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Abstract

We consider static finite-player network games and their continuum analogs, graphon games. Ex-
istence and uniqueness results are provided, as well as convergence of the finite-player network game
optimal strategy profiles to their analogs for the graphon games. We also show that equilibrium strategy
profiles of a graphon game provide approximate Nash equilibria for the finite-player games. Connections
with mean field games and central planner optimization problems are discussed. Motivating applica-
tions are presented and explicit computations of their Nash equilibria and social optimal strategies are
provided.

1 Introduction

In this paper, we analyze static network games. They are often brought to bear on the solutions of challenging
applications of importance when the interactions between agents are restrained by physical or economic
constraints. See, for example Jackson’s book [17]. For pedagogical reasons, we start with finite-player
models as for instance, in the paper of Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv [11]. In these
models, the level of interaction between each couple of players is quantified by a connection weight.

As is often the case in game theory, the complexity of these problems grows rapidly with the number
of players. To avoid the curse of dimensionality, we seek simplifications in the asymptotic regime when the
number of players tends to infinity. This search for limiting objects leads to the notion of graphon as these
structures appear as limits of dense networks. The book of Lovász [24] is a standard reference for the theory
of graphons. So in the limiting regime, we consider models of graphon games. Some of these models were
considered in the static case by Parise and Ozdaglar in [26], and around the same time by Caines and Huang
[3] in a dynamic setting.

The paper [26] was our starting point. We consider more involved structures much in the spirit of
Bayesian games, introducing a state and random shocks. To be more specific, in our models, each player
also considers their neighbors’ states instead of considering only their controls. States could simply be noisy
versions of their actions, or implicitly defined functions of their actions and their neighbors’ states. Below,
we introduce several motivating examples which we describe in very broad brushstrokes. These applications
are presented to motivate the need for considering the more general structures which we propose. We will
return to these applications at the end of the paper to show how they can be solved explicitly with the tools
developed in the paper.

The reader will certainly notice similarities between our limiting procedure and the approaches leading
to mean field games, anonymous games, or more general continuum player games ubiquitous in the extensive
economics literature on the subject. See for example the paper [4] of G. Carmona for an abstract axiomatic
of Nash equilibria in games with a continuum of players. However, in a typical non-atomic anonymous game,
the players interact through the distribution of actions of all the players whereas in the graphon games we
introduce here, interactions between players are not necessarily symmetric. Another important difference
with the mean field games paradigm as originally introduced independently by Lasry and Lions [22, 20, 21]
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and Huang, Malhamé, and Caines [16], is that our game models are not fully anonymous: each player knows
which other players are their neighbors. Because of the potential asymmetry in the connection structure
of each player, it is not sufficient a priori to consider a global mean field. However, for certain classes of
graphons which enjoy specific symmetries, an informative connection can be made between graphon games
and mean field games, a point which we will revisit. This has to be contrasted with the work of Delarue
[10] providing an enlightening insight into how the lack of full connectivity of the graph underpinning the
network structure can affect the mean field game paradigm.

1.1 Motivating Applications

The purpose of this article is to define rigorously a class of games with an underlying graph structure between
players, and to understand the limiting regime when the number of players tends to infinity. We will use the
notion of graphon to extend the concept of graph structure between players to the infinite-player regime. To
motivate our study of this class of games, we consider the following motivating applications.

1.1.1 Where do I put my towel on the beach?

This example was introduced by P.L. Lions in his lectures at the Collège de France [23]. It is discussed in the
Section 1.1.1 of the book by Carmona and Delarue [6]. A group of people are going to the beach and each
person has to choose a location to place their towel on the beach. When deciding where to put their towel,
a person considers that they do not want to walk too far away from the entrance of the beach, they want to
be close to the concession stand, and they want to be close (or far in a different formulation of the game) to
the average position of other beach-goers. In the version of this example which we plan to investigate, we
would like to allow each individual to only take into account the locations of their friends, not everyone on
the beach, departing from the traditional mean field game setting.

1.1.2 Cities Game

For our next example, we consider the model studied by Helsley and Zenou in [15]. Individuals decide how
frequently they would like to visit the city center. Visits to the city center are motivated by an intrinsic
benefit for visiting the city center more often, to be balanced with the cost for visiting the city center too
frequently, as it takes time and resources to make the trips. However, in the version of the game which
we consider, we want to add the benefit of visiting the city center when a specific group of individuals, say
friends, are also in the city.

1.1.3 Cournot Competition

For our final example, we consider the case of multiple producers having to decide how many units to sell.
In our version of this classical example, the price at which the producer can sell their products depends
on the number of units they sell, as well as a weighted average of the prices of their competitors. There
could be two interpretations for what makes two producers competitors: the level of exchangeability of their
products, or how much their consumer bases overlap.

1.2 Outline of the paper

We introduce a specific class of one-period (or static) games including for each player, as is the case of
Bayesian game models, a state subject to random shocks. This leads to serious technical difficulties especially
when we consider the limiting regime of large games. To resolve them, we use ideas put forth by economists
to define rigorously the problem. They are based on the notion of abstract Fubini’s extensions [30, 27].
See also the discussion in [6, Section 3.7]. In Section 2, we introduce a network game for N players which
we extend in Section 3 into a continuum version for which the interaction structure is given by a graphon.
Connections with mean field games are elucidated in Propositions 3.9, 3.12, and 3.14. Proposition 3.17
gives existence and uniqueness for the graphon game. The connection between the N -player game and its
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continuum analog is considered in Section 4. Theorem 4.3 shows that the equilibrium strategy profiles for
finite-player network games converge in some sense to their analogs for the limiting graphon game. When
the finite-player networks are constructed from the graphon itself, the rate of convergence can be made
precise, as in Theorem 4.7. Theorem 4.9 shows that the equilibrium strategy profiles of a graphon game can
be used to construct ε-Nash equilibria for finite-player network games. Notice that when a central planner
can choose the feedback controls of all players in order to optimize the total cost, the problem becomes a
graphon control optimization problem. This was the subject of the papers of Gao and Caines [12][14][13].
While it is not the main thrust of this paper, we will give a brief discussion of the problem of a central
planner who optimizes the overall social cost when we revisit the motivating examples introduced above.
These applications are studied in detail in Section 5. We conclude in Section 6.

Extensions of the static framework studied in this paper to the dynamic case are under investigation and
will be presented in a forthcoming paper.

2 Finite-Player Model

Let N be a positive integer denoting the number of players, and W = [Wi,j ]i,j=1,··· ,N an N ×N symmetric
matrix of real numbers. We want to think of the integers in {1, . . . , N} as players and Wi,j as a weight
quantifying some form of interaction between players i and j. When they only take values 0 or 1, the matrix
W reduces to the adjacency matrix of the graph of players, to be understood as which players interact
with each other. We denote by A the set of actions which are admissible to each player. A will typically
be a closed convex subset of a Euclidean space Rd. For the sake of convenience, we consider A to be one
dimensional, and to be the whole space R. A strategy profile is an element α = (α1, . . . , αN ) of AN , αi

being interpreted as the action taken by player i. In order to model the random shocks, we shall use a
probability space (Ω,F ,P) on which are defined random variables ξ1, . . . , ξN assumed to be independent
and identically distributed (i.i.d. for short), mean-zero with common distribution µ0 which for the sake of
convenience, we often refer to as the distribution of a random variable ξ0. We assume that the function
b : A× R 3 (α, z) 7→ b(α, z) ∈ R and the distribution µ0 satisfy the following hypothesis.

Assumption 1. Suppose the following:

• b is jointly Lipschitz continuous with respect to α and z, with respective Lipschitz constants cα, cz ≥ 0,
in the sense that:

|b(α, z)− b(α′, z′)|2 ≤ cα|α− α′|2 + cz|z − z′|2, (α, z), (α′, z′) ∈ A× R.

• E[ξ2
0 ] =

∫
ξ2µ0(dξ) <∞.

For an action α ∈ A and real numbers z and ξ we define the quantity:

X = Xα,z,ξ = b(α, z) + ξ (1)

which should be interpreted as the state of a player when they are affected by the shock ξ and take action
α while feeling the states of all the players’ states through the aggregate z. Note that the player does not
observe ξ or z when choosing their action α. For z to be understood as the aggregate of the states of the
other players, it has to depend upon these states, so it is not clear if this intuitive interpretation of an
aggregate influence is consistent with the mathematical definition (1). The following proposition proves this
consistency.

Proposition 2.1. Under Assumption 1, if
√
cz‖W‖F < 1, then given any strategy profile α ∈ AN , there is

a unique family of random aggregates z ∈ L2(Ω;RN ) satisfying:

z =
( 1

N

N∑
j=1

Wi,jXαj ,zj ,ξj

)
i=1,...,N

, (2)

the equality being understood in the L2(Ω;RN ) sense.
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As a result, we can define an operator

ZN : AN 3 α→ ZNα = z ∈ L2(Ω;RN ). (3)

Proof. Let us fix a strategy profile α ∈ AN , and for each z ∈ L2(Ω;RN ) and i ∈ {1, . . . , N}, let us define
the random vector Tz in RN from its N components by:

[Tz]i =
1

N

N∑
j=1

Wi,jXαj ,zj ,ξj =
1

N

N∑
j=1

Wi,j

[
b(αj , zj) + ξj

]
,

if we denote by zj for j = 1, . . . , N the components of z. We prove that this formula defines a map T from
L2(Ω;RN ) into itself which we prove to be a strict contraction, hence the existence and uniqueness of a fixed
point proving the proposition. Let us first check that Tz ∈ L2(Ω;RN ). We have for every i ∈ {1, . . . , N},

E
[
|[Tz]i|2

]
≤ C

N∑
j=1

W 2
i,jE

[(
b(αj , zj)

2 + ξ2
j

)2]

≤ C
N∑
j=1

E
[
b(0, 0)2 + cα|αj |2 + cz|zj |2 + ξ2

j

]
< +∞,

where we used the Lipschitz continuity of b for the second inequality, and the fact that z ∈ L2(Ω;RN )
and E[ξ2

0 ] < ∞ for the last inequality. Above and throughout the paper, C is a finite constant whose
value may change from one line to the next. We now approach the strict contraction property. For every
z1, z2 ∈ L2(Ω;RN ),

‖Tz1 − Tz2‖2L2(Ω;RN ) = E
[ N∑
i=1

|[Tz1]i − [Tz2]i|2
]

= E
N∑
i=1

∣∣∣ 1

N

N∑
j=1

Wi,j

(
Xαj ,z1,j ,ξj −Xαj ,z2,j ,ξj

)∣∣∣2
≤ E

N∑
i=1

( 1

N2

N∑
j=1

W 2
i,j

)( N∑
j=1

(
Xαj ,z1,j ,ξj −Xαj ,z2,j ,ξj

)2)

=
1

N2

N∑
i=1

N∑
j=1

W 2
i,jE

N∑
j=1

(
Xαj ,z1,j ,ξj −Xαj ,z2,j ,ξj

)2

= ‖W‖2FE
N∑
j=1

(
b(αj , z1,j)− b(αj , z2,j)

)2
≤ cz‖W‖2FE

N∑
i=1

[z1,i − z2,i]
2 = c2z‖W‖2F ‖z1 − z2‖2

which completes the proof since
√
cz‖W‖F < 1 by assumption.

If the players use the strategy profile α ∈ AN , for each i ∈ {1, · · · , N}, player i incurs a cost

Ji(α) = E [f(Xαi,zi,ξi , αi, zi)] , with zi = [ZNα]i, (4)

where the function f : R × A × R → R is assumed to be the same for all the players. It is important to
emphasize that the players choose their controls at the beginning of the game, without observing anything.
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In this sense, the information structure is not in feedback form, as the players are not allowed to observe
their state or the states of the other players when choosing their controls, nor are the controls open loop,
as they also do not observe their idiosyncratic noise or the idiosyncratic noises of the other players. The
information structure is in the style of a Bayesian game, where the players choose their controls only with
the above cost in mind, which depends only on the players’ actions, and the distribution of the idiosyncratic
noise and the random aggregate.

We recall the following standard definition for the sake of definiteness.

Definition 2.2 (Nash Equilibrium for N -Player Game). A strategy profile α̂ = (α̂1, · · · , α̂N ) is a Nash
equilibrium if for all i ∈ {1, . . . , N} and every β ∈ A,

Ji(α̂) ≤ Ji([β; α̂−i]),

where [β; α̂−i] is a shorthand for (α̂1, . . . , α̂i−1, β, α̂i+1, . . . , α̂N ).

The existence of Nash equilibria in pure strategies as defined above is not guaranteed, even under natural
assumptions. However, like in the classical case, equilibria in mixed strategies exist as proved by J. Nash for
standard deterministic static games with compact action sets and continuous cost functions.

In order to prove a similar result in our context, we first revisit the construction of ZNα and prove that
it depends smoothly on α. Recall that ZNα is the unique fixed point of a strict contraction, and for the
purpose of the following discussion we denote this contraction by Tα. According to its definition, for every
z ∈ L2(Ω;RN ) we have:

(Tαz)i =
1

N

N∑
j=1

Wi,j

[
b(αj , zj) + ξj

]
.

Proposition 2.3. Under Assumption 1, and assuming
√
cz‖W‖F < 1, we have:

‖ZNα− ZNβ‖L2(Ω;RN ) ≤
cα‖W‖2F

1− cz‖W‖2F
‖α− β‖.

Proof. We fix z0 ∈ L2(Ω;RN ) and for each strategy profile α ∈ AN we have:

ZNα = lim
k→∞

T kαz0.
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Now, we fix α and β in AN , and for each integer k ≥ 2 and i ∈ {1, . . . , N}, we have:

‖T kαz0 − T kβz0‖2L2(Ω;RN ) = E
[ N∑
i=1

|[T kαz0]i − [T kβz0]i|2
]

= E
N∑
i=1

∣∣∣ 1

N

N∑
j=1

Wi,j

(
Xαj ,[T

k−1
α z0]j ,ξj

−Xβj ,[T
k−1
β z0]j ,ξj

)∣∣∣2
≤ E

N∑
i=1

( 1

N2

N∑
j=1

W 2
i,j

)( N∑
j=1

(
Xαj ,[T

k−1
α z0]j ,ξj

−Xβj ,[T
k−1
β z0]j ,ξj

)2)

=
1

N2

N∑
i=1

N∑
j=1

W 2
i,jE

N∑
j=1

(
Xαj ,[T

k−1
α z0]j ,ξj

−Xβj ,[T
k−1
β z0]j ,ξj

)2

= ‖W‖2FE
N∑
j=1

(
b(αj , [T

k−1
α z0]j)− b(βj , [T k−1

β z0]j)
)2

≤ ‖W‖2FE
N∑
j=1

(
cα|αj − βj |2 + cz

∣∣∣[T k−1
α z0]j − [T k−1

β z0]j

∣∣∣2)
= cα‖W‖2F ‖α− β‖2 + cz‖W‖2F ‖T k−1

α z0 − T k−1
β z0‖2

≤ cα‖W‖2F ‖α− β‖2 + cz‖W‖2F
(
cα‖W‖2F ‖α− β‖2 + cz‖W‖2F ‖T k−2

α z0 − T k−2
β z0‖2

)
≤ cα‖W‖2F (1 + cz‖W‖2F )‖α− β‖2 + (cz‖W‖2F )2‖T k−2

α z0 − T k−2
β z0‖2

≤ . . . . . .

≤ cα‖W‖2F
(
1 + cz‖W‖2F + · · ·+ (cz‖W‖2F )k

)
‖α− β‖2

= cα‖W‖2F
1− (cz‖W‖2F )k+1

1− cz‖W‖2F
‖α− β‖2,

where we used the fact that
√
cz‖W‖F < 1. Taking the limit as k →∞ completes the proof.

We are now in a position to prove existence of Nash equilibria in mixed strategies.

Proposition 2.4. Under Assumption 1 and assuming
√
cz‖W‖F < 1, if A is compact, there exist Nash

equilibria in mixed strategies if the function f is bounded and continuous.

Proof. Recall that since the set of admissible actions A is compact, the proof of the existence of Nash
equilibria in mixed strategies based on Kakutani’s fixed point theorem only requires that the cost functions
are continuous. Note that for i ∈ {1, · · · , N}, for any strategy profile α ∈ AN we have

J i(α) = E
[
f(Xαi,[ZNα]i,ξi , αi, ξi)

]
=

∫ ∫
f
(
b(αi, z) + ξ, αi, z

)
µiα(dξ, dz), (5)

where µiα denotes the joint distribution of the random variables ξi and [ZNα]i. Since f is assumed to be
bounded and continuous, the function α→ J i(α) is continuous if α→ µiα is continuous, which follows from
the result of Proposition 2.3 above.

Remark 2.5. An anonymous game is a game where the dependence of the values J i(α) upon α is only
through the empirical measure of the individual actions αj, namely the push forward of the strategy profile by
the counting measure on the set of players {1, . . . , N}. The game model we are currently studying is in the
same spirit since the dependence of the quantities J i(α) upon α is through the measure µiα which happens
to be the joint law of the idiosyncratic noise ξi and the nonlinear function ZNα of the strategy profile α.
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Formula (5) shows that the cost to player i is a function of the action αi of the player and the joint
distribution µiα of the idiosyncratic noise ξi and the (random) aggregate (ZNα)i of all the players states. It
is important to emphasize, even though it may not be immediately clear, that the cost to player i depends
upon the states, the actions and the idiosyncratic noises of all the players in an implicit way through the
aggregate state zi = [ZNα]i. So this cost can be written as J i(α) = J̃ (αi,L(ξi, [ZNα]i)) where we use the
notation L(ξ, z) for the joint distribution of the random variables ξ and z. The function J̃ is defined as:

J̃ : A×K 3 (α, ν)→ J̃ (α, ν) =

∫
R×R

f(Xα,z,ξ, α, ξ) ν(dξ, dz),

where K denotes the subset of P(R × R) comprising all the probability measures ν on R × R whose first
marginal is the common distribution µ0 of all the ξi.

The use of the function J̃ can simplify the search for Nash equilibria in some cases.

Proposition 2.6. Assume the conclusion of Proposition 2.1 holds so that ZN is well defined. Suppose
b(α, z) = b̃(α) for some function b̃ : A → R, and that Wi,i = 0 for i = 1, . . . , N . Then α̂ ∈ AN is a Nash
equilibrium if and only if, setting µi = L((ZN α̂)i) for i = 1, . . . , N , we have:

J̃ (α̂i, µ0 ⊗ µi) ≤ J̃ (β, µ0 ⊗ µi), ∀β ∈ A, ∀i = 1, . . . , N.

Proof. From the assumption on b, Xα,z,ξ = b̃(α) + ξ does not depend on z. Moreover, from equation (2),
and since Wi,i = 0, the quantity

(ZNα)i =
1

N

∑
j 6=i

Wi,jXαj ,zj ,ξj =
1

N

∑
j 6=i

Wi,j

(
b̃(αj) + ξj

)
is independent of ξi and consequently L(ξi, [ZNα]i) = µ0 ⊗ µi so that J i(α) = J̃ (αi, µ0 ⊗ µi). Moreover

(ZNα)i = (ZN [β;α−i])i

for any β ∈ A and for all i = 1, . . . , N . We conclude that the two characterizations are equivalent.

The following assumption on the cost function J̃ will be used later on when we study the convergence
of Nash equilibria.

Assumption 2. For each α ∈ A, the function K 3 ν 7→ J̃ (α, ν) is Lipschitz in ν with a Lipschitz constant
˜̀
J uniform in α ∈ A. This means that for every ν, ν′ ∈ K and α ∈ A, we have∣∣∣J̃ (α, ν′)− J̃ (α, ν)

∣∣∣ ≤ ˜̀
JW2(ν, ν′),

where W2(ν, ν′) denotes the 2-Wasserstein distance between the probability measures ν and ν′.

3 Continuum Player Model

Players are labelled by the set I := [0, 1], and we denote by B(I) its Borel σ-field and by λI the Lebesgue
measure. In order to take into account the idiosyncratic randomness that can affect each player in a math-
ematically rigorously way, we consider a rich Fubini extension (I × Ω, I � F , λ � P) where (I, I, λ) is an
extension of the Lebesgue measure space (I,B(I), λI). See [30], [27] or [6, Section 3.7] and [5, Section 4.5] for
a self-contained presentation of this theory and references to original contributions on this subject. At this
stage, it is important to emphasize that the σ-field I extending the Borel σ-field B(I) cannot be countably
generated. Let ξ = (ξx)x∈I be a real-valued I �F-measurable essentially pairwise independent process such
that the law of ξx is the probability measure µ0 for every x ∈ I. As before, we assume that E[ξ0] = 0, where
ξ0 has distribution µ0. The random variable ξx will play the role of the idiosyncratic random shock directly
affecting player x ∈ I.
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To model how the players interact with each other, we use a restricted form of the notion of graphon
[24]. For us, a graphon is any symmetric, B(I)× B(I) - measurable real-valued square - integrable function
w on I × I, in particular:

‖w‖22 :=

∫
I×I

w(x, y)2 dxdy <∞.

We introduce the integral operator W on L2(I) associated to the graphon w by the formula:

[Wg]x =

∫
I

w(x, y)g(y) dy, g ∈ L2(I), x ∈ I,

and by ‖W‖ we mean the operator norm, namely:

‖W‖ := sup
φ∈L2(I),‖φ‖L2(I)=1

‖Wφ‖L2(I).

3.1 Definition of the Graphon Game

Let w be a graphon and let us define a game in which the interactions are encoded by w. We assume that
the set A of possible actions is the same as in the case of the finite-player game considered earlier. At this
stage, we shall assume that a strategy profile is a function α which associates to each player x ∈ I an action
α(x) = αx in A. We shall denote by L2(I) the classical Lebesgue space L2(I,B(I), λI ;R) of equivalent
classes of R-valued square-integrable measurable functions on the Lebesgue measurable space (I,B(I), λI).
This is a separable Hilbert space. This space is different from the Hilbert space L2(I, I, λ;R). The latter is
an extension of the classical space L2(I,B(I), λI ;R). However, the fact that this space may not be separable
will be a source of technicalities we shall need to address or avoid.

We shall call admissible strategy profiles the elements of the subset A of L2(I) of elements taking values
in A ⊂ R. Note that if α is an admissible strategy profile in this sense, the action αx of player x is only
defined for λI -almost every player x ∈ I. The following result is the analog of Proposition 2.1 in the present
situation. It uses the same assumptions on the function b.

Proposition 3.1. Under Assumption 1, and assuming
√
cz‖W‖ < 1, for any α ∈ L2(I) there is a unique

z ∈ L2(I) satisfying

zx =

∫
I

w(x, y)b(αy, zy) dy, for λI-almost every x ∈ I. (6)

Proof. We fix α ∈ L2(I) and we define the mapping T from L2(I) into itself by:

[Tz]x =

∫
I

w(x, y)b(αy, zy) dy.

First, we check that Tz is indeed in L2(I):∫
I

([Tz]x)2dx =

∫
I

[∫
I

w(x, y)b(αy, zy) dy
]2
dx

= ‖Wb(α·, z·)‖2

≤ ‖W‖2‖b(α·, z·)‖22

= ‖W‖2
∫
I

b(αy, zy)2dy

≤ C
∫
I

(
b(0, 0)2 + |αy|2 + z2

y

)
dy

< +∞.
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The penultimate inequality uses Assumption 1, the last inequality uses the fact that α, z are square-
integrable. Next we prove that T is a strict contraction.

‖Tz1 − Tz2‖2L2(I) =

∫
I

(
[Tz1]x − [Tz2]x

)2
dx

=

∫
I

(∫
I

w(x, y)
(
b(αy, z

1
y)− b(αy, z2

y)
)
dy
)2

dx

= ‖W
(
b(α·, z

1
· )− b(α·, z2

· )
)
‖2

≤ ‖W‖2‖
(
b(α·, z

1
· )− b(α·, z2

· )
)
‖2

= ‖W‖2
∫
I

(
b(αy, z

1
y)− b(αy, z2

y)
)2
dy

≤ cz‖W‖2
∫
I

[
z1
y − z2

y

]2
dy,

where we used Assumption 1 again. Since
√
cz‖W‖ < 1, T is a strict contraction from L2(I) into itself, and

by Banach fixed point theorem, T has a unique fixed point.

The result of the previous proposition defines without ambiguity an operator Z from L2(I) into itself
by setting Zα = z where z is the unique fixed point of the mapping T identified above. The following
proposition uses the exact law of large numbers to show that Zα can be viewed as the fixed point of a
random transformation.

Proposition 3.2. Under Assumption 1 and assuming
√
cz‖W‖ < 1, for any α ∈ L2(I), for λ - almost

every x ∈ I, the random variable

Ω 3 ω 7→
∫
I

w(x, y)Xαy,[Zα]y,ξy(ω)λ(dy)

is P-almost surely equal to the deterministic constant [Zα]x.

Proof. Again, we fix α ∈ L2(I), we consider Zα as constructed above in L2(I), and we momentarily fix
x ∈ I in a set of full λI -measure on which αx is unambiguously defined and the equality (6) holds. For
y ∈ I, let us denote by Yx,y the random variable w(x, y)Xαy,zy,ξy = w(x, y)[b(αy, zy)+ ξy]. Since the random
variables (ξy)y∈I are assumed to be essentially pairwise independent, the entries of the family (Yx,y)y∈I are
also essentially pairwise independent. By the exact law of large numbers (see for example [6, Theorem 3.44])
we have:∫

I

Yx,y(ω)λ(dy) =

∫
I

E[Yx,y]λ(dy) =

∫
I

w(x, y)b(αy, zy)λ(dy) =

∫
I

w(x, y)b(αy, zy)dy, P-a.e. ω ∈ Ω,

the last equality being justified by the fact that the integrand is B(I) measurable. The proof is complete
because the above right hand side is equal to zx by (6).

Remark 3.3. Note that the result of Proposition 3.1 implies that we have the following relationship between
W and Z:

Zα = W [b(α,Zα)] , α ∈ L2(I), (7)

since the expectation E[ξ0] is independent of x ∈ I and equal to 0.

We now introduce the cost structure of the game. It is given by a function:

J : I ×A× A 3 (x, α,α) 7→ Jx(α,α) ∈ R.

Intuitively, the quantity Jx(α,α) represents the cost to player x ∈ I when they choose the action α ∈ A and
the other players use the admissible strategy profile α. Recall that α = (αx)x∈I is only defined for λI -almost
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every x ∈ I since it is an equivalence class. This is the reason why the cost to a player x ∈ I cannot be
directly defined as a function Jx(α) of an admissible strategy profile, since the latter would be independent
upon whatever action αx player x could take!

Given an admissible strategy profile α ∈ A, we define the set of best response strategy profiles as:

B̃α := {α′ ∈ A : for λI -a.e. x ∈ I, ∀β ∈ A, Jx(α′x,α) ≤ Jx(β,α)}.

In other words, an admissible strategy profile α′ ∈ A is a best response to the admissible strategy profile
α ∈ A if for λI -almost every player x ∈ I, α′x is a best response for player x to the strategy profile α
according to the cost given by the function J .

We will make use of the following assumption.

Assumption 3. For any α ∈ A and λI-a.e. x ∈ I, there is a unique minimizer of the map A 3 α 7→ Jx(α,α).

Although this assumption is quite vague, we will eventually consider a more restrictive setting and give
specific conditions under which it holds. Under the above assumption, and under a mild measurability and
integrability condition on this unique minimizer, the set B̃α of best responses to α is a singleton, which
defines a map A 3 α 7→ B̃α ∈ A, and hints at the natural notion of Nash equilibrium:

Definition 3.4 (Nash Equilibrium for Continuum Player Graphon Game). A Nash equilibrium is an admis-
sible strategy profile α̂ ∈ A which is a fixed point of B̃ i.e. satisfying B̃α̂ = α̂, the equality being understood
in the L2(I) sense.

Remark 3.5. If B̃ properly extended to L2(I) happens to be a strict contraction, the Banach fixed point
theorem guarantees existence and uniqueness of a Nash equilibrium.

As for the N -player game, we specify further the form of the costs that we consider. In analogy with the
finite-player model, we work with costs defined for each player x ∈ I, for each possible action α ∈ A and for
each admissible strategy profile α ∈ A as:

Jx(α,α) := E
[
f(Xα,zx,ξx , α, zx)

]
,

where z = (zx)x∈I is a measurable version of the L2-equivalence class of Zα, and where the function f is the
same as before in Section 2. Note that choosing a different version of Zα would possibly change the value
of Jx(α,α) on a set of players x of λI -measure 0, so given α ∈ A, the above cost function is only defined for
λI -almost every player x ∈ I.

Note that the actions of the other players appear only through zx which is an aggregate information
since it is a version of Zα. Hence according to Proposition 3.2, [Zα]x is deterministic and we can write
Jx(α,α) as J (α, [Zα]x) for a function A × R 3 (α, z) 7→ J (α, z) ∈ R. It is useful to notice that this
function J is intimately connected to the function J̃ we introduced in the case of an N -player game.
Indeed, recall that in the case of N players, the cost to player i was given by J̃

(
αi, (L(ξi, (ZNα)i)

)
. In

the present situation, for almost every x ∈ I, (Zα)x is purely deterministic, so statistically independent
of ξx and L(ξx, (Zα)x) = µ0 ⊗ δ(Zα)x where we use the notation δz for the unit mass at the point z. So

if we were to compute J̃
(
αi, (L(ξi, (ZNα)i)

)
in the present situation with i replaced by x ∈ I, we would

have J̃
(
αx, µ0 ⊗ δ(Zα)x

)
, which only depends upon αx and (Zα)x, and which we denote by J (αx, (Zα)x),

essentially identifying the two functions J̃ and J .

We shall formulate the assumptions on the costs incurred by the players in the graphon game in terms of
properties of this function J . Because of the particular form of the cost, Assumption 3 is satisfied as soon
as the following stronger assumptions hold:

Assumption 4. Suppose the following:

• For each z ∈ R, A 3 α 7→ J (α, z) is continuously differentiable and strongly convex in α with a
constant `c > 0 uniformly in z ∈ R. This means that for every α, α′ ∈ A and z ∈ R, we have for every
ε ∈ [0, 1]:

J (εα+ (1− ε)α′, z) ≤ εJ (α, z) + (1− ε)J (α′, z)− `c
2
ε(1− ε)|α− α′|2. (8)
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• For each α ∈ A, the function R 3 z 7→ ∂αJ (α, z) is Lipschitz in z with a Lipschitz constant `J
uniformly in α ∈ A. This means that for every z′, z ∈ R and α ∈ A, we have:

|∂αJ (α, z′)− ∂αJ (α, z)| ≤ `J |z′ − z| .

Under Assumption 4 on the cost function, for any admissible strategy profile α ∈ A, it is sufficient
to consider, for λI -a.e. player x ∈ I, the aggregate (Z̃α)x, where Z̃α ∈ RI is a representative of the L2-
equivalence class of Zα (in other words a B(I)-measurable version of Zα), when determining their best
response to the control profile α ∈ L2(I). We will use this fact to define an equivalent form for the notion of
Nash equilibrium which will be more tractable, as the somewhat strong assumption of having a contraction
mapping will not be needed.

Now instead of considering the operator B̃ giving the best response to an admissible strategy profile α,
we define the set of best responses to a generic element z ∈ L2(I), whether or not the latter happens to be
the aggregate constructed from an admissible strategy profile α.

Bz := {α′ ∈ L2(I) : for λI -a.e. x ∈ I, α′x ∈ A and ∀β ∈ A, J (α′x, zx) ≤ J (β, zx)}.

Note that under Assumption 4, if Bz is not empty, it is necessarily a singleton in L2(I). Clearly, if
z ∈ L2(I), for λI -almost every x ∈ I, α′x has to be the unique minimizer of the strictly convex function
α 7→ J (α, zx), but while the function x 7→ α′x can be chosen to be B(I)-measurable, there is no guarantee
that it is square-integrable in general. However, this will be the case under Assumption 4 as implied by
the proof of Lemma 3.7 below. So this discussion defines an operator B : L2(I) → L2(I), and we have the
following:

Proposition 3.6. Under Assumption 4, for α̂ ∈ A, the following are equivalent:

• α̂ satisfies the conditions of a Nash equilibrium given in Definition 3.4;

• α̂ is a fixed point of the mapping BZ from L2(I) into itself, i.e. α̂ = BZα̂ as elements of L2(I);

• For λI-a.e. x ∈ I and for any action β ∈ A,

J (α̂x, (Zα̂)x) ≤ J (β, (Zα̂)x).

We now extend to our game set-up an estimate from Parise and Ozdaglar [26].

Lemma 3.7. Under Assumption 4, for any z1 and z2 in L2(I), we have:

‖Bz1 −Bz2‖L2(I) ≤
`J
`c
‖z1 − z2‖L2(I).

Proof. Recall that the operator B is not linear so that Bz1 − Bz2 6= B(z1 − z2). The strong convexity
assumption in Assumption 4 is equivalent to the following: for every α, α′ ∈ A and z ∈ R we have:

(∂αJ (α, z)− ∂αJ (α′, z))(α− α′) ≥ `c |α− α′|
2
. (9)

Since (Bz1)x = arg infα∈A J (α, z1
x), by convexity we have:

∂αJ ((Bz1)x, z
1
x) · (α− (Bz1)x) ≥ 0

for all α ∈ A, so using α = (Bz2)x in this inequality, we get:

∂αJ ((Bz1)x, z
1
x) · ((Bz2)x − (Bz1)x) ≥ 0. (10)

Similarly, we get:
∂αJ ((Bz2)x, z

2
x) · ((Bz1)x − (Bz2)x) ≥ 0. (11)
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Adding (10) and (11), we get:[
∂αJ ((Bz1)x, z

1
x)− ∂αJ ((Bz1)x, z

2
x)
]
·
[
(Bz2)x − (Bz1)x

]
≥
[
∂αJ ((Bz2)x, z

2
x)− ∂αJ ((Bz1)x, z

2
x)
]
·
[
(Bz2)x − (Bz1)x

]
≥ `c

∣∣(Bz2)x − (Bz1)x
∣∣2 , (12)

where we used the strong convexity (9). Clearly, the left hand side of (12) is bounded above by:∣∣∂αJ (Bz1)x, z
1
x)− ∂αJ (Bz1)x, z

2
x)
∣∣ · ∣∣(Bz2)x −Bz1)x

∣∣ ,
which together with (12) gives:∣∣(Bz2)x − (Bz1)x

∣∣ ≤ 1

`c

∣∣∂αJ (Bz1)x, z
1
x)− ∂αJ (Bz1)x, z

2
x)
∣∣ ≤ `J

`c

∣∣z2
x − z1

x

∣∣ ,
where we used the second part of Assumption 4. Since this inequality between non-negative real numbers is
true for λI -a.e. x ∈ I, we can square both sides, integrate both sides between 0 and 1 and take square roots
of both sides, proving the desired norm estimate.

3.2 Connections with Mean Field Games

Before developing further our analysis of graphon games, we take a detour to explore how these games are
connected with mean field games.

3.2.1 Constant-Graphon Games as Mean Field Games

Let a ∈ R be a fixed constant, and let us consider the (static) Mean Field Game (MFG) in which a
representative infinitesimal player incurs a cost

J (α, z) = E [f(Xα,z, α, z)] ,

for using action α when observing an aggregate z given by a times the mean of the other player’s states.
The state of the player is defined by:

Xα,z = b(α, z) + ξ,

for the function b and real-valued random variable ξ as before.

Definition 3.8. α̂ ∈ A is said to be a Nash equilibrium for the above MFG if J (α̂, ẑ) ≤ J (β, ẑ) for all
β ∈ A, where ẑ is the unique solution of the fixed point equation ẑ = aE[Xα̂,ẑ] determining the expected
aggregate state in equilibrium.

Proposition 3.9. Assume the conclusion of Proposition 3.1 holds so that Z is well defined. Let α̂ ∈ A be
a Nash equilibrium for the graphon game with the constant graphon

w(x, y) = a, x, y ∈ I.

Then α̂x is constant for λI-a.e. x ∈ I and its constant value α̂ is a Nash equilibrium for the above MFG
with the same constant a. Conversely, if α̂ is a Nash equilibrium for the above MFG with constant a, then
α̂ ∈ L2(I) defined by α̂x = α̂ for every x ∈ I, is a Nash equilibrium for the graphon game with the constant
graphon w(·, ·) = a.

Proof. Let α̂ be a Nash equilibrium for the graphon game. One can easily check that a deterministic constant,
say ẑ, satisfies the fixed point construction of Zα̂. So for λI -a.e. y ∈ I, we have J (α̂y, ẑ) ≤ J (β, ẑ) for all
β ∈ A. By Assumption 4, there is a unique minimizer of J (β, ẑ) in the β argument, and thus, α̂ is constant
for λI -a.e. y. Clearly the constant value α̂ is a Nash equilibrium for the above MFG.
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Now, let α̂ be a Nash equilibrium for the above MFG, and let α̂(·) = α̂, then let ẑ be the unique solution
to ẑ = ab(α̂, ẑ). Then ∫

I

w(x, y)b(α̂(y), ẑ)dy = ab(α̂, ẑ) = ẑ,

which is the definition of [Zα̂]x. Thus, (Zα̂)x = ẑ and J (α̂x, (Zα̂)x) ≤ J (β, (Zα̂)x) for all β ∈ A and for
all x ∈ I, which means that α̂ satisfies the characterization in Proposition 3.6.

3.2.2 Constant Connection Strength Graphon Games as MFGs

We now see that that the above MFG is closely related to a graphon game for a class of graphons which we
call constant connection strength graphons.

Definition 3.10. We say a graphon w is a constant connection strength graphon with strength a for a given
constant a ∈ R if

∫
I
w(x, y)dy = a for all x ∈ I.

Remark 3.11. The following are examples of constant connection strength graphons with strength a:

• Constant graphon: w(x, y) ≡ a.

• A graphon of the form w(x, y) = w̃
(
d(x, y)

)
, for some w̃ : R→ R, where d(x, y) is the distance on the

unit circle (i.e. [0, 1) with periodic boundary) as long as
∫

0,1]
w̃(z)dz = a. In particular, this includes

the Watts-Strogatz graphon.

• A piecewise constant graphon of the form w(x, y) = a11{x∈[0,x∗),y∈[0,x∗)} + a21{x∈[0,x∗),y∈[x∗,1)} +
a21{x∈[x∗,1),y∈[0,x∗)} + a31{x∈[x∗,1),y∈[x∗,1)} for some x∗ ∈ I, a1, a2 ∈ R satisfying a1x

∗ + a2(1 − x∗) =
a2x
∗ + a3(1− x∗).

Proposition 3.12. Assume the conclusion of Proposition 3.1 holds so that Z is well defined. Suppose there
exists a Nash equilibrium α̂ for the above MFG with constant a introduced in the previous subsection. Then
if w is a constant connection strength graphon with strength a, α̂ defined by α̂(·) = α̂ is a Nash equilibrium
for the graphon game.

Proof. Let ẑ be a solution to ẑ = aE[Xα̂,ẑ]. Then∫
I

w(x, y)b(α̂(y), ẑ)dy = b(α̂, ẑ)

∫
I

w(x, y)dy = ab(α̂, ẑ) = ẑ,

which is the definition of [Zα̂]x. Thus, (Zα̂) ≡ ẑ and J (α̂x, (Zα̂)x) ≤ J (β, (Zα̂)x)) for all β ∈ A and for
all x, which implies that α̂ satisfies the characterization in Proposition 3.6.

3.2.3 Piecewise Constant Graphon Games as Multi-Population MFGs

We now define, in our static framework, a type of multi-population MFG. Fix an integer K and suppose
there are K mean field communities, each of equal relative size. A strategy profile is a collection of actions
α = (αk)k∈{1,...,K} ∈ AK . Let us consider a symmetric matrix (of interaction strengths) W ∈ RK×K .
For a strategy profile α = (αk)k∈{1,...,K} ∈ AK and a family of aggregates z = (z1)k∈{1,...,K} ∈ RK , a
representative infinitesimal player from the k-th population has state given by:

Xk,αk,zk(ω) = b(αk, zk) + ξk(ω), (13)

with (ξk)k∈{1,...,K} a sequence of independent identically distributed random variables with distribution µ0,
as before. Generic players in the k-th community incur the cost:

J (αk, zk) = E [f(Xk,αk,zk , αk, zk)] , (14)
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where, for each k ∈ {1, . . . ,K}, z solves:

zk :=
1

K

K∑
k′=1

Wk,k′E[Xk′,αk′ ,zk′ ].

Thus, the player’s cost is impacted by a weighted average of each population’s average state. The coefficients
of this weighted average, given by W , depend on the population k under consideration.

Definition 3.13. A strategy profile α ∈ AK is a Nash equilibrium for the K-population MFG if for all k
and all β ∈ A,

J (αk, zk) ≤ J (β, zk),

and z uniquely solves zk := 1
K

∑K
k′=1Wk,k′E[Xk′,αk′ ,zk′ ].

A Nash equilibrium for the K-population MFG provides an approximate Nash equilibrium for a game
with a finite but large number of players in each population. See e.g. Chapter 8 of the book by Bensoussan,
Frehse, and Yam [2] for a formal proof.

For convenience we let for each integer K ≥ 1, ψK : AK → L2(I) denote the map that embeds a
profile of K strategies α into the evenly spaced step function ψK(α) defined by ψK(α)x = αi whenever
x ∈ [(i − 1)/K, i/K). For the sake of definiteness we could add ψK(α)1 = αK , but this will not matter.
Similarly, we let ΨK denote the map that takes a K ×K symmetric matrix WK = [WK

i,j ]i,j=1,...,K into the

graphon wK = ΨK(WK) defined by wK(x, y) = WK
i,j whenever x ∈ [(i−1)/K, i/K) and y ∈ [(j−1)/K, j/K).

Again, we could choose a specific convention to extend naturally w into a function defined everywhere on
the unit square I × I. It will also be useful to define for each integer K ≥ 1, the map µK : L2(I)→ RK by

[µKz]i := K
∫ i/K

(i−1)/K
zxdx, which gives the average of z on the interval [(i− 1)/K, i/K).

Proposition 3.14. Let K ≥ 1, W ∈ RK×K be a symmetric matrix, and assume the conclusion of Proposition
3.1 holds so that Z defined with respect to the piecewise constant graphon w := ΨK(W ) is well defined. Let
α̂ be a Nash equilibrium for the graphon game with w. Then α̂ is an evenly spaced step function for λI-a.e.
x ∈ I and let α̂K := µK(α̂) be the constant values. Then α̂K is a Nash equilibrium for the K-population
MFG defined by (13)–(14) with interaction strength matrix W . Conversely, let α̂K be a Nash equilibrium
for the K-population MFG defined by (13)–(14) with interaction strength matrix W . Then α̂ := ψK(α̂K) is
a Nash equilibrium for the graphon game with the piecewise constant graphon w := ΨK(W ).

Proof. Let α̂ be a Nash equilibrium for the graphon game. One can check that there exists z ∈ RK such that
ψK(z) satisfies the unique definition of Zα̂, where Z is defined with respect to the graphon ΨK(W ). Thus,
for λI -a.e. y ∈ [(k − 1)/K, k/K), we have J (α̂y, zk) ≤ J (β, zk) for all β ∈ A. By Assumption 4, there is a
unique minimizer of J (α, zk) in the α argument, and thus, α̂ is constant for λI -a.e. y ∈ [(k − 1)/K, k/K).
Clearly the constant values, given by µK(α̂), is a Nash equilibrium for the above K-population MFG.

Now let α̂K be a Nash equilibrium for the K-population MFG. For all k and for all β ∈ A, we have:

J (α̂Kk , zk) ≤ J (β, zk),

and z uniquely solves zk := 1
K

∑K
k′=1Wk,k′E[Xk′,α̂K

k′ ,zk′
]. Clearly, we have Zα̂ = ψK(z), where Z is defined

with respect to the graphon ΨK(W ). Thus, for all x and all β ∈ A:

J (α̂x, [Zα̂]x) ≤ J (β, [Zα̂]x),

which means α̂ is a Nash equilibrium for the graphon game with graphon ΨK(W ).

3.3 Existence of Nash Equilibria

Now we return to our analysis of graphon games. In the following, we make use of an additional assumption:
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Assumption 5. There exists a finite positive constant c0 such that |b(α, z)| ≤ c0 for all α ∈ A and z ∈ R.

Theorem 3.15. Under Assumptions 1, 4, and 5, and assuming
√
cz‖W‖ < 1, there is at least one Nash

equilibrium.

Proof. First, let χ := c0. Remark 3.3 implies that for any α ∈ L2(I), Zα belongs to the range W(Bχ) where
Bχ denotes the closed ball Bχ = {z ∈ L2(I); ‖z‖ ≤ χ}. Since the graphon operator W is a Hilbert-Schmidt
operator, it is a fortiori a compact operator, implying that W(Bχ) is a relatively compact subset of L2(I).

Being Lipschitz (recall Lemma 3.7), B is also continuous and the image by B of the closure W(Bχ), call
it momentarily K, is a compact subset of L2(I). So the (nonlinear) operator BZ from L2(I) into itself is
continuous and its range is contained in the compact set K. Schauder’s theorem implies that this operator
has a fixed point, and according to Proposition 3.6, the latter is a Nash equilibrium for the game.

Schauder’s theorem allows us to prove existence of Nash equilibria under rather mild assumptions, but
unfortunately, it does not guarantee uniqueness. The latter is obtained under stronger assumptions. For
example, it holds when the fixed point is derived from a strict contraction. We give a sufficient condition
for this to be the case in the next subsection. There, we also give a uniqueness condition inspired by the
Lasry-Lions monotonicity condition prevalent in the theory of mean field games.

3.4 Uniqueness of Nash Equilibria

Lemma 3.16. Under Assumption 1, and assuming
√
cz‖W‖ < 1, for any α1 and α2 in L2(I), we have the

L2 bound:

‖Zα1 − Zα2‖L2(I) ≤
√
cα‖W‖

1−√cz‖W‖
‖α1 −α2‖L2(I), (15)

as well as the pointwise bound:∣∣[Zα1]x − [Zα2]x
∣∣ ≤ √

cα
1−√cz‖W‖

(∫
I

w(x, y)2dy
)1/2 ∥∥α1 −α2

∥∥
L2(I)

, λI-a.e. x ∈ I. (16)

Proof. We first prove (15). From equation (7) we have:

‖Zα1 − Zα2‖L2(I) = ‖W
[
b(α1,Zα1)− b(α2,Zα2)

]
‖L2(I)

≤ ‖W‖ ‖b(α1,Zα1)− b(α2,Zα2)‖L2(I)

≤ ‖W‖
(√
cα‖α1 −α2‖L2(I) +

√
cz‖Zα1 − Zα2‖L2(I)

)
.

We conclude because
√
cz‖W‖ < 1 by assumption. We now prove (16). For λI -a.e. x ∈ I, we have:∣∣[Zα1]x − [Zα2]x
∣∣ =

∣∣∣∣∫
I

w(x, y)
[
b(α1

y, [Zα
1]y)− b(α2

y, [Zα
2]y)

]
dy

∣∣∣∣
≤
(∫

I

w(x, y)2dy
)1/2(∫

I

∣∣∣b(α1
y, [Zα

1]y)− b(α2
y, [Zα

2]y)
∣∣∣2dy)1/2

≤
(∫

I

w(x, y)2dy
)1/2(√

cα
∥∥α1 −α2

∥∥
L2(I)

+
√
cz
∥∥Zα1 − Zα2

∥∥
L2(I)

)
≤

√
cα

1−√cz‖W‖

(∫
I

w(x, y)2dy
)1/2 ∥∥α1 −α2

∥∥
L2(I)

,

where we used the L2 bound (15).

Proposition 3.17. Under Assumption 1 and Assumption 4, and assuming
√
cz‖W‖ < 1, if:

`J
`c
·
√
cα‖W‖

1−√cz‖W‖
< 1, (17)

then there exists a unique Nash equilibrium.
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Proof. With Lemmas 3.7 and 3.16, we have:

‖BZα1 −BZα2‖L2(I) ≤
`J
`c
‖Zα1 − Zα2‖L2(I)

≤ `J
`c
·
√
cα‖W‖

1−√cz‖W‖
‖α1 −α2‖L2(I).

Thus, BZ is a strict contraction, and by Banach’s fixed point theorem, it has a unique fixed point.

We now introduce a notion of monotonicity, inspired by the Lasry-Lions monotonicity condition in the
mean field games literature. For a given graphon w, we say a function h(α, z) is monotone if for all α1,α2 ∈ A,
we have

h(α1
x, [Zα

1]x)− h(α1
x, [Zα

2]x)− h(α2
x, [Zα

1]x) + h(α2
x, [Zα

2]x) ≥ 0 (18)

holds on a set of positive λI -measure.

Proposition 3.18. Assume the conclusion of Proposition 3.1 holds so that Z is well defined. Also, suppose
that for each z ∈ R, J (·, z) has a unique minimizer, and that J (α, z) is monotone in the above sense. Then
there is at most one Nash equilibrium.

Proof. Suppose α1 and α2 are two Nash equilibria for the sake of contradiction. Then for λI -a.e. x ∈ I:

J (α1
x, [Zα

1]x)− J (α2
x, [Zα

1]x) + J (α2
x, [Zα

2]x)− J (α1
x, [Zα

2]x) < 0,

by minimality and uniqueness of the minimizers. However, by monotonicity, the above quantity is nonnega-
tive on a set of positive measure, which is a contradiction.

As an example, consider the constant graphon w(·, ·) = 1, and

b0(α, z) = α, and f(x, α, z) =
3

2
α2 − (x− z)2.

We have J (α, z) = E
[

3
2α

2 − (α+ ξ − z)2
]

= 1
2α

2 + 2αz − z2 − E(ξ2). Then for any α, we have [Zα]x =∫
I
αxdx =: ᾱ for all x ∈ I. For any two control profiles α1 and α2 which are not equal in L2(I), we must

have ᾱ1 6= ᾱ2, as otherwise, the uniqueness of the minimizer would give α1 = α2. Then we have:∫
I

[1

2
α2

1 + 2α1ᾱ1 − ᾱ2
1 − E(ξ2)− 1

2
α2

1 − 2α1ᾱ2 + ᾱ2
2 + E(ξ2)

− 1

2
α2

2 − 2α2ᾱ1 + ᾱ2
1 + E(ξ2) +

1

2
α2

2 + 2α2ᾱ2 − ᾱ2
2 − E(ξ2)

]
dx

= 2(ᾱ1 − ᾱ2)

∫
I

(α1 − α2)dx

= 2(ᾱ1 − ᾱ2)2 > 0,

so (18) holds on a set of positive λI -measure, and thus J (α, z) is monotone. Clearly, we also have a unique
minimizer of J (·, z) for each z. Thus, there is at most one Nash equilibrium. Notice that for this example,
we have cα = 1, cz = 0, ‖W‖ = 1, `c = 1, `J = 2, and thus, (17) is not satisfied. Conversely, consider
the same example as above except with a different sign in f : f(x, α, z) = 3

2α
2 + (x − z)2. Now we have

`c = 5 and `J = 2, and thus (17) is satisfied, even though f is not monotone. Thus, Proposition 3.17 and
Proposition 3.18 provide two different paths to uniqueness.
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3.5 Stability Estimate

The following stability result will be useful in the sequel.

Lemma 3.19. Under Assumptions 1, 4 and 5, for any two graphons w and w′ with corresponding graphon
operators W and W′ satisfying

√
cz‖W‖ < 1 and

√
cz‖W′‖ < 1, and operators Z and Z′ as defined in

equation (6) respectively, for any α ∈ L2(I) we have:

‖Zα− Z′α‖L2(I) ≤
c0

1−√cz‖W‖
‖W −W′‖.

Proof. Starting from equation (7), we get:

‖Zα− Z′α‖L2(I) = ‖W[b(α,Zα)]−W′[b(α,Z′α)]‖L2(I)

≤ ‖W [b(α,Zα)]−W [b(α,Z′α)]‖L2(I)

+ ‖W [b(α,Z′α)]−W′ [b(α,Z′α)]‖L2(I)

≤ ‖W‖‖b(α,Zα)− b(α,Z′α)‖L2(I)

+ ‖W −W′‖‖b(α,Z′α)‖L2(I)

≤ ‖W‖ ·
√
cz · ‖Zα− Z′α‖L2(I) + c0‖W −W′‖,

and the conclusion follows.

Theorem 3.20. Assume Assumptions 1, 4 and 5, and
√
cz‖W‖ < 1 and (17) holds for the graphon w with

corresponding graphon operator W. We denote its unique Nash equilibrium by α. Then for any graphon
w′ with corresponding graphon operator W′ satisfying

√
cz‖W′‖ < 1 and any Nash equilibrium α′ for the

graphon game associated to w′, we have:

‖α−α′‖L2(I) ≤ κ||W −W′||,

where

κ :=
c0`J(1−√cz‖W‖)

(1−√cz‖W‖)
[
`c(1−

√
cz‖W‖)− `J

√
cα‖W‖

] .
Proof. By assumption, we have α = BZα and α′ = BZ′α′. Thus,

‖α−α′‖L2(I) = ‖BZα−BZ′α′‖L2(I)

≤ `J
`c
‖Zα− Z′α′‖L2(I)

≤ `J
`c
‖Zα− Zα′‖L2(I) +

`J
`c
‖Zα′ − Z′α′‖L2(I)

≤ `J
`c

√
cα‖W‖

1−√cz‖W‖
‖α−α′‖L2(I) +

`J
`c
‖Zα′ − Z′α′‖L2(I),

where we used the Lipschitz property of B from Lemma 3.7 and the result of Lemma 3.16. Because (17)
holds, we have:

‖α−α′‖L2(I) ≤
`J(1−√cz‖W‖)

`c(1−
√
cz‖W‖)− `J

√
cα‖W‖

‖Zα′ − Z′α′‖L2(I),

and we conclude using Lemma 3.19.
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3.6 Central Planner

Even though we shall address the issue in the framework of some specific examples only, it is worth mentioning
the case when a central planner chooses the controls of all the players in order to minimize an overall social
cost. In the continuum player setting, the overall social cost is defined as:

S(α) :=

∫
I

J (αx, [Zα]x)dx.

In other words, the central planner problem is to solve for:

αO ∈ arg inf
α∈A
S(α).

Note that the social cost when computed for a Nash equilibrium can be no better than the optimal social
cost S(αO). So if α̂ is a Nash equilibrium for the graphon game, and αO is the optimal social cost, then
S(α̂) ≥ S(αO). The discrepancy between the two costs is often referred to as the price of anarchy. It
was originally introduced to quantify the inefficiency of selfish behavior when compared to coordinated
optimization. See for example [8, 9, 19, 28, 29]. We shall compute the price of anarchy for one of our
motivating examples in Section 5.2 below.

4 Links between Finite-Player Games and Graphon Games

We now turn our attention to the link between games with a finite number of players and the graphon
games with a continuum of players considered in the previous section. But first, we recall some notations
and definitions from the asymptotic theory of graphons and random graphs. See Lovász [24, Chapter 8] for
details and complements.

The cut norm of a graphon w is defined as:

‖w‖� := sup
S,T∈B(I)

∣∣∣∣∫
S×T

w(x, y) dxdy

∣∣∣∣ ,
where B(I) is the Borel σ-field of I. The cut metric between two graphons w and w′ is defined as:

d�(w,w′) := ‖w − w′‖�,

and the cut distance by:
δ�(w,w′) := inf

ϕ∈SI
d�(wϕ, w′),

where SI denotes the set of invertible bi-measurable measure-preserving (i.e. preserving λI) maps from I
into itself, and for each ϕ ∈ SI , we let αϕ := (αϕ(x))x∈I and wϕ(x, y) := w(ϕ(x), ϕ(y)).

Finally, the permutation invariant L2 - distance between α,α′ ∈ L2(I) is defined by:

dS(α,α′) := inf
ϕ∈SI

‖αϕ −α′‖L2(I).

4.1 Convergence of Finite-Player Game Equilibria

In this section we give conditions under which Nash equilibria of sequences of N -player games converge in
some sense to the Nash equilibria of a graphon game. In the next section we show that, conversely, Nash
equilibria of graphon games can be used to provide approximate Nash equilibria for finite-player games.

First, we consider a convergent sequence of random graphs, (WN )N≥1, meaning that the corresponding
evenly spaced step graphons, given by ΨN (WN ) converge in the δ� cut distance to a graphon w.

Remark 4.1. The following are examples of convergent sequences of random graphs.
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• Erdős-Rényi model: Given N ∈ Z+ and p ∈ [0, 1], put an edge between each pair of the N vertices
independently with probability p. The limiting graphon is the constant graphon w(·, ·) = p.

• Stochastic Block Model: Suppose there are N vertices that are evenly divided among K communities.
The probability of an edge between a node in community i and a node in community j is given by Wi,j

where W ∈ RK×K is a symmetric matrix. The limiting graphon is the piecewise constant graphon
w := ΨK(W ).

• Watts-Strogatz model: Given N ∈ Z+, and p, γ ∈ [0, 1], construct the Watts-Strogatz random graph
as follows: arrange the vertices in a circle, and connect each vertex to it’s pN/2 nearest vertices on
both sides. Then rewire each edge uniformly at random with probability γ. The limiting graphon is
w(x, y) = (1− γ(1− p))1d(x,y)≤p/2 + γp1d(x,y)>p/2 where d(x, y) is distance on the unit torus.

Other examples of convergent sequences of random graphs can be found in Lovász [24, Section 11.4.2].

Remark 4.2. Given a graphon w which takes values in [0, 1], we can construct two sequences of random
graphs, GN,1 and GN,1, according to the following sampling procedure:

• Sample N points xN1 , . . . , x
N
N i.i.d. from the uniform distribution on I. Without loss of generality,

relabel the indices so that xN1 ≤ xN2 · · · ≤ xNN . We define WN,1,WN,2 as follows:

– WN,1
i,i = 0, and for all i 6= j, WN,1

i,j = w(xi, xj).

– WN,2
i,i = 0, and for all i 6= j, WN,2

i,j = 1 with probability w(xNi , x
N
j ) and 0 otherwise.

Then the corresponding evenly spaced step graphons for the above sampling procedures, wN,1 := ΨN (WN,1)
and wN,2 := ΨN (WN,2), satisfy δ�(wN,1, w) → 0 almost surely and δ�(wN,2, w) → 0 almost surely. See
Lovász [24, Lemma 10.16].

Theorem 4.3. Assume Assumptions 1, 2, 4, and 5. Suppose that (WN )N≥1 where WN = [WN
i,j ]i,j=1,...,N ∈

RN×N for all N ≥ 1 is a sequence of symmetric matrices, and suppose that for each N ≥ 1, there exists
a unique Nash equilibrium denoted by αN,∗ for the N -player game with the interaction matrix WN . For
each N ≥ 1, let wN := ΨN (WN ) and WN be the corresponding graphon and graphon operator, and sup-
pose there exists a graphon w with corresponding graphon operator W such that limN→∞ δ�(wN , w) = 0,
limN→∞ ‖wN‖2 = ‖w‖2, limN→∞ ‖WN‖ = ‖W‖, w satisfies

√
2cz‖w‖2 < 1 and W satisfies

√
cz‖W‖ < 1

and relation (17). If α̂ denotes the unique Nash equilibrium for the graphon game with w, then

lim
N→∞

dS(ψN (αN,∗), α̂) = 0.

In some cases, we can even obtain a rate of convergence, see Theorem 4.7.

Remark 4.4. This result is in a similar flavor to Delarue [10, Theorem 1], which roughly states that the
average of all the player’s states in an N -player network game with an Erdős-Rényi graph converges to the
average state in a mean field game. Since the graphon limit of an Erdős-Rényi graph is a constant graphon,
Proposition 3.9 suggests that it is sufficient to consider the analogous mean field game instead of considering
the graphon game, which matches the approach of [10]. The main difference with our result is that we show
convergence of the strategy profiles, instead of convergence of the average of all player’s states, and our result
holds for any convergent sequence of random graphs. Also, our results are in the setting of static games,
whereas [10] considers a dynamic setting.

The proof of Theorem 4.3 relies on the estimates proven in the following two lemmas.

Lemma 4.5. Let N ≥ 1 and WN = [WN
i,j ]i,j=1,...,N ∈ RN×N be a symmetric matrix, and we denote by

wN := ΨN (WN ) the corresponding evenly-spaced piecewise-constant graphon. Assume Assumption 1 and√
2cz‖WN‖F < 1. Let ZN : AN → L2(Ω;R) be defined as in (3) after Proposition 2.1 for the N -player game
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with interaction given by the matrix WN , and ZN be the operator defined in Proposition 3.1 for the graphon
wN . Then for any αN ∈ AN we have: for all i = 1, . . . , N ,

E
[∣∣(ZNαN )i − [µN (ZNψN (αN ))]i

∣∣2] ≤ 1

N2

N∑
j=1

(WN
i,j)

2

(
2E(ξ2

0)

1− 2cz‖WN‖2F

)
.

Proof. We have:∣∣(ZNαN )i − [µN (ZNψN (αN ))]i
∣∣

≤
∣∣∣(ZNαN )i −

1

N

N∑
j=1

WN
i,jXαNj ,[µ

N (ZNψN (αN ))]j ,ξj

∣∣∣
+
∣∣∣ 1

N

N∑
j=1

WN
i,jXαNj ,[µ

N (ZNψN (αN ))]j ,ξj −
1

N

N∑
j=1

WN
i,jE

[
XαNj ,[µ

N (ZNψN (αN ))]j ,ξj

]∣∣∣
+
∣∣∣ 1

N

N∑
j=1

WN
i,jE

[
XαNj ,[µ

N (ZNψN (αN ))]j ,ξj

]
− [µN (ZNψN (αN ))]i

∣∣∣
= (i) + (ii) + (iii).

We first consider the last term (iii). Note that, using the definitions of wN and ZN we see that for any
α ∈ L2(I), if x ∈ [(i− 1)/N, i/N),

(ZNα)x =

N∑
j=1

WN
i,j

∫ j/N

(j−1)/N

b
(
αy, [Z

Nα]y
)
dy,

showing that x 7→ (ZNα)x is constant over each interval [(i − 1)/N, i/N), i = 1, . . . , N . As a result,
[µN (ZNα)]i is merely the value of the piecewise constant function ZNα over the interval [(i − 1)/N, i/N).
Consequently:

(iii) =
∣∣∣ 1

N

N∑
j=1

WN
i,jE

[
XαNj ,[µ

N (ZNψN (αN ))]j ,ξj

]
−

N∑
j=1

WN
i,j

∫ j/N

(j−1)/N

b
(
[ψN (αN )]y, [Z

NψN (αN )]y
)
dy
∣∣∣

=
∣∣∣ 1

N

N∑
j=1

WN
i,j

(
b(αNj , [µ

N (ZNψN (αN ))]j)−N
∫ j/N

(j−1)/N

b(αNj , [Z
N (ψN (αN )]y)]dy

)∣∣∣
= 0

because y 7→ [ZN (ψN (αN )]y is constant over the interval [(j−1)/N, j/N), its value being [µN (ZNψN (αN ))]j .
For the second term, since [µN (ZNψN (αN ))]j is deterministic, by Proposition 3.2 we have:

(ii) =
∣∣∣ 1

N

N∑
j=1

WN
i,jξj

∣∣∣.
For the first term, we have:

(i) =
∣∣∣ 1

N

N∑
j=1

WN
i,jXαNj ,(ZNαN )j ,ξj −

1

N

N∑
j=1

WN
i,jXαNj ,[µ

N (ZNψN (αN ))]j ,ξj

∣∣∣
=
∣∣∣ 1

N

N∑
j=1

WN
i,j

[
b
(
αNj , (ZNαN )j

)
− b

(
αNj , [µ

N (ZNψN (αN ))]j
) ]∣∣∣

≤
√
cz

1

N

N∑
j=1

|WN
i,j |
∣∣∣(ZNαN )j − [µN (ZNψN (αN ))]j

∣∣∣,
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where we used Assumption 1. Putting the above inequalities together, squaring, and taking the expectation,
we have:

E
[(

(ZNαN )i − [µN (ZNψN (αN ))]i
)2]

≤2cz
1

N

N∑
j=1

(WN
i,j)

2E
(
(ZNαN )j − [µN (ZNψN (αN ))]j

)2
+ 2E


 1

N

N∑
j=1

(WN
i,j)ξj

2


≤2cz
1

N

N∑
j=1

(WN
i,j)

2 1

N

N∑
j=1

E
(
(ZNαN )j − [µN (ZNψN (αN ))]j

)2
+ 2

 1

N2

N∑
j=1

(WN
i,j)

2E(ξ2
0)

 ,

(19)

where we used the independence of the mean-zero ξj . Thus, taking the average of the left hand side over i,
we get:

1

N

N∑
i=1

E
[(

(ZNαN )i − [µN (ZNψN (αN ))]i
)2]

≤ 2cz‖WN‖2F
1

N

N∑
j=1

E
(
(ZNαN )j − [µN (ZNψN (αN ))]j

)2
+

2‖WN‖2FE(ξ2
0)

N
,

and since
√

2cz‖WN‖F < 1 by assumption, we have:

1

N

N∑
i=1

E
(
(ZNαN )i − [µN (ZNψN (αN ))]i

)2 ≤ 1

N
· 2‖WN‖2FE(ξ2

0)

1− 2cz‖WN‖2F
.

Returning to (19), we have:

E
(
(ZNαN )i − [µN (ZNψN (αN ))]i

)2
≤2cz

1

N

N∑
j=1

(WN
i,j)

2 1

N
· 2‖WN‖2FE(ξ2

0)

1− 2cz‖WN‖2F
+ 2

 1

N2

N∑
j=1

(WN
i,j)

2E(ξ2
0)


=

1

N2

N∑
j=1

(WN
i,j)

2

(
2E(ξ2

0)

1− 2cz‖WN‖2F

)
,

which concludes the proof.

Lemma 4.6. As before, for a sequence of symmetric matrices, WN = [WN
i,j ]i,j=1,...,N ∈ RN×N , N ≥ 1,

we denote by wN := ΨN (WN ) the corresponding evenly-spaced piecewise-constant graphon. Let αN,∗ ∈ AN
be a Nash equilibrium for the N -player game with interaction WN , and α̂N a Nash equilibrium for the
graphon game with graphon wN . Suppose limN→∞ ‖wN‖2 = ζ1 and limN→∞ ‖WN‖ = ζ2 where WN is the
graphon operator associated to the piecewise constant graphon wN . Suppose

√
2czζ1 < 1,

√
czζ2 < 1, and

`J
`c
·
√
cαζ2

1−√czζ2 < 1. Then under Assumptions 1, 2, and 4, there exists an ε > 0 such that for N large enough

we have:

‖ψN (αN,∗)− α̂N‖L2(I) ≤
κ̃

N1/4
, κ̃ := 2κ1

√
2˜̀
J

`c
(2κ0 + κ2)

1/4
, (20)

where

κ0 :=

(
2(ζ1 + ε)2E(ξ2

0)

1− 2cz(ζ1 + ε)2

)
,

κ1 :=

(
1− `J

`c
·
√
cα(ζ2 + ε)

1−√cz(ζ2 + ε)

)−1

and κ2 :=
cα(ζ1 + ε)2

(1−√cz(ζ2 + ε))2
.
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Proof. We use the notation ZN for the operator associated to the graphon wN through Propositions 3.1 and
3.2. We have:

‖ψN (αN,∗)− α̂N‖L2(I) = ‖ψN (αN,∗)−BZN α̂N‖L2(I)

≤ ‖ψN (αN,∗)−BZNψN (αN,∗)‖L2(I) + ‖BZNψN (αN,∗)−BZN α̂N‖L2(I).
(21)

Since
√
czζ2 < 1 and `J

`c
·
√
cαζ2

1−√czζ2 < 1, there exists an ε > 0 such that:

√
cz(ζ2 + ε) < 1, and

`J
`c
·
√
cα(ζ2 + ε)

1−√cz(ζ2 + ε)
< 1. (22)

Since ‖WN‖ → ζ2, there exists an N∗ such that for all N ≥ N∗,
∣∣ζ2 − ‖WN‖

∣∣ ≤ ε. For the remainder of
the proof, consider N ≥ N∗. Using Lemmas 3.7 and 3.16, we get:

‖BZNψN (αN,∗)−BZN α̂N‖L2(I) ≤
`J
`c
·
√
cα(ζ2 + ε)

1−√cz(ζ2 + ε)
‖ψN (αN,∗)− α̂N‖L2(I),

which implies by (21) that:(
1− `J

`c
·
√
cα(ζ2 + ε)

1−√cz(ζ2 + ε)

)
‖ψN (αN,∗)− α̂N‖L2(I) ≤ ‖ψN (αN,∗)−BZNψN (αN,∗)‖L2(I),

from which we conclude that:

‖ψN (αN,∗)− α̂N‖L2(I) ≤ κ1‖ψN (αN,∗)−BZNψN (αN,∗)‖L2(I). (23)

We now estimate the above right hand side. For N and i ∈ {1, . . . , N} fixed, we denote:

Fi(β) := J̃
(
β,L(ξi, [ZN [β;αN,∗−i ]]i)

)
, β ∈ A.

We have αN,∗i ∈ arg infβ∈A Fi(β), since αN,∗ is a Nash equilibrium for the N -player game. To simplify

notation, let β1
i := αN,∗i .

Note that since ψN (αN,∗) is a step function, taking constant values on intervals [(j− 1)/N, j/N), we can
choose an element in the L2-class of ZNψN (αN,∗) which is also constant on the intervals [(j − 1)/N, j/N).
In particular, µN

(
ZNψN (αN,∗)

)
∈ AN gives these constant values. Now, denote:

Gi(β) = J
(
β, [µN (ZNψN (αN,∗))]i

)
.

Then
[
BψN (µN (ZNψN (αN,∗)))

]
x

= arg infβ∈AGi(β) for λI -a.e. x ∈ [(i−1)/N, i/N), where we used the fact

that the minimizer exists and is unique from Assumption 4. To simplify notation, let β2
i := arg infβ∈AGi(β).

From Assumption 4, Gi is strongly convex with parameter `c, and thus letting ε = 1
2 in equation (8), and

using the fact that β2
i minimizes Gi(·) and β1

i minimizes Fi(·), we have:

(β1
i − β2

i )2 ≤ 4

`c
(Gi(β

1
i )−Gi(β2

i ))

≤ 4

`c

(
Gi(β

1
i )− Fi(β1

i ) + Fi(β
2
i )−Gi(β2

i )
)

≤ 4

`c

(∣∣Fi(β1
i )−Gi(β1

i )
∣∣+
∣∣Fi(β2

i )−Gi(β2
i )
∣∣).

(24)

From Assumption 2 and the definitions of Fi and Gi, we have that for all β ∈ A and all i ∈ {1, . . . , N}:

|Fi(β)−Gi(β)| ≤ ˜̀
JW2

(
L
(
ξi,ZN [β; (αN,∗)−i])i

)
, µ0 ⊗ δ[µN (ZNψN (αN,∗))]i

)
. (25)
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The W2 Wasserstein distance between two probability measures is bounded from above by the L2-distance
between random variables with these distributions. By choosing random variables (ξi,ZN [β; (αN,∗)−i])i) ∼
L(ξi,ZN [β; (αN,∗)−i])i) and (ξi, [µ

N (ZNψN (αN,∗))]i) ∼ µ0 ⊗ δ[µN (ZNψN (αN,∗))]i , we have

W2(L(ξi,ZN [β; (αN,∗)−i])i), µ0 ⊗ δ[µN (ZNψN (αN,∗))]i)
2

≤E
[∣∣(ξi − ξi)2

∣∣]+ E
[∣∣[ZN [β; (αN,∗)−i]]i − [µN (ZNψN (αN,∗))]i

∣∣2]
≤2E

[∣∣[ZN [β; (αN,∗)−i]]i − [µN (ZNψN ([β; (αN,∗)−i]))]i
∣∣2]

+ 2
∣∣[µN (ZNψN [β; (αN,∗)−i])]i − [µN (ZNψN (αN,∗))]i

∣∣2 .
(26)

Averaging equation (24) over i and combining (25) and (26) for β = β1
i , β

2
i , we arrive at:

1

N

N∑
i=1

(β1
i − β2

i )2 ≤ 4
√

2˜̀
J

`c

( 1

N

N∑
i=1

E
[∣∣[ZN [β1

i ; (αN,∗)−i]]i − [µN (ZNψN ([β1
i ; (αN,∗)−i]))]i

∣∣2]
+

1

N

N∑
i=1

E
[∣∣[ZN [β2

i ; (αN,∗)−i]]i − [µN (ZNψN ([β2
i ; (αN,∗)−i]))]i

∣∣2]
+

1

N

N∑
i=1

∣∣[µN (ZNψN [β1
i ; (αN,∗)−i])]i − [µN (ZNψN (αN,∗))]i

∣∣2
+

1

N

N∑
i=1

∣∣[µN (ZNψN [β2
i ; (αN,∗)−i])]i − [µN (ZNψN (αN,∗))]i

∣∣2)1/2

.

(27)

Since
√

2czζ1 < 1, we can also choose ε so that
√

2cz(ζ1 + ε) < 1, and we can also take N∗ large enough
so that |ζ1 − ‖WN‖F | < ε for all N ≥ N∗. Then for N ≥ N∗, we have the hypothesis of Lemma 4.5,√

2cz‖WN‖F < 1. Using Lemma 4.5, for any β ∈ L2(I) we get:

1

N

N∑
i=1

E
[∣∣(ZN [βi; (αN,∗)−i]i − [µN (ZNψN ([β; (αN,∗)−i]))]i

∣∣2] ≤ κ0

N
.

For any β, using (16) from Lemma 3.16, and averaging over i we have:

1

N

N∑
i=1

∣∣∣[µN(ZNψN ([β;αN,∗−i

]
)
)

]i −
[
µN
(
ZNψN (αN,∗)

)]
i

∣∣∣2
≤ cα

(1−√cz‖WN‖)2

( 1

N2

N∑
i=1

N∑
j=1

(WN
i,j)

2
) 1

N

N∑
i=1

‖ψN [β; (αN,∗)−i]− ψN (αN,∗)‖2L2(I)

=
cα‖WN‖2F

(1−√cz‖WN‖)2
· 1

N2

N∑
i=1

|β − αN,∗i |
2

≤ cα(ζ1 + ε)2

(1−√cz(ζ2 + ε))2
· 1

N2

N∑
i=1

|β − αN,∗i |
2

=
κ2

N2

N∑
i=1

|β − β1
i |2,
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where we used the fact that β1
i = αN,∗i . Now returning to equation (27) we have:(

1

N

N∑
i=1

(β1
i − β2

i )2

)2

≤ 32˜̀2
J

`2c

(
2κ0

N
+
κ2

N2

N∑
i=1

(β1
i − β2

i )2

)

≤ 32˜̀2
J

`2c

2κ0 + κ2

N
+
κ2

N

(
1

N

N∑
i=1

(β1
i − β2

i )2

)2
 ,

or after rearranging: (
1− 32˜̀2

Jκ2

`2c

1

N

)(
1

N

N∑
i=1

(β1
i − β2

i )2

)2

≤ 32˜̀2
J

`2c

(
2κ0 + κ2

N

)
.

We can again choose N∗ such that
32˜̀2

Jκ2

`2c

1
N < 1

2 for all N ≥ N∗, and thus:

(
1

N

N∑
i=1

(β1
i − β2

i )2

)2

≤ 64˜̀2
J

`2c

(
2κ0 + κ2

N

)
.

We compute:∥∥ψN (αN,∗)−BZNψN (αN,∗)
∥∥2

L2(I)
=
∥∥ψN (αN,∗)−BψN (µN (ZNψN (αN,∗)))

∥∥2

L2(I)

=
1

N

N∑
i=1

[
β1
i − β2

i

]2
≤ 8˜̀

J

`c

√(
2κ0 + κ2

N

)
,

proving the desired estimate (20) because of (23).

Proof of Theorem 4.3. Let α̂N be a Nash equilibrium for the graphon game with the graphon wN , i.e. α̂N

is a fixed point of BZN . For each N ≥ 1, the triangle inequality implies

dS(α̂, ψN (αN,∗)) ≤ dS(α̂, α̂N ) + dS(α̂N , ψN (αN,∗)).

Since by assumption we have δ�(wN , w)→ 0, [24, Theorem 11.59] implies that for each N ≥ 1, there exists
a relabeling of the steps of wN which is a measure preserving invertible function ϕN ∈ SI such that if we

set w̃N = (wN )ϕ
N

and denote by W̃N the associated graphon operator, then we have the convergence of

the operators: ||W̃N −W|| → 0. Now using Theorem 3.20, we get
∥∥∥(αN)ϕN − α̂

∥∥∥
L2(I)

→ 0, which implies

dS(α̂, α̂N ) → 0. Since by assumption ||wN ||2 → ||w||2 and ||WN || → ||W||, where ||w||2 and ||W|| satisfy
the assumptions of ζ1 and ζ2, respectively, in Lemma 4.6, we have dS(α̂N , ψN (αN,∗)) → 0. This concludes
the proof.

Theorem 4.3 says that the set of controls for the N -player Nash equilibrium (assuming it exists) converges
in some sense to the Nash equilibrium strategy for the graphon game. If the graphs defining the N -player
games are constructed with one of the sampling procedures in Remark 4.2, then we can estimate the rate of
convergence.

24



Theorem 4.7. Consider the same setting as Theorem 4.3. In addition, assume that the graphon w takes
values in [0, 1], and that the sequence of matrices (WN )N≥1 are a random sequence constructed with one of
the sampling procedures in Remark 4.2. Further suppose

√
2cz < 1. There exists an N∗ such that for every

N ≥ N∗, with probability at least 1− exp(−N/(2 log2N)) it holds:

dS(ψN (αN,∗), α̂) ≤ κ∗

N1/4
+

κ
√

184

(log2N)1/4
,

with

κ∗ := 2κ∗1

√
2˜̀
J

`c
(2κ∗0 + κ∗2)

1/4
, κ∗1 :=

(
1− `J

`c
·
√
cα(‖W‖+ ε)

1−√cz(‖W‖+ ε)

)−1

,

κ∗0 :=

(
2E(ξ2

0)

1− 2cz

)
, and κ∗2 :=

cα
(1−√cz(‖W‖+ ε))2

.

Proof. By the triangle inequality,

dS(ψN (αN,∗), α̂) ≤ dS(ψN (αN,∗), α̂N ) + dS(α̂N , α̂).

As in the proof of [26, Theorem 6], there exists ϕN ∈ SI for every N ≥ 1 such that with probability at least
1− exp(−N/(2 log2N)) it holds: ∥∥∥(wN )ϕ

N

− w
∥∥∥
�
≤ 23√

log2N
.

Thus with [26, Lemma 4], with probability at least 1− exp(−N/(2 log2N)) it holds:

||(WN )ϕ
N

−W|| ≤
√

8
∥∥(wN )ϕN − w

∥∥
�
≤

√
184

(log2N)1/4
.

Then with Theorem 3.20:

dS(α̂N , α̂) ≤
∥∥∥(α̂N )ϕ

N

− α̂
∥∥∥
L2(I)

≤ κ||(WN )ϕ
N

−W|| ≤ κ
√

184

(log2N)1/4
.

Now we modify the proof of Lemma 4.6 to see that we can choose N∗ independent of the realization
of the sequence (WN )N≥1, so that for all N ≥ N∗, with probability at least 1 − exp(−N/(2 log2N)), the
statement of Lemma 4.6 holds. Indeed, let ε > 0 so that (22) holds with ζ2 replaced by ‖W‖. Now let

N∗ so that
√

184
(log2N

∗)1/4
≤ ε. Then for all N ≥ N∗, with probability at least 1 − exp(−N/(2 log2N)), we

have ||(WN )ϕ
N −W|| ≤ ε, which implies

∣∣∣‖(WN )ϕ
N ‖ − ‖W‖

∣∣∣ ≤ ε. Because the graphon takes values

in [0, 1] by assumption, clearly we have ‖WN‖F ≤ 1 for all realizations of the sequence and for all N ≥
1. Since we assumed

√
2cz < 1, the hypothesis of Lemma 4.5 is satisfied for all realizations and for all

N ≥ 1, and we can give a larger upper bound for the right hand side of the statement in Lemma 4.5:

E
[∣∣(ZNαN )i − [µN (ZNψN (αN ))]i

∣∣2] ≤ 1
N

(
2E(ξ20)
1−2cz

)
. Thus for all N ≥ N∗, with probability at least 1 −

exp(−N/(2 log2N)):

dS(ψN (αN,∗), α̂N ) ≤ κ∗

N1/4
,

and we conclude.

4.2 Approximate Equilibria

Now we consider whether N players using some controls picked from the graphon game strategy are in an
approximate Nash equilibrium. More specifically, we define the following.
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Definition 4.8 (ε-Nash equilibrium). We say a control profile αN = (αN1 , . . . , α
N
N ) is an ε-Nash equilibrium

for the N -player game if:

J̃ (αNi ,L(ξi, [ZNαN ]i)) ≤ J̃ (β,L(ξi, [ZN [β;αN−i]]i) + ε, ∀i = 1, . . . , N,∀β ∈ A.

Theorem 4.9. Assume Assumptions 1, 2, 4, and 5, and that the set of controls, A, is bounded. Suppose
that (WN )N≥1 where WN = [WN

i,j ]i,j=1,...,N ∈ RN×N for all N ≥ 1 is a sequence of symmetric matrices

satisfying maxi=1,...,N
1
N2

∑N
j=1(WN

i,j)
2 ≤ ζ̃. For each N ≥ 1, let wN := ΨN (WN ), and suppose there

exists a graphon w satisfying
√

2cz‖w‖2 < 1,
√
cz‖W‖ < 1, and supx∈I(

∫
I
w(x, y)2dy)1/2 ≤ ζ, such that

limN→∞ ‖wN‖2 = ‖w‖2, limN→∞ ‖WN‖ = ‖W‖, and δ�(wN , w) ≤ γN with NγN → 0 as N → ∞.
Suppose the indices of WN are already permuted such that the same is true for d�(wN , w). Let α̂ be a Nash
equilibrium for the graphon game with graphon w. Suppose we use α̂ to define a strategy µN (α̂) ∈ AN . Then
µN (α̂) is an εN -Nash equilibrium for the N -player games specified by WN with εN → 0 as N →∞.

The proof of Theorem 4.9 relies on the following two lemmas.

Lemma 4.10. Suppose for a sequence of symmetric matrices (WN )N≥1, and corresponding piecewise con-
stant graphons wN := ΨN (WN ), there exists a graphon w such that d�(wN , w) ≤ γN with NγN → 0 as
N →∞. Let g : I → R be a bounded and measurable function. Then

sup
i∈{1,...,N}

N

∣∣∣∣∣
∫ i/N

(i−1)/N

∫
I

(
w(x, y)− wN (x, y)

)
g(y)dydx

∣∣∣∣∣→ 0.

Proof. For a given N ≥ 1 and i ∈ {1, . . . , N}, we have:

N

∣∣∣∣∣
∫ i/N

(i−1)/N

∫
I

(
w(x, y)− wN (x, y)

)
g(y)dydx

∣∣∣∣∣ =N

∣∣∣∣∣
∫
I

∫ i/N

(i−1)/N

(
w(x, y)− wN (x, y)

)
dxg(y)dy

∣∣∣∣∣
≤N

∣∣∣∣∣
∫
T+

∫ i/N

(i−1)/N

(
w(x, y)− wN (x, y)

)
dxg(y)dy

∣∣∣∣∣
+N

∣∣∣∣∣
∫
T−

∫ i/N

(i−1)/N

(
w(x, y)− wN (x, y)

)
dxg(y)dy

∣∣∣∣∣ ,
where T+ := {y :

∫ i/N
(i−1)/N

(
w(x, y)− wN (x, y)

)
dx ≥ 0} and T− := {y :

∫ i/N
(i−1)/N

(
w(x, y)− wN (x, y)

)
dx <

0}. Then:∣∣∣∣∣
∫
T+

∫ i/N

(i−1)/N

(
w(x, y)− wN (x, y)

)
dxg(y)dy

∣∣∣∣∣ ≤ C
∫
T+

∫ i/N

(i−1)/N

(
w(x, y)− wN (x, y)

)
dxdy,

and ∣∣∣∣∣
∫
T−

∫ i/N

(i−1)/N

(
w(x, y)− wN (x, y)

)
dxg(y)dy

∣∣∣∣∣ ≤ C
∫
T−

∫ i/N

(i−1)/N

(
wN (x, y)− w(x, y)

)
dxdy.

Since d�(wN , w) ≤ γN , we have:

sup
S,T∈B(I)

∣∣∣∣∫
S×T

(
w(x, y)− wN (x, y)

)
dxdy

∣∣∣∣ ≤ γN .
Thus, ∫

T+

∫ i/N

(i−1)/N

(
w(x, y)− wN (x, y)

)
dxdy ≤ γN ,
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and ∫
T−

∫ i/N

(i−1)/N

(
wN (x, y)− w(x, y)

)
dxdy ≤ γN .

Therefore,

sup
i∈{1,...,N}

N

∣∣∣∣∣
∫ i/N

(i−1)/N

∫
I

(
w(x, y)− wN (x, y)

)
g(y)dydx

∣∣∣∣∣ ≤ 2NγN → 0.

Lemma 4.11. Suppose for a sequence of symmetric matrices (WN )N≥1 with corresponding piecewise con-
stant graphons wN := ΨN (WN ) satisfying

√
cz‖WN‖ < 1, there exists a graphon w satisfying

supx∈I(
∫
I
w(x, y)2dy)1/2 ≤ ζ and

√
cz‖W‖ < 1, such that d�(wN , w) ≤ γN with NγN → 0 as N → ∞.

Under Assumptions 1, 4, and 5:

sup
i∈{1,...,N}

N

∣∣∣∣∣
∫ i/N

(i−1)/N

[ZψNαN ]x − [ZNψNαN ]xdx

∣∣∣∣∣→ 0,

for an arbitrary sequence of controls, αN ∈ AN , N ≥ 1.

Proof. Fix N ≥ 1 and i ∈ {1, . . . , N}. With equation (7) and its counterpart for ZN and WN , we have:

N

∣∣∣∣∣
∫ i/N

(i−1)/N

[ZψN (αN )]x − [ZNψN (αN )]xdx

∣∣∣∣∣
=N

∣∣∣∣∣
∫ i/N

(i−1)/N

[
W
[
b(ψN (αN ),ZψN (αN ))

]]
x
−
[
WN

[
b(ψN (αN ),ZNψN (αN ))

]]
x
dx

∣∣∣∣∣
≤N

∫ i/N

(i−1)/N

∣∣[W [
b(ψN (αN ),ZψN (αN ))

]]
x
−
[
W
[
b(ψN (αN ),ZNψN (αN ))

]]
x

∣∣ dx
+N

∣∣∣∣∣
∫ i/N

(i−1)/N

[
W
[
b(ψN (αN ),ZNψN (αN ))

]]
x
−
[
WN

[
b(ψN (αN ),ZNψN (αN ))

]]
x
dx

∣∣∣∣∣
=N

∫ i/N

(i−1)/N

∣∣∣∣∫
I

w(x, y)
[
b((ψNαN )y, [Zψ

N (αN )]y)− b((ψNαN )y, [Z
NψN (αN )]y)

]
dy

∣∣∣∣ dx
+N

∣∣∣∣∣
∫ i/N

(i−1)/N

∫
I

(
w(x, y)− wN (x, y)

)
b((ψNαN )y, [Z

NψN (αN )]y)dydx

∣∣∣∣∣
≤
√
cz
∥∥ZψN (αN )− ZNψN (αN )

∥∥
L2(I)

N

∫ i/N

(i−1)/N

(∫ 1

0

w(x, y)2dy

)1/2

dx

+N

∣∣∣∣∣
∫ i/N

(i−1)/N

∫
I

(
w(x, y)− wN (x, y)

)
b(ψN (αN )y, [Z

NψN (αN )]y)dydx

∣∣∣∣∣
≤ζ
√
cz
∥∥ZψN (αN )− ZNψN (αN )

∥∥
L2(I)

+N

∣∣∣∣∣
∫ i/N

(i−1)/N

∫
I

(
w(x, y)− wN (x, y)

)
b(ψN (αN )y, [Z

NψN (αN )]y)dydx

∣∣∣∣∣ .
From Lemma 3.19, we have

∥∥ZψN (αN )− ZNψN (αN )
∥∥
L2(I)

→ 0. From Lemma 4.10, we have:

sup
i∈{1,...,N}

N

∣∣∣∣∣
∫ i/N

(i−1)/N

∫
I

(
w(x, y)− wN (x, y)

) [
b(ψN (αN )y, [Z

NψN (αN )]y)
]
dydx

∣∣∣∣∣→ 0,

and we conclude.
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Proof of Theorem 4.9. Since α̂ is a Nash equilibrium for the graphon game, from Proposition 3.6, we have:

J (α̂x, [Zα̂]x) ≤ J (β, [Zα̂]x), for a.e. x, ∀β ∈ A,

where Z is the aggregate operator induced by the graphon operator W associated to w, and thus,

[µN (J (α̂·, [Zα̂]·)]i − [µN (J (β, [Zα̂]·))]i

= N

∫ i/N

(i−1)/N

(
J (α̂x, [Zα̂]x)− J (β, [Zα̂]x))

)
dx ≤ 0, ∀i ∈ {1, . . . , N},∀β ∈ A.

(28)

Since
√
cz‖W‖ < 1 and limN→∞ ‖WN‖ = ‖W‖ by assumption, we can choose N∗ such that

√
cz‖WN‖ < 1,

and thus ZN is well defined, for N ≥ N∗. We compute:

sup
i∈{1,...,N}

J̃ ([µN (α̂)]i,L(ξi, [ZNµ
N (α̂)]i))− J̃ (β,L(ξi, [ZN [β;µN (α̂)−i]]i))

≤ sup
i∈{1,...,N}

∣∣∣J̃ ([µN (α̂)]i,L(ξi, [ZNµ
N (α̂)]i))− J ([µN (α̂)]i, [µ

N (ZNψNµN (α̂))]i)
∣∣∣

+ sup
i∈{1,...,N}

∣∣J ([µN (α̂)]i, [µ
N (ZNψNµN (α̂))]i)− J ([µN (α̂)]i, [µ

N (ZψNµN (α̂))]i)
∣∣

+ sup
i∈{1,...,N}

J ([µN (α̂)]i, [µ
N (ZψNµN (α̂))]i)− [µN (J (α̂·, [µ

N (ZψNµN (α̂))]i)]i

+ sup
i∈{1,...,N}

∣∣[µN (J (α̂·, [µ
N (ZψNµN (α̂))]i)]i − [µN (J (α̂·, [Zα̂]·)]i

∣∣
+ sup
i∈{1,...,N}

[µN (J (α̂·, [Zα̂]·)]i − [µN (J (β, [Zα̂]·))]i

+ sup
i∈{1,...,N}

∣∣[µN (J (β, [Zα̂]·))]i − J (β, [µN (ZψNµN (α̂))]i)
∣∣

+ sup
i∈{1,...,N}

∣∣J (β, [µN (ZψNµN (α̂))]i)− J (β, [µN (ZψN [β;µN (α̂)−i])]i)
∣∣

+ sup
i∈{1,...,N}

∣∣J (β, [µN (ZψN [β;µN (α̂)−i])]i)− J (β, [µN (ZNψN [β;µN (α̂)−i])]i)
∣∣

+ sup
i∈{1,...,N}

∣∣∣J (β, [µN (ZNψN [β;µN (α̂)−i])]i)− J̃ (β,L(ξi, [ZN [β;µN (α̂)−i]]i))
∣∣∣

=:(i) + (ii) + (iii) + (iv) + (v) + (vi) + (vii) + (viii) + (ix).

(29)

From Assumption 4, the convexity of J in α implies (iii) ≤ 0. From (28), we have (v) ≤ 0. For the remaining
terms, we are going to repeatedly use Assumption 2 in the same way as in the proof of Lemma 4.6.

Now, consider (i). Since ‖wN‖2 → ‖w‖2 by assumption, there exists an ε̃ such that
√

2cz(‖w‖2 + ε̃) < 1
and we can also choose N∗ such that for all N ≥ N∗,

∣∣‖WN‖F − ‖w‖2
∣∣ < ε̃. By Lemma 4.5 applied to

αN = µN (α̂):

(i) ≤ sup
i∈{1,...,N}

˜̀
J

1

N2

N∑
j=1

(WN
i,j)

2

(
2E(ξ2

0)

1− 2cz‖WN‖2F

)

≤ 1

N
˜̀
J ζ̃

(
2E(ξ2

0)

1− 2cz(‖w‖2 + ε̃)2

)
→ 0.

Similarly, we also have (ix)→ 0. Next, consider (ii):

(ii) ≤ sup
i∈{1,...,N}

˜̀
J

∣∣[µN (ZNψNµN (α̂))]i − [µN (ZψNµN (α̂))]i
∣∣

= ˜̀
J sup
i∈{1,...,N}

N

∣∣∣∣∣
∫ i/N

(i−1)/N

(
[ZNψNµN (α̂)]x − [ZψNµN (α̂)]x

)
dx

∣∣∣∣∣→ 0,
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where we used Lemma 4.11 applied to αN = µN (α̂). Similarly, we also have (viii)→ 0. Now consider, (iv):

(iv) ≤ sup
i∈{1,...,N}

˜̀
J

∣∣[µN (ZψNµN (α̂))]i − [µN (Zα̂)]i
∣∣

= ˜̀
J sup
i∈{1,...,N}

∣∣[µN (ZψNµN (α̂)− Zα̂)]i
∣∣

≤ ˜̀
J sup
i∈{1,...,N}

N

∫ i/N

(i−1)/N

∣∣[ZψNµN (α̂)]x − [Zα̂]x
∣∣ dx

≤ ˜̀
J sup
i∈{1,...,N}

N

∫ i/N

(i−1)/N

√
cα

1−√cz‖W‖

(∫
I

w(x, y)2dy
)1/2 ∥∥ψNµN (α̂)− α̂

∥∥
L2(I)

dx

≤
˜̀
Jζ
√
cα

1−√cz‖W‖
∥∥ψNµN (α̂)− α̂

∥∥
L2(I)

,

where we used Lemma 3.16. Let ε∗ > 0 and let β̂ be a continuous function approximating α̂ such that
‖α̂ − β̂‖L2(I) < ε∗. Since β̂ is continuous, for N large enough, we have ‖β̂ − ψNµN (β̂)‖L2(I) < ε∗. Now
consider

‖ψNµN (β̂)− ψNµN (α̂)‖2L2(I) =
1

N

N∑
i=1

([µN (β̂)]i − [µN (α̂)]i)
2

=
1

N

N∑
i=1

(
N

∫ i/N

(i−1)/N

β̂x − α̂xdx

)2

≤ 1

N

N∑
i=1

N

∫ i/N

(i−1)/N

(β̂x − α̂x)2dx

=

∫
I

(β̂x − α̂x)2dx

= ‖α̂− β̂‖2L2(I)

≤ (ε∗)2.

Then we have
∥∥ψNµN (α̂)− α̂

∥∥
L2(I)

≤ ‖α̂−β̂‖L2(I) +‖β̂−ψNµN (β̂)‖L2(I) +‖ψNµN (β̂)−ψNµN (α̂)‖L2(I) ≤
3ε∗, and we conclude (iv)→ 0. Similarly, we also have (vi)→ 0. Finally, we consider (vii):

(vii) ≤ ˜̀
J sup
i∈{1,...,N}

∣∣[µN (ZψNµN (α̂))]i − [µN (ZψN [β;µN (α̂)−i])]i
∣∣

= ˜̀
J sup
i∈{1,...,N}

∣∣∣[µN(ZψNµN (α̂)− ZψN [β;µN (α̂)−i]
)

]i

∣∣∣
≤ ˜̀

J sup
i∈{1,...,N}

N

∫ i/N

(i−1)/N

∣∣[ZψNµN (α̂)]x − [ZψN [β;µN (α̂)−i]]x
∣∣ dx

≤ ˜̀
J sup
i∈{1,...,N}

N

∫ i/N

(i−1)/N

√
cα

1−√cz‖W‖

(∫
I

w(x, y)2dy
)1/2 ∥∥ψNµN (α̂)− ψN [β;µN (α̂)−i]

∥∥
L2(I)

dx

≤
˜̀
Jζ
√
cα

1−√cz‖W‖
· sup
i∈{1,...,N}

1√
N

∣∣β − [µN (α̂)]i
∣∣1/2

≤
˜̀
Jζ
√
cαdiam(A)

1−√cz‖W‖
1√
N
→ 0,

where we used Lemma 3.16 and the boundedness of A. Thus, the left hand side of (29) is bounded by an
εN with εN → 0 as N →∞.
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Remark 4.12. Let us stress the significance of Propositions 3.9, 3.12, and 3.14 in conjunction with Theorems
4.3 and 4.9. For a sequence of N -player games with wildly asymmetric players, as long as the limiting graphon
w is a constant connection strength graphon it is sufficient to consider the analogous MFG and only consider
a single representative player to construct an ε-Nash equilibrium for the N -player game, while if the limiting
graphon w is a piecewise constant graphon it is sufficient to consider the analogous K-population MFG and
only consider a single representative player from each population to construct an ε-Nash equilibrium for the
N -player game.

5 Revisiting the Motivating Applications Introduced Earlier

5.1 Where do I put my towel on the beach?

For the sake of illustration, we assume that the state space (i.e. the beach) and the set of actions, namely
the locations where the players can put their towels are the real line R.

We first treat the case of a population of N individuals, and we prove existence of Nash equilibria in
pure strategies. Each individual i ∈ {1, . . . , N} chooses a location αi ∈ A = R on the beach and hands their
towel to a beach attendant after telling the location of their choice, and since the attendant does not want
to place towels directly on top of each other, the actual position of the towel ends up being a noisy version
of their choice. The noise is represented by a mean-zero real-valued random variable with distribution µ0.
In order to use notations similar to those of the paper we write:

b(α, z) = α and Xα,ξ = α+ ξ.

Let us assume that the location of the concession stand is 1, and that players i and j interact with weight
Wi,j ∈ R. For example, one could think of Wi,j = 1 if individuals i and j are friends, Wi,j = 0 otherwise,
and Wi,i = 0 for all i = 1, . . . , N . We denote by W the N ×N matrix of the Wi,j . So player i could choose
their location in order to minimize the cost:

Ji(α) = E
[
(αi)

2 + (Xαi,ξi − 1)2 +
(
Xαi,ξi −

1

N

N∑
j=1

Wi,jXαj ,ξj

)2]
,

corresponding to the function:
f(x, α, z) = α2 + (x− 1)2 + (x− z)2.

We could specify the relative importance of the three components of the cost by including coefficients. We
set them to 1 for the sake of illustration. Using the notation of Section 2 and the fact that

∫
ξ ν(dξ, dz) = 0,

we have:

J̃ (α, ν) = 3α2 − 2α
(

1 +

∫
R×R

zν(dξ, dz)
)

+

∫
R×R

[(ξ − 1)2 + (ξ − z)2]ν(dξ, dz).

For a given ν, this function is minimized by:

α̂ =
1

3

(
1 +

∫
R×R

zν(dξ, dz)
)
.

Given the special form of the function b, the aggregate is explicitly given by:

[Zα]i =
1

N

N∑
j=1

Wi,j(αj + ξj).
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Consequently, a strategy profile α̂ is a Nash equilibrium if and only if

α̂i =
1

3

(
1 + E

[[
Zα̂]i

]])
,

=
1

3

(
1 +

1

N

N∑
j=1

Wi,jα̂j

)
, i = 1, · · · , N

which can be rewritten in matrix form as:

α̂ =
1

3

(
1N +

1

N
W α̂

)
,

where 1N denotes the N -vector of all ones. So for this explicit model we proved the following:

Proposition 5.1. If 3N is not an eigenvalue of the matrix W = [Wi,j ]i,j=1,··· ,N then the unique Nash
equilibrium in pure strategies is given by:

α̂ =
1

3
[IN −

1

3N
W ]−11N (30)

where IN is the N ×N identity matrix and 1N is the N -dimensional vector of all ones.

Remark 5.2. The above result shows that the strategy profile of the unique Nash equilibrium of the game is
up to the additive constant 1, the Katz centrality measure of the interaction graph of the players. See [18].

Remark 5.3. Note that the assumption is automatically satisfied if all the entries Wi,j are in the interval
[0, 1]. Indeed, in this case we have:

‖W‖ = max
{α∈AN :‖α‖2=1}

√√√√√ N∑
i=1

 N∑
j=1

Wi,jαj

2

≤ max
{α∈AN :‖α‖2=1}

√√√√ N∑
i=1

N∑
j=1

(Wi,j)2

N∑
k=1

(αk)2

=

√√√√ N∑
i=1

N∑
j=1

(Wi,j)2 ≤ N,

implying that 3N cannot be an eigenvalue since the absolute value of an eigenvalue has to be smaller than
‖W‖.

We now consider the game model with a continuum of players. As before we assume A = R. The state
of player x ∈ I when all the players use the controls given by α ∈ A is given by:

Xαx,ξx(ω) = αx + ξx(ω),

and they face the cost:

Jx(α,α) := E

[
α2 + (Xα,ξ0 − 1)2 +

(
Xα,ξ0 −

∫
I

w(x, y)Xαy,ξyλ(dy)

)2
]

as given by the same cost function as before. Note that in this form of the cost, we need to compute the
aggregate using the measure λ(dy) appearing in the rich Fubini extension. However, after developing the
square and computing the expectation, we see that the computation of the cost only involves the classical
Lebesgue measure λI(dy) = dy. As before, for the sake of simplicity, we set to one the coefficients of the
three terms in the cost. Using the notation of the paper, the cost is given by the function:

J (α, z) = 3α2 + z2 − 2α(1 + z) + 1 + 2E[ξ2
0 ].

31



For z ∈ R fixed, this function is minimized for α̂ = 1
3 (1 + z) and α̂ = (α̂x)x∈I is a Nash equilibrium for the

graphon game if and only if

α̂x =
1

3

(
1 +

∫
I

w(x, y)α̂ydy
)
, λI − a.e.x ∈ I.

Writing this condition in terms of the graphon operator we get:

α̂ =
1

3

(
1 + Wα̂

)
which gives

α̂ =
1

3
[I− 1

3
W]−11,

provided the above inverse operator exists. So we proved that as in the case of finitely many players, the
strategy profile of the unique Nash equilibrium is given by the Katz centrality measure of the graphon [18].

Proposition 5.4. If the graphon w is such that ‖W‖ < 3, the unique Nash equilibrium α̂ for the graphon
game is given by:

α̂ =
1

3

(
I− 1

3
W

)−1

1. (31)

Remark 5.5. Consider a sequence of symmetric matrices WN , N ≥ 1, and let αN,∗ be the vector of

strategies given by equation (30) with the matrix WN . Then we have ψN (αN,∗) = 1
3

(
I− 1

3WN
)−1

1, where
WN is the graphon operator corresponding to the evenly spaced piecewise constant graphon wN := ΨN (WN ).
Then we notice that the conclusion of Theorem 4.3, namely limN→∞ dS(ψN (αN,∗), α̂) = 0, holds under the

weaker assumption that the resolvent,
(
I− 1

3WN
)−1

, converges to
(
I− 1

3W
)−1

for some graphon w.

We now proceed to the computation of the Nash equilibrium α for some of the most commonly used
graphon models. The form (31) of the equilibrium strategy requires the computation of the resolvent [I −
θW]−1φ for a real number θ such that ‖θW‖ < 1 and a function φ which, in most of the actual applications
we consider, will be the constant function 1. We shall use two different methods to compute this resolvent.

1. Since ‖θW‖ < 1, the resolvent operator is given by its convergent Taylor expansion, namely:

[I− θW]−1 = I + θW + θ2W2 + · · · . (32)

2. Since W is a symmetric Hilbert-Schmidt operator, there exists a complete orthonormal basis of L2(I),
say {φk}k≥1 and a square summable sequence of real numbers {λk}k≥1 such that Wφk = λkφk for
k ≥ 1. Recall that L2(I) is the classical Lebesgue space over the unit interval. Accordingly, for all
φ ∈ L2(I):

[I− θW]−1φ =
∑
k≥1

< φ, φk >

1− θλk
φk.

This eigenvalue expansion of the resolvent will be useful when we can identify the eigenvalues and the
orthonormal basis of eigenfunctions via explicit formulas.

• Constant Connection Strength Graphon: for this graphon model,
∫
I
w(x, y)dy = a for some a ∈ R and

all x ∈ I. Notice that in this case, W1 = a1, so that Wn1 = an1 for each integer n ≥ 1. Hence the
Taylor expansion (32) gives:

[I− 1

3
W]−11 = 1 +

a

3
1 +

(a
3

)2
1 +

(a
3

)3
1 + · · ·

=
3

3− a
1.

showing that the Nash equilibrium is given by:

α̂ =
1

3− a
1.
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• Piecewise Constant Graphon: Here we consider a graphon of the form w(x, y) = a1 · 1{x,y≤x∗} +
a2 · 1{x≤x∗,y>x∗} + a2 · 1{x>x∗,y≤x∗} + a3 · 1{x,y>x∗} for some constants x∗ ∈ I, a1, a2, a3 ∈ R. From
Proposition 3.14, we expect the unique Nash equilibrium to have the form α̂x = c1 ·1{x≤x∗}+c2 ·1{x>x∗}.
By plugging this control profile directly in (31), we find that c1 and c2 must solve the system:

(3− a1x
∗)c1 − a2(1− x∗)c2 = 1,

−a2x
∗c1 + (3− a3(1− x∗))c2 = 1,

which has a unique solution when (3− a1x
∗)(3− a3(1− x∗))− |a2|2(1− x∗)x∗ 6= 0.

• Power-Law Graphon: Here we consider the power-law graphon introduced by Medvedev and Tang [25],
which was used to study synchronization of coupled oscillators. It is given by the formula w(x, y) =
(xy)−γ for some γ ∈ (0, 1

3 ). Note that this function w is symmetric and square-integrable, in accordance
with our definition of a graphon. Since we consider γ ∈ (0, 1

3 ), we have:

‖W‖ ≤

√∫
I

∫
I

(w(x, y))2dydx

=

√∫
I

∫
I

(xy)−2γdydx

=
1

1− 2γ

< 3,

showing that the assumption of Proposition 5.4 is satisfied. In the present situation

[W1]x =

∫
I

x−γy−γdy = x−γ
∫
I

y−γdy =
1

1− γ
x−γ ,

from which it is easy to see by induction that:

[Wn1]x =
1

(1− γ)(1− 2γ)n−1
x−γ ,

for n ≥ 1. Indeed, if this formula is true for n ≥ 2, then:

[Wn+11]x = [W[Wn1]]x =

∫
I

x−γy−γ
1

(1− γ)(1− 2γ)n−1
y−γ dy

=
1

(1− γ)(1− 2γ)n−1
x−γ

∫
I

y−2γ dy

=
1

(1− γ)(1− 2γ)n
x−γ .

Plugging this in the Taylor expansion (32) we get:

[
[I− θW]−11

]
x

= 1 + θ
x−γ

1− γ

(
1 +

θ

1− 2γ
+

θ2

(1− 2γ)2
+ · · ·

)
= 1 +

θ(1− 2γ)

(1− γ)(1− 2γ − θ)
x−γ

from which we conclude that the unique Nash equilibrium is given by the formula:

α̂x =
1

3
+

1− 2γ

6(1− γ)(1− 3γ)
x−γ .

This is an example in which, in equilibrium, different players take different actions, though depending
upon a power of their label.
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• Min-Max Graphon: If w(x, y) = min(x, y)[1 − max(x, y)], it is known that an orthonormal basis of
eigenfunctions is given by φk(·) =

√
2 sin(πk·) with corresponding eigenvalues λk = 1

π2k2 for k ≥ 1. See
[1]. Accordingly,

[I− 1

3
W]−11 =

∑
k≥1

< 1, φk >

1− λk/3
φk.

Notice that

< 1, φk >=

∫
I

φk(x)dx =
√

2

∫
I

sin(kπx) dx =

{
2
√

2
(2m+1)π if k = 2m+ 1

0 if k = 2m.

Therefore, [
[I− 1

3
W]−11

]
x

= 12π
∑
m≥0

2m+ 1

3π2(2m+ 1)2 − 1
sin(π(2m+ 1)x)

which yields

α̂x = 4π
∑
k odd

k

3π2k2 − 1
sin (πkx) .

• Simple Threshold Graphon: If w(x, y) = 1{x+y≤1}, then the unique Nash equilibrium α̂ solves:

3α̂x −
∫ 1−x

0

α̂ydy = 1. (33)

We make an ansatz that α̂ takes the following form:

α̂x = c

[
cos

(
1− x

3

)
− sin

(x
3

)]
,

and we compute: ∫ 1−x

0

α̂ydy = 3c

[(
cos

(
1− x

3

)
− sin

(x
3

))
+

(
sin

(
1

3

)
− 1

)]
.

Thus, one can check that equation (33) is satisfied for the above strategy profile when c = 1

3[1−sin( 1
3 )]

.

5.2 Cities Game

Here we directly consider the game with a continuum of players. In this game model, each player x ∈ I uses
control αx and the frequency they actually go to the city center is given by:

Xαx,ξx = αx + ξx, x ∈ I,

and they seek to minimize the cost:

Jx(α) = E
[

1

2
α2
x − kαx − θαx

∫
I

w(x, y)Xαy,ξydy

]
.

So using the notation of the paper, we have:

b(α, z) = α, and f(x, α, z) =
1

2
α2 − kα− θαz,

where kα represents the intrinsic benefit of effort level α, 1
2α

2 is the cost of taking the action, and θ measures
the relative impact of the complementary effects of social interactions for k, θ > 0, z being the aggregate
frequency of the city visits by all the individuals.
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Proposition 5.6. If θ‖W‖ < 1, the unique Nash equilibrium α̂ for the city graphon game is given by

α̂ = k[I− θW]−11.

Proof. In this model,

J (α, z) =
1

2
α2 − kα− θαz,

whose minimum in α is attained for α = k + θz. So α is a Nash equilibrium if and only if

α̂x = k + θ[Zα]x = k + θ

∫
I

w(x, y)α̂y dy, λI a.e. x ∈ I,

so using the definition of Z, we have:
α̂− θWα̂ = k1,

which proves the desired result since I− θW is invertible by assumption.

The Price of Anarchy

Notice that:

S(α̂) =

∫
I

J
(
α̂x,

α̂x − k
θ

)
dx

=

∫
I

(1

2
α̂2
x − kα̂x − θα̂x ·

α̂x − k
θ

)
dx

= −1

2

∫
I

α̂2
xdx,

from which we deduce that the social cost for the unique Nash equilibrium for the city graphon game is
given by:

S(α̂) = −k
2

2

∥∥∥[I − θW]−11
∥∥∥2

L2(I)
= −k

2

2
< [I − θW]−21,1 > .

The form of the model allows us to investigate the central planner optimization of the social cost as explained
in Section 3.6. Note that for any admissible strategy profile α we have:

S (α) =

∫
I

Jx(α)dx =

∫
I

(
1

2
α2
x − kαx

)
dx− θ

∫
I

∫
I

αxw(x, y)αydydx

=
1

2
‖α‖2 − k < α,1 > −θ < α,Wα >

=
1

2
< α, [I− 2θW]α− 2k1 > (34)

where we used the notation < ·, · > for the L2(I) inner product. We have:

dS(α)

dα
= [I− 2θW]α− k1

and if 2θ‖W‖ < 1,
αO = k[I− 2θW]−11

is the argument of the minimum and plugging this value in (34) we find that the optimal social cost is given
by:

S(αO) = −k
2

2
< [I − 2θW]−11,1 >
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and the price of anarchy (PoA) is given by:

PoA =
< [I − θW]−21,1 >

< [I − 2θW]−11,1 >
.

Note that the numerator will always be greater than or equal to the denominator, so if both quantities are
positive, PoA will be a real number greater than or equal to 1.

For the sake of illustration, we compute the PoA for a few graphons to further understand how the
PoA for the graphon cities game can depend on the network connectivity. First, we consider a constant
connection strength graphon as introduced in Section 3.2.2, with strength a. Because [W1]x = a, we can
find inductively that [Wn1]x = an. When θa < 1, the Nash equilibrium and its associated social cost are

α̂ =

(
1

1− θa

)
1x and S(α̂) = −k

2

2

(
1

1− θa

)2

.

When 2θa < 1, the social optimum and its associated social cost are

αO =

(
1

1− 2θa

)
1x and S(αO) = −k

2

2

(
1

1− 2θa

)
.

Then one can compute that the price of anarchy for constant connection strength graphons when 2θa < 1 is
given by

PoA =
1− 2θa

(1− θa)
2 = 1− θ2a2

(1− θa)
2 .

We note that PoA = 1 when θa = 0, which is the case when either individuals do not have network
connections or their cost functions do not depend on interactions. We also note that PoA → 0 as θa → 1

2 ,
since the social optimum will feature larger and larger controls, and S(αO) blows up as a result. Furthermore,
when 2θα < 1, we find that

∂

∂a
PoA =

∂

∂θ
PoA =

(
2θ2a

(1− 2θa)
2

)
[2θa− 1] < 0

so the PoA is decreasing in both the benefit of social interactions parametrized by θ and the connection
strength of the graphon, a.

Now we turn to graphons with heterogeneous degree distributions like the power-law or simple threshold
graphons, to explore how the social costs and PoA depend upon the strength and distribution of connection
strength. First, we consider the power-law graphon w(x, y) = (xy)−γ . We saw earlier that for any integer
n ≥ 1,

[Wn1]x =
1

(1− γ)(1− 2γ)n−1
x−γ ,

which could be injected into the Taylor expansion of the resolvent to give:

[
[I − 2θW]−11

]
x

= 1 +
2θ(1− 2γ)

(1− γ)(1− 2γ − 2θ)
x−γ

and after integration over the unit interval we find:

S(αO) = −k
2

2

(
1 +

2θ(1− 2γ)

(1− γ)2(1− 2γ − 2θ)

)
.
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Figure 1: Heatmap of PoA of cities game on power-law graphon for varying values of θ and γ. Region in
black corresponds to cases in which 1− 2γ − 2θ < 0 and the social optimum is not defined.

Using now the Taylor expansion of [I− θW]−2 we compute:

S(α̂) = −k
2

2
< [I− θW]−21,1 >

= −k
2

2
<
∑
n≥0

(n+ 1)θnWn1,1 >

= −k
2

2

(
1+ <

∑
n≥1

(n+ 1)θnWn1,1 >
)

= −k
2

2

(
1 +

∑
n≥1

(n+ 1)θn
1

(1− γ)2(1− 2γ)n−1

)
= −k

2

2

(
1 +

1− 2γ

(1− γ)2

∑
n≥1

(n+ 1)
( θ

1− 2γ

)n)
= −k

2

2

(
1 +

θ(1− 2γ)(2− 4γ − θ)
(1− γ)2(1− 2γ − θ)2

)
and finally

PoA =
1 + θ(1−2γ)(2−4γ−θ)

(1−γ)2(1−2γ−θ)2

1 + 2θ(1−2γ)
(1−γ)2(1−2γ−2θ)

.

We illustrate how the PoA varies with the parameters θ and γ in Figure 1.
Next, consider a modification of the power-law graphon: w(x, y) = g(γ)x−γy−γ , where g(γ) can be used

to normalize the connection strength across different power-law exponents γ. For this graphon, the strength
of connection for an individual with index x ∈ I and the average connection strength are respectively given
by ∫ 1

0

w(x, y)dy =

(
g(γ)

1− γ

)
x−γ , (35a)∫ 1

0

∫ 1

0

w(x, y)dxdy =
g(γ)

(1− γ)
2 . (35b)

In particular, the choice of normalization g(γ) = (1− γ)
2

yields an average connection strength of∫ 1

0

∫ 1

0
w(x, y)dxdy = 1 for any γ, even though these connections are still distributed less uniformly for
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larger values of γ. With this normalization, we can study how the social cost and PoA can vary with the
heterogeneity parameter γ even though the total strength of connections is fixed amongst the population
of players. For the generalized power-law graphon, we have the following Nash equilibrium and associated
social cost

α̂ = 1 +

(
θg(γ)

1− γ

)(
1− 2γ

1− 2γ − θg(γ)

)
x−γ and S(α̂) = 1 +

g(γ)θ (1− 2γ) (2− 4γ − θg(γ))

(1− γ)
2

(1− 2γ − θg(γ))
2 ,

provided that 1−2γ−θg(γ) > 0. If we further have that 1−2γ−2θg(γ) < 0, then we have a social optimum
with associated social cost

αO = 1 +

(
2θg(γ)

1− γ

)(
1− 2γ

1− 2γ − 2θg(γ)

)
x−γ and S(α̂) = 1 +

(
2θg(γ)

(1− γ)
2

)(
1− 2γ

1− 2γ − 2θg(γ)

)
.

Using these social costs, we can compute the price of anarchy as

PoA =

(
1 +

θ(1− 2γ)(2− 4γ − θg(γ))

(1− γ)2(1− 2γ − θg(γ))2

)/(
1 +

2θg(γ)(1− 2γ)

(1− γ)2(1− 2γ − 2θg(γ))

)
.

We can see the impact of γ and θ on the PoA in Figures 2 and 3. In particular, we notice that the social
cost of both the Nash equilibrium S(α̂) and the social optimum S(αO) are decreasing in γ, so more uneven
distributions of social contacts improves the collective cost of the population of players.

However, the social cost of the social optimum decreases much more rapidly than the social cost of the
Nash equilibrium, so we see that the PoA is also decreasing in γ, and the relative efficiency of the Nash
equilibrium decreases as connectivity follows a steeper power law

Figure 2: Social cost of Nash equilibrium (left) and social optimum (right) strategy profiles as a function of
the power-law exponent γ for the normalized power-law graphon.

Now, we consider the simple threshold graphon, w(x, y) = 1x+y≤1. We compute that the Nash equilbrium
is given by

α̂x =

(
k

1− sin (θ)

)
[cos (θ (1− x))− sin (θx)] ,

and the social optimal is given by

αOx =

(
k

1− sin (2θ)

)
[cos (2θ (1− x))− sin (2θx)] .
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Figure 3: Heatmap of PoA of cities game on normalized power-law graphon for varying values of θ and γ.
Region in black corresponds to cases in which 1− 2γ − 2θg(γ) < 0 and the social optimum is not defined.

Notice that for the simple threshold graphon, the index of the player directly relates to how connected they
are with the other players, and the above two control profiles have different shapes with respect to the
players’ index, i.e. their level of connectivity. Finally, we calculate that the PoA on the simple threshold
graphon is given by

PoA =

(
2θ

1− sin(θ)

)(
1− sin (2θ)

cos(2θ) + sin(2θ)− 1

)
where we can verify that limθ→0 PoA = 1 and that the PoA is a decreasing function of θ, meaning that
stronger benefits from social interactions causes greater inefficiency of the Nash equilibrium strategy profile.
The PoA and social costs are shown in Figures 4 and 5.

Figure 4: Nash equilibrium strategy profile (blue solid line), socially optimal strategy profile (green dashed
line), and connection strength for individual with index x (red dash-dotted line) for θ = 0.4 (left) and θ = 0.7
(right).
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Figure 5: Price of anarchy as a function of θ for the threshold graphon.

5.3 Cournot Competition

As before, we directly consider the model with a continuum of players. Here, the weight w(x, y) quantifying
the interaction between producers with indices x and y represents either the level of exchangeability of their
products, or how much their consumer bases overlap. This model is more involved than the two preceding
ones because, if α is the strategy profile giving the sales of all the producers, the price at which producer
x ∈ I will sell αx units is given by:

Xαx,[Zα]x,ξx = a− bαx + c[Zα]x + ξx,

for positive constants a, b, and c, and where Zα solves

[Zα]x =

∫
I

w(x, y)
(
a− bαy + c[Zα]y

)
dy, λI − a.e.x ∈ I.

Accordingly, producer x will incur cost:

Jx(α,α) = E
[

1

2
α2 − αXα,zx,ξx

]
.

So in the notation of the paper,

b(α, z) = a− bα+ cz, and f(x, α, z) =
1

2
α2 − αx.

Notice that, in contrast with the previous examples, the function b depends upon the aggregate variable z.

Proposition 5.7. If c(b+ 1)‖W‖ < 1, there is a unique Nash equilibrium α̂ for the graphon game specified
by the above state equation and cost. It is given by:

α̂ =
a

1 + 2b
[I− c(1 + b)W]−11.

Proof. Expanding the cost, we have:

J (α, z) =

(
b+

1

2

)
α2 − (a+ cz)α,

which is minimized for given z for:

α̂ =
a+ cz

1 + 2b
.
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So α̂ will be a Nash equilibrium if for λI almost every x ∈ I we have

α̂x =
c

1 + 2b
[Zα̂]x +

a

1 + 2b
,

which gives:

[Zα̂]x =
1 + 2b

c
α̂x −

a

c
. (36)

Using (7), the definition of the graphon operator and (36) we have:

1 + 2b

c
α̂− a

c
1 = W

(
a1− bα̂ + c

(1 + 2b

c
α̂− a

c
1
))

= (1 + b)Wα̂

and we conclude

α̂ =
a

1 + 2b
[I− c(1 + b)

1 + 2b
W]−11

because the inverse exists because of our assumptions.

Again, the equilibrium strategy profile is given by the Katz centrality measure of the graphon, and it can
be computed explicitly for the examples of graphon considered above.

6 Conclusion

To summarize, we have rigorously defined a class of non-atomic games called graphon games, making use
of the limit objects for sequences of dense graphs. We proved existence and uniqueness of Nash equilibria
for graphon games and we have made rigorous connections to finite-player network games in two directions:
1) the controls from the finite-player network games converge in some sense to the controls of the graphon
game, and 2) the controls from the graphon game can be used to construct an ε-Nash equilibrium for the
finite-player network games. We have also made rigorous connections to mean field games when the graphon
has certain symmetrical properties. Finally, we motivated our study with a few applications for which we
showed explicit computations of the Nash equilibria, as well as, at least for one of them, the social optimal
strategies computed by a central planner.
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