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On Degenerate Doubly Nonnegative Projection Problems

Ying Cui *, Ling Liang †, Defeng Sun ‡, and Kim-Chuan Toh, §

Abstract

The doubly nonnegative (DNN) cone, being the set of all positive semidefinite matrices whose ele-

ments are nonnegative, is a popular approximation of the computationally intractable completely positive

cone. The major difficulty for implementing a Newton-type method to compute the projection of a given

large scale matrix onto the DNN cone lies in the possible failure of the constraint nondegeneracy, a

generalization of the linear independence constraint qualification for nonlinear programming. Such a

failure results in the singularity of the Jacobian of the nonsmooth equation representing the Karush-

Kuhn-Tucker optimality condition that prevents the semismooth Newton-CG method from solving it

with a desirable convergence rate. In this paper, we overcome the aforementioned difficulty by solving

a sequence of better conditioned nonsmooth equations generated by the augmented Lagrangian method

(ALM) instead of solving one above mentioned singular equation. By leveraging on the metric subregu-

larity of the normal cone associated with the positive semidefinite cone, we derive sufficient conditions

to ensure the dual quadratic growth condition of the underlying problem, which further leads to the

asymptotically superlinear convergence of the proposed ALM. Numerical results on difficult randomly

generated instances and from the semidefinite programming library are presented to demonstrate the

efficiency of the algorithm for computing the DNN projection to a very high accuracy.

Keywords. Doubly nonnegative cone, semidefinite programming, augmented Lagrangian method, semismooth

Newton, degeneracy, metric subregularity

AMS subject classifications: 90C06, 90C22, 90C25

1 Introduction

Let Sn be the vector space of n×n symmetric matrices, Sn+ the cone of n×n symmetric positive semidefinite

matrices, Rn
+ the nonnegative orthant in R

n, and N
n the nonnegative orthant in R

n×n. The cone of n × n
copositive matrices, and its dual cone, the cone of n×n completely positive matrices, are given respectively

by

C
n , {X ∈ S

n | aTXa ≥ 0, ∀ a ∈ R
n
+ } and C

n,∗ , conv { aaT | a ∈ R
n
+ },

where conv {C} denotes the convex hull of a given set C . Copositive and completely positive cones have re-

ceived considerable attentions in recent years as many combinatorial and nonconvex quadratic optimization

problems can be formulated equivalently as linear conic programming problems over Cn or Cn,∗, see, e.g.,
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[7, 9, 14, 32, 33]. However, both cones are computationally intractable, in the sense that to check whether

a given matrix lies in C
n is co-NP-complete [30] and in C

n,∗ is NP-hard [15]. One may refer to the survey

paper [18] for further properties of these two cones. A popular relaxation of the completely positive cone is

the following doubly nonnegative (DNN) cone

D
n , {X ∈ S

n | X ∈ S
n
+, X ∈ N

n}.

Clearly we have C
n,∗ ⊆ D

n. The equality in this relation holds for n ≤ 4 and the inclusion is strict if

n ≥ 5 [29].

In this paper, we focus on designing an efficient solver for computing the projection of a given matrix

G ∈ S
n over the DNN cone, i.e., finding the optimal solution of the following convex optimization problem

minimize
X∈Sn

{
1

2
‖X −G‖2 | X ∈ S

n
+, X ∈ N

n

}
, (P)

where ‖ · ‖ denotes the Frobenius norm. As a basic building block of various algorithms for DNN conic

programming problems, such as the one in [24], the efficient computation of the projection onto a DNN

cone is an important problem of considerable interest. For example, an efficient routine for computing this

projector can be embedded in the projected gradient method for solving

minimize
X∈Sn

{ f(X) | X ∈ D
n } ,

with f being a possibly nonsmooth nonconvex function.

In a series of works [26, 45, 46], a semismooth Newton-CG based dual augmented Lagrangian method

(ALM) is proposed to solve the class of linear and convex quadratic semidefinite programming (SDP) prob-

lems. The algorithm performs fairly well for large-scale nondegenerate (note that in this paper the concept

of degeneracy refers to the constraint degeneracy for optimization problems, see for instance Definition 1)

SDP problems with the dimension of the matrix variable n being in the range of a few thousands but the

number of equality constraints can be in the range of a few millions. If a large number of linear inequality

constraints (such as the entrywise nonnegativity of the variables) are also added to the linear and convex

quadratic SDP problems, it is highly possible that multiple dual solutions exist such that the generalized

Jacobians of semismooth equations corresponding to the optimality conditions of augmented Lagrangian

subproblems are singular. Consequently, a semismooth Newton method applied to solved the subproblems

may not have fast local convergence. To resolve this issue, a majorized ALM is employed in [26, 45],

where the degenerate multi-block ALM subproblems are solved by a block coordinate descent decomposi-

tion method for which each of its steps solves a nondegenerate problem involving a single block. A similar

decomposition idea is adopted in [13] to compute the best approximation problem over the intersection of a

polyhedral set and the DNN cone.

The degeneracy issue also happens to the DNN projection problem. The dual of (P) takes the form of

−minimize
S,Z∈Sn

{
1

2
‖S + Z +G‖2 − 1

2
‖G‖2 | S ∈ S

n
+ , Z ∈ N

n

}
. (D)

A notable feature of the DNN projection problem is that multiple solutions to (D) may exist, especially when

the solution to (P) possesses both the low rank and sparse properties, making the problem (P) constraint

degenerate (see Section 2 for detailed discussions on this part). This feature indicates the high possibility
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for the singularity of the generalized Jacobian of the nonsmooth equations representing the Karush-Kuhn-

Tucker (KKT) optimality condition of (P):

R(X,S,Z) ,




X −G− S − Z

X −ΠSn
+
(X − S)

X −ΠNn(X − Z)


 = 0, X, S, Z ∈ S

n, (1)

where ΠC(·) denotes the metric projection onto a given closed convex set C . It is known that the conver-

gence rate of the conjugate gradient (CG) method for solving a linear equation is determined by its condition

number. Therefore, even though the above equation is semismooth [43], directly solving it by the semis-

mooth Newton-CG method seems not suitable when degeneracy occurs.

An important property of (P) that distinguishes it from general convex quadratic SDP problems is the

strong convexity of the objective function, which implies the uniqueness of its primal optimal solution. This

motivates us to consider a primal ALM to solve the problem. Let σ be a given positive penalty parameter.

The augmented Lagrangian function of (P) is given by

Lσ(X;S,Z) ,
1

2
‖X −G‖2 + 1

2σ

(
‖ΠSn

+
(S − σX) ‖2 + ‖ΠNn (Z − σX) ‖2

)
, X, S, Z ∈ S

n.

Given a sequence of positive scalars σk ↑ σ∞ ≤ +∞, the (k+1)-th iteration of the ALM takes the form of





X k+1 ≈ argmin
X∈Sn

{
fk(X) , Lσk

(
X;S k, Z k

)}
,

(S k+1, Z k+1) =
(
ΠSn

+

(
S k − σkX

k+1
)
, ΠNn

(
Z k − σkX

k+1
) )

,

k ≥ 0. (2)

Obviously, the major computational cost of the above framework comes from the computation of the approx-

imate solutions of the subproblems. The optimality condition of these subproblems can be characterized by

the semismooth equations

0 = ∇fk(X) = X −G−ΠSn
+
(Sk − σkX)−ΠNn(Zk − σkX). (3)

Different from the semismooth equation (1), the generalized Jacobian of the above equation is always non-

singular at any point in S
n (see Section 4 for the expression of its generalized Jacobian). Thus, instead of

solving one singular nonsmooth KKT equation (1), we adopt the Newton-CG method to solve a sequence

of nonsingular nonsmooth equations (3).

Given the promising convergence rate of the inner semismooth Newton-CG method, the overall per-

formance of the above proposed method depends heavily on the convergence rate of the outer augmented

Lagrangian iterations. In a recent work [12], it was shown that the KKT residual of the sequence of iter-

ates generated by ALM converges asymptotically superlinearly under the dual quadratic growth condition.

Though the dual quadratic growth condition has been shown to hold under the dual second order sufficient

condition [8, Theorem 3.137], a unique dual optimal solution has to exist in order to fulfill the latter con-

dition. In this paper, we show that when the dual problem has multiple solutions, the existence of a strict

complementarity solution also implies that such a dual quadratic growth condition holds at any dual solu-

tion. Besides applying to this particular problem, the established theory in this paper, together with that in

[12], also partially explains why the ALM usually outperforms first order methods for solving other types

of SDP problems to high accuracy.

In summary, the contributions of our paper are two-fold:
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• Theoretically, we provide sufficient conditions to ensure the quadratic growth condition of a general

class of linearly constrained convex problems involving non-polyhedral functions, which includes (P) as

a special case. Besides its independent interest in variational analysis, the derived results provide suffi-

cient conditions for the asymptotic superlinear convergence of the KKT residual generated by the iterative

sequence from the ALM.

• Numerically, we develop an efficient solver for computing the projection of a given matrix onto the

doubly nonnegative cone to a very high accuracy. We conduct rigorous numerical experiments on various

SDP instances to demonstrate the effectiveness of the proposed method.

The remaining parts of this paper are organized as follows. In the next section, we discuss necessary

conditions for the constraint nondegeneracy of problem (P) and a consequence of its failure for the Newton-

type algorithm. This motivates us to consider the Newton-CG based augmented Lagrangian method in (2)

to solve (P). Section 3 is devoted to extensive studies on sufficient conditions for the quadratic growth

condition of linearly constrained convex SDPs, which include (P) as a special case. Such a quadratic growth

condition ensures the asymptotically superlinear convergence rate of the proposed ALM. In Section 4, we

introduce a semismooth Newton-CG based ALM and show how it overcomes the degeneracy of the DNN

constraints. Extensive numerical experiments are conducted in Section 5 to demonstrate the effectiveness of

the proposed method. We conclude our paper in the final section.

Below we list the notation to be used in our paper.

• We use U, V, W, X, Y and Z to denote finite dimensional real Euclidean spaces each equipped with

an inner product 〈·, ·〉 and its induced norm ‖ · ‖.

• Let α ⊆ {1, ...,m} and β ⊆ {1, ..., n} be two index sets. For any Z ∈ R
m×n, we write Zαβ to be the

|α| × |β| sub-matrix of Z obtained by removing all the rows of Z not in α and all the columns of Z
not in β. We denote diag(xα) as the |α| × |α| diagonal matrix whose diagonal entries are those of xα.

• Let D ⊆ X be a set. For any x ∈ X, define dist(x,D) , infd∈D ‖x − d‖. We let δD(·) to be the

indicator function over D, i.e., δD(x) = 0 if x ∈ D, and δD(x) = ∞ if x 6∈ D. If D ⊆ X is a convex

set, we use ri(D) to denote its relative interior. For a given closed convex set D ⊆ X, the metric

projection of x ∈ X onto D is defined by ΠD(x) , argmin{‖x − d‖ | d ∈ D}. For any x ∈ D, we

use TD(x) and ND(x) to denote the tangent and normal cones of D at x, and lin(D) as the lineality

space of D, i.e., the largest linear subspace in D. If D is a closed convex cone, we use D◦ and D∗ to

denote the polar of D and the dual of D, respectively, i.e., D◦ , {x ∈ X | 〈x, d〉 ≤ 0, ∀ d ∈ D} and

D∗ , −D◦.

• For any set-valued mapping Γ : U ⇒ V, we use gphΓ to denote the graph of Γ, i.e., gphΓ ,

{(u, v) ∈ U× V | v ∈ Γ(u)}. For any ū ∈ U and ε > 0, denote Bε(ū) , {u ∈ U | ‖u− ū‖ ≤ ε}.

2 A Consequence of the Constraint Degeneracy

In this section, we provide necessary conditions for the primal constraint nondegeneracy and a consequence

of its failure when designing Newton-type algorithms.

We start with the formal definition of the constraint nondegeneracy. Let K be a closed convex set in Y.

The tangent cone of K at a point y ∈ K is defined by

TK(y) = { d ∈ Y | dist (y + td,K) = o(t), t ≥ 0 } .
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Let f : X → R be a twice continuously differentiable function, G : X → Y be a twice continuously

differentiable mapping and K be a closed convex set in Y. For the conic programming with the form

minimize
x∈X

f(x), subject to G(x) ∈ K, (4)

we have the following definition of constraint nondegeneracy [37].

Definition 1. We say that a feasible point x̄ ∈ X to (4) is constraint nondegenerate if

G′(x̄)X + lin(TK(G(x̄))) = Y,

where G′(x̄) denotes the Jacobian of G at x̄ and lin(S) denotes the lineality space of a given set S. We say

that a feasible point x̄ is constraint degenerate if the above condition fails at x̄.

The constraint nondegeneracy condition above reduces to the linear independence constraint qualifica-

tion when the problem (4) is a conventional nonlinear programming problem [36, 41]. One may refer to the

monograph [8] for more discussions on this concept in the context of conic program. Based on Definition 1,

the constraint nondegeneracy is said to hold at a feasible point X ∈ S
n to (P) if

( I
I

)
S
n +


 lin

(
T Sn

+

(
X
))

lin
(
TNn

(
X
))


 =

(
S
n

S
n

)
, (5)

where I : Sn → S
n is the identity map in S

n.

For any given X ∈ S
n
+ ∩ N

n, suppose that it has the following eigenvalue decomposition:

X = [Pα Pᾱ] diag(λ1, λ2 . . . , λr, 0, . . . , 0) [Pα Pᾱ]
T , (6)

where α = {1, 2, . . . , r}, ᾱ = {r + 1, . . . , n}, λ1 ≥ λ2 ≥ . . . ≥ λr > 0 are the positive eigenvalues of X,

and P = [Pα, Pᾱ] ∈ On is a corresponding orthogonal matrix of orthonormal eigenvectors. We also denote

E = {(i, j) | X ij > 0, 1 ≤ i ≤ j ≤ n}, E = {(i, j) | Xij = 0, 1 ≤ i ≤ j ≤ n}. (7)

It can be easily checked that (see, e.g., [1])





T Sn
+

(
X
)
=
{
H ∈ S

n | P T
ᾱ H Pᾱ � 0

}
, TNn

(
X
)
=
{
H ∈ S

n | HE = H T
E ≥ 0

}
,

lin
(
T Sn

+

(
X
))

=
{
H ∈ S

n | P T
ᾱ H Pᾱ = 0

}
, lin

(
TNn

(
X
))

=
{
H ∈ S

n | HE = H T
E = 0

}
.

The following proposition characterizes the constraint nondegeneracy of the DNN projection problem

(P). A necessary condition for X ∈ S
n to be constraint nondegenerate in terms of its rank and cardinality

then follows easily.

Proposition 1. Let X ∈ S
n be a feasible point to (P) with the index sets α and E given in (6) and (7),

respectively. Then X is constraint nondegenerate if and only if

{
H ∈ S

n | HE = 0, P T
α (HE +HT

E )P = 0
}
= {0}. (8)

Moreover, a necessary condition for X to be constraint nondegenerate is

(n− |α|)(n − |α|+ 1)/2 ≤ |E|.
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Proof. One can easily check that the condition (5) can be rewritten as

lin
(
T Sn

+

(
X
))

+ lin
(
TNn

(
X
))

= S
n,

or equivalently,

lin
(
T Sn

+

(
X
))⊥

∩ lin
(
TNn

(
X
))⊥

= {0}.
Direct computation shows that

lin
(
T Sn

+

(
X
))⊥

=
{
H ∈ S

n | P T
α H P = 0

}
, lin

(
TNn

(
X
))⊥

= {H ∈ S
n | HE = 0} ,

which yields the equivalence of (8) and the definition of constraint nondegeneracy in (5). To complete the

proof of this proposition, we observe that




dim
(
lin
(
T Sn

+

(
X
)))

= n(n+ 1)/2 − (n− |α|)(n − |α|+ 1)/2,

dim
(
lin
(
TNn

(
X
)))

= | E |,
where dim(S) represents the dimension of a given linear space S. Therefore, a necessary condition for the

constraint nondegeneracy to hold at a feasible point X is

n(n+ 1)/2 − (n− |α|)(n − |α| + 1)/2 + | E | ≥ n(n+ 1)/2.

From here, the required result follows.

Remark 1. Proposition 1 indicates that the feasible point X is likely to be degenerate if either the rank of

X or the number of nonzero entries of X are small.

In the following, we discuss a consequence of the constraint degeneracy to the Newton-type algorithm

for solving (P). Observe that the Slater condition always holds for (P), which implies the existence of

optimal solutions to (D) [38, Theorem 28.2]. Moreover, the unique optimal solution X ∈ S
n to (P) and

any dual optimal solution (S,Z) ∈ S
n × S

n form a KKT point to (P), at which R(X,S,Z) = 0 [38,

Theorem 28.3], where R(·) is the KKT residual function defined in (1). Notice that the function R(·) is

globally Lipschitz continuous so that it is F(réchet)-differentiable almost everywhere [40, Section 9.J]. This

fact makes the following Clarke’s generalized Jacobian of R at any (X,S,Z) ∈ S
n× S

n× S
n well defined:

∂R(X,S,Z) , conv{∂B R(X,S,Z)},
where for any W = (X,S,Z),

∂B R(W ) ,

{
V ∈ S

n × S
n × S

n | V = lim
k→∞

R ′(W k), W k → W, R is F-differentiable at W k

}
.

Moreover, the function R(·) is strongly semismooth since both ΠSn
+
(·) [43] and ΠNn(·) [20, Proposition

7.4.7] are strongly semismooth. Thus the semismooth Newton method can be applied to solve the semis-

mooth equation R(X,S,Z) = 0, where the (k + 1)-th Newton direction d ∈ S
n × S

n × S
n is the solution

of the following linear equation (c.f. [20, Section 7.5]):

R(X k, S k, Z k) + V kd = 0, V k ∈ ∂R(X k, S k, Z k).

Though the local superlinear convergence of this method can be established under the nonsingularity of

∂R(X,S,Z) at a KKT point (X,S,Z), the following proposition however reveals that such a nonsingu-

larity condition cannot hold if X is constraint degenerate.
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Proposition 2. Let X ∈ S
n be the unique optimal solution to (P). Let (S,Z) ∈ S

n × S
n be an optimal

solution to (D) such that (X,S,Z) is a KKT point of (P). Then any element in ∂R(X,S,Z) is nonsingular

if and only if X is constraint nondegenerate.

Proof. It is known from [42, Theorem 4.1] that for a general nonlinear semidefinite programming problem,

which includes (P) as a special case, any element in ∂R(X,S,Z) is nonsingular if and only if the strong

second order sufficient condition holds at X and X is constraint nondegenerate. Since the objective function

in (P) is strongly convex, the strong second order sufficient condition obviously holds at X. Therefore, the

conclusion of this proposition follows.

Based on Proposition 2, we see that it is not suitable to adopt the semismooth Newton method to solve

the equation (1) if the optimal solution X of (P) is degenerate. According to Remark 1, this degeneracy is

likely to occur when X has low rank or is sparse, a situation that may be frequently encountered in practical

applications. To avoid such an unfavorable situation for the semismooth Newton method, we design an ALM

in the next section for solving the problem (P), for which the semismooth Newton method is employed to

solve a sequence of nonsingular semismooth equations.

3 The Dual Quadratic Growth Condition and the Asymptotically Superlin-

ear Convergence of the ALM

In this section, we first take a detour to discuss sufficient conditions for the quadratic growth condition of

a general class of convex constrained optimization problems, which includes (P) as a special case. These

sufficient conditions will be used to derive the asymptotically superlinear convergence rate of the ALM in

(2), to be presented in the last part of this section.

3.1 Sufficient conditions for the quadratic growth condition

Let F : X ⇒ Y be a set-valued mapping. The graph of the mapping F is defined as gph (F ) , { (x, y) ∈
X× Y | y ∈ F (x) }. The following definition of metric subregularity is taken from [16, Section 3.8(3H)].

Definition 2. A set-valued mapping F : X ⇒ Y is said to be metrically subregular at x̄ ∈ X for ȳ ∈ Y with

modulus κ > 0 if (x̄, ȳ) ∈ gph (F ) and there exist a constant ε > 0 such that

dist
(
x, F−1(ȳ)

)
≤ κdist ( ȳ, F (x) ) , ∀x ∈ Bε(x̄).

The next result, which provides a convenient way to check the metric subregularity of the subdifferential

of a proper closed convex function, is proven in [2, Theorem 3.3].

Proposition 3. Let H be a real Hilbert space endowed with the inner product 〈·, ·〉 and θ : H → (−∞,+∞]
be a proper lower semicontinuous convex function. Consider x̄, v̄ ∈ H satisfying (x̄, v̄) ∈ gph (∂θ). Then

∂θ is metrically subregular at x̄ for v̄ if and only if there exist constants κ > 0 and ε > 0 such that

θ(x) ≥ θ(x̄) + 〈v̄, x− x̄〉+ κdist2
(
x, (∂θ)−1(v̄)

)
, ∀x ∈ Bε(x̄).

A set-valued mapping F : X ⇒ Y is said to be polyhedral if its graph is the union of finitely many

polyhedral convex sets. Below is a fundamental result from Robinson [35] on polyhedral mappings.
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Proposition 4. Let F : X ⇒ Y be a set-valued polyhedral mapping and (x̄, ȳ) ∈ gph(F ). Then F is locally

upper Lipschitz continuous at x̄, i.e., there exist constants κ > 0 and ε > 0 such that

F (x) ⊆ F (x̄) + κ ‖x− x̄‖B1(0), ∀x ∈ Bε(x̄).

In our subsequent discussions, we also need the concept of bounded linear regularity of a collection of

closed convex sets, which can be found from, e.g., [4, Definition 5.6].

Definition 3. Let D1,D2, . . . ,Dm ⊆ X be closed convex sets for some positive integer m. Suppose that

D , D1 ∩D2∩ . . .∩Dm is non-empty. The collection {D1,D2, . . . ,Dm} is said to be boundedly linearly

regular if for every bounded set B ⊆ X, there exists a constant κ > 0 such that

dist ( x,D ) ≤ κ max {dist (x,D1 ) , . . . ,dist (x,Dm )} , ∀x ∈ B.

A sufficient condition to guarantee the property of bounded linear regularity is established in [5, Corol-

lary 3].

Proposition 5. Let D1,D2, . . . ,Dm ⊆ X be closed convex sets for some positive integer m. Suppose that

D1,D2, . . . ,Dr are polyhedral for some r ∈ {0, 1, . . . ,m}. Then a sufficient condition for {D1,D2, . . . ,Dm}
to be boundedly linearly regular is

⋂

i=1,2,...,r

Di ∩
⋂

i=r+1,...,m

ri (Di) 6= ∅.

Consider the following linear equality and inequality constrained nonsmooth convex problem:

minimize
x∈X

θ(x) , h(Fx) + 〈c, x〉+ p(x)

subject to Ax− b ∈ Q,
(9)

where F : X → W and A : X → Y are given linear maps, Q ⊆ Y is a given convex polyhedral cone, c ∈ X

and b ∈ Y are given data, p : X → (−∞,+∞] is a closed proper convex function, h : W → (∞,+∞] is an

essentially smooth and essentially locally strictly convex function. The Lagrangian dual of this problem is

maximize
y∈Y

g(y) , inf
x∈X

{ θ(x) + 〈y,Ax− b〉 },
subject to y ∈ Q◦.

(10)

Assume that the following KKT system associated with problem (9) admits at least one solution:

{
0 ∈ F∗∇h(Fx) + c+ ∂p(x) +A∗y,

y ∈ NQ(Ax− b),
(x, y) ∈ X× Y. (11)

We denote SOLP as the solution set of problem (9) and SOLD as the solution set of problem (10). It is known

from [38, Theorem 30.4 and Corollary 30.5.1] that (x̄, ȳ) ∈ X×Y solves the KKT system (11) if and only if

x̄ ∈ SOLP and ȳ ∈ SOLD. To further characterize SOLP, we need the following invariant property of Fx
over SOLP, whose proof readily follows from well-known existing techniques in the literature [27, 28, 44].

Lemma 1. The value Fx is invariant over x ∈ SOLP, i.e., for any x′, x′′ ∈ SOLP, we have Fx′ = Fx′′.

8



Take an arbitrary point x̄ ∈ SOLP and denote

ζ̄ , F x̄, η̄ , F∗∇h(ζ̄) + c, V , {x ∈ X | Fx = ζ̄}. (12)

We define two set-valued mappings G1 : Y ⇒ X and G2 : Y ⇒ X by

G1(y) , (∂p)−1(−A∗y − η̄), G2(y) , {x ∈ X | y ∈ NQ(Ax− b)}, y ∈ Y. (13)

Then, from (11), Lemma 1 and the discussion above Lemma 1, we immediately obtain the following useful

observation for the optimal solution set SOLP.

Proposition 6. Assume that x̄ ∈ SOLP and ȳ ∈ SOLD. Then the optimal solution set SOLP can be

characterized as

SOLP = {x ∈ X | Fx = ζ̄ , 0 ∈ η̄ + ∂p(x) +A∗ȳ, ȳ ∈ NQ(Ax− b)} = V ∩ G1(ȳ) ∩ G2(ȳ).

The following concept of quadratic growth condition for problem (9) plays an important role in our later

analysis.

Definition 4. The quadratic growth condition for problem (9) holds at an optimal solution x̄ ∈ SOLP if

there exist positive constants κ and ε such that

θ(x) ≥ θ(x̄) + κdist2(x,SOLP), ∀ x ∈ Bε(x̄) ∩ {x ∈ X | Ax− b ∈ Q}. (14)

To analyze the quadratic growth condition of problem (9), we will need the following assumption and

lemma later.

Assumption 1. The following local growth conditions hold:

(a) For any w ∈ dom h, there exist positive constants κ1 and ε1 such that

h(w′) ≥ h(w) + 〈∇h(w), w′ −w〉 + κ1‖w′ − w‖2, ∀w′ ∈ Bε1(w).

(b) For any (x, v) ∈ gph (∂p), there exist positive constants κ2 and ε2 such that

p(x′) ≥ p(x) + 〈v, x′ − x〉+ κ2 dist
2
(
x′, (∂p)−1(v)

)
, ∀x′ ∈ Bε2(x).

Lemma 2. Let x̄ ∈ SOLP and ȳ ∈ SOLD. Then there exist positive constants κ and ε such that

dist (x,G2(ȳ)) ≤ κdist (Ax− b,NQ◦(ȳ)), ∀x ∈ Bε(x̄).

Proof. First we note that since Q is a closed convex cone, y ∈ NQ(z) if and only if z ∈ NQ◦(y). Define

the subspace Ξ1 ⊆ X× Y and the polyhedral set Ξ2 ⊆ X× Y by

Ξ1 = {(x, q) ∈ X× Y | Ax− b = q}, Ξ2 = {(x, q) ∈ X× Y | q ∈ NQ◦(ȳ)}.
Denote G̃2 , Ξ1 ∩ Ξ2, which is non-empty as (x̄,Ax̄− b) ∈ G̃2. Since Ξ1 and Ξ2 are polyhedral sets, we

know from Proposition 5 that the collection {Ξ1,Ξ2} is boundedly linearly regular. Therefore, there exist

positive constants κ and ε such that for any x ∈ Bε(x̄),

dist ((x,Ax− b), G̃2) ≤ κ
(
dist ((x,Ax− b),Ξ1) + dist ((x,Ax− b),Ξ2)

)
= κ dist (Ax− b,NQ◦(ȳ)).

Now note that there exists (x′, w′) ∈ G̃2 such that

dist((x,Ax− b), G̃2) =
√

‖x− x′‖2 + ‖Ax− b− w′‖2 ≥ ‖x− x′‖ ≥ dist(x,G2(ȳ)),

where the last inequality follows from the fact that x′ ∈ G2(ȳ) because Ax′ − b ∈ NQ◦(ȳ) implies that

ȳ ∈ NQ(Ax′ − b). From here, we complete the proof of the lemma.
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The following result, which is partially motivated by the recent paper [47] and its further development

in [17] for convex composite optimization problems regularized by the nuclear norm function of rectangular

matrices, provides a general approach for proving the quadratic growth condition of (9) where the constraint

Ax− b ∈ Q is present.

Theorem 1. Assume that SOLP is non-empty. Suppose that Assumption 1 holds and that there exists

ȳ ∈ SOLD such that the collection of three sets {V ,G1(ȳ),G2(ȳ)} is boundedly linearly regular. Then

the quadratic growth condition (14) holds at any x̄ ∈ SOLP.

Proof. Let x̄ ∈ SOLP be an arbitrary but fixed point. Since (x̄,−A∗ȳ − η̄) ∈ gph(∂p), from Assumption

1 (b), we know that there exist positive constants κ1 and ε such that

p(x) ≥ p(x̄) + 〈−A∗ȳ − η̄, x− x̄ 〉+ κ1 dist
2
(
x, (∂p)−1(−A∗ȳ − η̄)

)
, ∀x ∈ Bε(x̄).

Note that (Ax̄ − b, ȳ) ∈ gph
(
N−1

Q◦

)
and NQ◦(·) is a set-valued polyhedral function. Also, N−1

Q◦ = ∂δQ.
Thus, we can obtain from Proposition 4 that NQ◦(·) is locally upper Lipschitz continuous, which further

implies the metric subregularity of N−1
Q◦ at Ax̄− b for ȳ by definition. Now by shrinking ε if necessary, we

know that there exists a constant κ′1 > 0 such that

δQ(Ax− b) ≥ δQ(Ax̄− b) + 〈 ȳ,Ax− b− (Ax̄− b) 〉+ κ′1 dist
2 (Ax− b,NQ◦(ȳ)) , ∀x ∈ Bε(x̄).

Moreover, the assumed bounded linear regularity of {V ,G1(ȳ),G2(ȳ)} and the result in Proposition 6 imply

that there exist κ2 > 0 and κ3 > 0, such that for any x ∈ Bε(x̄),

dist2(x,SOLP) = dist2
(
x,V ∩ G1(ȳ) ∩ G2(ȳ)

)

≤ κ2
[
dist2(x,V) + dist2(x,G1(ȳ)) + dist2(x,G2(ȳ))

]

≤ κ3
[
‖Fx − ζ̄ ‖2 + dist2(x, (∂p)−1(−A∗ȳ − η̄)) + dist2(Ax− b,NQ◦(ȳ))

]
,

where in the last inequality, the first term comes from Hoffman’s error bound [23] and the third term comes

from Lemma 2. Then by Assumption 1 (a), shrinking ε if necessary, we know that there exists κ4 > 0 such

that for any x ∈ Bε(x̄),

h(Fx) ≥ h(ζ̄) + 〈∇h(ζ̄),Fx− ζ̄ 〉+ κ4 ‖Fx− ζ̄ ‖2.

Taking all the above inequalities into account and recalling that η̄ = F∗∇h(ζ̄) + c in (12), we derive, for

any x ∈ Bε(x̄) ∩ {x ∈ X | Ax− b ∈ Q}, that

θ(x) = h(Fx) + 〈c, x〉 + p(x) + δQ(Ax− b)

≥ θ(x̄) + 〈F∗∇h(ζ̄) + c− η̄, x− x̄ 〉+ κ4 ‖Fx− ζ̄ ‖2 + κ1dist
2(x, (∂p)−1(−A∗ȳ − η̄))

+κ′1 dist
2(Ax− b,NQ◦(ȳ))

≥ θ(x̄) + min{κ1, κ′1, κ4}
[
‖Fx− ζ̄‖2 + dist2(x, (∂p)−1(−A∗ȳ − η̄)) + dist2(Ax− b,NQ◦(ȳ))

]

= θ(x̄) + κ−1
3 min{κ1, κ′1, κ4}dist2(x,SOLP),

which establishes the desired result.
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3.2 The quadratic growth condition for (D)

Notice that (D) can be viewed as a special case of (9) where A, b, c and Q are vacant, and





h(U) =
1

2
‖U +G ‖2 , U ∈ S

n,

F(S,Z) = S + Z, p(S,Z) = δSn
+
(S) + δNn(Z), (S,Z) ∈ S

n × S
n.

In this section, we show that Assumption 1 always holds for such a case, while the bounded linear regularity

of the corresponding sets {V,G1(ȳ),G2(ȳ)} is implied by the existence of a strict complementarity solution

of (P).

Let X ∈ S
n
+ and S ∈ S

n
+ satisfy 0 ∈ X + ∂δSn

+
(S), or equivalently, 〈X,S〉 = 0. Suppose that

Z , X − S has its eigenvalues λ̄1 ≥ λ̄2 ≥ . . . ≥ λ̄n being arranged in a non-increasing order. Denote

α , {i | λ̄i > 0, 1 ≤ i ≤ n}, β , {i | λ̄i = 0, 1 ≤ i ≤ n}, γ , {i | λ̄i < 0, 1 ≤ i ≤ n}. (15)

Then there exists an orthogonal matrix P ∈ On such that

Z = P




Λα

0

−Λγ


P

T
, X = P




Λα

0
0|γ|


P

T
, S = P




0|α|
0

Λγ


P

T
,

(16)

where Λα = diag(λ̄α) ≻ 0 and Λγ = diag(−λ̄γ) ≻ 0. Denote P = [P α P β P γ ] with Pα ∈ R
n×|α|,

P β ∈ R
n×|β| and P γ ∈ R

n×|γ|. Then we have





TSn
+
(X) =

{
H ∈ S

n | [P β P γ ]
TH [P β P γ ] � 0

}
,

NSn
+
(X) =

{
H ∈ S

n | [P β P γ ]
TH [P β P γ ] � 0, P

T
α HP = 0

}
.

By noting that ∂δSn
+
(S) = NSn

+
(S), we immediately obtain the following results.

Proposition 7. Let S ∈ S
n
+ and 0 ∈ X + ∂δSn

+
(S). Suppose that S and X have eigenvalue decompositions

as in (16). Then it holds that:

(a) NSn
+
(S) is a polyhedral set if and only if |γ| ≥ n− 1;

(b) 0 ∈ X + ri
(
NSn

+
(S)
)

if and only if |β| = 0, i.e., rank(X) + rank(S) = n.

The following proposition shows that NSn
+
(·) is metrically subregular at any point on its graph. This re-

sult is part of the first author’s PhD thesis [10, Section 2.5.2], which can also be derived from the recent work

[11]. However, here we furnish a direct proof for better understandings of the nonpolyhedral semidefinite

cone.

Proposition 8. Let S ∈ S
n
+ and 0 ∈ X + ∂δSn

+
(S). Then ∂δSn

+
(·) is metrically subregular at X for −S and

∂δSn
−

(·) is metrically subregular at −S for X.

Proof. In the following, we shall prove the metric subregularity of ∂δSn
−

(·) at −S for X and its counterpart

regarding ∂δSn
+

can be obtained similarly. Without loss of generality, let X and S have the eigenvalue

decompositions as in (16). According to Proposition 3, in order to prove the metric subregularity of ∂δSn
−

(·)
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at −S for X , it suffices to show that there exist a constant κ > 0 and a neighborhood U of S such that for

any S ∈ S
n
+ ∩ U ,

0 ≥ 〈X,−S + S 〉+ κdist2
(
−S, (∂δSn

−

)−1(X)
)
= 〈X,−S + S 〉+ κdist2

(
−S, NSn

+
(X)

)
. (17)

If |α| = 0, then X = 0 and the inequality (17) holds automatically for any κ ≥ 0 and any neighborhood

U of S. Thus, we only need to consider the case that |α| 6= 0. Since the case that |γ| = 0 can be proved

similarly as in the case for |γ| 6= 0, we only consider the latter case. Set ρ , min{|λ̄j | | j ∈ γ} > 0. Let

S ∈ S
n
+ ∩ Bρ(S) be arbitrarily chosen. We write S̃ = P

T
SP and decompose S̃ into the following form:

S̃ ≡




S̃αα S̃αβ S̃αγ

S̃ T
αβ S̃ββ S̃βγ

S̃ T
αγ S̃ T

βγ S̃γγ


 .

By the fact that S ∈ S
n
+, we can easily check that

ΠNS
n
+
(X)(−S) = −P




0 0 0

0 S̃ββ S̃βγ

0 S̃ T
βγ S̃γγ


P

T
.

Thus

〈X, −S + S〉 = 〈X, −S〉 = 〈Λα, −S̃αα〉 ≤ −λ̄|α|tr(S̃αα). (18)

In addition, we have

dist2
(
−S,NSn

+
(X)

)
=

∥∥∥∥−S −ΠNSn
+
(X)(−S)

∥∥∥∥
2

=
∥∥∥ S̃αα

∥∥∥
2
+ 2

∥∥∥ S̃αβ

∥∥∥
2
+ 2

∥∥∥ S̃αγ

∥∥∥
2
. (19)

Next we proceed to estimate ‖S̃αα‖, ‖S̃αβ‖ and ‖S̃αγ‖. By using the Bauer-Fike Theorem [3], one obtains

that for any i = 1, . . . , |γ|,

dist
(
λi(S̃γγ), { |λ̄j | | j ∈ γ}

)
≤
∥∥∥ S̃γγ − Λγ

∥∥∥ =
∥∥∥P T

γ SP γ − P
T
γ S P γ

∥∥∥ ≤
∥∥S − S

∥∥ ≤ ρ.

The above inequality further implies that 0 < λi(S̃γγ) ≤ |λ̄n|+ρ for all i = 1, . . . , |γ|. Thus, S̃γγ is positive

definite and λmax(S̃γγ) ≤ |λ̄n| + ρ. Note that ‖S̃αα‖ ≤ ρ and ‖S̃ββ‖ ≤ ρ since S ∈ Bρ(S). Moreover,

‖S̃αα‖2 ≤ ρ‖S̃αα‖ ≤ ρ tr(S̃αα).
Now, from the fact that S̃αα − S̃αγ S̃

−1
γγ S̃ T

αγ � 0 (because S̃ ∈ S
n
+), we have

λ−1
max(S̃γγ) S̃αγ S̃

T
αγ � S̃αγ S̃

−1
γγ S̃ T

αγ � S̃αα.

Hence, ∥∥∥ S̃αγ

∥∥∥
2
= tr

(
S̃αγ S̃

T
αγ

)
≤ tr

(
S̃αα

)
λmax

(
S̃γγ

)
≤ (|λ̄n|+ ρ) tr(S̃αα). (20)
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Moreover, we obtain from




S̃αα S̃αβ

S̃ T
αβ S̃ββ


 � 0 that

S̃ 2
ij ≤ S̃ii S̃jj ≤ ρ S̃ii ∀ i ∈ α, j ∈ β,

which implies that ∥∥∥ S̃αβ

∥∥∥
2
=

∑

i∈α,j∈β
S̃ 2
ij ≤ ρ

∑

i∈α,j∈β
S̃ii = ρ|β|tr(S̃αα). (21)

By using the above estimates of ‖S̃αα‖, ‖S̃αβ‖, and ‖S̃αγ‖ in (19), we get

dist2
(
−S,NSn

+
(X)

)
≤ (2|λ̄n|+ 3ρ+ 2|β|ρ) tr(S̃αα).

Let κ ,
λ̄|α|

2|λ̄n|+ 3ρ+ 2|β|ρ > 0. Then, together with (18), we obtain that S ∈ S
n
+ ∩ Bρ

(
S
)
,

〈
X,−S + S

〉
+ κdist2

(
−S, NSn

+
(X)

)
≤ −λ̄|α|tr(S̃αα) + λ̄|α|tr(S̃αα) = 0.

Therefore, the inequality (17) holds for any S ∈ S
n
+ ∩ Bρ

(
S
)

and the proof is completed.

Notice that SOLP of (P) is a singleton. Combining Theorem 1 and Propositions 7 and 8, we obtain the

following result.

Corollary 1. Let X ∈ SOLP be the unique optimal solution of (P). The quadratic growth condition of (D)

holds at any (S,Z) ∈ SOLD under one of the following two conditions:

(i) rank(X) ≥ n− 1;

(ii) there exists (Ŝ, Ẑ) ∈ SOLD such that rank(X) + rank(Ŝ) = n.

Proof. Obviously, the function h(·) = 1
2 ‖ ·+G ‖2 satisfies Assumption 1(a) for the point (S,Z). For the

function p(S,Z) = δSn
+
(S) + δNn(Z), since ∂ p(S,Z) = NSn

+
(S) × NNn(Z) and NNn(·) is a polyhedral

mapping, we know from Propositions 3 and 4 that for any V ∈ NNn(Z), there exist positive scalars ε and κ
such that

δNn(Z) ≥ δNn(Z) +
〈
V ,Z − Z

〉
+ κdist2

(
Z, N−1

Nn (V )
)
, ∀ Z ∈ Bε(Z).

This, together with Proposition 8, implies Assumption 1(b) at (S,Z). In addition, it is known from Propo-

sitions 5 and 7 that the bounded linear regularity of the polyhedral set V = {(S,Z) ∈ S
n × S

n | S + Z =
S +Z} and the nonpolyhedral set G1(X) = N−1

Sn
+
(X)×N−1

Nn (X) can be implied by the assumed condition

(i) or (ii) of this corollary. The stated result then follows from Theorem 1.

3.3 The asymptotically superlinear convergence rate of the ALM

Based on a recent paper [12], the derived quadratic growth condition of (D) guarantees the asymptotically

superlinear convergence rate of the KKT residual of the iterative sequence generated by the ALM in (2) for

solving the DNN projection problem under easy-to-implement stopping criteria.
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In the seminal paper of Rockafellar [39], he suggested the following stopping criteria for the inexact

computation of the augmented Lagrangian subproblems:

(A) fk(X
k+1)− inf fk ≤ ε2k / 2σk,

(B) fk(X
k+1)− inf fk ≤

(
η2k / 2σk

) ∥∥∥
(
S k+1 − S k, Z k+1 − Z k

)∥∥∥
2
,

where {εk} and {ηk} are two positive summable sequences. In particular, the criterion (A) is sufficient to

ensure the global convergence of the dual variable sequence {(S k, Z k)} to a multiplier of (P), while the

criterion (B), together with the dual quadratic growth condition, ensure its asymptotic superlinear conver-

gence rate. It may be difficult to execute (A) and (B) for general convex problems since the value inf fk
is generally unknown. One nice feature of the augmented Lagrangian subproblem in (2) is that the function

fk(·) is continuously differentiable and strongly convex with modulus 1 for any k ≥ 0. Therefore, it holds

that

fk(X)− inf fk ≤ 1

2
‖∇fk(X) ‖2 , ∀ X ∈ S

n.

The above inequality is adopted from [39, (4.5)], which has its source from the proof of [25, Proposition 2].

As a consequence, the criteria (A) and (B) can be executed by

(A′) ‖∇fk(X
k+1)‖ ≤ εk /

√
σk,

(B′) ‖∇fk(X
k+1)‖ ≤ ( ηk /

√
σk )

∥∥∥
(
S k+1 − S k, Z k+1 − Z k

) ∥∥∥ .

The following theorem states the global convergence and the asymptotically superlinear convergence

rate of the ALM for solving (P) under criteria (A′) and (B′).

Theorem 2. Let
{(

X k, S k, Z k
)}

be an infinite sequence generated by the ALM with stopping criterion

(A′). Then the whole sequence
{(

X k, S k, Z k
)}

is bounded with {X k} converging to the unique primal

optimal solution X∞ and
{(

S k, Z k
)}

converging to some point (S∞, Z∞) ∈ SOLD.

If the criterion (B′) is also executed and the dual quadratic growth condition holds at (S∞, Z∞) with

modulus κ, then there exists k0 ≥ 0 such that for all k ≥ k0,

dist
((

S k+1, Z k+1
)
,SOLD

)
≤ µk dist

((
S k, Z k

)
,SOLD

)
, (22a)

∥∥∥R
(
X k+1, S k+1, Z k+1

)∥∥∥ ≤ µ′
k dist

((
S k, Z k

)
,SOLD

)
, (22b)

where the function R( · ) is defined in (1) and the constants µk, µ
′
k are given by





µk ,
[
ηk + (ηk + 1)/

√
1 + σ2

k κ
2
]
/(1 − ηk) → µ∞ , 1/

√
1 + σ2∞ κ2 ,

µ′
k , [ ηk/

√
σk + 2/σk ]/(1 − ηk) → µ′

∞ , 2/σ∞ .

Moreover, µ∞ = µ′
∞ = 0 if σ∞ = +∞.

Proof. Since the Slater condition of problem (P) trivially holds, the solution set of the dual problem is

nonempty. Then the global convergence of {X k} and {(S k, Z k)} follows from [39, Theorem 4]. The

inequality (22a) under criterion (B′) is due to [39, Theorem 4]. The inequality (22b) can be obtained from

[12, Theorem 2].
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The above theorem shows that under the dual quadratic growth condition, the dual sequence generated

by the ALM converges Q-linearly and the KKT residual of the primal-dual sequence converges R-linearly

if lim
k→∞

σk < +∞. The linear convergence rates µk and µ′
k can be arbitrarily small with a sufficiently large

value of σk. This type of convergence property is called “arbitrarily fast linear convergence” by Powell in

[34] when he studied the ALM for solving equality constrained nonlinear programming. The convergence

rate of the dual sequence becomes asymptotically superlinear when σk → +∞. It is this property that

distinguishes the ALM from various first order methods such as the alternating direction method of multi-

pliers (ADMM), where the latters’ linear convergence rate (established under primal-dual type error bound

conditions) is always close to 1 for ill-conditioned problems; see, e.g., [22, Theorem 2] for the convergence

rate of the ADMM.

4 A Semismooth Newton-CG Based Augmented Lagrangian Method for (P)

In this section, we discuss the semismooth Newton-CG method for solving the augmented Lagrangian sub-

problems in (2).

Recall that a locally Lipschitz continuous function F : O ⊆ X → Y defined on an open set O is said

to be semismooth at x ∈ O if F is directionally differentiable at x and for any V ∈ ∂F (x + ∆x) with

∆x → 0,

F (x+∆x)− F (x)− V∆x = o(‖∆x‖),
and F is said to be strongly semismooth at x if F is semismooth at x and

F (x+∆x)− F (x)− V∆x = O(‖∆x‖2).

F is said to be a semismooth (respectively, strongly semismooth) function on O if it is semismooth (respec-

tively, strongly semismooth) everywhere in O.

Given a positive penalty parameter σ and the dual variables (S̃, Z̃) ∈ S
n × S

n, the augmented La-

grangian subproblem is given by:

minimize
x∈Sn

f̃(X) , Lσ(X; S̃, Z̃ ). (23)

The function f̃ is continuously differentiable with the gradient given by

∇f̃(X) = X −G−ΠSn
+
(S̃ − σX)−ΠNn(Z̃ − σX), X ∈ S

n. (24)

Thus, the optimal solution to the subproblem (23) can be obtained via the solution of the nonlinear equation

∇f̃(X) = 0, X ∈ S
n.

It is known from [43] and [20, Proposition 7.4.4 & 7.4.7] that ∇f̃ : Sn → S
n is strongly semismooth so that

the semismooth Newton-CG method is applicable to solve the above equation. The generalized Jacobian of

∇f̃ at X ∈ S
n is given by

∂(∇f̃)(X) =
{
I + σ(V1 + V2) | V1 ∈ ∂ΠSn

+
(S̃ − σX), V2 ∈ ∂ΠNn(Z̃ − σX)

}
.

A globally convergence semismooth Newton-CG method with line search is described as follows.
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Algorithm SNCG: a Semismooth Newton-CG method for solving the subproblem of the ALM

Initialization. Given µ ∈ (0, 1/2), η ∈ (0, 1), τ ∈ (0, 1] and δ ∈ (0, 1). Iterate the following steps for

j ≥ 0.

Step 1. Choose V j
1 ∈ ∂ΠSn

+
(S̃ − σX) and V j

2 ∈ ∂ΠNn(Z̃ −σX). Solve the following linear system to find

∆Xj by the conjugate gradient method:

(I + σV j
1 + σV j

2 )∆X +∇f̃(Xj) = 0,

until

‖(I + σV j
1 + σV j

2 )∆Xj +∇f̃(Xj)‖ ≤ min
(
η, ‖∇f̃(Xj)‖1+τ

)
.

Step 2. (Line search) Set αj = δmj , where mj is the first nonnegative integer m for which

f̃(Xj + δm∆Xj) ≤ f̃(Xj) + µδm〈∇f̃(Xj),∆Xj〉.

Step 3. Set Xj+1 = Xj + αj∆Xj .

The global convergence and the superlinear convergence rate are stated in the following proposition,

whose proof can be established similarly as in [46, Theorems 3.4 and 3.5].

Proposition 9. Let the sequence {Xj} be generated by Algorithm SNCG. Then {Xj} converges to the

unique optimal solution X of the problem in (23) and

‖Xj+1 −X‖ = O(‖Xj −X‖1+τ ).

The major computational cost of the SNCG method is to solve the following linear system

(I + σV1 + σV2)(∆X) = R (25)

by the conjugate gradient method, where R ∈ S
n is a given right-hand-side. In the following, we provide

particular choices of V1 ∈ ∂ΠSn
+
(S̃ − σX) and V2 ∈ ∂ΠNn(Z̃ − σX) with explicitly expressions of the

products V1(∆X) and V2(∆X) with any ∆X ∈ S
n. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of S̃−σX

and P be a corresponding orthogonal matrix of eigenvectors, i.e.,

S̃ − σX = Pdiag(λ1, . . . , λn)P
T .

We also denote the following index sets

α , {i | λi > 0, 1 ≤ i ≤ n} and ᾱ = {i | λi ≤ 0, 1 ≤ i ≤ n}.

Denote the matrix Ω ∈ S
n as

Ω ,

(
Eαα ναᾱ

ν T
αᾱ 0

)
with (Eαα)ij , 1, i, j ∈ α and (ναᾱ)ij ,

λi

λi − λj
, i ∈ α, j ∈ ᾱ.

In addition, we write the matrix M ∈ S
n as

Mij =

{
1 if (Z̃ − σX)ij ≥ 0,

0 otherwise,
i, j = 1, . . . , n.
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Based on the above preparations, the linear operators V1 and V2 are chosen such that

V1(∆X) = P
[
Ω ◦ (P T∆X P )

]
P T , V2(∆X) = M ◦∆X, ∆X ∈ S

n,

where “◦” denotes the Hadamard product between two matrices. Moreover, if we partition P corresponding

to α and ᾱ, namely P = [P1, P2], then by making use of the special structure of Ω, we have that

V1(∆X) =
[
P1 P2

] ([Eαα ναᾱ
νTαᾱ 0

]
◦
[
P T
1 ∆XP1 P T

1 ∆XP2

P T
2 ∆XP1 P T

2 ∆XP T
2

])[
P T
1

P T
2

]

= P1P
T
1 ∆XP1P

T
1 + P1[ναᾱ ◦ (P T

1 ∆XP2)]P
T
2 + P2[ν

T
αᾱ ◦ (P T

2 ∆XP1)]P
T
1 .

In order to reduce the iteration number of the conjugate gradient method for solving (25), one may

consider the following preconditioned system:

[ I + σ(I + σV1)
−1V2 ](∆X) = −(I + σV1)

−1R.

It can be shown that

(I + σV1)
−1(∆X) = P [ Ξ ◦ (P T∆XP ) ]P T , Ξij =

1

1 + σΩij
, i, j = 1, . . . , n.

Moreover, to make use of the (2, 2) block of zeros in Ω to reduce the computational cost, we may rewrite

the above computation as

(I + σV1)
−1(∆X) = ∆X − P [ Σ ◦ (P T∆XP ) ]P T , Σij =

σΩij

1 + σΩij

, i, j = 1, . . . , n.

On the other hand, if one wants to make use of the (1, 1) block of ones in Ω to reduce the computational

cost, we may use the following computation:

(I + σV1)
−1(∆X) =

1

1 + σ

(
∆X + P [ Θ ◦ (P T∆XP ) ]P T

)
, Θij =

σ(1 − Ωij)

1 + σΩij

, i, j = 1, . . . , n.

5 Numerical Experiments

In this section, we conduct extensive numerical experiments to compare the performance of several methods

on different data sets.

In our numerical experiments, we adopt an accelerated proximal gradient method (APG) of Nesterov

[31] to warm start the ALM. Let (S∗, Z∗) ∈ S
n × S

n be an optimal solution of problem (D). It is easy to

derive that (S∗, Z∗) always satisfies Z∗ = ΠNn(−G− S∗) and

S∗ ∈ argmin
S∈Sn

{
φ(S) ,

1

2
‖ΠNn(S +G)‖2 | S ∈ S

n
+

}
. (26)

Thus, we can eliminate the variable Z in (D) and solve the single-variable problem (26) in terms of S.

Observe that the function φ is continuously differentiable with the gradient given by

∇φ(S) = ΠNn(S +G), S ∈ S
n.
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Moreover, the following inequality holds due to the global Lipschitz continuity (with modulus 1) of the

projection operator ΠNn(·):

φ(S) ≤ φ̂(S; Ŝ) , φ(Ŝ) +
〈
∇φ(Ŝ), S − Ŝ

〉
+

1

2
‖S − Ŝ ‖2, ∀ S, Ŝ ∈ S

n.

Given an initial point S̃0 = S0 ∈ S
n and parameter t0 = 1, we use a variant of the accelerated proximal

gradient method given in [6] that executes the following iterative steps:





S k+1 = argmin
S∈Sn

{
φ̂(S; S̃ k) | S ∈ S

n
+

}
= ΠSn

+

[
S̃ k −ΠNn(S̃ k +G)

]
,

tk+1 =
1

2

(
1 +

√
1 + 4t2k

)
,

S̃k+1 = S k+1 +
tk − 1

tk+1
(S k+1 − S k).

For comparison purposes, we also test Dykstra’s algorithm [19] and the alternating direction method of

multiplier (ADMM) to solve (P). Dykstra’s algorithm [19] is a variant of the alternating projection method

for computing the projection onto the intersection of a finite number of closed convex sets. It is well known

that Dykstra’s algorithm is a particular block coordinate descent method applied to the dual problem (D)

[21]. In order to apply the ADMM to (P), we first reformulated the problem as

min
α

2
‖X1 −G ‖2 + 1− α

2
‖X2 −G ‖2

s.t. X1 −X2 = 0, X1 ∈ S
n
+, X2 ∈ N

n,

where α ∈ (0, 1) is a given parameter. Let σ be a positive penalty parameter. The corresponding augmented

Lagrangian function of the above problem is given by

Lσ(X1,X2,W ) =
α

2
‖X1 −G ‖2 + 1− α

2
‖X2 −G ‖2 + 〈X1 −X2,W 〉+ σ

2
‖X1 −X2‖2.

Given initial points X0
2 and W 0 in S

n and a positive penalty parameter σ, the (k + 1)-th iteration of the

ADMM is given by





Xk+1
1 = argmin

X1∈Sn
Lσ(X1,X

k
2 ,W

k) = ΠSn
+

[
(α+ σ)−1

(
αG+ σXk

2 −W k
)]

,

Xk+1
2 = argmin

X2∈Sn
Lσ(X

k+1
1 ,X2,W

k) = ΠNn

[
(1− α+ σ)−1

(
(1− α)G + σXk+1

1 +W k
)]

,

W k+1 = W k + τσ
(
Xk+1

1 −Xk+1
2

)
,

where τ ∈ (0,
√
5+1
2 ) is the step-length. We take τ = 1.618 in our numerical experiments.

We terminate all the algorithms if the relative KKT residual

η ,
1

max{1, ‖G‖} max





‖X k −G− S k − Z k‖
‖X k −ΠSn

+
(X k)‖, ‖S k −ΠSn

+
(S k)‖, |〈X k, S k〉|/(1 + ‖S k‖)

‖X k −ΠNn(X k)‖, ‖Z k −ΠNn(Z k)‖, |〈X k, Z k〉|/(1 + ‖Z k‖)





≤ tol,
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where the tolerance “tol” is set to be 10−12 in the experiments. The algorithms will also be stopped when

they reach the maximum number of iterations (200 for the ALM, and 20, 000 for the APG, the ADMM and

Dykstra’s algorithm).

In the rest of this section, we conduct experiments with input matrix G generated from synthetic and

real data. The number of iterations, the final KKT residuals and the computational time for each method

are reported. For the ALM, we also report the total number of semismooth Newton iterations needed to

solve the ALM subproblems and the number of APG iterations taken for the purpose of warm-starting. For

instance, the item 50(257, 1190) in the first row under the column ‘alm’ in Table 2 means that the number of

ALM iterations is 50 with a total of 257 semismooth iterations and 1190 APG iterations. The computational

time is in the format of “hours:minutes:seconds”. We also check the strict complementarity with respect to

the positive semidefinite constraint at the approximate KKT solution (X,S,Z) given by the last iterate of

the ALM algorithm that is defined by the quantity

sc :=
λmin(X + S)

λmax(X + S)
,

where λmin(X+S) and λmax(X+S) denote the minimal and maximal eigenvalues of X+S, respectively. If

the quantity “sc” is substantially larger than tol, then one can confidently conclude that rank(X)+rank(S) =
n, which implies that the quadratic growth condition holds at X due to Corollary 1. However, it is worth

mentioning that in order for the dual quadratic growth condition to hold at
(
S,Z

)
, we only need the existence

of a dual solution pair
(
Ŝ, Ẑ

)
such that rank(X) + rank(Ŝ) = n. Unfortunately, the latter condition is

difficult to verify numerically.

All experiments are run in MATLAB R2018b on a workstation with Intel Xeon processor E5-2680v3

@2.50GHz (12 cores and 24 threads) and 128GB of RAM, equipped with 64-bit Windows 10 OS.

5.1 Experiments on synthetic data

We first conduct experiments on four classes of synthetic data: matrices whose projections are zeros, Hankel

matrices, randomly generated noisy low rank sparse matrices and Toeplitz matrices.

Example 1: matrices whose projections have zero solutions. For given S ∈ S
n
+ (with rank(S) < n)

and nonnegative Z ∈ S
n (with rank(Z) < n), let G = −(S + Z). Obviously, (X = 0, S, Z) satisfies

R(X,S,Z) = 0. In our experiments for Table 1, we generate both matrices S and Z randomly via the

following MATLAB script:

Stmp = randn(n, 2); S = Stmp*Stmp’;

Ztmp = rand(n, 2); Z = Ztmp*Ztmp’;

G = -(S+Z);

G = G/norm(G,’fro’);

Example 2: Hankel matrices. A Hankel matrix is a square matrix in which each ascending skew-diagonal

form left to right is constant. In Table 2, we consider Hankel matrices with dimension n generated by the

following MATLAB commands:

G = hankel(-(1:n)’,(1:n)’);

G = G/norm(G,’fro’);

Example 3: noisy low rank sparse matrices. In our numerical experiments in Table 3, the input matrices

G are noisy low rank sparse matrices generated via the following MATLAB commands:
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V = sprand(n,10,0.5);

G0 = -V*V’; E = randn(n); E = 0.5*(E+E’);

G = 0.85*G0+0.15*E;

G = G/norm(G,’fro’);

Example 4: Toeplitz matrices. A Toeplitz matrix is a matrix in which each descending diagonal from left

to right is constant. In our numerical experiments in Table 4, the input matrices G are Toeplitz matrices

generated as follows:

c = -rand(n,1); c(1:n/25) = ones(n/25,1);

G = toeplitz(c);

G = G/norm(G,’fro’);

Table 1: Numerical results on synthetic data whose projection is the zero matrix.
Iteration KKT residual time sc

n alm | apg | admm | dykstra alm | apg | admm | dykstra alm | apg | admm | dykstra alm

400 5( 25, 550) | 1430 | 20000 | 20000 2.8e-14 | 9.6e-13 | 4.4e-10 | 3.6e-07 13|26|6:42|5:52 1.1e-15

600 13( 70, 900) | 3140 | 20000 | 20000 7.3e-14 | 5.2e-13 | 1.2e-08 | 6.2e-07 45|1:50|11:56|11:16 2.6e-15

800 10( 50, 540) | 2130 | 20000 | 20000 7.4e-13 | 9.9e-13 | 5.8e-09 | 4.3e-07 52|2:16|23:32|20:55 2.0e-14

1000 11( 55, 760) | 4940 | 20000 | 20000 9.2e-13 | 9.4e-13 | 9.9e-09 | 5.0e-07 1:43|8:02|35:43|30:53 1.6e-15

1200 20( 100, 780) | 7210 | 20000 | 20000 3.5e-14 | 9.9e-13 | 2.7e-08 | 6.2e-07 3:21|18:00|57:36|53:47 2.0e-15

1400 34( 215, 1600) | 9290 | 20000 | 20000 4.7e-13 | 8.8e-13 | 1.0e-08 | 4.7e-07 10:41|35:15| 1:24:11| 1:14:42 5.9e-16

Table 2: Numerical results on Hankel matrices.
iteration KKT residual time sc

n alm | apg | admm | dykstra alm | apg | admm | dykstra alm | apg | admm | dykstra alm

400 50( 257, 1190) | 20000 | 20000 | 20000 9.2e-13 | 8.6e-12 | 5.5e-11 | 6.6e-08 50|5:19|5:22|4:48 5.0e-17

600 40( 202, 1050) | 20000 | 20000 | 20000 9.4e-13 | 7.5e-12 | 6.5e-11 | 6.7e-08 1:36|11:00|11:21|10:32 2.5e-15

800 60( 302, 1010) | 20000 | 20000 | 20000 5.7e-13 | 6.7e-12 | 1.2e-10 | 6.7e-08 3:53|19:11|20:14|18:14 2.8e-16

1000 45( 227, 1050) | 20000 | 20000 | 20000 9.0e-13 | 5.0e-12 | 2.0e-10 | 6.7e-08 5:25|29:34|32:00|28:21 1.2e-16

1200 50( 252, 1090) | 20000 | 20000 | 20000 9.9e-13 | 7.5e-12 | 2.4e-10 | 6.8e-08 8:58|45:27|48:07|43:57 1.4e-15

1400 65( 342, 1370) | 20000 | 20000 | 20000 8.3e-13 | 7.6e-12 | 3.2e-10 | 6.8e-08 19:21| 1:04:34| 1:08:26| 1:02:47 4.0e-16

Table 3: Numerical results on noisy low rank sparse matrices.
iteration KKT residual time sc

n alm | apg | admm | dykstra alm | apg | admm | dykstra alm | apg | admm | dykstra alm

400 120( 603, 1320) | 20000 | 20000 | 20000 5.8e-13 | 3.3e-11 | 2.9e-10 | 2.2e-07 1:50|6:22|6:45|5:51 1.7e-09

600 45( 223, 980) | 20000 | 11661 | 20000 9.4e-13 | 1.7e-11 | 8.7e-13 | 7.4e-08 1:56|11:53|7:22|10:55 2.1e-14

800 85( 428, 680) | 20000 | 18901 | 20000 8.2e-13 | 1.5e-11 | 8.6e-13 | 5.6e-08 5:48|19:47|19:49|18:30 3.6e-14

1000 90( 453, 830) | 20000 | 20000 | 20000 8.1e-13 | 1.6e-11 | 2.1e-11 | 4.3e-08 10:16|30:54|34:15|29:26 2.9e-16

1200 95( 478, 880) | 20000 | 20000 | 20000 9.5e-13 | 1.8e-11 | 2.8e-11 | 4.8e-08 16:58|49:48|52:47|45:27 2.3e-15

1400 70( 353, 728) | 20000 | 18261 | 20000 4.9e-13 | 2.4e-11 | 9.8e-13 | 5.7e-08 18:33| 1:11:20| 1:07:39| 1:05:26 8.8e-15
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Table 4: Numerical results on Toeplitz matrices.
iteration KKT residual time sc

n alm | apg | admm | dykstra alm | apg | admm | dykstra alm | apg | admm | dykstra alm

400 21( 202, 740) | 20000 | 4501 | 20000 7.8e-13 | 2.2e-11 | 9.5e-13 | 5.4e-09 33|5:47|1:25|5:39 5.9e-06

600 14( 132, 630) | 17670 | 4121 | 20000 9.4e-13 | 9.3e-13 | 7.5e-13 | 2.5e-09 48|9:29|2:28|10:28 5.9e-06

800 19( 181, 580) | 20000 | 4321 | 20000 7.9e-13 | 8.9e-12 | 7.1e-13 | 2.6e-09 1:44|19:10|4:31|18:42 9.2e-06

1000 16( 154, 660) | 15270 | 3281 | 20000 9.3e-13 | 7.5e-13 | 8.6e-13 | 6.4e-11 2:39|22:36|5:31|29:07 2.6e-06

1200 14( 133, 650) | 15300 | 2921 | 20000 9.4e-13 | 9.2e-13 | 6.9e-13 | 1.1e-11 3:39|36:22|7:44|46:40 3.6e-07

1400 16( 153, 580) | 17820 | 2961 | 20000 8.9e-13 | 9.9e-13 | 6.3e-13 | 6.3e-12 5:28| 1:00:39|10:45| 1:07:35 1.9e-05

Table 1 presents the computational results for matrices whose projections are zero matrices. One can

observe that our ALM is obviously more efficient and robust than other methods in terms of the KKT

residual and computational time. Moreover, the APG solves all the instances successfully while both the

ADMM and Dykstra’s algorithm cannot solve these problems to the desired accuracy. However, the ADMM

is better than the Dykstra’s algorithm in terms of the KKT residual but shares similar performance in terms

of computational time.

From Table 2, one can observe that our ALM outperforms other methods in terms of number of itera-

tions, KKT residuals and computational time. In fact, our ALM is always able to return a highly accurate

solution with much shorter computational time. All the other algorithms cannot successfully solve the in-

stances within 20000 iterations, with the APG performing slightly better than the ADMM, and much better

than Dykstra’s algorithm.

For the results of noisy low rank sparse matrices reported in Table 3, our ALM again outperforms all

the other three methods. Both the APG and Dykstra’s algorithm fail to reach the desired accuracy for all

the tested instances within 20000 iterations, while the ADMM can solve around half of the instances to the

desired accuracy with much longer computational time compared to the ALM.

For the numerical results on Toeplitz matrices reported in Table 4, one can find that the ALM still

outperforms the other methods, but the ADMM also performs fairly well since it is only about 2-3 times

slower than the ALM in solving all the instances to the desired accuracy.

Notice that the term sc ≈ tol in Table 1, Table 2 and Table 3 but sc ≫ tol in Table 4. Even though

we cannot conclude that the dual quadratic growth condition does not hold for the instances in the former

three tables, we have indeed observed that the convergence rates in Table 1 and Table 2 are slower compared

to those in Table 4 in the sense that more ALM iterations are needed to solve the problems to the desired

accuracy. Furthermore, from Table 1–Table 3, even though sc ≈ tol, the convergence rates in Table 1

are faster compared to those in Table 2 and Table 3. This again indicates that the failure of the strict

complementarity condition at a particular point does not necessarily imply the failure of the quadratic growth

condition. Therefore, as mentioned in the Introduction, one can see that the quadratic growth condition is

quite mild.

5.2 Experiments on DNN projection instances arising from solving the Lagrangian-DNN

relaxations of quadratic optimization problems

Problem (P) arises naturally as a subroutine in the Lagrangian-DNN relaxation method for approximately

solving a quadratic optimization problem (QOP) of the following form:

min
u

{
uTQu+ 2cTu

∣∣∣∣∣
u ∈ R

m
+ , Au+ b = 0,

uiuj = 0 ((i, j) ∈ E)

}
, (27)
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where A ∈ R
q×m, b ∈ R

q, c ∈ R
m, Q ∈ S

m, and E ⊂ {(i, j) : 1 ≤ i < j ≤ m} are given data. Let

n = 1 +m, and

Q0 :=

(
0 cT

c Q

)
∈ S

n, H0 :=

(
1 0

T

0 O

)
∈ S

n, Q01 :=

(
bT b bTA

ATb ATA

)
∈ S

n, Qij :=

(
0 0

T

0 Cij +Cij

)

with Cij being the m×m matrix whose (i, j)-th component is 1/2 if (i, j) ∈ E and 0 otherwise.

It has been shown in [24] that the nonconvex problem (27) can be reformulated as the following com-

pletely positive cone convex programming problem:

inf
X

{Q0 •X | H0 •X = 1, H1 •X = 0, X ∈ C
n,∗}

where H1 := Q01 +
∑

(i,j)∈E Qij and X • Y = tr(XY ) for any X,Y ∈ S
n. While the above problem is

convex, the conic constraint is unfortunately not computationally tractable. As suggested in [24], one can

approximately solve it via the following linearly constrained DNN relaxation problem based on the fact that

C
n,∗ ⊂ D

n:

inf
X

{Q0 •X | H0 •X = 1, H1 •X = 0, X ∈ D
n} . (28)

Its corresponding Lagrange dual problem is given by

sup
y0

{
y0
∣∣ Z + y0H0 + y1H1 = Q0, Z ∈ D

n,∗, y = (y0, y1) ∈ R
2
}
. (29)

For the sake of computing a lower bound of (27) efficiently, the authors in [24] further considered the

Lagrangian-DNN relaxations of (28) and its dual that are given by

inf
X

{Q0 •X + λH1 •X | H0 •X = 1, X ∈ D
n} (30)

sup
y0

{y0 | Q0 + λH1 − y0H0 ∈ D
n,∗} , (31)

where λ > 0 is a given Lagrangian parameter that should be chosen large enough to obtain a high quality

relaxation. When the bisection method is applied to solve the problem (31) for a given (large) λ, the key

step in each bisection iteration is to compute the following DNN projection for any given y ∈ R:

ΠDn,∗(Gλ(y)) = Gλ(y) + ΠDn(−Gλ(y)) with Gλ(y) := Q0 + λH1 − yH0.

Therefore, an efficient solver for computing the projection onto the DNN cone is critical for solving the

Lagrangian-DNN relaxation problem (31).

We conduct numerical experiments on DNN projection instances arising from the Lagrangian-DNN re-

laxation method for solving quadratic optimization problems (27) associated with binary integer quadratic

problems (BIQ) and quadratic assignment problems (QAP). We set λ = 106 × ‖Q0‖
max(1,‖H1‖) for all the ex-

periments. The parameter y is chosen from the interval [y∗ × 1
1000 , y

∗ × 1000], where y∗ is the optimal

solution for the dual conic relaxation problem (29) that is known from the literature (see e.g., [24]). Given

y and λ, we compute the matrix Gλ(y) and take its normalization (by the Frobenius norm) as the input

matrix G. The test instances for the BIQ and QAP problems are downloaded from BIQMAC library (avail-

able at http://www.biqmac.uni-klu.ac.at/biqmaclib.html.) and QAPLIB (available at

http://www.seas.upenn.edu/qaplib.), respectively.
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Tables 5–9 present the numerical results for all the four algorithms. It can be seen that the ALM is about

two times faster than the APG in terms of the computational time when both of them reach the required

accuracy level. Compared with the APG, the ADMM solves half of the BIQ instances with much longer

computational time and all the QAP instances with roughly the same efficiency. Dykstra’s algorithm, on the

other hand, cannot solve a large proportion of the problems to the desired accuracy within 20000 iterations.

One also observes that for most of the QAP instances, it holds that sc ≈
√

tol. This fact indicates that the

strict complementarity condition is likely to hold for these problems and hence resulting in fast convergence

rates as shown in the tables. This also shows that a strict complementarity solution is likely to exist in some

real-world problems.

Table 5: Numerical results on bqp-data for BIQ problems. In this table, y = −100.
iteration KKT residual time sc

problem n alm | apg | admm | dykstra alm | apg | admm | dykstra alm | apg | admm | dykstra alm

bqp250-2 501 26( 127, 760) | 2510 | 12501 | 20000 2.8e-13 | 9.8e-13 | 5.8e-13 | 2.6e-06 36|1:08|6:04|8:32 6.7e-11

bqp250-4 501 16( 79, 760) | 2490 | 12701 | 20000 5.2e-13 | 9.9e-13 | 9.4e-13 | 2.6e-06 30|1:07|6:14|8:39 5.4e-12

bqp250-6 501 19( 92, 660) | 2479 | 12561 | 20000 9.4e-13 | 9.9e-13 | 8.4e-13 | 2.6e-06 29|1:08|6:07|8:34 1.1e-10

bqp250-8 501 20( 97, 750) | 2500 | 12801 | 20000 1.0e-12 | 1.0e-12 | 9.2e-13 | 2.6e-06 32|1:09|6:14|8:33 1.0e-11

bqp250-10 501 21( 103, 760) | 2470 | 12561 | 20000 3.6e-13 | 1.0e-12 | 6.7e-13 | 2.6e-06 34|1:06|6:04|8:33 4.4e-11

bqp500-2 1001 21( 101, 860) | 2780 | 20000 | 20000 2.2e-13 | 1.0e-12 | 9.6e-09 | 4.8e-06 2:38|5:01|39:27|36:39 1.5e-11

bqp500-4 1001 16( 77, 900) | 2659 | 20000 | 20000 9.5e-13 | 9.8e-13 | 9.6e-09 | 4.8e-06 2:28|4:49|40:02|36:35 1.4e-11

bqp500-6 1001 16( 78, 940) | 2700 | 20000 | 20000 7.2e-13 | 1.0e-12 | 9.6e-09 | 4.8e-06 2:35|4:54|39:59|36:22 6.1e-17

bqp500-8 1001 16( 77, 940) | 2680 | 20000 | 20000 3.9e-13 | 1.0e-12 | 9.6e-09 | 4.8e-06 2:36|4:52|39:57|36:41 1.7e-11

bqp500-10 1001 15( 72, 910) | 2710 | 20000 | 20000 8.8e-13 | 9.9e-13 | 9.6e-09 | 4.8e-06 2:32|5:00|39:56|36:56 1.3e-11

Table 6: Numerical results on bur-data for QAP problems. In this table, y = 104.
iteration KKT residual time sc

problem n alm | apg | admm | dykstra alm | apg | admm | dykstra alm | apg | admm | dykstra alm

bur26a 677 20( 38, 348) | 1317 | 1761 | 20000 9.4e-13 | 1.0e-12 | 8.2e-13 | 3.7e-12 24|1:06|1:15|19:53 1.7e-06

bur26b 677 19( 36, 310) | 1198 | 1821 | 20000 8.6e-13 | 1.0e-12 | 6.8e-13 | 5.0e-12 22|58|1:16|19:28 2.5e-06

bur26e 677 20( 39, 348) | 1345 | 1821 | 20000 9.5e-13 | 1.0e-12 | 7.1e-13 | 4.4e-12 25|1:08|1:18|20:18 1.8e-06

bur26f 677 19( 36, 310) | 1210 | 1761 | 20000 8.4e-13 | 1.0e-12 | 8.9e-13 | 5.8e-12 23|1:02|1:15|19:43 2.6e-06

bur26g 677 20( 40, 390) | 1404 | 1861 | 20000 9.8e-13 | 1.0e-12 | 7.0e-13 | 2.0e-12 25|1:10|1:19|19:48 8.3e-07

bur26h 677 21( 50, 449) | 1385 | 1821 | 20000 9.5e-13 | 1.0e-12 | 5.8e-13 | 2.8e-12 30|1:09|1:19|19:40 1.2e-06

Table 7: Numerical results on chr-data for QAP problems. In this table, y = 105.
iteration KKT residual time sc

problem n alm | apg | admm | dykstra alm | apg | admm | dykstra alm | apg | admm | dykstra alm

chr20a 401 11( 22, 250) | 729 | 1061 | 20000 7.1e-13 | 1.0e-12 | 7.8e-13 | 4.2e-12 06|13|18|7:41 7.7e-06

chr20b 401 8( 16, 250) | 671 | 1101 | 20000 9.2e-13 | 1.0e-12 | 8.8e-13 | 2.7e-12 06|12|18|7:43 7.7e-06

chr20c 401 12( 25, 230) | 743 | 1161 | 20000 7.1e-13 | 9.8e-13 | 7.2e-13 | 4.4e-12 06|13|19|7:35 7.4e-06

chr22a 485 12( 28, 314) | 811 | 1421 | 20000 8.5e-13 | 1.0e-12 | 6.6e-13 | 2.8e-12 11|22|34|11:02 3.8e-06

chr22b 485 10( 22, 194) | 743 | 1261 | 20000 1.0e-12 | 1.0e-12 | 8.7e-13 | 2.2e-12 08|19|30|11:02 3.8e-06

chr25a 626 10( 19, 165) | 871 | 1281 | 20000 9.3e-13 | 1.0e-12 | 8.2e-13 | 2.0e-12 10|37|50|17:43 2.8e-06
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Table 8: Numerical results on nug-data for QAP problems. In this table, y = 5× 105.
iteration KKT residual time sc

problem n alm | apg | admm | dykstra alm | apg | admm | dykstra alm | apg | admm | dykstra alm

nug22 485 9( 18, 109) | 507 | 1101 | 20000 5.6e-13 | 9.6e-13 | 7.6e-13 | 7.1e-12 05|12|25|11:06 1.7e-05

nug24 577 11( 25, 370) | 1091 | 1361 | 20000 9.4e-13 | 1.0e-12 | 9.9e-13 | 2.2e-12 17|42|44|14:56 1.6e-06

nug25 626 10( 21, 166) | 1099 | 1361 | 20000 9.9e-13 | 1.0e-12 | 1.0e-12 | 2.1e-12 10|45|49|16:31 1.6e-06

nug27 730 10( 20, 130) | 606 | 1221 | 20000 9.4e-13 | 9.6e-13 | 6.2e-13 | 6.9e-12 11|33|1:03|23:38 1.1e-05

nug30 901 8( 19, 103) | 455 | 841 | 14594 8.1e-13 | 8.4e-13 | 8.0e-13 | 1.0e-12 17|32|1:06|26:39 1.0e-04

Table 9: Numerical results on tai-data for QAP problems. In this table, y = 7× 107.
Iteration KKT residual time sc

problem n alm | apg | admm | dykstra alm | apg | admm | dykstra alm | apg | admm | dykstra alm

tai20b 401 4( 14, 92) | 337 | 441 | 1496 4.6e-13 | 7.1e-13 | 3.3e-13 | 1.0e-12 03|05|07|31 1.9e-03

tai25b 626 3( 8, 104) | 370 | 401 | 1017 4.2e-13 | 2.8e-13 | 5.0e-13 | 1.0e-12 06|13|16|49 4.7e-03

tai30b 901 2( 7, 130) | 360 | 481 | 1195 2.1e-13 | 1.0e-13 | 2.1e-13 | 1.0e-12 13|27|40|2:04 3.5e-03

tai35b 1226 2( 5, 154) | 330 | 541 | 1526 8.0e-13 | 9.2e-13 | 3.9e-13 | 1.0e-12 28|49|1:34|5:25 1.6e-03

tai40b 1601 3( 10, 118) | 370 | 481 | 1578 4.5e-13 | 7.0e-13 | 6.7e-13 | 1.0e-12 53|1:45|2:27|11:46 3.0e-03

5.3 Determination of degeneracy status

We end this section by discussing how to determine the degeneracy status of a feasible solution X of the

DNN projection problem, given the eigenvalue decomposition X = PDP T . To this end, we may use

equation (8) in Proposition 1 to check whether the linear system generated by P T
α (HE +HT

E )P has a zero

null space. In particular, if the necessary condition for constraint nondegeneracy in Proposition 1 fails to

hold, one can immediately conclude that X is degenerate. However, if the necessary condition holds, then

one needs to proceed to check whether the coefficient matrix generated byP T
α (HE +HT

E )P has full column

rank. But note that since the size of the coefficient matrix is (n|α|)× |E|, which can be huge when n|α| and

|E| are large, it is generally expensive to numerically check the degeneracy status of X in the latter case.

Table 10 presents the degeneracy status of the computed solutions for some tested instances in Table

1–Table 9. From the table, we can see that the sizes of the corresponding linear systems are usually huge

and checking whether the coefficient matrix has full column rank could be very expensive numerically.

By analysing the computational results presented in Table 1–Table 9 and the degeneracy status in Table

10, we can observe that it is indeed more challenging to solve degenerate DNN projection problems than

non-degenerate problems.

Table 10: Degeneracy status for some tested instances in Table 1–Table 9.
Problems n |α| 1

2(n− |α|)(n − |α| + 1) |E| size of lin. sys. Degeneracy

Table 1 (Zero) 400 0 80200 0 0× 80200 Yes

Table 2 (Hankel) 400 105 43660 37666 42000 × 42534 Yes

Table 3 (low rank sparse) 400 184 23436 8093 73600 × 72107 Yes

Table 4 (Toeplitz) 400 357 946 11643 142800 × 68557 Out of mem.

Table 5 (bqp250-2) 501 23 114481 41889 11523 × 83862 Yes

Table 6 (bur26a) 677 626 1326 212603 423802 × 16900 No

Table 7 (chr20a) 401 362 780 73001 145162 × 7600 No

Table 8 (nug22) 485 442 946 107691 214370 × 10164 No

Table 9 (tai20b) 401 362 780 73001 145162 × 7600 No
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6 Conclusions

In this paper, we have employed the augmented Lagrangian method (ALM) to compute the projection onto

the doubly nonnegative (DNN) cone. The ALM solves a sequence of well-conditioned nonsmooth equa-

tions instead of directly dealing with the possibly singular Karush-Kuhn-Tucker system. Under the dual

quadratic growth condition and proper stopping criteria for the subproblems, the proposed algorithm is

shown to converge asymptotically superlinearly. Extensive numerical results demonstrate that our proposed

ALM is more efficient and robust than the accelerated proximal gradient method, the alternative direction

method of multiplier and Dykstra’s algorithm. With the important role played by completely positive cone

in modeling nonconvex quadratic optimization problems in various applications, we believe that our solver

for computing the projection onto the DNN cone will serve as a fundamental toolbox to approximately solve

computationally intractable completely positive or copositive cone programming problems in the future.
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