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1. Introduction

1.1. Background

This paper is concerned with pure Nash equilibria in a natural subclass of strategic form games. Recall that a
pure Nash equilibrium of a strategic game is a joint strategy in which each player plays a best response. It is a
natural solution concept which has been widely used to reason about strategic interaction between rational
agents. Although Nash'’s theorem guarantees existence of a mixed strategy Nash equilibrium for all finite games,
pure Nash equilibria need not always exist. In various games, for instance Cournot competition games or conges-
tion games, pure Nash equilibria (from now, just Nash equilibria) do exist and correspond to natural outcomes.

In many scenarios of strategic interaction, apart from the question of the existence of Nash equilibria, an im-
portant concern is whether an equilibrium can be efficiently computed. In this context the concept of an improve-
ment path is relevant. These are maximal paths constructed by starting at an arbitrary joint strategy and allowing
a single player who does not hold a best response to switch to a better strategy at each stage. By definition, every
finite improvement path terminates in a Nash equilibrium.

In a seminal paper, Monderer and Shapley [40] identified the class of finite games in which every improve-
ment path is guaranteed to be finite, and coined this property as the finite improvement property (FIP). These are
games with which one can associate a generalised ordinal potential, a function on the set of joint strategies that
properly tracks the qualitative change in players’ payoffs resulting from a strategy change. Thus, the FIP not
only guarantees the existence of Nash equilibria but also ensures that it is possible to reach it from any initial
joint strategy by a simple update dynamics amounting to a local search. This makes the FIP a desirable property.
An important class of games that have the FIP are the congestion games that, as already noted in Rosenthal [45],
actually have an exact potential, a function that exactly tracks the quantitative difference in players’ payoffs.
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However, the requirement that every improvement path is finite is very strong and only a few classes of games
have this property. Young [55] proposed a weakening of the FIP that stipulates that from any initial joint strategy
only some improvement path is finite. Games for which this property holds are called weakly acyclic games. So in
weakly acyclic games, Nash equilibria can be reached through an appropriately chosen sequence of unilateral de-
viations of players, irrespective of the starting joint strategy.

Although the existence of a finite improvement path guarantees the existence of a Nash equilibrium, it does not
necessarily result in an efficient algorithm to compute it. In fact, in various games, improvement paths can be expo-
nentially long. Fabrikant et al. [23] showed that computing a Nash equilibrium in congestion games is complete for
the complexity class Polynomial Local Search (PLS-complete). Even in the class of symmetric network congestion
games, for which it is known that a Nash equilibrium can be efficiently computed (Fabrikant et al. [23]), there are
games in which some best response improvement paths are exponentially long (Ackermann et al. [1]). Thus, identi-
fying natural classes of games in which starting from any joint strategy a Nash equilibrium can be reached by an ef-
ficiently generated improvement path of polynomial length is of obvious interest and is the focus of this paper.

1.2. Motivation

In game theory, coordination games are often used to model situations of cooperation, where players can in-
crease their payoffs by coordinating on certain strategies. For two player games, this implies that coordinating
strategies constitute Nash equilibria. The main characteristic of coordination is that players find it advantageous
that other players follow their choice. In this paper, we study a simple class of multiplayer coordination games,
in which each player can choose to coordinate his actions within a certain neighbourhood. The neighbourhood
structure is specified by a weighted directed graph, the nodes of which are identified with the players.

Henceforth, we will refer to any strategy as a colour. The sets of colours available to players are usually not mu-
tually disjoint, as otherwise players would not be able to coordinate on the same action. Given a joint strategy,
the payoff for a player is defined as the sum of the weights of the incoming edges from other players who choose
the same colour plus a fixed bonus for picking this particular colour. We refer to this subclass of strategic games
as coordination games on weighted directed graphs, in short, just coordination games. Coordination games capture
the following key characteristics:

o Join-the-crowd property: the payoff of each player weakly increases when more players choose his strategy (this
is because the weights are assumed to be positive).

o Local dependency: the payoff of each player depends only on the choices made by a certain group of players
(namely the neighbours in the given weighted directed graph).

o Heterogeneous strategy sets: players may have different strategy sets.

o Individual preferences: the (positive) bonuses express players’ private preferences.

Coordination games constitute a formal model to analyse strategic interaction in situations where agents’ benefit
from aligning their choices with other agents in their neighbourhood. Such circumstances arise in various natural sit-
uations, for instance, when clients have to choose between multiple competing (for instance, mobile phone) pro-
viders offering similar services. It is often beneficial to choose the same service provider as the one chosen by friends
or relatives. Thus, the join-the-crowd property and local dependency naturally hold. It is also natural to envisage
that a provider imposes some bounds on incentives that are provided. For instance, a mobile phone operator might
impose a cap on the number of free calls and/or on the number of people with whom calls are free using its net-
work. Thus, weighted edges in the neighbourhood structure that capture the quantitative “influence,” in general,
need not be symmetric. Weighted directed edges are therefore appropriate to model this general situation.

In this paper, we focus on the existence and efficient computation of Nash equilibria in coordination games on spe-
cific directed graphs. Given that players can try to coordinate their choice within a group, it is also natural to consider
a notion of equilibrium that takes into account deviations by subsets of players. We therefore also study the existence
of strong equilibria, which are joint strategies from which no subset of players can profitably deviate. We consider
whether strong equilibria can be efficiently computed by means of short improvement paths in which at each stage all
players in a group can profitably deviate. We call such paths coalitional improvement paths, in short, c-improvement paths.

The coordination games studied here generalise the model introduced in Apt et al. [7] and further studied in
Apt et al. [8]. In these works the neighbourhood structure is represented by an unweighted and undirected graph.
A switch to directed graphs turns out to be a major shift and leads to fundamentally different results. For exam-
ple, in the case of undirected graphs, Nash equilibria always exist (in fact, these are exact potential games),
whereas even for simple directed graphs Nash equilibria do not exist. As a result both the structural results as
well as the techniques used here significantly differ from the ones in Apt et al. [8].

A natural application of coordination games is in the analysis of strategic behaviour in social networks. The
threshold model (Apt and Markakis [2], Granovetter [27]), in which members of the network are viewed as nodes
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in a weighted graph, is one of the prevalent models used to reason about social networks. Each node is associat-
ed with a threshold and a node adopts an “item” (which can be a disease, trend, or a specific product) when the
total weight of incoming edges (or influence) from the nodes that have already adopted this item exceeds its
threshold. The existence of directed edges is natural in such a scenario, because the “strength of influence” cap-
tured by a quantitative value need not always be symmetric between members in a social network. When we
omit bonuses, our coordination games become special cases of the social network games introduced and analysed
in Simon and Apt [48], provided one allows thresholds to be equal to zero.

1.3. Related Work

The class of games that have the FIP, introduced in Monderer and Shapley [40], was a subject of extensive re-
search. Prominent examples of such games are congestion games. Weakly acyclic games have received less atten-
tion, but the interest in them is growing. Milchtaich [38] showed that although congestion games with player
specific payoff functions do not have the FIP, they are weakly acyclic. Brokkelkamp and Vries [15] improved
upon this result by showing that a specific scheduling of players is sufficient to construct a finite improvement
path beginning at an arbitrary starting point. According to this scheduling the players are free to choose their
best response when updating their strategies.

Weak acyclicity of a game also ensures that certain modifications of the traditional no-regret algorithm yield
an almost sure convergence to a Nash equilibrium (Marden et al. [36]). Engelberg and Schapira [18, 19] show
that specific internet routing games are weakly acyclic. In turn, Kawald and Lenzner [32] established that certain
classes of network creation games are weakly acyclic and moreover that a specific scheduling of players can en-
sure that the resulting improvement path converges to a Nash equilibrium in O(n log 1) steps. Furthermore,
Meir et al. [37] propose the use of weakly acyclic games as a tool to analyse some iterative voting procedures.

Some structural results also exist. Fabrikant et al. [22] proved that the existence of a unique Nash equilibrium
in every subgame implies that the game is weakly acyclic. A comprehensive classification of weakly acyclic
games in terms of schedulers is provided in Apt and Simon [4] and more extensively in Apt and Simon [5],
where it was also shown that games solvable by means of iterated elimination of never best responses to pure
strategies are weakly acyclic. Finally, Milchtaich [39] provided a characterisation of weakly acyclic games in
terms of a weak potential and showed that every finite extensive form game with perfect information is weakly
acyclic.

As already mentioned, coordination games on unweighted and undirected graphs were introduced and stud-
ied in Apt et al. [8]. It was shown there that the improvement paths are guaranteed to converge in polynomial
number of steps. Given this result, the study focused on the analysis of strong equilibria and its variants. The au-
thors also provided bounds on the inefficiency of strong equilibria and identified restrictions on the neighbour-
hood structure that ensure efficient computation of strong equilibria. These coordination games were augmented
in Rahn and Schafer [44] by bonuses (which the authors call individual preferences). The authors studied the exis-
tence of a-approximate k-equilibria and their inefficiency with respect to (w.r.t.) social optima. These equilibria
are outcomes in which no group of at most k players can deviate in such a way that each member increases his
payoff by at least a factor a.

The games we study here are related to various well-studied classes of strategic form games. In particular, co-
ordination games on graphs form a natural subclass of polymatrix games (Yanovskaya [54]). These are multiplayer
games where the players’ utilities are pairwise separable. Polymatrix games are well-studied and they include
classes of strategic form games with good computational properties like the two-player zero-sum games. Simon
and Wojtczak [50] studied the computational complexity of checking for the existence of constrained pure Nash
equilibria in a subclass of polymatrix games defined on weighted directed graphs. Hoefer [30] studied clustering
games that are also polymatrix games based on undirected graphs. In this setup, each player has the same set of
strategies and as a result these games have, in contrast to ours, the FIP. A special class of polymatrix games was
considered in Cai and Daskalakis [16], which coincide with the coordination games on undirected weighted
graphs without bonuses. The authors showed that these games have an exact potential and that finding a pure
Nash equilibrium is PLS-complete. However, the proof of the latter result crucially exploits the fact that the edge
weights can be negative (which captures anticoordination behaviour). In Apt and Shoja [3] it was shown how co-
ordination and anticoordination on simple cycles can be used to model and reason about the concept of self-
stabilisation introduced in Dijkstra [17], one of the main approaches to fault-tolerant computing.

When the graph is undirected and complete, coordination games on graphs are special cases of the monotone
increasing congestion games that were studied in Rozenfeld and Tennenholtz [46].

Another generalisation concerns distributed coalition formation (Hajdukova [28]), where players have prefer-
ences over members of the same coalition. Such a generalisation of polymatrix game over subsets of players,
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called hypergraphical games, was introduced in Papadimitriou and Roughgarden [42]. Analysis of coalition for-
mation games in the presence of constraints on the number of coalitions that can be formed was investigated in
Sless et al. [52]. Simon and Wojtczak [51] studied a subclass of hypergraphical games where the underlying
group interactions are restricted to coordination and anticoordination. In this model, players” utilities depend
not just on the groups that are formed by the strategic interaction, but also on the choice of action that the mem-
bers of the group decide to coordinate on. It is shown that such games have a Nash equilibrium, which can be
computed in pseudopolynomial time. Moreover, in the pure coordination setting, when the game possesses a
certain acyclic structure, strong equilibria exist and can be computed in polynomial time.

Coordination games on graphs are also related to additively separable hedonic games (Banerjee et al [13], Bogo-
molnaia and Jackson [14]), which were originally proposed in a cooperative game theory setting. In these games
players are the nodes of a weighted graph and can form coalitions. The payoff of a node is defined as the total
weight of all edges to neighbors that are in the same coalition. The work on these games mostly focused on com-
putational issues (see, e.g., Aziz and Brandl [10], Aziz et al. [11, 12], Gairing and Savani [24]).

In Apt et al. [8], we also mentioned related work on strategic games that involve colouring of the vertices of an
undirected graph, in relation to the vertex colouring problem. In these games, the players are nodes in a graph
that choose colours. However, the payoff function differs from the one we consider here: it is zero if a neighbour
chooses the same colour and the number of nodes that chose the same colour otherwise. The reason is that these
games are motivated by the question of finding the chromatic number of a graph. Representative references are
Panagopoulou and Spirakis [41], where it is shown that an efficient local search algorithm can be used to compute
a good vertex colouring, and Escoffier et al. [20], where this work is extended by analysing socially optimal out-
comes and strong equilibria. Furthermore, strong and k-equilibria in strategic games on graphs were also studied
in Gourves and Monnot [25, 26]. These games are related to, respectively, the Max-Cut and Max-k-Cut problems.
These classes of games do not satisfy the join-the-crowd property, so these results are not comparable with ours.

1.4. Our Contributions

In this paper, we identify various natural classes of weighted directed graphs for which the resulting games, pos-
sibly with bonuses, are weakly acyclic. Moreover, we prove that in these games, starting from any arbitrary joint
strategy, improvement paths of polynomial length can be effectively constructed. So not only do these games
have Nash equilibria, but they can also be efficiently computed by a simple form of local search. Because coordi-
nation games on graphs are polymatrix games, our results identify natural classes of polymatrix games in which
Nash equilibria are guaranteed to exist and can be computed efficiently.

We first analyse coordination games on simple cycles. Even in this limited setting, improvement paths of infi-
nite length may exist. However, we show that finite improvement paths always exist when at most two nodes
have bonuses or at most two edges have weights. We also show that without these restrictions, Nash equilibria
may not exist, so these results are optimal. We then extend this setting to open chains of simple cycles, that is, sim-
ple cycles that form a chain and show the existence of finite improvement paths.

Most of our constructions involve a common, though increasingly more complex, proof technique. In each
case we identify a scheduling of players that is easy to compute and such that, when combined with an appropri-
ate scheme to update strategies, guarantees that starting from an arbitrary initial joint strategy, in the resulting
improvement path, a Nash equilibrium is reached in a polynomial number of steps.

We also study strong equilibria. In the restricted case of weighted directed acyclic graphs (DAGs), we show
that strong equilibria can be found along every coalitional improvement path. We also show that when only two
colours are used, the coordination games do not necessarily have the FIP, but both Nash and strong equilibria
can always be reached starting from an arbitrary initial joint strategy by, respectively, an improvement or a
c-improvement path.

To deal with simple cycles, we show that any finite improvement path can be extended by just one profitable
coalitional deviation to reach a strong equilibrium. This allows us to strengthen the results on the existence of
Nash equilibria to the case of strong equilibria. We also prove the existence of strong equilibria when the graphs
are open chains of cycles. Finally, we show that in some coordination games, strong equilibria exist but cannot
be reached from some initial joint strategies by any c-improvement path.

Building upon these results, we study the complexity of finding and determining the existence of Nash equilib-
ria and strong equilibria. In particular, we show that strong equilibrium in a coordination game on a simple cycle
can be computed in linear time. However, determining the existence of a Nash equilibrium even for games on
unweighted graphs and without bonuses turns out to be NP-complete.

Table 1 summarises our main results concerning the complexity of finding Nash and strong equilibria. For the
complexity results, we assume that all edge weights are natural numbers. We list, respectively, the length of the



Downloaded from informs.org by [192.16.191.136] on 26 July 2022, at 05:29 . For personal use only, al rights reserved.

Published in Mathematics of Operations Research on October 04, 2021 as DOI: 10.1287/moor.2021.1159.
This article has not been copyedited or formatted. The final version may differ from this version.

Apt, Simon, and Wojtczak: Coordination Games on Weighted Directed Graphs
Mathematics of Operations Research, 2022, vol. 47, no. 2, pp. 995-1025, © 2021 INFORMS 999

Table 1. Bounds on the length of the shortest improvement and c-improvement (c-impr.) paths for a given class of graphs
or colouring and on the complexity of finding Nash and strong equilibria. All edges are unweighted, and there are no bo-
nuses unless stated otherwise.

Graph/bonus/colouring Improvement path NE c-impr. path SE
Weighted simple cycles with <1 2n—1 (Theorem 1)  O(nl) (Theorem 11) 2n (Corollary 1i) O(nl) (Theorem 11)
node with bonuses
Simple cycles with bonuses with 3n—1 (Theorem 2)  O(nl) (Theorem 11) 3n (Corollary 1ii) O(nl) (Theorem 11)
<1 nontrivial weight
Weighted simple cycles with more Nash equilibrium may not exist (Example 4)
than two nodes with bonuses
Weighted simple cycles with two 3n (Theorem 3) O(nl) (Theorem 11) 3n (Corollary 1iii) O(nl) (Theorem 11)
nodes with bonuses
Simple cycles with bonuses and 4n—1 (Theorem 4)  O(nl) (Theorem 11) 4n (Corollary 1iiii) ~ O(nl) (Theorem 11)
two nontrivial weights
Open chains of cycles 3vm® (Theorem 5) O(vm®l) (Theorem 12) 4om* (Theorem 8) O(*>m®]) (Theorem 13)
Weighted DAGs with bonuses n =1 (Theorem 6) O(nl + |E|) (Theorem 14)  n — 1 (Theorem 6) O(nl + |E|) (Theorem 14)
Two colours 2n (Theorem 9) O(n +|E]) (Theorem 15) 2n (Theorem 10) O(n? +n|E|) (Theorem 15)

shortest improvement path from an arbitrary initial joint strategy, the complexity of finding a Nash equilibrium
(abbreviated to NE), the length of the shortest c-improvement path starting from an arbitrary initial joint strate-
gy, and the complexity of finding a strong equilibrium (abbreviated to SE). Here, n is the number of nodes, |E|
the number of edges, and | the number of colours. In the case of open chain of cycles, m denotes the number of
simple cycles in the chain and v the number of nodes in a simple cycle.

Most, though not all, results of this paper were reported earlier in shortened versions, as two conference pa-
pers (Apt et al. [6], Simon and Wojtczak [49]). Some of these results, notably on bounds on the length of (c-)im-
provement paths, were improved.

1.5. Potential Applications

Coordination games constitute a natural and well-studied model that represents various practical situations. The
class of games we study in this paper models an extension of the coordination concept to a network setting,
where the network is represented as a weighted directed graph, and where common strategies are not guaran-
teed to exist, and the payoffs functions take care of individual preferences.

The classes of graphs that we consider are frequently used as network topologies. For example, the token ring
local area networks are organised in directed simple cycles, whereas the open chains of simple cycles are sup-
ported by the recommendation G.8032v2 on Ethernet ring protection switching."

The basic technique that we use to show finite convergence to Nash equilibria is based on finite improvement
paths of polynomial length. The concept of an improvement path is fundamental in the study of games but it also
can be used to explain and analyse various real world applications. One such example is the border gateway proto-
col (BGP), the purpose of which is to assign routes to the nodes of the internet and to use them for routing packets.
Over the years, there has been extensive research in the network communications literature on how stable routing
states are achieved and maintained in BGP in spite of strategic concerns. Fabrikant and Papadimitriou [21] and, in-
dependently, Levin et al. [35] observed that the operation of the BGP can be viewed as a best response dynamics in
a natural class of routing games and finite improvement paths that terminate in Nash equilibria essentially translate
to stable routing states. Following this observation, Engelberg and Schapira [19] presented a game-theoretic analysis
of routing on the internet in presence of “misbehaving players” or backup edges.

Finally, coordination games on graphs are also relevant to cluster analysis. Its main objective is to organise a set of
naturally related objects into groups according to some similarity measure. When adopting the game-theoretic per-
spective, one can view possible cluster names as strategies and a satisfactory clustering of the considered graph as an
equilibrium in the coordination game associated with the considered graph. Clustering from a game-theoretic per-
spective (using evolutionary games) was among others applied to car and pedestrian detection in images and face
recognition (see Pelillo and Bul6 [43]). This approach was shown to perform very well against the state of the art.

1.6. Structure of This Paper
In the next section, we recall the relevant game-theoretic concepts and the notions of (c-)improvement paths,
Nash and strong equilibria on which we focus. In Section 3, we introduce the class of games that forms the
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subject of this paper. The technical presentation starts in Section 4, in which we analyse the games the underlying
graphs of which are (possibly weighted) simple cycles. In Section 5, we study open chains of simple cycles.

Then, in Section 6 we consider the problem of the existence of strong equilibria. Next, in Section 7, we study
the complexity of finding and of determining the existence of Nash equilibria and strong equilibria. We conclude
by summarising in Section 8 the results and stating a natural open problem.

2. Preliminaries

Throughout this paper, n > 1 denotes the number of players. A strategic game G =(S1,...,Su, p1,...,Pn) for n play-
ers consists of a nonempty set S; of strategies and a payoff function p; : S1 X --- X S, — R, for each player i. We de-
note 5; X -+ X S, by S, call each element s € S a joint strategy, and abbreviate the sequence (s;);; to s_;. Occasion-
ally we write (s;,s_;) instead of s. We call a strategy s; of player i a best response to a joint strategy s_; of his
opponents if for all s} € S;, pi(si,s—i) > pi(s},5-i). A joint strategy s is called a Nash equilibrium if each s; is a best re-
sponse to s_;.

Fix a strategic game G. We say that G satisfies the positive population monotonicity (PPM; see Konishi et al. [33]) if
for all joint strategies s and players i and j, pi(s) < pi(si,s—;). (Note that (s;,s_;) refers to the joint strategy in which
player j chooses s;.) So if player j switches to player i’s strategy and the remaining players do not change their
strategies, then i’s payoff weakly increases.

Next, by a polymatrix game (see Yanovskaya [54]) we mean a game (S1,...,S,,p1,- - -, Pn) in which for all pairs of
players i and j there exists a partial payoff function a” such that for any joint strategy s = (1, . ..,s,), the payoff of
player i is given by p;(s) := Z]-#a"j (si,sj). So polymatrix games are strategic games in which the influence of a strat-
egy selected by a player on the payoff of another player is always the same, regardless of what strategies other
players select.

We call a nonempty subset K := {ki, ..., ky} of the set of players N :={1,...,n} a coalition. Given a joint strategy
s, we abbreviate the sequence (s,,...,s,) of strategies to sx and Sy, X --- X S, to Sx. We occasionally write
(sk,s—k) instead of s.

Given two joint strategies s’ and s and a coalition K, we say that s’ is a deviation of the players in K from s if
K ={ieN|s; #+ s/}. We denote this by s K and drop K if it is a singleton. If in, addition p;(s”) > p:(s) holds for all
i € K, we say that the deviation s’ from s is profitable and say that s K¢ isac- improvement step. Furthermore, we
say that a coalition K can profitably deviate from s if there exists a profitable deviation of the players in K from s.
Next, we call a joint strategy s a k-equilibrium, where k € {1,...,n}, if no coalition of at most k players can profit-
ably deviate from s. Using this definition, a Nash equilibrium is a 1-equilibrium and a strong equilibrium (see Au-
mann [9]) is an n-equilibrium.

A coalitional improvement path, in short, a c-improvement path, is a possibly infinite sequence p = (s!,s2,...) of

k+1

joint strategies such that for every k > 1 there is a coalition K such that s Kokl s a profitable deviation of the

players in K, with the property that if it is finite, then it cannot be extended. So if p is finite, then there is no profit-
able deviation from the last element of the sequence, which we denote by last(p). Clearly, if a c-improvement

path is finite, its last element is a strong equilibrium.

We say that G has the finite c-improvement property (c-FIP) if every c-improvement path is finite. Furthermore,
we say that the function P:S — A, where A is a set, is a generalised ordinal c-potential, also called generalised
strong potential, for G (see Harks et al. [29], Holzman and Law-Yone [31]) if for some strict partial ordering
(P(S), >) the fact that s’ is a profitable deviation of the players in some coalition from s implies that P(s") > P(s). If
a finite game admits a generalised ordinal c-potential, then it has the c-FIP. The converse also holds (see, e.g.,
Aptetal. [8]).

We say that G is c-weakly acyclic if for every joint strategy there exists a finite c-improvement path that starts at
it. Thus, games that are c-weakly acyclic have a strong equilibrium. We call a c-improvement path an improve-
ment path if each deviating coalition consists of one player. The notion of a game having the FIP or being weakly
acyclic is then defined by referring to the improvement paths instead of c-improvement paths.

In this paper, we are interested in determining the existence of “short” improvement and c-improvement paths
starting from any initial joint strategy. This motivates the following concept that we shall extensively use. We say
that a game ensures improvement paths of length X (where X can also be expressed using the O(-) function) if for
each joint strategy there exists an improvement path that starts at it and is of length (at most) X. We use an analo-
gous notion for the c-improvement paths.

To find such short (c-)improvement paths starting from an arbitrary initial joint strategy, we need to select the
players in the right order. This motivates the following notion. By a schedule we mean a finite or infinite sequence,
each element of which is a player. Let € denote the empty sequence and seq : i the finite sequence seq extended
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by i. Given an initial joint strategy s, a schedule generates an (not necessarily unique) initial fragment of an
improvement path, defined inductively as follows:

path(s,€) :=s,

path(s, seq) if i holds a best response in the last element of
path(s,seq : i) := path(s, seq),

path(s,seq) — s’ otherwise,

where s’ is the result of updating the strategy of player i in the last element of path(s, seq) to a best response.

Sometimes we additionally specify how players update their strategies to best responses, but even then the
generated improvement paths do not need to be unique. The process of selecting a strategy is always linear in
the number of strategies. To show that a game ensures short improvement paths, we provide in each case an ap-
propriate schedule. Note that an infinite schedule can generate a finite improvement path, which is the case
when the last element of path(s, seq) is a Nash equilibrium.

In the proofs, we always mention the bounds on the improvement paths, but actually these are bounds on the
relevant prefixes of the defined schedules, which are always longer or of the same length.

3. Coordination Games on Directed Graphs

We now define the class of games we are interested in. Fix a finite set M of | colours. A weighted directed graph (G,
w) is a pair, where G = (V,E) is a directed graph without self loops and parallel edges over the set of vertices
V ={1,...,n}, and w is a function that associates with each edge e € E a positive weight w,.. We say that a weight
is nontrivial if it is different from one.

Furthermore, we say that a node j is an in-neighbour (from now on a neighbour) of the node i if there is an edge
j—iin E. We denote by N; the set of all neighbours of node i in the graph G. A colour assignment is a function C:
V — P(M) that assigns to each node of G a nonempty set of colours.

We also introduce the concept of a bonus, which is a function f that assigns to each node i and colour ce M a
nonnegative integer (i, ¢). When stating our results, bonuses are assumed to be not present (or, equivalently, are
assumed to be all equal to zero) unless explicitly stated otherwise. We say that a bonus is nontrivial if it is differ-
ent from the constant function zero.

Given a weighted graph (G, w), a colour assignment C and a bonus function j, a strategic game G(G,w,C, ) is
defined as follows:

o the players are the nodes,

o the set of strategies of player (node) i is the set of colours C(i) (we occasionally refer to the strategies as colours),

e the payoff function for player iis pi(s) = > . Ny si=5, i B(i,s;).

So each node simultaneously chooses a colour, and the payoff to the node is the sum of the weights of the
edges from its neighbours that chose its colour augmented by the bonus to the node for choosing its colour. We
call these games coordination games on weighted directed graphs (hereafter, just coordination games).

Note that because the weights are nonnegative, each coordination game satisfies the PPM. When the weights
of all the edges are one, we are dealing with a coordination game whose underlying graph is unweighted. In this
case, we simply drop the function w from the description of the game and drop the qualification “unweighted”
when referring to the graph.

Similarly, when all the bonuses are zero, we obtain a coordination game without bonuses. Likewise, in the de-
scription of such a game, we omit the function . In a coordination game without bonuses when the underlying
graph is unweighted, each payoff function is simply defined by pi(s) := [{j € N;|s; = s;}|. Here is an example of
such a game.

Example 1. Consider the directed graph and the colour assignment depicted in Figure 1. Take in the correspond-
ing coordination game the joint strategy that consists of the underlined colours. Then the payoffs are as follows:

e zero fornodes 1,7,8,and 9,

e one fornodes 2,4, 5, and 6,

e two for node 3.

Note that this joint strategy is not a Nash equilibrium. In fact, this game has no Nash equilibrium. To see this,
observe that we only need to consider the strategies selected by nodes 1, 2, and 3, because each of the nodes 4, 5,
and 6 always plays a best response by selecting the strategy of its only predecessor, and each of the nodes 7, §,
and 9 has just one strategy.

We now list all joint strategies for nodes 1, 2, and 3 and in each of them underline a strategy that is not a best
response to the choice of the other players: (a,4,b), (a,4,¢), (a,c,b), (a,c,¢), (b,a,b), (b,a,c), (b,c,b),and (b,¢,c). O
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Figure 1. A coordination game with a selected joint strategy.

{a}

{a,b}

o

{b c} {a7g}

{@} {a ) {c}

{a, b}

In the above game, no bonuses are used, and the edges in the underlying graph are unweighted. In Example 4,
we exhibit a coordination game with bonuses which has a much simpler underlying graph with weighted edges
and in which no Nash equilibrium exists. The above example of course raises several questions, for instance, are
there restricted classes of coordination games where a Nash equilibrium always exists? Is the above example
minimal in the number of colours? Does there exists coordination games that have a Nash equilibrium but are
not weakly acyclic? How difficult is it to determine whether a Nash equilibrium exists? We shall address these
and other questions in the rest of this paper.

4. Simple Cycles

Given that coordination games need not always have a Nash equilibrium, we consider special graph structures
to identify classes of games where a Nash equilibrium is guaranteed to exist. In this section, we focus on simple
cycles. To fix the notation, suppose that the considered directed graphis 1 —2— ... —»n — 1. We begin with
the following simple example showing that the coordination games on a simple cycle do not have the FIP. Here
and elsewhere, to increase readability, when presenting profitable deviations, we underline the strategies that
were modified.

Example 2. Suppose 1 > 3. Consider a coordination game on a simple cycle where the nodes share at least two
colours, say, a and b. Take the joint strategy (4,b,...,b). Then both (a,b,b,...,b) = (a,a,b,...,b) and
(a,a,b,...,b) = (b,a,b,...,b) are profitable deviations. After these two steps, we obtain a joint strategy
(b,a,b,...,b) that is a rotation of the initial one. Iterating, we obtain an infinite improvement path.

On the other hand, a weaker result holds.

Theorem 1. Every coordination game on a weighted simple cycle in which at most one node has bonuses ensures improve-
ment paths of length <2n —1.

Proof. First, assume that no node has bonuses. Fix an initial joint strategy. We construct the desired improve-
ment path by scheduling the players in the round robin fashion, starting with player 1. We prove that after at
most two rounds we reach a Nash equilibrium.

Phase 1. This phase lasts at most 1 — 1 steps. Each time we select a player who does not hold a best response and
update his strategy to a best response. Such a modification affects only the payoff of the successor player, so after
we considered player n — 1, in the current joint strategy s, each of the players 1,2,...,n — 1 holds a best response.

If at this moment the current strategy of player # is also a best response, then s is a Nash equilibrium, and the im-
provement path terminates. Otherwise we move to the next phase.

Phase 2. We repeat the same process as in Phase 1, but starting with s and player n.

By the definition of the game, the property that at least n — 1 players hold a best response continues to hold
for all consecutive joint strategies, and a Nash equilibrium is reached when the selected player holds a
best response.
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Suppose player n switches to a strategy c. Recall that C(7) is the set of colours available to playeri. Let

- n-1 if Vie{l,...,n—1}:c€C(i) and s; # ¢,
O Imin{ie{l,...,n-1}|ce C({i) ors;=c} -1 otherwise.

The improvement path terminates after the players 1,...,1n9 successively switched to c, as at this mo-
ment player 1y +1 holds a best response.
Suppose that a node has bonuses. Then we rename the nodes so that this is node n. Then the argument
used in reasoning about Phase 2 remains correct. O

As a side remark, note that the renaming of the players used at the end of the above proof is necessary, as oth-
erwise the used schedule can generate improvement paths that are longer than 2n —1.

Example 3. Suppose that n>5 and that the simple cycle is unweighted. Assume that there are four colours,
a,b,c,d, and consider the following colour assignment:

Cl)=...=C(n-3)=C(n)={a,b,c,d}, Cn-2)=A{a,c},Cn-1)={c,d},

where the overline indicates the only positive bonus in the game.
Consider the joint strategy (b,...,b,a,d,a). If we follow the clockwise schedule starting with player 1, there is
only one improvement path, namely,

(b/' . .,b,ﬂ,d,ﬂ)_)*(a,. . 'Ia/aldfg) -
@a,...,a,a,d,d)—"d,...,dadd) —,... dcdd—(,...dccd—
,...,dc,.cc)-(,...,cccc).

In each joint strategy, we underlined the strategy of the scheduled player from which he profitably deviates
and each —" refers to a sequence of n — 3 profitable deviations. So this improvement path is of length 3n — 5, and
thus longer than 2n — 1 because n > 5.

Furthermore, the following result holds.

Theorem 2. Every coordination game with bonuses on a simple cycle in which at most one edge has a nontrivial weight en-
sures improvement paths of length <3n —1.

Proof. We first assume that no edge has a nontrivial weight. As in the proof of Theorem 1, we schedule the play-
ers clockwise starting with player 1. However, we are now more specific about the strategies to which the players
switch. Let MB(i) be the set of available colours to player i with the maximal bonus, that is,

MB(i) := {c € C(i) | B(i,c) = max (i, d)}.

Below we stipulate that whenever the selected player i updates his strategy to a best response, he always se-
lects a strategy from MB(i). Note that this is always possible, because the bonuses are nonnegative integers. In-
deed, suppose that the strategy of player’s i predecessor is c. If c € MB(i), then player i selects ¢, and otherwise he
can select an arbitrary strategy from MB(i). Fix an initial joint strategy.

Phase 1. This phase is the same as in the proof of Theorem 1, except for the above proviso. So when this phase
ends, the players 1,...,1n — 1 hold a best response. If at this moment the current joint strategy s is a Nash equilibri-
um, the improvement path terminates. Otherwise we move to the next phase.

Phase 2. We repeat the same process as in Phase 1, but starting with s and player # and proceeding at most n
steps. From now on, at each step, at least n — 1 players have a best response strategy. So if at a certain moment the
scheduled player holds a best response, the improvement path terminates. Otherwise, the playersn,1,...,1n -1 suc-
cessively update their strategies, and after n steps, we move to the final phase.

Phase 3. We repeat the same process as in Phase 2, again starting with player n. In the previous phase, each play-
er updated his strategy, so now, in the initial joint strategy, each player i holds a strategy from MB(i). Hence, each
player can improve his payoff only if he switches to the strategy selected by his predecessor that also has the maxi-
mal bonus. Let c be the strategy to which player n switches, and let

_[n-1 if Vie{l,...,n—1}:ce MB(i)and s; # ¢,
O Imin{ie{l,...,n—1}|c¢ MB(i) ors; =c} — 1 otherwise.
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The improvement path terminates after the players 1,...,19 have successively switched to c, as at this mo-
ment player 1o + 1 holds a best response.

If some edge has a nontrivial weight, then we rename the players so that this edge is into the node n. Notice
that now we cannot require that player n selects a best response from MB(n), because the colour of his prede-
cessor can yield a higher payoff because of the presence of the weight. So we drop this requirement for node n
but maintain it for the other nodes.

Then, at the beginning of Phase 3, we can claim only that each player i # n holds a strategy from MB(i), but
this is sufficient for the remainder of the proof. O

We would like to generalise the above two results to coordination games with bonuses on arbitrary weighted
simple cycles. However, the following example shows that if we allow in a simple cycle nontrivial weights on
three edges and associate bonuses with three nodes, then some coordination games have no Nash equilibrium.

Example 4. Consider the weighted simple cycle and the colour assignment depicted in Figure 2, where the over-
lined colours have bonus one. The resulting coordination game does not have a Nash equilibrium. The list of
joint strategies, each of them with an underlined strategy that is not a best response to the choice of other players,
is the same as in Example 1: (a,4,b), (a,a,¢), (a,c,b), (a,c,c), (b,a,b), (b,a,c), (b,c,b), and (b,c,c). In fact, the game
considered in that example simulates this game.

In what follows, we show that this counterexample is minimal in the sense that if in a weighted simple cycle
with bonuses at most two nodes have bonuses or at most two edges have nontrivial weights, then the coordina-
tion game has a Nash equilibrium. More precisely, we establish the following two results.

Theorem 3. Every coordination game on a weighted simple cycle in which two nodes have bonuses ensures improvement
paths of length < 3n.

Proof. Relabel the nodes if necessary so that one of the nodes that has bonuses is node 1. Let k be the second
node that has bonuses. Fix an initial joint strategy. We schedule, as before, the players clockwise, starting with
player 1.

Phase 1. This phase lasts at most 1 steps. We repeatedly select the first player who does not hold a best response
and update his strategy to a best response. A best response can be either the colour of the predecessor or, in the
case of nodes 1 and k only, a colour with the maximal bonus. In the case of equal payoffs of these two options, we
give a preference to the former. As in the previous proofs, a strategy update of a given node affects only the payoff
of the successor node. If at the end of Phase 1 the current strategy of player 1 is also a best response, then we
reached a Nash equilibrium and the improvement path terminates. Otherwise, we move on to the next phase.

Phase 2. In this phase, we perform at most two rounds of clockwise updates of all the nodes, starting at player 1.
We explicitly distinguish 10 scenarios, which are defined as follows. (They also play an important role in the proof
of Theorem 5 in Section 5.) We focus on two types of strategy updates by the nodes with bonuses:

¢ an update to an inner colour (recorded as i), that is, the colour of its predecessor, or
¢ an update to an outer colour (recorded as o), that is, one of the colours with a maximal bonus.

If a colour is both inner and outer, then we record it as i. An update scenario is now a sequence of recordings of
consecutive updates by the nodes with bonuses that is generated during the above two phases.

One possible update scenario is [iooil, which takes place when player 1 first adopts the colour of its predecessor (i)
and this colour then propagates until player k is reached. At this point, player k adopts a different colour with the
maximal bonus (o), and this colour propagates further until player 1 is reached again. Player 1 then adopts a different
colour with the maximal bonus (0), which then propagates and is also adopted by player k (i). This propagation stops
at a node j lying between the nodes k and 1. At this point, a Nash equilibrium is reached because player j holds a best
response and hence all players hold a best response.

Figure 2. A coordination game without a Nash equilibrium.

{a,b}

2 \ 2
) @/T@ (0.
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In general, an update scenario has to stop after an oi or ii is recorded, because then the same colour is propagated
throughout the whole cycle and no new colour is introduced. Moreover, an update string cannot contain ooo as a
subsequence, because then the third update to an outer colour would yield the same payoff as the first one, so it cannot be
improving the payoff. It is now easy to enumerate all update scenarios satisfying these two constraints, and these are as
follows: [o], [oil, [00], [0oi], [il, [iil, [io], [ioil, [ioo], [iooi]. The only one of length four is the already considered update
scenario [iooi], which yields the longest sequence of profitable deviations in Phase 2, which is 2n. O

Now consider coordination games on simple cycles with bonuses in which two edges have nontrivial weights.
The following example shows that if we follow the clockwise schedule starting with player 1, then the bound 3n
given by Theorem 3 does not need to hold.

Example 5. Suppose that n > 5, the weights of the edges 1 —3 — n—2 and n —1 — n are two, and the weights of
the other edges are one. Let C = {a,b,c,d,¢,f, g, h,i}. Define the colour and the bonus assignment as follows, where
the overlined colours have bonus one:

C(1)=C\{e}; f 31,
C(2)=C\{d};2.f,3,1,
CB3)=...=C(n-3)=C,
C(n-2)=C\{g,i}; 1,
Cin-1)=C\{f}; 3.,
C(n) = C\{h}; 1,

Consider now the joint strategy (a,b,...,b,c,c,d). If we follow the clockwise schedule starting at player 1, we
can generate the following improvement path in which each player i # n — 2,1 always switches to a colour from
MB(i) (we cannot require it from players n — 2 and n because the weights equal two):

(a,b,...,b,c,c,d)—(d,b,...,bccd —(de,b,...bccd —(deeb,...bccd—"

(de,....ee.e) > (fre....ee,0)>"(f,....f.e.0) > (f,....f,8,0) =
(frfr 888 8,88 (8, 8188 —(g....8Mhg) —

(g,...,g,h,h,?)—f‘(i,...,z',h,h,i).

In each joint strategy, we underlined the strategy of the scheduled player from which he profitably deviates
and overlined the first occurrences of the newly introduced strategies. Each — * refers to a sequence of n — 3 prof-
itable deviations. So this improvement path is of length 4n —3 > 3n — 1.

However, a slightly larger bound can be established.

Theorem 4. Every coordination game on a simple cycle with bonuses in which two edges have nontrivial weights ensures
improvement paths of length < 4n — 1.

Proof. Rename the nodes so that the edges with a nontrivial weight are into the nodes k and n. We stipulate that
each player i # k,n always selects a best response from the set MB(i) of available colours to player i with the max-
imal bonus. This is always possible for the reasons given in the proof of Theorem 2. As in the earlier proofs, we
construct the desired improvement path by scheduling the players clockwise, starting with player 1.

Phase 1. This phase lasts at most 2n — 1 steps. If this way we do not reach a Nash equilibrium we move to the
next phase.

Phase 2. In this phase, we continue the clockwise strategy updates for all the nodes starting with player n. We
show that this can continue for at most two rounds.

In the second round of the previous phase, each player i # n updated his strategy, so at the beginning of this
phase, each player i # k, 1 holds a strategy from MB(7).

We focus on the strategy updates by the nodes k and . To this end we reuse the reasoning used in the proof of
Theorem 3 that involves the analysis of the update scenarios. So, as before, we distinguish between the updates of
the nodes k and 7 to an inner colour (recorded as i) or to an outer colour (recorded as o) and consider the resulting
update scenarios, so sequences of i and o.

For the same reasons as before, an update scenario has to stop after an oi or ii is recorded, and it cannot contain
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000 as a subsequence, as also here updates of a node to an outer colour yield the same payoff. Therefore, the same
argument shows that the longest possible sequence of updates in this phase is 2n. O

5. Open Chains of Simple Cycles

In this section, we study directed graphs that consist of an open chain of m > 2 simple cycles. For simplicity, we
assume that all cycles have the same number of nodes denoted by v. The results we show hold for arbitrary
cycles as long as each cycle has at least three nodes. Formally, for j€{1,2,...,m}, let C; be the cycle
11 —=1l.2]1—... = [j,v] = 1[j1]. An open chain of cycles Ci,...,Cy is a directed graph in which for all
je{l,...,m—1}, we have [j,1] = [j+1,k] for some k€ {2,...,v}. In other words, it consists of a sequence of m
cycles such that any two consecutive cycles have exactly one node in common.

Any node that connects two cycles is called a link node. The node that connects Ci with Cjt1, 80 [j, 1], which is
also [j +1,k], is called an up-link node in C; and, at the same time, a down-link node in Cj;1. The total number of no-
des in such a graph is n = vm — (m — 1). Figure 3 depicts an example of an open chain.

Throughout this section, we assume a fixed coordination game on an open chain of cycles Cs,...,C,. We prove
that such a game ensures improvement paths of polynomial length. The main idea of our construction is to build
an improvement path by composing in an appropriate way the improvement paths for the simple cycles that
form the open chain.

This is possible because, given a joint strategy, each cycle in the open chain can be viewed as a single cycle
with at most two bonuses for which we know that an improvement path of length at most 3v exists because of
Theorems 1 and 3. This is because the only nodes that have in-degree two are the link nodes, and given a joint
strategy, the edge to a link node u from another cycle can be regarded as a bonus of one for the colour of the pre-
decessor of u in another cycle. More formally, for a given joint strategy s and a cycle C;, we define the bonus func-
tion ﬁ;?(u, c) as follows:

1 if uis alink node and ¢ = s(v),
ﬁjs. (u,c):= where the node v belongs to Cj-1 or to Cj41 and v — u is an edge,
0 otherwise.

Furthermore, to each improvement path y in the coordination game on C; with the bonus function ; there corre-
sponds a unique initial segment y of an improvement path in the coordmatlon game on the open chain
C1,...,Cy. The following lemma will be useful a number of times.

Lemma 1. Consider a coordination game on an open chain and a joint strategy s. Each node with payoff > 1 in s plays a
best response. This also holds for coordination games on a simple cycle in which each node has at most one bonus equal to
one and all other bonuses are zero.

Proof. The claim obviously holds for all nodes with the maximum possible payoff. Note that in the graphs con-
sidered here, for each node there are at most two colours that can give a payoff of one. These are the colours of
the predecessors of a link node in an open chain, and the node’s predecessor and the unique colour with bonus
equal one in a simple cycle. The only possibility for such nodes to get payoff two is if both of these colours coin-
cide, which depends only on the colour(s) selected by its predecessor(s). Therefore, it is not possible for a node
with a payoff of one to unilaterally improve its payoff further. O

We claim that Algorithm 1 below finds an improvement path of polynomial length. It repeatedly tries to cor-
rect the cycle with the least index in which some node does not play a best response.
Figure 3. (Color online) An open chain consisting of five cycles. Four nodes have double labels as they are link nodes. Each

node can select either red or blue. The colouring of the nodes is an example of a joint strategy.

[1,3] [3.3] [4.3]

‘\[1 1 [2.1] '\3 1 ‘\[41 [5.1]
o9 o o o
[1.2] [23N. (3.2] [4.2] [53\.

[2,2] [5.2]
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To express this procedure, we use the constructions explained in the proofs of Theorems 1 and 3. Furthermore,
for a joint strategy s that is not a Nash equilibrium, we denote by NBR(s) the least j € {1,...,m} such that some
node in C; does not play a best response in s. In the example given in Figure 3, we have NBR(s) = 1.

The execution of this algorithm, when dealing with a cycle C;, may “destabilise” some lower cycles, and hence
may require going back and forth along the sequence of cycles. In other words, the value of j may fluctuate.
However, we can identify the minimum value below which j cannot drop.

Algorithm 1
Input: A coordination game on an open chain of cycles Cy, .. .,C,, and an initial joint strategy s.
Output: A finite improvement path starting at s.
p = S0;
2 s:=last(p);
3 |, while s is not a Nash equilibrium do
4 | j:=NBR(s);
5
6

—_

§ := the restriction of s to the nodes of C;;
X := the improvement path constructed in the proof of Theorem 1 or 3 for the coordination game on C; with
the bonus function ,B]S., starting at 5;

7| p=px;
8 s := last(p)
9 return p.

To see this we introduce the following notion. Given a joint strategy s we assign to every cycle C; one out of
five possible grades, U+, +, U—, —, and ?, as follows:

U+  if all its nodes play their best response in s and s([f, v]) = s([j, 1]),

+ if all its nodes play their best response in s and s([f, v]) # s([}, 1]),

U-  if [},2] is the only node that does not play a best response in s,

grade’(C)) = and s([j,0]) = s([j, 1])

- if [1,2] is the only node that does not play a best response in s,
and s([j, 1) # s(1j,1)

? otherwise.

Thus the grade ? means that for some k # 2, the node [j, k] does not play a best response in s.
The following observation clarifies the relevance of the grade U+ and is useful for the subsequent
considerations.

Lemma 2. Suppose that after Line 4 of Algorithm 1 the grade of a cycle C; given s is U+ and j > i. Then, from that moment
on, j > i remains true, and the grade of C; remains U+.

Proof. During each while loop iteration, j can drop at most by 1, so the grade of C; could be modified only if
eventually after Line 4 j = i + 1 holds. The initial grade U+ of C; implies that initially the colours of the nodes [,1]
and [i,v] are the same, and consequently the payoff for the node [7,1] is > 1, and it remains so whenever its other
predecessor, belonging to C;, switches to another colour.

But [7,1] is also the down-link node [j, k] of C;. Hence, by Lemma 1, the improvement path constructed in
Line 6 does not modify the colour of [j, k], that is, of the node [, 1]. So the grade of C; remains U+, and hence if
the while loop does not terminate right away, j increases after Line 4. O

Furthermore, let grade(s) be the sequence of grades given s assigned to each cycle, that is,
grade(s) := (grade’(C1), . . .,grade’(Cp,)).

For instance, grade(s) = (—, U+, ?,+,U+) for the game and joint strategy s presented in Figure 3.

Suppose that Algorithm 1 selects j in Line 4. It then constructs in Line 6 the improvement path that starts in §
defined in Line 5, for the coordination game with bonuses on the cycle C;, as described in the proofs of Theorems
1 and 3. We now explain how this can change grade(s). Note that only the grades of C; and its adjacent cycles C;_;
and Cjy1 (if they exist) can be affected.

Lemma 3. The improvement path constructed in Line 6 of Algorithm 1 modifies the grades of C; and its adjacent cycles C;_1
and Cjy1, if they exist, as explained in Figures 4,5, 6,7, and 8.
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Figure 4. Possible changes of the grades of C; and Cj,; whenj=1.

- U- =z ? T
+/U+ =z U+ z +/U+ any

Proof. We begin with some remarks and explanations. For a joint strategy s, NBR(s) returns the least index j of a
cycle with a node that does not play a best response. So the initial grade of the cycle C;_y, if it exists, is + or U+,
and the initial grade of the cycle C; is U—, —, or ?. Moreover, the grade of C; can only change to + or U+, because
after Line 6, all nodes in C; play a best response. These observations allow us to limit the number of considered
cases.

In Figures 4-8, we list above the horizontal bar the initial situation for the discussed cycles, and under the bar
one or more outcomes that can arise. Furthermore, the initial grade of C;; is a parameter x. If there are several
options for the new grade of a given cycle, these are separated by slashes. Finally “any” is an abbreviation for
U+/+/U-/-/2.

Figure 4 corresponds to the case when j = 1. In turn, Figures 5, 6, and 7 correspond to the cases when 1 <j <m
and initially the grade of C; is U—, —, or ?, respectively. Finally, Figure 8 corresponds to the case when j = m.

The cases considered in Figures 5 and 6 refer to the update scenarios defined in Phase 2 in the proof of
Theorem 3. They are concerned with the relation of the colour of the up-link node in the cycle C; to the colour of
its predecessor in this cycle.

The justifications of these changes of the grades are lengthy and are provided in the appendix. O

Next, we introduce a progress measure p defined on the current joint strategy that increases according to the
lexicographic order each time the joint strategy s is modified in Line 8. In effect, u1 is a weak potential in the sense
of Milchtaich [39]. For a joint strategy s, u(s) is a quadruple, the definition of which uses the function NBR and
two other functions that we now define.

Let guard(s) be the largest j € {1,...,m} such that given s the grade of C; is U+ and the grade of each cycle
C1,...,Cj1 is either + or U+. If no such j exists, as is the case in the example given in Figure 3, then we let
guard(s) = 0.

Furthermore, let prefix(s) be the longest prefix of grade(s) such that at most one of the grades it contains is —,
U-, or ?. Moreover, this prefix stops after a cycle with grade ?. For the example given in Figure 3, we have
prefix(s) = (=, U+).

Here is an example illustrating the introduced notions to which we shall return shortly.

Example 6. Suppose that grade(s;):=(+,U+,U+,+, —,U—-?) for a joint strategy s;. Then NBR(s;)=
5, guard(s1) = 3, and prefix(s1) = (+,U+,U+, +, —). Suppose that grade(s,) := (+,U+, —,+,U+,U—,U —, ?) for a joint
strategy s,. Then NBR(s») = 3, guard(s;) = 2, and prefix(s;) = (+, U+, —, +,U+).

We can now define p(s). First, we set u(s) = (m +1,0,0,0) if s is a Nash equilibrium. Otherwise

(guard(s),1,0, — NBR(s)) if prefix(s)contains U — or if it contains U+,
u(s) := some where after —,
(guard(s),0, |prefix(s)|, — NBR(s)) otherwise.

For example, for the joint strategies s; and s, used in Example 6, we have u(s;)=(3,0,5, —=5) and
u(s2) =(2,1,0, —3), respectively.

Figure 5. Possible changes of the grades of C;_1, Cj, and C;;1 when 1 <j <m and the grade of C; is U~-.

case + Uu- =z U+ U- z
[i] + U+ T U+ U+ x
[ii] +/-/u+/u- U+ T impossible
[io] U-/U+ +/U+ impossible
[ioi] U-/U+ U+ any impossible
[ioo] U-/U+ + any impossible

[iooi] impossible impossible
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Figure 6. Possible changes of the grades of C;_1, C;, and Cj;1 when 1 < j <m and the grade of C; is —.

case + - x U+ —
[o] + + T U+ + =
[oi] +/-/U+/U- +/U+ =z impossible
[oo0] U—/U+ + x impossible
[ooi] U—/U+ U+ any impossible

To see the evolution of the progress measure i(s), we present in Figure 9 an example run of Algorithm 1 on an
open chain of eight cycles by recording at each step the corresponding changes of the grades and of the progress
measure. It illustrates the fact that during the execution of the algorithm, the index of the first cycle with no Nash
equilibrium, that is, the value of NBR(s), can arbitrarily decrease.

The following lemma explains the relevance of p.

Lemma 4. The progress measure (i(s) increases w.r.t. the lexicographic ordering <., each time one of the updates presented
in Figures 4,5, 6,7, and 8 takes place.

As in the case of Lemma 3, the proof is lengthy and proceeds by a detailed case analysis. It can be found in the
appendix.
We are now in position to prove the appropriate result concerning open chains of cycles.

Theorem 5. Every coordination game on an open chain of m cycles, each with v nodes, ensures improvement paths of
length < 3vm®.

Proof. Let sy be an arbitrary initial joint strategy in this coordination game. We argue that starting at 55, Algo-
rithm 1 computes a finite improvement path p of length at most 3um®. By Lemma 4, u(s) increases according to
the lexicographic order each time the joint strategy s is modified in Line 8.

We now estimate the number of different values the progress measure i can take. If s is a Nash equilibrium,
then u(s)=(m+1,0,0,0), which accounts for one value. Otherwise guard(s) € {0,...,m -1} and guard(s)+1 <
NBR(s) < |prefix(s)| <m, because by definition, the index NBR(s) cannot be smaller than guard(s) + 1, and the
grade of the cycle with this index belongs to prefix(s). Therefore, the number of values u can take is

m=1 m
1+ZO Zl(i? 8)+Z(m —9)= 1+Z(m 8)(1+m g)+m(12+m)
8=0 p=g+

Mox(1+x) m(1+m) m(m+1)(m+2) m(l+m)
Z;‘ 2 7 6 T2 T

m(m+1)(m+5)

6 <m®form >2.

1+

As a result, the length of the improvement path constructed by Algorithm 1 is at most 3vm®, because by Theo-
rems 1 and 3, the improvement path in Line 6 takes at most 3v improvement steps. O

Finally, so far we assumed that we know the decomposition of the game graph into a chain of cycles in ad-
vance. In general, the input may be an arbitrary graph, and we would need to find this decomposition first. For-
tunately, this can be done in linear time as the following result shows.

Proposition 1. Checking whether a given graph G is an open chain of cycles, and if so partitioning G into simple cycles
C1,...,Cy, can be done in O (|G|) time.
Figure 7. Possible changes of the grades of C;_1, Cj, and C;;1 when 1 <j <m and the grade of C; is ?

+ ? x U+ ? x
+/—/U+/U- +/U+ any U+ +/U+ any
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Figure 8. Possible changes of the grades of C;_; and C; when j = m.

case + U— U+ U-— case + - U+ -
[i] + U+ U+ U+ [o] + + U+ +
[ii] +/-/u+/u- U+ impossible [oi] +/-/U+/U- +/U+ impossible
[io] U-/U+ +/U+ impossible [o0] U-/U+ + impossible
[ioi] U-/U+ U+ impossible [ooi] U-/U+ U+ impossible
+ ? u+ ?
+/-/U+/U- +/U+ U+ +/U+

Proof. First note that if G is an open chain of cycles, then there are no bidirectional edges, and each of its nodes
has either out- and in-degree values both equal to one or both equal to two. These two conditions can be easily
checked in linear time by simply going through all the nodes and their edges in G.

Assume that the above two conditions hold. Let A be the set of all nodes in G that we already identified to
have out- and in-degrees both equal to two. We first build a new directed graph G" whose set of nodes is A, and
there is an edge from u € A to v € A iff v is reachable from u by traversing only nodes with out- and in-degree
both equal to one. We illustrate this construction in Figure 10.

Such a graph can be built using a single run of the depth first search algorithm starting from any node in A.
Now note that the original graph G is an open chain of cycles iff this graph G’ is a simple path whose two ends
have a self-loop and all edges are bidirectional.

This condition can also be checked in linear time, by simply following all edges of G’ in one direction. To parti-
tion G into simple cycles, we label one of the end nodes of G’ as [1, 1]. Its only adjacent node we label as [2, 1],
the other adjacent node of [2, 1] as [3, 1], and so on until the node at the other end is of G’ labeled as [m -1, 1].
These are the labels of the link nodes. The labels of the remaining nodes in each cycle C; forj € {1,...,m} can then
be simply inferred by following the edges in the original graph G. O

6. Strong Equilibria
In this section, we study the existence of strong equilibria and the existence of finite c-improvement paths. To
start with, we establish two results about the games that have the strongest possible property, the c-FIP.

First, we establish a structural property of a coalitional deviation from a Nash equilibrium in our coordination
games. It will be used to prove c-weak acyclicity for a class of games on the basis of their weak acyclicity. Note
that such a result cannot hold for all classes of graphs because there exists a coordination game on an undirected
graph which is weakly acyclic but has no strong equilibrium (see Apt et al. [8]).

Lemma 5. Consider a coordination game. Any node involved in a profitable coalitional deviation from a Nash equilibrium
belongs to a directed simple cycle that deviated to the same colour.

Proof. Suppose that s’ is profitable deviation of a coalition K from a Nash equilibrium s. It suffices to show that
each node in K has a neighbour in K deviating to the same colour. Assume that for some player i € K it is not the
case. Then

Figure 9. The evolution of grade(s) and p(s) during an example run of Algorithm 1.

grade(s) 11(s)
+ + 4+ + ? U+ U+ - (0,0,5,-5)
+ + + -+ ?2 U+ - (0,0,5,—4)
+ + - + + ? u+ - (0,0,5,-3)
+ U- U+ ? + 2 U+ - (0,1,0,-2)
u—- + 2?2 2?2 + ? U+ - (0,1,0,—1)
u+ + ? ?2 + ? u+ - (1,0,3,-3)
U+ + U+ ? + ? U+ - (3,0,4,—4)
U+ + U+ + + ? u+ - (3,0,6,—6)
U+ + U+ + + U+ u+ -  (7,0,8,-8)
U+ + U+ + + U+ U+ + (9,0,0,0)
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Figure 10. Graph G’ corresponding to an open chain G with seven cycles (and six link nodes).

pi(s) < pi(sk,s-x)
= ZjeN,ﬁK:s/’.:s;wf—’i + Z;eN,\K:s,:s;wHi +B(i,s;)
=0+ Z]’ENiZSjIS,{w]'Hi + ﬁ(l’ S:) = pi(S;f S*i)/

which contradicts the fact that s is a Nash equilibrium. O

Theorem 6. Every coordination game with bonuses on a weighted DAG has the c-FIP and a fortiori a strong equilibrium.
Furthermore, every Nash equilibrium is a strong equilibrium. Finally, the game ensures both improvement paths and
c-improvement paths of length <n —1, where, recall, n is the number of nodes.

Proof. Given a weighted DAG (V, E) on n nodes, denote these nodes by 1,...,n in such a way that for all
ije{l,...,n},

ifi<jthen (j > 1i)¢E. 1)

Soif i < j, then the payoff of the node i does not depend on the strategy selected by the node ;.

Then given a coordination game whose underlying directed graph is the above weighted DAG and a joint strate-
gy s we abbreviate the sequence p1(s),...,pu(s) to p(s). We now claim that p: S — R" is a generalised ordinal
c-potential when we take for the partial ordering > on p(S) the lexicographic ordering >/, on the sequences of reals.

So suppose that some coalition K profitably deviates from the joint strategy s to s’. Choose the smallest j € K.
Then p;(s") > p;(s), and by (1), pi(s") = pi(s) for i < j. By the definition of >, this implies p(s")>p..p(s), as desired.
Hence, the game has the c-FIP.

The second claim is a direct consequence of Lemma 5 that implies that no coalition deviations are possible
from a Nash equilibrium for DAGs.

Finally, to prove the last claim, given an initial joint strategy, schedule the players in the order 1,...,n and re-
peatedly update the strategy of each selected player to a best response. By (1) this yields an improvement path of
length <7 —1. By the second claim, this path is also a c-improvement path. O

Example 2 shows that it is difficult to come up with other classes of directed graphs for which the coordination
game has the FIP, let alone the c-FIP. However, the weaker property of c-weak acyclicity holds for the games on
simple cycles considered in Section 4. Below we putiel =i—1ifi>1and 161 =n.

Theorem 7. Consider a coordination game with bonuses on a weighted simple cycle. Any finite improvement path is a finite
c-improvement path or can be extended to it by a single profitable deviation of all players.

Proof. Take a finite improvement path and denote by s the Nash equilibrium it reaches. If s is a strong equilibri-
um, then we are done. Otherwise, there exists a coalition K with a profitable deviation from s. By Lemma 5, the
coalition K consists of all players and all of them switch to the same colour.

Let C be the set of common colours ¢ such that a switching by all players to c is a profitable deviation from s.
We just showed that C is nonempty. Select an arbitrary player iy and choose a colour from C for which player i,
has a maximal bonus. Let s’ be the resulting joint strategy.

We first claim that s’ is a Nash equilibrium. Otherwise, some player i can profitably deviate from s/ to a colour
c. Then we have sj,; #c, because all players hold the same colour in s’. So we have
pi(s) < pi(s") < pi(c,s;) = B(i, c) < pi(c,s—;), which is a contradiction because s is a Nash equilibrium.

Next, we claim that s’ is a strong equilibrium. Otherwise, by the initial observation there is a profitable devia-
tion of all players from s’ to some joint strategy s” in which all players switch to the same colour. So
Piy(s”) < pi,(s”"). Moreover, this profitable deviation is also a profitable deviation of all players from s, which con-
tradicts the choice of ijj. O

The above result directly leads to the following conclusions.

Corollary 1.
i. Every coordination game on a weighted simple cycle in which at most one node has bonuses ensures c-improvement paths
of length < 2n.
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ii. Every coordination game with bonuses on a simple cycle in which at most one edge has a nontrivial weight ensures
c-improvement paths of length < 3n.

iii. Every coordination game on a weighted simple cycle in which two nodes have bonuses ensures c-improvement paths of
length < 3n +1.

iv. Every coordination game on a simple cycle with bonuses in which two edges have nontrivial weights ensures
c-improvement paths of length < 4n.

Proof. The corollary follows from Theorems 1,2,3,4,and 7. O

We conclude this analysis of coordination games on simple cycles by the following observation that sheds light
on Theorem 7 and is of independent interest.

Proposition 2. Consider a coordination game with bonuses on a simple cycle with n nodes. Then every Nash equilibrium is
an (n — 1)-equilibrium.

Proof. Take a Nash equilibrium s. It suffices to prove that it is an (n — 1)-equilibrium. Suppose otherwise. Then
for some coalition K of size < n —1 and a joint strategy s’, s K¢isa profitable deviation.

Take some i€ K such that i©1¢ K. We have p;i(s’) > pi(s). Also pi(s],s-;) = pi(s’), because sjg1 =S5}y;. So
pi(s},s—;) > pi(s), which contradicts the fact that s is a Nash equilibrium. O

From the definition of an (n — 1)-equilibrium and Proposition 2, it follows that for a coordination game with
bonuses on a simple cycle with n nodes, every Nash equilibrium is a k-equilibrium for all ke {1,...,n—1}. We
now show that, as in the case of simple cycles, coordination games on open chains of cycles are c-weakly acyclic,
so a fortiori have strong equilibria.

Theorem 8. Every coordination game on an open chain of cycles of m simple cycles, each with v nodes, ensures
c-improvement paths of length 4vm®.

Proof. Assume the considered open chain of cycles C consists of the simple cycles C;, where j € {1,2,...,m}. We
begin with the following useful fact.

Lemma 6. Suppose that in a joint strategy s for the coordination game on C, a simple cycle C; is unicoloured. Then in any
profitable deviation from s, the colours of the nodes in C; do not change.

Proof. The payoff of each node of the cycle C; in s is > 1. For the nonlink nodes, the payoff is then maximal, so
none of these nodes can be a member of a coalition that profitably deviates. This implies that a link node cannot
be a member of a coalition that profitably deviates either. Indeed, otherwise its payoff increases to two, and
hence, in the new joint strategy, its colour is the same as the colour of its predecessor j in the cycle C;, which is
not the case, because we just explained that the colour of j does not change. O

We now construct the desired c-improvement path & as an alternation of an improvement path guaranteed by
Theorem 5 and a single profitable deviation by a coalition. Each time such a profitable coalitional deviation takes
place, by Lemma 5, the deviating coalition includes a simple cycle C;, all nodes of which switch to the same col-
our. By Lemma 6, each time this is a different cycle, which is moreover disjoint from the previous cycles. This im-
plies that the number of such profitable deviations in & is at most [11/2].

So € is finite, and by Theorem 5, its length is at most ([11/2]+ 1) - 3um® + [m /2], where the first term counts the
total length of at most [m/2]+ 1 improvement paths that separate at most [11/2] coalitional deviations, which is the
second term of this expression. But [m/2]+ 1 <m for m > 2, so ([m/2]+ 1) - 3om® + [m /2] < 3om* + [m/2] < dom*. O

Example 2 shows that even when only two colours are used, coordination games need not have the FIP. This
is in contrast to the case of undirected graphs for which we proved in Apt et al. [8] that the corresponding class
of coordination game does have the FIP. On the other hand, a weaker property does hold.

Theorem 9. Every coordination game in which only two colours are used ensures improvement paths of length < 2n.

Proof. We prove the result for a more general class of games, namely, the ones that satisfy the PPM (the property
defined in Section 2). Call the colours blue and red. When a node holds the blue colour we refer to it as a blue
node, and the likewise for the red colour. Take a joint strategy s.

Phase 1. We consider a maximal sequence ¢ of profitable deviations starting in s in which each node can only
switch to blue. At each step the number of blue nodes increases, so ¢ is of length at most n. Let s! be the last joint
strategy in &. If s! is a Nash equilibrium, then £ is the desired finite improvement path. Otherwise, we move to the
next phase.
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Phase 2. We consider a maximal sequence y of profitable deviations starting in s' in which each node can only
switch to red. Also x is of length at most 1. Let s* be the last joint strategy in x.

We claim that s” is a Nash equilibrium. Suppose otherwise. Then some node, say, i, can profitably switch in s> to
blue. Suppose that node i is red in s'. In s, there are weakly more blue nodes than in s, so by the PPM also in s’
node i can profitably switch to blue. This contradicts the choice of s'.

Hence, node i is blue in s', whereas it is red in s*. So in some joint strategy s° from y node i profitably switched to
red. Then s® = (i:b,s%) and p;(i: b,s%,) <pi(i:1,82,) < pi(i: 7,8%;) <pi(i : b,s%,), where the weak inequality holds be-
cause of the PPM. But in s° there are weakly more blue nodes than in s?, so by the PPM, p;(i : b,s%,) <pi(i: b,s>)).
This yields a contradiction. O

The following simple example shows that in the coordination games in which only two colours are used, Nash
equilibria do not need to be strong equilibria. O

Example 7. Consider a bidirectional cycle 1 <> 2 < 3 < 4 < 1 in which each node has two colours, 4 and b.
Then (a,4,b,b) is a Nash equilibrium, but it is not a strong equilibrium because of the profitable deviation to
(a,a,a,a), which is a strong equilibrium.

On the other hand the following counterpart of the above result holds for the c-improvement paths.
Theorem 10. Every coordination game in which only two colours are used ensures c-improvement paths of length < 2n.

Proof. As in the above proof, we establish the result for the games that satisfy the PPM. We retain the terminolo-
gy of blue and red colours, which we abbreviate to b and r. Take a joint strategy s.

Phase 1. We consider a maximal sequence & of profitable deviations of the coalitions starting in s in which the no-
des can only switch to blue. At each step, the number of blue nodes increases, so & is of length at most 7. Let s' be
the last joint strategy in &. If s' is a strong equilibrium, then & is the desired finite c-improvement path. Otherwise
we move to the next phase.

Phase 2. We consider a maximal sequence x of profitable dev1at10ns of the coalitions starting in s' in which the
nodes can only sw1tch to red. Also y is of length at most 7. Let s> be the last joint strategy in x.

We claim that s is a strong equilibrium. Suppose otherwise. Then for some joint strategy s’, s> Ksisa profit-
able deviation of some coalition K. Let L be the set of nodes from K that switched in this deviation to blue. By the
definition of s the set L is nonempty.

Given a set of nodes M and a joint strategy s, we denote by (M : b,s_p) the joint strategy obtained from s by let-
ting the nodes in M to select blue, and similarly for the red colour. Also it should be clear which joint strategy we
denote by (M : b, P\M 7,5- p) where M C P.

We claim that s> 55 (L : b,s 2,) is a profitable deviation of the players in L. Indeed, we have, for alli € L,

pi(s ) < pl(L : b/ S—L)/ (2)

because by the assumption p;(s?) < pi(s’) and by the PPM, p;(s’) < pi(L : b,s%;).
Let M be the set of nodes from L that are red in s'. Suppose that M is nonempty. We show that then for all
ieM,

pi(M:r,L\M:b,s',) <pi(M:b,L\M :b,s")). (3)
Indeed, we have, for all i € M,

piM:r,L\M :b,s',) <pi(M:7r,L\M:b,5%,)
piM:r,L\M :71,5%,) <pi(M:b,L\M:b,s%,)
piM:b,L\M: b,s!,),

IAIA

where the weak inequalities hold due to the PPM and the strict inequality holds by the definition of L.
Buts'=(M:r,L\M: b,le), so (3) contradicts the definition of s'. Thus, M is empty, that is, all nodes from L are
blue in s".
Let i be a node from L that as first turns red in y. So in some joint strategy s° from X node i profitably switched
to red in a profitable deviation to a joint strategy s*. Then s® = (L : b,8%,), s* = (i: 7,s*,) and

piL:b,s3) <pii:r,s*) <pis®) <pi(L:b,52,),

where the weak inequality holds due to the PPM and the strict inequalities hold by the definition of i and (2).
But in (L: b,s%,), there are weakly more blue nodes than in (L:b,s?;), so by the PPM, pi(L:b,s%;) <pi(L: b,s%)).
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This yields a contradiction. (The final step in this proof in Apt et al. [6] contained a bug that is now
corrected.) O

When the underlying graph is symmetric and the set of strategies for every node is the same, the existence of
strong equilibrium for coordination games with two colours follows from proposition 2.2 in Konishi et al. [34].
Theorem 10 shows a stronger result, namely, that these games are c-weakly acyclic. Example 1 shows that when
three colours are used, Nash equilibria, so a fortiori, strong equilibria, do not need to exist. Finally, note that
sometimes strong equilibria exist even though the coordination game is not c-weakly acyclic.

Example 8. Consider the coordination game depicted in Figure 11. Note that the underlying graph is strongly
connected and that all edges except 1 — 2,2 — 3, and 3 — 1 are bidirectional. Although the graph is weighted,
the weighted edges can be replaced by unweighted ones by adding auxiliary nodes without affecting the strong
connectedness of the graph. The behaviour of the game on this new unweighted graph will be analogous to the
one considered.

Let us analyse the initial joint strategy s that consists of the underlined colours in Figure 11. We argue that the
only nodes that can profitably switch colours (possibly in a coalition) are the nodes 1, 2, and 3 and that this is the
case independently of their strategies.

First consider the nodes A, B, and C. They have the maximum possible payoff of five, independently of the
strategies of the nodes 1, 2, and 3, so none of them can be a member of a profitably deviating coalition.

Furthermore, each node from the set {4, ...,9} has two neighbours, each with the same weight. One of them is
from the set {A, B, C} with whom it shares the same colour, which results in the payoff of two. So for each node
from {4, ...,9} a possible profitable coalitional deviation has to involve a neighbour from {A, B, C}.

Therefore, the only nodes that can profitably deviate are nodes 1, 2, and 3. Moreover, this will continue to be
the case in any joint strategy resulting from a sequence of profitable coalitional deviations starting from s. (An-
other way to look at it is by arguing that the restriction of s to the nodes {A, B, C, 4,...,9} is a strong equilibrium
in the game on these nodes in which we add to the nodes from {4, 6, 8} bonuses two and to the nodes from {5, 7, 9}
bonuses three.)

So it suffices to analyse the weighted simple cycle and the colour assignment depicted in Figure 12, with the
nontrivial bonuses mentioned above the colours.

However, the resulting coordination game does not have a Nash equilibrium and a fortiori no strong equilibri-
um. To see it, first notice that each of the nodes can secure a payoff of at least three, whereas, selecting a colour
with a trivial bonus, it can secure a payoff of at most two. So we do not need to analyse joint strategies in which
a node selects a colour with a trivial bonus. This leaves us with the following list of joint strategies: (g,a,b),
(a,a,0), (a,c,b), (a,¢c.c), (bab), (bac), (bcb),and (b,c c). In each of them, as in Examples 1 and 4, we underlined
a strategy that is not a best response to the choice of other players. This means that no c-improvement path in
this game terminates.

Figure 11. A coordination game with strong equilibria unreachable from a given initial joint strategy.

fabc} ()2 (D2~ fabe}
L Ao {ab R,

5 {a,b,c} 3
{a,b,c} (8 @ @ {a,b,c}
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Figure 12. A coordination game without a Nash equilibrium.

{,5,c}

2 \ 2
{a,b,2} ( ) 5 Gk

Consequently no c-improvement path in the original game that starts with s terminates. Therefore, the original
game is neither weakly acyclic nor c-weakly acyclic. On the other hand, it has three trivial strong equilibria in
which all players pick the same colour.

Note that in the game considered in this example all players have the same sets of strategies. We can summa-
rise this example informally as follows. There exists a graph with the same set of alternatives (called colours) for
all nodes and an initial situation (modelled by a colour assignment) starting from which no stable outcome (mod-
elled as a Nash equlibrium) can be achieved even if forming coalitions is allowed.

7. Complexity Issues

Finally, we study the complexity of finding Nash equilibria and strong equilibria, and of determining their exis-
tence. The results obtained so far provide bounds on the length of short (c-)improvement paths. But in each proof
we actually provide bounds on the length of the corresponding schedule, a notion defined in Section 2. This
allows us to determine in each case the complexity of finding a Nash equilibrium or a strong equilibrium, by ana-
lysing the cost of finding a profitable deviation from a given joint strategy. For the case of weighted graphs, we
assume all weights to be natural numbers.

We assume that the colour assignment C is given as a {0, 1}-matrix of size V X M, such that (i, c) entry is one iff
colour c is available to node i. The bonus function S, if present, is represented by another matrix of size V x M,
where the (i, ¢) entry holds the value of B(i,c). The game graph is represented using adjacency lists, where for
each node we keep a list of all outgoing and incoming edges and, if the graph is weighted, their weights are rep-
resented in binary. As usual, we provide the time complexity in terms of the number of arithmetic operations
performed. All our algorithms operate only on numbers that are linear in the size of the input, so the actual num-
ber of bit operations is at most polylogarithmically higher.

Below, as in Table 1, # is the number of nodes, |E| is the number of edges, | is the number of colours, and in the
case of the open chains of cycles, m is the number of simple cycles in a chain and v is the number of nodes in
each cycle. We first determine complexity of finding a best response.

Lemma 7. Consider a coordination game. Given a joint strategy, a best response for a player i can be computed in time
O(I +¢;), where e; is the number of incoming edges to node i.

Proof. We first calculate for each colour the sum of the weights on all edges from neighbors of player i with that
colour. This can be done by simply iterating over all e; incoming edges. We then iterate over all of these [ values
to select any colour with the highest such a value. O

When we only care about the current payoff of player i, then there is no need to iterate over all / colours, and
we get the following.

Lemma 8. Consider a coordination game. Given a joint strategy, the payoff of player i can be computed in time O(1 +e¢;),
where e; is the number of incoming edges to node i.

Proof. It suffices to iterate over all ¢; incoming edges the sum the weights of all edges from neighbors of player i
with the same colour. The term 1 is needed to cover the case of nodes with no neighbours. O

We can now deal with the complexity of finding a Nash equilibrium and a strong equilibrium for the coordina-
tion games on simple cycles that we considered in Section 4.

Theorem 11. Consider a coordination game on a simple cycle that is either weighted with at most two nodes with bonuses
or with bonuses with at most two edges having nontrivial weights. Both a Nash equilibrium and a strong equilibrium can be
computed in time O(nl).
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Proof. In both cases, because of Theorems 1, 2, 3, and 4, to compute a Nash equilibrium, it suffices to follow a
schedule of length O(n). At each step of this schedule, it suffices to consider only the deviations to a colour with
the maximal bonus. We can find such colours in time O(I) and then simply follow the O(I) procedure given in
Lemma 7 for finding a best response within this narrowed down set. We conclude that computing a Nash equi-
librium can be done in time O(nl).

Finally, to compute a strong equilibrium, we first compute a Nash equilibrium and subsequently check wheth-
er there is a profitable deviation of all nodes to a single colour. By Theorem 7, one of these two joint strategies is
a strong equilibrium.

The latter step involves iterating over all I colours and computing for each of them the payoff of all nodes
when they all hold this single colour, assuming such a colour is shared by all nodes. Each iteration takes O(r)
time, which results in total O(nl) time as well. O

The complexity of computing a Nash equilibrium for the coordination games on an open chain of cycles can
be easily established, as most of the work was done in the proof of Theorem 5, which in turn built upon Theo-
rems 1 and 3.

Theorem 12. Consider a coordination game on an open chain of cycles. A Nash equilibrium can be computed in time
O(vmd).

Proof. From Theorem 5, it follows that for an open chain of cycles there exists an improvement path of length at
most 3um3. Because of Lemma 7, computing each best response can be done in time O(1). It follows that a Nash
equilibrium can be computed in time O(vm?l). O

To analyse the complexity of computing a strong equilibrium for the coordination games on an open chain of
cycles, we make use of Algorithm 2.

Algorithm 2 Input: A strategic game (S1,...,S,,p1, - . .,pn) that satisfies the PPM property, a joint strategy s, and a
strategy c.

Output: A maximal coalition that can profitably deviate to ¢, if there exists one, and otherwise the empty set.

1 A:={ie{l,...,n}|ceS;}; (e, Ais the set of players that can select c)

2 while A #0ands N s’, where s; = c fori € A, is not a profitable deviation do

3 | choose some a € A such that p,(s) > pa(s’);

4 [A:=A\{a};

5 return A

The following lemma establishes the correctness of Algorithm 2.

Lemma 9. Consider a strategic game that satisfies the PPM property, a joint strategy s, and a strategy c. Algorithm 2
computes a maximal coalition that can profitably deviate from s to c, if there exists one, and otherwise returns the empty set.

Proof. First note that because of Line 4, the algorithm always terminates. Suppose that A* is a maximal coalition

that can profitably deviate to c. So s A s*, where s} = c for i € A*. Consider the execution of the above algorithm.
Then A* C A after Line 1. By the PPM property, no player from A* can be removed in Line 4, because otherwise it

could not profit from the deviation s 4 s* either. So the coalition A the algorithm returns contains A* and a fortio-

ri is nonempty. Hence, the while loop was exited because s A, where s; =c for i € A, is a profitable deviation.
By the maximality of A*, we get A = A™.

If no coalition can profitably deviate to c, then the while loop is exited because A = 0 and the algorithm returns
the empty set. O

This lemma and Theorem 8 allow us to derive the following result.

Theorem 13. Consider a coordination game on an open chain of cycles. A strong equilibrium can be computed in time
O(vm®]).

Proof. By Theorem 8, it follows that for an open chain of cycles, there exists a c-improvement path of length at
most 4um*. Moreover, such a path consists of O(vm*) single-player improvement steps and O(m) of c-improvement
steps. By Lemma 7, executing the former steps can be done in time O(vm*]). It remains to estimate the latter.

All considered c-improvement steps are from a Nash equilibrium. So by Lemma 5, any node involved in a
c-improvement step belongs to a directed simple cycle that deviated to the same colour. It follows that in any
c-improvement step, nodes that deviate to two different colours cannot be adjacent to each other and so do not
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influence each other payoffs. Therefore, any multicolour c-improvement step can be split into a sequence of uni-
colour c-improvement steps (one for each deviating colour).

Consider now a Nash equilibrium s that is not a strong equilibrium. Each coordination game satisfies the PPM
property, so Lemma 9 implies that by executing Algorithm 2 for each colour ¢, in turn we eventually find a maxi-
mal coalition that can profitably deviate from s to the same colour or determine that no such coalition exists.

Let us now estimate the time complexity of executing Algorithm 2. Executing the assignment in Line 1 can be
done in O(vm) time. Computing the payoffs of every node in s and s in Line 2 can be done in O(vm) time due to
Lemma 8. The while loop can be reentered at most vm times, because there are at most vm nodes in A. Further-
more, because we are dealing with an open chain of cycles, each removal of a node from A affects the payoff of
at most two other players. So updating the payoffs of all players in s” can be done in O(1) time. Therefore execut-
ing the while loop takes in total O(vm) time. This is also the time complexity of executing the algorithm, because
Line 5 takes only O(1) time.

To find a unicolour profitable deviation from a Nash equilibrium that is not a strong equilibrium, in the worst
case, Algorithm 2 has to be executed for each colour. So each such c-improvement step takes in total O(vml) time.
As there are O(m) of these c-improvement steps, their execution takes in total O(vm?l) time. So the execution of
these steps is dominated by the executions of the already considered single-player improvement steps that take
in total O(vm*]) time, which is then also the time bound for computing a strong equilibrium. [

Finally, we deal with the cases of weighted DAGs and games with two colours.

Theorem 14. Consider a coordination game on a weighted DAG. Both a Nash equilibrium and a strong equilibrium can be
computed in time O(nl + |E|).

Proof. Consider a weighted DAG (V, E). The procedure given in Theorem 6 first relabels the nodes using
{1,...,n} in such a way that for all /,j € {1,...,n} if i < j, then (j — i) ¢ E. Such a relabelling can be done in time
O(n + |E|) by means of a topological sort of nodes using a depth first search algorithm. Next, the schedule that we
will use is simply 1,...,#n. Because of Lemma 7, given a joint strategy, the best response for a player i can be com-
puted in O(I + ¢;) time, where ¢; is the number of incoming edges to node 7.

Thus, a Nash equilibrium can be constructed in time O(},., (I +e¢;)) = O(nl + |E|). By Theorem 6, every Nash
equilibrium is also a strong equilibrium. 0O

Theorem 15. Consider a coordination game on a graph (V, E) in which only two colours are used. Then we have the
following:

i. A Nash equilibrium can be computed in time O(n + |E|).

ii. A strong equilibrium can be computed in time O(n? + n|E|).

Proof. Given node i, we denote by ¢; the number of incoming edges to i, and by ¢; the number of outgoing edges
fromi.

Part i. The proof of Theorem 9 provides an algorithm that follows two phases to construct a Nash equilibrium. In
the first phase, it constructs a maximal sequence of profitable deviations to the first colour (called blue). And in the
second phase, it does the same for the second colour (called red). Note that by Lemma 8, given a joint strategy, the
payoff of player i can be computed in O(1 +¢;) time. Therefore, a profitable deviation from any joint strategy (if it
exists) can be found in time > .., O(1 +¢;) = O(n + |E|).

This yields time complexity of O(n? + n|E|) for both the first and the second phase, because each phase consists of at
most n profitable deviations. We can reduce this to O(n + |E|) by precomputing for every player his payoff for se-
lecting each colour and then updating these values as players switch strategies. Formally, we proceed as follows.
For each player 7, given a joint strategy of its opponents, let (;, b;) be its payoffs for selecting, respectively, red and
blue colours. By Lemma 8, given an initial joint strategy, these pairs of payoffs for all players can be calculated in
time >,.,O(1 +¢;) = O(n +|E|). In the first phase, where players switch colour from red to blue only, we simulta-
neously create a list L of all players i whose current colour is red and r; < b; holds.

We then repeatedly remove a player i from L and switch its colour to blue. This change affects the payoffs of ¢;
other players. More precisely, ¢; = |[{j € V|i € N;}|, and for any j such that i € Nj, the pair (7, b)) is updated to
(rj — wij, b + wj;). If after this change 7; < b; holds and player j holds colour red, then we add player j to the list L.
Note that no player has be removed from L as a result of the deviation of player i because of the PPM property of
our games. Therefore, after a deviation of player i, the time needed to update all values of (r;, b)) and the list L is
O(1+e)).

The first phase ends when L becomes empty. Then we rebuild the list by switching the role of the colours and
proceed in the analogous way. In particular, from that moment on we add a player i to the list if b; < 7;.
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In each phase, each player can switch its colour at most once, so the complexity of each phase, as well as both of
them, is 3, O(1 +¢}) = O(n + |E|).

Part ii. The existence of c-improvement paths of length at most 27 is guaranteed by Theorem 10. The algorithm
follows two phases to construct a strong equilibrium. In the first phase, it constructs a maximal sequence, &, of prof-
itable coalition deviations to the first colour (called blue). And in the second phase, it does the same for the second
colour (called red) to construct a sequence yx. It now suffices to estimate the time complexity of computing a single
c-improvement step in the sequences £ and y.

In each such step, a coalition is selected that deviates profitably to a single colour, blue or red; the joint strategy
is modified; and the payoffs of the players are appropriately modified. Without loss of generality, we can assume
that each time a maximal coalition is selected. By Lemma 9, such a coalition can be computed using Algorithm 2.
So it suffices to determine the complexity of Algorithm 2 and of the computation of the new joint strategy and
the modified payoffs in case of coordination games with two colours.

The complexity of executing the assignment in Line 1 is O(n). To evaluate the condition of the while loop in
Line 2, we first calculate p;(s) and p;(s’) for every player i. By Lemma 8, all these values and the set of players
A" :={i€ Alpi(s) 2 pi(s’)}, for which the deviation to s’ is not profitable, can be calculated in time

SevO(1 +e;) = O(n + |E|). Note that the body of the while loop is executed as long as A” # 0.

After each removal of a node 2 € A’ from A in Line 4 (and as a result from A’), the payoffs p;(s’) of at most e,
other players are affected, and by Lemma 8, updating them takes time O(1 +¢,). At the same time, if for any of
these e, players, the deviation to s’ is not longer profitable, that is, p;(s) > pi(s") holds, then we add him to A’.
Note that no player has to be removed from A’ after a deviation of player a because of the PPM property of our

ames.
i Now, each player is removed in Line 4 at most once, so the total time needed to execute this while loop is
SevO( +e)) = O(n + |E|) time. Finally, Line 5 takes O(1) time. So for both colours, the execution of Algorithm 2
takes O(n + |E|) time. Once the algorithm returns the empty set, we switch the colours and move to the second
phase. This phase ends when the algorithm returns the empty set. By Theorem 10, it follows that a strong equilib-
rium can be computed in time O(n? + n|E[). O

Finally, we study the complexity of determining the existence of Nash equilibria and of strong equilibria. We
already noticed in Example 1 that some coordination games have no Nash equilibria. In general, the following
holds.

Theorem 16. The Nash equilibrium existence problem in coordination games without bonuses (on unweighted graphs) is
NP-complete.

Proof. The problem is in NP, because we can simply guess a colour assignment and check whether it is a Nash
equilibrium can be done in polynomial time.

To prove NP-hardness, we first provide a reduction from the 3-SAT problem, which is NP-complete, to coordi-
nation games on directed graphs with natural number weights. Assume we are given a 3-SAT formula ¢ =
(m1vbiver) A(agvbaver) A .. Aagvbiveg) with k clauses and n propositional variables x, ..., x,, where each a;,b;, ¢;
is a literal equal to x; or —x; for some j. We will construct a coordination game G, of size O(k) with natural num-
ber weights such that G, has a Nash equilibrium iff ¢ is satisfiable.

First, for every propositional variable x;, we have a corresponding node X; in G, with two possible colours T
and L. Intuitively, for a given truth assignment, if x; is true, then T should be chosen for X;, and otherwise L
should be chosen. In our construction, we make use of a gadget, denoted by D;(x,y,z), with three parameters
x,y,z €{T, L} and i used just for labelling purposes, and presented in Figure 13. This gadget behaves similarly to
the game without Nash equilibrium analysed in Example 1.

What is important is that for all possible parameters values, the gadget D;(x,y,z) does not have a Nash equilib-
rium. Indeed, each of the nodes A;, B;, and C; can always secure a payoff of two, so selecting T or L is never a
best response, and hence in no Nash equilibrium does a node choose T or L. The rest of the reasoning is as in Ex-
ample 1. For any literal /, let

os(l) := T if [ is a positive literal,
P | L otherwise.

For every clause (a; v b; v ¢;) in ¢, we add to the game graph G the D;(pos(a;), pos(b;), pos(c;)) instance of the
gadget. Finally, for every literal a;, b;, or ¢; in ¢, which is equal to x; or —x; for some j, we add an edge from X; to
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Figure 13. (Color online) Gadget D; with three parameters x,y,z € {T, L} and three distinguished nodes A;, B;, C;.

A, Bj, or C;, respectively, with weight four. We depict an example game G, in Figure 14. (This figure corrects the
corresponding figure in Apt et al. [6]). We claim that G, has a Nash equilibrium iff ¢ is satisfiable.

(=). Assume there is a Nash equilibrium s in the game G,. We claim that the truth assignment v:
{x1,...,x,} = {T, L} that assigns to each x; the colour selected by the node X; in s makes ¢ true. Fixi€ {1,...,k}.
We need to show that v makes one of the literals g;, b;, or ¢; of the clause (a; v b; v ¢;) true.

From the above observation about the gadgets, it follows that at least one of the nodes A;, B;, or C; selected in s
the same colour as its neighbour X;. Without loss of generality, suppose it is A;. The only colour these two nodes,
A;and X;, have in common is pos(a;). So X; selected in s pos(a;), which, by the definition of v, equals v(x;). More-
over, by construction x; is the variable of the literal a;. But v(x;) = pos(a;) implies that v makes a; true.

(). Assume ¢ is satisfiable. Take a truth assignment v: {x;,...,x,} — {T,L} that makes ¢ true. For all j,
we assign the colour v(x;) to the node X;. We claim that this assignment can be extended to a Nash equilibrium
in g¢.

Figure 14. (Color online) The game G, corresponding to the formula ¢ = (=x2 v x3 v x1) A (x4 VX5V =1 x3), where in each gadget
the nodes of in-degree one are omitted.

{T,1} {T,1} {T,1} {T 1} {T,1}
4
4
{°7 L} {°> T}
{ ° T {Q,O,T} {o,o,L}

5 ® @/ ®
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Fix ie{1,...,k} and consider the D;(pos(a;), pos(b;), pos(c;)) instance of the gadget. The truth assignment v
makes the clause (4; v b; v ¢;) true. Suppose without loss of generality that v makes a; true. We claim that then it is
always a unique best response for the node A4; to select the colour pos(4;).

Indeed, let j be such that a; = x; or a; = —x;. Notice that the fact that v makes g; true implies that v(x;) = pos(a;).
So when node A; selects pos(a;), the colour assigned to X;, its payoff is four.

This partial assignment of colours can be completed to a Nash equilibrium. Indeed, remove from the directed
graph of G, all X; nodes and the nodes that secured the payoff four, together with the edges that use any of these
nodes. The resulting graph has no cycles, so by Theorem 6, the corresponding coordination game has a Nash
equilibrium. Combining both assignments of colours, we obtain a Nash equilibrium in G.

To conclude the result for coordination games without weights, notice that an edge with a natural number
weight w can be simulated by adding w extra players to the game. More precisely, an edge (i — j) with the
weight w can be simulated by the extra set of players {ii,...,i,} and the following 2w unweighted edges:
{G—-1i),(i—=1),...,[  =iy), ({1 —)),(i2—=]),...,(Iw = j)}. Given a colour assignment in the original game with
the weighted edges, we then assign to each of the new nodes iy, .. ., i, the colour set of the node i. Then the initial
coordination game has a Nash equilibrium iff the new one, without weights, has one. Furthermore, the new
game can be constructed in linear time. O

Corollary 2. The strong equilibrium existence problem in coordination games without bonuses (on unweighted graphs) is
NP-complete.

Proof. It suffices to note that in the above proof, the (=) implication holds for a strong equilibrium as well,
whereas in the proof of the (&) implication, by virtue of Theorem 6, actually a strong equilibrium is
constructed. O

An interesting application of Theorem 16 is in the context of polymatrix games introduced in Section 2. It was
shown in Simon and Apt [48] that deciding whether a polymatrix game has a Nash equilibrium is NP-complete.
We can strengthen this result by showing that the problem is strongly NP-hard, that is, NP-hard even if all input
numbers are bounded by a polynomial in the size of the input.

Theorem 17. Deciding whether a polymatrix game has a Nash equilibrium is strongly NP-complete.

Proof. Any coordination game G =(G,C) on an unweighted graph G =(V,E) can be viewed as a polymatrix
game P whose values of all partial payoffs functions are equal to either zero or one. Specifically, the set of players
in P is the same as in G, that is, V. The strategy set S; of player i is simply C(i). We define

al(s;,s;) = {1 ifje N;and s; =s;,

0 otherwise,

where, as before, N; is the set of neighbours of node i in the assumed directed graph G. Notice that the payoffs in

both games are the same because for any joint strategy s =(s1,...,5,), pl(s) = Ziiiaif(s[,s]-) =|{jeNilsi =s;}| =
pig(s). NP-hardness follows, because this problem was shown to be NP-hard for coordination games on un-
weighted graphs in Theorem 16. As all numerical inputs are assumed to be zero or one, they are obviously
bounded by a polynomial in the size of the input. So strong NP-hardness follows. As shown in Simon and Apt
[48], deciding whether a given polymatrix game has a Nash equilibrium is in NP, which, together with the above,
implies strong NP-completeness of this problem. O

8. Conclusions

In this paper, we studied natural coordination games on weighted directed graphs in the presence of bonuses
representing individual preferences. In our presentation, we focused on the existence of Nash and strong equilib-
ria and on ways of computing them efficiently if they exist. To this end, we extensively used improvement and
coalitional improvement (in short c-improvement) paths that can be seen as an instance of a local search.

We identified natural classes of graphs for which coordination games have improvement or c-improvement
paths of polynomial length. For simple cycles, these results are optimal in the sense that lifting any of the im-
posed restrictions may result in a coordination game without a Nash equilibrium.

In proving our results, we used increasingly more complex ways of constructing (c-)improvement paths of
polynomial length. In particular, the construction in the proof of Theorem 5 relied on the constructions consid-
ered in the proofs of Theorems 1 and 3.

For the class of graphs we considered, local search in the form of the (c-)improvement paths turns out to be an
efficient way of computing a Nash equilibrium or a strong equilibrium. But this is not true in general. In fact,
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Example 8 shows that this form of local search does not guarantee that a Nash equilibrium or a strong equilibri-
um can be found, even when the underlying graph is strongly connected and all nodes have the same set of col-
ours. We also showed that the existence problem both for Nash and strong equilibria is NP-complete even for
the coordination games on unweighted graphs and without bonuses.

There are other directed graphs than the ones we considered here, for which the coordination games are weak-
ly or c-weakly acyclic. For example, we proved in Apt et al. [8] that the coordination games on complete graphs
have the c-FIP and the proof carries through to the complete directed graphs. In turn, in Apt et al. [6], we showed
that that every coordination game on a directed graph in which all strongly connected components are simple
cycles is c-weakly acyclic. Furthermore, in Simon and Wojtczak [49], weighted open chains of cycles, closed
chains of cycles, and simple cycles with appropriate cross-edges were considered.

For some of these classes of graphs some problems remain open, for instance, the existence of finite
c-improvement paths for weighted open chains of cycles. A rigorous presentation of the proofs of weak acyclicity
and c-weak acyclicity for the corresponding coordination games is lengthy and quite involved. We plan to pre-
sent them in a sequel paper. Finally, we believe that the following generalisation of several of our results is true.

Conjecture 1. Coordination games on graphs with all nodes of in-degree < 2 are c-weakly acyclic.

Extensive computer simulations seem to support this conjecture. However, our techniques do not seem to
adapt easily to this bigger class of graphs.

Next, by Nash’s theorem, a mixed strategy Nash equilibrium always exists in coordination games irrespective
of the underlying graph structure. However, the complexity of finding one is an intriguing open problem. This
problem is known to be hard for the complexity class Polynomial Parity Arguments on Directed graphs (PPAD-
complete) PPAD-hard for various restricted classes of polymatrix games (Cai and Daskalakis [16], Rubinstein
[47]; so it is unlikely to be solvable in polynomial time), but generalising this result to coordination games will be
very challenging because of the special structure of players’ payoffs. Still, we conjecture that this is indeed
possible.

Conijecture 2. Finding a mixed Nash equilibrium in coordination games is a PPAD-hard problem.

Finally, note that in Section 7 we assumed that all weights of the graph edges are natural numbers. It is known
that allowing weights to be rational may change the complexity of the studied computational problem; for exam-
ple, the well-known knapsack and partition problems become strongly NP-complete (Wojtczak [53]). However,
most computational problems for coordination games with rational weights can be reduced in polynomial time
to the same problem for coordination games with integer weights by simply multiplying all the weights by the
least common multiple of all the weights” denominators. This results in an exponential blowup of value of the
numbers, but only in a polynomial increase in their size when they are represented in the standard binary
notation.

It is easy to see that a joint strategy is a Nash equilibrium or a strong Nash equilibrium in the original game if
and only if it is in the new game with the integer weights. So as long as such a transformation results in a coordi-
nation game of the type listed in Table 1, we get a polynomial time algorithm for finding a Nash equilibrium or a
strong Nash equilibrium in the original game. In particular, these problems for the coordination games with only
two colours or on DAGs can always be solved in polynomial time even when the weights are rational. Notice
that the problem of checking for the existence of a Nash equilibrium in a coordination game with rational
weights is still in NP (simply guess a joint strategy and check whether it is a Nash equilibrium) and at the same
time it is NP-hard, as we already established it for the coordination games with the weights equal to zero or one.
So this problem is strongly NP-complete.
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Appendix
We provide here proofs of Lemmas 3 and 4 (restated below).

Lemma 3. The improvement path constructed in Line 6 of Algorithm 1 modifies the grades of C; and its adjacent cycles Cj_y and
Cis1, if they exist, as explained in Figures 4, 5, 6, 7, and 8.

Remainder of the Proof of Lemma 3. To complete the proof of Lemma 3, we provide justification of the changes of the
grades in Figures 4, 5, 6, 7, and 8.
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Figure 4.

Case 1. The initial grade of C; is - This corresponds to the situation at the beginning of Phase 2 in the proof of Theorem 1 when exactly one
node has a bonus. This phase starts with the node [/,2] and ends after at most 1 — 1 steps. So the colour of [f,1] is not modified and consequently
the payoff to the down-link node [ + 1, k] of Cj;; is not modified. Furthermore, the new grade of C; can be either + or U+ depending whether at
the end of this phase the colours of [f,7] and [}, 1] differ.

Case 2. The initial grade of C; is U~. The reasoning is the same as in Case 1. However, the colour of [}, v] is now not modified. The reason is
that the only colour that is propagated is that of [f,1] and initially it is also the colour of [f,v]. So the new grade of C; is now U+ .

Case 3. The initial grade of C; is ?. This corresponds to the situation at the beginning of Phase 1 in the proof of Theorem 1 when exactly one
node has a bonus. The constructed improvement path ends after at most 211 — 1 steps, so in the process the colour of [, 1] can change. If it does,
then the grade of the cycle C;1 can change arbitrarily. In particular, it can become U+ or U~ if the down-link node of C;.; is [j +1,v]. Further-
more, the new grade of C; can be either + or U+, for the same reasons as in Case 1.

Figure 5.

The assumption that the grade of C; is initially U~ means that initially the colours of [j,1] and its predecessor [j,v] in this
cycle are the same. Then the construction in Line 6 of the improvement path for the considered coordination game for C;
with bonuses for the link nodes corresponds to any update scenario presented in Phase 2 of the proof of Theorem 3 that
starts with i. There are six such scenarios to consider.

Case [i]. This means that the propagation of the colour of the up-link node of C; stops before the down-link node of C; is reached. So the im-
provement path constructed in Line 6 does not change the colours of the link nodes of C; and of the predecessor [, v] of the up-link node [f, 1].
Hence, the grades of C;-1 and Cj+1 remain unchanged, and the grade of C; becomes U+.

The remaining cases consider the situations in which the down-link node of C; switches to another colour. We now claim that in these cases the
grade of C;_; is initially +. Indeed, if this grade is initially U+, then the payoff to the up-link node [j —1,1] of Cj_; is > 1. But [j — 1,1] is also the
down-link node of C;, so the claim follows by Lemma 1.

Case [iil. This means that the propagation of the new colour of the up-link node of C; stops between the down-link and up-link nodes of C;
and that the down-link node adopted the colour of the up-link node. So the improvement path constructed in Line 6 does not change the colours
of [j, 1] and its predecessor [, v].

Hence, the grade of C; becomes U+, and the grade of Cj;1 remains unchanged. On the other hand, the grade of C;_; can remain unchanged or
change from + to —, U+, or U~ because of the new colour of the up-link node [j —1,1] of Cj;.

Case [io]. This means that the propagation of the colours stops between the down-link and up-link nodes of C;, but now the down-link node
(so [j —1,1]) has adopted the colour of its predecessor [j — 1,v] in Cj-1. So, as in the previous case, the grade of Cj;; remains unchanged.
However, the grade of C; can now also become + if this propagation of the colours changes the colour of the predecessor [f,v] of the up-link
node [f, 1]. Furthermore, the grade of C;-; now changes from + to U~ or U+ because the new colour of [j — 1, 1] is now the colour of [j - 1,v] and
as a result the node [j — 1,2] can now become the only node that does not play a best response.

Case [ioil. This means that the propagation of the colours now stops between the up-link and down-link nodes of C;, but now the down-link
node (so [j - 1,1]) has adopted the colour of its predecessor [j —1,7] in C;_; and subsequently the up-link node [f, 1] of C; adopted the colour of
its predecessor [f,v] in C;. So the grade of C; now becomes U+.

Furthermore, the grade of Cj_l now changes from + to U- or U+ for the same reasons as in the previous case. Finally, the grade of C;;1 can now
change arbitrarily for the same reasons as in Case 3 concerning Figure 4.

Case [io0]. This case is similar to the previous one, with the difference that in the second round of the propagation of the colours the up-link
node [}, 1] of C; adopted the colour of its predecessor in C;;; instead of the colour of its predecessor [, v] in C;. Consequently, the grade of C; now
becomes +. Furthermore, the grade of C;_; can now change from + to U~ or U+, whereas the grade of Cj;1 can now change arbitrarily, both for
the same reason as in the previous case.

Case [iooil. This case cannot occur. Indeed, it would imply that the down-link node in C; first switches to the colour of its predecessor in Cj-;
and later switches to different colour. But the second switch is not possible because of Lemma 1.

Figure 6.

The assumption that the grade of (; is initially — means that initially the colours of [j,1] and its predecessor [f,v] in this
cycle differ. Then the construction in Line 6 of the improvement path for the considered coordination game for C; with
bonuses for the link nodes corresponds to any update scenario presented in Phase 2 of the proof of Theorem 3 that starts
with o. There are four such scenarios to consider.

Case [o]. The reasoning is the same as in Case [i] above with the difference that the grade of C; becomes now + as the colours of [j, 1] and [f,v]
do not change and hence remain different.

In the remaining cases the grade of C;_1 is initially + for the reasons given after Case [i] above.Case [oil. This case is analogous to Case [ii] above.
In particular, the improvement path constructed in Line 6 does not change the colours of [}, 1] and its predecessor [j,v]. Hence, the grade of C; be-
comes + and the grade of Cj;; remains unchanged, whereas the grade of C;_; can remain unchanged or change from + to—, U+, or U~.

Case [oo]. This case is analogous to Case [io] above. So, as in that case, the grade of Cj;; remains unchanged, and the grade of ;-1 now
changes from + to U- or U+. However, the grade of C; can now also become U+ if this propagation of the colours changes the colour of [j,v] to
the colour of its successor [}, 1].

Case [o0i]. This case is analogous to Case [ioi] above. So, as in that case, the grade of C; now becomes U+, the grade of C;_; changes from + to
U- or U+, and the grade of Cj4; can change arbitrarily.
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Figure 7.

This case corresponds to the situation at the beginning of Phase 1 in the proof of Theorem 3. The constructed improve-
ment path ends after at most 3n steps, so in the process the colour of [j,1] can change. Therefore, as in Case 3 concerning
Figure 4, the grade of the cycle C;;; can change arbitrarily, whereas the grade of C; can become either + or U+ .

Finally, if initially the grade of C;_; is +, then, as in Case [iil, its grade can remain unchanged or change to -, U+, or U-.
Furthermore, if initially this grade is U+, then by the argument used in the proof of Lemma 2, the grade does not
change.

Figure 8.

We reduce the analysis for this case to the previous three cases by extending the open chain with a new cycle C,41 in
which all new nodes have to their disposal colours that all differ from the colours available to the nodes of C,,. Then, in
Algorithm 1, the bonus function for the up-link node of C,, is always zero on the colours available to it, and consequently
for j = m, the improvement path constructed in Line 6 of Algorithm 1 is the same as for the original open chain. So for
the case when j = m, we can use Figures 5, 6, and 7 with the last columns always omitted. This yields Figure 8.

A perceptive reader can inquire why the row corresponding to the case [ioo] is missing. The reason is that it deals with
the situation when the up-link node of C; switches to an outer colour, that is, a colour of its predecessor in C;;1. But for j
= m, this cannot happen by the choice of the colours for the new nodes.

We use below the following observation.

Claim A.1. Let s and s’ be two joint strategies such that u(s) = (guard(s),0, |prefix(s)l, — NBR(s)), guard(s) < guard(s’), and
[prefix(s)| < |prefix(s’)|. Then p(s)<jeti(s’) holds.

Proof. Either u(s’) = (guard(s’),0, |prefix(s’)], — NBR(s")) or u(s’) = (guard(s’),1,...) and in both cases p(s)<pyp(s’) holds. O

Lemma 4. The progress measure (s) increases w.r.t. the lexicographic ordering <., each time one of the updates presented in Fig-
ures 4,5, 6, 7, and 8 takes place.

Proof. We check using Lemma 3 that u(s) increases w.r.t. the lexicographic ordering <, each time one of the updates
presented in Figures 4, 5, 6, 7, and 8 takes place. So throughout the analysis, we assume that j = NBR(s). Let s’ denote the
new joint strategy computed in Line 8 of the algorithm. Lemma 2 implies that guard(s) < quard(s’). Furthermore, thanks
to the definition of y(s’), we can assume that s’ is not a Nash equilibrium. We consider each figure separately.

Figure 4.
Then j = 1 and guard(s) = 0.
Case 1. The new grade of C; is U+. Then guard(s) < guard(s’), and hence 11(s)<jex pi(s").
Case 2. The new grade of C; is +.
Subcase 1. u(s) = (guard(s), 1,0, — NBR(s)).
Then the initial grade of C; is — and prefix(s) contains U+, say, at position /. Hence, prefix(s’) also contains U+ at position /1, and conse-
quently /1 < guard(s’). But guard(s) = 0, s0 p1(s)<jex ti(s’).
Subcase 2. 1i(s) = (guard(s), 0, |prefix(s)|, — NBR(s)).
If the initial grade of C; is —, then |prefix(s)| < |prefix(s’)| because by assumption, s’ is not a Nash equilibrium. Otherwise,
the initial grade of C; is ? and then [prefix(s)| = 1 by the definition of prefix(s), whereas 1 < |prefix(s’)|. So in both cases, by
Claim A.1, p(s)<pexpi(s’).

Figure 5.
By definition, u(s) = (guard(s),1,0, — NBR(s)).

Case 1. The new grade of C;_; is +. Then the case [i] or [ii] applies and hence the new grade of C; is U+. So guard(s) < guard(s’), and hence
L(8) <tex ti(S”)-

Case 2. The new grade of C;—; is U+. Then guard(s) < guard(s’), and hence i(s)<jex1(s”).

Case 3. The new grade of C;_1 is —. Then the case [ii] applies, and hence the new grade of C; is U+. So u(s") = (guard(s’),1,0, — NBR(s")). But
guard(s) < guard(s’) and —NBR(s) < =NBR(s"), 50 pi($)<jexfi(s").

Case 4. The new grade of C;_; is U~. Then p(s’) = (guard(s’),1,0, — NBR(s")) and i(s)<p.1i(s") for the same reasons as in the previous case.

Figure 6.

Case 1. For the joint strategy s, we have u(s) = (guard(s),1,0, — NBR(s)) and prefix(s) contains — at position j, so it contains U+ at some position
h > j. Moreover, by the definition of prefix(s), all positions in it between j and & are + or U+.
So if the new grade of C;_; is + or U+, then j < guard(s’), and hence guard(s) < guard(s") because guard(s) < NBR(s) = j. So u(s)<exji(s’). Otherwise,
the new grade of C;_; is — or U—. If it is —, then prefix(s’) contains U+ at the position 1 > j — 1. So in both cases, u(s’) = (guard(s’),1,0, — NBR(s")).
But —NBR(s) < =NBR(s'), 50 1i(s)<jex{1(s’).
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Case 2. For the joint strategy s, we have p(s) = (guard(s), 0, |prefix(s)|, — NBR(s)). If the new grade of C;_; is + or U+, then |prefix(s)| < |prefix(s’)|
because we assumed that s” is not a Nash equilibrium. So, by Claim A.1, pi(s)<px(s’). If the new grade of Cj_; is — or U—, then guard(s) =
guard(s’) and |prefix(s)| = |prefix(s’)|, but =NBR(s) < =NBR(s’), 50 1(5)<jex1(s")-

Figure 7.

By the definition prefix(s) ends with ?, so |prefix(s)| = j and u(s) = (guard(s),0, |prefix(s)l, — NBR(s)).

If the new grade of C;_1 is + or U+, then j <|prefix(s’)|, so by Claim A.1, u(s)<ixu(s’). If the new grade of C;_; is — or U-,
then quard(s) = guard(s’), |prefix(s)| < |prefix(s’)| and —NBR(s) < —=NBR(s’), s0 (i(5)<jext(s").

Figure 8.

The arguments for each case coincide with the arguments given for the corresponding cases concerning Figures 5, 6,
and 7.

Endnote
' See http: //www beldensolutions.com /en/Company / Press/ PR103EN0609 /index.phtml.
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