x with Lg :=

L̄g√
µf

.

As an example, if dom(g) is contained in an affine subspace defined by L := {x ∈ Rp | Ax = b},
and ∇2f(x) is uniformly positive definite on L, then g is Lg-Lipschitz and Lemma 2 still holds, but
f is still non-strongly convex. In this case, we say that f is restricted strongly convex. Lemma 2
shows that the Lipschitz continuity w.r.t. the local norm ‖ · ‖x of f is weaker than the global
Lipschitz continuity of g since we only require the condition to hold on dom(f) ∩ dom(g).

2.4. Fundamental assumption and optimality condition. Throughout this paper, we
rely on the following fundamental assumption:

Assumption 1. dom(F ) :=dom(f) ∩ dom(g) 6=∅. The solution set X ? of (1) is nonempty.

Assumption 1 is a standard one that is required in any solution method. Throughout this paper,
we assume that Assumption 1 holds without recalling it.

The optimality condition associated with (1) becomes

(6) 0 ∈ ∇f(x?) + ∂g(x?).

This condition is necessary and sufficient for x? to be an optimal solution of (1). For any H ∈ Sp++,
we can reformulate this optimality condition as a fixed-point condition:

x? = proxHg
(
x? −H−1∇f(x?)

)
.

This formulation shows that x? is a fixed point of THg (·) := proxHg (· −H−1∇f(·)).

3. A Conceptual Homotopy Proximal Variable-Metric Framework. In this section,
we introduce a novel parameterization of the optimality condition (6) and propose a conceptual
framework for designing homotopy proximal variable-metric methods for solving (1).

3.1. Parametrization of the optimality condition. Given x0 ∈ dom(F ), we compute a
subgradient ξ0 ∈ ∂g(x0). Then, we parameterize f as follows:

(7) fτ (x) := τf(x)− (1− τ)〈ξ0, x〉,

where τ ∈ [0, 1]. Clearly, f1(x) = f(x), ∇fτ (x) = τ∇f(x)− (1− τ)ξ0, and ∇2fτ (x) = τ∇2f(x).
In addition, dom(fτ ) = dom(f) for any τ ∈ (0, 1]. Note that if we can choose ξ0 ∈ ∂g(x0) such
that ξ0 = 0p, then fτ (x) in (7) reduces to fτ (x) = τf(x).

Next, we consider the following composite convex optimization problem derived from (1):

(8) x∗τ = arg min
x∈Rp

{
Fτ (x) := fτ (x) + g(x)

}
.

This problem is similar to (1) and can be considered as a parametric perturbation instance of (1).
The optimality condition of this problem is given by

(9) 0 ∈ ∇fτ (x∗τ ) + ∂g(x∗τ ) ≡ τ∇f(x∗τ )− (1− τ)ξ0 + ∂g(x∗τ ),

which is necessary and sufficient for x∗τ to be an optimal solution of (8). We call this condition a
parametric optimality condition of (1).

From the optimality condition (9), we can show that
• If τ = 1, then (9) becomes 0 ∈ ∇f(x∗1) + ∂g(x∗1), which is exactly the original optimality

condition (6) of (1). Hence, x∗1 = x? is an exact optimal solution of (1).
• If τ = 0, then (9) reduces to ξ0 ∈ ∂g(x∗0). Therefore, we can choose x∗0 = x0, the initial

point, as an optimal solution of (8) at τ = 0.
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Our main idea is to start from a small value τ0 ≈ 0 and follow a homotopy path on τ to find an
approximate solution of x∗τ at τ ≈ 1. As we will show later, we do not start from τ0 = 0, but
from a sufficiently small value τ0 > 0.

Note that, when τ > 0, we can write (9) as

0 ∈ ∇f(x∗τ )−
(

1
τ − 1

)
ξ0 + 1

τ ∂g(x∗τ ).

If g(·) = ρ‖ · ‖1, an `1-regularizer, for a given regularization parameter ρ > 0, then when τ is close
to zero, the weight 1

τ on g is large and the solution of (8) is expected to be very sparse. This
potentially can reduce the computational complexity of the underlying optimization method by
working on sparse vectors or matrices. This property of the regularizer g is also expected in other
applications such as low-rank and group sparsity models.

Remark. The formulation (9) is new and it does not reduce to any existing homotopy formu-
lation including [41, Formula 4.2.26] to the best of our knowledge. This formulation is expected
to lead to more efficient homotopy-type algorithms for solving sparse and low-rank convex opti-
mization as explained above.

3.2. A fixed-point interpretation of the parametric optimality condition. Recall the
optimality condition (9) given as 0 ∈ ∇fτ (x∗τ ) + ∂g(x∗τ ). By using the scaled proximal operator
proxHg , we can reformulate (9) into a fixed-point problem:

(10) x∗τ = proxH1
τ g

(
x∗τ −H−1

(
∇f(x∗τ )− ( 1

τ − 1)ξ0
))
,

for any H ∈ Sp++. Let us define the following mapping for any x ∈ dom(F ):

(11) GHτ (x) = H
(
x− proxH1

τ g

(
x−H−1

(
∇f(x)− ( 1

τ − 1)ξ0
)) )

.

Clearly, (10) is equivalent to GHτ (x∗τ ) = 0. We call GHτ the scaled generalized gradient mapping
of the parametric problem (8). The most common case is H = 1

γ I as mentioned above for some

γ > 0. Then, GHτ reduces to the standard generalized gradient mapping [41].

3.3. Conceptual framework of homotopy proximal variable-metric methods. We
first describe our conceptual three-stage proximal variable-metric algorithm as in Algorithm 1.

Algorithm 1 (A Conceptual Three-Stage Proximal Variable-Metric Algorithm)

1: Stage 1 (Find an initial point):
2: Choose τ0 ∈ (0, 1), and an appropriate initial point x0 ∈ dom(F ). Evaluate ξ0 ∈ ∂g(x0).
3: Stage 2 (Homotopy scheme): For k = 0 to kmax, perform
4: Update τk+1 from τk such that 0 < τk < τk+1 ≤ 1.
5: Evaluate ∇f(xk) and Hk, and update xk+1 by approximately solving

(12) xk+1 :≈ proxHk1
τk+1

g

(
xk −H−1

k

(
∇f(xk)−

(
1

τk+1
− 1
)
ξ0
))

.

6: Stage 3 (Solution refinement): Fix τk and perform (12) until a desired solution is achieved.

We will provide the details of each stage in the sequel based on some appropriate assumptions for
(1). The main step of Algorithm 1 is (12), where we need to evaluate the scaled proximal operator
proxH1

τ g
(·). Depending on the choice of the variable matrix Hk, we obtain different methods:

• If Hk is diagonal, then we obtain a homotopy proximal gradient method.
• If Hk approximates∇2f(xk), then we obtain a homotopy proximal quasi-Newton method.
• If Hk = ∇2f(xk), then we obtain a homotopy proximal Newton method.

The choice of an initial point x0, the initial value τ0 of the parameter τ , the update rule of τk,
and the approximation rule of (12) in Algorithm 1 will be specified in the sequel.
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3.4. Inexact proximal Newton scheme. Let Hk = ∇2f(xk). The exact evaluation of the
scaled proximal operator in (12) is equivalent to solving the following convex subproblem:

(13) x̄k+1 := arg min
x∈Rp

{
Pk(x) := 〈∇fk+1(xk), x− xk〉+ 1

2 〈∇
2f(xk)(x− xk), x− xk〉+ 1

τk+1
g(x)

}
,

where ∇fk+1(xk) := f(xk)−
(

1
τk+1

− 1
)
ξ0. In this case, we can write x̄k+1 as

x̄k+1 = prox
∇2f(xk)

1
τk+1

g

(
xk −∇2f(xk)−1∇fk+1(xk)

)
,

the exact solution of (13).
When g is nontrivial (e.g., not a linear function), we can only approximate the true solution

x̄k+1 of (13) by an approximation xk+1 such that

(14) xk+1 :≈ prox
∇2f(xk)

1
τk+1

g

(
xk −∇2f(xk)−1∇fk+1(xk)

)
.

Here the approximation “:≈” is defined explicitly next in Definition 3.

Definition 3. Let x̄k+1 be the exact solution of (13), and δk ≥ 0 be a given accuracy. We
say that xk+1 is a δk-approximate solution to x̄k+1, denoted by xk+1 :≈ x̄k+1 as in (14), if

(15) Pk(xk+1)− Pk(x̄k+1) ≤ δ2k
2 .

Using this definition, we have the following result, see [60, Lemma 3.2.].

Fact 3.1. 1
2‖x

k+1−x̄k+1‖2xk ≤ Pk(xk+1)−Pk(x̄k+1). Consequently, combining this inequality
and (15), we can show that if (15) holds, then

(16) δ(xk) := ‖xk+1 − x̄k+1‖xk ≤ δk.

The condition (15) can be guaranteed by using several optimization methods in the literature such
as accelerated proximal-gradient [4, 41, 52], ADMM [8], or semi-smooth Newton-CG augmented
Lagrangian methods [67]. In Subsection 6.3, we approximately compute (13) via solving its dual.

We define the following local distances to measure the distance of approximations xk+1 and
xk to the true solution x∗τk+1

of the parameterized problem (9):

(17) λk+1 := ‖xk+1 − x∗τk+1
‖x∗τk+1

and λ̂k := ‖xk − x∗τk+1
‖x∗τk+1

.

These metrics will be used to analyze the convergence of our methods.

4. Convergence and iteration-complexity analysis. We analyze the convergence and
iteration-complexity of Algorithm 1 for solving (1) under three different subclasses of f and g.

4.1. Linear convergence for the smooth and strongly convex case. The first class of
models is when f and g in (1) satisfies the following assumption.

Assumption 2. Assume that f is µf -strongly convex and Lf -smooth. The function g is Lg-
Lipschitz continuous on dom(g).

Under Assumption 2, Algorithm 1 only has Stage 2 and we do not need to perform Stage 1
and Stage 3 of Algorithm 1. We can start from any starting point x0 ∈ dom(F ). We show
that Algorithm 1 achieves a global linear convergence rate. This result is stated in the following
theorem, whose proof can be found in Apppendix B.1.

Theorem 4. Under Assumption 2, let m and L be two constants such that 0 < m ≤ L < +∞
and ω := 1

m

√
(L− 2µf )m+ L2

f < 1. For any given τ0 ∈ (0, 1) and x0 ∈ dom(F ), we define

(18) C :=
‖∇f(x0) + ξ0‖2

µf
and σ :=

1− τ0 + τ0ωΓ

1− τ0 + τ0Γ
∈ (ω, 1), where Γ :=

‖∇f(x0) + ξ0‖2
ω(Lg + ‖ξ0‖2)

.
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Let
{

(xk, τk)
}

be the sequence generated by the exact scheme (12) in Algorithm 1, where Hk ∈ Sp++

is chosen such that mI � Hk � LI and τk is updated by

(19) τk := 1− (1− τ0)σk

τ0 + (1− τ0)σk
.

Then, for any k ≥ 0, we have ‖xk − x∗τk‖2 ≤ Cσ
k and 0 < 1− τk ≤ (1−τ0)

τ0
σk. Consequently, both

sequences
{
‖xk − x∗τk‖2

}
and {1− τk} globally converge to zero at a linear rate.

The sequence
{
xk
}

also satisfies ‖xk−x?‖2 ≤ Ĉσk, where Ĉ := C+
(1−τ0)ω(Lg+‖ξ0‖2)

τ3
0µf

. Hence,{
xk
}

globally converges to a solution x? of (1) at a linear rate.

Let us make some remarks on the result of Theorem 4. First, the condition ω < 1 is equivalent
to (L − 2µf )m + L2

f < m2. If we choose m = L > 0, then we have L2
f < 2µfL which leads to

L >
L2
f

2µf
. In this case, if we define γ := 2

L+m = 1
L , then (12) becomes

xk+1 := prox γ
τk+1

g

(
xk − γ

(
∇f(xk)− ( 1

τk+1
− 1)ξ0

))
,

which reduces to a homotopy proximal gradient method.
To optimize the contraction factor, we need to minimize 1− 2µf t+L2

f t
2 over t. This gives us

t =
µf
L2
f

showing that m = L =
L2
f

µf
. Hence, we must choose Hk =

L2
f

µf
I, and we obtain ω = 1− µf

Lf
.

Another simple choice of Hk is Hk =
(
L+m

2

)
I.

Next, note that the convergence rate of
{
‖xk − x?‖2

}
in (12) is slower than in the standard

proximal variable-metric method. Its contraction factor is σ defined in (18). However, (12)
possesses some computational advantages that the standard proximal variable-metric method
does not have as we will discuss in Section 7.

The linear convergence rate under Assumption 2 is known from the literature for both gradient
and Newton-type methods. Nevertheless, our method is new, which works on the parameterized
function fτ instead of f . Our method also allows us to flexibly choose the variable matrix Hk as
long as it satisfies the condition of Theorem 4. Another appropriate choice of Hk is a rank-one
update as proposed in [6].

Nesterov’s accelerated variant. Note that we can develop Nesterov’s accelerated vari-
ant for (12) under Assumption 2. In this case, the convergence factor in Theorem 4 will be

improved from 1− µf
Lf

to 1−
√

µf
Lf

. However, we skip this modification in this paper.

4.2. Linear convergence for self-concordant function f without barrier. We con-
sider the second case where f and g satisfy the following assumption.

Assumption 3. The function f in (1) is standard self-concordant (see Definition 12). The
function g is Lg-Lipschitz continuous w.r.t. the local norm ‖ · ‖x defined by f with a Lipschitz
constant Lg ∈ [0,+∞) in dom(f) ∩ dom(g).

Note that, in Assumption 3, we only require f to be self-concordant, but not necessary a
self-concordant barrier. The class of self-concordant functions is much larger than the class
of self-concordant barriers. As indicated in Proposition 13, any generalized self-concordant and
strongly convex function is self-concordant. In particular, it covers a few representative applica-
tions presented in the introduction. For other examples, we refer the reader to [56, 61].

Under Assumption 3, Algorithm 1 has two stages: Stage 1 finds an initial point, and Stage 2
performs a homotopy scheme. We can skip Stage 3. For any initial value τ0 ∈ (0, 1) of τ , let us
choose σ ∈ (0.318642, 1) that solves the following inequation:

(20)
2Lg(1− τ0)(1−

√
σ)

τ0 − 2Lg(1− τ0)(1−
√
σ)
≤
√
σ − 0.01

10
− 1

18
.
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Note that there always exists σ ∈ (0.318642, 1] that solves (20). Theorem 5 below states the
convergence of (14) under the Assumption 3. Its proof can be found in Appendix B.2.

Theorem 5. Suppose that Assumption 3 holds for (1). Let τ0 ∈ (0, 1) and σ ∈ (0, 1] be
two constants satisfying (20) and

{
(xk, τk)

}
be the sequence generated by (14). Moreover, x0

and τ0 ∈ (0, 1) are chosen such that λ0 := ‖x0 − x∗τ0‖x∗τ0 ≤ β with β := 0.05. Let us choose

0 ≤ δk ≤ λk
113 , and update the parameter τk as

(21) τk+1 :=

[
1 +

∆kτk
2Lg(1 + ∆k)−∆kτk

]
τk where ∆k :=

(
1

10

√
σ − 0.01− 1

18

√
σ
k
)√

σ
k
.

Then, ‖xk − x∗τk‖x∗τk ≤ βσk for k ≥ 0 and 0 < 1 − τk ≤ (1−τ0)
τ0

√
σ
k
. Therefore, the sequences

{‖xk − x∗τk‖x∗τk } and {1− τk} both globally converge to zero at a linear rate.

Moreover, there exists Ĉ > 0 such that ‖xk − x?‖x? ≤ Ĉ
√
σ
k

for all k ≥ 0. Hence, the
sequence

{
‖xk − x?‖x?

}
also globally converges to zero at a linear rate.

The following result is a direct consequence of Theorem 5 and Lemma 2 when g is L̄g-Lipschitz
continuous in `2-norm, and f is strongly convex and generalized self-concordant.

Corollary 6. Assume that f is generalized self-concordant as defined in Definition 12 and
g is Lipschitz continuous with a Lipschitz constant L̄g ≥ 0 in `2-norm instead of g being Lg-
Lipschitz continuous w.r.t. ‖·‖x. Assume additionally that f is strongly convex with a strong

convexity parameter µf > 0. Then, the conclusion of Theorem 5 still holds with Lg :=
L̄g√
µf

.

Remark. (a) The Lg-Lipschitz continuity of g w.r.t. a local norm ‖·‖x in Assumption 3
can be replaced by assuming that ‖∇g(x)‖∗x ≤ Lg for some ∇g(x) ∈ ∂g(x) for any x ∈ dom(f)
and ξ0 = 0p ∈ ∂g(x0). By Lemma 2, we can easily see that this condition is weaker than the
Lg-Lipschitz continuity of g w.r.t. ‖·‖x. For example, if f(x) = − ln(x), and g(x) = x2, then
‖∇g(x)‖2x = 1 for all x > 0. In this case, the conclusions of Theorem 5 still hold.

(b) Observe that in (21), if the rate of change from ∆k to ∆k+1 is slow so that ∆k+1 ≈ ∆k,
then the rate of increment from τk to τk+1 will become faster when k increases.

4.3. Linear convergence under the self-concordant barrier of f . When f is a self-
concordant barrier, we use a different analysis, and no longer require g to be Lipschitz continuous
as stated in the following assumption:

Assumption 4. The function f is a νf -self-concordant barrier as defined in Definition 12,
and g is proper, closed, and convex. For a given x0 ∈ dom(F ), either the analytic center x?f of f

defined by (50) on the interior of the level set LF (x0) :=
{
x ∈ dom(F ) | F (x) ≤ F (x0)

}
exists or

ξ0 = 0p ∈ ∂g(x0).

Under Assumption 4, Algorithm 1 also requires Stage 1 and Stage 2, while we can skip Stage
3. For any τ0 ∈ (0, 1), we choose σ ∈ (0.318642, 1] such that

(22) C0 :=

√
σ − 0.01

10
− 1

18
> 0 and σ ≥

(
1− τ0C0

(1− τ0)(1 + C0)(
√
νf + c̄0)

)2

.

Here, c̄0 := θf‖ξ0‖x?f (θf is defined in Appendix A) if x?f defined by (50) exists, and c̄0 := 0,

otherwise. These two constants τ0 and C0 always exist, and C0 ≤ 9
20
√

10
≈ 0.14230. The following

theorem states the convergence of Algorithm 1 under the self-concordant barrier assumption on
f , whose proof can be found in Appendix B.3.

Theorem 7. Let us choose σ ∈ (0.318642, 1] such that (22) holds. Let
{

(xk, τk)
}

be the
sequence generated by Algorithm 1 using (14) with τ0 ∈ (0, 1) such that ‖x0 − x∗τ0‖x∗τ0 ≤ β with

β := 0.05. Let us choose 0 ≤ δk ≤ λk
113 , and update τk as
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(23) τk+1 :=

(
1 +

∆k

(1 + ∆k)(
√
νf + c̄0)

)
τk, with ∆k :=

(√
σ − 0.01

10
−
√
σ
k

18

)
√
σ
k
,

Then, ‖xk − x∗τk‖x∗τk ≤ βσk and 1 − τk ≤ C0
√
σk

(1 + C0)(
√
νf+c̄0)(1−

√
σ)

. Therefore, the sequences

{‖xk − x∗τk‖x∗τk } and {1− τk} both globally converge to zero at a linear rate.

Moreover, if we choose σ ∈ (0.318642, 1] such that (22) holds and C̃1 := C0

τ0(1+C0)(1−
√
σ)−C0

>

0 (always exist), then ‖xk − x?‖x? ≤ βσk

1−C̃1
√
σk

+ C̃1
√
σ
k
. Hence, the sequence

{
xk
}

converges to

an optimal solution x? of (1) at a linear rate.

Theorem 7 shows the global linear convergence of our inexact proximal-Newton method for
solving (1) under Assumption 4. Here, the constants σ and β balance between the contraction
factor and the step-size of the homotopy parameter τ . The choice of σ from (22) is conservative
due to several rough estimates in our proof. In practice, σ can be chosen to be much smaller than
one as observed in our numerical experiments.

5. Stage 1: Finding an appropriate initial point. While the variant of Algorithm 1
in Theorem 4 can start from any initial point x0 ∈ dom(F ), the variants in Theorem 5 and
Theorem 7 require an appropriate initial point x0. More precisely, we need to choose an initial
value τ0 ∈ (0, 1) and x0 such that ‖x0−x∗τ0‖x∗τ0 ≤ β for a given β := 0.05. We consider two cases:
g is µg-strongly convex and g is non-strongly convex.

5.1. Inexact damped-step proximal-Newton scheme. We can apply the following in-
exact damped-step proximal-Newton scheme proposed in [60] to find x0. Let us start from any

initial point x̂0 ∈ dom(F ), compute a subgradient ξ̂0 ∈ ∂g(x̂0), and update:

(24)

 ŝj+1 :≈ prox
∇2f(x̂j)
1
τ0
g

(
x̂j −∇2f(x̂j)−1

(
∇f(x̂j)− ( 1

τ0
− 1)ξ̂0

))
x̂k+1 := (1− αj)x̂j + αj ŝ

j+1, with ζ̂j := ‖ŝj+1 − x̂j‖x̂j and αj :=
ζ̂j−δ̂j

(1+ζ̂j−δ̂j)ζ̂j
.

Here, 0 ≤ δ̂j < ζ̂j is the accuracy level defined as in Definition 3 and we use the “hat” notation for
the iterates to distinguish this procedure from Algorithm 1. The following proposition provides
an estimation on the number of iterations needed to find the initial point x0, whose proof can be
found in [60, Lemma 4.3.].

Proposition 8. Let
{
x̂j
}

be generated by (24) with δ̂j :=
ζ̂j
10 , then after at most⌊

Fτ0(x̂0)− Fτ0(x∗τ0)

ω(0.9β)

⌋
iterations, we obtain x̂jmax such that ‖x̂jmax−x∗τ0‖x∗τ0 ≤ β, where Fτ0(x) := f(x)−( 1

τ0
−1)〈ξ̂0, x〉+

1
τ0
g(x), and ω(t) := t− ln(1 + t).

Proposition 8 suggests that we can perform a finite number of damped-step proximal-Newton
scheme (24) to find x0 := x̂jmax such that ‖x0 − x∗τ0‖x∗τ0 ≤ β. Hence, x0 is an initial point that
satisfies the conditions of Theorem 5 and Theorem 7.

5.2. Strong convexity of g. If g is strongly convex with a strong convexity parameter
µg > 0, and x0 is not an optimal solution of (1), then we can choose τ0 as

(25) 0 < τ0 ≤
βµg

(1 + β)λmax(∇2f(x0))1/2‖∇f(x0) + ξ0‖2
.

Here, λmax(∇2f(x0)) is the maximum eigenvalue of ∇2f(x0). We will show in Appendix B.4 that
x0 satisfies ‖x0−x∗τ0‖x∗τ0 ≤ β. Hence, Algorithm 1 can start from an arbitrary point x0 ∈ dom(F ).
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5.3. Non-strong convexity of g and strong convexity of f . We adopt our recent idea
in [62] to develop a homotopy scheme to find this initial point x0 in a finite number of iterations.

Starting from any x̂0 ∈ dom(F ), we consider the following auxiliary optimality condition
depending on a new homotopy parameter t > 0 and a fixed value τ0 ∈ (0, 1):

(26) 0 ∈ ∇f(x∗t )−
(

1
τ0
− 1
)
ξ̂0 − t(∇f(x̂0) + ξ̂0) + 1

τ0
∂g(x∗t ),

for any ξ̂0 ∈ ∂g(x̂0). Clearly, when t = 0, (26) reduces to (9) at τ = τ0 and x0 ≡ x̂0. When t = 1,

(26) becomes 0 ∈ ∇f(x∗0)−∇f(x̂0) + 1
τ0

(∂g(x∗0)− ξ̂0), which shows that x∗0 =x̂0 is a solution of
(26). By applying the homotopy method starting from t0 ≈ 1, and decreases tj to zero, we obtain
an approximation x̂j to x∗τ0 . The main step of this scheme is given as follows:

(27) x̂j+1 :≈ prox
∇2f(x̂j)
1
τ0
g

(
x̂j −∇2f(x̂j)−1

(
∇f(x̂j)− ( 1

τ0
− 1)ξ̂0 − tj+1(∇f(x̂0) + ξ̂0)

))
,

where the approximation “:≈” is defined as in Definition 3, and t0 > 0 is a starting value of t.
We also use the “hat” notation for the iterates to distinguish this procedure from Algorithm 1.

This scheme is slightly different from (14) with the additional term −tj+1(∇f(x̂0) + ξ̂0). The
following theorem shows us how to choose t0 and update t to guarantee ‖x̂j −x∗τ0‖x∗τ0 ≤ β, whose
proof is given in Appendix B.5.

Theorem 9. Assume that f is self-concordant and µf -strongly convex with µf > 0. For any

given β ∈ (0, 0.05], we defined Θ :=
√

99β
500 −

10β
9 > 0. Let x̂0 ∈ dom(F ) be an arbitrary starting

point, ξ̂0 ∈ ∂g(x̂0), and t0 be chosen such that

(28) t0 :=

{
1− β

(1+2β)‖∇f(x̂0)+ξ̂0‖∗
x̂0

if ‖∇f(x̂0) + ξ̂0‖∗x̂0 >
1+2β
β ,

1 otherwise.

Let
{

(x̂j , tj)
}

be the sequence generated by (27) starting from this x̂0 and t0. Support further that

tj is updated by tj+1 :=
[
tj − Θ

Lg(1+Θ)

]
+

and δj satisfies δ̂j ≤ λj
113 . Then, after at most jmax :=⌊

t0M0(1+Θ)
Θ

⌋
iterations with M0 := ‖∇f(x̂0)+ξ̂0‖2√

µf
, we have tjmax

= 0, and ‖x̂jmax − x∗τ0‖x∗τ0 ≤ β.

Theorem 9 shows that to find an initial point x0 := x̂jmax for Algorithm 1 such that ‖x0−x∗τ0‖x∗τ0 ≤
β, we only need a finite number of iterations jmax as defined in Theorem 9. Moreover, in this
case, we can take ξ0 := ξ̂0 in Algorithm 1.

5.4. Implementation remarks for Algorithm 1. Theoretically, the variants of Algo-
rithm 1 stated in Theorem 5 and Theorem 7 require a good starting point x0 such that ‖x0 −
x∗τ0‖x∗τ0 ≤ β. To find this point, we can use either (24) or (27). However, since we know that

when τ0 = 0, x∗τ0 ≡ x∗0 = x0, in practice we can choose τ0 > 0 to be sufficiently small such that
x∗τ0 ≈ x

0, and skip Stage 1.
Practically, we only perform two stages as follows:
• Skip Stage 1 and choose τ0 > 0 sufficiently small such that ‖x0 − x∗τ0‖x∗τ0 is small.

• In Stage 2, we choose σ = 1 to guarantee that ‖xk − x∗τk‖x∗τk ≤ β instead of ‖xk −
x∗τk‖x∗τk ≤ βσ

k. Then we update τk from τ0 to τk ≈ 1.

• In Stage 3, we fix τk and perform a couple of iterations to reach ‖xk − x∗τk‖x∗τk ≤ ε.
We only perform Stage 3 if we choose σ = 1. In this case, we only have ‖xk − x∗τk‖x∗τk ≤ β. To

achieve ‖xk − x∗τk‖x∗τk ≤ ε, we need to perform a few proximal-Newton iterations with fixed τk.

6. Primal-Dual-Primal Method. Our second idea is a primal-dual-primal approach to
solve (1). We propose a primal-dual-primal method which consists of the following steps:

• Construct the Fenchel dual problem (29) of (1).
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• Apply Algorithm 1 to solve the dual problem (29).
• Instead of solving the dual subproblem (13), we dualize it to go back to the primal space.
• Construct an approximate primal solution of (1) from its dual approximate solution.

We will show in Section 6.6 that this approach is useful for the well-known model (2). Now, we
present this method in detail as follows.

6.1. The dual problem. We assume that g(x) := ψ(Dx), where ψ is a proper, closed, and
convex function from Rn → R ∪ {+∞}, and D : Rp → Rn is a linear operator such that n ≤ p.
The dual problem of (1) in this case becomes

(29) Ψ? := min
y∈Rn

{
Ψ(y) := f∗(−D>y) + ψ∗(y)

}
,

where f∗ and ψ∗ are the Fenchel conjugates of f and ψ, respectively.
Let us define ϕ(y) := f∗(−D>y). Then, we can compute the gradient and Hessian of ϕ as

(30) ∇ϕ(y) = −D∇f∗(−D>y), and ∇2ϕ(y) = D∇2f∗(−D>y)D>.

We impose the following assumption.

Assumption 5. The function f in (1) is self-concordant as defined in Definition 12, and
g(x) := ψ(Dx), where ψ : Rn → R∪{+∞} is a proper, closed, and convex function and D : Rp →
Rn is a linear operator such that n ≤ p. In addition, D has full-row rank.

Under Assumption 5, the function ϕ is still a self-concordant function as stated in [44, The-
orem 2.4.1] for dom(ϕ) defined as

dom(ϕ) =
{
y ∈ Rn | −D>y ∈ dom(f∗)

}
.

We define the local norm with respect to ϕ as ‖u‖y := (u>∇2ϕ(y)u)1/2 and its dual norm
‖v‖∗y := (v>∇2ϕ(y)−1v)1/2. The optimality condition of the dual problem (29) becomes

(31) 0 ∈ ∇ϕ(y?) + ∂ψ∗(y?) ≡ −D∇f∗(−D>y?) + ∂ψ∗(y?),

which is necessary and sufficient for y? to be an optimal solution of (29) if dom(ϕ)∩dom(ψ∗) 6= ∅.
Let y? be an optimal solution of (29). Then, from (31), if we define

(32) x? := ∇f∗(−D>y?),

then −D>y? ∈ ∂f(x?), which leads to 0 ∈ D>y? + ∂f(x?). On the other hand, we have Dx? ∈
∂ψ∗(y?), which leads to y? ∈ ∂ψ(Dx?). Combining both expressions, we have 0 ∈ D>∂ψ(Dx?) +
∂f(x?). Therefore, x? given by (32) is an exact solution of the primal problem (1).

6.2. The homotopy proximal Newton method methods for the dual problem. To
fulfill the assumptions of Theorems 5 and 7, we assume that one of the following conditions holds:

• f satisfied Assumption 5 and ψ∗ is Lψ∗ -Lipschitz continuous w.r.t. ‖ · ‖y defined by ϕ.
• f satisfied Assumption 5 and is νf -self-concordant barrier.

One can show that ψ∗ is Lψ∗ -Lipschitz continuous if dom(∂ψ) is bounded w.r.t. the local norm
defined by f , i.e. there exists Lψ∗ > 0 such that ‖u‖x ≤ Lψ∗ for any u ∈ dom(∂ψ). Since the
dual problem (29) has the same property as the primal one (1) under the above assumptions, let
us apply Algorithm 1 with Hk := ∇2ϕ(yk) to solve this problem, which leads to

(33) yk+1 :≈ prox
∇2ϕ(yk)

1
τk+1

ψ∗

(
yk −∇2ϕ(yk)−1∇ϕτk+1

(yk)
)
,

where ∇ϕτk+1
(yk) := ∇ϕ(yk)−

(
1

τk+1
− 1
)
ξ0 with ξ0 ∈ ∂ψ∗(y0). Here, yk+1 is an approximation

to the true solution ȳk+1 as defined in Definition 3, where ȳk+1 is given by

(34) ȳk+1:= arg min
y∈Rn

{
Pk(y) := 〈∇ϕτk+1

(yk), y − yk〉+ 1
2 〈∇

2ϕ(yk)(y − yk), y − yk〉+ 1
τk+1

ψ∗(y)
}
,
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and both the gradient mapping ∇ϕ and the Hessian mapping ∇2ϕ of ϕ are given in (30), respec-
tively. This problem in general does not have a closed form solution. But observe that (34) is a
convex composite quadratic programming problem for which highly advanced algorithms such as
the semismooth Newton augmented Lagrangian method developed in [37, 69] can be designed to
solve it efficiently, as we shall demonstrate later in the numerical experiments.

6.3. The dualization of the subproblem (34). Instead of solving the dual subproblem
(34) directly, we dualize it to obtain the following subproblem in the primal space of Dx:

(35) zk+1 ≈ z̄k+1 := arg min
z∈Rn

{
Qk(z; yk) := 1

2 〈H(yk)z, z〉 − 〈hτk+1
(yk), z〉+ 1

τk+1
ψ(τk+1z)

}
,

where

H(yk) := ∇2ϕ(yk)−1 = (D∇2f∗(−D>yk)D>)−1, and

hτk+1
(yk) := yk −∇2ϕ(yk)−1∇ϕτk+1

(yk) = yk − (D∇2f∗(−D>yk)D>)−1∇ϕτk+1
(yk).

Clearly, this problem is again a composite strongly convex quadratic program of the same form
as (34), but in the primal space of Dx. Specially, if D = I, the identity matrix, then (35) is in
the primal space of x as in (13).

6.4. Solution reconstruction for (34). Recall that z̄k+1 denotes the exact solution of
(35), then we can construct

(36) ȳk+1 := yk −∇2ϕ(yk)−1
(
∇ϕτk+1

(yk) + z̄k+1
)
,

as an exact solution of (34).
Assume that we can only solve (35) up to a given accuracy δ ≥ 0. In this case, we say that

zk+1 is a δ-approximate solution to z̄k+1 of (35) if for any ẽk such that ‖ẽk‖yk ≤ δ, we have

(37) ẽk ∈ H(yk)zk+1 − hτk+1
(yk) + ∂ψ(τk+1z

k+1).

To guarantee (37), we can apply inexact first-order methods to solve (35), see, e.g., in [52, 63].
If zk+1 satisfies (37), then we can construct an approximate solution yk+1 to ȳk+1 as

(38) yk+1 := yk −∇2ϕ(yk)−1
(
∇ϕτk+1

(yk) + zk+1
)

+ ẽk.

The following lemma shows a relation between zk+1 of (35) and the approximate solution yk+1

of (34), whose proof is given in Appendix B.6.

Lemma 10. Let zk+1 be a δ-approximate solution to z̄k+1 of (35) in the sense of (37). Then,
yk+1 constructed by (38) is also a δ-approximate solution to the true solution ȳk+1 of (34) such

that Pk(yk+1)− Pk(ȳk+1) ≤ δ2

2 .

6.5. Primal solution recovery. Finally, we show how to recover an approximate primal
solution xk of the original problem (1) from its dual approximate solution yk. Based on (32), we
show below that for an approximate solution yk to y?, the following point

(39) xk = ∇f∗(−D>yk)

is an approximate solution to the true solution x? of (1) as stated in the following theorem whose
proof is given in Appendix B.7. In particular, if D is an invertible matrix, then one can show
that we can construct an approximate solution xk+1 to x? of (1) from zk+1.

Theorem 11. Let y? be an exact solution of the dual problem (29). Then
(a) x? constructed by (32) is an exact solution of (1).
(b) Let

{
yk
}

be computed by (38) and
{
xk
}

be given by (39) such that ‖yk−y?‖y?<1. Then

(40) ‖xk − x?‖x? := 〈∇2f∗(−D>y?)−1(xk − x?), (xk − x?)〉1/2 ≤ ‖yk − y?‖y?
1− ‖yk − y?‖y?

.

Consequently, under the conditions of Theorem 5 or Theorem 7, the sequence
{
xk
}

con-
verges linearly to the optimal solution x? of (1).
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(c) Let zk+1 be an approximate solution of (35). If ‖yk − y?‖yk < 1, then

(41) ‖zk+1 −Dx?‖∗yk ≤
‖y?−yk‖2

yk

1−‖y?−yk‖
yk

+ ‖yk+1 − y?‖yk +
(

1
τk+1

− 1
)
‖ξ0‖∗yk + ‖ẽk‖yk .

Assume that we apply Algorithm 1 to solve the dual problem (29) under the assumptions
of Theorem 5 or Theorem 7 and the choice δk ≤ λk

113 . If, in addition, D is invertible, then
xk+1 := D−1zk+1 is an approximate solution to x? of (1). Moreover,

{
‖xk+1 − x?‖∗yk

}
converges linearly to zero.

From Theorem 11, we can see that if D is invertible, then we can directly use xk+1 := D−1zk+1

to approximate the solution x? of (1). Otherwise, we can construct an approximate solution xk

to x? by using (39), which requires one evaluation of ∇f∗.

6.6. Applications to covariance estimation. In this section, we apply Algorithm 1 and
the primal-dual-primal method in Section 6 to solve the regularized covariance estimation problem
(2) as in [18] and its least-squares extension in [32].

We recall the primal regularized covariance estimation problem given in (2). Associated with
(2), we can also consider its dual form:

(42) Ψ? := min
Y

{
Ψ(Y ) := − log det(Y + Σ) + ψ∗(Y ) | Y + Σ � 0

}
.

Here, ψ∗ is the Fenchel conjugate of ψ(X) := g(X). This problem again has the same form as
(1). Instead of solving the primal problem (2), we apply Algorithm 1 to solve the dual problem
(42) and reconstruct a solution of (2) from its dual.

6.6.1. The main steps of the algorithm. Given Yk such that Yk + Σ � 0, we define
Xk := (Yk + Σ)−1. The main step of the algorithm is to solve the following subproblem

(43) Yk+1 ≈ Ȳk+1 := argmin
Y

{
Pk(Y ) :=−trace

(
X̂k(Y −Yk)

)
+ 1

2 trace (Xk(Y −Yk))
2

+ 1
τk+1

ψ∗(Y )
}
,

where X̂k := Xk − Ξk ≡ Xk −
(

1
τk+1

− 1
)
Ξ0 for a fixed Ξ0 ∈ ∂ψ∗(Y0). As discussed in Section 6,

instead of solving (43), we look at its dual form

(44) Zk+1 ≈ Z̄k+1 := argmin
X

{
Qk(X) := −trace

(
CkX

)
+ 1

2

(
trace

(
(Yk + Σ)X

)2)
+ 1

τk+1
ψ(X)

}
,

where Ck := 2Yk−Ξk+Σ. Once Zk+1 is computed from (44), we can reconstruct Yk+1 as follows:

(45) Yk+1 := 2Yk − Ξk + Σ− (Yk + Σ)Zk+1(Yk + Σ),

and compute an inexact Newton decrement

(46) λ̃k :=
(
p− 2trace(Wk) + trace(W 2

k )
)1/2

, where Wk := Zk+1(Yk + Σ).

Finally, when an ε-solution Ỹ ? of (42) is computed (i.e. Ỹ ? := Ykmax
), we can reconstruct an

approximate solution X̃? of the primal problem (2) by taking X̃? := (Σ+Ỹ ?)−1. This computation
requires the inverse of a symmetric positive definite matrix, which can be done efficiently by
Cholesky decomposition. However, as shown in Theorem 11, we can use Zk+1 computed by (44)

to approximate the true solution X?. This allows us to avoid the matrix inversion (Σ + Ỹ ?)−1.

6.6.2. The algorithm. Putting together these steps, we obtain a new algorithmic variant
for solving (2) as presented in Algorithm 2.

Let us highlight some new features of Algorithm 2 as compared to existing methods in the
literature, e.g., [18, 25, 26, 59, 61].

(a) Firstly, Algorithm 2 deals with a general regularizer compared to [18, 25, 26]. When g is
the `1-norm regularizer, we can apply coordinate descent methods as in [18, 25, 26] for
solving (44) to improve its practical performance.
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Algorithm 2 (An inexact primal-dual-primal homotopy proximal-Newton algorithm for (2))

1: Initialization: A desired tolerance ε > 0, and an initial point Y0 such that Y0 + Σ � 0.
Evaluate a subgradient Ξ0 ∈ ∂ψ∗(Y0).

2: Iteration: For k = 0 to kmax, perform

3: Update τk+1 as in (23).

4: Solve (44) up to a tolerance δk ≤ δ̄0 := 0.1ε to get Zk+1.

5: Compute Dk := Yk + Σ− (Yk + Σ)Zk+1(Yk + Σ), and compute λ̃k as (46).

6: If λ̃k ≤ ε and 1− τk+1 ≤ ε, then terminate.

7: If damped step is used, then compute αk := λ̃k−δ̄0
λ̃k(1+λ̃k−δ̄0)

. Otherwise, set αk := 1.

8: Update Yk+1 := Yk + αkDk.

9: End for k.

10: Output: Output Yk as an ε-solution of (42) and Zk+1 as an ε-solution of (2).

(b) Secondly, Algorithm 2 relies on Algorithm 1 to solve the dual problem (42) instead of
standard proximal-Newton methods. It has a linear convergence rate compared to the
damped-step scheme which only has a sublinear convergence rate as shown in [59, 61].

(c) Thirdly, it does not require any linesearch or any additional assumption in our analysis
to achieve a linear convergence rate.

(d) Fourthly, the whole algorithm does not require any matrix inversion or Cholesky decom-
position as long as we can solve the subproblem (44) with a first order method. This
is an important feature for designing parallel and distributed variants of Algorithm 2 as
compared to [26].

(e) Finally, the subproblem (44) works on the original regularizer g instead of the dual prob-
lem as in [59], which preserves the structure such as sparsity on the iterates as promoted
by the regularizer g.

7. Numerical experiments. We provide some numerical experiments to illustrate our the-
oretical development. Our experiments are implemented in Matlab 2018a running on a Dell
Optiplex 9010, 3.4 GHz Intel Core i7-3770 with 16GB 1600 MHz DDR3 memory.

7.1. Lipschitz gradient and strongly convex models. Now we evaluate the performance
of the homotopy proximal-Newton scheme (12) by applying it to solve the following logistic
regression problem with an elastic-net regularizer:

(47) F ? := min
x∈Rp

{
F (x) :=

1

n

n∑
i=1

log
(
1 + exp(−yia>i x)

)
+
µf
2
‖x‖2 + ρ‖x‖1

}
,

where µf > 0 and ρ > 0 are two regularization parameters, and (ai, yi) ∈ Rp×{−1, 1}, i = 1, . . . , n
is a given dataset. As shown in [70], the elastic-net regularizer helps to remove variable limitation
with more freedom than the classical LASSO model, and it can also carter for groups of nonzero
variables. Clearly, f(x) := 1

n

∑n
i=1 log

(
1 + exp(−yia>i x)

)
+

µf
2 ‖x‖

2 is µf -strongly convex, and
Lf -Lipschitz gradient continuous with Lf := 1

2n‖A‖
2 + µf , where A> = [a1, . . . , an] ∈ Rp×n.

Moreover, the function g(x) := ρ‖x‖1 is Lg-Lipschitz continuous with Lg := ρ. Hence, Assumption
2 of Theorem 4 is satisfied.

We implement Algorithm 1 to solve (47) and compare it with homotopy quasi-Newton variant,
standard proximal-gradient scheme [4], and the accelerated proximal-gradient method with line-
search and restart [4, 5, 55]. These methods are abbreviated as “HomoPN”, “HomoQuasiPN”, “PG”,
and “Ls-Rs-APG”, respectively. We test these algorithms on several binary classification datasets
a1a, a9a, w1a, w8a, covtype.binary, news20.binary, rcv1.binary and real-sim from [10], and
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mnist17 and mnist38 from the mnist dataset where we choose the digits 1 and 7, and the digits
3 and 8. The details of these dataset set is given in Table 1.

Following [13], we set µf = 1
n . The parameter ρ for `1-regularization is selected to produce

about 10 percent of nonzeros coefficients. We should mention here that the subpropblem in the
model (47) is an elastic-net regularized least-squares problem. For Algorithm 1 to be numerically
efficient, it is crucial for us to solve those subproblems efficiently. Fortunately we can adapt the
highly efficient semismooth Newton augmented Lagrangian method in [37] to solve the subprob-
lems (12). We terminate the experiments when the relative gaps are less than a given tolerance
ε = 10−6, based on the KKT system of (47). Moreover, for PG and Ls-Rs-APG methods, we
set the maximum number of iterations at 2 × 104. If any method does not achieve our desired
accuracy after at most 2 × 104 iterations, we use ”—” to represent the result. Our final results
are reported in Table 2, where iter is the number of iterations, time[s] is the computational
time in second, and rgap is the relative gap times 10−7. We highlight that (47) can be solved
effectively by a stochastic method to a modest level of accuracy when the number of data points
n is large. However, in our experiments, we only focus on relatively moderate datasets as we are
interested in solving the problems accurately to evaluate the performance of Algorithm 1, and
ignore the comparison with stochastic methods.

Table 1: The information of binary classification datasets used in our experiments.

Dataset a1a a9a covtype news20 mnist17 mnist38 rcv1 real-sim w1a w8a
#samples[n] 30956 16281 581012 19996 317402 292363 677399 72309 47272 14951
#features[p] 123 122 54 1355191 784 784 47236 20958 300 300

Table 2: The performance and results of four algorithms on the logistic regression problem (47).

Datasets
HomoPN HomoQuasiPN PG Ls-Rs-APG

Sparsity ρ
iter time[s] rgap iter time[s] rgap iter time[s] rgap iter time[s] rgap

a1a 7 0.247 0.3 13 0.190 0.3 1049 12.264 10.0 1088 16.272 7.6 11.38% 1e-2
a9a 6 0.153 0.4 13 0.169 1.1 1101 6.849 10.0 651 4.959 3.5 12.30% 1e-2

covtype 12 3.621 2.1 121 5.938 7.0 — — — 10508 3997.766 9.8 9.26% 1e-5
mnist17 6 101.088 0.3 24 25.030 6.2 — — — 912 2030.214 8.0 10.08% 2.5e-3
mnist38 4 115.304 6.1 14 36.109 9.7 — — — 13392 4151.542 10.0 11.86% 5.5e-3
news20 5 9.149 0.1 13 104.030 1.2 1307 71.579 10.0 90 57.225 3.4 11.04% 2.5e-6

rcv1 11 244.589 7.7 41 782.247 3.8 10291 3254.890 10.0 409 1222.426 5.0 10.14% 2.5e-6
real-sim 6 3.966 7.7 22 24.055 6.5 730 14.182 10.0 103 14.255 9.0 11.25% 2e-5

w1a 7 0.620 1.6 19 0.426 6.7 910 31.084 10.0 666 13.710 7.6 10.00% 1e-3
w8a 7 0.245 1.4 19 0.380 2.1 891 9.172 10.0 297 1.856 6.6 10.00% 1e-3

Table 2 shows that since f is strongly convex and has continuous Lipschitz gradient, the
standard proximal-gradient method PG can solve some of the problems slightly better than the
homotopy quasi-Newton method HomoQuasiPN, particularly for some of the datasets where the
number of features is large (e.g., news20 and real-sim). Note that since the problem (47) is
strongly convex, both PG and Ls-Rs-APG have linear convergence rate. Ls-Rs-APG outperforms
PG in terms of iteration numbers as stated by the theory. But since we adopt the line search
scheme, we found that the times taken by these two methods in solving some of the problems are
roughly at the same level. However, HomoQuasiPN is promising when the number of features is
moderate but the number of observations is large, for instance the datasets mnist17 and mnist38.
The reason is that when the number of observations is large, the cost of computing the Hk for
HomoPN will be more expensive than that in HomoQuasiPN. Hence, with warm start, HomoQuasiPN
will only need a few more iterations to converge but with lower computing cost in each iteration.
In other situations, our HomoPN outperforms all other methods in terms of iteration numbers
and computation time. Furthermore, our homotopy methods can often solve the problems more
accurately. To conclude, our homotopy methods are highly efficient for solving a varieties of
large-scale datasets in logistic regression.
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7.2. Self-concordant barrier models. We illustrate the variant of Algorithm 1 in Theo-
rem 7 for solving the following constrained convex problem with a self-concordant barrier function
f arising from D-optimal experimental design, see, e.g. [24, 39]:

(48) F ? := min
x∈Rp

{
F (x) := − log det

( p∑
i=1

xiAi

)
|

p∑
i=1

xi = 1, x ≥ 0
}
,

where Ai for i = 1, · · · , p are m × m symmetric positive semidefinite matrices. If we define

f(x) := − log det
(∑p

i=1 xiAi

)
, and g(x) := δ∆p

(x), where ∆p is the standard simplex in Rp,
then we can reformulate (48) into (1), and f satisfies the assumptions of Theorem 7.

We implement Algorithm 1 to solve (48), and compare it with the interior-point method in
[39], where their code is available online at http://www.mypolyuweb.hk/ tkpong/OD final codes/.
To approximately solve the proximal-Newton subproblem (44), we adapt the semi-smooth Newton-
CG augmented Lagrangian method in [37, 69] to solve the composite convex QP problem where
the nonsmooth term is given by g(x) = δ∆p

(x). We also compare our method with the mul-
tiplicative method proposed in [24] and the interior-point method implemented in SDPT3-v.4.0
[57]. We abbreviate these solvers by HomoPN, MUL, IP, and SDPT3, respectively. Unlike other well-
established IP solvers, SDPT3 allows us to handle directly the log-determinant functions without
reformulation or approximation.

We follow the same procedure as in [39] to generate the data and use the implementation of
MUL from [39]. More precisely, we consider the following four design spaces:

χ1 :=
{
xi = (e−si , sie

−si , e−2si , sie
−2si)>, 1 ≤ i ≤ p

}
⊂ R4,

χ2 :=
{
xi = (1, si, s

2
i , s

3
i )
>, 1 ≤ i ≤ p

}
⊂ R4,

χ3 :=
{
x(i−1)d√pe+j = (1, ri, r

2
i , tj , ritj)

>, 1 ≤ i, j ≤ d√pe
}
⊂ R5,

χ4 :=
{
xi = (ti, t

2
i , sin(2πti), cos(2πti))

>, 1 ≤ i ≤ p
}
⊂ R4,

where si = 3i
p , ri = 2i

p − 1 and ti = i
p .

For each design space, we set Ai := xix
>
i for i = 1, · · · , p, with p = 10000, 50000, 100000 for

χ1, χ2, χ4, and p = 10000, 40000, 90000 for χ3. In this case, the problem dimension m is m = 4
in χ1, χ2 and χ4 and m = 5 in χ3. The performance of these four methods on 9 problems of
different sizes are reported in Table 3, where (#Iterations) and Time[s] denote the number
of iterations and computational time taken, respectively, and F (xk) is the approximate optimal
objective value attained for (48).

In Table 3, the objective value F (xk) is rounded off to seven significant digits. We can
see that our homotopy method, HomoPN outperforms the multiplicative algorithm MUL in terms
of computational time, and achieving much smaller objective values in all the instances. Our
HomoPN also outperforms the interior point method (IP) and SDPT3 in terms of time and also
gives slightly better objective values in most instances.

To see the performance of our method compared to MUL and IP, in the following test, we
extend the dimension of datasets in χ1, χ2, and χ3 as follows:

χ1(8) :=
{
xi = (e−si , sie

−si , e−2si , sie
−2si , e−3si , sie

−3si , e−4si , sie
−4si)>, 1 ≤ i ≤ p

}
⊂ R8,

χ2(10) :=
{
xi = (1, si, s

2
i , · · · , s9

i )
>, 1 ≤ i ≤ p

}
⊂ R10,

χ3(10) :=
{
x(i−1)d√pe+j = (1, ri, r

2
i , r

3
i , tj , ritj , tjr

2
i , t

2
j , t

3
j , rit

2
j )
>, 1 ≤ i, j ≤ d√pe

}
⊂ R10.

We first run MUL up to 10, 000 iterations, and check whether the HomoPN and IP methods can
solve the problem in terms of the function value. We terminate the algorithms when the objective
value is less than the value procedured by MUL. When the IP method cannot achieve this objective
value, we terminate it and record the time and objective value after at most 10, 000 iterations
(this is a large number of iterations for interior point methods). The computation results are
presented in Table 4. For these larger dimensional problems, SDPT3 fails to solve them to the
required accuracy, and we do not add this method to our experiments.

http://www.mypolyuweb.hk/~tkpong/OD_final_codes/
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Table 3: The performance of 4 algorithms on the D-optimal experimental design problem (48).

Problem (#Iterations) Time[s] Objective value F (xk)

χi p HomoPN MUL[24] IP[39] SDPT3 HomoPN MUL[24] IP[39] SDPT3

1 10000 (7)0.088 (2509)0.407 (127)0.262 0.399 20.51196 20.51254 20.51195 20.51241
1 50000 (7)0.368 (2510)1.050 (122)0.998 1.127 20.50907 20.50981 20.50907 20.50908
1 100000 (7)0.956 (2855)3.073 (120)1.962 2.008 20.50871 20.50943 20.50872 20.50883

2 10000 (7)0.057 (2493)0.571 (102)0.211 0.368 0.410236 0.410745 0.410221 0.410220
2 50000 (6)0.266 (3278)3.122 (101)0.867 1.280 0.409263 0.409964 0.409267 0.409260
2 100000 (5)0.525 (3910)9.361 (100)1.935 2.701 0.409143 0.409795 0.409154 0.409145

3 10000 (5)0.048 (1619)0.428 (97)0.236 0.415 5.142670 5.142919 5.142671 5.142670
3 40000 (5)0.214 (2208)2.378 (97)0.784 1.578 5.082114 5.082363 5.082119 5.082113
3 90000 (5)0.535 (2407)7.178 (95)1.774 3.827 5.062011 5.062261 5.062024 5.062011

4 10000 (6)0.069 (2512)0.488 (135)0.271 0.325 7.251897 7.252565 7.251890 7.251888
4 50000 (6)0.402 (3413)2.870 (130)1.045 1.064 7.251892 7.252527 7.251895 7.251889
4 100000 (6)1.032 (4013)8.480 (128)2.554 2.294 7.251891 7.252461 7.251902 7.251888

Table 4: The performance of 3 algorithms on (48) for χ1(8), χ2(10) and χ3(10).

Problem Time [s] Objective value F (xk)

χ p HomoPN MUL[24] IP[39] HomoPN MUL[24] IP[39]

1 10000 0.203 9.172 57.830 92.552013 92.552097 96.377758
1 50000 1.134 48.288 264.658 92.541322 92.541593 96.373413
1 100000 2.589 97.433 468.258 92.539162 92.540231 96.372813

2 10000 0.303 6.950 71.1327 18.424093 18.424563 22.387641
2 50000 1.555 43.340 229.223 18.416971 18.417293 22.388450
2 100000 2.862 84.389 543.588 18.416223 18.416356 22.389739

3 10000 0.188 17.657 2.140 30.158301 30.158329 30.158325
3 50000 0.822 72.969 240.569 29.956255 29.956513 37.689778
3 100000 2.217 165.105 556.789 29.889216 29.889565 37.692640

From Table 4, we can see that our algorithm outperforms both the MUL and IP methods in
terms of computation time, while the IP method cannot achieve the desired accuracy when the
dimension of the matrix variable m is increased. It also illustrates the ability of our method to
solve the problems to an intermediate accuracy. The reason why the IP method cannot solve the
problem is that when the dimension is large, the Newton system is very ill-condition, and the
solver cannot handle the ill-conditioning difficultly satisfactorily.

7.3. Non-Lipschitz gradient models. Next, we illustrate the variant of Algorithm 1
stated in Theorem 5 under Assumption 3 through a non-Lipschitz gradient model. We consider
the following problem from Poisson regression [27, 29]:

(49) F ? := min
x∈Rp

{
F (x) :=

1

n

n∑
i=1

(
yi exp

(
−a
>
i x
2

)
+ exp

(
a>i x

2

))
+
µf
2
‖x‖22 + ρ‖x‖1

}
,

where ai ∈ Rp, yi ∈ R are given, and µf > 0 and ρ > 0 are given regularization parameters.

Let f(x) := 1
n

∑n
i=1

(
yi exp

(
−a
>
i x
2

)
+ exp

(
a>i x

2

))
+

µf
2 ‖x‖

2
2. Note that if µf > 0, then by

Proposition 13 in Appendix A, f is Mf -self-concordant with Mf := maxi{‖ai‖2}√
µf

. Moreover, it
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is also µf -strongly convex, and g(x) := ρ‖x‖1 is Lg-Lipschitz continuous with Lg := ρ. Hence,
problem (49) satisfies Assumption 3. Consequently, the results of Theorem 5 hold for this problem.

We implement Algorithm 1 to solve (49) and compare it with a quasi-Newton method using
BFGS with linesearch scheme and a limited-memory quasi-Newton method (L-BFGS) with both
linesearch and restarting scheme. We name these three schemes HomoPN, BFGS, and L-BFGS-LS-R,
respectively. Similar to the above example, we adapt the semi-smooth Newton-CG augmented La-
grangian method in [37, 69] to approximately solve the convex composite quadratic programming
subproblem (13) in HomoPN.

Note that since the gradient ∇f is not Lipschitz continuous, first-order methods such as prox-
imal gradient-type methods are not applicable. Our experiment reveals that first-order methods
such as accelerated Barzilai-Borwein step-size proximal gradient algorithms often failed to con-
verge due to the explosion of the estimated Lipschitz constant of ∇f .

We test three algorithms on 6 datasets downloaded from the UCI dataset repository [38]
and Kaggle (https://www.kaggle.com/datasets). Such datasets are used to predict the number of
communications for a social post (news and facebook), the review score of a hotel or wine (vegas
and wine), the number of goals scored in a game season or the number of 911 calls in a period
of time. The sizes of these datasets are given in Table 5. Since these are raw datasets, to use
them in our model (49), we perform a sequence of data-preprocessing routines to make our feature
matrices well scaled by using methods such as one-hot encoding and min-max scaling.

Table 5: Poisson datasets information.

Dataset vegas games news 911 facbook wine
# samples 504 4940 39644 33059 99003 150930
# features 90 156 59 21 254 1154

Table 6: The performance and results of three algorithms on the Poisson model (49).

Datasets
Time [s] Number of iterations

F (xk)
HomoPN BFGS L-BFGS-LS-R HomoPN BFGS L-BFGS-LS-R

vegas 0.04 0.23 0.21 5 11 11 4.2695e+00
games 0.12 1.34 0.99 6 22 22 4.5610e+00
news 1.82 52.94 48.57 9 220 215 1.1447e+02
911 0.10 0.87 0.55 6 15 15 8.2290e+00

facebook 1.54 62.36 64.68 8 39 48 4.6651e+01
wine 2.89 455.28 459.81 6 40 40 1.9819e+01

We test three algorithms: HomoPN, BFGS, and L-BFGS-LS-R on the datasets in Table 5. The
computation results are reported in Table 6, where F (xk) is the objective value of (49). We
can see from the results that while all methods we have tested can solve the problem using real
datasets (they all reached almost the same optimal function values), the performance of the two
quasi-Newton methods are similar and our homotopy method outperforms them both in terms
of computational times and number of iterations. Moreover, based on our observation, when the
problem is hard (i.e. the linear system is very ill-conditioned), the number of iterations in the
quasi-Newton-type methods increases rapidly. However, our homotopy method is relatively stable
in terms of the number of iterations, as was indicated in Section 7.4. To conclude, our method is
highly efficient for real datasets.

7.4. The initial point independence of Algorithm 2. Our goal in this example is to
observe the independence of performance w.r.t. to the initial point X0 in our inexact primal-
dual-primal homotopy PN scheme, i.e. Algorithm 2, compared to standard proximal-Newton
methods for sparse optimization. We demonstrate this observation on the sparse inverse covariance
estimation problem covered by (2) which perfectly fits our assumptions.

https://www.kaggle.com/datasets
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As mentioned, in theory, we have shown that Algorithm 2 can achieve a global linear conver-
gence rate. In practice, however, this rate may still be slow. We instead update the homotopy
parameter τ in Algorithm 1 by a longer step based on a linesearch such that the new iterate Xk

remains in dom(φ). This trick allows us to go faster from τ ≈ 0 to τ ≈ 1 within a few iterations
instead of using the worst-case factor. Then, we fix the homotopy parameter τk ≈ 1 and apply a
few full-step proximal-Newton iterations to compute the desired solution (Stage 3 of Algorithm 1).

We implement Algorithm 2 and compare it with the primal proximal-Newton method in [61].
We abbreviate these methods by HomoPN and Primal PN, respectively. We use a restarting accel-
erated proximal-gradient algorithm to approximate the proximal Newton direction. We generate
two problem instances using the same procedure as in [36] with p = 500 and p = 1000, respec-
tively. In order to obtain a desired sparse solution of (2), we choose ρ := 0.01. To see the affect
of the initial point X0 on the methods we generate two different initial points X0.

• Case 1 (dense): X0 := Σ† + 10−6 × I, where Σ† is the pseudo-inverse of Σ.
• Case 2 (sparse): X0 := diag(1./diag(Σ)) a diagonal matrix.

Figure 1 shows the convergence of HomoPN and Primal PN for these two cases: the sparse initial
point X0 and the dense initial point X0.
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Fig. 1: The convergence of the two algorithms. Left: For p = 500, and Right: For p = 1000.

Figure 1 shows that our new algorithmic variant (HomoPN) depends weakly on the initial point
X0, while the primal proximal Newton method (Primal PN) in [61] strongly depends on the choice
of X0. The convergence rate of HomoPN is divided into two parts: the homotopy part with a linear
rate, and the refining part with a quadratic rate. Figure 1 shows the quadratic convergence on the

relative objective residual φ(Xk)−φ?
|φ?| of both algorithms when the iterates approach the optimal

solution, but Primal PN (dense) requires a large number of iterations to reach its quadratic
convergence region.
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Appendix A. Self-concordant and generalized self-concordant functions. Our
central concept is the self-concordance and self-concordant barrier introduced by Nesterov and
Nemirovskii [41, 44], and extensions to generalized self-concordance studied in [56].

For a three-time continuously differentiable and convex function f , let ∇3f(x)[u] denote the
third-order derivative along the direction u. We denote this class of functions by C3(dom(f)).

Definition 12. For f : dom(f) ⊆ Rp → R in C3(dom(f)), we say that:
(a) f is Mf -self-concordant (Mf ≥ 0) if for any x ∈ dom(f) and u ∈ Rp, we have

|〈∇3f(x)[u]u, u〉| ≤Mf 〈∇2f(x)u, u〉3/2.
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If Mf = 2, then we say that f is standard self-concordant.
(b) f is (Mf , κ)-generalized self-concordant if for any x ∈ dom(f) and u, v ∈ Rp, we have

|〈∇3f(x)[u]v, v〉| ≤Mf‖v‖2x‖u‖κ−2
x ‖u‖3−κ2 ,

where if 0 ≤ κ < 2 or κ > 3, then we use the convention 0
0 = 0.

(c) f is a νf -self-concordant barrier (νf ≥ 1) if f is standard self-concordant with dom(f) =
int (X ), f(x) tends to +∞ as x approaches the boundary ∂X of X , and

sup
u∈Rp

{
2〈∇f(x), u〉 − ‖u‖2x

}
≤ νf , ∀x ∈ dom(f).

(d) f is a νf -self-concordant logarithmically homogeneous barrier function of X if it is self-
concordant barrier and f(τx) = f(x)− νf log(τ) for all x ∈ int (X ) and τ > 0.

It is clear that affine and convex quadratic functions are standard self-concordant but not
self-concordant barrier. The logistic, Poisson, and DWD models discussed in the introduction are
generalized self-concordant with κ ∈ [2, 3], but not self-concordant. Self-concordant barriers are of-
ten associated with convex sets such as cones and convex bodies. Several simple sets are equipped
with a self-concordant barrier. For instance, f(x) := −

∑p
i=1 log(xi) is a p-self-concordant barrier

of Rp+, f(X) := − log det(X) is a p-self-concordant barrier of Sp+, and f(x, t) = − log(t2−〈x, x〉) is
a 2-self-concordant barrier of the Lorentz cone Lp+1 := {(x, t) ∈ Rp × R+ | ‖x‖ ≤ t}. The relation
between self-concordant and generalized self-concordant is stated in the following proposition.

Proposition 13. [56] Let f ∈ C3(dom(f)) be an (Mf , κ)-generalized self-concordant and
κ ∈ (0, 3] as defined in Definition 12. Then, if f is strongly convex with a strong convexity

parameter µf > 0, then f is M̂f -self-concordant with M̂f :=
Mf

(
√
µf )3−κ .

Proposition 13 shows that the regularized logistic, Poisson, and DWD models in the introduction
become self-concordant due to the aid of a regularization term

µf
2 ‖x‖

2.
Let f be a νf -self-concordant barrier of X . Then

(50) x?f := argmin
x
{f(x) | x ∈ int (X )} ,

is referred to as the analytical center of X . If X is bounded, then x?f exists and is unique.
Otherwise, we often add an artificial bound or consider f on a sublevel set of F in (1) to guarantee
the existence of x?f . Let θf := νf+2

√
νf be defined for a general self-concordant barrier, and θf :=

1 be defined for a self-concordant logarithmically homogeneous barrier. Then, ‖v‖∗x ≤ θf‖v‖∗x?f
and ‖x− x?f‖x?f ≤ θf for x ∈ dom(f) and v ∈ Rp if x?f exists.

Let K be a proper, closed, pointed, and convex cone. If K is endowed with a νf -self-concordant
logarithmically homogeneous barrier function f , then its Legendre transformation [44]:

f∗(y) := sup
v
{〈y, v〉 − f(v) | v ∈ K} ,

is also a νf -self-concordant logarithmically homogeneous barrier of the anti-dual cone −K∗ of
K. For instance, if K = Sp+, then K∗ = Sp+ = K (self-dual cone). A barrier function of Sp+ is
f(X) := − log det(X). Hence, f∗(Y ) = −p− log det(−Y ) is a barrier function of −K∗.

Appendix B. Convergence and iteration-complexity analysis of Algorithm 1. We
break up our analysis into several lemmas and theorems. The following lemmas provide several
key estimates for our proofs.

Lemma 14. Let x0 ∈ dom(F ) be given, ξ0 ∈ ∂g(x0), and Lg be the Lipschitz constant of g.
Let x∗τ and x∗τ̂ be two solutions of (9) at τ ∈ (0, 1] and τ̂ ∈ (0, 1], respectively. Then the following
results hold.

(a) If f is µf -strongly convex, then we have
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(51)
‖x0 − x∗τ‖2 ≤

‖∇f(x0)+ξ0‖2
µf

and

‖x∗τ − x∗τ̂‖2 ≤
|τ−τ̂ |
τ̂ µf
‖∇f(x∗τ ) + ξ0‖2 ≤ |τ−τ̂ |τ τ̂ µf

(
Lg + ‖ξ0‖2

)
.

(b) If f is self-concordant, then we have

(52)

‖x0−x∗τ‖x∗τ
1 + ‖x0−x∗τ‖x∗τ

≤ ‖∇f(x0) + ξ0‖∗x∗τ and

‖x∗τ−x
∗
τ̂‖x∗τ

1 + ‖x∗τ−x∗τ̂‖x∗τ
≤ |τ−τ̂ |τ̂ ‖∇f(x∗τ ) + ξ0‖∗x∗τ ≤

2Lg|τ−τ̂ |
ττ̂ .

(c) Let x∗t and x∗
t̂

be two solutions of (26) at t ∈ (0, 1] and t̂ ∈ (0, 1], respectively. If f is
self-concordant, then

(53)
‖x∗t−x

0‖x0
1 + ‖x∗t−x0‖x0

≤ |t− 1|‖∇f(x0) + ξ0‖∗x0 and
‖x∗t−x

∗
t̂
‖x∗t

1 + ‖x∗t−x∗t̂ ‖x∗t
≤ |t− t̂|‖∇f(x0) + ξ0‖∗x∗t .

(d) Let x∗s be a solution of either (9) or (26). If f is self-concordant, and x0 and s ∈ (0, 1)
are chosen such that ‖x0 − x∗s‖x0 ≤ γ < 1, then ‖x0 − x∗s‖x∗s ≤

γ
1−γ .

(e) If g is µg-strongly convex, and x∗τ is a solution of (9), then

(54) ‖x0 − x∗τ‖2 ≤ τ
µg
‖∇f(x0) + ξ0‖2.

Proof. (a) From (9), we have −τ(∇f(x∗τ ) + ξ0) ∈ ∂g(x∗τ )− ξ0. Using the monotonicity of ∂g
and ξ0 ∈ ∂g(x0), we have 〈∇f(x∗τ ) + ξ0, x∗τ − x0〉 ≤ 0, which implies

〈∇f(x∗τ )−∇f(x0), x∗τ − x0〉 ≤ 〈∇f(x0) + ξ0, x0 − x∗τ 〉.

If f is µf -strongly convex, then using the Cauchy-Schwarz inequality, the last inequality leads to

µf‖x0 − x∗τ‖22 ≤ 〈∇f(x∗τ )−∇f(x0), x∗τ − x0〉 ≤ ‖∇f(x0) + ξ0‖2‖x0 − x∗τ‖2,

which can be simplified as ‖x0 − x∗τ‖2 ≤
‖∇f(x0)+ξ0‖2

µf
. This is exactly the first estimate of (51).

Using (9) again with τ̂ we have −τ̂(∇f(x∗τ̂ ) + ξ0) ∈ ∂g(x∗τ̂ )− ξ0. Combining this expression
and −τ(∇f(x∗τ ) + ξ0) ∈ ∂g(x∗τ )− ξ0, and using the monotonicity of ∂g, we have

〈τ∇f(x∗τ )− τ̂∇f(x∗τ̂ ) + (τ − τ̂)ξ0, x∗τ − x∗τ̂ 〉 ≤ 0.

Rearranging this inequality, we obtain

τ̂〈∇f(x∗τ )−∇f(x∗τ̂ ), x∗τ − x∗τ̂ 〉 ≤ (τ̂ − τ)〈∇f(x∗τ ) + ξ0, x∗τ − x∗τ̂ 〉.

If f is µf -strongly convex, then we have 〈∇f(x∗τ )−∇f(x∗τ̂ ), x∗τ −x∗τ̂ 〉 ≥ µf‖x∗τ −x∗τ̂‖22. Combining
this estimate with the last inequality, and then using the Cauchy-Schwarz inequality, we obtain
the first inequality of the second line of (51).

Using again (9), we have −τ(∇f(x∗τ ) + ξ0) ∈ ∂g(x∗τ )− ξ0. Since g is Lg-Lipschitz continuous,
the last expression leads to τ‖∇f(x∗τ ) + ξ0‖2 ≤ Lg + ‖ξ0‖2, which implies (51).

(b) If f is self-concordant, then we have

‖x0−x∗τ‖
2
x∗τ

1 + ‖x0−x∗τ‖x∗τ
≤ 〈∇f(x∗τ −∇f(x0), x∗τ − x0〉.

With a similar proof as in (a), we have

‖x0−x∗τ‖x∗τ
1 + ‖x0−x∗τ‖x∗τ

≤ ‖∇f(x0) + ξ0‖∗x∗τ ,

which is the first line of (52). The second line of (52) is proved similarly as that of (51) and using
the fact that ‖ξ0‖∗x∗τ ≤ Lg.

(c) The proof of (53) is very similar to the proof of (52) and we omit it here.



24 Q. TRAN-DINH, LIANG LING, AND KIM-CHUAN TOH

(d) Note that if f is self-concordant, then we have ‖x0 − x∗s‖x∗s ≤
‖x0−x∗s‖x0

1−‖x0−x∗s‖x0
due to [41,

Theorem 4.1.5] as long as ‖x0 − x∗s‖x0 < 1. If ‖x0 − x∗s‖x0 ≤ γ < 1, then the last inequality
implies that ‖x0 − x∗s‖x∗s ≤

γ
1−γ , which proves (d).

(e) By the choice of ξ0, we have 0 ∈ ∂g(x0)− ξ0. From (9), we also have

−τ(∇f(x∗τ )−∇f(x0))− τ(∇f(x0) + ξ0) ∈ ∂g(x∗τ )− ξ0.

Using the µg-strong monotinicity of ∂g and the monotonicity of ∇f , we have

〈τ(∇f(x0) + ξ0), x0 − x∗τ 〉 ≥ µg‖x∗τ − x0‖22.
By the Cauchy-Schwarz inequality, we obtain ‖x0−x∗τ‖2 ≤ τ

µg
‖∇f(x0)+ξ0‖2, which is the desired

result in (54).

Lemma 15. Let M > 0 and q ∈ (0, 1) be two given constants. Let {τk} ⊂ (0, 1) be a given
sequence such that τk+1 ≤ τk +Mqkτkτk+1 for all k ≥ 0. Then

(55) τk ≤
τ0(1− q)

1− q − τ0M(1− qk)
and 1− τk ≥

(1− τ0)(1− q)− τ0M + τ0Mqk

1− q − τ0M(1− qk)
,

as long as the denominators are well-defined.

Proof. Define sk := 1
τk

. Then, τk+1 ≤ τk + Mqkτkτk+1 is equivalent to sk+1 ≥ sk −Mqk.

By induction, we have sk ≥ s0 −M
∑k−1
i=0 q

i = s0 − M(1−qk)
1−q . Hence, we can show that τk ≤

τ0(1−q)
1−q−τ0M(1−qk)

. This estimate leads to

1− τk ≥
(1− τ0)(1− q)− τ0M + τ0Mqk

1− q − τ0M(1− qk)
,

which proves (55).

Lemma 16. Assume that f is µf -strongly convex and Lf -smooth. Suppose 0 < m ≤ L <

+∞ are given parameters such that ω := 1
m

√
(L− 2µf )m+ L2

f < 1. Let
{
xk
}

be the sequence

generated by (12) using Hk ∈ Sp++ such that mI � Hk � LI. Then

(56) ‖xk+1 − x∗τk+1
‖2 ≤ ω‖xk − x∗τk+1

‖2.

Proof. Using ∇fτk+1
(·) := ∇f(·) − ( 1

τk+1
− 1)ξ0, H = Hk, and τ = τk+1 in (10), we get

x∗τk+1
= proxHk1

τk+1
g

(
x∗τk+1

−H−1
k ∇fτk+1

(x∗τk+1
)
)
. Combining this expression and (12), then using

the non-expansiveness of proxHk1
τk+1

g
in (5), we can derive that

‖xk+1−x∗τk+1
‖2Hk =

∥∥proxHk1
τk+1

g

(
xk−H−1

k ∇fτk+1
(xk)

)
− proxHk1

τk+1
g

(
x∗τk+1

−H−1
k ∇fτk+1

(x∗τk+1
)
)∥∥2

Hk

≤
∥∥xk − x∗τk+1

−H−1
k

(
∇fτk+1

(xk)−∇fτk+1
(x∗τk+1

)
)∥∥2

Hk

= ‖xk − x∗τk+1
‖2Hk − 2

〈
xk − x∗τk+1

,∇fτk+1
(xk)−∇fτk+1

(x∗τk+1
)
〉

+
(
‖∇fτk+1

(xk)−∇fτk+1
(x∗τk+1

)‖∗Hk
)2

= ‖xk − x∗τk+1
‖2Hk − 2〈xk − x∗τk+1

,∇f(xk)−∇f(x∗τk+1
)〉

+
(
‖∇f(xk)−∇f(x∗τk+1

)‖∗Hk
)2
.(57)

Next, from the fact that mI � Hk � LI and the strong convexity and smoothness of f , we have

‖∇f(xk)−∇f(x∗τk+1
)‖∗Hk ≤

1√
m
‖∇f(xk)−∇f(x∗τk+1

)‖2 ≤ Lf√
m
‖xk − x∗τk+1

‖2,

〈∇f(xk)−∇f(x∗τk+1
), xk − x∗τk+1

〉 ≥ µf‖xk − x∗τk+1
‖22.
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Substituting these estimates into (57), we get

‖xk+1 − x∗τk+1
‖2Hk ≤ ‖x

k − x∗τk+1
‖2Hk − 2µf‖xk − x∗τk+1

‖22 +
L2
f

m
‖xk − x∗τk+1

‖22.

Using again mI � Hk � LI, the last inequality leads to

m‖xk+1 − x∗τk+1
‖22 ≤ ‖xk+1 − x∗τk+1

‖2Hk

≤ L‖xk − x∗τk+1
‖22 − 2µf‖xk − x∗τk+1

‖22 +
L2
f

m ‖x
k − x∗τk+1

‖22

≤
(
L− 2µf +

L2
f

m

)
‖xk − x∗τk+1

‖22.

This estimate can be simplified as in (56) with ω := 1
m

(
(L− 2µf )m+ L2

f

)1/2
< 1.

Lemma 17. Assume that f is self-concordant. Let xk+1 be generated by the inexact scheme
(14) up to a given accuracy δk ≥ 0. Let λk+1 := ‖xk+1−x∗τk+1

‖x∗τk+1
and λ̂k := ‖xk−x∗τk+1

‖x∗τk+1

be defined by (17). If 1− 4λ̂k + 2λ̂2
k > 0, then we have

(58) λk+1 ≤

(
3− 2λ̂k

1− 4λ̂k + 2λ̂2
k

)
λ̂2
k +

δk

1− λ̂k
.

Proof. Note that ∇fτk+1
(·) := ∇f(·)− ( 1

τk+1
− 1)ξ0. Using (10) with H ≡ H∗k := ∇2f(x∗τk+1

)

and τ = τk+1, we have

(59) x∗τk+1
= prox

H∗k
1

τk+1
g

(
x∗τk+1

−H∗k
−1∇fτk+1

(x∗τk+1
)
)
.

Define Hk := ∇2f(xk) and ek := H∗k
−1 (H∗k −Hk) (x̄k+1 − xk). Then, we can rewrite (13) as

(60) x̄k+1 := prox
H∗k

1
τk+1

g

(
xk −H∗k

−1∇fτk+1
(xk) + ek

)
.

Using (5), we can derive from (59) and (60) that

‖x̄k+1 − x∗τk+1
‖x∗τk+1

=
∥∥∥prox

H∗k
1

τk+1
g

(
xk −H∗k

−1∇fτk+1
(xk) + ek

)
− prox

H∗k
1

τk+1
g

(
x∗τk+1

−H∗k
−1∇fτk+1

(x∗τk+1
)
)∥∥∥
x∗τk+1

(5)

≤
∥∥H∗k−1(∇fτk+1

(xk)−∇fτk+1
(x∗τk+1

)−H∗k(xk − x∗τk+1
)
)
− ek

∥∥
x∗τk+1

≤
∥∥∇fτk+1

(xk)−∇fτk+1
(x∗τk+1

)−H∗k(xk − x∗τk+1
)
∥∥∗
x∗τk+1

+ ‖ek‖x∗τk+1
.(61)

First, we estimate the following term of (61) using definition of ∇fτk+1
and H∗k as

Ak :=
∥∥∇fτk+1

(xk)−∇fτk+1
(x∗τk+1

)−H∗k(xk − x∗τk+1
)
∥∥∗
x∗τk+1

=
∥∥∇f(xk)−∇f(x∗τk+1

)−∇2f(x∗τk+1
)(xk − x∗τk+1

)
∥∥∗
x∗τk+1

.

By the self-concordance of f , with the same proof as in [41, Theorem 4.1.14], we can derive that

Ak ≤
‖xk−x∗τk+1

‖2x∗τk+1

1 − ‖xk−x∗τk+1
‖x∗τk+1

.

Next, using [41, Corollary 4.1.4], we estimate ‖ek‖x∗τk+1
as follows:
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‖ek‖x∗τk+1
=
∥∥(H∗k −Hk

)
(x̄k+1 − xk)

∥∥∗
x∗τk+1

=
∥∥(∇2f(x∗τk+1

)−∇2f(xk)
)
(x̄k+1 − xk)

∥∥∗
x∗τk+1

≤

[
2‖xk− x∗τk+1

‖x∗τk+1
− ‖xk− x∗τk+1

‖2x∗τk+1(
1 − ‖xk− x∗τk+1

‖x∗τk+1

)2 ]
· ‖x̄k+1 − xk‖x∗τk+1

,

provided that ‖xk−x∗τk+1
‖x∗τk+1

< 1. Combining these two estimates, we can derive from (61) that

‖x̄k+1− x∗τk+1
‖x∗τk+1

≤
‖xk−x∗τk+1

‖2x∗τk+1

1−‖xk−x∗τk+1
‖x∗τk+1

+

[
2‖xk−x∗τk+1

‖x∗τk+1
− ‖xk−x∗τk+1

‖2x∗τk+1

](
1−‖xk−x∗τk+1

‖x∗τk+1

)2 · ‖x̄k+1 − xk‖x∗τk+1
.

Note that ‖x̄k+1−xk‖x∗τk+1
≤ ‖x̄k+1−x∗τk+1

‖x∗τk+1
+ ‖xk−x∗τk+1

‖x∗τk+1
by the triangle inequality.

Using this in the last inequality, and rearranging the result, we obtain

‖x̄k+1 − x∗τk+1
‖x∗τk+1

≤

(
3 − 2‖xk−x∗τk+1

‖x∗τk+1

1 − 4‖xk−x∗τk+1
‖x∗τk+1

+ 2‖xk−x∗τk+1
‖2
x∗τk+1

)
‖xk − x∗τk+1

‖2x∗τk+1
.

Moreover, using the self-concordance of f in [41, Theorem 4.1.5], we can also derive that

‖xk+1 − x∗τk+1
‖x∗τk+1

≤ ‖x̄k+1 − x∗τk+1
‖x∗τk+1

+ ‖xk+1 − x̄k+1‖x∗τk+1

≤ ‖x̄k+1 − x∗τk+1
‖x∗τk+1

+
‖xk+1−x̄k+1‖

xk

1 − ‖xk−x∗τk+1
‖x∗τk+1

.

Combining the last two inequalities and using the definition of λk+1, λ̂k, and δk, we obtain

λk+1 ≤

(
3− 2λ̂k

1− 4λ̂k + 2λ̂2
k

)
λ̂2
k +

δk

1− λ̂k
,

which is exactly (58). Here, the right-hand side is well-defined since 1− 4λ̂k + 2λ̂2
k > 0.

B.1. Proof of Theorem 4: Global linear convergence for smooth and strongly
convex function f . From (56) of Lemma 16, we can write

‖xk+1 − x∗τk+1
‖2 ≤ ω‖xk − x∗τk+1

‖2.

Using the estimate (51) of Lemma 14 with τ = τk+1 and τ̂ = τk, we obtain

‖x∗τk+1
− x∗τk‖2 ≤

|τk+1 − τk|
µfτkτk+1

(
Lg + ‖ξ0‖2

)
.

Combining these two estimates and using the triangle inequality, we can derive that

(62) ‖xk+1 − x∗τk+1
‖2 ≤ ω‖xk − x∗τk‖2 + ω

(
Lg + ‖ξ0‖2

) ∆τk
µfτkτk+1

,

where ω := 1
m

√
(L− 2µf )m+ L2

f < 1, and ∆τk := |τk+1 − τk|. In addition, by using (51) of

Lemma 14 with τ = τ0, we have

(63) ‖x0 − x∗τ0‖2 ≤ C :=
‖∇f(x0) + ξ0‖2

µf
.

Now, let us assume that ‖xk − x∗τk‖2 ≤ Cσk for some σ ∈ (ω, 1] and C is given in (63). In order

to get ‖xk+1 − x∗τk+1
‖2 ≤ Cσk+1, from (62), we impose the following condition:
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ωCσk + ω(Lg + ‖ξ0‖2)
∆τk

µfτkτk+1
≤ Cσk+1.

Since τk < τk+1 and σ ∈ (ω, 1], this inequality is equivalent to

τk+1 ≤ τk +
C(σ−ω)µf
ω(Lg+‖ξ0‖2)σ

kτkτk+1.

Define C1 :=
C(σ−ω)µf
ω(Lg+‖ξ0‖2) = (σ−ω)‖∇f(x0)+ξ0‖2

ω(Lg+‖ξ0‖2) > 0. Then, the last inequality leads to

(64) τk+1 ≤ τk + C1σ
kτkτk+1.

Using Lemma 15 with M := C1 and q := σ, we get

1− τk ≥
(1− τ0)(1− σ)− τ0C1 + τ0C1σ

k

1− σ − τ0C1(1− σk)
.

Let us choose τ0 and σ such that (1− τ0)(1− σ)− τ0C1 = 0. Using the formula of C1 above, this
condition is equivalent to

(65)
(1− τ0)(1− σ)

τ0
=

(σ − ω)‖∇f(x0) + ξ0‖2
ω(Lg + ‖ξ0‖2)

.

Let us fix τ0 ∈ (0, 1). Then (65) shows that we can choose σ := 1−τ0+τ0ωΓ
1−τ0+τ0Γ ∈ (ω, 1) as shown in

(18) to guarantee (65), where Γ := ‖∇f(x0)+ξ0‖2
ω(Lg+‖ξ0‖2) .

With the choice of τ0 and σ, we have 0 ≤ 1 − τk ≤ (1−τ0)σk

τ0+(1−τ0)σk
and 0 < (1−τ0)σk

τ0+(1−τ0)σk
< 1.

If we update 1 − τk := (1−τ0)σk

τ0+(1−τ0)σk
as shown in (19), then the condition (64) holds. Moreover,

0 ≤ 1− τk ≤ (1−τ0)σk

τ0
, where the right-hand side (1−τ0)σk

τ0
converges to zero as k tends to +∞.

Finally, since x? = x∗1, by the triangle inequality, we have

‖xk − x?‖2 ≤ ‖xk − x∗τk‖2 + ‖x∗τk − x
∗
1‖2 ≤ Cσk + ω(Lg + ‖ξ0‖2) (1−τk)

µfτkτk+1

≤ Cσk + ω(Lg + ‖ξ0‖2) (1−τ0)σk

µfτ3
0

≤
[
C +

ω(Lg+‖ξ0‖2)(1−τ0)

τ3
0µf

]
σk,

Hence, we obtain ‖xk − x?‖2 ≤ Ĉσk with Ĉ := C +
ω(Lg+‖ξ0‖2)(1−τ0)

τ3
0µf

. This is exactly the last

conclusion of Theorem 4. �

B.2. Proof of Theorem 5: Linear convergence under Assumption 3. Let λk and
λ̂k be defined by (17) and let ∆∗k := ‖x∗τk+1

− x∗τk‖x∗τk+1
be the local distance between the true

solutions x∗τk+1
and x∗τk of (9). We divide the proof of Theorem 5 into the following steps:

Step 1: Upper bound on λk+1: Recall (58) from Lemma 17 as follows:

(66) λk+1 ≤

(
3− 2λ̂k

1− 4λ̂k + 2λ̂2
k

)
λ̂2
k +

δk

1− λ̂k
.

By the triangle inequality and [41, Theorem 4.1.5], we can also derive that

λ̂k = ‖xk − x∗τk+1
‖x∗τk+1

≤ ∆∗k +
‖xk−x∗τk‖x∗τk

1 − ∆∗k
= ∆∗k + λk

1 − ∆∗k
.

Now, consider the function ψ(t) := 3−2t
1−4t+2t2 on [0, 0.1145]. It is straightforward to numerically

check that 3 ≤ ψ(t) ≤ 5. Hence, we can overestimate (66) as follows:

λk+1 ≤ 1.13δk + 5λ̂2
k, for all λ̂k ∈ [0, 0.1145].
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Using the fact that λ̂k ≤ λk
1−∆∗k

+ ∆∗k above, we overestimate again this inequality as

λk+1 ≤ 1.13δk + 5

(
λk

1−∆∗k
+ ∆∗k

)2

,

where we require λk
1−∆∗k

+ ∆∗k ≤ 0.1145.

Now, if we impose λk ≤ 0.05, then λk
1−∆∗k

+ ∆∗k ≤ 0.1145 implies that ∆∗k ≤ 0.055. Therefore,

if we choose δk := λk
113 , then we can further simplify the above inequality to get

(67) λk+1 ≤ 1
100λk + 5

(
10λk

9 + ∆∗k
)2
,

as long as λk ≤ 0.05 and ∆∗k ≤ 0.055.
Step 2: Upper bound on ∆∗k: Let us assume that λk ≤ 0.05σk for some σ ∈ (0, 1]. In order

to guarantee λk+1 ≤ 0.05σk+1, using the last inequality (67), we have to impose the following
condition

0.05σk

100 + 5

(
0.5σk

9
+ ∆∗k

)2

≤ 0.05σk+1.

Provided that σ > 25
81 + 0.01 = 0.318642, the previous condition is equivalent to

(68) ∆∗k ≤ ∆k :=

√
(σ − 0.01)σk

100
− σk

18
= Ck

√
σ
k
,

where Ck := 1
10

√
σ − 0.01− 1

18

√
σ
k
> 0.

Step 3: Update rule of τk: Using (52) with τ := τk+1 and τ̂ := τk, we obtain

(69)
∆∗k

1 + ∆∗k
≤ 2Lg |τk+1 − τk|

τkτk+1
.

If we update τk as (21), then we can see that

(70)
2Lg(τk+1 − τk)

τkτk+1
=

Ck
√
σ
k

1 + Ck
√
σ
k

(69)

≥ ∆∗k
1 + ∆∗k

.

This guarantees (68).

Step 4: Conditions on σ and τ0: Define C̄0 :=
2Lg(1−τ0)(1−

√
σ)

τ0
and choose σ ∈ (0.318642, 1]

such that

(71) C̄0

√
σ
k ≤ Ck

√
σ
k

1 + Ck
√
σ
k

=
2Lg(τk+1 − τk)

τkτk+1
.

Note that the above condition holds if

(72)
C̄0

1− C̄0
√
σ
k
≤
(

1

10

√
σ − 0.01− 1

18

√
σ
k
)
.

In turn, the condition (72) holds if we choose σ ∈ (0.318642, 1) such that C̄0

1−C̄0
≤
√
σ−0.01

10 − 1
18 .

Using the explicit expression of C̄0, we obtain that

2Lg(1− τ0)(1−
√
σ)

τ0 − 2Lg(1− τ0)(1− σ)
≤
√
σ − 0.01

10
− 1

18
,

which is exactly the condition (20). It is not hard to show that this inequality always has a
solution σ ∈ (0.318642, 1]. Moreover, since ∆∗k ≤ 0.055, from (68), we also require Ck ≤ 0.055 for
all k ≥ 0. It is easy to check numerically that this condition is always satisfied for σ ∈ (0.318642, 1].
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Step 5: Bound on τk: Next, using (71), the definition of C̄0, and Lemma 15 with M := C̄0

and q :=
√
σ, similar to the proof of Theorem 4, we can show that

(73) τk ≥ 1− (1− τ0)
√
σ
k

τ0 + (1− τ0)
√
σ
k
≥ 1−

(
1− τ0
τ0

)√
σ
k
.

Hence 0 ≤ 1− τk ≤
(

1−τ0
τ0

)√
σ
k
.

Step 6: Linear convergence rate of
{
xk
}

: Finally, note that x? = x∗1 and τk+1 = 1, we can
show from (69) and (73) that

‖x∗1 − x∗τk‖x∗1
1 + ‖x∗1 − x∗τk‖x∗1

≤ 2Lg(1− τk)

τk

(73)
= C̄0

√
σ
k
.

Since in (72) we have chosen C̄0 such that C̄0
√
σ
k
< 1, this inequality implies that

(74) ∆∗1k := ‖x∗1 − x∗τk‖x∗1 ≤
C̄0
√
σ
k

1− C̄0
√
σ
k
≤ C̄0

√
σ
k

1− C̄0
= C1

√
σ
k
,

where C1 := C̄0

1−C̄0
> 0. Using the triangle inequality, the self-concordance of f , and (74), we can

derive that

‖xk − x?‖x? ≤ ‖xk − x∗τk‖x∗1 + ‖x∗τk − x
∗
1‖x∗1 ≤

‖xk−x∗τk‖x∗τk
1−∆∗1k

+ ∆∗1k ≤ 0.05σk

1−C1
√
σk

+ C1

√
σ
k ≤ Ĉ

√
σ
k
,

where Ĉ := 0.05
1−C1

+ C1 = 0.05(1−C̄0)
1−2C̄0

+ C̄0

1−C̄0
. This inequality shows that

{
xk
}

converges to a

solution x? of (1) at a linear rate. �

B.3. Proof of Theorem 7: Linear convergence when f is a self-concordant barrier.
Let ∆∗k := ‖x∗τk+1

− x∗τk‖x∗τk+1
as defined in Theorem 4. Using (52) with τ := τk+1 and τ̂ := τk,

we get

∆∗k
1 + ∆∗k

≤ |τk+1 − τk|
τk

[
‖∇f(x∗τk+1

)‖∗x∗τk+1
+ ‖ξ0‖∗x∗τk+1

]
.

Since ‖ξ0‖∗x∗τk+1
≤ c̄0 := θf‖ξ0‖∗x?f and ‖∇f(x∗τk+1

)‖∗x∗τk+1
≤ √νf due to the self-concordant barrier

property of f , the last inequality leads to

(75)
∆∗k

1 + ∆∗k
≤ |τk+1 − τk|

τk
(
√
νf + c̄0).

Since we want to guarantee ‖xk − x∗τk‖x∗τk ≤ βσk for β = 0.05 and σ ∈ (0, 1] as in Theorem 5,

similar to the proof of Theorem 5, we can choose

(76) ∆∗k ≤ ∆k :=

(
1

10

√
σ − 0.01− 1

18

√
σ
k
)√

σ
k ≡ Ck

√
σ
k
,

where Ck := 1
10

√
σ − 0.01− 1

18

√
σ
k
. Here, Ck > 0 for k ≥ 0 if σ ∈ (0.318642, 1].

Now, from the update rule (23) of Theorem 7, we have

|τk+1 − τk|
τk

(
√
νf + c̄0) =

Ck
√
σ
k

1 + Ck
√
σ
k
≥ ∆∗k

1 + ∆∗k
.

This inequality shows that (76) automatically holds.

Let ak := Ck
√
σk

(
√
νf+c̄0)(1+Ck

√
σk)
∈ (0, 0.052133]. It is easily to show that ak ≥ C0

√
σk

(
√
νf+c̄0)(1+C0

√
σk)

,

where C0 :=
√
σ−0.01

10 − 1
18 > 0. By induction, we get τk = τ0

∏k
i=0(1 + ai). Using an elementary

inequality
∏k
i=0(1 + ai) ≥ 1 +

∑k
i=0 ai, we have
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τk ≥ τ0 +
C0τ0

(1 + C0)(
√
νf + c̄0)

k∑
i=0

√
σ
i

= τ0 +
τ0C0(1−

√
σ
k
)

(1 + C0)(
√
νf + c̄0)(1−

√
σ)
.

Hence, for any τ0 ∈ (0, 1), if we choose σ ∈ (0.318642, 1] such that σ ≥
(
1− τ0C0

(1−τ0)(1+C0)(
√
νf+c̄0)

)2
,

then we have 1− τk ≤ C0
√
σk

(1+C0)(
√
νf+c̄0)(1−

√
σ)

.

Finally, note that x? = x∗1, we can show from (75) that

‖x∗1 − x∗τk‖x∗1
1 + ‖x∗1 − x∗τk‖x∗1

≤
(

1− τk
τk

)(√
νf + c̄0

)
≤ C0

√
σ
k

τ0(1 + C0)(1−
√
σ)
.

This shows that

(77) ∆∗1k := ‖x∗1 − x∗τk‖x∗1 ≤ C̃1

√
σ
k
,

where C̃1 := C0

τ0(1+C0)(1−
√
σ)−C0

> 0. Next, using the triangle inequality, the self-concordance of

f , and (77), we can derive

‖xk − x?‖x? ≤ ‖xk − x∗τk‖x∗1 + ‖x∗τk − x
∗
1‖x∗1 ≤

‖xk − x∗τk‖x∗τk
1−∆∗1

+ ∆∗1
(77)

≤ βσk

1− C̃1
√
σ
k

+ C̃1

√
σ
k
.

This inequality shows that
{
xk
}

converges to a solution x? of (1) at a linear rate. �

B.4. Proof of (25): The choice of τ0. From (54), we have ‖x0−x∗τ0‖2 ≤
τ0
µg
‖∇f(x0)+ξ0‖2.

Let λmax(∇2f(x0)) be the maximum eigenvalue of ∇2f(x0). Hence, if we assume that

γ := λmax(∇2f(x0))1/2 τ0
µg
‖∇f(x0) + ξ0‖2 < 1,

then we have

‖x0 − x∗τ0‖x0 ≤ λmax(∇2f(x0))1/2‖x0 − x∗τ0‖2 ≤ γ < 1.

Since

‖x0 − x∗τ0‖x∗τ0 ≤
‖x0 − x∗τ0‖x0

1− ‖x0 − x∗τ0‖x0

≤ γ

1− γ

as long as ‖x0 − x∗τ0‖x0 < 1, to guarantee that ‖x0 − x∗τ0‖x∗τ0 ≤ β, we impose γ
1−γ ≤ β. The last

condition is equivalent to γ ≤ β
1+β , which shows that

τ0 ≤
βµg

(1 + β)λmax(∇2f(x0))1/2‖∇f(x0) + ξ0‖2
.

This condition is exactly (25). �

B.5. Proof of Theorem 9: Finding an initial point. Let λj := ‖xj − x∗tj‖x∗tj and

∆∗j := ‖x∗tj+1
− x∗tj‖x∗tj+1

Assume that λj ≤ β, from (67), to guarantee λj+1 ≤ β, we impose the

condition

β

100
+ 5

(
10β

9
+ ∆∗j

)2

≤ β.

This condition holds if ∆∗j ≤ Θ :=
√

99β
500 −

10β
9 . Since β ≤ 0.1145 < 0.16038, we have Θ :=√

99β
500 −

10β
9 > 0. Using (53) with t := tj+1 and t̂ := tj , we obtain that
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∆∗j
1 + ∆∗j

≤ (tj − tj+1)‖∇f(x̂0) + ξ̂0‖∗x∗tk+1
.

Since f is µf -strongly convex, we have ‖∇f(x0) + ξ0‖∗x∗tk+1

≤ 1√
µf
‖∇f(x̂0) + ξ̂0‖2. Hence, we get

∆∗j
1+∆∗j

≤ (tj − tj+1)‖∇f(x̂0)+ξ̂0‖2√
µf

.

To guarantee this condition, we impose Θ
1+Θ = M0(tj − tj+1), where M0 := ‖∇f(x̂0)+ξ̂0‖2√

µf
.

This allows us to update tj to tj+1 := tj − Θ
Lg(1+Θ) . If we start from t0 ≈ 1, then we have tj :=

t0− Θ
M0(1+Θ) (j+ 1). Hence, tj = 0 if j+ 1 ≥ t0(1+Θ0)

Θ . This shows that after jmax :=
⌊
t0M0(1+Θ)

Θ

⌋
iterations, we obtain x̂jmax such that ‖x̂jmax − x∗τ0‖x∗τ0 ≤ β.

Finally, we show how to choose t0 such that ‖x̂0 − x∗t0‖x∗t0 ≤ β. Using (53) with t := t0, if

(1− t0)‖∇f(x̂0) + ξ̂0‖∗x̂0 <
1
2 , then we have

(78) ‖x̂0 − x∗t0‖x0 ≤
(1− t0)‖∇f(x̂0) + ξ̂0‖∗x̂0

1− (1− t0)‖∇f(x̂0) + ξ̂0‖∗x̂0

< 1.

By using Lemma 14(e), if ‖x̂0 − x∗t0‖x̂0 < 1, then we have ‖x̂0 − x∗t0‖x∗t0 ≤
‖x̂0−x∗t0‖x̂0

1−‖x̂0−x∗t0‖x̂0
. To

guarantee that ‖x̂0 − x∗t0‖x∗t0 ≤ β, we require ‖x̂0 − x∗t0‖x̂0 ≤ β
1+β . Combing this estimate and

(78), we can show that ‖x̂0−x∗t0‖x∗t0 ≤ β if 1−t0 ≥ β

(1+2β)‖∇f(x̂0)+ξ̂0‖∗
x̂0

. Therefore, we can choose

t0 :=

{
1− β

(1+2β)‖∇f(x̂0)+ξ̂0‖∗
x̂0

, if ‖∇f(x̂0) + ξ̂0‖∗x̂0 >
1+2β
β ,

1 otherwise,

to guarantee that ‖x̂0 − x∗t0‖x∗t0 ≤ β. �

B.6. Proof of Lemma 10: Approximate solution of the dual problem. Define the
quadratic function

(79) qk(y) := 〈∇ϕτk+1
(yk), y − yk〉+

1

2
〈∇2ϕ(yk)(y − yk), y − yk〉.

It is easy to show that

(80)
qk(yk+1)− qk(ȳk+1) = 〈∇ϕτk+1

(yk) +∇2ϕ(yk)(ȳk+1 − yk), yk+1 − ȳk+1〉
+ 1

2 〈∇
2ϕ(yk)(yk+1 − ȳk+1), yk+1 − ȳk+1〉.

By using (37) and (38), we have yk+1 ∈ ∂ψ(τk+1z
k+1), which implies zk+1 ∈ 1

τk+1
∂ψ∗(yk+1).

Hence, by the convexity of ψ∗, we have 1
τk+1

(
ψ∗(yk+1)−ψ∗(ȳk+1)

)
≤ 〈zk+1, yk+1 − ȳk+1〉. Using

this inequality and (80), if we define Pk(y) := qk(y) + 1
τk+1

ψ∗(y), then we have

Pk(yk+1) − Pk(ȳk+1) ≤ 1
2‖y

k+1 − ȳk+1‖2yk
+ 〈zk+1 +∇ϕτk+1

(yk) +∇2ϕ(yk)(ȳk+1 − yk), yk+1 − ȳk+1〉.
Next, using (38), we have zk+1 = −∇ϕτk+1

(yk)−∇2ϕ(yk)(yk+1−yk−ẽk) for ẽk ∈ Rp. Substituting
this expression into the last inequality, we obtain

Pk(yk+1)− Pk(ȳk+1) ≤ 1
2‖y

k+1−ȳk+1‖2yk + 〈∇2ϕ(yk)(ȳk+1 − yk+1 + ẽk, y
k+1−ȳk+1〉

= − 1
2‖y

k+1−ȳk+1‖2yk + 〈∇2ϕ(yk)ẽk, y
k+1 − ȳk+1〉

≤ 1
2‖ẽk‖

2
yk .

The last inequality implies that if ‖ẽk‖yk ≤ δ, then Pk(yk+1) − Pk(ȳk+1) ≤ δ2

2 . This completes
the proof. �
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B.7. Proof of Theorem 11: An approximate solution for x? of (1). The statement
(a) is trivial. We now prove (b) and (c) as follows.

(b) From (32), (39), and the definition of ϕ in (30), we can show that

‖xk − x?‖x? := 〈∇2f∗(−D>y?)−1(xk − x?), (xk − x?)〉1/2

= 〈∇2f∗(−D>y?)−1(∇f∗(−D>yk)−∇f∗(−D>y?)),∇f∗(−D>yk)−∇f∗(−D>y?)〉.

Let Gk :=
∫ 1

0
∇2f∗(−D>y? − sD>(yk − y?)ds. By the mean-value theorem and [41, Corollary

4.1.4], we can derive from the above expression that

‖xk − x?‖2x? = (yk − y?)>DG>k∇2f∗(−D>y?)−1GkD
>(yk − y?)

≤ 〈D∇2f∗(−D>y?)D>(yk−y?),yk−y?〉
(1−〈D∇2f∗(−D>y?)D>(yk−y?),yk−y?〉1/2)

= 〈∇2ϕ(y?)(yk−y?),yk−y?〉(
1−〈∇2ϕ(y?)(yk−y?),yk−y?〉1/2

)2
=

‖yk−y?‖2y?
(1−‖yk−y?‖y?)

2 .

Here, we note that ∇2ϕ(y?) = D∇2f∗(−D>y?)D>. This inequality leads to (40) provided that
‖yk − y?‖y? < 1.

Since we apply (33) to solve the dual problem (29), by Theorem 5 or Theorem 7, the sequence{
yk
}

satisfies ‖yk − y?‖y? ≤ Ĉ
√
σ
k

for given constants Ĉ > 0 and σ ∈ (0, 1). Combining this

relation and (40), we can show that
{
xk
}

converges linearly to x? an optimal solution of (1).

(c) First, since ∇ϕτ (y) = D∇f∗(−D>y)−
(

1
τ − 1

)
ξ0, using (32) we can write

Dx? = D∇f∗(−D>y?) = −∇ϕτk+1
(y?) +

(
1

τk+1
− 1
)
ξ0.

Next, from (38) we can write

zk+1 = ∇2ϕ(yk)(yk+1 − yk − ẽk)−∇ϕτk+1
(yk).

Combining these expressions, we can further estimate

‖zk+1−Dx?‖∗yk = ‖∇2ϕ(yk)(yk+1−yk−ẽk)−∇ϕτk+1
(yk) +∇ϕτk+1

(y?)−
(

1
τk+1
− 1
)
ξ0‖∗yk

≤ ‖∇ϕτk+1
(y?)−∇ϕτk+1

(yk)−∇2ϕ(yk)(y? − yk)‖∗yk
+‖yk+1 − y?‖yk +

(
1

τk+1
− 1
)
‖ξ0‖∗yk + ‖ẽk‖yk

‖y?−yk‖2
yk

1−‖y?−yk‖
yk

+ ‖yk+1 − y?‖yk +
(

1
τk+1

− 1
)
‖ξ0‖∗yk + ‖ẽk‖yk ,

provided that ‖y? − yk‖yk < 1. Here, the last inequality follows from the self-concordance of ϕτ
with similar proof as [62, Theorem 1]. This proves (41).

Since we apply (33) to solve the dual problem (29), by Theorem 5 or Theorem 7, we have

‖yk − y?‖yk ≤ Ĉ
√
σ
k

and ‖yk+1 − y?‖yk ≤ Ĉ
√
σ
k+1

for some constants Ĉ > 0 and σ ∈ (0, 1). In

addition, 0 ≤ 1
τk+1

− 1 = 1−τk+1

τk+1
≤ 1−τk+1

τ0
≤ C1

√
σ
k+1

for some constant C1 > 0. Using these

bounds and ‖ẽk‖yk ≤ δk in (41), we can show that

‖zk+1 −Dx?‖∗yk ≤
Ĉ2σk

1− Ĉ
√
σ
k

+ Ĉ
√
σ
k+1

+ C1‖ξ0‖∗yk
√
σ
k+1

+ δk.

Under the conditions of Theorem 5 or Theorem 7, we have ‖ξ0‖∗yk = 〈∇2ϕ(yk)−1ξ0, ξ0〉1/2 ≤ M

for some M > 0 and δk ≤ β
113σ

k for β = 0.05, then we can easily show that

‖zk+1 −Dx?‖∗yk ≤
(
Ĉ2

1−Ĉ + Ĉ + C1M + β
113

)√
σ
k
,
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provided that Ĉ < 1. If D is invertible, then we can show that xk+1 := D−1zk+1 is an approximate
solution to x? of (1). Moreover, ‖xk − x?‖yk converges to zero at a linear rate. �
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