
ar
X

iv
:1

80
9.

03
45

4v
7

 [
cs

.G
T

]
 2

4
Fe

b
20

21

The Pareto Frontier of Inefficiency in Mechanism Design∗

Aris Filos-Ratsikas† Yiannis Giannakopoulos‡ Philip Lazos§

February 18, 2021

Abstract

We study the trade-off between the Price of Anarchy (PoA) and the Price of Stability
(PoS) in mechanism design, in the prototypical problem of unrelated machine scheduling.
We give bounds on the space of feasible mechanisms with respect to the above metrics, and
observe that two fundamental mechanisms, namely the First-Price (FP) and the Second-
Price (SP), lie on the two opposite extrema of this boundary. Furthermore, for the natural
class of anonymous task-independent mechanisms, we completely characterize the PoA/PoS
Pareto frontier; we design a class of optimal mechanisms SPα that lie exactly on this frontier.
In particular, these mechanisms range smoothly, with respect to parameter α ≥ 1 across the
frontier, between the First-Price (SP1) and Second-Price (SP∞) mechanisms.

En route to these results, we also provide a definitive answer to an important question
related to the scheduling problem, namely whether non-truthful mechanisms can provide
better makespan guarantees in the equilibrium, compared to truthful ones. We answer this
question in the negative, by proving that the Price of Anarchy of all scheduling mechanisms
is at least n, where n is the number of machines.

1 Introduction

The field of algorithmic mechanism design was established in the seminal paper of Nisan and
Ronen [44] and has ever since been at the centre of research in the intersection of economics and
computer science. The research agenda put forward in [44] advocates the study of approximate
solutions to interesting optimization problems, in settings where rational agents are in control of
the input parameters. More concretely, the authors of [44] proposed a framework in which, not
unlike classical approaches in approximation algorithms, algorithms that operate under certain
limitations are evaluated in terms of their approximation ratio. In particular, in algorithmic
mechanism design, this constraint comes from the requirement that agents should have the right
incentives to always report their inputs truthfully. The corresponding algorithms, paired with
appropriately chosen payment functions, are called mechanisms [43].

Another pioneering line of work, initiated by Koutsoupias and Papadimitriou [32] and pop-
ularized further by Roughgarden and Tardos [50], studies the inefficiency of games through the
notion of the Price of Anarchy (PoA), which measures the deterioration of some objective at
the worst-case Nash equilibrium. A more optimistic version of the same principle, where the

∗Supported by ERC Advanced Grant 321171 (ALGAME), the Swiss National Science Foundation under con-
tract No. 200021_165522 and the Alexander von Humboldt Foundation with funds from the German Federal
Ministry of Education and Research (BMBF). Also partially supported by the ERC Advanced Grant 788893
AMDROMA “Algorithmic and Mechanism Design Research in Online Markets” and MIUR PRIN project AL-
GADIMAR “Algorithms, Games, and Digital Markets”. Y. Giannakopoulos is an associated researcher with the
Research Training Group GRK 2201 “Advanced Optimization in a Networked Economy”, funded by the German
Research Foundation (DFG).

An extended abstract of this paper appeared in WINE’19 [19].
†University of Liverpool. Email: Aris.Filos-Ratsikas@liverpool.ac.uk
‡TU Munich. Email: yiannis.giannakopoulos@tum.de
§Sapienza University of Rome. Email: lazos@diag.uniroma1.it

1

http://arxiv.org/abs/1809.03454v7
mailto:Aris.Filos-Ratsikas@liverpool.ac.uk
mailto:yiannis.giannakopoulos@tum.de
mailto:plazos@gmail.com

inefficiency is measured at the best equilibrium [53], was introduced in [1], under the name of
Price of Stability (PoS).

Given the straightforward observation that mechanisms induce games between the agents
that control their inputs, as well as the fact that truthfulness is typically a very demanding
property, an alternative approach to the framework of Nisan and Ronen [44] is to design mech-
anisms that perform well in the equilibrium, i.e., they provide good PoA or PoS guarantees.
This approach has been adopted, among others, by central papers in the field (e.g., see [51, 54]
and references therein) and is by now as much a part of algorithmic mechanism design as the
original framework of [44]. An interesting question that has arisen in many settings is whether
non-truthful mechanisms (evaluated at the worst-case equilibrium, in terms of their PoA) can
actually outperform truthful ones (evaluated at the truth-telling, dominant strategy equilib-
rium), for a given objective [11, 23, 31].

While the literature that studies the concepts of PoA and PoS is long and extensive, there
seems to be a lack of a systematic approach investigating the trade-off between the two notions
simultaneously. More concretely, given a problem in algorithmic mechanism design, it seems
quite natural to explore not only the best mechanisms in terms of the two notions indepen-
dently, but also the mechanisms that achieve the best trade-off between the two. In a sense,
this approach concerns a “tighter” optimality notion, as among a set of mechanisms with an
“acceptable” Price of Anarchy guarantee, we would like to identify the ones that provide the
best possible Price of Stability. Our main contribution in the current paper is the proposal of
such a research agenda and its application on the canonical problem in the field, introduced in
the seminal work of Nisan and Ronen [44], that of scheduling on unrelated machines.

1.1 Our Contributions

PoA/PoS trade-off: We propose the research agenda of studying systematically the trade-
off between the Price of Anarchy and the Price of Stability in algorithmic mechanism design.
Specifically, given a problem at hand and an objective function, we are interested in the trade-off
between the PoA and the PoS of mechanisms for the given objective. We apply this approach
on the prototypical problem of algorithmic mechanism design studied in [44], that of unrelated
machine scheduling, where the machines are self-interested agents.

First, in Section 3, for the class of all possible mechanisms, we prove that PoA guaran-
tees imply corresponding PoS lower bounds and vice-versa (Theorem 2), which allows us to
quantify the possible trade-off between the two inefficiency notions in terms of a feasible region
(see Fig. 2); we refer to the boundary of this region as the inefficiency boundary. Interestingly,
two well-known mechanisms, namely the First-Price and the Second-Price mechanisms, turn
out to lie on the extreme points of this boundary.

Next, in Section 4, for the well-studied class of task-independent and anonymous mecha-
nisms,1 we are able to show a tighter feasibility region (Theorem 6). As a matter of fact, its
inefficiency boundary turns out to completely characterize the achievable trade-off between the
PoA and the PoS: we design a class of mechanisms (Section 4.2) called SPα, parameterized
by a quantity α, which are optimal in the sense that for any possible trade-off between the
two inefficiency notions, there exists a mechanism in the class (i.e., an appropriate choice of α)
that exactly achieves this trade-off (Theorems 7 and 8). In other words, we obtain an exact
description of the Pareto frontier of inefficiency (see Fig. 3).

Our SPα mechanisms are simple and intuitive and are based on the idea of setting reserve
prices relatively to the declarations of the fastest machines. While this is clearly not truthful,
we prove that it induces the equilibria which are desirable for our results. More precisely, the

1We remark that the best known mechanisms for several variants of truthful scheduling are task-independent
and anonymous. In Section 5, we provide a more detailed discussion, as well as an almost matching trade-off
bound for mechanisms that need not be anonymous (see Theorem 9).

2

choice of α enables us to “control” the set of possible equilibria in a way that allows us to
achieve any trade-off on the boundary.

The Price of Anarchy of scheduling: Our results also offer insights in an other inter-
esting direction. The inefficiency boundary result for general mechanisms is based on a novel
monotonicity lemma (Lemma 1), which is quite different from the well-known weak monotonic-
ity property [52] (see, e.g., [9, 44]). Interestingly, we also use this lemma to prove a general
lower bound of n on the PoA of any mechanism for the scheduling problem (Theorem 1), where
n is the number of machines. This result contributes to the intriguing debate [11, 23, 31] of
whether general mechanisms (that may be non-truthful, evaluated at the worst-case equilib-
rium) can outperform truthful ones (evaluated at the truth-telling equilibrium). Given that
the best known truthful mechanism achieves an n-approximation, our results here provide a
definitive, negative answer to the aforementioned question (see Section 1.2.3 for a more detailed
discussion). As a matter of fact, in Theorem 5, we actually show that when evaluated at their
worst-case equilibrium, truthful mechanisms are bound to perform even more poorly, as their
PoA is unbounded.

Finally, in Section 5, we conclude with a detailed discussion, where we identify several
intriguing directions for future work, both on a technical and a conceptual level.

1.2 Related Work

1.2.1 The Algorithmic Scheduling Problem

The algorithmic version of the scheduling problem (without any consideration to incentives) is
one of the most fundamental problems in computer science, whose origins can be traced back to
the works of Johnson [30], Jackson [29] and Graham [25]. The problem is often also generally
referred to as the “Job Shop Scheduling Problem” [21], as it accurately models job assignment
problems in manufacturing systems. On top of this connection, the machine scheduling prob-
lem in fact enjoys a plethora of applications, ranging from classical problems in distributed
computing, such as assigning computational tasks to parallel processors, to newer applications
in multi-agent systems, such as assigning vehicles to charging stations. For more details and
applications, we refer the reader to some of the works on the algorithmic version [14, 28, 36], as
well as the surveys of Hall [27], Potts and Strusevich [47] and Lenstra et al. [35], and the books
of Pinedo [46] and Rinnooy Kan [49].

1.2.2 The Selfish Scheduling Problem

The scheduling problem on unrelated selfish machines is the prototypical problem studied
by Nisan and Ronen [44] in 1999, when they introduced the field of algorithmic mechanism
design. The authors consider the worst-case performance of truthful mechanisms on dominant
strategy, truth-telling equilibria, and discover that the well-known Second-Price auction2 has
an approximation ratio of n for the problem, where n is the number of machines. Despite
several attempts over the years, this is still the best-known truthful mechanism. On the other
hand, the succession of the best proven lower bounds started with 2 in [44], improved to 2.41
by Christodoulou et al. [9] and to 2.61 by Koutsoupias and Vidali [33], and finally3 to 2.75 in
the very recent work of Giannakopoulos et al. [24]. Interestingly, Ashlagi et al. [3] showed a
matching lower bound of n for anonymous mechanisms (i.e., mechanisms that do not take the
identities of the machines into account) and whether there is a better mechanism that is not

2In the related literature, this mechanism is often referred to as the Vickrey-Clarke-Groves (VCG) mecha-
nism [12, 26, 55]. The mechanism was originally referred to as the “minWork Mechanism” in [44].

3During the preparation of our paper, a new manuscript by Dobzinski and Shaulker [15] appeared online,
further improving the lower bound to 2.80.

3

anonymous is still the most prominent open problem in the area. In any case, anonymity is
in general a desirable property which is satisfied by most natural mechanisms (including the
best known mechanisms for scheduling [36]); we further discuss the role of this property in our
setting in Section 5.

Several other variants of the problem have also been considered over the years, such as
randomized mechanisms [37, 40, 44], fractional scheduling [10], Bayesian scheduling [6, 13, 22]
or restricted domains where the processing times come from discrete sets [34]. Alongside the
approximation ratio results, there has also been work on structural properties and characteri-
zations [8, 16]. For a more detailed exposition of some of these results, we refer the reader to
the survey of Christodoulou and Koutsoupias [7].

1.2.3 The Truthful Setting vs the Strategic Setting

As we mentioned earlier, given that truthfulness is a very demanding requirement which imposes
strict constraints on the allocation and payment functions, it is an interesting direction to
consider whether non-truthful mechanisms could perform better, when evaluated in the worst-
case equilibrium. In other words, for a given problem, one could ask the following question:

“Do there exist (non-truthful) mechanisms whose Price of Anarchy outperforms the
approximation ratio guarantee of all truthful mechanisms?”.

To differentiate, we will refer to the traditional approach of Nisan and Ronen [44] as the truth-
ful setting and to the setting where all mechanisms are explored (with respect to their Nash
equilibria) as the strategic setting.

Koutsoupias [31] studied the truthful setting for the problem of unrelated machine scheduling
without money but he explicitly advocated the strategic setting as a future direction. This was
later pursued in Giannakopoulos et al. [23] for the same problem, where the authors answered
the aforementioned question in the affirmative. The same approach was taken in [11] following
the results of [18] on the limitations of truthful mechanisms for indivisible item allocation.
In the literature of auctions, the strategic setting was studied even in domains for which an
optimal truthful mechanism (the VCG mechanism) exists, motivated by the fact that non-
truthful mechanisms are being employed in practice, with the Generalized Second-Price auction
used by Google for the Adwords allocation being a prominent example [5]. We refer the reader
to the survey of Roughgarden et al. [51] for more details.

Somewhat surprisingly, although the exploration of different solution concepts besides dom-
inant strategy equilibria was already explicitly mentioned as a future direction by Nisan and
Ronen [44], the strategic setting for the scheduling problem was not studied before our paper.
As we mentioned earlier, the answer to the highlighted question above here is negative, but the
setting proved out to be quite rich in terms of the achievable trade-off between the two different
inefficiency notions.

To the best of our knowledge, ours is the first paper that proposes the systematic study
of the trade-off between the Price of Anarchy and the Price of Stability. While preparing our
manuscript, we became aware that a trade-off between the two notions was very recently con-
sidered also in Ramaswamy et al. [48], though in a fundamentally different setting: the authors
of [48] study a special case of covering games, originally introduced by Gairing [20], which is not
inherently a mechanism design setup. On the contrary, our interest is in explicitly studying this
trade-off in the area of algorithmic mechanism design, thus choosing the prototypical scheduling
problem as the starting point.

2 Model and Notation

Let R≥0 = [0, ∞) denote the nonnegative reals and N = {1, 2, . . . } the positive integers. For
any n ∈ N, let [n] = {1, 2, . . . , n}. In the strategic scheduling problem (on unrelated machines),

4

there is a set N = {1, . . . , n} of machines (or agents) and a set J = {1, . . . , m} of tasks. Each
machine i has a processing time (or cost) ti,j ≥ 0 for task j. The induced matrix t ∈ R

n×m
≥0 is

the profile of processing times. For convenience, we will denote by ti = (ti,1, . . . , ti,m) the vector
of processing times of machine i for the tasks and by tj = (t1,j , . . . , tn,j) the vector of processing
times of the machines for task j, so that t = (t1, . . . , tn) = (t1, . . . , tm)⊤. The machines are
strategic and therefore, when asked, they do not necessarily report their true processing times
t but they rather use strategies s ∈ R

n×m
≥0 . To emphasize the distinction, we will often refer to

t as the profile of true processing times. Adopting standard game-theoretic notation, we use
t−i and s−i to denote the profile of true or reported processing times respectively, without the
coordinates of the i’th machine.

A (deterministic, direct revelation) mechanism M = (x, p) gets as input a strategy profile
s ∈ R

n×m reported by the machines and outputs allocation x = x(s) ∈ {0, 1}n×m and payment
p = p(s) ∈ R

n
≥0: xi,j is an indicator variable denoting whether or not task j is allocated to

machine j, and pi is the payment with which M compensates machine i for taking part in the
mechanism. Thus, the allocation rule needs to satisfy

∑

i∈N xi,j(s) = 1 for all tasks j.
The utility of machine i under a mechanism M = (x, p), given true running times ti and a

reported profile s by the machines, is

uM
i (s|ti) = pi(s) −

m∑

j=1

xi,j(s)ti,j ,

that is, the payment she receives from M minus the total workload she has to execute. This
is exactly the reason why machines may lie about their true processing times; they will change
their report si and deviate to another s′

i if this improves the above quantity. A stable solution
with respect to such best-response selfish behaviour is captured by the well-known notion of an
equilibrium. Given a mechanism M and a strategy profile s, we will say that s is a (pure Nash)
equilibrium4 of M (with respect to a true profile t) if, for every machine i and every possible
deviation s′

i ∈ R
m
≥0,

uM
i (s|t) ≥ uM

i (s′
i, s−i|t).

Let QM
t denote the set of pure Nash equilibria of mechanism M with respect to true profile t.

Following the related literature (see, e.g., [11, 23, 44]), we will consider mechanisms for which
Nash equilibria exist for every profile of processing times, i.e., QM

t 6= ∅ for all t ∈ R
n×m
≥0 .

Our objective is to design mechanisms that minimize the makespan

CM(s|t) = max
i∈N

m∑

j=1

xi,j(s)ti,j ,

that is, the total completion time if our machines run in parallel. For a matrix t of running times,
let OPT(t) denote the optimum makespan, i.e., OPT(t) = miny maxi∈N

∑m
j=1 yi,jti,j where y

ranges over all feasible allocation of tasks to machines. It is a well-known phenomenon that
equilibria can result in suboptimal solutions, and the following, extensively studied, notions
where introduced to quantify exactly this discrepancy: the Price of Anarchy (PoA) and the
Price of Stability (PoS) of a scheduling mechanism M on n machines are, respectively,

PoA(M) = sup
m∈N,t∈R

n×m
≥0

sups∈QM
t

CM(s|t)

OPT(t)
PoS(M) = sup

m∈N,t∈R
n×m
≥0

infs∈QM
t

CM(s|t)

OPT(t)
.

For simplicity, we will sometimes drop the M, t and s in the notation introduced in this
section, whenever it is clear which mechanism and which true or reported profile we are referring
to.

4We will be interested in pure Nash equilibria in this paper, but we discuss different solution concepts
in Section 2.2 as well as in Section 5.

5

2.1 Task-Independent Mechanisms

For a significant part of this paper, we will focus on the class of anonymous, task-independent
mechanisms. This is a rather natural class of mechanisms; as a matter of fact, two of the
arguably most well-studied and used mechanisms in practice, namely the First-Price and Second-
Price, lie within this class.

Definition 1 (Task-independence). A mechanism M = (x, p) is called task-independent if each
one of its tasks is allocated independently of the others. Formally, there exists a collection of
single-task mechanisms {Aj}j=1,...,m, Aj = (yj , qj), such that, for any task j, any machine i,
and for any strategy profile s,

xj(s) = yj(sj) and pi(s) =
m∑

j=1

qj
i (sj).

We will refer to the single-task mechanisms Aj of the above definition as the components
of M. It is important to notice here that the definition does not require the mechanism to
necessarily use the same component for all the tasks.

Another standard property in the literature of the problem is anonymity. The property can
be defined generally (e.g., see [3, 31]), but here we will define it for task-independent mechanisms.
Since we are dealing with potentially non-truthful mechanisms, our notion of anonymity needs
to refer to the equilibria of the mechanism.

Definition 2 (Anonymity). A single-task mechanism A = (x, p) is anonymous if, for any true
processing time profile t with no ties5 and any permutation6 π, if there exists an equilibrium s
under t, then there exists an equilibrium s̃ under true profile π(t) with allocation x(s̃) = π(x(s)).
A task-independent mechanism M is anonymous, if all its components are anonymous (single-
task) mechanisms.

Remark 1. Our notion of anonymity refers to the true profiles, and stipulates that after
any permutation of machine identities, a corresponding equilibrium exists. This is the natura
analogue of anonymity for the case of Nash equilibria; indeed, if one substitutes the notion
of “Nash equilibrium” by “dominant strategy equilibrium” in Definition 2, then the standard
notion employed by Ashlagi et al. [3] for truthful mechanisms is recovered. Note that similarly
to [3], we only require this property to hold when the profiles of processing times do not exhibit
ties.

Perhaps the simplest and most natural mechanism that one can think of is the following,
which assigns the task to the fastest machine (according to the declared processing times) and
pays her her declaration.

Definition 3 (First-Price (FP) mechanism). Assign each task j to the fastest machine ι(j) for
it, i.e. ι(j) ∈ arg mini∈N si,j (breaking ties arbitrarily), paying her her declared running time
sι(i),j ; pay the remaining N \ {ι(j)} machines 0 for task j.

Second-Price mechanisms have also been extensively studied and applied in auction theory,
but also in strategic scheduling. As we mentioned in the introduction, the following mechanism
is usually referred to as the VCG mechanism in the literature of the problem (see e.g., [7]):

Definition 4 (Second-Price (SP) mechanism). Assign each task j to the fastest machine ι(j)
for it, i.e., ι(j) ∈ arg mini∈N si,j (breaking ties arbitrarily), paying her the declared processing
time of the second-fastest machine, i.e. mini∈N\{ι(j)} si,j; pay the remaining N \{ι(j)} machines
0 for task j.

5That is, ti 6= ti′ for all 1 ≤ i 6= i′ ≤ n.
6For any permutation π : {1, . . . , n} −→ {1, . . . , n} and n-dimensional vector x = (x1, . . . , xn), the permuta-

tion of x under π is the vector π(x) ≡ (xπ(1), . . . , xπ(n)).

6

Best equilibrium (PoS)
Truth-telling profile t

(Approximation Ratio)

Worst equilibrium (PoA)

All equilibria

1 ∞

Inefficiency

Figure 1: A pictorial representation of the relation between the different solution concepts and the notions of
inefficiency. The blue nodes represent the set of equilibria of a mechanism M for a fixed true underlying profile
of processing times t (they are depicted as a finite set, for convenience, but this need not be the case). The wider
grey area is the set of all feasible input strategy profiles s of M. We have marked the best and worst (under t)
equilibria (assuming they are unique, for ease of exposition), as well as the truth-telling profile. Note that if M
is truthful, then the truth-telling profile is a (dominant strategy) equilibrium (but, in general, this profile might
not even belong to the set of equilibria). The PoA bounds the inefficiency of all the blue nodes, the PoS bounds
the inefficiency of the left-most node, and the approximation ratio bounds the inefficiency of the truth-telling
node; all these bounds are computed, in the worst case, over all possible true profiles t).

Notice that both FP and SP mechanisms are task-independent and anonymous. Further-
more, SP is truthful. As a matter of fact, SP is the best known truthful mechanism if one is
interested only in dominant strategy equilibria (see, e.g., [9, 44] and Section 2.2).

2.2 Solution Concepts and Notions of Inefficiency

The solution concept that we consider in this paper is that of the pure Nash equilibrium. In
the literature of the truthful scheduling problem, the employed solution concept is that of the
dominant strategy equilibrium, i.e., a strategy profile in which no agent would have an incentive
to deviate to any other strategy, no matter the strategies of the remaining agents. More precisely,
the literature has been interested in truthful mechanisms, i.e., mechanisms for which truth-telling
is always (i.e., for any processing time profile t) a dominant strategy equilibrium. The goal is to
find a mechanism with the best approximation ratio, which is defined as the worst-case (over all
inputs) ratio of the makespan of the mechanism over the optimal makespan, in the truth-telling
equilibrium.

For this objective, studying only the truth-telling dominant strategy equilibria is without
loss of generality, by the Revelation Principle (see, e.g., [43]). We remark however that, a priori,
the fact that an allocation function can be implemented in truth-telling dominant strategies (i.e.,
an appropriate payment function can be found such that the resulting mechanism is truthful)
does not have any implications on the space of non-truthful mechanisms and their PoA/PoS
guarantees.

There are however some inherent relations between the approximation ratio, the Price of
Anarchy and the Price of Stability which follow directly from their definitions. Clearly, a Price
of Anarchy guarantee is stronger than a Price of Stability guarantee, since the former bounds
the inefficiency of all equilibria while the latter is only concerned with the best one. Since
dominant strategy equilibria are also Nash equilibria by definition, for truthful mechanisms, a
Price of Anarchy guarantee is also stronger than an approximation ratio guarantee, which, in
turn, is stronger than a Price of Stability guarantee. An illustration of the relation between
these different notions is given in Fig. 1.

7

3 The Inefficiency of All Mechanisms

We start with a lower bound of n for the Price of Anarchy of the scheduling problem, which
applies to all mechanisms. The lower bound will be based on the following monotonicity lemma.
We note that this monotonicity property is different from the weak monotonicity (WMON) used
in the literature of truthful machine scheduling (see e.g., [9, 44]), in the sense that (a) it is global,
whereas WMON is local and (b) it applies to the relation between the true processing times
and the equilibria of the mechanism, rather than the actual allocations.

Lemma 1 (Equilibrium Monotonicity). Let M be any mechanism for the scheduling problem.
Let t be a profile of true processing times and let s ∈ Qt be an equilibrium under t. Denote by
Si the set of tasks assigned to machine i by M on input s. Consider any profile t̂ such that
for every machine i, t̂i,j ≤ ti,j if j ∈ Si and t̂i,j ≥ ti,j if j /∈ Si. Then s ∈ Q

t̂
, i.e., s is an

equilibrium under t̂ as well.

Proof. Assume by contradiction that s /∈ Q
t̂
, which means that for the profile of processing times

t̂, there exists some machine i that has a beneficial deviation s′
i, i.e., ui(s′

i, s−i|t̂) > ui(s|t̂). Let
S′

i be the set of tasks assigned to machine i under report s′ = (s′
i, s−i) (and underlying true

reports t̂). The difference in utility for machine i between profiles s′ and s is

∆ui(t̂) ≡ ui(s′|t̂) − ui(s|t̂) = pi(s′) − pi(s) +
∑

j∈Si\S′
i

t̂i,j −
∑

j∈S′
i
\Si

t̂i,j.

By the fact that s′
i is a beneficial deviation, it holds that ∆ui(t̂) > 0.

Now consider the profile of processing times t and the same deviation s′
i of machine i. The

increase in utility is

∆ui(t) = pi(s′)−pi(s)+
∑

j∈Si\S′
i

ti,j −
∑

j∈S′
i
\Si

ti,j ≥ pi(s′)−pi(s)+
∑

j∈Si\S′
i

t̂i,j −
∑

j∈S′
i
\Si

t̂i,j = ∆ui(t̂),

which holds because ti,j ≥ t̂i,j, if j ∈ Si and ti,j ≤ t̂i,j, if j /∈ Si. This implies that ∆ui(t) > 0,
which contradicts the fact that s ∈ Qt.

Using this lemma, we can prove our first lower bound:

Theorem 1. For any scheduling mechanism M for n machines, it must be that PoA(M) ≥ n.

Proof. Let M be any mechanism and consider a profile of true processing times t with n
machines and n2 tasks, where ti,j = 1 for all machines i and all tasks j. Let s = (s1, s2, . . . , sn)
be a pure Nash equilibrium of M under t. For each machine i, let Si be the set of tasks assigned
to that machine and note that there exists some machine k for which |Sk| ≥ n. Let Tk ⊆ Sk be
any subset of Sk such that |Tk| = n.

Now consider the following profile t̂ of processing times:

• For all i 6= k, t̂i,j = 0, for all j ∈ Si and t̂i,j = ti,j, for all j /∈ Si.

• t̂kj = 0, for all j ∈ Sk\Tk and t̂kj = tk,j, for all j /∈ Sk\Tk.

By Lemma 1, the profile s = (s1, s2, . . . , sn) is a pure Nash equilibrium under t̂ and the allocation
is the same as before, for a makespan of at least n, since machine k is assigned all the tasks in
Tk. The optimal allocation will assign one task from Tk to each machine, the tasks from Si to
machine i for each i 6= k and the tasks from Sk\Tk to machine k, for a total makespan of 1 and
the Price of Anarchy bound follows.

8

3.1 PoA/PoS Trade-off

In this section, we prove our main theorem regarding the trade-off between the Price of Anarchy
and the Price of Stability. The theorem informally says that if the Price of Anarchy of a
mechanism is small, then its Price of Stability has to be high.

Theorem 2. For any scheduling mechanism M for n machines, and any positive real α,

PoA(M) < α =⇒ PoS(M) ≥ n − 1
α

+ 1.

Proof. By performing the transformation ρ = n−1
α

+ 1 and taking the contrapositive, it is not
difficult to see that we need to prove that

PoS(M) < ρ =⇒ PoA(M) ≥ n − 1
ρ − 1

,

for any real ρ > 1.
Consider an instance with n agents and n tasks. Assume a true n × n processing-times

matrix t with

t1,j =

{

n − 1, if j = 1,

ρ − 1, otherwise,

and

ti,j =

{

n − 1, if j = i,

∞, otherwise,

for all i = 2, . . . , n. Here ∞ denotes an arbitrarily large positive value, and actually replacing
it with any value M ≥ ρ(n − 1) will work just fine for our proof.7

First notice that by allocating each task j to machine j with running time tj,j = n − 1,
for all j ∈ [n], we get an upper bound of n − 1 on the optimal makespan of t. Thus, since
PoS(M) < ρ, there must exist a pure Nash equilibrium profile s⋆ such that the allocation
M(s⋆) results in a makespan less than ρ(n − 1) (with respect to the underlying, true time
matrix t). But then, due to the structure of t, and in particular the large value of M , M(s⋆)
can only allocate each task j to either machine 1 or machine j, for all j ∈ [n]. In particular, task
1 will necessarily have to be allocated to machine 1. Furthermore, from the remaining n − 1
tasks, not all of them can be allocated to machine 1, because that would give rise to a running
time of t1,1 +

∑n
j=2 t1,j = n − 1 + (n − 1)(ρ − 1) = ρ(n − 1) for machine 1, which violates the

Price of Stability constraint assumed for s⋆. So, there must exist at least one task j ≥ 2, denote
it by j⋆, such that M(s⋆) allocates j to machine j.

For each task j, let ij denote the machine which task j is allocated to by M(s⋆). Now modify
the original, true execution time matrix t by changing the running time tij ,j, for all j 6= j⋆, to
t′
ij ,j = 0. Denote this new matrix by t′. Due to Lemma 1, s⋆ has to be a pure Nash equilibrium

of M with respect to the modified true profile t′ as well. But now M(s⋆) results in a makespan
of at least t′

j⋆,j⋆ = tj⋆,j⋆ = n − 1 (since task j⋆ is allocated to machine j⋆), while allocating j⋆

to machine 1 (and leaving all other assignments as they are, i.e. task j 6= j⋆ gets allocated to
machine ij) results in machine 1 having a total running cost of at most (n−1) ·0+ t′

1,j⋆ = ρ−1,
and all other machines 0. This gives a Price of Anarchy lower bound of n−1

ρ−1 .

By allowing α in Theorem 2 to grow arbitrarily large, we get the following:

Corollary 1. Even for just two machines, if a scheduling mechanism has an optimal Price of
Stability of 1, then its Price of Anarchy has to be unboundedly large.

7We will adopt a similar convention throughout the paper.

9

1 2 − 1
n

n
1

n
FP

SP

PoS

P
oA

Theorem 1
Theorem 2
PoA ≥ PoS

Figure 2: The inefficiency boundary for general mechanisms, given by Theorem 2 (red line). Combined with the
global PoA lower bound of Theorem 1 (green line) and the trivial fact that the PoS is at most the PoA (blue
line), we finally get the grey feasible region.

From the results of this section, as well as the trivial fact that PoA(M) ≥ PoS(M) for any
mechanism M, we obtain a feasibility trade-off between the PoA and the PoS of scheduling
mechanisms, which is illustrated in Fig. 2. We refer to the boundary of the shaded feasible
region as the inefficiency boundary; the shape of the boundary follows from Theorem 2, as well
as Theorem 1, since for PoS(M) > 2 − 1

n
(or, in the language of Theorem 2, for α < n), the

best (i.e. largest) lower bound on the PoA is now given by Theorem 1.

3.1.1 Mechanisms on the Extrema of the Inefficiency Boundary

When looking for mechanisms on the Pareto frontier, the first ones that come to mind are
perhaps the First-Price (FP) and Second-Price (SP) mechanisms, defined in Section 2, which
are straightforward adaptations of the well-known First-Price auction and Second-Price auction
mechanisms from the auction literature.

It follows from known results in the literature for the First-Price auction (see, e.g., [17])
that in every pure Nash equilibrium of the FP, each task is allocated to the machine with the
smallest true processing time for the task; we provide a simple proof below for completeness.
In Section 4.2, we will define a class of task-independent mechanisms (SPα) that contain FP
as a corner case (SP1).

Theorem 3. The PoA and the PoS of the First-Price mechanism are both n.

Proof. First, we argue that in every equilibrium of FP, for any task j a machine with the
fastest true processing time for j receives the task. Given any profile of true processing times
t, let Ja be the set of machines with the fastest true processing time tf for task j. Assume by
contradiction that some machine k /∈ Ja receives the task at some equilibrium sj . Since sj is
an equilibrium, it must be the case that pk,j = sk,j ≥ tk,j > tf , as otherwise machine k would
have negative utility. But then, by the continuity of the strategy space, any machine i ∈ Ja

10

can report s′
i,j ∈ (tf , sk,j) and win the task, obtaining positive utility. This contradicts the fact

that sj is an equilibrium.
Given this, it is not hard to see that PoA(FP) = n, as in the worst-case, every task will go to

the same machine, which will be the fastest machine for all tasks. To show that PoS(FP) = n, it
is easy to construct an example where there is a single machine k that has the fastest processing
time tf for each task, and n − 1 different machines i1, . . . , in−1, such that machine ij has
processing time tf + ε for task j, where ε can be arbitrarily small. In every equilibrium, all
tasks go to machine k for a makespan of n · tf , whereas in the optimal schedule, machine k
receives task 1 and machine ij receives task j. The Price of Stability goes to n as ε → 0.

For the Second-Price mechanism, again it follows from known observations in the literature
that while the mechanism is truthful, it has several other pure Nash equilibria as well. More
precisely, for a task j and any machine i, there exists an equilibrium for which task j is allocated
to machine i. Therefore, we have the following:

Theorem 4. The PoA of the Second-Price mechanism is unbounded and its PoS is 1.

Theorem 4 can be obtained as a corollary of our results in Section 4.2, since SP is also a
corner-case mechanism in our class, namely SP∞. Interestingly, as we identify in Theorem 5
below, it turns out that the bad PoA bound is a inherent characteristic of all truthful mecha-
nisms. In other words, if one is interested in the set of all equilibria, they would have to reach
out beyond truthful mechanisms.

Theorem 5. The Price of Anarchy of any truthful mechanism is unbounded.

Proof. Let M = (x, p) be a truthful mechanism on n ≥ 2 machines. To arrive to a contradiction,
assume that there exists a real M ≥ 1 such that PoA(M) ≤ M . We will consider single-
task instances with only n = 2 machines. This is without loss of generality, since one can
add arbitrarily many more machines with 0 running time for the task, and the proof remains
valid. In particular, we assume an underlying vector of true running times t = (0, ε), where
ε ∈ (0, M−1), and a vector s = (1, 0) of reported costs. We first show that M allocates the task
to machine i = 2, even if she reports slightly slower running times.

Claim 1. For any δ ∈ [0, ε], mechanism M always allocates the task to machine i = 2 on any
input s′ = (1, δ).

Proof. First notice that, due to truthfulness, if we consider as true underlying profile t′ = s′ =
(1, δ), then s′ has to be an equilibrium. Next, for a contradiction, assume that there exists
a nonnegative δ ≤ ε such that x2(s′) = 0. Then x1(s′) = 1, and thus the makespan under
equilibrium s′ (and true profile t′) would be 1, while an optimal solution would have given the
task to the faster machine, for a makespan of δ. This results in a PoA of at least 1

δ
≥ ε−1 > M

which is a contradiction. This completes the proof of the claim. �

Using the same argument, we can also show that M keeps allocating the task to machine
i = 2 as long as the other machine has a strictly positive cost:

Claim 2. For any δ > 0, mechanism M always allocates the task to machine i = 2 on any
input s′ = (δ, 0).

We are now ready to prove that s is actually an equilibrium:

Claim 3. Reporting s = (1, 0) is an equilibrium of M (under true costs t).

The above claim is enough to complete the proof, since by combining it with the previous
Claim 1 (with δ = 0) we get that the makespan of M under equilibrium s is ε > 0 (since the
task goes to machine i = 2) while the optimal one is 0. This contradicts the fact that PoA(M)
is bounded.

11

Proof of Claim 3. First we remark that, due to well-known characterizations of truthfulness for
single-dimensional domains [41] (which apply to our case, since we have a single task), there
exist real functions h1, h2 such that the utilities of our machines (with respect to true costs t)
on any vector of reports s′ are given by8

ui(s′) = hi(s′
−i) + (s′

i − ti) · xi(s′) −
∫ s′

i

0
xi(z, s′

−i) dz. (1)

Furthermore, the allocation function xi(s′) of each agent i is monotonically nonincreasing with
respect to her reported cost s′

i.
Now we show that the first agent has no incentive to deviate from reporting s1 = 1 as long

as the second agent is fixed at s2 = 0. Indeed, currently, and as long as she reports any strictly
positive cost s′

1 = z > 0, she will still lose the task (i.e., x1(z, s2) = 0). That holds due to
Claim 2. From (1), this results in a utility of u1(s′

1, s2) = h1(s2). For the only remaining case
that she reports s1 = 0′, again from (1) we get that u1(0, s2) = h1(s2)−(0−0)·x1(0, s2) = h1(s2).
Thus, in no case the first agent can gain by unilaterally deviating.

Finally, we need to show that the second agent has no incentive to deviate from reporting
s2 = 0 as well. Assuming the other agent fixed at s1 = 1, the improvement in her utility by
declaring a cost s′

2 ≥ 0 is (due to (1))

u2(1, s′
2) − u2(1, 0) = (s′

2 − ε)x2(1, s′
2) −

∫ s′
2

0
x2(1, z) dz.

Recall now from Claim 1 that x1(1, z) = 1 for all z ∈ [0, ε]. Thus, for s′
2 ∈ [0, ε] the above

difference in the second agent’s utility becomes (s′
2 − ε) − s′

2 = −ε < 0, while for s′
2 > ε it is

(s′
2 − ε)x2(1, s′

2) −
∫ s′

2

ε
x2(1, z) dz ≤ (s′

2 − ε)x2(1, s′
2) − (s′

2 − ε)x2(1, s′
2)x2(1, s′

2) = 0,

the inequality holding due to the fact that x2(1, z) is nonincreasing with respect to z. �

From Theorem 2, Theorem 3 and Theorem 4, it is clear that both FP and SP lie on the
boundary of the PoA/PoS feasibility space (see Fig. 2).

4 The Pareto Frontier of Task-Independent Mechanisms

As we noted in the previous section, both the SP and FP mechanisms, which lie on the inef-
ficiency boundary (see Fig. 2), are anonymous task-independent mechanisms. In this section,
we will construct a tighter boundary on the PoA/PoS trade-off for the class of anonymous
task-independent mechanisms. Furthermore, we will show that this boundary is actually tight,
by designing a class of optimal mechanisms that lie exactly on it, meaning that for each point
on the boundary, there is a mechanism in our class that achieves the corresponding PoA/PoS
trade-off. Thus, this results in a complete characterization of the Pareto frontier between the
PoA and the PoS.9 For an illustration, see Fig. 3.

8See [2, Theorem 4.2].
9To prevent any potential confusion, we use the term “inefficiency boundary” to refer to the boundary of the

feasible region for the PoA/PoS trade-off, that is defined by some impossibility-type result such as Theorem 6
and we reserve the term “Pareto frontier” for a boundary that can provably not be improved, since there are
mechanisms that achieve the corresponding trade-offs. Intuitively, in our terminology, the inefficiency boundary
is a “bound” on the achievable Pareto frontier.

12

4.1 PoA/PoS Trade-off

We start with the theorem that gives us the improved boundary on the space of feasible task-
independent and anonymous mechanisms. This is the red line in Fig. 3. Intuitively, the proof
of this theorem is based on the following idea: consider two alternative true cost matrices,
















1 ∞ · · · ∞ ∞
∞ 1

. . . ∞ ∞
∞ ∞

...
...

...
. . . 1 ∞

∞ ∞ . . . ∞ 1
α∗ α∗ · · · α∗ α∗
















and
















α ∞ · · · ∞ ∞
∞ α

. . . ∞ ∞
∞ ∞

...
...

...
. . . α ∞

∞ ∞ . . . ∞ α
1∗ 1∗ · · · 1∗ 1∗
















,

where α > 1. Then, any anonymous mechanism would either (a) have some equilibrium where
all tasks get allocated to the “slow” machine (with running time α) on the first instance, or (b)
at all equilibria it would need to allocate all tasks to the “fast” machine (with running time 1)
on the second instance. Case (a) would result in a “high” PoA, while case (b) in a “high” PoS.

Theorem 6. For any task-independent anonymous scheduling mechanism M for n machines,
and any real α > 1,

PoA(M) < (n − 1)α + 1 =⇒ PoS(M) ≥ (n − 1)
α

+ 1.

Proof. Fix a mechanism M on n ≥ 2 machines and m = max{2, 2n − 3} tasks, that allocates
each task j independently by running an anonymous single-task mechanism Aj . Each such
mechanism Aj takes as input a declared cost vector sj = (s1,j, . . . , sn,j) by the machines, where
si,j is the report of machine i for task j, i = 1, . . . , n. Besides the reports, recall that there is
also an underlying true cost vector tj = (t1,j, . . . , tn,j). Also, fix a parameter α > 1 and assume
that PoA(M) < (n − 1)α + 1.

We are particularly interested in true cost vectors that have a specific structure, namely being
permutations of (1, α, ∞, . . . , ∞). We will call such cost vectors canonical for the remainder of
this proof. Formally, tj is canonical if:

• there is a unique machine i′ such that ti′,j = 1 (machine i′ will be called fast for task j),

• there is a unique machine i′′ 6= i′ such that ti′′,j = α (machine n will be called slow for
task j),

• all other machines i 6= i′, i′′ have arbitrarily high, pairwise distinct, processing times
for task j, that for simplicity we’ll denote with ti,j = ∞ (these machines will be called
dummy).

Notice that, since M has a bounded PoA, none of its component mechanisms Aj can have an
equilibrium,10 on any true canonical cost vector tj, that allocates task j to a dummy machine.

The following definition will be helpful for our exposition in the rest of the proof:

Definition 5 (Well-behaved tasks). A task j will be called well-behaved if, for all true canonical
cost vectors tj, mechanism Aj allocates task j to the fast machine on all equilibria sj.

10In multiple points throughout this proof we will silently be using the fact that a profile of reports s is an
equilibrium of M with respect to a true profile t, if and only if, for all tasks j, s

j is an equilibrium of Aj with
respect to t

j ; this is an immediate consequence of task-independence (see Definition 1).

13

1 n
1

n
SP1

SP∞

SPα

PoS

P
oA

Theorem 6
PoA ≥ PoS
Theorem 2

Figure 3: The inefficiency boundary, for anonymous task-independent mechanisms, given by Theorem 6 (red
line). Combined with the global PoA lower bound of Theorem 1 (green line) and the trivial fact that the PoS is
at most the PoA (blue line), we finally get the grey feasible region. The family of mechanisms SPα described
in Section 4.2 lies exactly on this boundary (red line), thus completely characterizing the Pareto frontier in a
smooth way with respect to parameter α ≥ 1: on its one end (α = 1) is the First-Price mechanism FP = SP1

and at the other (α → ∞) the Second-Price mechanism SP = SP∞. The yellow region represents the possible
trade-off between the Price of Anarchy and the Price of Stability for mechanisms that are not anonymous or
task-independent, as defined by the right boundary in this figure, and the left boundary of Fig. 2 (shown as
a red line there). We remark that the “thickness” of this region is mainly due to mechanisms which are not
task-independent; as we show in Theorem 9, the corresponding boundary line for mechanisms which are task-
independent but not anonymous is much closer to the red line in the figure.

It turns out that, due to anonymity, a much weaker condition is actually enough in order to
establish that a task is well-behaved:

Claim 4. A task is well-behaved if there exists a true canonical cost vector with respect to
which all equilibria assign it to the fast machine.

Proof. Assume that there exists a canonical cost vector tj such that, for all equilibria sj of tj,
mechanism Aj assigns task j to its fast machine. For a contradiction, assume that there also
exists a canonical cost vector t̃j and an equilibrium s̃j under which Aj assigns the task to the
slow machine (recall that the task cannot be assigned to a dummy machine). Then, since tj is
a permutation of t̃j and canonical vectors do not have ties, due to anonymity (see Definition 2)
there has to exist an equilibrium ŝj with respect to tj , under which the task is given to the slow
machine; this is a contradiction.

Claim 5. Mechanism M has at least n − 1 well-behaved tasks.

14

Proof. Let t be a true instance whose task cost vectors are all canonical. For example, let

t =











1 1 · · · 1
α α · · · α
∞ ∞ · · · ∞
...

...
...

∞ ∞ · · · ∞











︸ ︷︷ ︸

2n−3

.

Due to Claim 4, it is enough to show that there exists a fixed set of (at least) n − 1 tasks which,
under all equilibria of t, they all get allocated to their fast machines. Formally, to get to a
contradiction, assume that for any subset of tasks J̄ ⊆ [m] with |J̄ | = n − 1, there exists a task
j = j(J̄) ∈ J̄ and an equilibrium sj of tj on which Aj allocates task j to the slow machine.
Then, since instance t has at least m ≥ 2n − 3 tasks, we can apply this property repeatedly in
order to get a sequence of n − 1 tasks

j1 = j ([n − 1]) , j2 = j ([n] \ j1) , . . . , jn−1 = j ([2n − 3] \ {j1, j2, . . . , jn−2})

and corresponding equilibria sj1 , sj2 , . . . , sjn−1 (with respect to true canonical cost vectors
tj1, tj2, . . . , tjn−1 , respectively) with the property that, for all ℓ = 1, . . . , n − 1, mechanism
Ajℓ

allocates task jℓ to the slow machine.
Without loss, assuming for the rest of this claim’s proof that {j1, j2, . . . , jn−1} = [n − 1], we

consider the following new profile of true costs

t̃ =











1 ∞ ∞ · · · ∞

0
∞ 1 ∞ · · · ∞
...

.
...

∞ · · · ∞ 1 ∞
α α · · · α 1











,

where tasks j = 1, . . . , n − 1 have canonical cost vectors with the fast machine at the diagonal
and the slow one always being i = n; task j = n is arbitrarily slow on all machines except i = n,
for which it has a cost of 1; and all remaining tasks j ≥ n + 1 have been rendered essentially
irrelevant by setting their running times to 0 for all machines.

Since all canonical vectors t̃j, j = 1, . . . , n − 1, of the new true profile t̃ are permutations of
the ones in the original true profile t, and additionally we established that there exist equilibria
sj with respect to t that assign all these tasks to their slow machines, then due to anonymity
(see Definition 2) there must also exist an equilibrium s̃ of mechanism M (with respect to t̃)
on which all tasks j = 1, . . . , n − 1 are given to the machine with cost α. Furthermore, clearly
task j = n needs to be allocated to machine i = n as well on s̃, since she is the only one with
bounded running time (recall that M has a bounded PoA).

Summarizing, equilibrium s̃ assigns all tasks to the last machine, for a makespan of (n − 1) ·
α+1. On the other hand, the diagonal allocation on t̃, i.e. giving each task to the machine with
cost 1 would have given a makespan of 1. This results in a PoA bound of at least PoA(M) ≥
(n − 1)α + 1, which contradicts our initial assumptions about mechanism M.

In light of Claim 5, without loss let’s assume from now on that the first n − 1 tasks are
well-behaved, and consider the following profile of true costs

t̂ =











α ∞ ∞ · · · ∞

0
∞ α ∞ · · · ∞
...

.
...

∞ · · · ∞ α ∞
1 1 · · · 1 α











,

15

which, in a similar way to that in the proof of Claim 5 for profile t̃, we derived by permuting
accordingly the canonical vectors of the first n − 1 tasks of t, setting the cost of task j = n to
be bounded only for the last machine and, finally, rendering all tasks j > n irrelevant.

Fix now any equilibrium ŝ = (ŝ1, . . . , ŝn−1, ŝn) of M under t̂. Since tasks j = 1, . . . , n−1 are
well-behaved (see Definition 5), under ŝ mechanism M has to assign them all to the machine
with running time 1. Task j = n needs to be allocated to machine i = n as well (since PoA(M)
is bounded). Thus, equilibrium ŝ results in a makespan of (n − 1) · 1 + α, while the diagonal
allocation on t̂ has a makespan of α. This results in a bound of PoS(M) ≥ n−1

α
+ 1, concluding

the proof of the theorem.

4.2 Optimal Mechanisms on the Pareto Frontier

Next, we will design a class of mechanisms, parameterized by a quantity α that will populate,
in a smooth way, the boundary given by Theorem 6. Thus, these mechanisms achieve trade-offs
that lie on the Pareto frontier of inefficiency for the class of task-independent and anonymous
mechanisms.

Definition 6 (Second-Price mechanism with α-relative reserve price (SPα)). For α ≥ 1, SPα is
the task-independent mechanism that, for each task j: finds a machine k ∈ arg mini∈N si,j and
sets a reserve price at r = α · sk,j; assigns the task to the fastest machine ι(j) ∈ argmini∈N si,j

(breaking ties-arbitrarily); pays machine ι(j) the amount min{mini∈N\{ι(j)} si,j, r}; pays nothing
to the remaining machines N \ ι(j).

Informally, for each task j, the mechanism sets a reserve price which is α times larger than
the smallest declared processing time, allocates the task to the fastest machine (according to the
declarations) and pays the machine the minimum of the second-smallest declared processing time
and the reserve price. What this mechanism achieves in terms of the equilibria that it induces is
the following: assume that we create a bucket of tasks with true processing times at most α times
larger than the smallest true processing time. Then, in every equilibrium of the mechanism,
task j is allocated to some machine in the bucket and moreover, for any machine in the bucket,
there exists some equilibrium under which SPα allocates the task to that machine. This is
captured formally by the following two lemmas. Referencing our discussion in Section 3.1.1, we
remark that in the case of FP = SP1, the tasks can only be assigned to the fastest machine(s),
and in the case of SP = SP∞, the bucket contains the whole set of machines.

Lemma 2 (“Nothing outside the bucket”). In any equilibrium of SPα, any task j can only be
assigned to a machine with processing time at most α · mini∈N ti,j.

Proof. Since SPα is task-independent, it suffices to consider the equilibria of a single component
SPj

α, corresponding to task j. Let sj be such an equilibrium and without loss of generality,
assume that t1,j ∈ arg mini∈N ti,j, i.e., machine 1 is the fastest machine according to the true
processing times. Assume by contradiction that in sj , some task ℓ with real processing time
tℓ,j > α · t1,j is allocated task j and let sℓ,j be its report. Since machine ℓ receives the task, it
obviously holds that sℓ,j ∈ arg mini∈N si,j. We will consider two cases.

Case 1: sℓ,j ≤ t1,j. In this case, the reserve price is set at r = α · sℓ,j ≤ α · t1,j and machine ℓ
receives a payment of at most α · t1,j . By assumption however, its true processing time is larger
than α · ti,j and therefore the machine has negative utility. By deviating to telling the truth,
the machine can obtain a nonnegative utility, contradicting the fact that sj is an equilibrium.

Case 2: sℓ,j > t1,j. In this case, machine 1 has 0 utility, since she is not allocated the task
and she is not paid anything. However, if machine 1 deviates to telling the truth, (i.e., if she
deviates to s′

i,j = t1,j), then, since sℓ,j = mini∈N si,j by assumption, the machine will now win
the task (i.e., x1j = 1) and will receive a payment of sℓ,j > t1,j , obtaining strictly positive
utility. Again, this contradicts the fact that sj is an equilibrium.

16

In any case, sj can not be an equilibrium in which task j is allocated to some machine with
processing time larger than α · mini∈N ti,j.

Lemma 3 (“Everything inside the bucket”). For every input profile t and any α > 1, there
exist equilibria of SPα such that for every task j, every machine with processing time at most
α · mini∈N ti,j can be allocated task j.

Proof. Again, since SPα is task-independent, it suffices to consider the equilibria of a single
component SPj

α, corresponding to task j. Given an input profile t, let Jα be the set of machines
i′ such that ti′,j ≤ α · mini∈N ti,j and let tf = mini∈N ti,j be the processing time of the fastest
machine for task j. Let k be any machine in Jα; we will consider two strategy profiles (or rather
their restrictions to the j-th component), depending on whether tk,j > tf or tk,j = tf .

Case 1: tk,j > tf . Then, consider the strategy profile sj such that sk,j = tf and si,j = tk,j

for any machine i ∈ J \ {k}. We will prove that sj is an equilibrium, by considering possible
deviations of machine k, and the remaining machines in J \ {k} separately.

a) The current utility of machine k is 0, since it receives the task for which the true processing
time is tk,j and receives a payment of tk,j. Note that the reserve price is set to at most tk,j,
since tk,j ≤ α · tf by assumption, and sk,j = tf . Since there exist machines with reported
processing times at tk,j, machine k can not obtain positive utility by any deviation, even
if it increases the reserve price while still winning the task.

b) Consider any machine i ∈ J \ {k}. Since machine i is not winning the task, its utility is 0,
and the only way to possibly obtain a positive utility is by forcing an allocation in which
it wins the task. For this to be possible, it has to deviate to s′

i,j ≤ tf = sk,j, as otherwise
machine k would still be the winner. In that case however, the payment of machine i will
be at most tf and by assumption, we know that ti,j ≥ tf for any task j ∈ J . Therefore, the
deviation results in a utility of at most 0 for machine i and it is not a beneficial deviation.

Case 2: tk,j = tf . Then, consider the strategy profile sj such that sk,j = tf and si,j = tf + ε,
where tf + ε < α · tf ; this is possible since α > 1 and the continuity of the strategy space.
Again, we consider possible deviations of machine k, and the remaining machines separately.

a) The current utility of machine k is ε, since it receives the task for which the true processing
time is tk,j = tf and receives a payment of tf + ε, the second smallest reported processing
time (which is also smaller than the reserve price by the choice of ε). In order for machine k
to still receive the task, it has to use some strategy s′

k,j ≤ tf +ε, but any such strategy can
not affect the payment that it receives. Therefore the machine does not have a beneficial
deviation.

b) The argument in this case is identical to Case 1b above.

Theorem 7. The Price of Anarchy of SPα on n machines is at most (n − 1)α + 1.

Proof. Fix some underlying n × m true cost matrix t and a parameter α > 1. Fix also an
optimal (makespan-minimizing) allocation OPT of t and a (pure) Nash equilibrium s of SPα

under true costs t. For any task j = 1, . . . , m, let ι∗(j) and ι(j) denote the machine that gets
task j at OPT and SPα(s), respectively. Also, let K∗

i , Ki denote the corresponding machine
loads and J∗

i , Ji the sets of assigned tasks; that is, for i = 1, . . . , n, we define

K∗
i ≡

∑

j∈J∗
i

ti,j and Ki ≡
∑

j∈Ji

ti,j,

17

where
J∗

i = {j ∈ J | ι∗(j) = i} and Ji = {j ∈ J | ι(j) = i}.

Finally, it is without loss of generality to assume that K1 ≥ K2 ≥ · · · ≥ Kn, so that the
makespan of SPα on s is

K1 =
∑

j∈J1

t1,j =
∑

j∈J1∩J∗
1

t1,j +
∑

j∈J1\J∗
1

t1,j ≤
∑

j∈J∗
1

t1,j + α
∑

j∈J\J∗
1

tι∗(j),j ,

the last inequality holding since, for any task j, tι(j),j ≤ α · tι∗(j),j (due to Lemma 2). Thus, we
can bound our mechanism’s makespan by

K1 ≤ K∗
1 + α

n∑

i=2

K∗
i ≤ K∗

1 + α(n − 1) max
i=2,...,n

K∗
i .

Putting everything together, and denoting for simplicity x = K∗
1 and y = maxi=2,...,n K∗

i , the
PoA of SPα is finally upper bounded by

PoA(SPα) ≤ x + α(n − 1)y
maxi=1,...,n K∗

i

=
x + α(n − 1)y

max {x, y} ≤ α(n − 1) + 1,

the last step coming from applying Lemma 4 (see appendix) with β = α(n − 1) and γ = 1.

Theorem 8. The Price of Stability of SPα on n machines is at most n−1
α

+ 1.

Proof. Fix some underlying n × m true cost matrix t, an optimal (makespan-minimizing) allo-
cation OPT of t and a parameter α > 1. Also, let ι∗(j) denote the machine that gets task j at
OPT.

We partition the set of tasks J = {1, 2, . . . , m} into two sets Jsmall and Jlarge, based on their
processing time under OPT. More specifically, we define:

Jsmall ≡ {j ∈ J | tι∗(j),j ≤ α · min
i∈N

ti,j} and Jlarge ≡ J \ Jsmall = {j ∈ J | tι∗(j),j > α · min
i∈N

ti,j}.

Intuitively, in light of Lemmas 2 and 3, we can think of Jsmall as containing all the tasks that
SPα can allocate to the same machine as OPT in some equilibrium and Jlarge containing the
tasks for which this is not possible, but which nevertheless end up at a machine that runs them
faster than in OPT.

Now consider the pure Nash equilibrium s of SPα (with respect to true running times t)
that allocates all small tasks at the same machine as OPT, and all large tasks myopically to
the fastest machine for that task. More precisely, if ι(j) denotes the machine that gets task j
under SPα(s), we set ι(j) = ι∗(j) for all j ∈ Jsmall and ι(j) ∈ argmini∈N ti,j for j ∈ Jlarge. The
fact that such an equilibrium indeed exists, is a consequence of Lemma 3.

Let Ki denote the load of machine i after allocating only the small tasks according to OPT
(and thus, also according to the equilibrium s of SPα). Let L∗

i , Li denote the load of machine i
after allocating only the large tasks according to OPT and s, respectively. That is, we formally
define:

Ki ≡
∑

j∈Jsmall:ι(j)=i

ti,j, L∗
i ≡

∑

j∈Jlarge:ι∗(j)=i

ti,j and Li ≡
∑

j∈Jlarge:ι(j)=i

ti,j.

Without loss, let’s assume that K1 ≥ K2 ≥ · · · ≥ Kn. Then, the makespan of OPT is

max
i∈N

(Ki + L∗
i) ≥ max

{

K1 + L∗
1, max

i=2,...,n
L∗

i

}

≥ max






K1 + L∗

1,
1

n − 1

∑

i=2,...,n

L∗
i






,

18

while that of s can be upper bounded by

max
i∈N

(Ki + Li) ≤ max
i∈N

Ki + max
i∈N

Li ≤ K1 +
n∑

i=1

Li ≤ K1 +
1
α

n∑

i=1

L∗
i ≤ K1 + L∗

1 +
1
α

n∑

i=2

L∗
i ,

where the second to last inequality holds due to the fact that for large tasks

n∑

i=1

Li =
∑

j∈Jlarge

tι(j),j =
∑

j∈Jlarge

min
i∈N

ti,j ≤
∑

j∈Jlarge

1
α

tι∗(j),j =
1
α

n∑

i=1

L∗
i ,

and the last one holds due to α ≥ 1.
Putting everything together, and denoting for simplicity x = K1 + L∗

1 and y =
∑n

i=2 L∗
i , we

have that

PoS(SPα) ≤ x + 1
α

y

max
{

x, 1
n−1y

} ≤ n − 1
α

+ 1,

the last inequality holding by applying Lemma 4 with β = 1
α

and γ = 1
n−1 .

5 Discussion and Future Directions

In this section, we discuss some implications of our approach, as well as directions for future
work. On a general level, one could follow our agenda of studying the inefficiency trade-off
between the Price of Anarchy and the Price of Stability for many other problems in algorithmic
mechanism design, such as auctions [38, 54], machine scheduling without money [23, 31], or
resource allocation [11], to name a few, for which the two inefficiency notions have already been
studied separately.

In terms of the strategic scheduling setting, our work gives rise to a plethora of intriguing
questions for future work, both on a technical and a conceptual level, which we highlight below
in more detail.

5.1 General Mechanisms

Why did we focus on task-independent mechanisms for our tight frontier result, since they are
seemingly not a good fit for makespan minimization? First of all, the latter statement is true for
the algorithmic version of the problem, but not necessarily true for the strategic version. It is
not only conceivable that task-independent mechanisms, despite their “naive” allocation rules,
can induce equilibria in which the allocation is actually quite efficient, but this actually happens,
as evidenced by the Price of Stability of the Second Price Mechanism. Also, task-independent
mechanisms are much more amenable to an equilibrium analysis, because each task induces a
separate games between the machines. Showing the limitations of this class is quite important,
because it is not a priori clear that they could not achieve the best possible trade-offs suggested
by Theorem 2.

The major open question associated with our work is whether there exists a mechanism that
achieves a better trade-off than that of Theorem 6, or in other words,

“Is the yellow region of Fig. 3 empty or not?”

If such a mechanism exists, it will most probably not be task-independent11; this is somewhat
reminiscent of the state-of-the-art results in truthful machine scheduling, where the best possible
mechanisms (with respect to the approximation ratio, see Section 2.2) for several variants of
the problem are in fact task-independent [10, 45] and whether a better mechanism that is not
task-independent exists is a prominent open question.

11See also the discussion in Section 5.2.

19

While in the case of truthful mechanisms, the general consensus12 seems to be that the
best achievable mechanisms will in fact eventually proven to be task-independent, the situation
in the strategic version of the problem might be quite different. This is because we have all
possible mechanisms at our disposal and it is more conceivable that some allocation rule, tied
with some appropriate payment function could potentially outperform the trade-off bounds of
Theorem 6. This seems, however, like a quite challenging task; to offer some intuition, we
remark the following about the design of general mechanisms for the problem.

The most natural idea is perhaps to use a known algorithm for unrelated machine schedul-
ing [14, 28, 36] such as the greedy allocation algorithm13 of Ibarra and Kim [28], or even the
makespan-optimal algorithm and couple them with a “get-paid-your-load” payment function,
where each machine receives a monetary compensation equal to the sum of the reported pro-
cessing times for the tasks that she gets assigned. This is essentially the generalization of
the payment rule of the First-Price mechanism for more general allocation rules. The hope is
that by virtue of having a more efficient allocation rule, the resulting mechanism will always
have equilibria with small makespan (good PoS) while never having equilibria with very large
makespan (good PoA). Unfortunately, one can show that for a large class of such allocation
algorithms (which includes all the aforementioned algorithms that have been proposed in the
literature for the classical unrelated machine scheduling problem), the Price of Anarchy of the
resulting mechanism will be unbounded.

Overall, for a mechanism to lie in the yellow region of Fig. 3, it seems imperative that it
will need to employ some more complicated payment function, which will “guide” the agents
towards the desired equilibria, rather than simply attempt to implement a better allocation rule
with known payment structures.

5.2 The Role of Anonymity

In the proof of Theorem 6, we used the fact that the mechanism in question is anonymous. In
many cases in the general related literature, this assumption is without loss of generality, as the
best possible mechanisms with respect to an objective are anonymous. In the literature of the
unrelated machine scheduling problem in algorithmic mechanism design however, understanding
the role of anonymity is a long-standing open problem. In particular, while all the known
mechanisms for several variants of the problem are anonymous, the best-known lower bounds
for anonymous and non-anonymous mechanisms are strikingly different, from, specifically n in
the former case (given by [3] and matching the best-known upper bound of [45]) and 2.75 in
the latter case (given by [24]). These challenges are inherited in the strategic setting as well.
Nevertheless, for general (not necessarily anonymous) task-independent mechanisms, we can
still show the following inefficiency trade-off. Its proof can be found in Appendix B.

Theorem 9. For any task-independent scheduling mechanism M for n machines, and real
α > 1,

PoA(M) < (n − 1)
α√
2

+ 1 =⇒ PoS(M) ≥ (n − 1)

α
√

2
+ 1.

The above is a strict improvement with respect to the general boundary given by Theorem 2,
but still does not quite match the Pareto frontier that we proved for anonymous mechanisms.
In other words, the inefficiency boundary given by Theorem 9 lies strictly within the yellow
area in Fig. 3. Obtaining tight bounds is an interesting open problem.

12This is because of the result of Ashlagi et al. [3] for anonymous mechanisms and due to personal communi-
cations with authors of central papers in the field.

13The algorithm is referred to as “Algorithm D” in [28].

20

5.3 Equilibrium Notion Considerations

In this paper, we study the set of all possible equilibria of mechanisms for the problem, which
may include equilibria which are weakly dominated (e.g. see [42, Sec. 1.8]), i.e., the agents
could use a different strategy instead of their equilibrium strategy and obtain the same utilities,
regardless of the reports of the other agents. These type of equilibria are known to exist in
the Second-Price mechanism and our class of mechanisms SPα also exhibits such equilibria.
In order to quantify these type of equilibria in terms of the agents’ aversion to risk, Babaioff
et al. [4] defined the notion of exposure factor, which measures the amount of risk that an agent
is willing to expose herself to, when best-responding. In the terminology of our setting, the
exposure γ of strategy si is such that

pi(si, s−i) ≥ (1 + γ)
∑

i∈Si

ti,

where s−i is any vector of strategies of the other machines and Si is the set of tasks assigned to
machine i under x(si, s−i). In simple words, γ is used to quantify how much extra cost agent i
could possibly experience, if all other agents coordinated to a strategy that is the worst possible
for the agent. Then, Babaioff et al. [4] proceed to define the set Qγ

t as the set of all equilibria
that consist only of strategies with exposure factor at most γ and the corresponding notion of
the Price of Anarchy with the respect to this equilibrium set. Given a parameter α, mechanism
SPα can be seen as achieving a PoS guarantee even with respect to the set Qα−1

t of equilibria
consisting of strategies of exposure at most α − 1. Conceptually, even if one is only willing to
accept a certain level of risk exposure, an appropriate β can be chosen and the corresponding
mechanisms SPα for α ≤ β, will lie on the inefficiency boundary, even if the solution concept
is the γ-exposure Nash equilibrium.

Whether there exists a mechanism that can match, in undominated Nash equilibria, the
guarantees of SPα, is an interesting open question; we believe though that this is rather unlikely.
That being said, proving impossibility results for general classes of mechanisms seems quite
challenging, as the property of not being dominated does not convey much information from a
technical standpoint and in particular has different implications for different mechanisms. This
is in contrast with the more standard approach in auctions, where specific mechanisms have
been studied, for which undominated strategies imply a very handy non-overbidding property,
e.g., see [17, 39].

5.4 Computational Considerations

As we mentioned earlier, the mechanisms that we construct in this paper (see Definition 6) are
rather simple and run in polynomial time, and this is actually the case for all known mechanisms
for the truthful scheduling problem as well. It would be interesting to investigate whether adding
computational efficiency as a desirable property of the mechanisms in question can have any
implications on the inefficiency boundary. For truthful scheduling, this is unlikely to be an
issue, since the constraint of truthfulness itself typically leads to rather simple mechanisms
which are easily seen to be efficient. As we hinted in Section 5.1 however, it is conceivable
that from the space of all possible mechanisms that we can use, the best one might employ an
allocation algorithm that is computationally intractable. Concretely, it could be possible that
the makespan-optimal algorithm (which does not run in polynomial time, unless P=NP [36])
can be coupled with an appropriate payment function to achieve a better trade-off guarantee.
From this discussion, we deduce the following, very interesting question:

“If we add computational efficiency as a constraint, can we prove a stronger ineffi-
ciency boundary than that of Fig. 2?.”

21

Conceptually, the question above regards whether there is a fundamental connection between
the running time of the allocation rule and the PoA/PoS trade-off that can be explored via a
corresponding inefficiency boundary.

Acknowledgements We are grateful to the anonymous reviewers of the journal version of
this paper for their careful reading of our manuscript and for their valuable comments that
helped us to simplify and improve the presentation at key points of our work. We also thank
Elias Koutsoupias, Maria Kyropoulou and Diogo Poças for useful discussions.

References

[1] E. Anshelevich, A. Dasgupta, J. Kleinberg, É. Tardos, T. Wexler, and T. Roughgarden. The
price of stability for network design with fair cost allocation. SIAM Journal on Computing,
38(4):1602–1623, 2008. doi:10.1137/07068009.

[2] A. Archer and É. Tardos. Truthful mechanisms for one-parameter agents. In Proceedings of
the 42nd IEEE symposium on Foundations of Computer Science (FOCS), pages 482–491,
2001. doi:10.1109/sfcs.2001.959924.

[3] I. Ashlagi, S. Dobzinski, and R. Lavi. Optimal lower bounds for anonymous
scheduling mechanisms. Mathematics of Operations Research, 37(2):244–258, 2012.
doi:10.1287/moor.1110.0534.

[4] M. Babaioff, B. Lucier, N. Nisan, and R. Paes Leme. On the efficiency of the Walrasian
mechanism. In Proceedings of the 15th ACM Conference on Economics and Computation
(EC), pages 783–800, 2014. doi:10.1145/2600057.2602850.

[5] I. Caragiannis, C. Kaklamanis, P. Kanellopoulos, M. Kyropoulou, B. Lucier, R. P. Leme,
and É. Tardos. Bounding the inefficiency of outcomes in generalized second price auctions.
Journal of Economic Theory, 156:343–388, 2015. doi:10.1016/j.jet.2014.04.010.

[6] S. Chawla, J. D. Hartline, D. Malec, and B. Sivan. Prior-independent mechanisms for
scheduling. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(STOC), pages 51–60, 2013. doi:10.1145/2488608.2488616.

[7] G. Christodoulou and E. Koutsoupias. Mechanism design for scheduling. Bulletin of the
EATCS, 97:40–59, 2009.

[8] G. Christodoulou, E. Koutsoupias, and A. Vidali. A characterization of 2-player mecha-
nisms for scheduling. In 16th Annual European Symposium on Algorithms (ESA), pages
297–307, 2008. doi:10.1007/978-3-540-87744-8.

[9] G. Christodoulou, E. Koutsoupias, and A. Vidali. A lower bound for scheduling mecha-
nisms. Algorithmica, 55(4):729–740, 2009. doi:10.1007/s00453-008-9165-3.

[10] G. Christodoulou, E. Koutsoupias, and A. Kovács. Mechanism design for fractional schedul-
ing on unrelated machines. ACM Transactions on Algorithms, 6(2):38:1–38:18, 2010.
doi:10.1145/1721837.1721854.

[11] G. Christodoulou, A. Filos-Ratsikas, S. K. S. Frederiksen, P. W. Goldberg, J. Zhang, and
J. Zhang. Social welfare in one-sided matching mechanisms (extended abstract). In Pro-
ceedings of the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 1297–1298, 2016. doi:10.1007/978-3-319-46882-2_3.

22

https://doi.org/10.1137/07068009
https://doi.org/10.1109/sfcs.2001.959924
https://doi.org/10.1287/moor.1110.0534
https://doi.org/10.1145/2600057.2602850
https://doi.org/10.1016/j.jet.2014.04.010
https://doi.org/10.1145/2488608.2488616
https://doi.org/10.1007/978-3-540-87744-8
https://doi.org/10.1007/s00453-008-9165-3
https://doi.org/10.1145/1721837.1721854
https://doi.org/10.1007/978-3-319-46882-2_3

[12] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11(1):17–33, 1971.
doi:10.1007/bf01726210.

[13] C. Daskalakis and S. M. Weinberg. Bayesian truthful mechanisms for job schedul-
ing from bi-criterion approximation algorithms. In Proceedings of the 26th an-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1934–1952, 2015.
doi:10.1137/1.9781611973730.130.

[14] E. Davis and J. M. Jaffe. Algorithms for scheduling tasks on unrelated processors. Journal
of the ACM, 28(4):721–736, 1981. doi:10.1145/322276.322284.

[15] S. Dobzinski and A. Shaulker. Improved lower bounds for truthful scheduling. ArXiv,
abs/2007.04362, 2020. URL https://arxiv.org/abs/2007.04362.

[16] S. Dobzinski and M. Sundararajan. On characterizations of truthful mechanisms for combi-
natorial auctions and scheduling. In Proceedings of the 9th ACM Conference on Electronic
Commerce (EC), pages 38–47, 2008. doi:10.1145/1386790.1386798.

[17] M. Feldman, B. Lucier, and N. Nisan. Correlated and coarse equilibria of single-item auc-
tions. In Proceedings of the 12th International Conference on Web and Internet Economics
(WINE), pages 131–144, 2016. doi:10.1007/978-3-662-54110-4_10.

[18] A. Filos-Ratsikas, S. K. S. Frederiksen, and J. Zhang. Social welfare in one-sided match-
ings: Random priority and beyond. In Proceedings of the 7th International Symposium on
Algorithmic Game Theory (SAGT), pages 1–12, 2014. doi:10.1007/978-3-662-44803-8_1.

[19] A. Filos-Ratsikas, Y. Giannakopoulos, and P. Lazos. The Pareto frontier of inefficiency in
mechanism design. In Proceedings of the 15th Conference on Web and Internet Economics
(WINE), pages 186–199, 2019. doi:10.1007/978-3-030-35389-6_14.

[20] M. Gairing. Covering games: Approximation through non-cooperation. In Proceedings
of the 5th International Workshop on Internet and Network Economics (WINE), pages
184–195, 2009. doi:10.1007/978-3-642-10841-9_18.

[21] M. R. Garey, D. S. Johnson, and R. Sethi. The complexity of flowshop and job-
shop scheduling. Mathematics of Operations Research, 1(2):117–129, 1976. URL
http://www.jstor.org/stable/3689278.

[22] Y. Giannakopoulos and M. Kyropoulou. The VCG mechanism for bayesian scheduling.
ACM Trans. Econ. Comput., 5(4):19:1–19:16, 2017. doi:10.1145/3105968.

[23] Y. Giannakopoulos, E. Koutsoupias, and M. Kyropoulou. The anarchy of scheduling with-
out money. Theoretical Computer Science, 778:19–32, 2019. doi:10.1016/j.tcs.2019.01.022.

[24] Y. Giannakopoulos, A. Hammerl, and D. Poças. A new lower bound for deterministic
truthful scheduling. In Proceedings of the 13th Symposium on Algorithmic Game Theory
(SAGT), 2020. doi:10.1007/978-3-030-57980-7_15.

[25] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical
Journal, 45(9):1563–1581, nov 1966. doi:10.1002/j.1538-7305.1966.tb01709.x.

[26] T. Groves. Incentives in teams. Econometrica, 41(4):617–631, 1973. doi:10.2307/1914085.

[27] L. A. Hall. Approximation algorithms for scheduling. In D. S. Hochbaum, editor, Ap-
proximation Algorithms for NP-hard Problems, pages 1–45. PWS Publishing Company,
1997.

23

https://doi.org/10.1007/bf01726210
https://doi.org/10.1137/1.9781611973730.130
https://doi.org/10.1145/322276.322284
https://arxiv.org/abs/2007.04362
https://doi.org/10.1145/1386790.1386798
https://doi.org/10.1007/978-3-662-54110-4_10
https://doi.org/10.1007/978-3-662-44803-8_1
https://doi.org/10.1007/978-3-030-35389-6_14
https://doi.org/10.1007/978-3-642-10841-9_18
http://www.jstor.org/stable/3689278
https://doi.org/10.1145/3105968
https://doi.org/10.1016/j.tcs.2019.01.022
https://doi.org/10.1007/978-3-030-57980-7_15
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.2307/1914085

[28] O. H. Ibarra and C. E. Kim. Heuristic algorithms for scheduling independent tasks on non-
identical processors. Journal of the ACM, 24(2):280–289, 1977. doi:10.1145/322003.322011.

[29] J. R. Jackson. Scheduling a production line to minimize maximum tardiness. Research
Report 43, Mgmt. Sci. Research Project, University of California, Los Angeles, 1955.

[30] S. M. Johnson. Optimal two-and three-stage production schedules with setup times in-
cluded. Naval research logistics quarterly, 1(1):61–68, 1954. doi:10.1002/nav.3800010110.

[31] E. Koutsoupias. Scheduling without payments. Theory of Computing Systems, 54(3):
375–387, 2014. doi:10.1007/s00224-013-9473-0.

[32] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Computer Science Review, 3
(2):65–69, 2009. doi:10.1016/j.cosrev.2009.04.003.

[33] E. Koutsoupias and A. Vidali. A lower bound of 1+φ for truthful scheduling mechanisms.
Algorithmica, 66(1):211–223, 2013. doi:10.1007/s00453-012-9634-6.

[34] R. Lavi and C. Swamy. Truthful mechanism design for multidimensional schedul-
ing via cycle monotonicity. Games and Economic Behavior, 67(1):99–124, 2009.
doi:10.1016/j.geb.2008.08.001.

[35] J. Lenstra, A. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling prob-
lems. In P. Hammer, E. Johnson, B. Korte, and G. Nemhauser, editors, Studies in In-
teger Programming, volume 1 of Annals of Discrete Mathematics, pages 343–362. 1977.
doi:10.1016/S0167-5060(08)70743-X.

[36] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for schedul-
ing unrelated parallel machines. Mathematical Programming, 46(1):259–271, 1990.
doi:10.1007/bf01585745.

[37] P. Lu and C. Yu. Randomized truthful mechanisms for scheduling unrelated machines.
In Proceedings of the 4th International Workshop on Internet and Network Economics
(WINE), pages 402–413, 2008. doi:10.1007/978-3-540-92185-1_46.

[38] B. Lucier, Y. Singer, V. Syrgkanis, and E. Tardos. Equilibrium in combinatorial public
projects. In Proceedings of the 9th International Conference on Web and Internet Eco-
nomics (WINE), pages 347–360, 2013. doi:10.1007/978-3-642-45046-4_28.

[39] E. Markakis and O. Telelis. Uniform price auctions: Equilibria and efficiency. Theor.
Comp. Sys., 57(3):549—-575, 2015. doi:10.1007/s00224-014-9537-9.

[40] A. Mu’alem and M. Schapira. Setting lower bounds on truthfulness. Games and Economic
Behavior, 110:174–193, 2018. doi:10.1016/j.geb.2018.02.001.

[41] R. B. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–73,
1981. doi:10.1287/moor.6.1.58.

[42] R. B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, 1997.

[43] N. Nisan. Introduction to mechanism design (for computer scientists). In N. Nisan,
T. Roughgarden, É. Tardos, and V. Vazirani, editors, Algorithmic Game Theory, chap-
ter 9. Cambridge University Press, 2007.

[44] N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic Behavior,
35(1/2):166–196, 2001. doi:10.1006/game.1999.0790.

24

https://doi.org/10.1145/322003.322011
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.1007/s00224-013-9473-0
https://doi.org/10.1016/j.cosrev.2009.04.003
https://doi.org/10.1007/s00453-012-9634-6
https://doi.org/10.1016/j.geb.2008.08.001
https://doi.org/10.1016/S0167-5060(08)70743-X
https://doi.org/10.1007/bf01585745
https://doi.org/10.1007/978-3-540-92185-1_46
https://doi.org/10.1007/978-3-642-45046-4{_}28
https://doi.org/10.1007/s00224-014-9537-9
https://doi.org/10.1016/j.geb.2018.02.001
https://doi.org/10.1287/moor.6.1.58
https://doi.org/10.1006/game.1999.0790

[45] N. Nisan and A. Ronen. Computationally feasible VCG mechanisms. Journal of Artificial
Intelligence Research, 29(1):19–47, 2007. doi:10.1613/jair.2046.

[46] M. L. Pinedo. Scheduling. Springer, 2012. doi:10.1007/978-1-4614-2361-4.

[47] C. N. Potts and V. A. Strusevich. Fifty years of scheduling: a survey of milestones. Journal
of the Operational Research Society, 60(1):S41–S68, 2009. doi:10.1057/jors.2009.2.

[48] V. Ramaswamy, D. Paccagnan, and J. R. Marden. Multiagent coverage problems:
The trade-off between anarchy and stability. CoRR, abs/1710.01409, July 2018. URL
http://arxiv.org/abs/1710.01409.

[49] A. H. G. Rinnooy Kan. Machine Scheduling Problems. Springer, 1976.
doi:10.1007/978-1-4613-4383-7.

[50] T. Roughgarden and É. Tardos. How bad is selfish routing? J. ACM, 49(2):236–259, 2002.
doi:10.1145/506147.506153.

[51] T. Roughgarden, V. Syrgkanis, and E. Tardos. The price of anarchy in auctions. Journal
of Artificial Intelligence Research, 59:59–101, 2017. doi:10.1613/jair.5272.

[52] M. Saks and L. Yu. Weak monotonicity suffices for truthfulness on convex domains. In
Proceedings of the 6th ACM Conference on Electronic Commerce (EC), pages 286–293,
2005. doi:10.1145/1064009.1064040.

[53] A. S. Schulz and N. S. Moses. On the performance of user equilibria in traffic networks. In
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 86–87, 2003.

[54] V. Syrgkanis and E. Tardos. Composable and efficient mechanisms. In Proceedings of the
45th Annual ACM Symposium on Theory of Computing (STOC), pages 211–220, 2013.
doi:10.1145/2488608.2488635.

[55] W. Vickrey. Counterspeculation, auctions and competitive sealed tenders. Journal of
Finance, 16(1):8–37, 1961. doi:10.1111/j.1540-6261.1961.tb02789.x.

Appendix

A Technical Lemmas

Lemma 4. For any nonnegative reals x, y with xy 6= 0 and all positive reals β, γ:

x + βy

max {x, γy} ≤ β

γ
+ 1

Proof. There are two cases to consider. First, if x ≥ γy, then

x + βy

max {x, γy} =
x + βy

x
= β

y

x
+ 1 ≤ β

1
γ

+ 1.

Secondly, if γy ≥ x, then

x + βy

max {x, γy} =
x + βy

γy
=

β

γ
+

x

γy
≤ β

γ
+ 1.

25

https://doi.org/10.1613/jair.2046
https://doi.org/10.1007/978-1-4614-2361-4
https://doi.org/10.1057/jors.2009.2
http://arxiv.org/abs/1710.01409
https://doi.org/10.1007/978-1-4613-4383-7
https://doi.org/10.1145/506147.506153
https://doi.org/10.1613/jair.5272
https://doi.org/10.1145/1064009.1064040
https://doi.org/10.1145/2488608.2488635
https://doi.org/10.1111/j.1540-6261.1961.tb02789.x

Lemma 5. For i, j = 1, . . . , n, let reals α > 0, ai,j > 0 (for i 6= j) and ai,i = 0 such that for
all j:

n∑

i=1

ai,j <
(n − 1) · α√

2
.

Then, for any positive ε ≤ α

(n−1)
√

2
there exists some i such that:

max
∅6=I⊆[n]\{i}

|I|
maxj∈I ai,j + ε

>
n − 1

α
√

2
.

The above inequality cannot be further improved.

Proof. We proceed using a proof by contradiction. For any fixed i, we use the index ik to refer
to ai,ik

, the k-th smallest among the ai,j. By contradiction, we have that for all i and nonempty
I ⊆ [n] \ {i}:

|I|
maxj∈I ai,j + ε

≤ n − 1

α
√

2
.

In particular, for all Ik = {2, . . . , k} (note that ai,i1 = ai,i = 0) we get:

k − 1
ai,ik

+ ε
≤ n − 1

α
√

2
=⇒ ai,ik

≥ α
(k − 1)

√
2

n − 1
− ε.

Summing over all values of i and j:

n∑

i=1

n∑

j=1

ai,j =
n∑

i=1

n∑

k=2

ai,ik
≥

n∑

i=1

n∑

k=2

α
(k − 1)

√
2

n − 1
− ε

=
α

√
2

n − 1

n∑

i=1

n∑

k=2

k − 1 − ε

=
α

√
2

n − 1
· n · n(n − 1)

2
− n(n − 1)ε

= n
n · α√

2
− n(n − 1)ε.

Since the aij are partitioned by the n distinct values of j, there must be some j for which:

n∑

i=1

ai,j ≥ n · α√
2

− (n − 1)ε ≥ (n − 1) · α√
2

,

leading to a contradiction.

This result is essentially tight. For any δ > 0 consider the matrix:

α

√
2 − δ

n − 1
·









0 1 2 · · · n − 2 n − 1
n − 1 0 1 · · · n − 3 n − 2

...
...

...
...

...
...

1 2 3 · · · n − 1 0









,

where every column sum is < (n − 1)α/
√

2 and for every row i and nonempty I ⊆ [n] \ {i}:

|I|
maxj∈I ai,j

≤ |I|
ai,i|I|+1

=
|I|

α(
√

2 − δ) |I|
n−1

=
n − 1

α(
√

2 − δ)
.

26

B Proof of Theorem 9

Without loss of generality, we assume that mechanism M allocates each task independently
by running the same single-task mechanism for every task. The reason the analysis carries
over is that we will only use tasks drawn from a finite pool. Restricted to these profiles of
true processing times, there are only finitely many essentially different single-task mechanisms,
when the difference is measured from the perspective of allocations. Therefore, even if the task-
independent mechanism M used a different mechanism for every task, we could always find n
single-component mechanisms operating the same way. For a rigorous treatment, we refer the
reader to Lemma 6.

We aim to identify some “weakness” of M by discovering, for canonical cost vectors that are
permutations of the true processing times (1, x, ∞, ∞, . . .), just how much larger x can get, so
that there exists some equilibrium under which the task is allocated to the slow machine. We
refer to the machine with processing time 1 as the fast machine and to the other, which does
not have a processing time of ∞, as the slow machine. As the mechanism is not anonymous,
there might be a different x for every permutation.

Formally, fix α

(n−1)
√

2
≥ ε > 0 and for i, j = 1, . . . , n and i 6= j, let

ai,j = max
k∈N






k · ε

∣
∣
∣
∣
∣
∣

for t = (. . . , 1
︸︷︷︸

i

, . . . , k · ε
︸︷︷︸

j

, . . .), ∃si,j s.t. machine j is allocated the task







be the maximum processing time of the slow machine, when the fast machine has index i, the
slow machine has index j and the slow machine can still receive the task for some equilibrium.
To ensure that Lemma 6 can be applied, we need to discretize the processing times, in order
to have a finite number of possible tasks. Let āi,j = ai,j + ε. Clearly, if ai,j is replaced by āi,j

in its canonical cost vector then the only allocation remaining will be to give the task to the
fast machine. For convenience, we also set ai,i = āi,i = 0. Let hi,j be the permutation of the
canonical cost vector where i is the fast machine and j the slow machine with cost ai,j and h̄i,j

the same but with cost āi,j instead.
Next, observe that 0 < ai,j < (n − 1)α/

√
2 + 1 for all i 6= j. The upper bound is due to the

assumption on the PoA, which would otherwise be violated for hi,j . For the lower bound, the
instance h̄i,j would have PoA ≥ 1/ε, leading to a contradiction, for some small enough ε.

For every machine j, we create the following profile of true processing times:

t(j) = (h1,j , . . . , h(i−1),j , f⋆(j), h(i+1),j , . . . , hn,j)⊤,

where f⋆ contains only one entry that is not ∞, at row j. Presented in a more convenient matrix
form: 



















1 ∞ ∞ ∞ ∞ · · · ∞ ∞ ∞
∞ 1 ∞ ∞ ∞ · · · ∞ ∞ ∞
...

. ∞
∞ ∞ · · · 1 ∞ ∞ · · · ∞ ∞
a1,j a2,j · · · a(j−1),j 1 a(j+1),j · · · a(n−1),j an,j

∞ ∞ · · · ∞ ∞ 1 ∞ · · · ∞
...

...
...

...
...

.
...

∞ ∞ · · · ∞ ∞ ∞ ∞ 1 ∞
∞ ∞ · · · ∞ ∞ ∞ ∞ ∞ 1



























n,

where machine j is the slow machine for all the tasks and for each task there exists exactly one,
distinct, fast machine. By task-independence, the profile of reported processing times

(s1,j , s2,j , . . . , s(i−1),j , f⋆
EQ, s(i+1),j , . . . , sn,j)⊤

27

is an equilibrium in which all tasks are allocated to the slow machine and f⋆
EQ is any equilibrium

for task j, which clearly has to select the j-th machine. Since the optimal makespan is 1, by
the given bound on the PoA, we have that for all j:

n∑

i=1

ai,j + 1 <
(n − 1) · α√

2
+ 1 =⇒

n∑

i=1

ai,j <
(n − 1) · α√

2
(2)

In the proof of Theorem 6, in order to obtain the bound for the PoS, we swapped the
positions of the slow and fast machines on each column, which was facilitated by the assumption
that the mechanism in that case was anonymous. In this case however mechanism M is not
anonymous, so we have to make a slight adjustment and change ai,j to āi,j. To obtain a lower
bound on the PoS, we instead fix i and using the true processing times

t̄(i) = (h̄i,1, . . . , h̄i,(i−1), f̄⋆, h̄i,(i+1), . . . , h̄i,n)⊤,

we get a matrix similar to the previous one, i.e.,




















āi,1 ∞ ∞ ∞ ∞ · · · ∞ ∞ ∞
∞ āi,2 ∞ ∞ ∞ · · · ∞ ∞ ∞
...

. ∞
∞ ∞ · · · āi,(i−1) ∞ ∞ · · · ∞ ∞
1 1 · · · 1 maxj āi,j 1 · · · 1 1
∞ ∞ · · · ∞ ∞ āi,(i+1) ∞ · · · ∞
...

...
...

...
...

.
...

∞ ∞ · · · ∞ ∞ ∞ ∞ āi,(n−1) ∞
∞ ∞ · · · ∞ ∞ ∞ ∞ ∞ āi,n





















Again, by task independence and the definition of āi,j, the mechanism has to allocate each
task to the fast machine, which for all tasks is machine i. The optimal allocation could poten-
tially only allocate to slow machines and produce an allocation with makespan at most maxj āi,j.
The lower bound on the PoS can be further improved by restricting the input to only contain
a nonempty subset I ⊆ [n] \ {i} of the tasks, plus task i which is special. This reduces the
makespan of both M and the optimal, but the overall fraction could increase. Notice that task i
(which has only one entry which is not ∞, adjusted to be the maximum amongst the |I| selected
āi,j) is always added, as it increases M’s makespan for free. In particular:

PoS ≥ max
I⊆[n]\{i}

|I| + maxj∈I āi,j

maxj∈I āi,j
= max

I⊆[n]\{i}
|I|

maxj∈I āi,j
+ 1 (3)

Notice that the ai,j satisfy the premises of Lemma 5: the ‘if’ part holds because each t(j)
generates one such inequality by the PoA bound. Similarly, any inequality generated by the
‘then’ part can be captured by an appropriate PoS bound in t̄(i). Applying the result of
Lemma 5 to Eq. (3) we get:

PoS ≥ max
I⊆[n]\{i}

|I|
maxj∈I āi,j

+ 1 = max
I⊆[n]\{i}

|I|
maxj∈I ai,j + ε

+ 1 >
n − 1

α
√

2
+ 1,

which completes the proof.

The proof of Theorem 9 shows that foregoing anonymity cannot lead to mechanisms with
asymptotically tighter Pareto frontiers. Moreover, it leads to the following observations. Most
likely, if there exists a stronger bound, it cannot be obtained with our canonical cost vectors
and would need to use a richer input. At the same time, if a non-anonymous mechanism that
achieves a better trade-off than that given by Theorem 6 does exist, the matrix at the end of
Lemma 5 could provide some insight on what that mechanism could look like, at least when
restricted to these tasks.

28

Lemma 6. Theorem 9 holds for all task-independent mechanisms M.

Proof. Continuing from our note in the beginning of Theorem 9, we show that given a task-
independent mechanism M, it is always possible to find n single-task component mechanisms
that behave the same way for the very specific inputs needed for the lower bounds. Notice that
in the proof of Theorem 9 the tasks we used all come from a finite set of true processing times
C. In particular, C contains all the permutations of (1, a, ∞, ∞, . . . , ∞), where a is of the form
k · ε and 0 < a < (n − 1) · α/

√
2 + ε. Therefore:

|C| = n(n − 1)
(n − 1) · α/

√
2

ε
.

Fix a single-task mechanism A. For a true processing time vector t ∈ C, call machine j accessible
from t if there exists an equilibrium for which the task is assigned to that machine. Let ACC (t)
be the set of accessible machines for component A for that t and B(A) be the behaviour set of
A, defined as

B(A) = {(t, ACC (t)) | t ∈ C } .

This fully characterizes A from the perspective of accessible allocations for tasks in C. Note that
for two different single-task mechanisms A1 and A2, it could be that B(A1) = B(A2) without
them being the same mechanism: they must however reach the same allocations given the same
t (potentially through different equilibria).

Clearly, ACC (t) can be one of 2n − 1 possible sets. This is because ACC (t) can be any
subset of the n machines, except the empty subset, since each task has to be allocated to some
machine at every equilibrium. This is however all we need in Theorem 9. Therefore, the total
number of behaviour sets is at most:

(2n − 1)|C|,

which is quite large, but bounded.
Let Aj be the single-task mechanism used by mechanism M for the j’th task, given an input

with n(2n − 1)|C| tasks from C in total. By the pidgeonhole principle, there must be at least n
such single-task mechanisms with the same behaviour set. Setting all other tasks to have real
processing times 0 for all tasks, we have successfully extracted a mechanism M′ that behaves
exactly as needed for Theorem 9.

29

	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.2.1 The Algorithmic Scheduling Problem
	1.2.2 The Selfish Scheduling Problem
	1.2.3 The Truthful Setting vs the Strategic Setting

	2 Model and Notation
	2.1 Task-Independent Mechanisms
	2.2 Solution Concepts and Notions of Inefficiency

	3 The Inefficiency of All Mechanisms
	3.1 PoA/PoS Trade-off
	3.1.1 Mechanisms on the Extrema of the Inefficiency Boundary

	4 The Pareto Frontier of Task-Independent Mechanisms
	4.1 PoA/PoS Trade-off
	4.2 Optimal Mechanisms on the Pareto Frontier

	5 Discussion and Future Directions
	5.1 General Mechanisms
	5.2 The Role of Anonymity
	5.3 Equilibrium Notion Considerations
	5.4 Computational Considerations

	A Technical Lemmas
	B Proof of Theorem 9

