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Abstract

This paper proposes a simple descriptive model of discrete-time double
auction markets for divisible assets. As in the classical models of exchange
economies, we consider a finite set of agents described by their initial en-
dowments and preferences. Instead of the classical Walrasian-type market
models, however, we assume that all trades take place in a centralized dou-
ble auction where the agents communicate through sealed limit orders for
buying and selling. We find that, under nonstrategic bidding, the double
auction clears with zero trades precisely when the agents’ current hold-
ings are on the Pareto frontier. More interestingly, the double auctions
implement Adam Smith’s “invisible hand” in the sense that, when start-
ing from disequilibrium, repeated double auctions lead to a sequence of
allocations that converges to individually rational Pareto allocations.

Keywords. Double auction, price formation, convergence, Pareto allocation

1 Introduction

Most modern securities exchanges are based on the double auction mechanism
where interested buyers and sellers submit limit orders (a market order can be
viewed as a limit order with a very generous limit on the price) and the most
generous offers are selected for trade by crossing the supply and demand curves.
The same principle is behind day-ahead energy markets where matching takes
into account also the transmission capacities and the locations of supply and
demand. More recently, double auctions have been implemented for betting and
for various crypto currencies.

Ever since the pioneering works of Smith [25], double auctions have been
found to converge quickly to efficient allocations but the phenomenon has re-
mained largely unexplained by theory; see e.g. [4] and [24, Section 3] or the
collections [26], [13] and [20] for further evidence and analysis. Section 3 of [10]
surveys mathematical models proposed for the analysis of double auctions. In
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the words of Plott [20, page 16]: “The tendency of double auction markets to
converge to the equilibrium of the associated competitive equilibrium model is
well known, but the equilibration process is not understood”.

This paper studies discrete-time double auctions in the classical set-up of
welfare economics with a finite set of agents with given endowments and pref-
erences. We assume that all trades take place in a double auction and that the
agents submit limit orders according to their indifference (also known as reser-
vation) prices. In general, indifference prices depend not only on the agents’
preferences but also on their current endowments which change whenever an
agent is involved in a trade. We find that, when the double auction is repeated,
the allocations converge to a Pareto allocation that every agent prefers to their
original allocation. Moreover, the speed of convergence is linear in the sense
that the total consumer surplus is inversely proportional to the number of it-
erations. As essentially proved already by Debreu [6] (see Section 5 below),
the surplus is zero if and only if the current allocation is Pareto efficient. The
discovered convergence rate thus explains the efficiency of double auctions ob-
served in empirical studies. The obtained convergence result is, to the best of
our knowledge, the first analytical justification for the efficiency of the double
auction mechanism.

All trading in our model occurs out of equilibrium and the trading stops only
at equilibrium. This is not only a feature of our model but also of real markets
where disequilibrium is the driving force behind trading; see [20, Chapter 1] or
Fisher [8] for a comprehensive discussion and further analysis of disequilibrium
economics. Disequilibrium trading can be described also by tatonnement or
auction algorithms where, at each iteration, agents can trade arbitrary quantities
at given prices which are then updated according to given rule depending on
total consumption; see e.g. [8, Chapter 2] or [14, 5] for more recent variants
with stronger convergence properties. Such algorithms should not, however, be
taken as descriptions of real markets where trading costs are nonlinear and price
formation is endogenous. One can, on the other hand, view our market model as
an algorithm for computing equilibrium allocations. The constructed equilibria
are not necessarily Walrasian but merely individually rational allocations on the
Pareto frontier. Accordingly, our assumptions on the utilities are weaker and,
in particular, do not require the gross substitutes properties often employed in
the literature; see e.g. [14, 5].

The advertised convergence occurs when preferences of the agents remain
fixed. In practice, however, agents’ preferences evolve with the receipt of new
information. When the preferences change, so do equilibria and associated equi-
librium prices. Combined with a description of how information affects prefer-
ences (see Example 1 below), our model would give a natural description of how
arrival of new information affects trading and market clearing prices in markets
based on the double auction mechanism.

The rest of this paper is organized as follows. The next section starts by
reviewing the double auction mechanism as implemented in terms of limit orders
in modern securities exchanges. The auction is then formulated in terms the
problem of maximizing the consumer surplus. Section 3 presents our model of
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the market where a finite set of agents is described by their endowments and
preferences over different holdings. Section 5 relates double auction equilibria
with Pareto allocations. Section 6 proves convergence to Pareto allocations
when the double auction is repeated.

2 Limit orders and double auctions

Consider a centralized exchange based on the sealed bid double auction mecha-
nism where a finite set I of agents submit limit orders to buy and sell a given
asset/good. A buy-limit order consists of a price-quantity pair (pbi , q

b
i ) where

pbi is the maximum unit price the agent is willing to pay for the asset and
qbi is the maximum number of units the agent is willing to buy at this price.
Similarly, a sell-limit order (psi , q

s
i ) specifies the minimum unit-price and the

maximum quantity for selling the asset. An agent interested only in buying or
selling would have qsi = 0 or qbi = 0. Submitting both buy and sell orders with
nonzero quantities is typical of e.g. market makers who provide liquidity to the
market. A rational agent would, of course, have sb < sa which we will assume
throughout.

At the end of the bidding period, the market is cleared by matching the
maximum quantity x̄ of buy limit orders with sell limit orders. That is, x̄ is the
largest number such that s(x̄) ≤ d(x̄), where s and d are the supply and demand
curves, respectively; see Figure 1. For each x, the value s(x) is the marginal price
when buying a total of x units from the most generous sellers. Mathematically,
the supply curve is the nondecreasing piecewise constant function given by

s(x) = inf
I′⊂I
{sup
i∈I′

psi |
∑
i′∈I′

qsi′ ≥ x}.

Analogously, the demand curve is the nonincreasing piecewise constant function
given by

d(x) = sup
I′⊂I
{ inf
i∈I′

pbi |
∑
i′∈I′

qbi′ ≥ x}.

The x̄ units of the asset are traded at a market clearing price

p̄ ∈ [s(x̄), s(x̄+)] ∩ [d(x̄), d(x̄+)], (MCP)

where s(x̄+) and d(x̄+) denote the right limits of s and d, respectively. If
either d or s is continuous at x̄, as in Figure 1, then the market clearing price is
uniquely defined. If the vertical parts of d and s overlap, there is a whole interval
of possible market clearing prices and an additional rule is needed to choose one.
A natural choice would be to use the middle point but the conclusions drawn
here do not depend on the choice of a market clearing price. All sell orders
involved in market clearing trades have limit prices less than or equal to the
market clearing price and the involved buy orders have limit prices greater than
or equal to the market clearing price. Thus, the agents involved in trading get
a price at least as good as the ones they were willing to accept.
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Figure 1: Market clearing in a double auction.

Figure 2: Market clearing maximizes the consumer surplus D(x)− S(x).
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The double auction mechanism has a variational formulation that will be
useful in further analysis. Indeed, the market clearing condition means that x̄ is
the largest among all x ≥ 0 that maximize the “consumer surplus” D(x)−S(x),
where S(x) is the least cost of buying x units from the potential sellers and D(x)
is the greatest revenue one could get by selling x units to potential buyers; see
Figure 2. Mathematically,

S(x) = inf
xi

{∑
i∈I

Si(xi)

∣∣∣∣∣ ∑
i∈I

xi = x

}
,

where

Si(xi) =

{
psixi if xi ∈ [0, qsi ],

+∞ otherwise

is the amount of cash agent i would require for selling xi units of the asset.
Analogously,

D(x) = sup
xi

{∑
i∈I

Di(xi)

∣∣∣∣∣ ∑
i∈I

xi = x

}
,

where

Di(xi) =

{
pbixi if xi ∈ [0, qbi ],

−∞ otherwise

is the amount of cash agent i would be willing to pay for xi units of the asset.
The functions S and D can be expressed also as the indefinite integrals of

the supply curve and demand curves, s and d, respectively. Conversely, the
demand and supply curves d and s can recovered from the functions D and S
through the relations

∂D(x) = [d(x), d(x+)] and ∂S(x) = [s(x), s(x+)],

where ∂D(x) is the superdifferential of D at x, i.e. the set of prices p with

D(x) ≤ D(x̄) + p(x− x̄) ∀x ≥ 0.

Similarly, ∂S(x̄) is the subdifferential of S at x̄, i.e. the set of prices p with

S(x) ≥ S(x̄) + p(x− x̄) ∀x ≥ 0.

We refer the reader to [22, Section 23] for a general study of sub- and superdif-
ferentials in finite-dimensional spaces.

Condition (MCP) can now be written as

p ∈ ∂D(x̄) ∩ ∂S(x̄).

This implies that 0 ∈ ∂[D−S](x̄) which means that x̄ maximizes the consumer
surplus D(x)−S(x) as claimed earlier. Indeed, by definition of superdifferential,
0 ∈ ∂[D − S](x̄) means that

D(x)− S(x) ≤ D(x̄)− S(x̄) + 0(x− x̄) ∀x ≥ 0.
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Besides this standard formulation, there is another variational formulation of
the double auction mechanism that turns out to be useful when studying its
efficiency. Indeed, plugging in the definitions of D and S, we can write the
surplus maximization problem as

maximize
∑
i∈I

Di(x
+
i )−

∑
i∈I

Si(x
−
i ) over x+, x− ∈ RI

subject to
∑
i∈I

x+i =
∑
i∈I

x−i ,

where x+i and x−i denote the purchases and sales, respectively, of agent i. Note
that since pbi < psi , one has either x+i = 0 or x−i = 0. Interpreting negative
purchases as sales and extending the definition of Di by

Di(xi) := sup
x+
i ,x
−
i

{Di(x
+
i )− Si(x−i ) |x+i − x

−
i = xi}

=


pbixi if xi ∈ [0, qbi ],

psixi if xi ∈ [−qsi , 0],

−∞ if xi /∈ [−qsi , qbi ],

we can write the market clearing problem more concisely as

maximize
∑
i∈I

Di(xi) over x ∈ RI

subject to
∑
i∈I

xi = 0.
(P̃ )

The functions Di are concave since pbi < psi . They contain exactly the same
information as the agents’ limit orders. In auction theory, Di(xi) is known as
the “reservation price” for xi. It gives the maximum amount of cash agent i
is prepared to pay for xi units of the asset. Again, buying negative quantities
is interpreted as sales and negative payments are income. Problem (P̃ ) can be
interpreted as the maximum revenue the auctioneer could generate by buying
the asset from some agents and selling to others at their reservation prices.
This interpretation is not practically relevant, however, as the exchange simply
implements the double auction and is not involved with trading. The agents
involved in market clearing trade at the market clearing price.

Submitting several buy and sell orders, an agent can effectively submit any
concave function Di to the exchange. Indeed, if agent i submits finite collections
(pbi,k, q

b
i,k)k∈Kb and (psi,k, q

s
i,k)k∈Ks of buy and sell limit orders (here, Kb and Ks

denote finite sets of buy and sell orders, respectively), we obtain the same market
clearing problem (P̃ ) but now

Di(xi) = sup
x+
i,k,x

−
i,k

 ∑
k∈Kb

Di,k(x+i.k)−
∑
k∈Ks

Si,k(x−i,k)

∣∣∣∣∣∣
∑
k∈Kb

x+i,k −
∑
k∈Ks

x−i,k = xi

 .
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Indeed, all the submitted limit orders are binding agreements to buy/sell at the
offered prices up to the specified quantities. The function Di can be interpreted
as the greatest amount of cash the auctioneer could get by selling xi units of the
asset to agent i. Any piecewise linear concave function can be expressed in this
form. Any concave function can, in turn, be approximated by piecewise linear
functions to arbitrary accuracy

3 Price-taking agents in multi-asset auctions

Existing double auctions reviewed in the previous section only involve two assets:
the asset being auctioned and cash. Our subsequent analysis will allow for
multiple assets as it turns out that this does not present any complications in
theory. It will, however, allow us to make comparisons with classical welfare
economics and, in particular, general equilibrium models. The usual situation
with two traded assets is covered as a special case.

Consider an economy with a finite set J of assets and assume that agent
i ∈ I has initial endowment x0i ∈ RJ . Preferences of agent i over different
portfolios of assets are measured by a utility function ui on RJ . The setting
is thus similar to that of pure exchange models of classical welfare economics;
see e.g. [16, Chapter 16] or [27, Chapter 17]. We deviate, however, from the
classical Walrasian-type market models where trading occurs at exogenously
given equilibrium prices. Instead, we assume that all trades are executed in a
call auction where prices and participating offers are determined according to
the double auction mechanism. In general, a single call auction will not lead
to an equilibrium but, as we will see in Section 6, repeating the call auction
from the updated positions gives a sequence of allocations that converges to an
equilibrium.

Following the formulation (P̃ ) of the double auction mechanism in the two-
asset case, we assume that the agents submit concave functions Di specifying
how much they would be willing to pay for a given portfolio of assets. The
market is then cleared according to the double auction mechanism which, in the
present multi-asset setting, amounts to solving the optimization problem

maximize
∑
i∈I

Di(xi) over x ∈ RI×J

subject to
∑
i∈I

xi = 0
(P )

which is a straightforward generalization of the market clearing problem (P̃ )
for a single asset. While in the single-asset setting, general concave functions
Di can be approximated by submitting a collection of limit orders, problem
(P ) should be taken as theoretical abstraction of limit order trading in ex-
changes implemented today. To submit approximations of concave functions in
the multi-asset setting would require the development of exchanges where limit
orders and market clearing involve multiple assets.

7



We will assume that each agent defines the value Di(xi) as the maximum
amount she could pay for a portfolio xi without worsening her current utility.
More precisely, we assume nonstrategic bidding in the sense that each agent bids
according to her indifference prices (reservation prices, willingness to pay, . . . )
defined by

Di(xi) := sup{r ∈ R |ui(x0i + xi − rg) ≥ ui(x0i )}, (1)

where g denotes a numeraire portfolio in terms of which all prices are quoted. If
prices are quoted in terms of cash, g is the unit vector with nonzero component
only for the cash asset; see Example 3 below. The value of Di(xi) is the greatest
amount of cash agent i would be willing to pay for a portfolio xi. Paying more
would reduce the agent’s utility. Again, negative purchases are interpreted as
sales so that Si(xi) = −Di(−xi) gives the indifference price for selling xi. Thus,
both buyers and sellers can be described by the indifference functions Di.

Bidding the indifference price function is rational in one-off double auctions
that are large enough so that an individual agent’s bid has a negligible effect
on the market clearing price. An agent’s bid then only affects the quantity she
buys while every unit bought below her indifference price increases her utility.
When considering repeated double auctions as in Section 6 below, the situation
becomes more complicated as one may want to postpone trading in the hope of
beneficial market price developments. Roberts and Postlewaite [21] assume a
general exchange mechanism and show that, possible gains from non-competitive
behavior goes to zero as the number of agents increases. Our assumption of in-
difference pricing is akin to that made in Friedman [9] who assumed that the
agents neglect strategic feedback effects and bid according to abstract strategies
satisfying certain plausibility assumptions. Such assumptions are supported by
Cason and Friedman [3] who find that relatively simple bidding rules explain
human behavior in double auctions better than more sophisticated strategies.
Plott [20, Chapter 10] studies three two-sided auction mechanisms and finds that
individuals tend to gain little from strategic bidding. Friedman [11, page 30]
summarizes the findings of a series of empirical studies as “. . . traders in simple
static theoretical models have the incentive to understate their willingness to
transact, and those understatements lead to inefficient outcomes in thin mar-
kets. However, stationary repetition in the CDA teaches traders not to under-
state inefficiently: they learn to shade bids and asks towards earlier transaction
prices, but not beyond. The learning process leads to a Nash equilibrium that
implements a competitive equilibrium outcome”.

We allow for extended real-valued and nondifferentiable utility functions ui
but assume the following throughout.

Assumption 1. The utility functions ui are upper semicontinuous, concave
and strictly increasing in the direction of the numeraire asset g in the sense that

ui(xi + rg) > ui(xi)

for all xi ∈ domui and r > 0.
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Here and in what follows,

domui := {xi ∈ RJ | ui(xi) > −∞}.

Extended real-valued utility functions allow for incorporation of constraints with
infinite penalties. This is essential e.g. with Cobb-Douglas-type utility functions
(see Section 7) whose domains are the positive orthants RJ+. In the general setup,
however, we do not require domui ⊆ RJ+, so short positions may be feasible.
Also, besides growth in the direction of g, we do not assume any monotonicity
properties so some agents may find utility in assets that others find undesirable
altogether. Since we do not require differentiability, our analysis covers also
Leontief-type utility functions

ui(xi) = min
j∈J
{αi,jxi,j},

where αi,j are real parameters. Nonsmoothness is essential also in describing
agents with production facilities.

Example 1 (Indirect utility functions). Our assumptions allow for indirect
utility functions of the form

ui(xi) = sup
yi

{Ui(yi) | yi ∈ Yi(xi)},

where Yi is a von Neumann–Gale-type “production mapping” describing how a
vector xi of goods can be transformed into another yi and Ui is a utility function
on the outputs. As soon as the set G := {(xi, yi) | yi ∈ Yi(xi)} is convex and Ui
is concave, the function ui will be concave as well. Applying [22, Theorem 9.2]
would give quite general sufficient conditions for the upper semicontinuity. A
sufficient condition is that Ui is upper semicontinuous, G is closed and Yi(0) be
bounded.

One could also allow for random production mappings and utilities and define

ui(xi) = sup
yi

{EPiUi(yi) | yi ∈ Yi(xi) Pi-a.s.},

where the supremum is taken over random outputs yi and Pi is a probability
measure describing agent i’s views about the uncertain future states. Such in-
direct utility functions incorporate agents’ information through the subjective
probability measures Pi which may evolve at the arrival of news and other infor-
mation. Changes in the subjective probabilities would affect the indirect utilities
ui and thus, market clearing prices, as we will see below. Indirect utilities are
often often used in indifference pricing in incomplete market models of financial
economics; see e.g. [2, Chapter 5] or [19] and the references there.

In what follows, we assume that the function Di submitted by agent i is
defined by (1). The following is a simple consequence of Assumption 1; see e.g.
[18, Proposition 2].
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Lemma 2. Under Assumption 1, the function Di is concave and upper semi-
continuous with Di(0) = 0 and

Di(xi + rg) = Di(xi) + r

for all xi ∈ domDi and r ∈ R.

Example 3 (Cash as numeraire). In many markets, the numeraire asset is cash.
If cash is denoted by 0 ∈ J , this means that the numeraire g in the definition (1)
of the function Di is a unit vector with g0 = 1 and gj = 0 for j ∈ J̃ := J \ {0}.
Denoting xi = (xi,0, x̃i) ∈ R× RJ̃ , Lemma 2 gives

Di(xi) = Di(0, x̃i) + xi,0

so problem (P ) can be written as

maximize
∑
i∈I

Di(0, x̃i) +
∑
i∈I

xi,0 over x ∈ RI×J

subject to
∑
i∈I

xi,0 = 0,∑
i∈I

x̃i = 0,

or equivalently,

maximize
∑
i∈I

Di(0, x̃i) over x̃ ∈ RI×J̃

subject to
∑
i∈I

x̃i = 0.

When J̃ is a singleton, we recover problem (P̃ ) in the two-asset setting of Sec-
tion 2 where a single auctioned asset is paid for in cash.

The market clearing prices will be the Lagrange multipliers associated with
the market clearing constraint in (P ). In order to guarantee the existence of
market clearing prices, we will consider the following perturbed market clearing
problem

maximize
∑
i∈I

Di(xi) over x ∈ RI×J

subject to
∑
i∈I

xi = z,
(Pz)

where z ∈ RJ . The optimum value can be interpreted as the maximum revenue
the auctioneer could get by selling the portfolio z to the market participants
at their indifference prices. This interpretation is, however, irrelevant as the
auctioneer simply implements the double auction mechanism and does not get
involved with trading otherwise. When z = 0, problem (Pz) becomes the market
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clearing problem (P ). The existence of a Lagrange multiplier is equivalent to
the subdifferentiability at the origin of the optimum value of (Pz) as a function
of z; see [23, Theorem 16]. Since the optimum value function is concave, the
subdifferentiability is implied by continuity at the origin; see [23, Theorem 11].
By [23, Theorem 8], the following implies the continuity.

Assumption 2. There is an ε > 0 such that the optimum value of (Pz) is
finite for all z ∈ RJ with |z| ≤ ε.

A sufficient condition for Assumption 2 is that, for each asset j ∈ J , there
are agents i, i′ ∈ I such that Di(ej) and Di′(−ej) are finite. Here ej denotes the
vector with ε at the jth component and zeros elsewhere. Indeed, we then have
that the optimum value is finite at ej and −ej for all j ∈ J . By concavity, the
optimum value is then finite over the convex hull of such vectors, a set which
contains a neighborhood of the origin. In the two-asset setting of Section 2,
this holds if there is at least one seller and one buyer. Assumption 2 could
be weakened to requiring that the origin belongs to the relative interior of the
domain of the optimum value function.

The following is a simple application of the classical optimality conditions
in convex optimization; see e.g. [23, Theorem 15] or [22, Section 28].

Theorem 4. Under Assumption 2, an x̄ solves (P ) if and only if there exists
a price vector p ∈ RJ such that

∂Di(x̄i) 3 p ∀i ∈ I, (2)∑
i∈I

x̄i = 0. (3)

Condition (2) means that p is a supergradient of Di at x̄i, i.e.

Di(xi) ≤ Di(x̄i) + p · (xi − x̄i) ∀xi ∈ RJ . (4)

The vector p in Theorem 4 is a market clearing price: agent i will pay p · x̄i
units of the numeraire portfolio g for x̄i. Thus, at market clearing, the agent’s
portfolio will be updated to

x1i := x0i + x̄i − (p · x̄i)g.

Again, if a component xi,j of xi is negative, then agent i is selling asset j and
receiving −pj x̄i,j units of cash for it. The market clearing condition (3) implies∑

i∈I
x1i =

∑
i∈I

x0i (5)

so the new allocation is feasible. Choosing xi = x̄i+ rg in (4) and using the last
property in Lemma 2 gives

g · p = 1,

i.e. the numeraire is priced at 1. In the setting of Example 3 where g is a unit
vector, this just means that p0 = 1 (one unit of cash is worth one unit of cash).
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Remark 5 (Consumer surplus). Condition (2) or, equivalently, (4) implies

Di(0) ≤ Di(x̄i)− p · x̄i

where, by Lemma 2, the left hand side equals zero under Assumption 1. Thus,
the payment p · x̄i is less than Di(x̄i) which is what the agent was prepared to
pay for x̄i. The difference may be thought of as agent i’s consumer surplus. Any
feasible allocation x satisfies∑

i∈I
Di(xi) =

∑
i∈I

[Di(xi)− p · xi]

so the double auction mechanism maximizes the total consumer surplus over all
feasible allocations.

Remark 6 (Pareto improvements). The double auction mechanism makes a
Pareto improvement of allocations. Indeed, we have

x1i = x0i + x̄i −Di(x̄i)g + [Di(x̄i)− p · x̄i]g.

Under Assumption 1, Di(x̄i)− p · x̄i ≥ 0 and

ui(x
1
i ) ≥ ui(x0i + x̄i −Di(x̄i)g)

while ui(x
0
i + x̄i −Di(x̄i)g) ≥ ui(x

0
i ), by the definition of the indifference price

Di(x̄i). Thus,
ui(x

1
i ) ≥ ui(x0i )

where the inequality is strict unless Di(x̄i) = p · x̄i. The equality would mean
that agent i submitted a buy order with limit price equal to the market clearing
price.

Remark 7 (Multiplicity of market clearing prices). Just as in the single as-
set auction, the market clearing prices p need not be unique. The conclusions
drawn here do not depend on the choice but, in practice, of course, the choice
is important to all agents involved in market clearing trades.

Remark 8 (Negative prices). The market clearing constraint in problem (P )
is an equality instead of an inequality. This means that we do not allow for
free disposal of the assets. It follows that some of the market clearing prices
may be strictly negative. This has practical significance as some of the assets
may become a liability to some agents. Examples of the phenomenon have been
observed e.g. in electricity markets where excess supply during periods of high
windpower production has been met with low demand and significantly negative
electricity prices. Another example is the negative money market rates in the
eurozone since June 2014.
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4 Existence of solutions

The double auction mechanism discussed above, only makes sense if problem
(P ) admits optimal solutions x̄. In the two-asset setting of Section 2, a solution
exists except in the unrealistic case where the demand curve lies strictly above
the supply curve on the whole positive axis. This would mean that an infinite
quantity of buy and sell offers could be matched. Theorem 10 below gives
sufficient conditions for existence in the general case.

The market clearing problem (P ) is written in terms of the functions Di

defined through minimization in (1). Plugging in the definitions, we can write
the problem in terms of the utility functions ui as follows.

Lemma 9. Problem (P ) is equivalent to the problem

maximize r over r ∈ R, w ∈ RI×J

subject to
∑
i∈I

wi + rg =
∑
i∈I

x0i ,

ui(wi) ≥ ui(x0i ) i ∈ I

(P ′)

in the sense that their optimum values coincide and an x̄ solves (P ) if and only
if there exist ri such that

r =
∑
i∈I

ri

and wi = x0i + x̄i − rig solve (P ′).

Proof. Using the definition of Di(xi), we can write problem (P ) as

maximize
∑
i∈I

ri over r ∈ RI , x ∈ RI×J

subject to
∑
i∈I

xi = 0,

ui(x
0
i + xi − rig) ≥ ui(x0i ) i ∈ I,

or in terms of wi := x0i + xi − rig, as

maximize
∑
i∈I

ri over r ∈ RI , w ∈ RI×J

subject to
∑
i∈I

wi +
∑
i∈I

rig =
∑
i∈I

x0i ,

ui(wi) ≥ ui(x0i ) i ∈ I.

This is the problem in the statement with r =
∑
i∈I ri.

By Lemma 9, the market clearing problem (P ) has a solution if and only if
problem (P ′) has one. Theorem 10 below gives sufficient conditions for existence
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in terms of the recession functions defined for the upper semicontinuous concave
functions ui by

u∞i (xi) := inf
α>0

ui(x̄i + αxi)− ui(x̄i)
α

,

where x̄i ∈ domui. By [22, Theorem 8.5], the definition is independent of the
choice of x̄i ∈ domui. The recession function describes the asymptotic behavior
of ui infinitely far from the origin. It is concave and positively homogeneous. If
ui is positively homogeneous, then u∞i = ui.

Assumption 3. If x ∈ RI×J is such that

u∞i (xi) ≥ 0,
∑
i∈I

xi = 0,

then x = 0.

Assumption 3 holds if there is a pointed convex cone K that contains, for
each i ∈ I, the “directions of recession”

{x ∈ RJ | u∞i (x) ≥ 0}

of ui; see [22]. By [22, Theorem 8.6], directions of recession are precisely the
vectors x such that λ 7→ ui(x̄ + λx) is nondecreasing for all x̄ ∈ domui. For
Cobb-Douglas utilities, one can take K = RJ+. The same works for Leontief
utilities under the usual assumption of strictly positive parameters αi,j .

Theorem 10. The market clearing problem (P ) admits solutions under As-
sumptions 1 and 3.

Proof. It suffices to prove that problem (P ′) in Lemma 9 has a solution. By
[22, Corollary 27.3.3], it suffices to show that the set

{(r, w) ∈ R× RI×J | r ≥ 0,
∑
i∈I

wi + rg = 0, u∞i (wi) ≥ 0}

only contains the origin. Under Assumption 1, any element (r, w) of this set
satisfies

r ≥ 0,
∑
i∈I

(wi +
r

|I|
g) = 0, u∞i (wi +

r

|I|
g) ≥ 0

and, by Assumption 3, wi+
r
|I|g = 0. Since ui(wi) ≥ 0, this implies u∞i (− r

|I|g) ≥
0 which, under Assumption 1, can only hold if r = 0 and then, wi = 0 as well.

5 Double auction equilibria and Pareto alloca-
tions

By Remark 5, the optimum value of the market clearing problem (P ) equals the
maximum consumer surplus over all feasible reallocations. In order to emphasize
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its dependence on the current allocation x0, we will denote it by CS(x0). Since
x = 0 is feasible in (P ), and since, by Lemma 2, Di(0) = 0 under Assumption 1,
we have CS(x0) ≥ 0. If CS(x0) = 0, the market clearing problem (P ) is solved
by x = 0, and we say that x0 is a double auction equilibrium. In other words,
double auction equilibria are allocations x0 at which the market clears with zero
trades and all agents have zero surplus1.

It is natural to ask, how “efficient” are double auction equilibria. They are,
after all, defined in terms of a specific market mechanism, the double auction.
Much like the fundamental theorems of welfare economics relate Walrasian equi-
libria with Pareto efficient allocations (see e.g. [16, Chapter 16] or [27, Chap-
ter 17]), the main result of this section, Theorem 11 below, gives conditions
under which double auction equilibria coincide with Pareto allocations. Recall
that a feasible allocation x is Pareto efficient if there does not exist another
feasible allocation x′ such that

ui(x
′
i) ≥ ui(xi)

for all agents i ∈ I with strict inequality for at least one of them.
Lemma 9 allows for a quick proof of the fact that, under Assumption 1,

Pareto allocations are double auction equilibria. We will prove the converse
under the following.

Assumption 4. If xi is such that ui(xi) > ui(x
′
i) for some x′i ∈ domui then

xi − εg ∈ domui for small enough ε > 0.

Assumption 4 means that starting from a point which is not of lowest pos-
sible utility over domui, the agent can give away some positive amount of the
numeraire portfolio without making his position infeasible. This clearly holds if
the sets {xi ∈ RJ |ui(xi) > ui(x

′
i)} with x′i ∈ domui are open, or if the effective

domain
domui := {xi ∈ RJ |ui(xi) > −∞}

of ui is an open set. Both conditions hold if ui is finite everywhere since con-
cavity then implies that ui is continuous; see [22, Corollary 10.1.1].

Theorem 11. Under Assumption 1, Pareto allocations are double auction equi-
libria. The converse holds under Assumption 4.

Proof. Assume that x0 is not a double auction equilibrium. By Lemma 9, there
is an r > 0 such that the constraints of problem (P ′) are satisfied. We can then
construct another feasible allocation by giving rg to one of the agents. Under
Assumption 1, this would lead to strict increase of the agent’s utility so x0 can’t
be Pareto. This proves the first claim.

1As the solution to the market clearing problem need not be unique, there may be other
solutions besides 0 at a double auction equilibrium x0. In the two-asset setting of Section 2,
this would mean that horizontal parts of the supply and demand curves s and d overlap. The
uniqueness or the lack of it has no effect on the conclusions of this paper.
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On the other hand, if x0 is not Pareto, there is a feasible allocation x̃ such
that ui(x̃i) ≥ ui(x

0
i ) for all i ∈ I and ui′(x̃i′) > ui(x

0
i′) for some i′ ∈ I. Under

Assumption 4, there is an r > 0 such that ui′(x̃i′ − rg) ≥ ui′(x0i′). Setting

wi =

{
x̃i for i 6= i′,

x̃i − rg for i = i′,

we would then obtain a feasible solution to problem (P ′) with strictly posi-
tive optimum value. Thus, by Lemma 9, x0 would not be a double auction
equilibrium.

Theorem 11 gives immediate existence results for the existence of double
auction equilibria: under Assumption 1, a sufficient condition is the existence
of Pareto equilibria. Under Assumption 4 this is also necessary. This should
be compared with the more involved proofs and conditions for the existence of
classical Walrasian equilibria; see [15] for some of the most general results on
the topic.

The notion of double auction equilibrium is closely related also to the valua-
tion equilibrium introduced in Debreu [6]. The connections rely on the following
dual characterizations of double auction equilibria.

Lemma 12. Under Assumptions 1 and 2, the following are equivalent

1. x0 is a double auction equilibrium,

2. there is a price vector p with ∂Di(0) 3 p for all i ∈ I.

3. there is a price vector p with g · p = 1 and, for all i ∈ I,

p · wi ≥ p · x0i
for all wi with ui(wi) ≥ ui(x0i ).

Proof. The equivalence of the first two follows by taking x̄ = 0 in Theorem 4.
By definition, ∂Di(0) 3 p means that

Di(xi) ≤ Di(0) + p · xi ∀xi ∈ RJ

⇐⇒ r ≤ Di(0) + p · xi ∀xi ∈ RJ , ∀r ∈ R : ui(x
0
i + xi − rg) ≥ ui(x0i )

⇐⇒ r ≤ Di(0) + p · (wi − x0i + rg) ∀wi ∈ RJ , ∀r ∈ R : ui(wi) ≥ ui(x0i )
⇐⇒ p · g = 1, 0 ≤ Di(0) + p · (wi − x0i ) ∀wi ∈ RJ : ui(wi) ≥ ui(x0i ),

where Di(0) = 0, by Lemma 2. Thus, 2 is equivalent to 3.

Combining Lemma 12 with Theorem 11 gives the following.

Corollary 13. Under Assumptions 1 and 2, each Pareto allocation x has an
associated price vector p ∈ RJ such that g · p = 1 and, for all i ∈ I,

p · wi ≥ p · x0i
for all wi with ui(wi) ≥ ui(x0i ). Conversely, under Assumptions 1, 2 and 4, the
existence of such a price vector implies that x is Pareto efficient.
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The first implication of Corollary 13 was given as [6, Theorem 2] under under
slightly different assumptions and without the normalization condition g ·p = 1.
The seemingly more involved separation argument used in [6] is replaced here
by Lemma 12 which in turn is based on Theorem 4, the proof of which also
relies on separation. The second part of Corollary 13 gives the following result
given as Theorem 1 in [6] under slightly different conditions.

Corollary 14. If Assumption 4 holds and x is a feasible allocation such that
there is a price vector p with g · p = 1 and

ui(wi) ≤ ui(xi)

for all wi with p · wi ≤ p · xi, then x is Pareto efficient.

Proof. The given condition clearly implies condition 3 in Lemma 12 so x is a
double auction equilibrium. Theorem 11 now implies that x is Pareto.

While the sufficient condition in Corollary 14 always implies condition 3 in
Lemma 12, the remark on page 591 of [6] gives conditions under which the con-
ditions are equivalent. In the terminology of [6], point x satisfying the sufficient
condition, except for the normalization condition g · p = 1, in Corollary 14 was
said to be a valuation equilibrium. Clearly, the normalization condition can be
achieved by scaling the price vector provided g · p > 0.

6 Convergence to efficient allocations

In general, an agent’s indifference price function Di as defined by (1) depends
on her endowment x0i . After market clearing, her endowment is changed to
x1i = x0i + x̄0i − (p · x̄0i )g so her demand may change too. There is no reason for
the new allocation x1 to be a double auction equilibrium, in general.

Assume now that the auction is repeated indefinitely and denote agent i’s
position after the tth auction by xti. That is,

xti := xt−1i + x̄ti − (pt · x̄ti)g,

where pt is the market clearing price and x̄ti is agent i’s purchase in the tth auc-
tion. We will show that, under fairly general conditions, the surplus decreases
to zero and all cluster points of the allocations are individually rational and
Pareto efficient. This seems to be the first mathematical justification of the
efficiency of the double auction mechanism.

The following assumption, where B(r) denotes the ball of radius r in the
commodity space RJ , is a slight strengthening of Assumption 1.

Assumption 5. For every r > 0 there exists a δi > 0 such that

ui(xi + rg) ≥ ui(xi) + δir ∀xi ∈ B(r).

17



The concavity of ui implies, by [22, Theorem 23.1], that the difference quo-
tient

ui(xi + rg)− ui(xi)
r

is nonincreasing in r so the inequality in Assumption 5 implies

ui(xi + r′g) ≥ ui(xi) + δir
′

for any r′ ∈ (0, r].

Lemma 15. Assumption 5 is implied by Assumption 1 if xi + rg ∈ int domui
for all xi ∈ domui and r > 0.

Proof. Assume that Assumption 5 fails for some r > 0. This means that there
is a convergent sequence xν → x ∈ B(r) such that

lim sup
ν→∞

{ui(xνi + rg)− ui(xνi )} = 0.

By upper semicontinuity of ui,

0 ≥ lim sup
ν→∞

ui(x
ν
i + rg)− lim sup

ν→∞
ui(x

ν
i )

≥ lim sup
ν→∞

ui(x
ν
i + rg)− ui(xi).

Concavity of ui implies its continuity on int domui so if xi + rg ∈ int domui,
the last supremum equals ui(xi + rg) contradicting Assumption 1.

An allocation x̄ is said to be individually rational if ui(x̄i) ≥ ui(x
0
i ) for all

i ∈ I.

Theorem 16. Under Assumptions 1, 3 and 5, the sequence (xt) is bounded,
CS(xt) decreases to zero with t,

CS(xt) ≤ 1

t

∑
i∈I

ui(x
t
i)− ui(x0i )
δi

and the cluster points x̄ of (xt)∞t=0 are double auction equilibria and individually
rational. In particular, x̄ are Pareto efficient under Assumption 4.

Proof. Since all iterates are feasible and, by Remark 6, individually rational the
sequence is contained in the set

C = {x ∈ RI×J |
∑
i∈I

xi =
∑
i∈I

x0i , ui(xi) ≥ ui(x0i ) i ∈ I}.

By [22, Theorem 8.4], C is bounded if and only if its recession cone

C∞ := {x ∈ RI×J | x̄+ αx ∈ C ∀x̄ ∈ C, α > 0}
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only consists of the origin. By [22, Corollary 8.3.3] and [22, Theorem 8.7],

C∞ = {x ∈ RI×J |
∑
i∈I

xi = 0, u∞i (xi) ≥ 0 i ∈ I}

so, by Assumption 3, C is bounded. This proves the first claim.
By Lemma 9, the total surplus CS(xt−1) of the tth auction is the optimum

value of
maximize r over r ∈ R, w ∈ RI×J

subject to
∑
i∈I

wi + rg =
∑
i∈I

xt−1i ,

ui(wi) ≥ ui(xt−1i ) i ∈ I.
As in (5), the market clearing condition implies∑

i∈I
xt−1i =

∑
i∈I

x0i

for all t while, by Remark 6, ui(x
t
i) are nondecreasing in t. Thus, the constraints

become more restrictive with t so the optimum value CS(xt) is nonincreasing.
Denote agent i’s surplus in the tth auction by CSi(x

t−1) := Di(x̄
t
i)− pt · x̄ti

and let r > 0 be such that CSi(x
t) ≤ r and xti ∈ B(r) for all t. Writing

xti = xt−1i + x̄ti −Di(x̄
t
i)g + CSi(x

t−1)g,

Assumption 5 gives

ui(x
t
i) ≥ ui(xt−1i + x̄ti −Di(x̄

t
i)g) + δiCSi(x

t−1) ≥ ui(xt−1i ) + δiCSi(x
t−1).

Adding up over iterations s = 1, . . . , t gives

δi

t−1∑
s=0

CSi(x
s) ≤ ui(xti)− ui(x0i )

and adding up over agents

t−1∑
s=0

CS(xs) ≤
∑
i∈I

ui(x
t
i)− ui(x0i )
δi

.

Since CS(xt) is nonincreasing in t, the left side is greater than tCS(xt) so

CS(xt) ≤ 1

t

∑
i∈I

ui(x
t
i)− ui(x0i )
δi

.

If x̄ is a cluster point of (xt), the upper semicontinuity of ui and the mono-
tonicity of ui(x

t
i) in t give

ui(x̄i) ≥ lim sup
t→∞

ui(x
t
i) = sup

t
ui(x

t
i).

Thus, by Lemma 9, CS(x̄) ≤ CS(xt) for all t so CS(x̄) = 0.
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Theorem 16 restates the fundamental fact of welfare economics that “com-
petitive markets” lead to efficient allocations. While the classical Walrasian
model of the market leads to an equilibrium in a single trade, it assumes that
the equilibrium prices are given exogenously or through a tatonnement process
which is at odds with existing market mechanisms. Our market model gives
a more realistic description of markets where prices are formed endogenously
and the auction is repeated in order to reach equilibrium. Moreover, our result
gives a worst-case bound on the speed of convergence which has been observed
in extensive empirical studies ever since the pioneering works of Smith [25].

7 A numerical illustration

This section presents a numerical study of the double auction process studied
in the previous section. In the example, we will assume Cobb-Douglas utilities

ui(xi) =
∏
j∈J

x
αi,j

i,j ,

where αi,j are positive parameters with∑
j∈J

αi,j = 1.

For each agent i ∈ I, we generate the parameter vector αi = (αi,j)j∈J randomly
by drawing a vector from the uniform distribution over the unit cube and then
scaling the vector to the unit simplex. The initial endowments x0i are randomly
drawn from the uniform distribution over the unit cube.

We assume that all prices are quoted in terms of cash which is assumed to be
asset 0 ∈ J . This means that the numeraire portfolio g is the unit vector with
g0 = 1 and gj = 0 for j ∈ J \ {0}. At each iteration of the double auction, we
solve the market clearing problem (P ) by solving the equivalent problem (P ′)
in Lemma 9 with the conic interior point solver of MOSEK [1]. The problem is
formulated and communicated to MOSEK using Python 3.7 and CVXPY [7].

Table 7 illustrates the progress of the iterated double auctions with 100
agents and 5 assets. The first column is the iteration counter, the second column
is the total consumer surplus, the third column is the sum of logarithmic utilities,
the fourth column is the inner product between the total endowment

e =
∑
i∈I

x0i

and the market clearing prices pt, the fifth column gives the Euclidean norm of
the portfolio updates

∆xt := xt − xt−1

and the last column gives the market clearing prices pt. The auction is iterated
until the total consumer surplus falls below 0.001. The computation time to
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t CS
∑

i ln ui ‖∆xt‖ pt

1 38.691 -68.341 8.705 1.000 0.159 0.135 0.132 0.132
2 11.534 -63.125 2.781 1.000 0.690 0.585 0.580 0.577
3 4.266 -61.498 1.085 1.000 0.843 0.711 0.710 0.709
4 2.091 -60.721 0.559 1.000 0.894 0.754 0.753 0.753
5 1.159 -60.310 0.329 1.000 0.916 0.774 0.772 0.772
6 0.711 -60.084 0.186 1.000 0.928 0.784 0.782 0.782
7 0.486 -59.951 0.119 1.000 0.933 0.790 0.787 0.786
8 0.362 -59.864 0.080 1.000 0.936 0.792 0.789 0.789
9 0.289 -59.796 0.063 1.000 0.938 0.794 0.791 0.791
10 0.236 -59.735 0.060 1.000 0.939 0.795 0.792 0.792
11 0.187 -59.682 0.058 1.000 0.940 0.796 0.794 0.793
12 0.141 -59.635 0.055 1.000 0.941 0.797 0.795 0.795
13 0.098 -59.595 0.051 1.000 0.942 0.798 0.796 0.796
14 0.061 -59.565 0.044 1.000 0.943 0.799 0.797 0.797
15 0.032 -59.545 0.035 1.000 0.944 0.800 0.797 0.797
16 0.012 -59.536 0.024 1.000 0.944 0.800 0.798 0.798
17 0.002 -59.534 0.011 1.000 0.944 0.800 0.798 0.798

Table 1: Consumer surplus, sum of log-utilities, Euclidean norm of the updated
positions, and the market clearing prices along iterates when the numeraire
portfolio is g = (1, 0, . . . , 0)

t CS
∑

i ln ui ‖∆xt‖ pt

1 15.894 -58.257 7.278 0.235 0.224 0.187 0.177 0.177
2 1.905 -54.219 2.181 0.230 0.220 0.184 0.183 0.182
3 0.206 -53.811 0.537 0.231 0.219 0.184 0.184 0.182
4 0.027 -53.759 0.140 0.231 0.219 0.184 0.184 0.182
5 0.003 -53.754 0.031 0.231 0.219 0.184 0.184 0.182

Table 2: Consumer surplus, sum of log-utilities, Euclidean norm of the updated
positions, and the market clearing prices along iterates when the numeraire
portfolio is g = (1, . . . , 1)

generate the data, to set up the problem and to run the 17 iterations was 1.20
seconds using Intel Core i7-1065G7 processor with 15.2GB of RAM running
Linux.

We repeat the experiment with the same endowments and utility functions
but with numeraire portfolio g = (1, . . . , 1) instead of the unit vector g =
(1, 0, . . . , 0). The results are given in Table 7. The convergence seems much
faster this time. With the new numeraire and the Cobb-Douglass utilities, the
constants δi in Assumption 5 can be taken larger. According to Theorem 16,
this gives a better complexity bound which explains the speedup. It is also
interesting to noticee that, with numeraire portfolio g − (1, . . . , 1), the sum
of the log-utilities is higher than in the previous example already after the
first iteration. This illustrates the fact that, while the iterates are individually
rational and the accumulation points are Pareto efficient, they are not unique.

Theorem 16 and the numerical results in this section are concerned with
double auction markets with sealed nonstrategic bidding among agents whose
preferences remain fixed. Fixed preferences may be justified over short periods
of time but as soon as relevant news and other information become available to
the agents, their preferences may change. This may break the double auction
equilibrium inducing trades and changes in market clearing prices. Our model
could be used to describe such dynamics by allowing the utility functions to
change over time. Their dependence on the agents’ subjective information could
be modeled e.g. by the construction in Example 1 where the agents’ subjective
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probability measures Pi could be updated with the arrival of new information.
The supremum in the definition would amount to adding an extra set of variables
in the formulation (P ′) in Lemma 9 of the market clearing problem.

Another topic that deserves attention is the relaxation of the assumption
of nonstrategic bidding. Even in the usual call auctions where all bids are
sealed, one could consider agents who deviate from the competitive bidding
described by the indifference rule (1) in the hope of gaining strategic advantage
as the auction gets repeated. One could approach such situations with game
theoretic formulations and/or probabilistic modeling of the other bidders like in
Myerson [17] in the optimal design of one-sided auctions. Such models would
require different kind of techniques well beyond the scope of the present paper.
Empirical research suggest, however, that the gains from strategic bidding may
be modest; see e.g. [12, 4, 28].
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