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Abstract

In this paper we consider a class of structured nonsmooth difference-of-convex (DC) con-
strained DC program in which the first convex component of the objective and constraints is the
sum of a smooth and nonsmooth functions while their second convex component is the supremum
of finitely many convex smooth functions. The existing methods for this problem usually have a
weak convergence guarantee or require a feasible initial point. Inspired by the recent work (Math
Oper. Res. 42(1):95–118, 2017 by Pang et al.), in this paper we propose two infeasible methods
with strong convergence guarantee for the considered problem. The first one is a penalty method
that consists of finding an approximate D-stationary point of a sequence of penalty subprob-
lems. We show that any feasible accumulation point of the solution sequence generated by such a
penalty method is a B-stationary point of the problem under a weakest possible assumption that
it satisfies a pointwise Slater constraint qualification (PSCQ). The second one is an augmented
Lagrangian (AL) method that consists of finding an approximate D-stationary point of a sequence
of AL subproblems. Under the same PSCQ condition as for the penalty method, we show that
any feasible accumulation point of the solution sequence generated by such an AL method is a
B-stationary point of the problem, and moreover, it satisfies a KKT type of optimality condition
for the problem, together with any accumulation point of the sequence of a set of auxiliary La-
grangian multipliers. We also propose an efficient successive convex approximation method for
computing an approximate D-stationary point of the penalty and AL subproblems. Finally, some
numerical experiments are conducted to demonstrate the efficiency of our proposed methods.

Keywords: nonsmooth DC program, DC constraints, B-stationary point, penalty method, aug-
mented Lagrangian method

AMS 2000 subject classification: 90C26, 90C30, 65K05

1 Introduction

Difference-of-convex (DC) programs are a class of important optimization problems, which generally
minimize an objective function that is the difference of two convex functions subject to constraints
defined by the same type of functions. They have been studied for several decades in the literature
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snzma@126.com). This author was supported by National Natural Science Foundation of China (Grant No. 11761037
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(e.g., see [10, 17, 11, 25, 28, 20, 16, 13] and references therein). In this paper we are interested in a
DC program in the form of

min
x∈X

F (x) = φ0(x) + ζ0(x)− ψ0(x)

s.t. φi(x) + ζi(x)− ψi(x) ≤ 0, ∀i = 1, . . . , I,
(1.1)

where
ψi(x) = max

1≤j≤Ji
{ψi,j(x)}, ∀i = 0, 1, . . . , I (1.2)

for some integers Ji’s, X ⊆ ℜ
n is a closed convex set, ζi’s are convex and continuous on an open set

S containing X, φi’s, ψi,j ’s are convex and continuously differentiable on S, and moreover, ∇φi is
Lipschitz continuous with constant Li ≥ 0, that is,

‖∇φi(x)−∇φi(y)‖ ≤ Li‖x− y‖, ∀x, y ∈ X

for all i = 0, 1, . . . , I. In addition, for convenience we assume throughout this paper that L0 > 0.∗

DC program (1.1) has found numerous applications in signal processing, communications and
networks, statistical variable selections, finance, and etc (e.g., see [9, 10, 2, 11, 25, 1, 8, 13, 15, 7]).
Also, it has been shown in [9, 14, 1, 13] that some widely used sparse optimization models can be
equivalently reformulated and solved as (1.1). Several methods have been proposed in the literature
for solving general DC programs (see [10, 17, 2, 12, 11, 25]). Nevertheless, they face some issues
when applied to solve problem (1.1) as mentioned below.

When a feasible point x0 of (1.1) is known, the sequential convex programming (SCP) method
(e.g., see [10, 17, 2, 12, 11]) can be applied to (1.1) and it generates iterates {xk} as follows:

xk+1 ∈ Argmin
x∈X

φ0(x) + ζ0(x)− (skψ0
)Tx

s.t. φi(x) + ζi(x)− ψi(x
k)− (skψi

)T (x− xk) ≤ 0, ∀i = 1, . . . , I,
(1.3)

where skψi
∈ ∂ψi(x

k) for k ≥ 0 and i = 0, 1, . . . , I. Under some suitable constraint qualification, every

accumulation point x∞ of the sequence {xk} is a Karush-Kuhn-Tucker (KKT) point of the problem,
that is, there exists some λ ∈ ℜI together with x∞ satisfying the KKT conditions

0 ∈ ∇φ0(x
∞) + ∂ζ0(x

∞)− ∂ψ0(x
∞) +

I∑
i=1

λi[∇φi(x
∞) + ∂ζi(x

∞)− ∂ψi(x
∞)] +NX(x

∞),

λi ≥ 0, φi(x
∞) + ζi(x

∞)− ψi(x
∞) ≤ 0, λi[φi(x

∞) + ζi(x
∞)− ψi(x

∞)] = 0, ∀i = 1, . . . , I.
(1.4)

Though SCP looks quite natural, it encounters some practical issues. Firstly, the initial feasible point
x0 is usually unknown. Secondly, it is typically difficult to find an exact solution of subproblem (1.3).

Le Thi et al. [12] proposed two penalty type of methods (named as DCA1 and DCA2) for solving
a special case of problem (1.1) with ψi being continuously differentiable on X,† that is, Ji = 1 for
i = 0, 1, . . . , I. Their methods consist of finding an approximate critical point of a sequence of penalty
subproblems

min
x∈X

φ0(x) + ζ0(x)− ψ0(x) + ρk

[
max
1≤i≤I

{φi(x) + ζi(x)− ψi(x)}

]

+

, (1.5)

where ρk > 0 is updated by a specific scheme and [a]+ = max{a, 0} for any a ∈ ℜ. In particular, for
DCA1, a DC algorithm is used to find an approximate critical point of (1.5) by solving a sequence
of problems

xl+1 ∈ Argmin
x∈X

u(x)− (sl)Tx, (1.6)

∗This assumption is very mild. Indeed, if L0 = 0, one can replace φ0(x) and ψ0(x) by φ0(x) + ‖x‖2/2 and ψ0(x) +
‖x‖2/2, respectively. Then the resulting problem is equivalent to the original one but with L0 = 1 > 0.

†The differentiability of ψi’s is required for the convergence of the methods (see [12, Assumption 2]).
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where sl ∈ ∂v(xl), and

u(x) = φ0(x) + ζ0(x) + ρkmax



max

1≤i≤I
{φi(x) + ζi(x) +

I∑

j=1,j 6=i

ψj(x)},
I∑

j=1

ψj(x)



 , (1.7)

v(x) = ψ0(x) + ρk

I∑

j=1

ψj(x). (1.8)

In addition, for DCA2, a majorization algorithm is used to find an approximate critical point of (1.5)
by solving a sequence of problems

(xl+1, tl+1) ∈ Argmin
x∈X,t≥0

φ0(x) + ζ0(x)− (slψ0
)Tx+ ρkt

s.t. φi(x) + ζi(x)− ψi(x
l)− (slψi

)T (x− xl)− t ≤ 0, ∀i = 1, . . . , I,
(1.9)

where slψi
∈ ∂ψi(x

l) for i = 0, 1, . . . , I. It was shown in [12, Theorems 1 and 2] that any accumulation
point of the solution sequence generated by DCA1 and DCA2 is a KKT point that is defined in (1.4).
Nevertheless, the proofs of [12, Theorems 1 and 2] are based on the assumption that the extended
Mangasarian-Fromowitz constraint qualification (EMFCQ) holds at every infeasible accumulation
point and every boundary accumulation point of the solution sequence, which is unreasonable because
a constraint qualification is usually assumed to hold at a feasible point rather than infeasible points.
Besides this, it is typically difficult to find an exact solution of subproblems (1.6) and (1.9), and thus
the penalty type of methods [12] are not practical.

Recently, Pang et al. [25] explored the problem structure and proposed a novel enhanced DCA
(EDCA) for solving a special case of (1.1) with I = 0 by solving a number of convex approximation
problems per iteration. They showed that every accumulation point of the solution sequence of EDCA
is a directional-stationary (D-stationary) point of the problem. Besides, Beck and Hallak [5] proposed
a novel feasible descent method for finding a D-stationary point of a class of problems in the form of
min{f(x) − g(x) : x ∈ X}, where f is a continuously differentiable function, g is a convex function,
and X is a polyhedral set, which can be applied to a special case of (1.1) with I = 0, ζ0 ≡ 0, and X
being a polyhedral set. In addition, assuming that a feasible point of problem (1.1) is available, Pang
et al. [25] proposed an EDCA for solving (1.1) by solving a number of convex approximation problems
similar to (1.3) per iteration. They showed that under some suitable constraint qualification, every
accumulation point of the generated solution sequence is a Bouligand-stationary (B-stationary) point
of the problem, which is generally stronger than a usual KKT point.

Although the aforementioned EDCA [25] enjoys nice theoretical convergence properties, it is not
applicable to problem (1.1) when a feasible point is not available. To overcome this issue, Pang et
al. [25] proposed a penalty approach to solving (1.1), which consists of finding an exact D-stationary
point xk of a sequence of penalty subproblems (1.5) with 0 < ρk ↑ ∞. They showed that any feasible
accumulation point x∞ of the sequence {xk} is a B-stationary point of (1.1) if x∞ satisfies a pointwise
Slater constraint qualification (PSCQ) and additionally that the set {j : ψi,j(x

∞) = ψi(x
∞)} is a

singleton for i = 1, . . . , I. The latter condition appears to be rather strong because it implies that
ψi is strictly differentiable at x∞ for i = 1, . . . , I, which generally does not hold, and moreover, the
ψi’s associated with the inactive constraints are unusually involved. Besides, this penalty approach
faces some practical issues. Indeed, as mentioned in [25], problem (1.5) can be rewritten as

min
x∈X

u(x)︸︷︷︸
convex

− v(x)︸︷︷︸
convex

, (1.10)
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where u and v are defined in (1.7) and (1.8), respectively. Also, v can be rewritten as

v(x) = max

{
ψ0,j0(x) + ρk

I∑

i=1

ψi,ji(x)
∣∣∣ 1 ≤ ji ≤ Ji, ∀i = 0, 1, . . . , I

}
.

It thus follows that (1.10) is a special case of (1.1) with I = 0. As suggested in [25], problem (1.10) is
solved by the aforementioned EDCA, which generates a sequence any of whose accumulation points
is a D-stationary point of (1.10) and hence of (1.5). Therefore, the EDCA is generally only able
to produce an approximate D-stationary point of (1.5), but not an exact one as required by this
penalty approach. In addition, when applied to (1.10), the EDCA needs to find the exact solution
of a number of subproblems in the form of

min
x∈X

u(x) +
c

2
‖x− y‖2 (1.11)

for some c > 0 and y ∈ ℜn, where u is defined in (1.7). Though problem (1.11) is convex, it is
typically impossible to find its exact solution due to the sophistication of u.

Motivated by the above points, we propose in this paper a penalty method for solving (1.1) that
consists of a sequence of penalty subproblems in the form of

min
x∈X

Fρ(x), (1.12)

where

Fρ(x) = F (x) + ρ

I∑

i=1

[φi(x) + ζi(x)− ψi(x)]
p
+ (1.13)

with p ≥ 1.‡ At each iteration our method only needs an approximate D-stationary point of the
penalty subproblem, which can be efficiently computed by a successive convex approximation method
proposed in this paper. We show that any feasible accumulation point x∞ of the solution sequence
of our method is a B-stationary point of (1.1) if x∞ satisfies a PSCQ condition. Compared to the
aforementioned convergence result in [25], our result does not require the assumption that the set
{j : ψi,j(x

∞) = ψi(x
∞)} is a singleton for i = 1, . . . , I. As a consequence, any feasible accumulation

point x∞ of the solution sequence generated by our penalty method can be a B-stationary point of
(1.1) even when some of ψi’s are non-differentiable at x∞. Besides, the PSCQ condition used in our
result is generally weaker than that in [25]. In fact, we provide an example (see Remark 2.1) for
which the PSCQ in our paper holds while the one in [25] fails to hold.

In addition, we propose an augmented Lagrangian (AL) method for solving (1.1), which consists
of finding an approximate D-stationary point to a sequence of AL subproblems. Under the same
assumptions as those for the penalty method, we show that each accumulation point of the solution
sequence is a B-stationary point of (1.1). We also show that each accumulation point of a set
of auxiliary Lagrangian multiplier sequences together with the accumulation point of the solution
sequence satisfies a KKT type of optimality condition of (1.1). Moreover, we provide an example to
illustrate the convergence of our AL method.

We also propose a successive convex approximation method for computing an approximate D-
stationary point of the aforementioned penalty and AL subproblems. The proposed method only
solves a single convex problem in each iteration, while the EDCA [25] needs to solve a number of
convex problems per iteration. It is therefore practically more efficient than the latter method.

The rest of the paper is organized as follows. We present some technical preliminaries in Section
2 regarding the tangent cone and B-stationary points of problem (1.1). In Section 3 we propose a

‡When p = 1, Fρ(x) has a nonsmooth penalty term and thus may possess a nice exact penalty property.
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penalty method for solving (1.1) and study its convergence. In Section 4 we propose an augmented
Lagrangian method for solving (1.1) and study its convergence. In Section 5 we propose a successive
convex approximation method for solving the penalty and AL subproblems and study its convergence.
We present in Section 6 some numerical results of the proposed methods. Finally, in Section 7 we
make some concluding remarks.

1.1 Notation

Throughout this paper, ‖ · ‖ stands for the Euclidean norm and ℜn+ denotes the nonnegative orthant
of the n-dimensional real vector space. We denote Ji = {1, 2, . . . , Ji} for i = 0, 1, . . . , I, I =
{1, 2, . . . , I}, and

J = {(j1, j2, . . . , jI) | ji ∈ Ji, ∀i ∈ I}.

We denote an element of J by ,ג i.e., ג = (j1, j2, . . . , jI) for some ji ∈ Ji for all i ∈ I. We use Ω to
denote the feasible region of problem (1.1), that is,

Ω = {x ∈ X | φi(x) + ζi(x)− ψi(x) ≤ 0, ∀i ∈ I}.

For any ג = (j1, j2, . . . , jI) ∈ J , we denote

Ωג = {x ∈ X | φi(x) + ζi(x)− ψi,ji(x) ≤ 0, ∀i ∈ I}. (1.14)

For any x ∈ X, we denote

Ji(x) = {j ∈ Ji | ψi(x) = ψi,j(x)}, ∀i ∈ {0, 1, . . . , I},
J (x) = {(j1, j2, . . . , jI) | ji ∈ Ji(x), ∀i ∈ I}.

Clearly, J (x) = J1(x)× · · · × JI(x). For any x ∈ X, let

I>(x) = {i ∈ I | φi(x) + ζi(x)− ψi(x) > 0},
I=(x) = {i ∈ I | φi(x) + ζi(x)− ψi(x) = 0},
I<(x) = {i ∈ I | φi(x) + ζi(x)− ψi(x) < 0}.

We now recall some notations from [26]. Let Y ⊆ ℜn and x ∈ Y . The tangent cone of Y at x is
denoted by TY (x), i.e.,

TY (x) =

{
d ∈ ℜn

∣∣∣ ∃xk ∈ Y, xk → x, τk ↓ 0 such that d = lim
k→∞

xk − x

τk

}
.

Also, the normal cone of Y at x is denoted by NY (x). If Y is a closed convex set, TY (x) and NY (x)
can be represented as follows:

TY (x) = cl ({τ(x̄− x) | ∀τ ≥ 0, ∀x̄ ∈ Y }) , (1.15)

NY (x) = {v ∈ ℜ
n | vT (x̄− x) ≤ 0, ∀x̄ ∈ Y },

where cl(·) is the closure of the associated set. For a function f : ℜn → ℜ ∪ {∞}, the directional
derivative of f at a point x in its domain along a direction d ∈ ℜn is defined as

f ′(x; d) = lim
τ↓0

f(x+ τd)− f(x)

τ
.

Specifically, by (1.2) and the well-known Danskin’s Theorem (e.g., see [6, Proposition B.25]), one can
deduce that

ψ′
i(x; d) = max

j∈Ji(x)
∇ψi,j(x)

T d, ∀x ∈ X, d ∈ TX(x), i ∈ {0, 1, . . . , I}. (1.16)
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A point x ∈ Y is called a B-stationary point of f on Y if it satisfies

f ′(x; d) ≥ 0, ∀d ∈ TY (x). (1.17)

If Y is a closed convex set and x ∈ Y , x is called a D-stationary point of f on Y if

f ′(x; x̄− x) ≥ 0, ∀x̄ ∈ Y. (1.18)

It follows from (1.15), (1.17) and (1.18) that a B-stationary point of f on Y reduces to a D-stationary
point when Y is a closed convex set. See [24, 25] for more discussion.

For a smooth function f on X and x̄ ∈ X, we define

ℓf (x; x̄) = f(x̄) +∇f(x̄)T (x− x̄), (1.19)

which is the linearization of f at x̄. Clearly, f(x) ≥ ℓf (x; x̄) when f is convex on X.

2 Technical preliminaries

Due to the nonsmoothness and sophistication of the constraints of (1.1), it is generally difficult to
characterize the tangent cone TΩ(x̄) at a point x̄ ∈ Ω, where Ω is the feasible region of (1.1). In this
section, we provide some characterization of TΩ(x̄) under the PSCQ condition at x̄ by exploiting the
special structure of ψi(x̄), which is a generalization of a result by Pang et al. [25] for a special case
with I = 1 and φ1 ≡ 0. As a consequence, we provide a characterization for a B-stationary point of
(1.1). In addition, under some suitable assumption we also provide a KKT type of characterization
for a B-stationary point of (1.1).

One can easily observe from (1.1), (1.2) and (1.14) that Ω =
⋃

J∋ג Ωג. In addition, it is not hard
to observe that

TΩ(x̄) = T⋃
J∋ג (x̄) Ωג

(x̄), ∀x̄ ∈ Ω.

It follows from this relation and [3, Table 4.1] that

TΩ(x̄) =
⋃

J∋ג (x̄)

TΩג
(x̄), ∀x̄ ∈ Ω. (2.1)

From (2.1), one can see that to characterize TΩ(x̄) at a point x̄ ∈ Ω, it suffices to characterize
TΩג

(x̄) for every ג ∈ J (x̄). To proceed, let x̄ ∈ Ω and ג = (j1, . . . , jI) ∈ J (x̄). In a similar vein as in
[25], we define

Yג(x̄) = {x ∈ X | φi(x) + ζi(x)− ℓψi,ji
(x; x̄) ≤ 0, ∀i ∈ I}, (2.2)

Cג(x̄) = {d ∈ TX(x̄) | ∇φi(x̄)
Td+ ζ ′i(x̄; d)−∇ψi,ji(x̄)

Td ≤ 0, ∀i ∈ I=(x̄)}. (2.3)

We are now ready to provide a characterization of TΩג
(x̄), whose proof is similar to that of Proposi-

tions 2 and 3 in [25] and thus omitted.

Proposition 2.1. Let x̄ ∈ Ω be such that I=(x̄) 6= ∅ and ג = (j1, . . . , jI) ∈ J (x̄). Suppose that there
exists some d̄ ∈ TX(x̄) such that

∇φi(x̄)
T d̄+ ζ ′i(x̄; d̄)−∇ψi,ji(x̄)

T d̄ < 0, ∀i ∈ I=(x̄), (2.4)

or that X is a polyhedral set, φi is affine and ζi is piecewise affine on X for every i ∈ I=(x̄). Then

TYג(x̄)(x̄) = TΩג
(x̄) = Cג(x̄).
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From Proposition 2.1, we see that condition (2.4) is crucial for characterizing TΩג
(x̄) for a given

ג ∈ J (x̄). In view of this and TΩ(x̄) =
⋃

J∋ג (x̄) TΩג
(x̄), it is natural to introduce the following

condition under which a characterization of TΩ(x̄) can be obtained.

Definition 2.1. Let x̄ ∈ Ω be such that I=(x̄) 6= ∅. The pointwise Slater constraint qualification
(PSCQ) is said to hold for the set Ω at x̄ if for every ג = (j1, . . . , jI) ∈ J (x̄), there exists some
dג ∈ TX(x̄) such that

∇φi(x̄)
Tdג + ζ ′i(x̄; dג)−∇ψi,ji(x̄)

T dג < 0, ∀i ∈ I=(x̄). (2.5)

Remark 2.1. (i) It shall be mentioned that the concept of PSCQ is always associated with a specific
algebraic representation of the underlying set. Strictly speaking, the PSCQ for the set Ω in Definition
2.1 is based on its algebraic representation given by

Ω =

{
x ∈ X

∣∣∣∣ φi(x) + ζi(x)− max
1≤j≤Ji

{ψi,j(x)} ≤ 0, ∀i = 1, . . . , I.

}
.

Note that the set Ω also admits the following equivalent algebraic representation:

Ω =



x ∈ X

∣∣∣∣∣∣
max
1≤i≤I



φi(x) + ζi(x) +

I∑

j=1,j 6=i

ψj(x)



 − max

(j1,...,jI)∈J

I∑

i=1

ψi,ji(x) ≤ 0



 . (2.6)

Such a representation of Ω is used in [25] for reformulating problem (1.1) with more than one DC
constraints into an equivalent problem with a single DC constraint. While it provides a simplified
treatment from a theoretical point of view, the PSCQ defined in [25] by using (2.6) is generally
stronger than that in Definition 2.1. In fact, the PSCQ defined in [25] by using (2.6) says that
PSCQ holds at x̄ ∈ Ω if for every ג = (j1, . . . , jI) ∈ J (x̄), there exists some dג ∈ TX(x̄) such that

∇φi(x̄)
T dג + ζ ′i(x̄; dג)−∇ψi,ji(x̄)

Tdג +

I∑

ℓ=1,ℓ 6=i

[ψ′
ℓ(x̄; dג)−∇ψℓ,jℓ(x̄)

T dג] < 0, ∀i ∈ I=(x̄).

One can observe that such PSCQ is generally stronger than our PSCQ in Definition 2.1. That is, if
such PSCQ holds at x̄ ∈ Ω, our PSCQ must also hold at x̄, while the converse may not hold. As a
counterexample, consider the set

Ω = {x ∈ ℜ2 | − (x21 + x1 + x2) ≤ 0, −max{x21 − x1 + x2, 2x2} ≤ 0}.

Clearly, it is a special case of the feasible region of (1.1) with I = 2, X = ℜ2, φ1 ≡ ζ1 ≡ φ2 ≡ ζ2 ≡ 0,
ψ1(x) = ψ1,1(x), and ψ2(x) = max{ψ2,1(x), ψ2,2(x)}, where ψ1,1(x) = x21 + x1 + x2, ψ2,1(x) =
x21 − x1 + x2, and ψ2,2(x) = 2x2. Let x̄ = (0, 0)T . One can verify that for such Ω, our PSCQ holds
at x̄, but the PSCQ defined in [25] by using (2.6) fails to hold at x̄.

(ii) It can be shown that the PSCQ holds for the set Ω at a feasible point x̄ if and only if for every
ג = (j1, . . . , jI) ∈ J (x̄), there exists a Slater point in the set

{
x ∈ X|φi(x) + ζi(x)− ψi,ji(x̄)−∇ψi,ji(x̄)

T (x− x̄) ≤ 0, ∀i ∈ I=(x̄)
}
,

which is sometimes more checkable than the conditions in (2.5). From this, one can see that PSCQ
is indeed a generalization of the classical Slater’s condition.

As a consequence of (2.1), Definition 2.1 and Proposition 2.1, we can obtain the following char-
acterization of TΩ(x̄) at a point x̄ ∈ Ω with I=(x̄) 6= ∅.
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Corollary 2.1. Let x̄ ∈ Ω be such that I=(x̄) 6= ∅. Suppose that the PSCQ holds for Ω at x̄ or that
X is a polyhedral set, φi is affine and ζi is piecewise affine on X for every i ∈ I=(x̄). Then

TΩ(x̄) =
⋃

J∋ג (x̄)

Cג(x̄) =
⋃

J∋ג (x̄)

TYג(x̄)(x̄).

From Corollary 2.1, we immediately obtain the following characterization of a B-stationary point
of (1.1).

Theorem 2.1. Let x̄ ∈ Ω be such that I=(x̄) 6= ∅. Suppose that the PSCQ holds for Ω at x̄, or that
X is a polyhedral set, φi is affine and ζi is piecewise affine on X for every i ∈ I=(x̄). Then x̄ is a
B-stationary point of problem (1.1) if and only if F ′(x̄; d) ≥ 0 for all d ∈ TYג(x̄)(x̄) and ג ∈ J (x̄).

Before ending this section, we provide a KKT type of characterization of a B-stationary point of
problem (1.1), whose proof is given in Appendix A.

Theorem 2.2. Let x̄ ∈ Ω be such that I=(x̄) 6= ∅. Suppose that the PSCQ holds for Ω at x̄, or that
X is a polyhedral set, φi is affine and ζi is piecewise affine on X for every i ∈ I=(x̄). Then x̄ is a B-
stationary point of problem (1.1) if and only if for every j0 ∈ J0(x̄) and every ג = (j1, · · · , jI) ∈ J (x̄),
there exists a vector of Lagrangian multipliers λj0,ג = (λj0,1ג , . . . , λj0,גI ) satisfying that

λj0,גi ≥ 0, λj0,גi [φi(x̄) + ζi(x̄)− ψi,ji(x̄)] = 0, ∀i ∈ I, (2.7)

0 ∈ ∇φ0(x̄) + ∂ζ0(x̄)−∇ψ0,j0(x̄) +
I∑

i=1

λj0,גi [∇φi(x̄) + ∂ζi(x̄)−∇ψi,ji(x̄)] +NX(x̄). (2.8)

3 A penalty method for DC program (1.1)

In this section we propose a penalty method for solving problem (1.1), which consists of finding an
approximate solution to a sequence of penalty subproblems in the form of (1.12). Before proceeding,
we introduce some notations that will be used shortly.

Let ǫ > 0 be given. Define

J0,ǫ(x) = {j ∈ J0 | ψ0(x) ≤ ψ0,j(x) + ǫ}, (3.1)

Jǫ(x) = {(j1, . . . , jI) ∈ J | ψi(x) ≤ ψi,ji(x) + ǫ, ∀i ∈ I}. (3.2)

Given any x̄ ∈ X, let

φ̂i(x; x̄) = φi(x̄) +∇φi(x̄)
T (x− x̄) + Li‖x− x̄‖

2/2, ∀i ∈ {0, 1, . . . , I}, (3.3)

where Li is the Lipschitz constant associated with ∇φi on X. Moreover, for every i ∈ I, we let
Li = 0 if φi is affine. For any x̄ ∈ X, p ≥ 1, j0 ∈ J0 and ג = (j1, . . . , jI) ∈ J , we define

Fρ(x, j0, (ג = φ0(x) + ζ0(x)− ψ0,j0(x) + ρ

I∑

i=1

[φi(x) + ζi(x)− ψi,ji(x)]
p
+, (3.4)

Qρ(x; x̄, j0, (ג = φ̂0(x; x̄) + ζ0(x)− ℓψ0,j0
(x; x̄) + ρ

I∑

i=1

[φ̂i(x; x̄) + ζi(x)− ℓψi,ji
(x; x̄)]p+. (3.5)

Remark 3.1. (i) For any x̄ ∈ X, J0(x̄) ⊆ J0,ǫ(x) and J (x̄) ⊆ Jǫ(x) for all x ∈ X sufficiently close
to x̄.

(ii) By the Lipschitz continuity of ∇φi, one has φi(x) ≤ φ̂i(x; x̄) for all x ∈ X. Also, since ψi,ji
is convex on X, ψi,ji(x) ≥ ℓψi,ji

(x; x̄) for all x ∈ X and x̄ ∈ X. In view of these, (3.4) and (3.5), we
can observe that Fρ(x, j0, (ג ≤ Qρ(x; x̄, j0, (ג for all x ∈ X.

8



We now present a penalty method for solving problem (1.1) and establish its convergence. The
details of the penalty method are presented as follows.

Algorithm 3.1.

0. Input ǫ > 0, ρ0 > 0, σ > 1, and a sequence {ηk} ⊂ ℜ+ such that ηk → 0. Set k ← 0.

1. Find an approximate solution xk of the penalty subproblem

min
x∈X

Fρk(x) (3.6)

such that xk ∈ X and

Fρk(x
k) ≤ Qρk(x;x

k, j0, (ג + ηk, ∀x ∈ X (3.7)

for every j0 ∈ J0,ǫ(x
k) and ג ∈ Jǫ(x

k), where Fρk is defined in (1.13).

2. Set ρk+1 ← σρk.

3. Set k ← k + 1, and go to Step 1.

End.

To make the above penalty method complete, we need to address how to find an approximate
solution xk ∈ X for subproblem (3.6) satisfying (3.7) as required in Step 1. We will leave this
discussion in Section 5. For the time being, we establish the main convergence result regarding this
method for solving problem (1.1).

Theorem 3.1. Let {xk} be generated by Algorithm 3.1. Assume that {xk}k∈K converges to x∞ for
some subsequence K. Then the following statements hold.

(i) x∞ is a D-stationary point of the problem

min
x∈X

I∑

i=1

[φi(x) + ζi(x)− ψi(x)]
p
+︸ ︷︷ ︸

hi(x)

. (3.8)

(ii) If x∞ ∈ Ω and I=(x
∞) = ∅, then x∞ is a D-stationary point of the problem

min
x∈X

F (x). (3.9)

(iii) If x∞ ∈ Ω, I=(x
∞) 6= ∅, and moreover, the PSCQ holds for Ω at x∞, then x∞ is a B-stationary

point of problem (1.1).

(iv) If x∞ ∈ Ω, I=(x
∞) 6= ∅, X is a polyhedral set, and moreover, for every i ∈ I=(x

∞) and
ji ∈ Ji(x

∞), φi and ψi,ji are affine and ζi is piecewise affine on X, then x∞ is a B-stationary
point of problem (1.1).

Proof. Since {xk}k∈K converges to x∞, one has J0(x
∞) ⊆ J0,ǫ(x

k) and J (x∞) ⊆ Jǫ(x
k) for suffi-

ciently large k ∈ K. It thus follows from (1.13), (3.5) and (3.7) that for k ∈ K sufficiently large, we
have

φ0(x
k) + ζ0(x

k)− ψ0(x
k) + ρk

I∑

i=1

[φi(x
k) + ζi(x

k)− ψi(x
k)]p+ − ηk

≤ φ̂0(x;x
k) + ζ0(x)− ℓψ0,j0

(x;xk) + ρk

I∑

i=1

[φ̂i(x;x
k) + ζi(x)− ℓψi,ji

(x;xk)]p+

(3.10)

9



for all j0 ∈ J0(x
∞), ג = (j1, . . . , jI) ∈ J (x

∞) and x ∈ X.
(i) In order to prove statement (i), we first show that

x∞ ∈ Argmin
x∈X

I∑

i=1

[
φ̂i(x;x

∞) + ζi(x)− ℓψi,ji
(x;x∞)

]p
+︸ ︷︷ ︸

ĥi,ji(x)

, ג∀ = (j1, . . . , jI) ∈ J (x
∞). (3.11)

Indeed, notice that {xk}k∈K → x∞ and {ρk} → ∞. Dividing both sides of (3.10) by ρk and taking
limits as K ∋ k →∞ yield

I∑

i=1

[φi(x
∞) + ζi(x

∞)− ψi(x
∞)]p+ ≤

I∑

i=1

[
φ̂i(x;x

∞) + ζi(x)− ℓψi,ji
(x;x∞)

]p
+

(3.12)

for any x ∈ X and ג = (j1, . . . , jI) ∈ J (x
∞). In view of (1.19) and (3.3), one can observe that

φ̂i(x
∞;x∞) = φi(x

∞), ℓψi,ji
(x∞;x∞) = ψi,ji(x

∞) = ψi(x
∞) (3.13)

for any i ∈ I and ג = (j1, . . . , jI) ∈ J (x
∞). It follows from (3.12) and (3.13) that (3.11) holds.

We are now ready to complete the proof of statement (i). Clearly, the relation (3.11) yields

ĥ′
ג
(x∞; d) ≥ 0 for all d ∈ TX(x

∞), where ĥג(x) =
I∑
i=1

ĥi,ji(x) for every ג = (j1, . . . , jI) ∈ J (x
∞). By

virtue of (1.19) and (3.3), it is not hard to verify that for every ג = (j1, . . . , jI) ∈ J (x
∞),

ĥ′i,ji(x
∞; d) =





θi(x
∞)[∇φi(x

∞)Td+ ζ ′i(x
∞; d) −∇ψi,ji(x

∞)T d], if i ∈ I>(x
∞),

θi(x
∞)

[
∇φi(x

∞)Td+ ζ ′i(x
∞; d)−∇ψi,ji(x

∞)Td)
]
+
, if i ∈ I=(x

∞),

0, if i ∈ I<(x
∞),

where θi(x
∞) = p[φi(x

∞) + ζi(x
∞)− ψi(x

∞)]p−1
+ for which we assume 00 = 1. In addition, let hi be

defined as in (3.8) and h(x) =
∑I

i=1 hi(x). By (1.16) and (3.8), one can observe that

h′i(x
∞; d) =





θi(x
∞)[∇φi(x

∞)T d+ ζ ′i(x
∞; d)− max

j∈Ji(x∞)
∇ψi,j(x

∞)Td], if i ∈ I>(x
∞),

θi(x
∞)[∇φi(x

∞)T d+ ζ ′i(x
∞; d)− max

j∈Ji(x∞)
∇ψi,j(x

∞)Td)]+, if i ∈ I=(x
∞),

0, if i ∈ I<(x
∞).

Hence, for every d ∈ TX(x
∞), there exists some ג = (j1, . . . , jI) ∈ J (x

∞) such that h′(x∞; d) =
ĥ′
ג
(x∞; d), which along with ĥ′

ג
(x∞; d) ≥ 0 implies h′(x∞; d) ≥ 0. It follows from this, h(x) =∑I

i=1 hi(x) and (3.8) that statement (i) holds.
(ii) Suppose that x∞ ∈ Ω and I=(x

∞) = ∅. Then I<(x
∞) = I. In order to prove statement (ii),

we first show that

x∞ ∈ Argmin
x∈X

φ̂0(x;x
∞) + ζ0(x)− ℓψ0,j0

(x;x∞)
︸ ︷︷ ︸

ĥ0,j0 (x)

, ∀j0 ∈ J0(x
∞). (3.14)

Indeed, it follows from I<(x
∞) = I and (3.13) that

φ̂i(x
∞;x∞) + ζi(x

∞)− ℓψi,ji
(x∞;x∞) = φi(x

∞) + ζi(x
∞)− ψi(x

∞) < 0 (3.15)

for any i ∈ I and ji ∈ Ji(x
∞). Let x ∈ X be arbitrarily chosen. By (3.15), the continuity of ζi on

X, and the continuity of φ̂i(·; ·) and ℓψi,ji
(·; ·) on X ×X, one has

φ̂i(x
∞ + t(x− x∞);xk) + ζi(x

∞ + t(x− x∞))− ℓψi,ji
(x∞ + t(x− x∞);xk) < 0 (3.16)
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for any ji ∈ Ji(x
∞), k ∈ K sufficiently large and t > 0 sufficiently small. Replacing x by x∞+t(x−x∞)

in (3.10) and using (3.16), we obtain that for every j0 ∈ J0(x
∞),

φ0(x
k)+ζ0(x

k)−ψ0(x
k)−ηk ≤ φ̂0(x

∞+t(x−x∞);xk)+ζ0(x
∞+t(x−x∞))−ℓψ0,j0

(x∞+t(x−x∞);xk)

holds for k ∈ K sufficiently large and t > 0 sufficiently small. Taking limit on both sides of this
inequality as K ∋ k →∞, one has that for every j0 ∈ J0(x

∞), it holds

φ0(x
∞)+ζ0(x

∞)−ψ0(x
∞) ≤ φ̂0(x

∞+t(x−x∞);x∞)+ζ0(x
∞+t(x−x∞))−ℓψ0,j0

(x∞+t(x−x∞);x∞)
(3.17)

for t > 0 sufficiently small. By (1.19), the linearity of ℓψ0,j0
(·;x∞), the convexity of ζ0, and φ̂0(·;x

∞),

φ̂0(x
∞;x∞) = φ0(x

∞) and ℓψ0,j0
(x∞;x∞) = ψ0(x

∞) for j0 ∈ J0(x
∞), we have that for t > 0

sufficiently small,

φ̂0(x
∞ + t(x− x∞);x∞) + ζ0(x

∞ + t(x− x∞))− ℓψ0,j0
(x∞ + t(x− x∞);x∞)

≤ t[φ̂0(x;x
∞) + ζ0(x)− ℓψ0,j0

(x;x∞)] + (1− t)[φ0(x
∞) + ζ0(x

∞)− ψ0(x
∞)].

It follows from this and (3.17) that for t > 0 sufficiently small,

φ0(x
∞)+ζ0(x

∞)−ψ0(x
∞) ≤ t[φ̂0(x;x

∞)+ζ0(x)− ℓψ0,j0
(x;x∞)]+(1− t)[φ0(x

∞)+ζ0(x
∞)−ψ0(x

∞)],

which implies that

φ0(x
∞) + ζ0(x

∞)− ψ0(x
∞) ≤ φ̂0(x;x

∞) + ζ0(x)− ℓψ0,j0
(x;x∞), ∀x ∈ X, j0 ∈ J0(x

∞).

By this, φ̂0(x
∞;x∞) = φ0(x

∞) and ℓψ0,j0
(x∞;x∞) = ψ0(x

∞), one can see that (3.14) holds.
We are now ready to complete the proof of statement (ii). Indeed, it follows from (3.14) that

ĥ′0,j0(x
∞; d) ≥ 0 for all d ∈ TX(x

∞) and j0 ∈ J0(x
∞), which along with (1.19) and (3.3) implies that

∇φ0(x
∞)Td+ ζ ′0(x

∞; d)−∇ψ0,j0(x
∞)T d ≥ 0, ∀d ∈ TX(x

∞), j0 ∈ J0(x
∞).

By this and (1.16), one has F ′(x∞; d) ≥ 0 for all d ∈ TX(x
∞). Hence, x∞ is a D-stationary point of

problem (3.9).
(iii) Suppose that x∞ ∈ Ω, I=(x

∞) 6= ∅, and moreover, the PSCQ holds for Ω at x∞. In order
to prove statement (iii), we first show that for any ג = (j1, . . . , jI) ∈ J (x

∞), there exists some
x̂ ∈ Yג(x

∞) such that

φi(x̂) + ζi(x̂)− ℓψi,ji
(x̂;x∞) < 0, ∀i ∈ I=(x

∞). (3.18)

Indeed, let ג = (j1, . . . , jI) ∈ J (x
∞) be arbitrarily chosen. Since PSCQ holds for Ω at x∞, there

exists some d ∈ TX(x
∞) such that

∇φi(x
∞)Td+ ζ ′i(x

∞; d) −∇ψi,ji(x
∞)Td < 0, ∀i ∈ I=(x

∞). (3.19)

Hence, there exist {x̂l} ⊆ X and {αl} ↓ 0 such that d = liml→∞(x̂l − x∞)/αl, which implies
x̂l = x∞ + αld+ o(αl). It follows from this and (3.19) that

lim
l→∞

1

αl

{
[φi(x̂

l) + ζi(x̂
l)− ℓψi,ji

(x̂l;x∞)]− [φi(x
∞) + ζi(x

∞)− ψi,ji(x
∞)]

}

= ∇φi(x
∞)T d+ ζ ′i(x

∞; d)−∇ψi,ji(x
∞)Td < 0, ∀i ∈ I=(x

∞).

By this and φi(x
∞) + ζi(x

∞)− ψi,ji(x
∞) = 0 for i ∈ I=(x

∞), we have that for l sufficiently large,

φi(x̂
l) + ζi(x̂

l)− ℓψi,ji
(x̂l;x∞) < 0, ∀i ∈ I=(x

∞).
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Therefore, there exists some x̂ ∈ Yג(x
∞) such that (3.18) holds.

We next show that for any τ ∈ (0, 1], ג = (j1, . . . , jI) ∈ J (x
∞), and x ∈ Yג(x

∞), there exists
some t̂ ∈ (0, 1) such that x(t̂, τ) ∈ Yג(x

∞) and

φ̂i(x(t̂, τ);x
∞) + ζi(x(t̂, τ))− ℓψi,ji

(x(t̂, τ);x∞) < 0, ∀i ∈ I, (3.20)

where

x(t, τ) = x∞ + t(x(τ) − x∞), x(τ) = (1− τ)x+ τ x̂, ∀t ∈ [0, 1], τ ∈ [0, 1]. (3.21)

To this end, let τ ∈ (0, 1], ג = (j1, . . . , jI) ∈ J (x
∞), and x ∈ Yג(x

∞) be arbitrarily chosen. It then
follows from (2.2) that

φi(x) + ζi(x)− ℓψi,ji
(x;x∞) ≤ 0, ∀i ∈ I. (3.22)

By the convexity of Yג(x
∞), one has that x(τ) ∈ Yג(x

∞) and x(t, τ) ∈ Yג(x
∞) for all t ∈ [0, 1]. Also,

by (3.18), (3.22), and the convexity of φi and ζi, we have

φi(x(τ)) + ζi(x(τ)) − ℓψi,ji
(x(τ);x∞)

≤ (1− τ)[φi(x) + ζi(x)− ℓψi,ji
(x;x∞)] + τ [φi(x̂) + ζi(x̂)− ℓψi,ji

(x̂;x∞)] < 0, ∀i ∈ I=(x
∞).

(3.23)

Notice that φi(x
∞) + ζi(x

∞)− ℓψi,ji
(x∞;x∞) = 0 for every i ∈ I=(x

∞). By this, the convexity of φi
and ζi, and a similar argument as for (3.23), we obtain that for all t ∈ [0, 1] and i ∈ I=(x

∞),

φi(x(t, τ)) + ζi(x(t, τ)) − ℓψi,ji
(x(t, τ);x∞)

≤ (1− t) [φi(x
∞) + ζi(x

∞)− ℓψi,ji
(x∞;x∞)]

︸ ︷︷ ︸
=0

+t[φi(x(τ)) + ζi(x(τ)) − ℓψi,ji
(x(τ);x∞)]

= t[φi(x(τ)) + ζi(x(τ))− ℓψi,ji
(x(τ);x∞)].

It follows from this, (3.3) and the convexity of φi that

φ̂i(x(t, τ);x
∞) + ζi(x(t, τ)) − ℓψi,ji

(x(t, τ);x∞)

= φi(x
∞) +∇φi(x

∞)T (x(t, τ)− x∞) + Li‖x(t, τ) − x
∞‖2/2 + ζi(x(t, τ)) − ℓψi,ji

(x(t, τ);x∞)

≤ φi(x(t, τ)) + Lit
2‖x(τ)− x∞‖2/2 + ζi(x(t, τ)) − ℓψi,ji

(x(t, τ);x∞)

≤ t[φi(x(τ)) + ζi(x(τ)) − ℓψi,ji
(x(τ);x∞)] + Lit

2‖x(τ)− x∞‖2/2

(3.24)
for any i ∈ I=(x

∞) and t ∈ [0, 1]. By (3.23) and (3.24), one can see that for t > 0 sufficiently small,

φ̂i(x(t, τ);x
∞) + ζi(x(t, τ)) − ℓψi,ji

(x(t, τ);x∞) < 0, ∀i ∈ I=(x
∞). (3.25)

On the other hand, notice that φi(x
∞) + ζi(x

∞)− ℓψi,ji
(x∞;x∞) < 0 for i 6∈ I=(x

∞). By this, it is
easy to observe that (3.25) also holds for i 6∈ I=(x

∞) and t > 0 sufficiently small. Hence, there exists
some t̂ ∈ (0, 1) such that the inequality (3.20) holds.

In what follows, we show that

x∞ ∈ Argmin
x∈Yג(x∞)

φ̂0(x;x
∞) + ζ0(x)− ℓψ0,j0

(x;x∞)
︸ ︷︷ ︸

ĥ0,j0 (x)

, ∀j0 ∈ J0(x
∞). (3.26)

Indeed, recall that {xk}k∈K → x∞. By (3.20) and the continuity of φ̂i(x(t̂, τ); ·) and ℓψi,ji
(x(t̂, τ); ·),

one has that for sufficiently large k ∈ K,

φ̂i(x(t̂, τ);x
k) + ζi(x(t̂, τ))− ℓψi,ji

(x(t̂, τ);xk) < 0, ∀i ∈ I.
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Replacing x by x(t̂, τ) in (3.10) and using this inequality, we can obtain that for every j0 ∈ J0(x
∞)

and sufficiently large k ∈ K,

φ0(x
k) + ζ0(x

k)− ψ0(x
k)− ηk ≤ φ̂0(x(t̂, τ);x

k) + ζ0(x(t̂, τ))− ℓψ0,j0
(x(t̂, τ);xk). (3.27)

Taking limit on both sides of this inequality as K ∋ k →∞ yields

φ0(x
∞) + ζ0(x

∞)− ψ0(x
∞) ≤ φ̂0(x(t̂, τ);x

∞) + ζ0(x(t̂, τ)) − ℓψ0,j0
(x(t̂, τ);x∞) (3.28)

for any j0 ∈ J0(x
∞). By the convexity of φ̂0(·;x

∞) and ζ0, one has

φ̂0(x(t̂, τ);x
∞) ≤ t̂φ̂0(x(τ);x

∞) + (1− t̂)φ̂0(x
∞;x∞),

ζ0(x(t̂, τ)) ≤ t̂ζ0(x(τ)) + (1− t̂)ζ0(x
∞).

These, along with (3.21), (3.28), φ0(x
∞) = φ̂0(x

∞;x∞) and ψ0(x
∞) = ℓψ0,j0

(x∞;x∞) and the linear-
ity of ℓψ0,j0

, imply that for any fixed τ ∈ (0, 1],

φ̂0(x
∞;x∞) + ζ0(x

∞)− ℓψ0,j0
(x∞;x∞) ≤ φ̂0(x(τ);x

∞) + ζ0(x(τ)) − ℓψ0,j0
(x(τ);x∞)

for any j0 ∈ J0(x
∞). Taking limit on both sides of this inequality by letting τ ↓ 0 gives

φ̂0(x
∞;x∞) + ζ0(x

∞)− ℓψ0,j0
(x∞;x∞) ≤ φ̂0(x;x

∞) + ζ0(x)− ℓψ0,j0
(x;x∞)

for any j0 ∈ J0(x
∞). Recall that x is an arbitrary point in Yג(x

∞). It then follows from the above
inequality that (3.26) holds.

We are now ready to complete the proof of statement (iii). Indeed, it follows from (3.26) that
ĥ′0,j0(x

∞; d) ≥ 0 for all j0 ∈ J0(x
∞) and d ∈ TYג(x∞)(x

∞). Notice from (1.16) that for each d ∈

TYג(x∞)(x
∞) there exists some j0 ∈ J0(x

∞) such that F ′(x∞; d) = ĥ′0,j0(x
∞; d). It thus follows that

F ′(x∞; d) ≥ 0 for all d ∈ TYג(x∞)(x
∞). By this, the arbitrariness of ג ∈ J (x∞), and the assumption

that the PSCQ holds for Ω at x∞, we conclude from Theorem 2.1 that x∞ is a B-stationary point of
(1.1).

(iv) Suppose that x∞ ∈ Ω, I=(x
∞) 6= ∅, X is a polyhedral set, and moreover, for every i ∈ I=(x

∞)
and ji ∈ Ji(x

∞), φi and ψi,ji are affine and ζi is piecewise affine on X. Recall from (3.3) that for
every i ∈ I, Li = 0 if φi is affine. These together with (1.19) and (3.3) imply that

φ̂i(x̃; x̄) = φi(x̃), ℓψi,ji
(x̃; x̄) = ψi,ji(x̃), ∀x̃, x̄ ∈ X, i ∈ I=(x

∞), ji ∈ Ji(x
∞). (3.29)

Let ג = (j1, . . . , jI) ∈ J (x
∞) be arbitrarily chosen. For any x ∈ Yג(x

∞), we obtain from (2.2) that
x ∈ X and φi(x) + ζi(x) − ℓψi,ji

(x;x∞) ≤ 0 for all i ∈ I. This together with xk, x∞ ∈ X and (3.29)
implies that

φ̂i(x;x
k) + ζi(x)− ℓψi,ji

(x;xk) ≤ 0, ∀i ∈ I=(x
∞), x ∈ Yג(x

∞).

By this and a similar argument as in the proof of (3.16), we obtain that for any x ∈ Yג(x
∞),

φ̂i(x
∞ + t(x− x∞);xk) + ζi(x

∞ + t(x− x∞))− ℓψi,ji
(x∞ + t(x− x∞);xk) ≤ 0, ∀i ∈ I

holds for all t sufficiently small and k ∈ K sufficiently large. Using this and a similar argument
as for showing that F ′(x∞; d) ≥ 0 for all d ∈ TX(x

∞) in the proof of statement (ii), we have that
F ′(x∞; d) ≥ 0 for all d ∈ TYג(x∞)(x

∞). By this, the arbitrariness of ג ∈ J (x∞), and the assumption
that X is a polyhedral set, φi is affine and ζi is piecewise affine on X for every i ∈ I=(x

∞), we
conclude from Theorem 2.1 that x∞ is a B-stationary point of (1.1).
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Remark 3.2. i) The assumptions in Theorem 3.1 are a natural generalization of the standard
assumptions in the literature for classical penalty method for solving smooth constrained opti-
mization problems (e.g., see [23, Theorem 17.2]). In fact, they will be reduced to the standard
assumptions when applied to the latter problems.

ii) For the case where the accumulation point x∞ of the solution sequence satisfies x∞ ∈ Ω and
I=(x

∞) 6= ∅, which is the most sophisticated case due to the presence of active DC constraints,
we show in Theorem 3.1 (iii) that x∞ is a B-stationary point of (1.1), provided that the PSCQ
in Definition 2.1 holds for Ω at x∞. In contrast with the convergence result presented in [25,
Proposition 9], our result does not require the additional assumption that the set {j : ψi,j(x

∞) =
ψi(x

∞)} is a singleton for i = 1, . . . , I. As a consequence, the feasible accumulation point x∞

of the solution sequence generated by our penalty method can be a B-stationary point of (1.1)
even when some of ψi’s are non-differentiable at x∞. In addition, as we have mentioned in
Remark 2.1, the PSCQ condition used in our result is generally weaker than that in [25].

4 An augmented Lagrangian method for DC program (1.1)

In this section we propose an augmented Lagrangian (AL) method for solving problem (1.1) and
analyze its convergence. We also provide an example to demonstrate its convergence. To this end,
we introduce an AL function for (1.1) given by

F̃ρ(x, λ) = F (x) +
1

2ρ

I∑

i=1

([λi + ρ(φi(x) + ζi(x)− ψi(x))]
2
+ − λ

2
i ), (4.1)

where ρ > 0. For any x̄ ∈ X, λ ∈ ℜI , j0 ∈ J0, and ג ∈ J , we define Q̃ρ(·; x̄, λ, j0, (ג : X → ℜ by

Q̃ρ(x; x̄, λ, j0, (ג = φ̂0(x; x̄)+ ζ0(x)− ℓψ0,j0
(x; x̄)+

1

2ρ

I∑

i=1

([λi+ρ(φ̂i(x; x̄)+ ζi(x)− ℓψi,ji
(x; x̄))]2+−λ

2
i ),

(4.2)
where ℓψi,ji

and φ̂i are defined in (1.19) and (3.3), respectively. It is easy to see from (1.19) and (3.3)

that for every j0 ∈ J0(x̄) and ג ∈ J (x̄), F̃ρ(x, λ) ≤ Q̃ρ(x; x̄, λ, j0, (ג for all x ∈ X and Q̃ρ(·; x̄, λ, j0, (ג
is strongly convex on X with modulus L0 > 0.

We now propose an AL method for solving problem (1.1) in which a sequence of AL subproblems
are approximately solved. The details of the AL method are presented as follows.

Algorithm 4.1.

0. Input ǫ > 0, ρ0 > 0, α > 0, σ > 1, λ0 ∈ ℜI+, and a sequence {ηk} ⊂ ℜ+ such that ηk → 0. Set
k ← 0.

1. Find an approximate solution xk of the AL subproblem

min
x∈X

F̃ρk(x, λ
k) (4.3)

such that xk ∈ X and

F̃ρk(x
k, λk) ≤ Q̃ρk(x;x

k, λk, j0, (ג + ηk, ∀x ∈ X (4.4)

for every j0 ∈ J0,ǫ(x
k) and ג ∈ Jǫ(x

k), where J0,ǫ(x
k) and Jǫ(x

k) are defined in (3.1) and (3.2),
respectively.
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2. Update λk+1 = (λk+1
1 , . . . , λk+1

I )T by

λk+1
i =

[
λki + ρk

(
φi(x

k) + ζi(x
k)− ψi(x

k)
)]

+
, ∀i = 1, . . . , I.

3. Set ρk+1 = max{σρk, ‖λ
k+1‖1+α}.

4. Set k ← k + 1, and go to Step 1.

End.

Remark 4.1. (i) The approximate solution xk of (4.3) satisfying xk ∈ X and (4.4) can be found
by Algorithm 5.1 proposed in Section 5.

(ii) The update scheme on penalty parameters is adopted from [19], which differs from the one for
the classical AL method in that the magnitude of the penalty parameters in our method outgrows
that of Lagrangian multipliers.

We next establish a convergence result for Algorithm 4.1.

Theorem 4.1. Let {xk} be generated by Algorithm 4.1. Assume that {xk}k∈K converges to x∞ for
some subsequence K. Then the following statements hold.

(i) x∞ is a D-stationary point of the problem

min
x∈X

I∑

i=1

[φi(x) + ζi(x)− ψi(x)]
2
+.

(ii) If x∞ ∈ Ω and I=(x
∞) = ∅, then x∞ is a D-stationary point of min

x∈X
F (x).

(iii) If x∞ ∈ Ω, I=(x
∞) 6= ∅, and moreover, the PSCQ holds for Ω at x∞, then x∞ is a B-stationary

point of problem (1.1).

(iv) Suppose that α > 1 in Algorithm 4.1. If x∞ ∈ Ω, I=(x
∞) 6= ∅, X is a polyhedral set, and

moreover, for every i ∈ I=(x
∞) and ji ∈ Ji(x

∞), φi and ψi,ji are affine and ζi is piecewise
affine on X, then x∞ is a B-stationary point of problem (1.1).

Proof. Since {xk}k∈K → x∞, one has J0(x
∞) ⊆ J0,ǫ(x

k) and J (x∞) ⊆ Jǫ(x
k) for sufficiently large

k ∈ K. It thus follows from (4.1), (4.2) and (4.4) that for k ∈ K sufficiently large, one has

φ0(x
k) + ζ0(x

k)− ψ0(x
k) +

1

2ρk

I∑

i=1

[
λki + ρk

(
φi(x

k) + ζi(x
k)− ψi(x

k)
)]2

+

≤ φ̂0(x;x
k) + ζ0(x)− ℓψ0,j0

(x;xk) +
1

2ρk

I∑

i=1

[
λki + ρk

(
φ̂i(x;x

k) + ζi(x)− ℓψi,ji
(x;xk)

)]2
+
+ ηk,

(4.5)
for all j0 ∈ J0(x

∞), ג = (j1, . . . , jI) ∈ J (x
∞) and x ∈ X. In addition, one can observe from Step 3

of Algorithm 4.1 that {ρk} → ∞ and {λk/ρk} → 0.
(i) Dividing both sides of (4.5) by ρk, taking limits as K ∋ k → ∞, and using {xk}k∈K → x∞,

{ρk} → ∞ and {λk/ρk} → 0, we have

I∑

i=1

[φi(x
∞) + ζi(x

∞)− ψi(x
∞)]2+ ≤

I∑

i=1

[φ̂i(x;x
∞) + ζi(x)− ℓψi,ji

(x;x∞)]2+, ∀x ∈ X
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for any ג = (j1, . . . , jI) ∈ J (x
∞). The rest of the proof of this statement follows from this inequality,

and the similar arguments as the ones that are from (3.12) till the end of the proof of Theorem 3.1
(i).

(ii) Assume that x∞ ∈ Ω and I=(x
∞) = ∅. Let x ∈ X be arbitrarily chosen. By a similar

argument as in the proof of (3.16), one can show that there exists some δ < 0 such that for any i ∈ I,
φi(x

k) + ζi(x
k)− ψi(x

k) < δ and

φ̂i(x
∞ + t(x− x∞);xk) + ζi(x

∞ + t(x− x∞))− ℓψi,ji
(x∞ + t(x− x∞);xk) < δ, ∀ji ∈ Ji(x

∞)

hold for all k ∈ K sufficiently large and t > 0 sufficiently small. By these two relations and the fact
{ρk} → ∞ and {λk/ρk} → 0, one can obtain that for all k ∈ K sufficiently large and t > 0 sufficiently
small, [λki + ρk(φi(x

k) + ζi(x
k)− ψi(x

k))]+ = 0 and

[
λki + ρk

(
φ̂i(x

∞ + t(x− x∞);xk) + ζi(x
∞ + t(x− x∞))− ℓψi,ji

(x∞ + t(x− x∞);xk)
)]

+
= 0.

Using these two relations and replacing x by x∞ + t(x− x∞) in (4.5), we have that for every x ∈ X
and j0 ∈ J0(x

∞),

φ0(x
k)+ζ0(x

k)−ψ0(x
k) ≤ φ̂0(x

∞+t(x−x∞);xk)+ζ0(x
∞+t(x−x∞))−ℓψ0,j0

(x∞+t(x−x∞);xk)+ηk

for all k ∈ K sufficiently large and t > 0 sufficiently small. The rest of the proof of this statement
follows from this inequality, and the similar arguments as the ones that are from (3.16) till the end
of the proof of Theorem 3.1 (ii).

(iii) Assume that x∞ ∈ Ω, I=(x
∞) 6= ∅, and moreover, the PSCQ holds for Ω at x∞. Let

ג = (j1, . . . , jI) ∈ J (x
∞) and x ∈ Yג(x

∞) be arbitrarily chosen, and let x(t, τ) be defined in (3.21)
for all t, τ ∈ [0, 1]. By a similar argument as in the proof of Theorem 3.1 (iii), one can show that
for any fixed τ ∈ (0, 1], there exist some t̂ ∈ (0, 1) and δ < 0 that are dependent on τ such that
φ̂i(x(t̂, τ);x

k) + ζi(x(t̂, τ)) − ℓψi,ji
(x(t̂, τ);xk) < δ for all i ∈ I and k ∈ K sufficiently large. It then

follows from this relation, {ρk} → ∞ and {λk/ρk} → 0 that for all i ∈ I and k ∈ K sufficiently large,
[λki + ρk(φ̂i(x(t̂, τ);x

k) + ζi(x(t̂, τ)) − ℓψi,ji
(x(t̂, τ);xk))]+ = 0. Replacing x by x(t̂, τ) in (4.5) and

using this relation, we see that (3.27) holds for every j0 ∈ J0(x
∞) and sufficiently large k ∈ K. The

rest of the proof of this statement follows from (3.27), and the similar arguments as the ones that
are from (3.27) till the end of the proof of Theorem 3.1 (iii).

(iv) From α > 1 and Step 3 of Algorithm 4, we observe that ‖λk‖2/ρk → 0 as k → ∞. By a
similar argument as in the proof of Theorem 3.1 (iv), one can show that

[
λki + ρk

(
φ̂i(x

∞ + t(x− x∞);xk) + ζi(x
∞ + t(x− x∞))− ℓψi,ji

(x∞ + t(x− x∞);xk)
)]

+
≤ λki

for any x ∈ Yג(x
∞), i ∈ I, ji ∈ Ji(x

∞), k ∈ K sufficiently large and t > 0 sufficiently small. Replacing
x by x∞ + t(x− x∞) in (4.5), we have that for every x ∈ Yג(x

∞) and j0 ∈ J0(x
∞),

φ0(x
k) + ζ0(x

k)− ψ0(x
k)

≤ φ̂0(x
∞ + t(x− x∞);xk) + ζ0(x

∞ + t(x− x∞))− ℓψ0,j0
(x∞ + t(x− x∞);xk) +

‖λk‖2

2ρk
+ ηk

for all k ∈ K sufficiently large and t > 0 sufficiently small. Taking limits on both sides of this
inequality by letting K ∋ k →∞, and using {xk}k∈K → x∞, ρk →∞ and ‖λk‖2/ρk → 0 as k →∞,
it follows that for every x ∈ Yג(x

∞), j0 ∈ J0(x
∞), and t > 0 sufficiently small,

φ0(x
∞)+ζ0(x

∞)−ψ0(x
∞) ≤ φ̂0(x

∞+t(x−x∞);x∞)+ζ0(x
∞+t(x−x∞))−ℓψ0,j0

(x∞+t(x−x∞);x∞).
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By this and the similar arguments as the ones that are from (3.17) till the end of the proof of
Theorem 3.1 (ii), one can obtain that F ′(x∞; d) ≥ 0 for all d ∈ TYג(x∞)(x

∞). By this, the arbitrariness
of ג ∈ J (x∞), and the assumption that X is a polyhedral set, φi is affine and ζi is piecewise affine on
X for every i ∈ I=(x

∞), we conclude from Theorem 2.1 that x∞ is a B-stationary point of (1.1).

The above theorem establishes the convergence of {xk}. Nevertheless, the convergence of {λk}
remains unknown. Even if {λk} converges (subsequentially) to some λ∞, it appears impossible to
satisfy the KKT conditions (2.7) and (2.8). In the next theorem, we construct a set of auxiliary
Lagrangian multiplier sequences and show that their accumulation points together with the accumu-
lation points of {xk} satisfy the KKT conditions (2.7) and (2.8).

Theorem 4.2. Let {xk} and {λk} be generated by Algorithm 4.1. Suppose that {xk}k∈K converges
to x∞ for some subsequence K. Assume that x∞ ∈ Ω, I=(x

∞) 6= ∅, ζ0(x
∞) < ∞, and the PSCQ

holds for Ω at x∞. For any j0 ∈ J0(x
∞) and ג = (j1, j2, . . . , jI) ∈ J (x

∞), suppose that xk,j0,ג ∈ X
satisfies

dist
(
0, ∂[Q̃ρk(x;x

k, λk, j0, (ג + ιX(x)]
∣∣
x=xk,j0,ג

)
≤ γk (4.6)

with {γk} → 0. Let λk,j0,ג = (λk,j0,1ג , λk,j0,2ג , . . . , λk,j0,גI ), where

λk,j0,גi =
[
λki + ρk

(
φ̂i(x

k,j0,ג;xk) + ζi(x
k,j0,ג)− ℓψi,ji

(xk,j0,ג;xk)
)]

+
. (4.7)

Then the following statements hold.

(i) {xk,j0,ג}k∈K converges to x∞.

(ii) {λk,j0,ג}k∈K is bounded. Moreover, every accumulation point λ∞,j0,ג of {λk,j0,ג}k∈K satisfies
that

λ∞,j0,ג
i ≥ 0, λ∞,j0,ג

i [φi(x
∞) + ζi(x

∞)− ψi,ji(x
∞)] = 0, ∀i ∈ I,

0 ∈ ∇φ0(x
∞) + ∂ζ0(x

∞)−∇ψ0,j0(x
∞)

+
I∑
i=1

λ∞,j0,ג
i [∇φi(x

∞) + ∂ζi(x
∞)−∇ψi,ji(x

∞)] +NX(x
∞).

Proof. (i) In order to prove statement (i), we first show that {xk,j0,ג}k∈K is bounded. To this end,
let j0 ∈ J0(x

∞) and ג = (j1, j2, . . . , jI) ∈ J (x
∞) be arbitrarily chosen. One can observe from (3.3)

and (4.2) that Q̃ρk(·;x
k, λk, j0, (ג is strongly convex on X with modulus L0 > 0. Since xk,j0,ג satisfies

(4.6), there exists some s ∈ ∂[Q̃ρk(x;x
k, λk, j0, (ג + ιX(x)]

∣∣
x=xk,j0,ג

such that ‖s‖ ≤ γk. This along

with the strong convexity of Q̃ρk(·;x
k, λk, j0, (ג yields

Q̃ρk(x;x
k, λk, j0, (ג ≥ min

z
Q̃ρk(x

k,j0,ג;xk, λk, j0, (ג + sT (z − xk,j0,ג) + L0‖z − x
k,j0,2/2‖ג

= Q̃ρk(x
k,j0,ג;xk, λk, j0, −(ג ‖s‖

2/(2L0)

≥ Q̃ρk(x
k,j0,ג;xk, λk, j0, −(ג γ

2
k/(2L0), ∀x ∈ X,

which gives

Q̃ρk(x
k,j0,ג;xk, λk, j0, (ג ≤ Q̃ρk(x;x

k, λk, j0, (ג +
γ2k
2L0

, ∀x ∈ X. (4.8)

Note that x∞ ∈ Ω, I=(x
∞) 6= ∅, and moreover, the PSCQ holds for Ω at x∞. By a similar argument as

for proving (3.20), one can show that there exist t̄ ∈ (0, 1) and x̂ ∈ Yג(x
∞) satisfying (3.18) such that

φ̂i(x̂(t);x
∞)+ζi(x̂(t))− ℓψi,ji

(x̂(t);x∞) < 0 for any i ∈ I and t ∈ (0, t̄), where x̂(t) = x∞+ t(x̂−x∞).

Let us fix t ∈ (0, t̄) arbitrarily. Observe that φ̂i(·; ·) and ℓψi,ji
(·; ·) are continuous on X ×X. It then

follows from the above relation, {ρk} → ∞ and {λk/ρk} → 0 that for any k ∈ K sufficiently large

17



and i ∈ I, [λki + ρk(φ̂i(x̂(t);x
k) + ζi(x̂(t)) − ℓψi,ji

(x̂(t);xk))]+ = 0. Replacing x by x̂(t) in (4.8) and
using this equality, we can obtain from (4.2) that for all k ∈ K sufficiently large, one has

φ̂0(x
k,j0,ג;xk) + ζ0(x

k,j0,ג)− ℓψ0,j0
(xk,j0,ג;xk)

+
1

2ρk

I∑

i=1

[
λki + ρk

(
φ̂i(x

k,j0,ג;xk) + ζi(x
k,j0,ג)− ℓψi,ji

(xk,j0,ג;xk)
)]2

+

= Q̃ρk(x
k,j0,ג;xk, λk, j0, (ג +

1

2ρk

I∑

i=1

(λki )
2

≤ φ̂0(x̂(t);x
k) + ζ0(x̂(t))− ℓψ0,j0

(x̂(t);xk) +
γ2k
2L0

,

(4.9)

which implies that

φ̂0(x
k,j0,ג;xk)+ ζ0(x

k,j0,ג)− ℓψ0,j0
(xk,j0,ג;xk) ≤ φ̂0(x̂(t);x

k)+ ζ0(x̂(t))− ℓψ0,j0
(x̂(t);xk)+

γ2k
2L0

. (4.10)

Claim that {xk,j0,ג}k∈K is bounded. Suppose for contradiction that {xk,j0,ג}k∈K is unbounded. By
passing to a subsequence if necessary, we assume that lim

K∋k→∞
‖xk,j0,ג‖ = ∞. By (1.2), (3.3), (4.10)

and the convexity of ζ0, we have

F (xk)− ‖∇φ0(x
k) + vk0 −∇ψ0,j0(x

k)‖‖xk,j0,ג − xk‖+
L0

2
‖xk,j0,ג − xk‖2

≤ φ̂0(x
k,j0,ג;xk) + ζ0(x

k,j0,ג)− ℓψ0,j0
(xk,j0,ג;xk) ≤ φ̂0(x̂(t);x

k) + ζ0(x̂(t))− ℓψ0,j0
(x̂(t);xk) +

γ2k
2L0

,

where vk0 ∈ ∂ζ0(x
k). Since {xk}k∈K → x∞, it follows from [26, Theorems 23.4 and 24.5] that

∪k∈K∂ζ0(x
k) is bounded and so is {vk0}k∈K. Using these, {γk} → 0, lim

K∋k→∞
‖xk,j0,ג‖ =∞, and taking

limit as K ∋ k → ∞ on both sides of the last inequality, we obtain ∞ ≤ φ̂0(x̂(t);x
∞) + ζ0(x̂(t)) −

ℓψ0,j0
(x̂(t);x∞), which clearly cannot hold. Hence, {xk,j0,ג}k∈K is bounded.

We are now ready to complete the proof of statement (i). Indeed, since {xk,j0,ג}k∈K is bounded,
it suffices to show that each convergent subsequence of {xk,j0,ג}k∈K converges to x∞. By passing to
a subsequence if necessary, we can assume that {xk,j0,ג}k∈K → x∞,j0,ג. Using this and taking limit
on both sides of (4.10) as K ∋ k →∞, we have

φ̂0(x
∞,j0,ג;x∞) + ζ0(x

∞,j0,ג)− ℓψ0,j0
(x∞,j0,ג;x∞) ≤ φ̂0(x̂(t);x

∞) + ζ0(x̂(t))− ℓψ0,j0
(x̂(t);x∞)

for any t ∈ (0, t̄). Taking limit on both sides of this inequality as t ↓ 0 gives

φ̂0(x
∞,j0,ג;x∞) + ζ0(x

∞,j0,ג)− ℓψ0,j0
(x∞,j0,ג;x∞) ≤ φ̂0(x

∞;x∞) + ζ0(x
∞)− ℓψ0,j0

(x∞;x∞). (4.11)

Recall that {ρk} → ∞, {λk/ρk} → 0 and {γk} → 0. Using these, dividing both sides of (4.9) by ρk,

and taking limit as K ∋ k →∞, we obtain that
I∑
i=1

[φ̂i(x
∞,j0,ג;x∞)+ζi(x

∞,j0,ג)−ℓψi,ji
(x∞,j0,ג;x∞)]2+ ≤

0, which together with φi(x
∞,j0,ג) ≤ φ̂i(x

∞,j0,ג;x∞) implies that for any i ∈ I, φi(x
∞,j0,ג) +

ζi(x
∞,j0,ג) − ℓψi,ji

(x∞,j0,ג;x∞) ≤ 0. Hence, x∞,j0,ג ∈ Yג(x
∞). Recall that x∞ is a B-stationary

point of (1.1) and the PSCQ holds for Ω at x∞. It then follows from Theorem 2.1 that F ′(x∞; d) ≥ 0
for all d ∈ TYג(x∞)(x

∞), which along with j0 ∈ J0(x
∞) implies that

∇φ0(x
∞)T d+ ζ ′0(x

∞; d) −∇ψ0,j0(x
∞)Td ≥ F ′(x∞; d) ≥ 0, ∀d ∈ TYג(x∞)(x

∞).
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Hence, by (3.3), one has

x∞ = argmin
x∈Yג(x∞)

φ̂0(x;x
∞) + ζ0(x)− ℓψ0,j0

(x;x∞). (4.12)

Notice that the objective of (4.12) is strongly convex. Hence, x∞ is the unique optimal solution of
(4.12). In addition, observe from (4.11) and x∞,j0,ג ∈ Yג(x

∞) that x∞,j0,ג is also an optimal solution
of (4.12). It then follows that x∞,j0,ג = x∞. Therefore, statement (i) holds as desired.

(ii) Let j0 ∈ J0(x
∞) and ג = (j1, j2, . . . , jI) ∈ J (x

∞) be chosen arbitrarily. It follows from (4.2)

and (4.6) that there exist vk,j0,גi ∈ ∂ζi(x
k,j0,ג) for i ∈ {0, 1, . . . , I} and wk,j0,ג ∈ NX(x

k,j0,ג) such that

∥∥∥∇φ0(xk) + L0(x
k,j0,ג − xk) + vk,j0,0ג −∇ψ0,j0(x

k)

+
I∑

i=1

λk,j0,גi [∇φi(x
k) + Li(x

k,j0,ג − xk) + vk,j0,גi −∇ψi,ji(x
k)] + wk,j0,ג

∥∥∥∥∥ ≤ γk,
(4.13)

where λk,j0,גi is defined in (4.7).
In order to prove statement (ii), we first show that {λk,j0,ג}k∈K is bounded. Suppose for con-

tradiction that it is unbounded. By passing to a subsequence if necessary, we can assume that
{‖λk,j0,ג‖}k∈K →∞. Denote λ̄k,j0,ג = λk,j0,ג/‖λk,j0,ג‖ and w̄k,j0,ג = wk,j0,ג/‖λk,j0,ג‖. Then ‖λ̄k,j0,ג‖ =
1 for all k ∈ K. Recall that {xk}k∈K → x∞ and {xk,j0,ג}k∈K → x∞. It then follows from [26, The-

orems 23.4 and 24.5] that ∪k∈K∂ζi(x
k,j0,ג) is bounded and so is {vk,j0,גi }k∈K for all i ∈ {0, 1, . . . , I}.

In addition, notice that {∇φi(x
k)}k∈K → ∇φi(x

∞), {∇ψi,ji(x
k)}k∈K → ∇ψi,ji(x

∞) and {γk} → 0.
In view of these and (4.13), one can observe that {w̄k,j0,ג} is bounded. By passing to a subsequence

if necessary, we can assume that {λ̄k,j0,ג}k∈K → λ̄∞,j0,ג, {vk,j0,גi }k∈K → v∞,j0,ג
i for any i ∈ I and

{w̄k,j0,ג}k∈K → w̄∞,j0,ג. Clearly, λ̄∞,j0,ג ≥ 0, ‖λ̄∞,j0,ג‖ = 1, w̄∞,j0,ג ∈ NX(x
∞) and v∞,j0,ג

i ∈ ∂ζi(x
∞)

for any i ∈ I. Dividing both sides of (4.13) by ‖λk,j0,ג‖ and taking limit as K ∋ k → ∞ yield
I∑
i=1

λ̄∞,j0,ג
i

(
∇φi(x

∞) + v∞,j0,ג
i −∇ψi,ji(x

∞)
)
+ w̄∞,j0,ג = 0, which implies that

I∑

i=1

λ̄∞,j0,ג
i

(
∇φi(x

∞) + v∞,j0,ג
i −∇ψi,ji(x

∞)
)T

d = −(w̄∞,j0,ג)T d ≥ 0 (4.14)

for any d ∈ TX(x
∞). On the other hand, since the PSCQ holds for Ω at x∞, it follows from Definition

2.1 that there exists some dג ∈ TX(x
∞) such that

[∇φi(x
∞) + v∞,j0,ג

i −∇ψi,ji(x
∞)]T dג ≤ ∇φi(x

∞)T dג + ζ ′i(x
∞; dג)−∇ψi,ji(x

∞)T dג < 0 (4.15)

for all i ∈ I=(x
∞). Notice that ρk > 0, {λk/ρk} → 0 and

{φ̂i(x
k,j0,ג;xk) + ζi(x

k,j0,ג)− ℓψi,ji
(xk,j0,ג;xk)}k∈K → φi(x

∞) + ζi(x
∞)− ψi(x

∞), ∀i ∈ I.

By these and (4.7), one can observe that λ̄∞,j0,ג
i = 0 for all i ∈ I<(x

∞). Recall that λ̄∞,j0,ג ≥ 0

and ‖λ̄∞,j0,ג‖ = 1. Hence, there exists some ī ∈ I=(x
∞) such that λ̄∞,j0,ג

ī
> 0. These together with

(4.15) imply that

I∑

i=1

λ̄∞,j0,ג
i [∇φi(x

∞) + v∞,j0,ג
i −∇ψi,ji(x

∞)]T dג ≤ λ̄
∞,j0,ג
ī

[∇φī(x
∞) + v∞,j0,ג

ī
−∇ψī,jī(x

∞)]T dג < 0,

which contradicts (4.14). Therefore, {λk,j0,ג}k∈K is bounded.
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We are now ready to complete the proof of statement (ii). Indeed, by the boundedness of

{λk,j0,ג}k∈K, (4.13) and the fact that {vk,j0,גi }k∈K is bounded, we immediately see that {wk,j0,ג}k∈K is
bounded. By the semicontinuity of ∂ζi(·) and NX(·) (see [26, Theorem 24.4]) and {xk,j0,ג}k∈K → x∞,

one can see that every accumulation point of {vk,j0,גi }k∈K and {wk,j0,ג}k∈K belongs to ∂ζi(x
∞) and

NX(x
∞), respectively. In view of these and (4.13), one can easily conclude that for each accu-

mulation point λ∞,j0,ג of {λk,j0,ג}k∈K, there exist v∞,j0,ג
i ∈ ∂ζi(x

∞) for every i ∈ {0, 1, . . . , I} and
w∞,j0,ג ∈ NX(x

∞) such that

∇φ0(x
∞) + v∞,j0,ג

0 −∇ψ0,j0(x
∞) +

I∑

i=1

λ∞,j0,ג
i [∇φi(x

∞) + v∞,j0,ג
i −∇ψi,ji(x

∞)] + w∞,j0,ג = 0.

Moreover, using (4.7) and the facts that {ρk} → ∞ and {λk/ρk} → 0, we can obtain that λ∞,j0,ג ≥ 0
and λ∞,j0,ג

i = 0 for every i ∈ I<(x
∞). Hence, statement (ii) holds.

Remark 4.2. (i) Theorem 4.2 is established based on the assumption that xk,j0,ג ∈ X satisfies (4.6)
for any j0 ∈ J0(x

∞) and ג ∈ J (x∞). Notice that J0(x
∞) ⊆ J0,ǫ(x

k) and J (x∞) ⊆ Jǫ(x
k), where

{xk}k∈K → x∞ for some subsequence K. Consequently, one sufficient condition for this assumption
to hold is that for all sufficiently large k, xk,j0,ג satisfies (4.6) for any j0 ∈ J0,ǫ(x

k) and ג ∈ Jǫ(x
k).

(ii) From the proof of Theorem 4.2, one can observe that the condition (4.6) can be replaced
by an alternative condition given in (4.8). Moreover, xk,j0,ג ∈ X satisfying (4.8) can be found by
approximately solving minx∈X Q̃ρk(x

k,j0,ג;xk, λk, j0, (ג by mirror descent or smoothing methods (e.g.,
see [21, 4, 22]).

Before ending this section, we provide an example to illustrate the theoretical results of our AL
method for solving problem (1.1).

Example 4.1. Consider the DC program

min
x∈ℜ

F (x) = |x| −max{6x, x}

s.t. 2x−max{−x, x} ≤ 0.
(4.16)

Clearly, it is a special case of (1.1) with I = {1}, J0 = J1 = {1, 2}, and

φ0(x) = 0, ζ0(x) = |x|, ψ0,1(x) = 6x, ψ0,2(x) = x,
φ1(x) = 2x, ζ1(x) = 0, ψ1,1(x) = −x, ψ1,2(x) = x.

We next apply the AL method, namely, Algorithm 4.1 to solve problem (4.16). For convenience, we
set ǫ = ∞, α = 1, σ = 2, λ0 = 0, and let ρ0 > 0 be arbitrarily chosen for Algorithm 4.1. At the kth
iteration, we compute xk and update λk+1 and ρk+1 as follows.

(i) We first compute
xk,j0,j1 = argmin

x∈ℜ
F̄ρk(x;λ

k, j0, j1) (4.17)

for every (j0, j1) ∈ J0 × J1, where

F̄ρk(x;λ
k, j0, j1) = φ0(x) + ζ0(x)− ψ0,j0(x) +

1

2ρk
[λk + ρk(φ1(x) + ζ1(x)− ψ1,j1(x))]

2
+ −

(λk)2

2ρk
.

Then we set xk = xk,ĵ0,ĵ1 with (ĵ0, ĵ1) given by

(ĵ0, ĵ1) ∈ Argmin
(j0,j1)

{F̃ρk(x
k,j0,j1 , λk)|(j0, j1) ∈ J0 × J1},

where

F̃ρk(x, λ
k) = |x| −max{6x, x} +

1

2ρk
[λk + ρk(2x−max{−x, x})]2+ −

(λk)2

2ρk
.
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(ii) We update λk+1 and ρk+1 by

λk+1 = [λk + ρk(2x
k −max{−xk, xk})]+, ρk+1 = max{2ρk, (λ

k+1)2},

and let

λk,j0,j1 = [λk + ρk(φ1(x
k,j0,j1) + ζ1(x

k,j0,j1)− ψ1,j1(x
k,j0,j1))]+, ∀(j0, j1) ∈ J0 × J1.

By some simple calculations, one can find the expressions of {xk}, {λk}, {xk,j0,j1} and {λk,j0,j1},
which are presented in Table 1. Claim that xk and xk,j0,j1 ,∀(j0, j1) ∈ J0×J1 satisfy (4.4) and (4.6)
with ηk = 0, γk = 10/ρk and

Q̃ρk(x;x
k, λk, j0, j1) = F̄ρk(x;λ

k, j0, j1) +
1

2
(x− xk)2, (4.18)

which corresponds to (4.2) with L0 = 1 and L1 = 0. Indeed, it is not hard to observe that for every
(j0, j1) ∈ J0 × J1 and x ∈ ℜ,

F̃ρk(x
k, λk) ≤ F̃ρk(x

k,j0,j1 , λk) ≤ F̄ρk(x
k,j0,j1 ;λk, j0, j1) ≤ F̄ρk(x;λ

k, j0, j1) ≤ Q̃ρk(x;x
k, λk, j0, j1).

It thus follows that xk satisfies (4.4) with ηk = 0. In addition, one can see from Table 1 that
|xk,j0,j1 | ≤ 5/ρk and |xk| ≤ 5/ρk for every (j0, j1) ∈ J0 × J1 and k. Also, from (4.17), one has
0 ∈ ∂F̄ρk (x

k,j0,j1 ;λk, j0, j1). By these and (4.18), we obtain

dist
(
0, ∂[Q̃ρk (x;x

k, λk, j0, j1)]
∣∣
x=xk,j0,j1

)
≤ |xk − xk,j0,j1 | ≤

10

ρk
, ∀(j0, j1) ∈ J0 ×J1.

Hence, xk,j0,j1 satisfies (4.6) with γk = 10/ρk for every (j0, j1) ∈ J0 × J1.
Notice that ρk → ∞ as k → ∞. Therefore, one can observe from Table 1 that {xk} converges

to x∞ = 0. It follows that J0(x
∞) = J1(x

∞) = {1, 2}. Let λ∞,j0,j1 be any accumulation point of
{λk,j0,j1} for every (j0, j1) ∈ J0(x

∞)×J1(x
∞). By some simple calculations, one can verify that for

every (j0, j1) ∈ J0(x
∞)× J1(x

∞),

λ∞,j0,j1 ≥ 0, λ∞,j0,j1 [φ1(x
∞) + ζ1(x

∞)− ψ1,j1(x
∞)] = 0,

0 ∈ ∇φ0(x
∞) + ∂ζ0(x

∞)−∇ψ0,j0(x
∞) + λ∞,j0,j1 [∇φ1(x

∞) + ∂ζ1(x
∞)−∇ψ1,j1(x

∞)].

This result is indeed consistent with that in Theorem 4.2 since x∞ is a feasible point of (4.16),
I=(x

∞) = {1} 6= ∅, and the PSCQ holds at x∞. The latter fact is due to ∇φ1(x
∞)T d+ ζ ′1(x

∞; d) −
∇ψ1,j1(x

∞)Td < 0 for every j1 ∈ J1(x
∞) and d < 0.

5 Successive convex approximation method for penalty and AL
subproblems

An approximate solution of subproblems (3.6) and (4.3) satisfying (3.7) and (4.4) is required in
Algorithm 3.1 and 4.1, respectively. Since these subproblems can be viewed as a special case of
problem (1.12), one can observe that to find these approximate solutions, it suffices to find an
approximate solution xη of problem (1.12) satisfying that

xη ∈ X, Fρ(xη) ≤ Qρ(x;xη , j0, (ג + η, ∀x ∈ X, j0 ∈ J0,ǫ(xη), ג ∈ Jǫ(xη)

for any given ρ > 0, ǫ > 0 and η > 0, where Qρ is defined in (3.5). In what follows, we propose
a successive convex approximation method to find such an approximate solution. The proposed
method only solves a single convex problem in each iteration, while the EDCA [25] needs to solve
a number of convex problems per iteration. It is therefore practically more efficient than the latter
method.
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Table 1: Computational results of Algorithm 4.1 for solving (4.16).

Iteration (j0, j1) (1, 1) (1, 2) (2, 1) (2, 2)

xk,j0,j1 5/(9ρk) 5/ρk 0 0

k = 0
λk,j0,j1 5/3 5 0 0

F̃ρk(x
k,j0,j1 , λk) −425/(162ρk) −25/(2ρk) 0 0

xk = 5/ρk, λk+1 = 5

k = 2m− 1
(m = 1, 2, . . .)

xk,j0,j1 −8/(9ρk) 0 −13/(9ρk) −3/ρk
λk,j0,j1 7/3 5 2/3 2

F̃ρk(x
k,j0,j1 , λk) −8/ρk 0 −169/(18ρk) −13/(2ρk)

xk = −13/(9ρk), λk+1 = 2/3

k = 2m
(m = 1, 2, . . .)

xk,j0,j1 1/(3ρk) 13/(3ρk) 0 0
λk,j0,j1 5/3 5 2/3 2/3

F̃ρk(x
k,j0,j1 , λk) −25/(18ρk) −169/(18ρk) 0 0

xk = 13/(3ρk), λk+1 = 5

Algorithm 5.1.

0. Input x0 ∈ X, η > 0, ǫ > 0 and a sequence {δt} ⊂ ℜ+ such that
∑∞

t=0 δ
2
t < ∞. Set B0 ← ∅

and t← 0.

1. Choose (j0, (ג ∈ (J0,ǫ(x
t)×Jǫ(x

t)) \Bt, and find an approximate solution xt,j0,ג of the problem

min
x∈X

Qρ(x;x
t, j0, (ג (5.1)

satisfying
xt,j0,ג ∈ X, dist

(
0, ∂[Qρ(x;x

t, j0, (ג + ιX(x)]
∣∣
x=xt,j0,ג

)
≤ δt, (5.2)

where ιX is the indicator function of X.

2. If Fρ(x
t)− Fρ(x

t,j0,ג) + δ2t /(2L0) > η, set xt+1 ← xt,j0,ג, Bt+1 ← ∅, t← t+ 1 and go to Step 1;
otherwise, set Bt ← Bt ∪ {(j0, {(ג and go to Step 3.

3. If J0,ǫ(x
t)× Jǫ(x

t) = Bt, stop; otherwise, go to Step 1.

End.

Remark 5.1. (i) In contrast with (1.12), problem (5.1) has a simpler objective function and it can be
efficiently solved for many X and ζi’s. For example, when X is a polyhedral set or more generally a
conic quadratic representable set, and ζi’s are polyhedral functions or more generally conic quadratic
representable functions, problem (5.1) can be reformulated as a conic quadratic program, which can
be efficiently solved by interior point methods.

(ii) As seen from the proof of Theorem 5.1 below, the condition (5.2) can be replaced by an
alternative condition:

xt,j0,ג ∈ X, Qρ(x
t,j0,ג;xt, j0, (ג ≤ Qρ(x;x

t, j0, (ג + δ2t /(2L0), ∀x ∈ X.

That is, xt,j0,ג is a δ2t /(2L0)-optimal solution of problem (5.1), which can be found by mirror descent
or smoothing methods (e.g., see [21, 4, 22]).

We now establish some convergence results for Algorithm 5.1.
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Theorem 5.1. Assume that the function Fρ is bounded below on X.§ Then Algorithm 5.1 terminates
in finitely many iterations, that is, there exists an integer t̂ ≥ 0 such that

Fρ(x
t̂)− Fρ(x

t̂,j0,ג) + δ2
t̂
/(2L0) ≤ η, ∀j0 ∈ J0,ǫ(x

t̂),∀ג ∈ Jǫ(x
t̂), (5.3)

where xt̂ and xt̂,j0,ג are generated by Algorithm 5.1 for all j0 ∈ J0,ǫ(x
t̂) and ג ∈ Jǫ(x

t̂). Moreover,

for any j0 ∈ J0,ǫ(x
t̂) and ג ∈ Jǫ(x

t̂), it holds

Fρ(x
t̂) ≤ Qρ(x;x

t̂, j0, (ג + η, ∀x ∈ X. (5.4)

Proof. Suppose for contradiction that Algorithm 5.1 does not terminate in finitely many iterations.
Let {xt} be the sequence generated by Algorithm 5.1. Then it follows from Steps 2 and 3 of Algorithm
5.1 that

Fρ(x
t)− Fρ(x

t+1) + δ2t /(2L0) > η, ∀t ≥ 0,

which implies that

Fρ(x
t) < Fρ(x

0) +
1

2L0

t−1∑

i=0

δ2i − tη, ∀t ≥ 1.

By this and
∑∞

t=0 δ
2
t < ∞, one can obtain that lim

t→∞
Fρ(x

t) = −∞, which, together with {xt} ⊂ X,

contradicts the assumption that Fρ is bounded below on X. Hence, Algorithm 5.1 terminates after

finitely many iterations, which implies that Bt̂ = J0,ǫ(x
t̂)× Jǫ(x

t̂) and (5.3) hold for some t̂ ≥ 0.

Given that (5.3) holds for some t̂, we next show that (5.4) holds for any j0 ∈ J0,ǫ(x
t̂) and

ג ∈ Jǫ(x
t̂). To this end, let j0 ∈ J0,ǫ(x

t̂) and ג ∈ Jǫ(x
t̂) be arbitrarily chosen. One can observe

from (3.3) and (3.5) that Qρ(·;x
t̂, j0, (ג is strongly convex on X with modulus L0 > 0. Since xt̂,j0,ג

satisfies (5.2), by a similar argument as for deriving (4.8), we have

Qρ(x
t̂,j0,ג;xt̂, j0, (ג ≤ Qρ(x;x

t̂, j0, (ג + δ2
t̂
/(2L0), ∀x ∈ X,

which yields

Fρ(x
t̂,j0,ג) ≤ Qρ(x

t̂,j0,ג;xt̂, j0, (ג ≤ Qρ(x;x
t̂, j0, (ג + δ2

t̂
/(2L0), ∀x ∈ X.

This together with (5.3) implies that (5.4) holds as desired.

6 Numerical results

In this section we conduct some numerical experiments to test the performance of our proposed
methods, namely, the penalty method (PM) in Algorithm 3.1 and the augmented Lagrangian method
(ALM) in Algorithm 4.1, and compare them with two closely related methods proposed in [25, Section
6], which are an enhanced DCA (EDCA) and an exact penalty method (EPM). For convenience, we
use PM1 and PM2 to stand for the PM with p = 1 and 2, respectively. The subproblems (3.6) and
(4.3) of PM and ALM are solved by Algorithm 5.1. Also, the EDCA requires a feasible initial point
to start while the other methods do not. We will compare these methods numerically below. All the
methods are coded in Matlab and all the computations are performed on a Dell laptop with an Intel
Core i7-1065G7 CPU and 16 GB of RAM.

In the first experiment, we apply the aforementioned methods to the following optimization
problem with two structured DC constraints:

min
x∈ℜn

{φ0(x) | φi(x)− ψi(x) ≤ 0, ∀i = 1, 2} , where ψi(x) = max{ψi,1(x), ψi,2(x)}, i = 1, 2. (6.1)

§It can be seen that this assumption holds if F is bounded below on X.
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The functions φi’s and ψi,j ’s in (6.1) are convex quadratic functions, namely,

φ0(x) = xTQx+ qTx,

φi(x) = xTAix+ aTi x+ ci i = 1, 2,

ψi,j(x) = xTBi,jx+ bTi,jx+ di,j i = 1, 2, j = 1, 2,

where Q,Ai, Bi,j ∈ ℜ
n×n are positive semidefinite matrices, q, ai, bi,j ∈ ℜ

n, and ci, di,j ∈ ℜ for all i
and j. It is clear that (6.1) is a special case of problem (1.1).

In this experiment, we set ǫ = 0.01 in all the above methods, ρ0 = 0.1 and σ = 2 in PM, ALM
and EPM, α = 1.05 in ALM, and ηk = 10−k−3 for all k in PM and ALM. In Algorithm 5.1, we
set δt = 10−t−1 for all t. For this test example, when applied to solve the subproblems of PM2
and ALM, the subproblem (5.1) of Algorithm 5.1 is smooth and solved by a nonmonotone gradient
method [27]. On the other hand, when applied to solve the subproblems of PM1, the subproblem
(5.1) of Algorithm 5.1 is nonsmooth and solved by CVX¶. In addition, the penalty subproblem of
EPM is solved as described in [25]. In particular, when applied to (6.1), the penalty subproblem of
EPM is in the form of

min
x∈ℜn

φ0(x) + ρ [max{φ1(x)− ψ1(x), φ2(x)− ψ2(x)}]+ , (6.2)

where ρ > 0 is the penalty parameter. As described in [25], we first rewrite (6.2) as

min
x∈ℜn

φ0(x) + ρmax{ψ1(x) + ψ2(x), φ1(x) + ψ2(x), φ2(x) + ψ1(x)}︸ ︷︷ ︸
convex

− ρ(ψ1(x) + ψ2(x))︸ ︷︷ ︸
convex

(6.3)

and then apply [25, Algorithm 1] to solve (6.3). Moreover, the convex problems arising in each
iteration of [25, Algorithm 1] are solved by CVX. While in theory the EPM requires an exact D-
stationary point of its penalty subproblem (6.3), in our experiment we terminate [25, Algorithm 1]
when the norm of the difference of two consecutive iterates generated by it is less than 10−6. Finally,
the subproblems of EDCA are constrained convex programs and solved by CVX.

We randomly generate 4 instances for problem (6.1) with n = 50, 100, 250, 500, respectively, each
of which is generated as follows. Given a positive integer n, we first generate a vector d ∈ ℜn,
whose entries are randomly chosen from a uniform distribution on [0, 20]. We then generate a
matrix Ũ ∈ ℜn×n with entries randomly chosen from the standard normal distribution, compute an
orthogonal basis U for the range space of Ũ , and set Q = UDiag(d)UT . The matrices Ai and Bi,j for
all i and j are randomly generated in the same manner as Q. In addition, we generate the vectors
q, ai, bi,j ∈ ℜ

n for all i and j with entries randomly chosen from the standard normal distribution.
Also, we randomly choose ci and di,j for all i and j from the standard normal distribution.

For each instance, we perform 10 runs of all the tested methods as described above. In each
run, we first randomly generate a point x0, whose entries are randomly chosen from the standard
normal distribution. We then run PM, ALM, and EPM with the same initial point x0. Moreover,
if x0 is feasible for (6.1), we run the EDCA with the initial point x0; if not, we repeat generating
x̃0 with entries randomly chosen from the standard normal distribution until a feasible point x̃0 is
found and then run the EDCA with the initial point x̃0. We terminate all the tested methods once
‖xk+1 − xk‖/‖xk+1‖ ≤ 10−5 holds for some k, where xk and xk+1 are the approximate solutions
obtained at the kth and (k + 1)th iterations of each method, respectively.

The computational results averaged over each group of 10 runs with same n are presented in
Table 2, which consists of four subtables. In detail, the parameter n is listed in the first column. For
each n, the objective value at the solutions produced by all the tested methods, averaged over 10

¶CVX is a Matlab package for solving convex programs; see cvxr.com/cvx/.
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Table 2: Computational results for solving problem (6.1)

n PM1 PM2 ALM EPM EDCA

50 -1.901 -1.901 -1.901 -1.901 -1.901
100 -3.825 -3.825 -3.825 -3.825 -3.825
250 -9.061 -9.061 -9.061 -9.060 -9.061
500 -22.390 -22.390 -22.390 -22.390 -22.390

(a) Results for objective value

n PM1 PM2 ALM EPM EDCA

50 3.0 12.0 4.1 2.0 20.6
100 3.0 9.2 3.4 2.6 17.4
250 3.1 10.0 4.0 2.0 24.0
500 2.5 2.0 2.0 2.0 12.8

(b) Results for outer iteration number

n PM1 PM2 ALM EPM EDCA

50 13.4 84.7 20.9 32.9 21.0
100 13.3 50.0 18.9 34.4 18.2
250 15.2 71.2 23.8 28.0 24.8
500 10.7 11.7 11.7 33.6 13.2

(c) Results for number of convex subproblems solved

n PM1 PM2 ALM EPM EDCA

50 4.4 0.4 0.1 21.5 10.1
100 4.6 0.2 0.1 28.3 10.0
250 12.8 4.6 1.1 149.4 50.4
500 33.3 2.9 2.9 707.3 170.4

(d) Results for CPU time

runs, is given in Table 2(a), and the outer iteration number, the total number of convex subproblems
solved, and the CPU time (in seconds) averaged over 10 runs are given in Tables 2(b), 2(c), and 2(d),
respectively. From Table 2(a), one can see that the solutions produced by all the above methods
have about the same objective value. Also, as seen from Table 2(b), EPM takes less outer iterations
than PM1, PM2 and ALM, while EDCA takes much more outer iterations. In addition, one can see
from Table 2(c) that PM2 generally solves more convex subproblems than the other methods, while
PM1 solves less convex subproblems. Besides, Table 2(d) shows that PM1, PM2 and ALM are much
faster than EPM and EDCA, which is mainly because the convex subproblems arising in the latter
two methods are more sophisticated and solved by CVX. Also, PM2 and ALM are much faster than
PM1, which is largely due to the fact that the convex subproblems arising in PM2 and ALM are
smooth and solved by a gradient method, while the ones arising in PM1 are nonsmooth and solved
by CVX.

In the second experiment, we apply PM, ALM, EPM and EDCA to the following DC program:

min
x∈ℜn

{
‖Ax− b‖2 | ‖x‖1 − h(x) ≤ sK

}
, (6.4)
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where A ∈ ℜm×n, b ∈ ℜm, 1 ≤ K ≤ n is an integer, s > 0, and h(x) is defined as

h(x) =

n∑

i=1

max{xi − s, 0,−xi − s}.

Problem (6.4) arises in applications such as sparse signal recovery (e.g., see [29]). It is clear that
(6.4) is a special case of problem (1.1).

In this experiment, the same parameters as in the first experiment are chosen for all the tested
methods, except ǫ = 0.01, 0.05. For the test problem (6.4), when applied to solve the subproblems
of PM2 and ALM, the subproblem (5.1) of Algorithm 5.1 is solved by a first-order method. On the
other hand, when applied to solve the subproblems of PM1, the subproblem (5.1) of Algorithm 5.1
is nonsmooth and solved by CVX. The penalty subproblems of EPM are solved by [25, Algorithm
1] and the convex problems arising in each iteration of [25, Algorithm 1] are solved by CVX. We
terminate [25, Algorithm 1] when the norm of the difference of two consecutive iterates generated by
it is less than 10−6. Also, the subproblems of the EDCA are solved by CVX. We terminate all the
tested methods once ‖xk+1 − xk‖/‖xk+1‖ ≤ 10−5, where xk and xk+1 are the approximate solutions
obtained at the kth and (k + 1)th iterations of each method, respectively.

We choose (m,n) = (28, 210), K = 20, 30, 40, and set s = 0.1 in our experiment. For each K, we
randomly generate 10 instances of problem (6.4) in a similar manner as described in [18]. Given K,
we first randomly generate a K-sparse vector x∗ ∈ ℜn. Specifically, we randomly choose K numbers
from {1, 2, . . . , n} as the support for x∗ and randomly choose the nonzero entries of x∗ from {−1, 1}
with equal probability. We then generate the m × n data matrix A, whose entries are randomly
chosen from the standard normal distribution. Finally we orthonormalize the rows of A and set
b = Ax∗ + ξ, where the entries of ξ ∈ ℜn are drawn from a normal distribution with mean 0 and
variance 10−3. For each such instance, we apply the above methods to solve (6.4). Since EDCA
needs a feasible point of (6.4) to start, we first solve the following convex program by CVX:

min
x∈ℜn

{
‖Ax− b‖2 | ‖x‖1 ≤ sK

}
,

whose optimal solution x̃0 must be feasible for (6.4). We then run PM, ALM, EPM and EDCA with
x̃0 as the initial point. For all the above methods, we compute the relative error of the final iterate x̃
produced by them according to rel err = ‖x̃− x∗‖/‖x∗‖, which evaluates how well the sparse vector
x∗ is recovered by x̃.

The computational results of this experiment are presented in Tables 3 and 4. In detail, the
parameter K is listed in the first column. For each K, the objective value and the relative error at
the solutions produced by all the tested methods, averaged over 10 runs, are given in Tables 3(a) and
3(b), respectively, and the outer iteration number, the number of convex subproblems solved and the
CPU time (in seconds) averaged over 10 runs are given in Tables 4(a), 4(b) and 4(c), respectively.
From Table 3, one can see that the objective value and the relative error at the solutions produced
by the tested methods are about the same except the cases K = 30 and 40, for which those given
by EDCA are larger. Also, from Table 4, we observe that the outer iteration number, the number
of convex subproblems solved, and the CPU time taken by PM1, PM2, and ALM are almost same
for different ǫ. However, as ǫ increases, EPM and EDCA solve many more convex subproblems and
thus take much more CPU time. In addition, ALM and PM2 are much faster than PM1, EPM and
EDCA because the convex subproblems in ALM and PM2 have a simpler structure than those in the
other methods and are solved more cheaply.
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Table 3: Computational results for solving problem (6.4)

ǫ = 0.01 ǫ = 0.05
K PM1 PM2 ALM EPM EDCA PM1 PM2 ALM EPM EDCA

20 2.3e-04 2.3e-04 2.3e-04 2.3e-04 2.3e-04 2.3e-04 2.3e-04 2.3e-04 2.3e-04 2.3e-04
30 2.3e-04 2.3e-04 2.3e-04 2.3e-04 6.9e-02 2.3e-04 2.3e-04 2.3e-04 2.3e-04 3.9e-02
40 2.1e-04 2.1e-04 2.1e-04 2.1e-04 1.8e-01 2.1e-04 2.1e-04 2.1e-04 2.1e-04 9.6e-02

(a) Results for objective value

ǫ = 0.01 ǫ = 0.05
K PM1 PM2 ALM EPM EDCA PM1 PM2 ALM EPM EDCA

20 2.0e-03 2.0e-03 2.0e-03 2.0e-03 2.0e-03 2.0e-03 2.0e-03 2.0e-03 2.0e-03 2.0e-03
30 1.9e-03 1.9e-03 1.9e-03 1.9e-03 5.3e-02 1.9e-03 1.9e-03 1.9e-03 1.9e-03 2.9e-02
40 2.1e-03 2.1e-03 2.1e-03 2.1e-03 1.1e-01 2.1e-03 2.1e-03 2.1e-03 2.1e-03 7.3e-02

(b) Results for relative error

Table 4: Computational results for solving problem (6.4)

ǫ = 0.01 ǫ = 0.05
K PM1 PM2 ALM EPM EDCA PM1 PM2 ALM EPM EDCA

20 10.0 10.0 9.4 2.0 6.1 10.0 10.0 9.4 2.0 4.9
30 9.8 9.9 9.0 2.0 7.4 9.8 9.9 9.0 2.0 5.6
40 9.6 9.5 9.3 2.2 8.0 9.5 9.5 9.3 2.2 7.0

(a) Results for outer iteration number

ǫ = 0.01 ǫ = 0.05
K PM1 PM2 ALM EPM EDCA PM1 PM2 ALM EPM EDCA

20 88.9 116.8 108.8 5.9 10.2 88.9 116.8 108.8 46.5 66.2
30 103.1 132.0 117.0 6.1 11.2 101.4 132.0 117.6 21.7 88.0
40 134.9 152.5 144.4 8.9 17.0 136.7 152.5 144.4 299.1 449.8

(b) Results for number of convex subproblems solved

ǫ = 0.01 ǫ = 0.05
K PM1 PM2 ALM EPM EDCA PM1 PM2 ALM EPM EDCA

20 28.6 0.07 0.03 36.7 32.3 29.3 0.06 0.03 414.6 203.6
30 32.4 0.07 0.03 41.2 35.1 31.8 0.06 0.03 201.8 276.7
40 49.3 0.10 0.04 78.3 69.9 50.1 0.08 0.04 2872.6 1482.4

(c) Results for CPU time
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7 Concluding remarks

The current development of this paper is based on the assumption that the second convex component
of the objective and constraints is the supremum of finitely many convex smooth functions. It
is worthy of a further research whether it can be extended to the case where the second convex
component is the supremum of infinitely many convex smooth functions.

A Proof of Theorem 2.2

In this section we provide a proof of Theorem 2.2. Before proceeding, we establish a technical lemma
as follows.

Lemma 1.1. Let x̄ ∈ Ω be such that I=(x̄) 6= ∅, and let

Pג(x̄) =





∑

i∈I=(x̄)

λi[∇φi(x̄) + vi −∇ψi,ji(x̄)] + w : λi ≥ 0, vi ∈ ∂ζi(x̄), w ∈ NX(x̄)



 (A.1)

for any ג = (j1, . . . , jI) ∈ J (x̄). Then [Pג(x̄)]
o = Cג(x̄) for any ג ∈ J (x̄), where Cג(x̄) is defined in

(2.3) and So denotes the polar cone of any cone S. Assume further that the PSCQ holds for Ω at x̄,
or that X is a polyhedral set, φi is affine and ζi is piecewise affine on X for every i ∈ I=(x̄). Then
Pג(x̄) is a nonempty closed convex cone and Pג(x̄) = [Cג(x̄)]

o for any ג ∈ J (x̄).

Proof. Let ג = (j1, . . . , jI) ∈ J (x̄) be arbitrarily chosen. We first prove Cג(x̄) ⊆ [Pג(x̄)]
o. To this

end, let d ∈ Cג(x̄) be arbitrarily chosen. It then follows from (2.3) that d ∈ TX(x̄) and ∇φi(x̄)
Td +

ζ ′(x̄; d) − ∇ψi,ji(x̄)
Td ≤ 0 for each i ∈ I=(x̄). By d ∈ TX(x̄), one has that wT d ≤ 0 for any

w ∈ NX(x̄). Clearly, one also has vTi d ≤ ζ ′(x̄; d) for any vi ∈ ∂ζi(x̄). In view of these, we have that
for any λi ≥ 0 with i ∈ I=(x̄),

dT




∑

i∈I=(x̄)

λi[∇φi(x̄) + vi −∇ψi,ji(x̄)] + w


 ≤

∑

i∈I=(x̄)

λi[∇φi(x̄)
T d+ ζ ′(x̄; d) −∇ψi,ji(x̄)

T d] ≤ 0.

Hence, d ∈ [Pג(x̄)]
o, which leads to Cג(x̄) ⊆ [Pג(x̄)]

o. We next prove that [Pג(x̄)]
o ⊆ Cג(x̄). Let d ∈

[Pג(x̄)]
o be arbitrarily chosen. Notice from (A.1) thatNX(x̄) ⊆ Pג(x̄). It thus follows that w

Td ≤ 0 for
all w ∈ NX(x̄), which implies d ∈ TX(x̄). In addition, observe that ∇φi(x̄)+vi−∇ψi,ji(x̄) ∈ Pג(x̄) for
every i ∈ I=(x̄) and vi ∈ ∂ζi(x̄), which along with d ∈ [Pג(x̄)]

o implies [∇φi(x̄)+vi−∇ψi,ji(x̄)]
Td ≤ 0.

It follows

∇φi(x̄)
T d+ ζ ′i(x̄; d) −∇ψi,ji(x̄)

T d = max
vi∈∂ζi(x̄)

{[∇φi(x̄) + vi −∇ψi,ji(x̄)]
T d} ≤ 0, ∀i ∈ I=(x̄).

Hence, d ∈ Cג(x̄), which yields [Pג(x̄)]
o ⊆ Cג(x̄). This together with Cג(x̄) ⊆ [Pג(x̄)]

o implies
[Pג(x̄)]

o = Cג(x̄).
We next prove that Pג(x̄) is a closed convex cone under the assumption that the PSCQ holds for

Ω at x̄, or that X is a polyhedral set, φi is affine and ζi is piecewise affine on X for every i ∈ I=(x̄).
Firstly, we assume that the PSCQ holds for Ω at x̄. Clearly, Pג(x̄) is a convex cone. Suppose

for contradiction that Pג(x̄) is not closed. Then there are some u 6∈ Pג(x̄) and some sequences {λki },
{vki } ⊆ ∂ζi(x̄) and {w

k} ⊆ NX(x̄) with λ
k
i ≥ 0 such that

lim
k→∞

∑

i∈I=(x̄)

λki [∇φi(x̄) + vki −∇ψi,ji(x̄)] + wk = u. (A.2)
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Notice that ∂ζi(x̄) is compact for all i ∈ I=(x̄). It follows that {vki } is bounded. In view of these
and the closedness of NX(x̄), it is not hard to observe that there exists some î ∈ I=(x̄) such that
{λk

î
} is unbounded (otherwise, one would have from (A.2) that {wk} is bounded, which along with

(A.2), the boundedness of {vki } and the closedness of ∂ζi(x̄) and NX(x̄) implies that u ∈ Pג(x̄)). By
passing to a subsequence if necessary, we can assume that {λk

î
} → ∞. Since the PSCQ holds for Ω

at x̄, there exists some vector dג ∈ TX(x̄) such that ∇φi(x̄)
Tdג + ζ ′i(x̄; dג)−∇ψi,ji(x̄)

Tdג < 0 for all
i ∈ I=(x̄). Also, by {vki } ⊆ ∂ζi(x̄) and {w

k} ⊆ NX(x̄), one has that dT
ג
vki ≤ ζ ′i(x̄; dג) and d

T
ג
wk ≤ 0

for all k. Using these, (A.2) , λki ≥ 0 and {λk
î
} → ∞, we have

uTdג = lim
k→∞

∑

i∈I=(x̄)

λki [∇φi(x̄) + vki −∇ψi,ji(x̄)]
T dג + (wk)Tdג

≤ lim sup
k→∞

∑

i∈I=(x̄)

λki [∇φi(x̄)
Tdג + ζ ′i(x̄; dג)−∇ψi,ji(x̄)

Tdג]

≤ lim sup
k→∞

λk
î
[∇φî(x̄)

T dג + ζ ′
î
(x̄; dג)−∇ψî,j

î
(x̄)Tdג] = −∞,

which contradicts the fact that uTdג is a constant. It follows that Pג(x̄) is closed.
Secondly, we assume that X is a polyhedral set, φi is affine and ζi is piecewise affine on X for

every i ∈ I=(x̄). It follows that ∂ζi(x̄) = conv({ui,1, . . . , ui,mi}) for some vectors ui,j with 1 ≤ j ≤ mi,
where conv(·) denotes the convex hull of the associated set. Let

Qג(x̄) =





∑

i∈I=(x̄)

λi[∇φi(x̄) + vi −∇ψi,ji(x̄)] : λi ≥ 0, vi ∈ ∂ζi(x̄)



 .

One can observe that

Qג(x̄) =





∑

i∈I=(x̄)


λi[∇φi(x̄)−∇ψi,ji(x̄)] +

mi∑

j=1

tiju
i,j


 :

mi∑

j=1

tij = λi, λi ≥ 0, tij ≥ 0





and hence it is a polyhedral cone. Since X is a polyhedral set, NX(x̄) is also a polyhedral cone.
Notice that Pג(x̄) = Qג(x̄) +NX(x̄). It then follows that Pג(x̄) is a polyhedral cone and hence it is
a closed convex cone.

Finally, since Pג(x̄) is closed and [Pג(x̄)]
o = Cג(x̄), we conclude from [26, Theorem 14.1] that

Pג(x̄) = ([Pג(x̄)]
o)o = [Cג(x̄)]

o.

We are now ready to prove Theorem 2.2.

Proof. (⇒). Suppose that x̄ is a B-stationary point of problem (1.1). Let j0 ∈ J0(x̄) and ג =
(j1, · · · , jI) ∈ J (x̄) be arbitrarily chosen. By the above assumption on x̄, it follows from Theorem
2.1 that F ′(x̄; d) ≥ 0 for all d ∈ TYג(x̄)(x̄). It together with (1.16) implies that for all d ∈ TYג(x̄)(x̄),

∇φ0(x̄)
Td+ζ ′0(x̄; d)−∇ψ0,j0(x̄)

Td ≥ ∇φ0(x̄)
T d+ζ ′0(x̄; d)− max

j∈J0(x)
∇ψ0,j(x̄)

Td = F ′(x̄; d) ≥ 0. (A.3)

For convenience, let Pג = Pג(x̄) and Sj0 = {−∇φ0(x̄) − v0 +∇ψ0,j0(x̄) : v0 ∈ ∂ζ0(x̄)}, where Pג(x̄)
is defined in (A.1). We next show that Pג ∩ Sj0 6= ∅. Suppose for contradiction that Pג ∩ Sj0 = ∅.
This, together with the facts that Pג and Sj0 are nonempty closed convex sets and Sj0 is bounded,
implies that there exists some d̄ ∈ ℜn such that uT d̄ ≤ 0 for any u ∈ Pג and u

T d̄ ≥ 1 for any u ∈ Sj0 .
Hence, one has d̄ ∈ [Pג]

o. By I=(x̄) 6= ∅ and the above assumption on x̄, it follows from Propositions
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2.1 and 1.1 that [Pג]
o = TYג(x̄)(x̄), which along with d̄ ∈ [Pג]

o implies that d̄ ∈ TYג(x̄)(x̄). In addition,

since uT d̄ ≥ 1 for any u ∈ Sj0 , one has

1 ≤ min
u∈Sj0

uT d̄ = min
v0∈∂ζ0(x̄)

{−[∇φ0(x̄) + v0 −∇ψ0,j0(x̄)]
T d̄} = −[∇φ0(x̄)

T d̄+ ζ ′0(x̄; d̄)−∇ψ0,j0(x̄)
T d̄].

Hence, we have that ∇φ0(x̄)
T d̄ + ζ ′0(x̄; d̄) − ∇ψ0,j0(x̄)

T d̄ < 0 and d̄ ∈ TYג(x̄)(x̄), which contradict
(A.3). We thus conclude that Pג ∩ Sj0 6= ∅. Using this relation, (A.1), the definitions of Sj0 and

I=(x̄), and letting λj0,גi = 0 for all i 6∈ I=(x̄), we easily see that (2.7) and (2.8) hold.
(⇐). Suppose that for any j0 ∈ J0(x̄) and ג = (j1, . . . , jI) ∈ J (x̄), there exists a vector of

Lagrangian multipliers λj0,ג = (λj0,1ג , . . . , λj0,גI ) such that (2.7) and (2.8) hold. In view of (2.7), one

has λj0,גi ≥ 0 for every i ∈ I=(x̄) and λ
j0,ג
i = 0 for any i 6∈ I=(x̄). By (2.8), there exist vj0,גi ∈ ∂ζi(x̄)

for all 0 ≤ i ≤ I and wj0,ג ∈ NX(x̄) such that

∇φ0(x̄) + vj0,0ג −∇ψ0,j0(x̄) +

I∑

i=1

λj0,גi [∇φi(x̄) + vj0,גi −∇ψi,ji(x̄)] + wj0,ג = 0.

These, together with the facts that λj0,גi ≥ 0,∀i ∈ I=(x̄) and λj0,גi = 0,∀i 6∈ I=(x̄), imply that for
any j0 ∈ J0(x̄), ג ∈ J (x̄) and d ∈ ℜ

n,

∇φ0(x̄)
T d+ ζ ′0(x̄; d) −∇ψ0,j0(x̄)

T d ≥ ∇φ0(x̄)
Td+ (vj0,0ג )Td−∇ψ0,j0(x̄)

Td

= −
I∑

i=1

λj0,גi [∇φi(x̄) + vj0,גi −∇ψi,ji(x̄)]
Td− (wj0,ג)Td

≥ −
∑

i∈I=(x̄)

λj0,גi [∇φi(x̄)
T d+ ζ ′i(x̄; d) −∇ψi,ji(x̄)

T d]− (wj0,ג)Td.

(A.4)

By the above assumption on x̄, it follows from Proposition 2.1 that Cג(x̄) = TYג(x̄)(x̄) for all ג ∈ J (x̄).

Hence, one has that d ∈ TX(x̄) and ∇φi(x̄)
Td + ζ ′i(x̄; d) −∇ψi,ji(x̄)

Td ≤ 0 for any d ∈ TYג(x̄)(x̄). In

view of these, (A.4), wj0,ג ∈ NX(x̄) and λ
j0,ג
i ≥ 0 for every i ∈ I=(x̄), one has ∇φ0(x̄)

T d+ ζ ′0(x̄; d)−
∇ψ0,j0(x̄)

T d ≥ 0 for any d ∈ TYג(x̄)(x̄). It then follows that for any ג ∈ J (x̄) and d ∈ TYג(x̄)(x̄),

F ′(x̄; d) = ∇φ0(x̄)
T d+ ζ ′0(x̄; d)− max

j0∈J0(x̄)
∇ψ0,j0(x̄)

Td

= min
j0∈J0(x̄)

{
∇φ0(x̄)

Td+ ζ ′0(x̄; d)−∇ψ0,j0(x̄)
Td

}
≥ 0.

Hence, we derive from Theorem 2.1 that x̄ is a B-stationary point of problem (1.1).

References

[1] M. Ahn, J.-S. Pang, J. Xin. Difference-of-convex learning: directional stationarity, optimality,
and sparsity. SIAM J. Optim., 27(3): 1637-1665, 2017.

[2] A. Alvarado. Centralized and distributed resource allocation with applications to signal processing
in communications. Ph.D. thesis, Department of Industrial and Enterprise Systems Engineering,
University of Illinois at Urbana-Champaign, 2014.

[3] J. P. Aubin and H. Frankowska, Set-Valued Analysis. Springer, Boston, 2009.

30



[4] A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex
optimization. Oper. Res. Lett., 31: 167-175, 2003.

[5] A. Beck and N. Hallak. On the convergence to stationary points of deterministic and randomized
feasible descent directions methods. SIAM J. Optim., 30(1): 56-79, 2020.

[6] D. P. Bertsekas. Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA, 1999.

[7] Y. Cui, J.-S. Pang, B. Sen. Composite difference-max programs for modern statistical estimation
problems. SIAM J. Optim., 28(4), 3344–3374, 2018.

[8] H. Dong, M. Ahn and J.-S. Pang. Structural properties of affine sparsity constraints. Math.
Program., 176(1-2):95–135, 2019.

[9] G. Gasso, A. Rakotomamonjy, and S. Canu. Recovering sparse signals with a certain family of
non-convex penalties and DC programming. IEEE T. Image Process., 57:4686-4698, 2009.

[10] L. J. Hong, Y. Yang, and L. Zhang. Sequential convex approximations to joint chance constrained
programs: A Monte Carlo approach. Oper. Res., 59(3): 617-630, 2011.

[11] M. Hong, M. Razaviyayn, Z.-Q. Luo, J.-S. Pang. A unified algorithmic framework for block-
structured optimization involving big data: with applications in machine learning and signal
processing. IEEE Signal Process. Mag., 33(1): 57-77, 2016.

[12] H. A. Le Thi, V. N. Huynh and T. Pham Dinh. DC programming and DCA for general DC
programs. TV Do, HA Le Thi, NT Nguyen, eds. Advanced Computational Methods for Knowledge
Engineering. Chap. (Springer, Cham, Switzerland), 15-35, 2014.

[13] H. A. Le Thi and T. Pham Dinh. DC programming and DCA: thirty years of developments.
Math. Program., 169(1):5–68, 2018.

[14] D. H. Li, L. Wu, Z. Sun and X. J. Zhang. A constrained optimization reformulation and a feasible
descent direction method for L1/2 regularization. Comput. Optim. Appl., 59(1-2): 263-284, 2014.

[15] T. Liu, T.K. Pong and A. Takeda, A successive difference-of-convex approximation method for a
class of nonconvex nonsmooth optimization problems. Math. Program., 176(1-2):339–367, 2019.

[16] T. Liu, T.K. Pong and A. Takeda, A refined convergence analysis of pDCAe with applications to
simultaneous sparse recovery and outlier detection. Comput. Optim. Appl., 73(1):69-100, 2019.

[17] Z. Lu. Sequential convex programming methods for a class of structured nonlinear programming.
http://arxiv.org/abs/1210.3039, 2012.

[18] Z. Lu and X. Li. Sparse recovery via partial regularization: Models, theory, and algorithms.
Math. Oper. Res., 43(4): 1290-1316, 2018.

[19] Z. Lu and Y. Zhang. An augmented Lagrangian approach for sparse principal component anal-
ysis. Math. Program., 135(1-2): 149-193, 2012.

[20] Z. Lu, Z. Zhou and Z. Sun. Enhanced proximal DC algorithms with extrapolation for a class of
structured nonsmooth DC minimization. Math. Program., 176(1-2): 369-401, 2019.

[21] A. Nemirovski and D. Yudin. Problem complexity and Method Efficiency in Optimization. Wiley,
New York, 1983.

31

http://arxiv.org/abs/1210.3039


[22] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1):127–152,
2005.

[23] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2nd, New York, 2006.

[24] J.-S. Pang. Partially B-regular optimization and equilibrium problems. Math. Oper. Res., 32(3):
687-699, 2007.

[25] J.-S. Pang, M. Razaviyayn and A. Alvarado. Computing B-stationary points of nonsmooth DC
programs. Math. Oper. Res., 42(1): 95-118, 2017.

[26] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.

[27] M. Raydan. The Barzilai and Borwein gradient method for the large scale unconstrained mini-
mization problem, SIAM J. Optim., 7(1):26-33, 1997.

[28] B. Wen, X. Chen, T.K. Pong. A proximal difference-of-convex algorithm with extrapolation.
Comput. Optim. Appl., 69(2), 297-324, 2018.

[29] X. Zheng, X. Sun, D. Li and J. Sun. Successive convex approximations to cardinality-constrained
convex programs: a piecewise-linear DC approach. Comput. Optim. Appl., 59(1-2): 379-397, 2014.

32


	1 Introduction
	1.1 Notation

	2 Technical preliminaries
	3 A penalty method for DC program (1.1)
	4 An augmented Lagrangian method for DC program (1.1)
	5 Successive convex approximation method for penalty and AL subproblems
	6 Numerical results
	7 Concluding remarks
	A Proof of Theorem 2.2

