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Demand forecasting plays an important role in many inventory control problems. To mitigate the potential
harms of model misspecification in this context, various forms of distributionally robust optimization have
been applied. Although many of these methodologies suffer from the problem of time-inconsistency, the work
of Klabjan, Simchi-Levi and Song [85] established a general time-consistent framework for such problems by
connecting to the literature on robust Markov decision processes.

Motivated by the fact that many forecasting models exhibit very special structure, as well as a desire to
understand the impact of positing different dependency structures, in this paper we formulate and solve a
time-consistent distributionally robust multi-stage newsvendor model which naturally unifies and robustifies
several inventory models with demand forecasting. In particular, many simple models of demand forecasting
have the feature that demand evolves as a martingale (i.e. expected demand tomorrow equals realized demand
today). We consider a robust variant of such models, in which the sequence of future demands may be any
martingale with given mean and support. Under such a model, past realizations of demand are naturally
incorporated into the structure of the uncertainty set going forwards.

We explicitly compute the minimax optimal policy (and worst-case distribution) in closed form, by com-
bining ideas from convex analysis, probability, and dynamic programming. We prove that at optimality the
worst-case demand distribution corresponds to the setting in which inventory may become obsolete at a
random time, a scenario of practical interest. To gain further insight, we prove weak convergence (as the
time horizon grows large) to a simple and intuitive process. We also compare to the analogous setting in
which demand is independent across periods (analyzed previously in Shapiro [119]), and identify interest-
ing differences between these models, in the spirit of the price of correlations studied in Agrawal et al. [2].
Finally, we complement our theoretical results by providing a targeted and concise numerical experiment
further demonstrating the benefits of our model.

Key words : inventory control, distributionally robust optimization, martingale, dynamic programming,
robust Markov decision process, demand forecasting

1. Introduction and literature review
1.1. Introduction
The fundamental problem of managing an inventory over time in the presence of stochastic demand
is one of the core problems of Operations Research, and related models have been studied since
at least the seminal work of Edgeworth [48]. In many practical settings of interest, demands are
correlated over time (cf. Scarf [114, 115], Iglehart and Karlin [77]). As a result, there is a vast lit-
erature investigating inventory models with correlated demand, including: studies of the so-called
bull-whip effect (cf. Ryan [112], Chen et al. [36], Lee et al. [87]); models with Markov-modulated
demand (cf. Feldman [52], Iglehart and Karlin [77], Kalymon [83]); models with forecasting, includ-
ing models in which demand follows an auto-regressive / moving average (ARMA) or exponentially
smoothed process (cf. Johnson and Thompson [82], Lovejoy [89], Blinder [28], Pindyck [104], Miller
[96], Badinelli [6], Gallego and Ozer [58], Levi et al. [88], Chao [35], Boute, Disney, and Van
Mieghem [31]); and models obeying the Martingale Model of Forecast Evolution (MMFE) and its
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many generalizations (cf. Heath and Jackson [71], Graves et al. [65], Toktay and Wein [127], Erkip
et al. [50], Iida and Zipkin [78], Lu, Song and Regan [90], Milner and Kouvelis [97]). Although
several of these works offer insights into the qualitative impact of correlations on the optimal policy
(and associated costs) when managing an inventory over time, these results are typically proven
under very particular distributional assumptions, which assume perfect knowledge of all relevant
distributions. This is potentially a significant problem, since various authors have previously noted
that model misspecification when demand is correlated can lead to very sub-optimal policies (cf.
Badinelli [6]). Indeed, the use of such time series and forecasting models in Operations Research
practice is well-documented, and concerns over the practical impact of model misspecification have
been raised repeatedly in the forecasting and Operations Research literature (cf. Fildes [53], Fildes
et al. [54]).
One approach taken in the literature to correcting for such model uncertainty is so-called dis-

tributionally robust optimization. In this framework, one assumes that the joint distribution (over
time) of the sequence of future demands belongs to some set of joint distributions, and solves the
minimax problem of computing the control policy which is optimal against a worst-case distri-
bution belonging to this set. Such a distributionally robust approach is motivated by the reality
that perfect knowledge of the exact distribution of a given random process is rarely available (cf.
Dupacová [46, 47], Prékopa [106], Žáčková [138]). A typical minimax formulation is as below:

min
x∈X

max
Q∈M

EQ [f(x, ξ)] ,

where X is a set of decisions and M is a set of probability measures. The objective is to pick a
decision x that minimizes the average cost of f under a worst-case distribution.
The application of such distributionally robust approaches to the class of inventory control prob-

lems was pioneered in Scarf [113], where it was assumed that M contains all probability measures
whose associated distributions satisfy certain moment constraints. Such an approach has been
taken to many variants of the single-stage model since then (cf. Gallego and Moon [60], Gallego
[57], Perakis and Roels [102], Gallego and Moon [61], Yue et al. [137], Hanasusanto et al. [68], Zhu
et al. [140]), and the single-stage distributionally robust model is quite broadly understood.
The analogous questions become more subtle in the multi-stage setting, due to questions regard-

ing the specification of uncertainty in the underlying joint distribution. There have been two
approaches taken in the literature, depending on whether the underlying optimization model is
static or dynamic in nature. In a static formulation, one specifies a family of joint distributions
for demand over time, typically by e.g. fixing various moments and supports, or positing that the
distribution belongs to some appropriately defined ball, and then solves an associated global min-
imax optimization problem (cf. Delage and Ye [43], See and Sim [117], Popescu [105], Bertsimas
et al. [18], Dupacová [46, 47], Bertsimas, Gupta and Kallus [20]). Such static formulations gener-
ally cannot be decomposed and solved by dynamic programming (DP), because the distributional
constraints do not contain sufficient information about how the distribution behaves under con-
ditioning. Put another way, such models generally do not allow for the incorporation of realized
demand information into model uncertainty / robustness going forwards (i.e. re-optimization in
real time), and are generally referred to as time-inconsistent in the literature (cf. Ahmed, Cakmak
and Shapiro [4], Iancu, Petrik and Subramanian [74], Xin, Goldberg and Shapiro [136], Epstein
and Schneider [49]). This inability to incorporate realized demand information may make such
approaches undesirable for analyzing models which explicitly consider the forecasting of future
demand (cf. Klabjan, Simchi-Levi and Song [85], Iancu, Petrik and Subramanian [74], Shapiro
[118]). We note that although some of these static formulations have been able to model settings
in which information is revealed over time and/or temporal dependencies manifest through time
series (cf. See and Sim [117], Lam [86], Gupta [67]), the fundamental inability to incorporate real-
ized demand (in the sense of time in-consistency) remains.
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Alternatively, in a dynamic formulation, the underlying family of potential joint distributions
must admit a certain decomposition which ensures a desirable behavior under conditioning, and
a resolution by DP. The existence of such a decomposition is generally referred to as the rect-
angularity property (cf. Iyengar [80], Iancu, Petrik and Subramanian [74], Epstein and Schneider
[49], Shapiro [120]). For example, the set of all joint distributions for the vector of demands (D1,D2)
such that (s.t.): E[D1] = 1,E[D2|D1] =D1, and (D1,D2) has support on the non-negative integers
is rectangular, since the feasible set of joint distributions may be decomposed as follows. To each
possible realized value d for D1 (i.e. each non-negative integer), we may associate a fixed collection
S(d) of possible conditional distributions for D2 (i.e. those distributions with mean d and support
on the non-negative integers). Furthermore, every feasible distribution for the vector (D1,D2) may
be constructed by first selecting a feasible distribution D for D1 (i.e. any distribution with mean
one and support on the non-negative integers), and for each element d in the support of D, setting
the conditional distribution of D2 (given {D1 = d}) to be any fixed element of S(d). Moreover,
the set of joint distributions constructible in this manner is precisely the set of feasible distribu-
tions for the vector (D1,D2). Alternatively, if we had instead required that E[D1] =E[D2] = 1, and
E[D1D2] = 2 (with the same support constraint), the corresponding set of feasible joint distributions
would not be rectangular, as it may be verified that such a decomposition is no longer possible.
For a formal definition and more complete / precise description of the rectangularity property, we
refer the reader to cf. Iyengar [80], Iancu, Petrik and Subramanian [74], Epstein and Schneider
[49], Xin, Goldberg and Shapiro [136], Nilim and El Ghaoui [99], Bielecki et al. [14], Shapiro [120],
and note that since various communities have studied several closely related notions at different
times, a complete consensus on a common rigorous definition has not yet been reached. As dis-
cussed in Nilim and El Ghaoui [99], we note that such dynamic formulations are closely related
to the theory of stochastic games (cf. Altman et al. [5]), and have also been studied within the
mathematical finance community (cf. Bayraktar et al. [11], Bayraktar and Yao [10], Glasserman
and Xu [63], Cheng and Riedel [38], Föllmer and Leukert [55], Nishimura and Ozaki [100], Riedel
[109], Trojanowska and Kort [128]).
There are several works which formulate DP approaches to distributionally robust inventory

models (cf. Gallego [59], Ahmed, Cakmak and Shapiro [4], Choi and Ruszczynski [39], Shapiro
[119], Xin, Goldberg and Shapiro [136]). More generally, such dynamic problems can typically be
formulated as so-called robust Markov decision processes (MDP) (cf. Iyengar [80], Nilim and El
Ghaoui [99], Wiesemann, Kuhn and Rustem [135]), akin to robust formulations considered previ-
ously within the control community (cf. Hansen and Sargent [69]). To the best of our knowledge, the
only such work which considers applications to correlated demands and forecasting models within
Operations Research is that of Klabjan, Simchi-Levi and Song [85]. In that work, the authors make
the connection between dynamic distributionally robust inventory models and robust MDP, in a
very general sense, and prove e.g. the optimality of state-dependent (s,S) policies, where the state
incorporates the entire history of demand. The authors also consider a more specialized model
in which the demand in period t may come from any distribution within a certain ball of the
empirical histogram of all past demands. We note that many simple forecasting models common in
the Operations Research and statistics literature (e.g. linear time series) have considerable special
structure, and to the best of our knowledge precisely how this structure would manifest within
the general framework of Klabjan, Simchi-Levi and Song [85] (and associated general framework
of robust MDP) remains an open question.
On a related note, to the best of our knowledge, there seems to have been no systematic study

of the impact of positing different joint dependency structures in such multi-stage distributionally
robust inventory control problems, e.g. comparing the properties and cost of a minimax optimal
policy. The quest to develop such an understanding in the broader context of stochastic optimiza-
tion (not specifically inventory control) was initiated in Agrawal et al. [2], where the authors define
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the so-called price of correlations as the ratio between the optimal minimax value when all asso-
ciated random variables (r.v.) are independent, and the setting where they may take any joint
distribution belonging to an allowed family. Although the authors do not look specifically at any
inventory problems, they stress the general importance of understanding how positing different
joint distribution uncertainty impacts the underlying stochastic optimization. Also, although sev-
eral authors have demonstrated that the family of non-stationary history-dependent s-S policies is
optimal for a broad class of minimax inventory problems (cf. Ahmed, Cakmak and Shapiro [4], Not-
zon [101], Klabjan, Simchi-Levi and Song [85]), the impact of the posited dependency structure on
the corresponding s-S policy remains poorly understood. We note that although these questions
remain open, the general theory of sensitivity analysis for (distributionally robust) optimization
problems is very well developed (cf. Bonans and Shapiro [29]), and that different yet related ques-
tions are the subject of several recent investigations (cf. Gupta [67]).
Combining the above, we are led to the following question.

Question 1. Can we construct effective dynamic distributionally robust variants of the struc-
tured time series and forecasting models common in the Operations Research and statistics lit-
erature? Furthermore, can we develop a theory of how positing different dependency structures
impacts the optimal policy and cost for such models?

1.2. Additional literature review
Highly relevant to any discussion of distributionally robust optimization (either static or dynamic)
is the vast literature on classical (i.e. deterministic) robust optimization, in which the only con-
straints made are on the supports of the associated r.v.s (cf. Ben-Tal, El Ghaoui and Nemirovski
[15], Bertsimas, Brown and Caramanis [19]). In this setting, the worst-case distribution is always
degenerate, namely a point-mass on a particular worst-case trajectory. Such models often lead
to tractable global optimization problems for fairly complex models, and have been successfully
applied to several inventory settings (cf. Kasugai and Kasegai [84], Aharon et al. [3], Ben-Tal et al.
[17], Bertsimas, Iancu and Parrilo [22], Bertsimas and Thiele [25], Ben-Tal et al. [16], Carrizosaa
et al. [33], Solyali et al. [122], Sun and Van Mieghem [126], Mamani, Nassiri and Wagner [92]).
Indeed, these models tend to be more tractable than corresponding distributionally robust formu-
lations, where the question of tractability (under both static and dynamic formulations) may be
more sensitive to the particular modeling assumptions (cf. See and Sim [117], Bertsimas, Sim, and
Zhang [24], Wiesemann, Kuhn and Rustem [135], Delage and Ye [43]). In spite of their potential
computational advantages, one drawback of such classical robust approaches is that they may be
overly conservative, and unable to capture the stochastic nature of many real-world problems (cf.
See and Sim [117]). We note that the precise relationship between classical robust and distribu-
tionally robust approaches remains an intriguing open question. On a related note, questions of
robust time series models and their applications to inventory models, similar in spirit to those
we will consider in the present work, were recently studied in Carrizosaa et al. [33], at least for
single-stage models. There the authors formulated a general notion of robust time series, and prove
that the corresponding single-stage minimax newsvendor problem can be formulated as a convex
optimization problem by using a budget-of-uncertainty approach similar to that studied in [7].
Such an approach has also been used to study robust versions of multi-period inventory models in
which demand is correlated (cf. [92]). As regards connections to our earlier discussion of static and
dynamic formulations in the distributionally robust setting, we note that the potential modeling
benefits of being able to dynamically update one’s uncertainty sets has also been considered in the
deterministic robust setting (cf. Bertsimas and Vayanos [26], Wagner [132]). Indeed, an approach to
robust multi-period inventory problems based on deterministic robust optimization / the budget-
of-uncertainty approach and optimal control was recently presented in [132], where we note that
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their approach and findings are in a sense incomparable to our own.
Also relevant to questions involving distributionally robust optimization is the search for “opti-

mal” probability bounds. In particular, some of the most celebrated results in probability theory
are of the form “any random vector with property A has probability at most p of belonging to set
S” for appropriate choices of A,p,S. That obtaining tight versions of these bounds can be phrased
as an appropriate distributionally robust optimization problem is by now well-known within the
Operations Research community, especially since this connection was clarified in the seminal work
of Bertsimas and Popescu [23]. Such problems, e.g. those considered in Bertsimas and Popescu [23],
typically involve formulating a static optimization problem in which one specifies knowledge or
bounds on certain moments, covariances, supports, etc., and frames finding a “worst-case” distri-
bution satisfying these conditions as a convex optimization problem. Recent work of Beigblock and
Nutz [12] has brought to light the fact that certain probability inequalities, specifically well-known
inequalities for martingales such as the celebrated Burkholder inequality, can be similarly formu-
lated using distributionally robust optimization, but are more amenable to a dynamic formulation,
due to the fundamentally conditional structure of the martingale property. Another related line of
work is that on so-called optimal transport problems, especially that subset focusing on so-called
optimal martingale transport, and we refer the interested reader to Dolinsky and Soner [44] and
Biegblock et al. [13] for details and additional references.
We close this overview by noting that there is a vast literature on time series in the statistics

community (cf. Box, Jenkins, and Reinsel [30]), and we make no attempt to survey that litera-
ture here. These investigations include considerable work on robust approaches (cf. Maronna et al.
[94]), where different lines of research use different notions of robustness (cf. Stockinger and Dutter
[125]). Most relevant to our own investigations are the many such works related to distributional
misspecification, which has been investigated within the statistics community for over 50 years (cf.
Tukey [129], Huber [73], Stockinger and Dutter [125], Medina and Ronchetti [95]), and includes the
analysis of minimax notions of robustness (cf. Franke [56], Luz and Moklyachuk [91]) and so-called
robust Kalman filters (cf. Ruckdeschel [111]). In spite of this vast literature, it is worth noting that
even recently, there have been several calls for the development of more tools and methodologies
for the robust analysis of time series data. For example, in De Gooijer and R. Hyndman [42], it is
noted that a persistent problem in the application of time series models is “the frequent misuse
of methods based on linear models with Gaussian i.i.d. distributed errors.” A similar
commentary was given very recently in Guerrier et al. [66], in which the authors note that “the
robust estimation of time series parameters is still a widely open topic in statistics for
various reasons.” Such calls for the development of new methodologies further serve to under-
score the potential impact of combining ideas from robust optimization with time series analysis,
e.g. through Question 1.

1.3. Our contributions
In this paper we take a step towards answering Question 1 by formulating and solving a dynamic
distributionally robust multi-stage newsvendor model which naturally unifies the analysis of several
inventory models with demand forecasting. In particular, we consider a dynamic distributionally
robust multi-stage inventory control problem (with backlogged demand) in which the sequence of
future demands may be any martingale with given mean and support (assumed the same in every
period). Note that the martingale demand assumption has been widely used in many demand
forecasting models in the literature, including the additive-MMFE in which the demand process
is given by Dt − Dt−1 = ǫt where {ǫt}t≥1 is a sequence of i.i.d. r.v.s with mean zero; and the
multiplicative-MMFE in which the demand process is given by Dt

Dt−1
= exp(ηt) where {ηt}t≥1 is a

sequence of i.i.d. r.v.s with E [exp (η1)] = 1. Here we refer the interested reader to Wang, Atasu and
Kurtulus [133] for further discussion of such models and their study in the inventory literature. Our



Xin and Goldberg: Distributionally robust inventory control when demand is a martingale

6

contributions are four-fold. First, we explicitly compute the minimax optimal policy (and associated
worst-case distribution) in closed form. Our main proof technique involves a non-trivial induction,
combining ideas from convex analysis, probability, and DP. Second, we prove that at optimality
the worst-case demand distribution corresponds to the setting in which the inventory may become
obsolete at a random time, a scenario of practical interest which has been studied previously in
the literature (cf. Pierskalla [103], Brown [32], Joglekar and Lee [81], Song and Zipkin [124], Cerag
[34]). Third, to gain further insight into our explicit solution, we prove weak convergence (as the
time horizon grows large) to a simple and intuitive process. Fourth, in the spirit of Agrawal et al.
[2], we compare to the analogous setting in which demand is independent across periods (analyzed
previously in Shapiro [119]), and identify interesting differences between these two models. In
particular, we prove that when the initial inventory level is zero, the minimax optimal cost is
maximized under the dependency structure of the independent-demand model. More precisely, the
minimax optimal cost when nature is restricted to selecting a joint distribution (for demand) under
which demand is independent over time (and satisfies the given support constraints) is equivalent
to the minimax optimal cost when nature need only satisfy the support constraints (and may
select any joint distribution whatsoever). Furthermore, we compute the limiting ratio (as the time
horizon grows large) of the minimax optimal value under the martingale-demand model to that
under the independent-demand model, which has a simple closed form and evaluates to exactly
1
2
in the perfectly symmetric case. Interestingly, we find that under different initial conditions,

the situation may in fact be reversed, showing that such comparative statements may be quite
subtle. Finally, we complement our theoretical results by providing a targeted and concise numerical
experiment further demonstrating the benefits of our model. Indeed, our experiments find that
when the true demand distribution has the dependency structure of an additive-MMFE model,
the robust minimax-optimal policy we devise in this work significantly outperforms the previously
studied robust policy which is minimax-optimal under an independence assumption.

1.4. Outline of paper
Our paper proceeds as follows. We begin by reviewing the model with independent demand (ana-
lyzed in Shapiro [119]) in Section 2.1. We then introduce our distributionally robust model with
martingale dependency structure in Section 2.2, and prove the validity of a certain DP formulation
(very similar to the robust MDP framework of Iyengar [80]). We present our main results in Sec-
tion 2.3, which include the explicit solution to our distributionally robust martingale model, the
weak convergence, and a comparison between our martingale-demand model and the independent-
demand model. The proofs of our main results regarding the explicit solution of the associated
DP and several related structural properties are given in Section 3. In Section 4 we prove our
weak convergence results. In Section 5, we conduct a targeted and concise numerical experiment.
We provide a summary of our results, directions for future research, and concluding remarks in
Section 6. We also provide a technical appendix, which contains the proofs of several results used
throughout the paper, as well as some additional supporting results, in Section 7.

2. Main results
Before stating our main results, we briefly review the inventory model analyzed in Shapiro [119],
which we refer to as the independent-demand model.

2.1. Independent-demand model
Consider the following distributionally robust inventory control problem with backlogging, finite
time horizon T , strictly positive linear backorder per-unit cost b, and a per-unit holding cost of
1, where we note that assuming a holding cost equal to 1 is without loss of generality (w.l.o.g.)
due to a simple scaling argument. Let Dt be the demand in period t, and xt be the inventory level
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at period t after placing a non-negative order, t ∈ [1, T ], where we note that the order must be
placed at the start of period t before Dt is known. For a t-dimensional vector x (potentially of real
numbers, r.v.s, functions, etc.), let x[s] = (x1, . . . , xs), and x[t1,t2] = (xt1 , . . . , xt2). In that case, we
require that xt is a measurable function of D[t−1], xt ≥ xt−1 −Dt−1 for t ∈ [2, T ], and that x1 is a
real constant, where x0 ∈ [0,U ] denotes the initial inventory level and x1 ≥ x0.
For t∈ [1, T ], the cost incurred in period t equals

Ct
∆
= b[Dt −xt]+ + [xt −Dt]+,

where z+
∆
= max(z,0), z−

∆
= max(−z,0), z ∈ R. As a notational convenience, we also define

C(x,d)
∆
= b(d−x)++(x− d)+.

As in Iyengar [80], to avoid later possible concerns about measurability, throughout we make the
minor technical assumption that all relevant demand distributions have rational support, and all
policies π considered are restricted to order rational quantities (i.e. not irrational quantities such as√
2), and the relevant problem primitives x0, µ,U, b (corresponding to initial inventory level, mean

demand, bound on support of demand, and backorder penalty respectively) also belong to Q+, with
x0, µ ∈ [0,U ], where Q+ is the set of all non-negative rational numbers. Under this assumption,
it may be easily verified (due to the finiteness and non-negativity of all relevant cost functions)
that all relevant functions arising in the various DP which we shall later define are sufficiently
regular, e.g. measurable, integrable, and finite-valued. For clarity of exposition, and in light of this
assumption, we do not dwell further on related questions of measurability, and instead refer the
interested reader to the excellent reference Puterman [107] for further discussion.
We now formally and more precisely define the relevant notion of admissible policy in our setting.

As our analysis will be restricted to the setting in which there is a uniform upper bound on the
support of demand (denoted U), for simplicity we will incorporate U directly into several of our

definitions. Let [0,U ]Q
∆
= [0,U ]

⋂Q, where Q is the set of all rational numbers. Then we define an
admissible policy π to be a T -dimensional vector of functions {xπ

t , t∈ [1, T ]}, s.t. xπ
1 is a constant

satisfying xπ
1 ≥ xπ

0

∆
= yπ

1

∆
= x0; and for t∈ [2, T ], xπ

t is a deterministic map from [0,U ]t−1
Q to Q, s.t. for

t ∈ [1, T − 1] and d= (d1, . . . , dt) ∈ [0,U ]tQ, x
π
t+1(d)≥ yπ

t+1(d)
∆
= xπ

t (d[t−1])− dt, which is equivalent
to requiring that a non-negative amount of inventory is ordered in each period. Sometimes as a
notational convenience, we will denote xπ

1 by xπ
1 (d[0]), or more generally as xπ

1 (q) for q ∈ [0,U ]Q.

Let Π̂ denote the family of all such admissible policies. Note that once a particular policy π ∈ Π̂
is specified, the associated costs {Cπ

t , t ∈ [1, T ]} are explicit functions of the vector of demands,
and we sometimes make this dependence explicit with the notation Cπ

t (D[t]), where Cπ
t (D[t]) =

C(xπ
t (D[t−1]),Dt).

Since we will exclusively consider settings in which the demand in every period belongs to [0,U ],
and the initial inventory belongs to [0,U ], it will be convenient to prove that in such a setting
one may w.l.o.g. restrict to policies which always order up to a level in [0,U ]. In particular, let
Π denote that subset of Π̂ consisting of policies π s.t. xπ

t (d[t−1]) ∈ [0,U ] for all t ∈ [1, T ] and
d ∈ [0,U ]TQ whenever x0 ∈ [0,U ]Q (which again is to be assumed throughout). Then the following
lemma provides the desired result, where we defer the relevant proof to the Technical Appendix in
Section 7.

Lemma 1. For every π̂ ∈ Π̂, there exists π ∈Π s.t. for all d= (d1, . . . , dT )∈ [0,U ]TQ and t∈ [1, T ],
Cπ

t (d[t])≤C π̂
t (d[t]).

Let us say that a probability measure Q on an appropriate measurable space is rationally sup-
ported if it places probability 1 on t-dimensional rational vectors for some finite t, where we note
that all measures which we consider will have this property. For such a measure Q, let supp(Q)
(i.e. the support of Q) denote the (possibly infinite) set of rational vectors which Q assigns strictly



Xin and Goldberg: Distributionally robust inventory control when demand is a martingale

8

positive probability, and DQ denote a r.v. (or vector if supp(Q) is not one-dimensional) distributed

as Q. For µ ∈ [0,U ]Q, let M(µ) be the collection of all rationally supported probability measures

Q s.t. supp(Q)⊆ [0,U ]Q, and E[DQ] = µ. Furthermore, let INDT denote the collection of all T -

dimensional product measures s.t. all T marginal distributions belong to M(µ). When there is no

ambiguity, we will suppress the dependence on T , simply writing IND. In words, the joint dis-

tribution of demand belongs to IND iff the demand is independent across time periods, and the

demand in each period has support a subset of [0,U ]Q and mean µ. Then the particular optimiza-
tion problem considered in Shapiro [119] Example 5.1.2 is infπ∈Π̂ supQ∈INDEQ[

∑T

t=1C
π
t ], which by

Lemma 1 is equivalent to

inf
π∈Π

sup
Q∈IND

EQ[
T
∑

t=1

Cπ
t ]. (2.1)

We note that although the exact problem considered in Shapiro [119] does not explicitly restrict the

family of policies and demand distributions to Q, it may be easily verified that the same results go

through in this setting (under our assumptions on the rationality of the relevant problem parame-

ters). In Example 5.1.2 of Shapiro [119], the author proves that due to certain structural properties,

Problem (2.1) can be reformulated as a DP, as we now describe. We note that although the family

of measures IND does not possess the so-called rectangularity property, here the decomposition

follows from the fact that convexity and independence imply that irregardless of the inventory

level and past realizations of demand, a worst-case demand distribution always has support {0,U},
where the precise distribution is then dictated by the requirement of having expectation µ. To

formally define the relevant DP, we now define a sequence of functions {V t, t ≥ 1},{f t, t ≥ 1},
{gt, t≥ 1}. In general, such a DP would be phrased in terms of the so-called “cost-to-go” functions,

with the t-th such function representing the remaining cost incurred by an optimal policy during

periods T − t+1 through T (i.e., if there are t periods to go), subject to the given state at time t.

Here and throughout, we use the fact that the backorder and holding costs are the same in every

period to simplify the relevant concepts and notations. In particular, due to this symmetry and the

associated self-reducibility which it induces, for all T ≥ 1, it will suffice to define the aforementioned

cost-to-go function for the first time period only. Indeed, in the following function definitions,

V T (y,µ) will coincide with the optimal value of Problem (2.1) when the initial inventory level is y

and the associated mean is µ (we leave the dependence on U implicit), where fT , gT have analogous

interpretations. We note that to prevent later potential confusion and ambiguity regarding the

order of operations such as supremum and expectation, we explicitly write out certain expectations

as relevant sums over appropriate domains. Then the relevant DP is as follows.

f 1(x1, d1)
∆
=C(x1, d1) , g1(x1, µ)

∆
= sup

Q1∈M(µ)

∑

q1∈[0,U ]Q

f 1(x1, q1)Q1(q1),

V 1(y1, µ)
∆
= inf

z1≥y1
z1∈[0,U ]Q

g1(z1, µ) , Q1(x1, µ)
∆
= argmax

Q1∈M(µ)

∑

q1∈[0,U ]Q

f 1(x1, q1)Q1(q1),

Φ1(y1, µ)
∆
= argmin

z1≥y1
z1∈[0,U ]Q

g1(z1, µ);

(2.2)
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and for T ≥ 2,

fT (xT , dT )
∆
=C(xT , dT )+V T−1(xT − dT , µ) , gT (xT , µ)

∆
= sup

QT∈M(µ)

∑

qT∈[0,U ]Q

fT (xT , qT )QT (qT ),

V T (yT , µ)
∆
= inf

zT≥yT
zT∈[0,U ]Q

gT (zT , µ) , QT (xT , µ)
∆
= argmax

QT∈M(µ)

∑

qT∈[0,U ]Q

fT (xT , qT )QT (qT ),

ΦT (yT , µ)
∆
= argmin

zT≥yT
zT∈[0,U ]Q

gT (zT , µ).

(2.3)
We have given the argument of the relevant functions with superscript T the subscript T (e.g.
xT , dT are the arguments for fT ) to prevent any possible ambiguities when expanding the relevant
recursions, although this is of course not strictly necessary. We do note that conceptually, if the
length of the time horizon is fixed to T , then the functions with superscript T (e.g. V T ) actually
correspond to the cost-to-go in period 1 (not period T ), and the corresponding arguments (e.g.
xT , dT ) correspond to the inventory level and demand in period 1. More generally, for s∈ [0, T −1],
V T−s will correspond to the cost-to-go in period s + 1, and the corresponding arguments (e.g.
xT−s, dT−s) correspond to the inventory level and demand in period s+ 1. We have chosen our
notational scheme to maximize clarity of exposition, and again note that several of the resulting
simplifications do rely on the symmetries / time-homogeneities of the specific problem considered.

To illustrate how the relevant functions evolve, note that V 2(y2, µ) equals

inf
z2≥y2

z2∈[0,U ]Q

sup
Q2∈M(µ)

∑

q2∈[0,U ]Q

(

C(z2, q2)+V 1(z2 − q2, µ)
)

Q2(q2),

which itself equals

inf
z2≥y2

z2∈[0,U ]Q

sup
Q2∈M(µ)

∑

q2∈[0,U ]Q

(

C(z2, q2)+ inf
z1≥z2−q2
z1∈[0,U ]Q

sup
Q1∈M(µ)

∑

q1∈[0,U ]Q

C(z1, q1)Q1(q1)

)

Q2(q2).

We now review the results of Lemma 5.1 and Example 5.1.2 of Shapiro [119], which characterizes
the optimal policy, value, and worst-case distribution (against an optimal policy) for Problem 2.1,
and relates the solution to DP formulation (2.2) - (2.3). Recall that a policy π ∈Π is said to be a
base-stock policy if there exist constants {x∗

t , t∈ [1, T ]}, s.t. xπ
t =max{yπ

t , x∗
t} for all t∈ [1, T ]. Let

us define

χIND(µ,U, b)
∆
=

{

0 if µ≤ U
b+1

,

U if µ> U
b+1

;

OptTIND(µ,U, b)
∆
=

{

Tbµ if µ≤ U
b+1

,

T (U −µ) if µ> U
b+1

.

Let Dµ ∈M(µ) be the probability measure s.t. Dµ(0) = 1− µ

U
,Dµ(U) = µ

U
. Then the following is

proven in Shapiro [119].

Theorem 1 ([119]). For all strictly positive U, b ∈Q+, T ≥ 1, and µ,x0 ∈ [0,U ]Q, Problem 2.1
always has an optimal base-stock policy π∗, in which the associated base-stock constants {x∗

t , t ∈
[1, T ]} satisfy x∗

t = χIND(µ,U, b) for all t ∈ [1, T ]. If x0 ≤ χIND(µ,U, b), the optimal value of Prob-
lem 2.1 equals OptT

IND
(µ,U, b); and for all x0 ∈ [0,U ], the product measure s.t. all marginals are

distributed according to law Dµ belongs to argmaxQ∈IND
EQ[
∑T

t=1C
π∗

t ]. Furthermore, the DP for-
mulation (2.2) - (2.3) can be used to compute these optimal policies, distributions, and values. In
particular, for all x0, x,µ ∈ [0,U ]Q, V

T (x0, µ) is the optimal value of Problem 2.1, Dµ ∈QT (x,µ),
and max

(

x,χIND(µ,U, b)
)

∈ΦT (x,µ).
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2.2. Martingale-demand model
In this subsection, we formally define our distributionally robust martingale-demand model, and
establish some preliminary results. Let T, b,Π,Cπ

t ,M(µ) be exactly as defined for the independent-
demand model in Subsection 2.1, i.e. the time horizon, backorder and holding costs, set of admissible
policies, cost incurred in period t under policy π, and collection of all probability measures with
support [0,U ]Q and mean µ, respectively. Furthermore, let MART denote the collection of all
rationally supported probability measures corresponding to discrete-time martingale sequences
(D1, . . . ,DT ) s.t. for all t, the marginal distribution of Dt belongs to M(µ). In words, the joint
distribution of demand belongs to MART iff the sequence of demands is a martingale, and the
demand in each period has support a subset of [0,U ]Q and mean µ. When there is no ambiguity, we
will suppress the dependence on T , simply writing MAR. Note that by the martingale property,
the conditional distribution of Dt, conditioned on D[t−1], belongs to M(Dt−1). Then in analogy

with Problem 2.1, the optimization problem of interest is infπ∈Π̂ supQ∈MAREQ[
∑T

t=1C
π
t ], which by

Lemma 1 is equivalent to

inf
π∈Π

sup
Q∈MAR

EQ[
T
∑

t=1

Cπ
t ]. (2.4)

In analogy with the DP formulation (2.2) - (2.3) given for the independent-demand model, we now
define an analogous formulation for the martingale-demand setting, and will later prove that this
DP formulation indeed corresponds (in an appropriate sense) to Problem 2.4.

f̂ 1(x1, d1)
∆
=C(x1, d1) , ĝ1(x1, µ1)

∆
= sup

Q1∈M(µ1)

∑

q1∈[0,U ]Q

f̂ 1(x1, q1)Q1(q1),

V̂ 1(y1, µ1)
∆
= inf

z1≥y1
z1∈[0,U ]Q

ĝ1(z1, µ1) , Q̂1(x1, µ1)
∆
= argmax

Q1∈M(µ1)

∑

q1∈[0,U ]Q

f̂ 1(x1, q1)Q1(q1),

Φ̂1(y1, µ1)
∆
= argmin

z1≥y1
z1∈[0,U ]Q

ĝ1(z1, µ1);

(2.5)

and for T ≥ 2,

f̂T (xT , dT )
∆
=C(xT , dT )+ V̂ T−1(xT − dT , dT ) , ĝT (xT , µT )

∆
= sup

QT∈M(µT )

∑

qT∈[0,U ]Q

f̂T (xT , qT )QT (qT ),

V̂ T (yT , µT )
∆
= inf

zT≥yT
zT∈[0,U ]Q

ĝT (zT , µT ) , Q̂T (xT , µT )
∆
= argmax

QT∈M(µT )

∑

qT∈[0,U ]Q

f̂T (xT , qT )QT (qT ),

Φ̂T (yT , µT )
∆
= argmin

zT≥yT
zT∈[0,U ]Q

ĝT (zT , µT ).

(2.6)
Note that in the definition of fT (xT , dT ) in (2.2)-(2.3), the second argument in the function V T−1

is µ, which is a constant. By contrast, in the definition of f̂T (xT , dT ) above, the second argument
in the function V̂ T−1 is dT , which represents the demand just realized in the past period and is not
a constant.

To again illustrate how the relevant functions evolve, note that V̂ 2(y2, µ2) equals

inf
z2≥y2

z2∈[0,U ]Q

sup
Q2∈M(µ2)

∑

q2∈[0,U ]Q

(

C(z2, q2)+ V̂ 1(z2 − q2, q2)
)

Q2(q2),
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which itself equals

inf
z2≥y2

z2∈[0,U ]Q

sup
Q2∈M(µ2)

∑

q2∈[0,U ]Q

(

C(z2, q2)+ inf
z1≥z2−q2
z1∈[0,U ]Q

sup
Q1∈M(q2)

∑

q1∈[0,U ]Q

C(z1, q1)Q1(q1)

)

Q2(q2).

We now prove that the DP 2.5 - 2.6 indeed corresponds to Problem 2.4, and begin with several
additional definitions. Recall that given a probability measure Q ∈MART , D

Q = (DQ
1 , . . . ,D

Q
T )

denotes a random vector distributed as Q. Given t1 ≤ t2 ∈ [1, T ], we let Q[t1,t2] denote the probabil-
ity measure induced by Q on (DQ

t1
, . . . ,DQ

t2
), letting Q[t2] denote Q[1,t2], and Qt2 denote Q[t2,t2]. As a

notational convenience, we define Q0 to be the probability measure which assigns µ probability one.
Thus supp(Q0) = {µ}. Also, we sometimes let µ0 denote µ. Given two finite vectors x∈R

n,y ∈R
m,

we let x : y ∈ R
n+m denote the concatenation of x and y. Namely, (x : y)k = xk for k ∈ [1, n],

and (x : y)k = yk−n for k ∈ [n+ 1, n+m]. Given Q ∈MART , t ∈ [1, T ] and q ∈ supp(Q[t−1]), let

Qt|q denote the unique probability measure s.t. for all d∈ [0,U ]Q, Qt|q(d) =
Q[t](q:d)

Q[t−1](q)
. Equivalently,

Qt|q(d) = P
(

DQ
t = d

∣

∣ DQ

[t−1] = q
)

. Note that by the martingale property, Qt|q ∈M(qt−1).

Before precisely stating the desired result, we will need some preliminary results regarding the DP
2.5 - 2.6, which assert the non-emptiness of various sets, as well as a certain axiom-of-choice type
result asserting the ability to appropriately select elements from various sets.

Lemma 2. For all t ∈ [1, T ], and x,d ∈ [0,U ]Q, Q̂t(x,d) 6= ∅, Φ̂t(x,d) 6= ∅. Furthermore, it is

possible to assign to every t ∈ [1, T ], and x,d ∈ [0,U ]Q, a measure Q
t

x,d ∈ Q̂t(x,d); and rational

number Φ
t

x,d ∈ Φ̂t(x,d).

Although we temporarily defer the proof of Lemma 2, as the lemma will follow from the proof
of our main result in which we explicitly construct such Q

t

x,d, Φ
t

x,d, suppose for now that such an

assignment Q
t

x,d, Φ
t

x,d has been made in an arbitrary yet fixed manner. We now use these quantities
to define a corresponding policy and distribution, which will correspond to the optimal policy, and
worst-case distribution at optimality, for Problem 2.4. Let π̂∗ = (x̂∗

1, . . . , x̂
∗
T )∈Π denote the follow-

ing policy, which we define inductively. x̂∗
1 =Φ

T

x0,µ
. Now, suppose we have completely specified x̂∗

s

for all s∈ [1, t] for some t∈ [1, T −1], and thus have also specified ŷ∗
s

∆
= yπ̂∗

s for all s ∈ [1, t+1]. Then

we define x̂∗
t+1 as follows. For all d∈ [0,U ]tQ, x̂

∗
t+1(d) = Φ

T−t

ŷ∗t+1(d),dt
. It may be easily verified from the

definition of Φ̂ that this defines a valid policy belonging to Π. Similarly, let Q̂∗ ∈MART denote the
following probability measure, which we define inductively through its conditional distributions.

Q̂∗
1 =Q

T

x0,µ
. Now, suppose we have completely specified Q̂∗

[t]. Then we specify Q̂∗
[t+1] as follows. For

all d∈ supp(Q̂∗
[t]), Q̂

∗
t+1|d =Q

T−t

xπ̂
∗

t+1(d),dt
. Due to its countable support, it may be easily verified that

this uniquely and completely specifies a measure Q̂∗ ∈MART . As a notational convenience, we let
D̂

∗
= (D̂∗

1, . . . , D̂
∗
T ) denote a vector distributed as Q̂∗.

Then we have the following theorem, in analogy with Theorem 1, whose proof we defer to the
Technical Appendix in Section 7.

Theorem 2. For all strictly positive U, b∈Q+, T ≥ 1, and µ,x0 ∈ [0,U ]Q, π̂
∗ is an optimal policy

for Problem 2.4, and Q̂∗ ∈ argmaxQ∈MAR
EQ[
∑T

t=1C
π̂∗

t ]. Furthermore, V̂ T (x0, µ) is the optimal
value of Problem 2.4.

Note that in light of Lemma 2, Theorem 2 implies that computing an optimal policy (and associated
worst-case distribution at optimality) for Problem 2.4 is equivalent to solving the DP 2.5 - 2.6, and
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computing the relevant minimizers and maximizers. Furthermore, in light of Theorem 2, solving
Problem 2.4 is thus reduced from a minimax problem to purely a maximization problem (of the
expected performance of the policy π̂∗), over a restricted family of martingales. This puts the
problem within the general framework of Beigblock and Nutz [12], in which the authors develop
a general methodology, based on concave envelopes, to compute optimal martingale inequalities.
Indeed, our resolution of the DP 2.5 - 2.6 can be viewed as an explicit execution of this methodology,
which exploits the special structure of π̂∗. It is also interesting to note that Theorem 2 asserts
that one can w.l.o.g. restrict to policies and distributions which are Markovian when one considers
the three-dimensional state-space consisting of both the post-ordering inventory level and demand
in the previous period, as well as a dimension tracking the current time period, even though in
principle both the policy and distribution could have exhibited a more complicated form of history
dependence.

2.3. Main results
We now state our main results. We begin by introducing some additional definitions and notations.
Whenever possible, we will suppress dependence on the parameters µ,U, b for simplicity. As a
notational convenience, let us define all empty products to equal unity, and all empty sums to
equal zero. For an event A, let I(A) denote the corresponding indicator. For j ∈ [−1, T ], let

AT
j

∆
=

{

U
∏T−1

k=j+1
k

b+k
if j ≤ T − 1,

b+T
T

U if j = T ;

and

BT
j

∆
=

j

b+T
AT

j .

Note that AT
−1 =BT

−1 =BT
0 = 0, AT

T−1 =BT
T =U , and both {AT

j , j ∈ [−1, T ]} and {BT
j , j ∈ [−1, T ]}

are increasing in j, and decreasing in T . For x,µ ∈ [0,U ], let qTx,µ be the unique (up to sets of
measure zero) probability measure s.t.















qTx,µ(A
T
j ) =

AT
j+1−µ

AT
j+1−AT

j

, qTx,µ(A
T
j+1) =

µ−AT
j

AT
j+1−AT

j

if µ∈ (AT
j ,A

T
j+1] , x∈ [0,BT

j+1);

qTx,µ(0) = 1− µ

AT
k

, qTx,µ(A
T
k ) =

µ

AT
k

if µ∈ (AT
j ,A

T
j+1] , x∈ [BT

k ,B
T
k+1) , k≥ j+1;

qTx,µ(0) = 1− µ

U
, qTx,µ(U) = µ

U
if µ=0 or x=U.

(2.7)

Also, for j ∈ [0, T ], let

GT
j (x,µ)

∆
= (T − b+T

AT
j

µ)x+(T − j)bµ;

in which case we define

ΓT
µ

∆
=

{

0 if µ=0,

j+1 if µ∈ (AT+1
j ,AT+1

j+1 ] , j ∈ [−1, T − 1];

and note that µ∈ (AT

ΓT−1
µ −1

,AT

ΓT−1
µ

] for all T ≥ 2 and µ∈ (0,U ], while AT

ΓT−1
0 −1

= 0. We also define

χT
MAR(µ,U, b)

∆
= βT

µ

∆
=BT

ΓT
µ

, OptTMAR(µ,U, b)
∆
=GT

ΓT
µ
(βT

µ , µ).

Then an explicit solution to the DP 2.5 - 2.6, and thus to Problem 2.4, is given as follows.
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Theorem 3. For all t ∈ [1, T ], and all x,d ∈ [0,U ]Q, max
(

x,χt
MAR

(d,U, b)
)

∈ Φ̂t(x,d), and we

may set Φ
t

x,d = max
(

x,χt
MAR

(d,U, b)
)

. Thus an optimal policy π̂∗ for Problem 2.4 is given as
follows. x̂∗

1 =max
(

x0, χ
T
MAR

(µ,U, b)
)

. For t∈ [1, T − 1],

x̂∗
t+1(d[t]) =max

(

x̂∗
t (d[t−1])− dt, χ

T−t
MAR

(dt,U, b)
)

.

Similarly, qtx,d ∈ Q̂t(x,d), and we may set Q
t

x,d = qtx,d. Thus a worst-case (at optimality) distribution

Q̂∗ ∈ argmaxQ∈MAR
EQ[
∑T

t=1C
π̂∗

t ] may be given as follows. Q̂∗
1 = qTx̂∗1,µ

. For t ∈ [1, T − 1] and d ∈
supp(Q̂∗

[t]),

Q̂∗
t+1|d = qT−t

x̂∗
t+1(d),dt

.

Furthermore, for all x0 ≤ βT
µ , the optimal value of Problem 2.4 equals OptT

MAR
(µ,U, b).

We note that this optimal solution is not necessarily unique, but do not attempt to characterize
the family of all possible solutions here. Furthermore, as the optimal policy is essentially given in
closed form, it may be computed very efficiently.
It is possible to infer many interesting qualitative features of the optimal policy π̂∗ and worst-

case (at optimality) measure Q̂∗ from Theorem 3. First, we have the following observation, whose
proof we defer to the Technical Appendix in Section 7.

Observation 1. For any initial inventory level x0 ∈ [0,U ], the (optimal) policy π̂∗ = (x̂∗
1, . . . , x̂

∗
T ),

and the random vector D̂∗ (distributed as the worst-case measure Q̂∗) satisfy the following relation.
For all t ∈ [1, T ], w.p.1, either D̂∗

t ≥ x̂∗
t (D̂

∗
[t−1]) (i.e. the demand in period t clears the inventory),

or D̂∗
t = 0 (i.e. the demand in period t equals 0, all future demands also equal 0, and the policy-

maker is left holding her inventory for the remainder of the horizon). Furthermore, for all T ≥ 1,
µ ∈ (0,U), and x ∈

[

χT
MAR

(µ,U, b),U
]

,qTx,µ has support on two points, one of which is zero, and
the other of which is at least x. It also follows that under these assumptions, the first case in the
definition of qTx,µ cannot occur.

We next further formalize this observation under the additional assumption that one’s initial inven-
tory is sufficiently small, i.e. x0 ≤ χT

MAR(µ,U, b). In this case the stochastic inventory and demand
process induced by the policy π̂∗, and sequence of demands distributed as Q̂∗, takes a simpler form
which we now describe explicitly. We also relate this simpler form, which results from the fact that
the (conditional) distribution of demand always has 2-point support with positive probability at
0 (as noted in Observation 1), to the concept of inventory obsolescence (see Interpretation 1). Let

ΛT ∆
=max(T −ΓT

µ ,1),D
T
0

∆
= µ,XT

0

∆
=

ΓT
µ

b+T+1
µ, and for t∈ [1,ΛT ],

DT
t

∆
=AT+1−t

min(ΓT
µ ,T−1)

, XT
t

∆
=BT+1−t

ΓT
µ

. (2.8)

Note that ΛT represents the first time that DT
t reaches U .

We now formally relate the corresponding inventory and demand dynamics to an appropriate

Markov chain. Consider the following discrete time Markov chain {MT (t)
∆
=
(

X T
t ,DT

t

)

, t≥ 1}, with
randomized initial conditions.

(

X T
1 ,DT

1

)

=







(

XT
1 ,D

T
1

)

w.p. µ

DT
1
,

(

XT
1 ,0
)

w.p. 1− µ

DT
1
;
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for t∈ [2,ΛT − 1],

(

X T
t ,DT

t

)

=















(

X T
t−1,0

)

w.p. 1, if DT
t−1 = 0,

(

XT
t ,D

T
t

)

w.p.
DT

t−1

DT
t

, if DT
t−1 6=0,

(

XT
t ,0
)

w.p. 1− DT
t−1

DT
t

, if DT
t−1 6= 0;

for t=ΛT (if ΛT 6= 1),

(

X T
t ,DT

t

)

=















(

X T
t−1,0

)

w.p. 1, if DT
t−1 = 0,

(

XT
t ,U

)

w.p.
DT

t−1

U
, if DT

t−1 6= 0,
(

XT
t ,0
)

w.p. 1− DT
t−1

U
, if DT

t−1 6= 0;

for t≥min
(

ΛT +1, T
)

,

(

X T
t ,DT

t

)

=

{

(

X T
ΛT ,0

)

w.p. 1, if DT
ΛT = 0;

(

U,U
)

w.p. 1, if DT
ΛT =U.

The state transitions of the above discrete time Markov chain {MT (t), t≥ 1} can be described
as follows. In period t= 1, the inventory level is set to be XT

1 and the demand is realized as either
DT

1 or zero with certain probabilities (note that the probabilities depend on µ). Going forward, if
the demand realized in the past period t−1 is zero, then the demand in period t remains zero due
to the martingale property, and the inventory level does not change from period t− 1 to period t.
Between periods 2 and ΛT , if the demand has not yet hit zero, the post-ordering inventory level
increases (in period t) from XT

t−1 to XT
t , and the demand (in period t) is realized as either DT

t

or zero with certain probabilities (the probabilities depend on the demand realized in the past
period). In particular,DT

t reaches U when t=ΛT , where {DT
t , t∈ [1,ΛT ]} is an increasing sequence.

Starting from t=ΛT +1, the demand is either zero or U in all remaining periods. If the demand
is zero, then the inventory level does not change, stuck at its value before the first zero demand. If
the demand is U , then the post-ordering inventory level is set to U in all remaining periods.

Corollary 1. If x0 ∈ [0, χT
MAR

(µ,U, b)], then one can construct D̂∗ on a common probability
space with MT s.t. {

(

x̂∗
t (D̂

∗
[t−1]), D̂

∗
t

)

, t ∈ [1, T ]} equals {
(

X T
t ,DT

t

)

, t ∈ [1, T ]} w.p.1. Furthermore,
{DT

t , t ∈ [1,ΛT ]} and {XT
t , t ∈ [1,ΛT ]} are both monotone increasing, with XT

t ≤ DT
t for all t ∈

[1,ΛT ] and DT
ΛT =U .

We now give an alternate description of the dynamics described in Corollary 1, explicitly describ-
ing the random amount of time until the demand is either 0 or U . Let ZT denote the r.v., with
support on the integers belonging to [1,ΛT ], whose corresponding probability measure ZT satisfies

ZT (t) =







(

1− DT
t−1

DT
t

)

µ

DT
t−1

if t∈ [1,ΛT − 1];

µ

DT
t−1

if t=ΛT .

Also, let Y T denote a r.v., with support on {0,U}, independent of ZT , whose corresponding prob-
ability measure YT satisfies

YT (x) =







DT

ΛT −1

U
if x=U ;

1− DT

ΛT −1

U
if x=0.
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Corollary 2. Under the same assumptions, and on the same probability space, as described
in Corollary 1, one can also construct ZT , Y T s.t. all of the following hold w.p.1. {

(

X T
t ,DT

t

)

, t ∈
[1,ZT − 1]} equals {

(

XT
t ,D

T
t

)

, t ∈ [1,ZT − 1]}. If ZT ≤ ΛT − 1, then
(

X T
t ,DT

t

)

=
(

XT
ZT ,0

)

for all
t∈ [ZT , T ]. If ZT =ΛT , and Y T =U , then

(

X T
ΛT ,DT

ΛT

)

=
(

XT
ΛT ,U

)

, and
(

X T
t ,DT

t

)

=
(

U,U
)

for all
t∈ [ΛT +1, T ]. If ZT =ΛT , and Y T = 0, then

(

X T
t ,DT

t

)

=
(

XT
ΛT ,0

)

for all t∈ [ΛT , T ]. Furthermore,

D̂∗
t =DT

t I(Z
T > t), t∈ [1,ΛT − 1]; and D̂∗

t =UI(ZT =ΛT , Y T =U), t∈ [ΛT , T ].

Note that Corollary 2 implies that D̂∗ increases along a sequence of pre-determined constants
(i.e. DT

t ) until a random time at which it either drops to 0 or jumps to U , and stays there. Similar
martingales have played an important role in studying extremal martingales in other contexts, e.g.
certain worst-case distributions which arise in the study of the celebrated prophet inequalities (cf.
Hill and Kertz [72]). In light of our results, the appearance of such martingales has an appealing
interpretation.

Interpretation 1. Under our model of demand uncertainty, a robust inventory manager should be
most concerned about the possibility that her product becomes obsolete, i.e. demand for her product
drops to zero at a random time.

We again note that the scenario of product obsolescence has been recognized as practically
relevant and analyzed extensively in the inventory literature. In contrast to much previous literature
on this topic, here our model did not assume that products would become obsolete - instead the
risks of obsolescence arose naturally from our worst-case analysis. Another interesting feature of
our analysis is that even in a worst-case setting, the system may enter a state s.t. for all subsequent
time periods, demand becomes perfectly predictable, and can be perfectly matched (at the level U).
This is again intuitively appealing, as it coincides with the notion that one’s product has reached
such a level of popularity that demand predictably attains its maximum. Furthermore, it suggests
a certain dichotomy - namely, that either one’s product eventually becomes obsolete, or eventually
reaches a level of popularity for which demand predictably attains its maximum.
We now present an intuitive description of these dynamics, explained as a game between the

“inventory manager” (selector of the policy) and “nature” (selector of the worst-case martingale).
Nature reasons that, if her demand in some period t is ever zero, the martingale property ensures
that she will order zero in all subsequent periods. This will leave the inventory manager stuck
holding all the inventory which she held at the start of period t for the entire remainder of the time
horizon, which will incur a large cost. Such a situation is thus desirable from nature’s perspective,
and one might think that to maximize the probability of this happening, nature will thus maximize
the probability that the demand is 0, which would be achieved by putting all probability on 0 and
U . However, as Corollaries 1 - 2 show, this is not the case. In fact, the adversary does not put any
probability mass at U until time ΛT , i.e. the last time period in which there are any meaningful
dynamics. The reason is that in the martingale-demand model, there is an additional hidden cost
for nature associated with putting probability on or near U . In particular, if a demand of U ever
occurs, then the martingale property ensures that all future demands must be U as well. However,
it is “easy” for an inventory manager to perform well against an adversary that always orders U -
in particular, she can simply order up to U in every period, incurring zero cost. In other words, the
aforementioned hidden cost to nature comes in the form of a “loss of randomness”, making nature
perfectly predictable going forwards. Corollaries 1 - 2 indicate that at optimality, this tradeoff
manifests by having nature always put some probability at 0, and some probability on a different
quantity DT

t , which increases monotonically to U as t ↑ ΛT . This “ramping up” can be explained
by observing that although higher values for this second point of the support result in a greater
“loss of randomness”, the cost of such a loss becomes smaller over time, as the associated window
of time during which the adversary is perfectly predictable shrinks accordingly.
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Note that Corollary 1 implies that (in a worst-case setting) the inventory manager continues
to ramp up production until either the demand drops to zero, or time ΛT is reached, where the
precise manner in which production is ramped up results from an attempt to balance the cost of
potential obsoletion (i.e. being stuck holding one’s inventory) with the cost of under-ordering. To
better understand this ramping up, and more generally the dynamics of an optimal policy against
a worst-case distribution for Problem 2.4, we now prove that the Markov chain MT , properly
rescaled, converges weakly (as T →∞) to a simple and intuitive limiting process. For a review of
the formal definition of weak convergence, and the relevant topological spaces and metrics, we refer
the reader to the excellent texts Billingsley [27] and Whitt [134].
Let us define

γ
∆
=

µ

U
, Λ∞ ∆

= 1− γ
1
b .

Let Z∞ denote the mixed (i.e. both continuous and discrete components) r.v., with continuous
support on [0,Λ∞

)

, and discrete support on the singleton Λ∞, whose corresponding probability
measure Z∞ satisfies

Z∞(α) =

{

b(1−α)b−1dα if α∈ [0,Λ∞
)

;

γ if α=Λ∞.

For α∈ [0,Λ∞], where α is again a continuous parameter, let us also define

D∞
α

∆
= µ(1−α)−b , X∞

α

∆
= µγ

1
b (1−α)−(b+1).

Note that D∞
Λ∞ = X∞

Λ∞ = U . We now define an appropriate limiting process. Let M∞(α)0≤α≤1

denote the following two-dimensional process, constructed on the same probability space as Z∞.

M∞(α) =











(

X∞
α ,D∞

α

)

if α ∈ [0,Z∞);
(

X∞
Z∞ ,0

)

if α≥Z∞ and Z∞ <Λ∞;
(

U,U
)

if α≥Z∞ and Z∞ =Λ∞.

Then we have the following weak convergence result. For α ∈ [0,1], let MT (α)
∆
=

MT
(

max(⌊αT ⌋,1)
)

.

Theorem 4. For all U, b > 0 and µ ∈ (0,U), the sequence of stochastic processes
{MT (α)0≤α≤1, T ≥ 1} converges weakly to the process M∞(α)0≤α≤1 on the space D ([0,1], R

2)
under the J1 topology.

We note that Theorem 4 reveals several qualitative insights into the corresponding dynamics.
For example, it provides simple analytical formulas for how (in a worst-case setting) the produc-
tion and demand both ramp up over time, and demonstrates that the limiting probability that
obsolescence ever occurs (again in such a worst-case setting) equals 1− γ.
A different lens through which one can gain further insight into Theorem 3 follows by observ-

ing that for certain values of b and µ, several quantities appearing in our main results simplify
considerably.

Observation 2. When b = 1 and µ = kU
T+1

for some k ∈ [1, T ], AT
j = U(j+1)

T
for j ∈ [−1, T ], and

ΛT = T +1− k. For t∈ [1,ΛT ], DT
t = kU

T+1−t
,

XT
t =

(

(1− t

T +2
)(1− t

T +1
)
)−1 k

T +2

k− 1

T +1
U , OptT

MAR
(µ,U, b) =

k

T
(1− k

T +1
)UT.
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Furthermore,

ZT (t) =

{

1
T+1

if t∈ [1, T − k];
k+1
T+1

if t= T +1− k;

and

YT (x) =

{

1− 1
k+1

if x=U ;
1

k+1
if x= 0.

Namely, ZT is equally likely to take any value in the interval [1, T − k].

Of course, another avenue for more concretely understanding Theorem 3 is to explicitly evaluate
all relevant quantities for small values of T , as we now do for the case T = 2.

Observation 3.

A1
−1 =0, A1

0 =U, A1
1 = (b+1)U, B1

−1 =0, B1
0 = 0, B1

1 =U,
A2

−1 =0, A2
0 =

U
b+1

, A2
1 =U, A2

2 = (1+ b
2
)U, B2

−1 = 0, B2
0 = 0,

B2
1 =

U
b+2

, B2
2 =U, A3

−1 =0, A3
0 =

2U
(b+1)(b+2)

, A3
1 =

2U
b+2

, A3
2 =U,

A3
3 = (1+ b

3
)U, B3

−1 = 0, B3
0 = 0, B3

1 =
2U

(b+2)(b+3)
, B3

2 =
2U
b+3

, B3
3 =U .



































q2x,µ(
U

b+1
) = U−µ

U(1− 1
b+1 )

, q2x,µ(U) =
µ− U

b+1

U(1− 1
b+1 )

if µ∈ ( U
b+1

,U ] , x∈ [0, U
b+2

);

q2x,µ(0) = 1− (b+1) µ

U
, q2x,µ(

U
b+1

) = (b+1) µ

U
if µ∈ (0, U

b+1
] , x∈ [0, U

b+2
);

q2x,µ(0) = 1− µ

U
, q2x,µ(U) = µ

U
if µ∈ (0, U

b+1
] , x∈ [ U

b+2
,U);

q2x,µ(0) = 1− µ

U
, q2x,µ(U) = µ

U
if µ∈ ( U

b+1
,U ] , x∈ [ U

b+2
,U);

q2x,µ(0) = 1− µ

U
, q2x,µ(U) = µ

U
if µ=0 or x=U.

G2
0(x,µ) =

(

2−(b+1)(b+2)
µ

U

)

x+2bµ , G2
1(x,µ) =

(

2−(b+2)
µ

U

)

x+bµ , G2
2(x,µ) = 2(1− µ

U
)x.

Γ2
µ =











0 if µ∈ [0, 2U
(b+1)(b+2)

],

1 if µ∈ ( 2U
(b+1)(b+2)

, 2U
b+2

],

2 if µ∈ ( 2U
b+2

,U ].

Λ2 =

{

2 if µ∈ [0, 2U
(b+1)(b+2)

],

1 if µ∈ ( 2U
(b+1)(b+2)

,U ].

χ2
MAR =











0 if µ∈ [0, 2U
(b+1)(b+2)

],
U

b+2
if µ∈ ( 2U

(b+1)(b+2)
, 2U
b+2

],

U if µ∈ ( 2U
b+2

,U ].

Opt2MAR =











2bµ if µ∈ [0, 2U
(b+1)(b+2)

],
2U
b+2

+(b− 1)µ if µ∈ ( 2U
(b+1)(b+2)

, 2U
b+2

],

2(U −µ) if µ∈ ( 2U
b+2

,U ].

D2
1 =

{

U
b+1

if µ∈ [0, 2U
(b+1)(b+2)

],

U if µ∈ ( 2U
(b+1)(b+2)

,U ].
D2

2 =
{

U if µ∈ [0, 2U
(b+1)(b+2)

].

X2
1 =











0 if µ∈ [0, 2U
(b+1)(b+2)

],
U

b+2
if µ∈ ( 2U

(b+1)(b+2)
, 2U
b+2

],

U if µ∈ ( 2U
b+2

,U ].

X2
2 =

{

0 if µ∈ [0, 2U
(b+1)(b+2)

].

{

Z2(1) = 1− (b+1) µ

U
, Z2(2) = (b+1) µ

U
if µ∈ [0, 2U

(b+1)(b+2)
];

Z2(1) = 1 if µ∈ ( 2U
(b+1)(b+2)

,U ].
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{

Y2(U) = 1
b+1

, Y2(0) = 1− 1
b+1

if µ∈ [0, 2U
(b+1)(b+2)

];

Y2(U) = µ

U
, Y2(0) = 1− µ

U
if µ∈ ( 2U

(b+1)(b+2)
,U ].

To further help interpret Observation 3 and the explicit forms for the various quantities, we show
(in Section 7.11 of the Technical Appendix) how (for the case T = 2) one may derive the same
quantities from a certain “heuristic relaxation” of our original problem. In doing so, we see precisely
where and why certain quantities arise, and we defer the relevant formulation and discussion to
Section 7.11 of the Technical Appendix. We note that Observation 3 also brings another interesting
feature of Theorem 3 to light, namely the fact that χT

MAR(µ,U, b) is not monotone increasing
in b. This is surprising, since one would expect that as the backlogging penalty increases, one
would wish to stock higher inventory levels. We also note that for fixed T,µ,U , χT

IND(µ,U, b) is
monotone increasing in b, i.e. such a non-monotonicity does not manifest in the independent-
demand model. Furthermore, Theorem 4, and the monotonicity (in b) of X∞

0 = µγ
1
b , implies that

this non-monotonicity does not manifest “in the limit”.
We conclude by presenting several comparative results between the independent-demand and

martingale-demand models. First, we prove that the expected cost incurred by a minimax opti-
mal policy is highest under the independent-demand model, among all possible dependency
structures, whenever x0 = 0. In particular, in this case the expected cost incurred under the
independent-demand model is at least the expected cost incurred under the martingale-demand
model. Let GENT denote the family of all T -dimensional measures Q s.t. Qt ∈ M(µ) for all t,

and OptTGEN(µ,U, b)
∆
= infπ∈Π supQ∈GENT

EQ[
∑T

t=1C
π
t ] under the initial condition x0 =0. Then we

prove the following comparative result, and defer the proof to the Technical Appendix in Section
7.

Theorem 5. For all strictly positive U, b ∈ Q+, T ≥ 1, and µ ∈ [0,U ]Q, OptT
GEN

(µ,U, b) =
OptT

IND
(µ,U, b).

Although Theorem 5 implies that
OptT

MAR
(µ,U,b)

OptT
IND

(µ,U,b)
≤ 1, it is interesting to further understand the

behavior of this ratio, in the spirit of the so-called price of correlations introduced in Agrawal et
al. [2]. Indeed, we prove the following, which provides a simple analytical form for this ratio as
T →∞, again deferring the proof to the Technical Appendix in Section 7.

Theorem 6. For all strictly positive U, b∈Q+, and µ∈ (0,U)Q,

lim
T→∞

OptT
MAR

(µ,U, b)

OptT
IND

(µ,U, b)
=

{

1− γ
1
b if µ≤ U

b+1
,

(1−γ
1
b )bµ

U−µ
if µ> U

b+1
.

We also note the following corollary, which follows immediately from Theorem 6.

Corollary 3. Suppose U ∈Q+, µ= U
2
, and b=1. Then

lim
T→∞

OptT
MAR

(µ,U, b)

OptT
IND

(µ,U, b)
=

1

2
.

One setting which arises in various inventory applications is that in which b >> h, which moti-
vates considering what our results say about the regime in which b→∞. In particular, the following
may be easily verified by combining our main result Theorem 3 with a straightforward calculation.

Corollary 4. For all strictly positive U ∈Q+, µ∈ [0,U ]Q, T ≥ 1, and b∈Q+ s.t. b > (U
µ
−1)T ,

it holds that χT
MAR

(µ,U, b) = χIND(µ,U, b) =U , and
OptT

MAR
(µ,U,b)

OptT
IND

(µ,U,b)
= 1.
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Intuitively, Corollary 4 indicates that with all other parameters fixed, if b is sufficiently large,
then in both scenarios the inventory manager orders up to U in the first period out of fear of
incurring large backlogging costs. Furthermore, although the demand dynamics are different in the
two models in this case, they both result in the same minimax expected cost. Interestingly, when
one considers the case of large b in the asymptotic setting of Theorem 6 (in which T is also very
large), a different behavior emerges. Namely, by letting b→∞ in Theorem 6, one may conclude
the following after a straightforward calculation.

Corollary 5. For all strictly positive U ∈Q+, and µ∈ (0,U)Q,

lim
b→∞

lim
T→∞

OptT
MAR

(µ,U, b)

OptT
IND

(µ,U, b)
=

log(γ−1)

γ−1 − 1
.

Combining Corollaries 4 and 5, we conclude that in this case an interchange of limits does not hold.

Namely, as Corollary 4 implies that limT→∞ limb→∞
OptT

MAR
(µ,U,b)

OptT
IND

(µ,U,b)
=1, here the order in which one

lets b,T get large makes a fundamental difference. Indeed, as it is easily verified that limb→∞(bΛ∞) =
log(γ−1), while D∞

0 = µ irregardless of b, what happens in this second setting as b gets large
is that D∞

α ramps up very quickly from µ to U , where the time required to ramp up behaves

(asymptotically) as log(γ−1)

b
T (remember that as large as b may be, T is always much larger due

to the order of limits here). However, over this relatively short time horizon (short as a fraction
of T , still large in an absolute sense as T is very large), a non-trivial backlogging penalty may
be incurred since b is so large. It can be shown that these effects result in a non-trivial limiting
dynamics under a proper rescaling, although we do not present a complete analysis here for the
sake of brevity.
As a final observation, we note that the comparative results of Theorem 5 are sensitive to the

initial conditions, and in fact for different values of x0 the situation may be reversed. For example,
we have the following result, whose proof we similarly defer to the Technical Appendix in Section
7.

Observation 4. For all strictly positive U, b ∈Q+, T ≥ 1, and µ ∈ [0,U ]Q, if x0 = U and µ

U
< 1

b+1
,

then limT→∞
infπ∈Π supQ∈MAR EQ[

∑T
t=1 Cπ

t ]

infπ∈Π supQ∈IND EQ[
∑T

t=1Cπ
t ]

= U−µ

bµ
> 1.

We also would like to emphasize that many of the insights of our analysis, especially the “obso-
lescence phenomena”, i.e. the property that conditional on the past demand realizations and the
current inventory level (under an optimal policy) there always exists a worst-case distribution
that assigns a strictly positive probability to zero and some level which clears the inventory, is
quite sensitive to the particular assumptions of our model. Indeed, although the fact that such
a worst-case (conditional) distribution assigns probability to at most 2 points will hold under a
broad range of modeling assumptions (and follows essentially from the sparsity of basic feasible
solutions to linear programs, which would extend to some other small number of support points
under additional constraints), the special properties of putting probability at 0 and clearing the
inventory are quite fragile. In Section 7.12 of the Technical Appendix, we provide several examples
showing that this feature need not hold if one relaxes our modeling assumptions. Although we
defer an explicit description of those examples and findings to Section 7.12, we summarize those
findings here. We consider three examples, which collectively demonstrate that : 1. if one allows for
time-dependent costs, then a worst-case distribution may not put positive probability at zero; 2. if
one removes the upper bound on the support, then a worst-case distribution may not even exist;
and 3. if one imposes a lower bound on the support, then a worst-case distribution may not put
positive probability on this lower bound, and furthermore may not clear the inventory. Collectively,
these findings suggest that extending our framework to more complex models will require several
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fundamentally new ideas, as much of the structure which allowed for our explicit analysis may no
longer hold.
Of course, the resulting dynamic programs (although more complex) still remain quite structured

even in these more general settings, and we believe that searching for new (possibly more complex
and subtle) phenomena may lead to the resolution of those settings as well. For example, in the
setting that a lower bound is imposed, although our analysis in Section 7.12 (specifically the third
example) shows that under an optimal policy a worst-case distribution need not clear the inventory,
it does not rule out the possibility that in such a setting a worst-case distribution always takes the
inventory below the lower bound. Also, although our analysis in Section 7.12 (specifically the first
example) shows that if the holding costs are held constant and the backlogging costs are monotone
increasing (over time) then the “obsolescence phenomena” need not hold, it may be that imposing
other monotonicities and/or appropriate restrictions on the sequence of holding and backlogging
costs allows one to recover such obsolescence properties even when costs vary over time. Indeed, in
Section 7.12 (specifically the fourth example) we do show the following positive result: the obsoles-
cence phenomena again manifests even if holding costs can vary arbitrarily over time, if one enforces
(the admittedly strong assumption) that all backlogging costs are 0. In this case under a worst-case
measure either all demands are 0 or all demands are U. Although computing the optimal policy
is trivial in that setting (as it is to order nothing), the fact that the worst-case measure utilizes
obsolescence (in the strongest sense possible) is more subtle, and further demonstrates the worst-
case nature of the correlations (over time) induced by obsolescence (especially when holding costs
are a primary concern). Formulating and analyzing such structural properties (which naturally
generalize those considered in our analysis), and applying them to develop solution methodologies
for more general modeling frameworks, remains an interesting direction for future research.

3. Proof of Theorem 3 and Corollaries 1 - 2
In this section, we complete the proof of our main result, Theorem 3, which yields an explicit
solution to Problem 2.4, as well as Lemma 2, and Corollaries 1 - 2. We proceed by induction, and
note that our analysis combines ideas from convex analysis with the theory of martingales. We
begin by making several additional definitions, and proving several auxiliary results.
For x,µ∈ [0,U ], and j ∈ [−1, T − 1] , let

F T
j (x,µ)

∆
=−bx+(b+T )BT

j+1 +
(

Tb− (b+1)(j+1)
)

µ.

Also, let us define

gT (x,µ)
∆
=



















F T
j (x,µ) if µ∈ (AT

j ,A
T
j+1] , x∈ [0,BT

j+1);

GT
k (x,µ) if µ∈ (AT

j ,A
T
j+1] , x∈ [BT

k ,B
T
k+1) , k≥ j+1;

GT
k (x,0) if µ= 0, x∈ [BT

k ,B
T
k+1);

GT
T (U,µ) if x=U.

For later proofs, it will be convenient to note that g may be equivalently expressed as follows. Let

ΥT
x

∆
=

{

T if x=U,

j if x∈ [BT+1
j ,BT+1

j+1 );

and note that x ∈ [BT

ΥT−1
x

,BT

ΥT−1
x +1

) for all T ≥ 2 and x ∈ [0,U), while U = BT

ΥT−1
U

+1
. Noting that

GT
T (U,µ) =GT

T−1(U,µ) implies

gT (x,µ) =







F T

ΓT−1
µ −1

(x,µ) if x<BT

ΓT−1
µ

;

GT

ΥT−1
x

(x,µ) if x≥BT

ΓT−1
µ

.
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We now prove several properties of gT . It will first be useful to review a well-known sufficient con-
dition for convexity of non-differentiable functions. Recall that for a one-dimensional function f(x),
the right-derivative of f evaluated at x0, which we denote by ∂+

x f(x0), equals limh↓0
f(x0+h)−f(x0)

h
.

When this limit exists, we say that f is right-differentiable at x0. Then the following sufficient
condition for convexity is stated in Royden and Fitzpatrick [110] Section 5, Proposition 18.

Lemma 3 (Royden and Fitzpatrick [110]). A one-dimensional function f(x), which is con-
tinuous and right-differentiable on an open interval (a, b) with non-decreasing right-derivative on
(a, b), is convex on (a, b).

Then we may derive the following properties of gT and other relevant quantities, whose proofs we
defer to the Technical Appendix in Section 7.

Lemma 4. gT (x,d) is a continuous and convex function of x on (0,U), and a right (left) con-
tinuous function of x at 0 (U).

Lemma 5. AT
j < AT+1

j+1 < AT
j+1 for j ∈ [0, T − 2]. It follows that for all T ≥ 2 and d ∈ [0,U ],

ΓT
d ∈ {ΓT−1

d ,ΓT−1
d +1}.

Lemma 6. βT
d ∈ argminz∈[0,U ] g

T (z, d).

To simplify various notations and concepts before completing the proof of Theorem 3, it will be
useful to make several additional definitions, and prove a few more relevant preliminary results.
For x,d∈ [0,U ], and j ∈ [0, T ], let

F
T

j (x,d)
∆
= Tx+

(

(b− 1)T − bj− b+T

AT
j

x
)

d+
b+T

AT
j

d2;

and for j ∈ [−1, T − 1], let

G
T

j (d)
∆
= TBT

j+1 +
(

Tb− (b+1)(j+1)
)

d.

Note that βT
d is monotone increasing in d, with βT

0 = 0, and βT
U =U . It follows that for all x∈ [0,U ],

zTx
∆
= inf{d≥ 0 s.t. βT

d ≥ x− d},

is well defined,
zTx ≤ x for x∈ [0,U ], (3.9)

and zTx = 0 iff x= 0. For x,d∈ [0,U ], let us define

gT (x,d)
∆
=























F
T

j (x,d) if d∈ [0, zTx
)
⋂

(x−BT
j+1, x−BT

j ] , j ∈ [0, T − 1];

G
T

j (d) if d∈ [zTx ,U ]
⋂

(AT+1
j ,AT+1

j+1 ] , j ∈ [−1, T − 1];

G
T

−1(0) if d= 0 , x=0;

F
T

T−1(U,0) if d= 0 , x=U.

For later proofs, it will be convenient to note that g may be equivalently expressed as follows.

gT (x,d) =

{

F
T

ΥT−1
x−d

(x,d) if d< zTx ;

G
T

ΓT
d
−1(d) if d≥ zTx .

In that case, we may derive the following properties of gT (x,d), whose proofs we defer to the
Technical Appendix in Section 7.
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Lemma 7. For all T ≥ 1, x,d∈ [0,U ], gT (x,d) = gT
(

max
(

βT
d , x− d

)

, d

)

.

Lemma 8. For each fixed x∈ [0,U ], gT (x,d) is a continuous function of d on (0,U), and a right
(left) - continuous function of d at 0 (U). Also, gT (x,d) is a convex function of d on (0, zTx ), and
a concave function of d on (zTx ,U).

Also, for x,d ∈ [0,U ], let us define ηd
∆
= x− d, αT

x

∆
=AT

ΓT−1
x

, ζTx
∆
=ΓT

zTx
,AT

x

∆
=AT

ζT−1
x

, ℵT
x

∆
=AT

ΥT−1
x

,

fT (x,d)
∆
= b(d−x)++(x− d)+ + gT−1(x,d).

Note that for all j ∈ [−1, T − 1],

BT
j+1 =

j+1

b+T
AT

j+1

≤ j+1

b+ j +1
AT

j+1 = AT
j . (3.10)

Combining with (3.9) and a straightforward contradiction argument, we conclude that for all x∈
[0,U ] and T ≥ 2,

ΥT
x ≥ ΓT

x ≥ ζTx , and ℵT
x ≥ αT

x ≥AT
x . (3.11)

In that case, we may derive the following structural properties of fT , whose proofs we defer to
the Technical Appendix in Section 7.

Lemma 9. For each fixed x∈ [0,U ], fT (x,d) is a continuous function of d on (0,U), and a right
(left) - continuous function of d at 0 (U). Also, for all j ∈ [−1, T −2], fT (x,d) is a convex function
of d on (AT

j ,A
T
j+1). Furthermore, fT (x,d) is a convex function of d on (0,AT

x ), and a concave
function of d on (αT

x ,U).

We now introduce one last preliminary result, which will provide a mechanism for certifying a
distribution as the solution to a given distributionally robust optimization problem, whose proof
we again defer to the Technical Appendix in Section 7.

Lemma 10. Suppose f : [0,U ]→R is any bounded real-valued function with domain [0,U ]. Sup-

pose 0 ≤ L ≤ µ < R ≤ U , and the linear function η(d)
∆
= f(R)−f(L)

R−L
d + Rf(L)−Lf(R)

R−L
, i.e. the line

intersecting f at the points L and R, satisfies η(d) ≥ f(d) for all d ∈ [0,U ], i.e. lies above f on
[0,U ]. Then the measure q s.t. q(L) = R−µ

R−L
, q(R) = µ−L

R−L
, belongs to argmaxQ∈M(µ)EQ[f(D)].

With all of the above notations, definitions, and preliminary results in place, we now proceed
with the proof of Theorem 3, which will follow from the following result.

Theorem 7. For all x,d ∈ [0,U ]Q and T ≥ 1, gT (x,d) = ĝT (x,d), and qTx,d ∈ Q̂T (x,d).

Proof: We proceed by induction, beginning with the base case T = 1. It follows from Observation
3 that for all x,µ ∈ [0,U ]Q, Γ

0
µ = Υ0

x = B1
Γ0
µ
= 0,Γ1

µ = I(µ > U
b+1

), β1
µ = U × I(µ > U

b+1
),g1(x,µ) =

G1
0(x,µ) = (1− b+1

U
µ)x+ bµ, and q1x,µ(0) = 1 − µ

U
, q1x,µ(U) = µ

U
. The desired result then follows

directly from the results of Shapiro [119], and we omit the details.

Now, suppose that the result is true for all s ∈ [1, T − 1] for some T ≥ 2. We now prove that the
results hold also for T . It follows from the induction hypothesis, and Lemmas 4, 6, and 7 that for
all x,d∈ [0,U ]Q,

V̂ T−1(x,d) = gT−1

(

max
(

βT−1
d , x

)

, d

)

, V̂ T−1(x−d, d)= gT−1(x,d) , and f̂T (x,d) = fT (x,d).

(3.12)
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From definitions, to prove the desired induction, it thus suffices to demonstrate that

gT (x,d) = sup
Q∈M(d)

EQ[f
T (x,D)] , and qTx,d ∈ argmax

Q∈M(d)

EQ[f
T (x,D)]. (3.13)

We now use Lemma 9 to explicitly construct (for each fixed value of x) a family F of lines {Li},
s.t. each line Li lies above fT (x,d) for all d ∈ [0,U ], each line Li intersects f

T (x,d) at exactly two
points p1i , p

2
i , and for each µ ∈ [0,U ] there exists Li ∈ F s.t. µ ∈ [p1i , p

2
i ]. Our construction will

ultimately allow us to apply Lemma 10, explicitly solve the distributionally robust optimization
problem supQ∈M(d)EQ[f

T (x,D)], and complete the proof. We begin by explicitly constructing the
family of lines F . For d∈R, let us define

KT (x,d)
∆
=

fT (x,ℵT
x )−Tx

ℵT
x

d+Tx;

and for j ∈ [−1, T − 2],

LT
j (x,d)

∆
=

fT (x,AT
j+1)− fT (x,AT

j )

AT
j+1 −AT

j

d+
AT

j+1f
T (x,AT

j )−AT
j f

T (x,AT
j+1)

AT
j+1 −AT

j

.

Noting that F
T−1

j (x,0) = (T − 1)x for all j, it follows from Lemma 7 that

fT (x,0)= Tx. (3.14)

It may be easily verified, using (3.14), that KT defines the unique line passing through the (x, y) co-
ordinates

(

0, fT (x,0)
)

and
(

ℵT
x , f

T (x,ℵT
x )
)

; and LT
j defines the unique line passing through the (x, y)

co-ordinates
(

AT
j , f

T (x,AT
j )
)

and
(

AT
j+1, f

T (x,AT
j+1)

)

. Then we have the following result, showing
that KT lies above fT , and that LT

ℓ lies above fT for certain values of ℓ, whose proof we defer to
the Technical Appendix in Section 7.

Lemma 11. For each fixed x ∈ [0,U ], KT (x,d) ≥ fT (x,d) for all d ∈ [0,U ]. Also, for all ℓ ∈
[ΥT−1

x , T − 2], LT
ℓ (x,d)≥ fT (x,d) for all d ∈ [0,U ].

That qTx,d ∈ argmaxQ∈M(d)EQ[f
T (x,D)] follows from Lemmas 10 and 11, definitions, and a

straightforward case analysis, the details of which we omit. We now prove that gT (x,d) =
supQ∈M(d)EQ[f

T (x,D)], and proceed by a case analysis. Let j =ΓT−1
d and k=ΥT−1

x . First, suppose
d∈ [0,AT

k ]. In light of Lemmas 10 and 11, in this case it suffices to demonstrate that

gT (x,d) =KT (x,d). (3.15)

In this case, the left-hand side of (3.15) equals

GT
k (x,d) = (T − b+T

AT
k

d)x+(T − k)bd. (3.16)

Alternatively, from (7.62), the right-hand side of (3.15) equals

(

b(T − k)− (b+T )x

AT
k

)

d+Tx. (3.17)

Noting that (3.16) equals (3.17) completes the proof in this case.
Alternatively, suppose d>AT

k . In this case it suffices to demonstrate that

gT (x,d) =LT
j−1(x,d). (3.18)
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Note that the left-hand side of (3.18) equals

F T
j−1(x,d) =−bx+(b+T )BT

j +
(

Tb− (b+1)j
)

d. (3.19)

Alternatively, it follows from (3.9) and (3.10) that the right-hand side of (3.18) equals

fT (x,AT
j )− fT (x,AT

j−1)

AT
j −AT

j−1

d+
AT

j f
T (x,AT

j−1)−AT
j−1f

T (x,AT
j )

AT
j −AT

j−1

= b(d−x)+
G

T−1

j−1 (A
T
j )−G

T−1

j−2 (A
T
j−1)

AT
j −AT

j−1

d+
AT

j G
T−1

j−2 (A
T
j−1)−AT

j−1G
T−1

j−1 (A
T
j )

AT
j −AT

j−1

. (3.20)

We now simplify (3.20). Note that G
T−1

j−1 (A
T
j )−G

T−1

j−2 (A
T
j−1) equals

(T − 1)(BT−1
j −BT−1

j−1 )+

(

(T − 1)b− (b+1)j

)

(AT
j −AT

j−1)− (b+1)AT
j−1

=

(

(T − 1)b− (b+1)j

)

(

AT
j −AT

j−1

)

+(T − 1)

(

j

T − 1
AT

j − j− 1

T − 1
AT

j−1

)

− (b+1)AT
j−1

=

(

(T − 1)b− (b+1)j

)

(

AT
j −AT

j−1

)

, (3.21)

and AT
j G

T−1

j−2 (A
T
j−1)−AT

j−1G
T−1

j−1 (A
T
j ) equals

(T − 1)
(

AT
j B

T−1
j−1 −AT

j−1B
T−1
j

)

+(b+1)AT
j−1A

T
j

= (T − 1)

(

AT
j A

T
j−1

j− 1

T − 1
−AT

j−1A
T
j

j

T − 1

)

+(b+1)AT
j−1A

T
j

= bAT
j−1A

T
j = jAT

j

(

AT
j −AT

j−1

)

. (3.22)

Plugging (3.21) and (3.22) into (3.20), and comparing to (3.19), completes the proof of (3.13), and
the desired induction. �

With Theorem 7 in hand, we now complete the proof of our main result Theorem 3, as well as
Corollaries 1 and 2.
Proof: [Proof of Theorem 3] Lemma 2 follows from Theorem 7 and Lemmas 4 and 6, and it

follows from definitions and a straightforward case analysis (the details of which we omit) that
OptTMAR(µ,U, b) = gT (βT

µ , µ). Theorem 3 then follows by combining Lemmas 4 and 6 with Theorem
7, (3.12), Lemma 2, and Theorem 2. �

Proof: [Proof of Corollaries 1 and 2] First, note that if ΓT
µ = T , then χT

MAR

(

µ,U, b
)

= BT
T =

AT
T−1 =XT

1 =DT
1 = U , proving the desired result in this case. Next, suppose ΓT

µ ≤ T − 1. In light
of the definitions of XT

t and DT
t , i.e. (2.8), the already established monotonicities of {AT

j , j ∈
[−1, T−1]} and {BT

j , j ∈ [−1, T ]}, and the martingale property, it suffices to establish that for all t∈
[1,ΛT ]: 1. χT+1−t

MAR

(

DT
t−1,U, b

)

=XT
t , 2. ∃j ∈ [−1, T − 1], k≥ j+1 s.t. DT

t−1 ∈ (AT+1−t
j ,AT+1−t

j+1 ],XT
t ∈

[BT+1−t
k ,BT+1−t

k+1 ),AT+1−t
k =DT

t .

First, suppose t= 1. In this case, DT
t−1 = µ∈ (AT

ΓT−1
µ −1

,AT

ΓT−1
µ

],

χT+1−t
MAR

(

DT
t−1,U, b

)

= χT
MAR

(

µ,U, b
)

=BT
ΓT
µ
=XT

t ,

and DT
t = AT

ΓT
µ
. Note that since Aτ

j is monotone decreasing in τ , it follows that Γτ
µ is monotone

increasing in τ , and thus ΓT
µ ≥ ΓT−1

µ . Thus we find that 1. holds, and 2. holds with j =ΓT−1
µ −1, k=

ΓT
µ .
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Next, suppose t∈ [2,ΛT ]. In this case, DT
t−1 = z

∆
=AT+2−t

ΓT
µ

. Note that

z ∈ (AT+2−t

ΓT
µ−1

,AT+2−t

ΓT
µ

], (3.23)

and thus ΓT+1−t
z =ΓT

µ . Furthermore,

χT+1−t
MAR

(

DT
t−1,U, b

)

=BT+1−t

ΓT+1−t
z

=BT+1−t

ΓT
µ

=XT
t .

In addition, the fact that Aτ
j is monotone decreasing in τ and monotone increasing in j, combined

with (3.23), implies that z ∈ (AT+1−t
j′−1 ,AT+1−t

j′
] for some j′ ≤ ΓT

µ . Thus we find that 1. holds, and 2.
holds with j = j′ − 1, k=ΓT

µ , completing the proof. �

4. Asymptotic analysis and proof of Theorem 4
In this section, we complete the proof of Theorem 4, and begin with a lemma which asserts the
(uniform) convergence of several one-dimensional functions to appropriate limits. As all of these
convergences follow from repeated application of elementary bounds such as Taylor’s Inequality
for the exponential function, and the continuous differentiability of all relevant functions over

appropriate domains, we omit the details. For α ∈ [0,1), let f(α)
∆
= b (1−α)

b−1
, where we note that

f(α) =Z∞(α) for α ∈ [0,Λ∞).

Lemma 12. For all µ∈ (0,U),

lim
T→∞

(

T−1ΓT
µ

)

= γ
1
b , lim

T→∞
AT+1

ΓT
µ

= µ , lim
T→∞

(

T−1ΛT
)

=Λ∞;

limsup
T→∞

sup
t∈[1,ΛT ]

|XT
t −X∞

t
T
| = limsup

T→∞

sup
t∈[1,ΛT ]

|DT
t −D∞

t
T
| = limsup

T→∞

sup
t∈[1,ΛT−1]

|TZT (t)−f(
t

T
)| = 0.

For all T ≥ 1, α≥ 0, let mα(T )
∆
=min(⌊αT ⌋,ΛT − 1), and mα

∆
=min(α,Λ∞). For α1, α2 ≥ 0 s.t.

α1 <mα2
, let us define XT

α1,α2

∆
=XT

ZT I
(

⌊α1T ⌋+1≤ZT ≤mα2
(T )
)

, and X∞
α1,α2

∆
=X∞

Z∞I
(

α1 ≤Z∞ <

mα2

)

. Also, for µ ∈ (0,U), note that f is continuous on [0,Λ∞], and let f
∆
= supα∈[0,Λ∞] f(α)<∞.

In light of Lemma 12, it follows that

limsup
T→∞

sup
t∈[1,ΛT−1]

(

TZT (t)
)

= f. (4.24)

Let us also recall that X∞ and D∞ are continuous and strictly increasing on [0,Λ∞].
Before embarking on the proof of Theorem 4, it will be useful to first establish the weak conver-

gence of XT
α1,α2

to X∞
α1,α2

.

Lemma 13. For µ∈ (0,U), α1, α2 ≥ 0 s.t. α1 <mα2
, XT

α1,α2
converges weakly to X∞

α1,α2
. Further-

more, for any bounded uniformly continuous function H : [0,U ]→R,

lim
T→∞

mα2 (T )
∑

k=⌊α1T⌋+1

H
(

XT
k

)

ZT (k) =

∫ mα2

α1

H (X∞
z )f(z)dz. (4.25)

Proof: By the Portmanteau Theorem (cf. Theorem 2.1 in Billingsley [27]), to prove weak con-
vergence, it suffices to demonstrate (4.25). Let H denote an upper bound for |H|. It follows from
Lemma 12, (4.24), and the fact that |ab− cd| ≤ |a+ c||b−d|+ |b+d||a− c| that for any ǫ > 0, there
exists Tǫ <∞ s.t. for all T ≥ Tǫ, and k ∈ [⌊α1T ⌋+1,mα2

(T )],

∣

∣H
(

XT
k

) (

TZT (k)
)

−H(X∞
k
T
)f(

k

T
)
∣

∣≤ 2Hǫ+4f sup
k∈[⌊α1T⌋+1,mα2 (T )]

|H
(

XT
k

)

−H(X∞
k
T
)
∣

∣.
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It follows from Lemma 12 that there similarly exists T1,ǫ < ∞ s.t. for all T ≥ T1,ǫ,
supk∈[⌊α1T⌋+1,mα2 (T )] |XT

k − X∞
k
T

∣

∣ < ǫ. Combining the above with the fact that H is uni-

formly continuous implies that for any ǫ > 0, there exists T2,ǫ < ∞ s.t. for all T ≥ T2,ǫ,
supk∈[⌊α1T⌋+1,mα2 (T )]

∣

∣H (XT
k )
(

TZT (k)
)

−H(X∞
k
T

)f( k
T
)
∣

∣< ǫ. Thus for any ǫ > 0, there exists T3,ǫ <∞

s.t. for all T ≥ T3,ǫ,

∣

∣

∣

∣

T−1
∑mα2 (T )

k=⌊α1T⌋+1H (XT
k )
(

TZT (k)
)

− T−1
∑mα2 (T )

k=⌊α1T⌋+1H(X∞
k
T

)f( k
T
)

∣

∣

∣

∣

< ǫ. Not-

ing that Riemann integrability implies limT→∞ T−1
∑mα2 (T )

k=⌊α1T⌋+1H(X∞
k
T

)f( k
T
) =
∫ mα2
α1

H (X∞
z )f(z)dz

completes the proof. �

We now complete the proof of Theorem 4, and proceed by the standard path of demonstrating
appropriate notions of tightness and convergence of finite-dimensional distributions. We begin by
providing some additional background regarding the space D ([0,1], Rk) and associated notions of
weak convergence. Recall that the space D ([0,1], Rk) contains all functions x : [0,1]→R

k that are
right-continuous in [0,1) and have left-limits in (0,1] (i.e. cadlag on [0,1]). Given such a cadlag

function x = (x1, . . . , xk) : [0,1]→ R
k, let ||xj || ∆

= supt∈[0,1] |xj(t)|, and ||x|| ∆
=
∑k

j=1 ||xj ||. Given a
set {αi}mi=0 satisfying 0 = α0 <α1 < . . . < αm = 1, we say that {αi}mi=0 is δ-sparse if min1≤i≤m(αi −
αi−1) ≥ δ. Let Sδ,m denote the collection of all such δ-sparse sets consisting of exactly m points.
Given x which is cadlag on [0,1] and δ ∈ (0,1), let

wx(δ)
∆
= inf

m∈Z+,{αi}∈Sδ,m

max
1≤i≤m

(

k
∑

j=1

sup
α,α′∈[αi−1,αi)

|xj(α)−xj(α
′)|
)

,

where the infimum extends over all δ-sparse sets {αi} of all possible finite lengths (i.e. values of
m), where we note that one must only consider values of m which are at most ⌈δ−1⌉+ 1. Let us
recall the following necessary and sufficient conditions for tightness in the space D ([0,1], R

k).

Lemma 14 (Theorem 13.2, Billingsley [27]). A sequence of probability measures {PT}T≥1

on the space D ([0,1], R
k) under the J1 topology is tight if and only if the following conditions hold:

lim
a→∞

limsup
T→∞

PT (||x|| ≥ a) = 0; (4.26)

For all ǫ > 0 , lim
δ→0

limsup
T→∞

PT (wx(δ)≥ ǫ) = 0. (4.27)

We now use Lemma 14 to prove tightness of the sequence {MT (α)0≤α≤1, T ≥ 1}, by verifying (4.26)
and (4.27).

Lemma 15. For µ∈ (0,U), {MT (α)0≤α≤1, T ≥ 1} is tight in D ([0,1], R
2).

Proof: (4.26) follows immediately from the fact that MT (α) is supported on [0,U ]2 w.p.1 for all
α ∈ [0,1], T ≥ 1. Let us prove (4.27). Recall from Corollary 2 that we may construct r.v.s ZT , Y T

on the same probability space as MT s.t. the properties outlined in Corollary 2 hold. It follows
from Lemma 12, and the Riemann integrability of f, that there exists δ0 > 0 s.t. for all δ ∈ (0, δ0),
and δ′ ∈ (0, δ), there exists Tδ′ s.t. for all T ≥ Tδ′ ,

sup
t∈[1,ΛT ]

|XT
t −X∞

t
T
|< δ′ , sup

t∈[1,ΛT ]

|DT
t −D∞

t
T
|< δ′ , |P(Z

T

T
≤ δ)−

∫ δ

0

f(z) dz|< δ′. (4.28)

Note that X∞,D∞,f are continuously differentiable on [0,Λ∞ + ǫ0] for some ǫ0 > 0. Let D
∆
=

32
(

1+sup0≤x≤Λ∞+ǫ0
max(| d

dx
D∞

x |, | d
dx
X∞

x |, | d
dx
f|)
)

. Also note that Lemma 12 implies that {Y T , T ≥
1} converges weakly to the r.v. which equals U w.p.1.
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It thus follows from (4.28) and the triangle inequality that for all δ ∈ (0, δ0), there exists Tδ s.t.
for all T ≥ Tδ,

sup
0≤α1≤α2≤1

⌊α2T⌋≤ΛT

|α1−α2|≤2δ

max

(

∣

∣XT
⌊α2T⌋ −XT

⌊α1T⌋

∣

∣,
∣

∣DT
⌊α2T⌋ −DT

⌊α1T⌋

∣

∣

)

≤Dδ , |XT
ΛT −U | ≤Dδ, (4.29)

P
({

min(
ZT

T
,1− ZT

T
)≤ 4δ}

⋃

{Y T =0}
)

≤Dδ.

As we will be referring to various sample-path constructions in the remainder of the proof, for a
given ω ∈ Ω (on the corresponding probability space), we will denote the dependence of various
r.v.s on ω by adding ω as a subscript or superscript where appropriate. Given δ ∈ (0, δ0) and T ≥ Tδ,

let Ωδ,T ⊆ Ω denote that subset of Ω s.t. ω ∈ Ωδ,T iff min(Z
T,ω

T
,1− ZT,ω

T
)> 4δ and Y T,ω = U . Let

us fix some ǫ > 0, δ ∈ (0, δ0), T ≥ Tδ, ω ∈Ωδ,T . For the given parameters, we now define a particular

δ-sparse mesh. Note that for the given ω, there exists kω s.t. kωδ ≤ ZT,ω

T
< (kω + 1)δ, where 0 <

(kω−2)δ < (kω+2)δ < 1. Also, let n1,ω
∆
= sup{n : ZT,ω

T
+nδ < 1−δ}, and nω

∆
= kω+n1,ω+2. Then we

let {αω
i , i ∈ [1, nω]} denote the following δ-sparse mesh. Let αω

1 = 0. For k ∈ [1, kω − 1], let αω
k = kδ.

Let αω
kω

= ZT,ω

T
. For k ∈ [kω + 1, kω + 1+ n1,ω], let αω

k = ZT,ω

T
+ (k − kω)δ. Finally, we let αω

nω
= 1.

Note that
ZT,ω

T
=αω

kω
= inf{α∈ [0,1] : ⌊αT ⌋ ≥ZT,ω}, (4.30)

i∈ [2, nω +1], α,α′ ∈ [αω
i−1, α

ω
i ) implies |α−α′| ≤ 2δ.

We treat two cases. First, suppose ZT,ω ≤ΛT − 1. In this case, Corollary 2 implies that

MT,ω(α) =

{

(

XT
⌊αT⌋,D

T
⌊αT⌋

)

if ⌊αT ⌋ ≤ZT,ω − 1;
(

XT
ZT,ω ,0

)

if ⌊αT ⌋ ≥ZT,ω.

It thus follows from (4.29) and (4.30) that

max
i∈[2,kω ]

2
∑

j=1

sup
α,α′∈[αi−1,αi)

|MT,ω
j (α)−MT,ω

j (α′)| ≤ 2Dδ,

max
i∈[kω+1,nω+1]

2
∑

j=1

sup
α,α′∈[αi−1,αi)

|MT,ω
j (α)−MT,ω

j (α′)|= 0,

and thus in this case wω
x (δ)≤ 2Dδ.

Alternatively, suppose ZT,ω =ΛT . In this case, Corollary 2 implies that

MT (α) =











(

XT
⌊αT⌋,D

T
⌊αT⌋

)

if ⌊αT ⌋ ≤ΛT − 1;
(

XT
ΛT ,U

)

if ⌊αT ⌋=ΛT ;
(

U,U
)

if ⌊αT ⌋ ≥ΛT +1.

It again follows from (4.29) and (4.30) that

max
i∈[2,kω ]

2
∑

j=1

sup
α,α′∈[αi−1,αi)

|MT,ω
j (α)−MT,ω

j (α′)| ≤ 2Dδ.
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Now, note that for i ∈ [kω + 1, nω + 1] and α,α′ ∈ [αi−1, αi), |MT,ω
2 (α) − MT,ω

2 (α′)| = 0, and
|MT,ω

1 (α)−MT,ω
1 (α′)| ≤ |XT

ΛT −U | ≤Dδ, with the final inequality following from (4.29). Thus in
this case, it again holds that wω

x (δ)≤ 2Dδ.
To complete the proof of (4.27), we need only carefully combine all of the above. In particular, let

us fix any ǫ > 0. It follows from (4.29) that for all δ ∈ (0, δ0) and T ≥ Tδ, P(Ωδ,T )≥ 1−Dδ, wω
x (δ)≤

2Dδ for all ω ∈Ωδ,T , and thus P
(

wω
x (δ)> 2Dδ

)

≤Dδ. We conclude that for all δ <min(δ0,
ǫ

3D
) and

T ≥ Tδ, P
(

wω
x (δ)≥ ǫ

)

≤Dδ, from which (4.27) follows after taking limits in the appropriate order.
�

Next, we prove the following weak convergence of finite-dimensional distributions.

Lemma 16. For µ∈ (0,U), and 0 = α1 < . . . < αk0 =Λ∞ < . . . < αn = 1, (MT (α1), . . . ,MT (αn))
converges weakly to (M∞(α1), . . . ,M∞(αn)).

Proof: By the Portmanteau theorem, it suffices to prove that for any bounded uniformly con-
tinuous function H : [0,U ]2n →R,

lim
T→∞

E
[

H
(

MT (α1), . . . ,MT (αn)
)]

= E [H (M∞(α1), . . . ,M∞(αn))] . (4.31)

As a notational convenience, we define for i∈ [1, n],

H∞ (i, x, y)
∆
= H

(

X∞
α1
,D∞

α1
, . . . ,X∞

αi
,D∞

αi
, x, y, x, y, . . . , x, y

)

,

HT (i, x, y)
∆
= H

(

XT
⌊α1T⌋,D

T
⌊α1T⌋, . . . ,X

T
⌊αiT⌋,D

T
⌊αiT⌋, x, y, x, y, . . . , x, y

)

,

ĤT (i, x, y)
∆
= H

(

XT
⌊α1T⌋,D

T
⌊α1T⌋, . . . ,X

T
⌊αiT⌋,D

T
⌊αiT⌋, x, y, y, y, . . . , y, y

)

.

Then it follows from the definition of M∞(α) that

E [H (M∞(α1), . . . ,M∞(αn))] =

k0−1
∑

i=1

∫ αi+1

αi

H∞ (i,X∞
z ,0)f(z)dz+ γH∞ (k0,U,U) .

It follows from Lemma 12 that there exists T0 s.t. for all T ≥ T0, ⌊αk0−1T ⌋ < ΛT − 1 < ΛT <
⌊αk0+1T ⌋. From Corollary 2, for all T ≥ T0,

E
[

H
(

MT (α1), . . . ,MT (αn)
)]

= W T
1 +W T

2 +W T
3 +W T

4 ,

where

W T
1

∆
=

k0−2
∑

i=1

⌊αi+1T⌋
∑

j=⌊αiT⌋+1

HT
(

i,XT
j ,0
)

P(ZT = j)+

min{⌊αk0
T⌋,ΛT−1}
∑

j=⌊αk0−1T⌋+1

HT
(

k0 − 1,XT
j ,0
)

P(ZT = j),

W T
2

∆
= I

(

⌊αk0T ⌋<ΛT − 1
)

ΛT−1
∑

j=⌊αk0
T⌋+1

HT
(

k0,X
T
j ,0
)

P(ZT = j),

W T
3

∆
=

[

I
(

⌊αk0T ⌋=ΛT
)

ĤT
(

k0 − 1,XT
ΛT ,U

)

+ I
(

⌊αk0T ⌋>ΛT
)

HT (k0 − 1,U,U)

+ I
(

⌊αk0T ⌋<ΛT
)

HT (k0,U,U)

]

P
(

ZT =ΛT
)

P
(

Y T =U
)

,

W T
4

∆
=

[

I
(

⌊αk0T ⌋ ≥ΛT
)

HT
(

k0 − 1,XT
ΛT ,0

)

+ I
(

⌊αk0T ⌋<ΛT
)

HT
(

k0,X
T
ΛT ,0

)

]

P
(

ZT =ΛT
)

P
(

Y T =0
)

.
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Lemma 13 implies that limT→∞W T
1 =

∑k0−1

i=1

∫ αi+1

αi
H∞ (i,X∞

z ,0)f(z)dz, and it follows from Lemma

12 and the uniform continuity of H that limT→∞W T
4 = γH∞ (k0,U,U), and limT→∞W T

2 =
limT→∞W T

3 = 0. Combining the above completes the proof of (4.31). �

Proof: [Proof of Theorem 4] Combining Lemmas 14, 15, and 16 completes the proof of Theorem
4. �

5. Numerical experiments
In this section, we conduct numerical experiments to further demonstrate the benefits of the pro-
posed policy. More specifically, we aim to show the benefits of a robust policy which accounts for
martingale structure over a robust policy which assumes that the demand is drawn independently
over time. To that end, we will compare the performance of the minimax optimal policy for the
independent-demand model to the performance of the minimax optimal policy for the martingale-
demand model, when the demand itself comes from a simple additive-MMFE model (and has
the martingale property). Indeed, in line with the numerical experiments conducted in Mamani,
Nassiri and Wagner [92] (in which the joint distribution of demand was multivariate normal), we
assume that the true demand process is the following martingale: Dn = µ+

∑n

t=1 ǫt, where µ is a
constant and {ǫt}t≥1 is a sequence of i.i.d. r.v.s representing forecast adjustments, i.e. the demand
comes from a simple additive-MMFE model. We further assume that {ǫt, t∈ [1, T ]} are i.i.d., nor-
mally distributed with mean 0 and variance σ2. We note that such an additive-MMFE model with
normally distributed increments is common in the literature (e.g., Heath and Jackson [71], Lu,
Song and Regan [90], Wang, Atasu and Kurtulus [133]), making it a good reference for numerical
comparisons. As a base-line we assume that the demand distribution has a per-period average of
10, i.e., µ= 10, and the standard deviation σ equals either 0.1µ (relatively low) or 0.2µ (relatively
high). We normalize the holding cost at h = 1 and vary backorder costs in the specified range,
namely, the service level b

b+h
is varied from 10% (low) to 90% (high). The finite time horizon T is

varied from relatively short (T = 3) to relatively long (T = 20).
We note that although both policies we consider will be seeded by an upper-bound parameter U

(as required in the definition of the policy),which we will vary from U =15 to U = 25, the demand
process itself in no cases depends on U, and may go above U (and may actually go below zero, in
which case the demand actually adds to the inventory, although we note that such negative demand
will be a relatively rare occurence under most of our parameter settings). As any particular model
assumptions may not hold in any given practical setting, it is in some sense natural to consider the
performance when such a support assumption may fail. Recall that the minimax optimal policy
in the independent-demand setting (from Theorem 1) is a base-stock policy with base-stock level
χIND(µ,U, b), which we note is independent of time or the realized demands, and in any case is
either always 0 or always U (depending on the relation of µ,U , and b). Thus this policy can be
implemented with no alterations even if demand leaves the interval [0,U]. Indeed, we let PolicyIND

denote exactly this policy, which we shall use in our numerical experiments.
Things are slightly more complicated in the martingale-demand setting. Indeed, recall that

the minimax optimal policy π̂∗ in the martingale-demand setting (from Theorem 3) sets x̂∗
1 =

max
(

x0, χ
T
MAR(µ,U, b)

)

; and For t∈ [1, T −1], sets x̂∗
t+1(d[t]) =max

(

x̂∗
t (d[t−1])−dt, χ

T−t
MAR(dt,U, b)

)

.
Formally, π̂∗ is a state-and-time-dependent base-stock policy, ordering up to level χT−t

MAR(Dt,U, b)
in period t+1 for t∈ [1, T − 1], where we note that this level depends both on time and the most
recent demand value. Here, a difficulty arises if for some t it holds thatDt /∈ [0,U ], since in that case
χT−t
MAR(Dt,U, b) is not defined. We remedy this by defining a policy PolicyMAR as follows. In period

1, the policy orders up to level χT
MAR(µ,U, b), consistent with π̂∗. For t ∈ [1, T − 1], if Dt ∈ [0,U ],

then at the start of period t+1 the policy orders up to level χT−t
MAR(Dt,U, b), consistent with π̂∗.

However, if for some t∈ [1, T − 1] it holds that Dt < 0, then at the start of period t+1 the policy
orders up to 0. Alternatively, if for some t ∈ [1, T − 1] it holds that Dt > U , then at the start of
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period t+1 the policy orders up to U . We note that this is in some sense the simplest and most
natural way to reconcile this discrepancy, and it is this (slightly modified) policy PolicyMAR that
we use in our numerical experiments.
In summary, the goal of our numerical experiment is to compare the performance of PolicyMAR

and PolicyIND when the demand process is a Gaussian random walk (i.e. additive-MMFE). For
each parameter setting, we perform 106 simulations, with our table displaying the average cost
incurred under each of the two policies for each parameter setting. In all cases we set the initial
inventory level to 0. Although (for clarity of exposition) we do not include a formal analysis of
variance or confidence intervals, we note that our experiments suggested that the outcomes were
generally quite stable. The following table summarizes the different parameter settings which we
will consider.

Parameters h b T U {ǫt, t∈ [1, T ]} µ σ x0

Values 1 1
9
, 1

4
, 1, 4, 9 3, 10, 20 15, 20, 25 i.i.d. Normal(0, σ2) 10 0.1µ, 0.2µ 0

Table 1 Summary of parameters in the numerical experiments.

We report our numerical results in Table 2. For each set of parameter values, we report the
following three numbers: the average cost incurred by PolicyMAR (denoted by CMAR), the average
cost incurred by PolicyIND (denoted by CIND), and the percentage of cost reduction defined as
CIND−CMAR

CIND
. Each cell contains the corresponding triplet (CMAR, CIND,

CIND−CMAR
CIND

).
Let us summarize our findings. First, and most importantly, in all cases the cost incurred by

PolicyMAR is no greater than the cost incurred by PolicyIND, and the percentage of cost reduction
can be as large as 64%. This dominance, and (for some parameter settings) substantial improve-
ment, suggest the importance of accounting for possible dependencies when implementing robust
inventory control policies. We note that in the deterministic robust optimization setting, related
numerical results were presented in [92].
Next, we comment on how the parameter choices impact the improvement. First, we note that

for several parameter settings, the two policies perform nearly identically. This stems from the fact
that for certain parameters, both policies will with high probability either always order up to U
or always order up to 0. Although PolicyIND always exhibits such a behavior, a careful analysis
of Theorem 3 and PolicyMAR shows that for certain values of T, t,Dt,U , and b, the thresholds of
PolicyMAR will exhibit the same behavior. For example, we proved this equivalence for sufficiently
large b in our previous Corollary 4, in which case all relevant thresholds will be U (with high
probability). A similar behavior can be demonstrated as regards settings in which both policies set
the relevant thresholds to 0 (again with high probability in the case of PolicyMAR). We note that
such a phenomena occurs almost exclusively when T = 3 and/or b takes either very small or very
large values, which is consistent with the parameter regimes under which such agreement would
occur (as indicated in Corollary 4). Indeed, Corollary 4 indicates that such agreement would occur

(for example) if b > ( U
Dt

−1)× (T − t) for all t∈ [0, T −1] (here letting D0
∆
= µ), which is more likely

to occur when b is large and/or T is small. Again, we note that a similar phenomena can occur for
alternative parameter ranges in which case both policies order up to 0 instead of ordering up to U.
We note that when T =3, this behavior is partially mitigated by the presence of a larger variance,
i.e. when T = 3 the larger variance tends to yield a larger gap between the policies, as the larger
variance can lead to realized demands which break the conditions needed for these degeneracies.
Second, we note that our results seem to be fairly insensitive to U, σ, and T, so long as T ≥ 10.

Intuitively, for any such parameters the conditional expectation of demand will with high proba-
bility fluctuate considerably, leading to a significant advantage for PolicyMAR, which utilizes this
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U = 15, σ = 0.1µ T = 3 T = 10 T = 20
b = 1/9 (3.333, 3.333, 0.00%) (10.19, 11.11, 8.28%) (18.66, 22.52, 17.1%)
b = 1/4 (5.991, 7.500, 20.1%) (18.13, 25.00, 27.5%) (33.03, 50.31, 34.3%)
b = 1 (11.66, 15.00, 22.3%) (26.57, 50.49, 47.4%) (52.31, 104.6, 50.0%)
b = 4 (15.01, 15.01, 0.00%) (40.17, 51.22, 21.6%) (66.47, 111.1, 40.2%)
b = 9 (15.01, 15.01, 0.00%) (51.77, 52.44, 1.28%) (99.89, 122.0, 18.1%)

U = 20, σ = 0.1µ T = 3 T = 10 T = 20
b = 1/9 (3.333, 3.333, 0.00%) (11.09, 11.11, 0.18%) (21.99, 22.52, 2.35%)
b = 1/4 (7.500, 7.500, 0.00%) (23.67, 25.00, 5.32%) (44.32, 50.31, 11.9%)
b = 1 (18.88, 30.00, 37.1%) (43.82, 100.0, 56.2%) (84.20, 200.4, 58.0%)
b = 4 (30.00, 30.00, 0.00%) (53.39, 100.0, 46.6%) (84.69, 200.6, 57.8%)
b = 9 (30.00, 30.00, 0.00%) (87.81, 100.0, 12.2%) (112.7, 201.0, 43.9%)

U = 25, σ = 0.1µ T = 3 T = 10 T = 20
b = 1/9 (3.333, 3.333, 0.00%) (11.11, 11.11, 0.00%) (22.48, 22.52, 0.18%)
b = 1/4 (7.500, 7.500, 0.00%) (24.92, 25.00, 0.32%) (48.60, 50.31, 3.40%)
b = 1 (17.91, 30.00, 40.3%) (55.17, 100.0, 44.8%) (107.1, 200.4, 46.6%)
b = 4 (41.34, 45.00, 8.13%) (64.92, 150.0, 56.7%) (107.4, 300.2, 64.2%)
b = 9 (45.00, 45.00, 0.00%) (96.36, 150.0, 35.8%) (135.3, 300.2, 54.9%)

U = 15, σ = 0.2µ T = 3 T = 10 T = 20
b = 1/9 (3.211, 3.336, 3.75%) (9.911, 12.35, 19.7%) (37.32, 44.60, 16.3%)
b = 1/4 (5.476, 7.503, 27.0%) (16.76, 26.30, 36.3%) (49.90, 72.95, 31.6%)
b = 1 (10.84, 15.33, 29.3%) (29.30, 57.90, 49.4%) (80.55, 150.1, 46.3%)
b = 4 (15.77, 15.81, 0.25%) (53.94, 68.65, 21.4%) (151.1, 198.4, 23.8%)
b = 9 (16.63, 16.63, 0.00%) (80.62, 86.58, 6.88%) (251.2, 278.9, 9.93%)

U = 20, σ = 0.2µ T = 3 T = 10 T = 20
b = 1/9 (3.335, 3.336, 0.03%) (11.65, 12.35, 5.67%) (40.92, 44.60, 8.25%)
b = 1/4 (7.445, 7.503, 0.77%) (22.23, 26.30, 15.5%) (58.62, 72.95, 19.6%)
b = 1 (18.11, 30.00, 39.6%) (41.09, 101.6, 59.6%) (94.89, 226.0, 58.0%)
b = 4 (29.63, 30.01, 1.27%) (56.73, 103.2, 45.0%) (130.3, 239.7, 45.6%)
b = 9 (30.01, 30.02, 0.03%) (87.94, 105.6, 16.7%) (176.0, 261.5, 32.7%)

U = 25, σ = 0.2µ T = 3 T = 10 T = 20
b = 1/9 (3.336, 3.336, 0.00%) (12.22, 12.35, 1.05%) (43.12, 44.60, 3.32%)
b = 1/4 (7.503, 7.503, 0.00%) (24.89, 26.30, 5.36%) (65.22, 72.95, 10.6%)
b = 1 (18.80, 30.00, 37.3%) (51.96, 101.6, 48.9%) (113.6, 226.0, 49.7%)
b = 4 (40.48, 45.00, 10.0%) (68.18, 150.9, 54.8%) (139.8, 322.7, 56.7%)
b = 9 (44.98, 45.00, 0.04%) (96.32, 151.2, 36.3%) (175.6, 327.5, 46.4%)

Table 2 Costs incurred by PolicyMAR and PolicyIND, and percentages of cost reduction.

information. Indeed, for all such parameter settings, the gap fluctuates fairly consistently as a
function of b, taking values near 50% for values of b closer to 1, and taking smaller values for other
settings of b. We offer two possible explanations for this phenomena. First, we note that for the
parameters we consider, b being close to 1 tends to coincide with U

µ×(b+1)
being close to 1. We note

that U
µ×(b+1)

equals 1 exactly when PolicyIND is indifferent between always ordering up to 0, and

always ordering up to U. Our results suggest that it is exactly in this regime, namely when U
µ×(b+1)

is close to 1, that the relative gap between the two policies tends to be largest.
However, a more refined analysis reveals that when T and U are both large, this effect seems to
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be mitigated on one side, as the gap remains large even when U
µ×(b+1)

is small, although the gap

shrinks when U
µ×(b+1)

becomes large. To help explain this refinement, we reason alternatively as
follows, building on our earlier discussion about how certain parameter values can lead to the two
policies degenerating and behaving similarly. It follows from Theorem 3 that in the first period
PolicyMAR orders up to 0 (i.e. does not order at all) if µ

U
∈ [0,

∏T

k=1
k

b+k
), and orders up to U if

µ

U
∈ ( T

b+T
,1]. Of course, PolicyMAR may also order up to many intermediate values. However, the

above implies that if µ

U
∈
[

0,min(
∏T

k=1
k

b+k
, 1
b+1

)
)

, or µ

U
∈
(

T
b+T

,1
]

, then PolicyMAR and PolicyIND

degenerate to a common policy (at least in the first period). Thus if b is relatively large, since
∏T

k=1
k

b+k
will be extremely small, the primary manner for such a degeneracy/agreement to occur

would be to have µ

U
∈
(

T
b+T

,1
]

, equivalently b≥ T × (U
µ
− 1). The only parameter settings we con-

sider for which this condition holds either require T = 3, or T = 10,U = 15, b = 9. We note that
indeed, the setting in which T = 10,U = 15, b= 9 is essentially the only setting in which T and b
are moderately large, yet the gap between the policies remains very small.
Alternatively, if b is relatively small, since T

b+T
is then close to 1, the primary manner for such

a degeneracy/agreement to occur would be to have µ

U
∈ [0,

∏T

k=1
k

b+k
) (since 1

b+1
is very close to 1

for small values of b). As a Taylor-series approximation shows that
∏T

k=1
k

b+k
behaves roughly like

T−b for small b, this is (roughly) equivalent to requiring that b ≤ log(Uµ )

log(T )
. However, this inequal-

ity holds for many parameter settings involving large T, specifically : U = 15, T = 10, b = 1
9
;U =

15, T = 20, b = 1
9
;U = 20, T = 10, b = 1

9
;U = 20, T = 10, b = 1

4
;U = 20, T = 20, b = 1

9
;U = 25, T =

10, b= 1
9
;U = 25, T =10, b= 1

4
;U = 25, T = 20, b= 1

9
;U =25, T = 20, b= 1

4
.

Thus we find that there is a substantial asymmetry between small and large values of b, with
small values of b leading to more scenarios in which the two policies degenerate and behave identi-
cally, at least in the first period. Intuitively, this should lead to smaller gaps for smaller values of b,
while the presence of a large gap should be more robust for larger values of b, exactly as reflected in
our numerical experiments. Of course, the exact behavior of PolicyMAR (and associated thresholds)
over time depends on the realized demand (not just µ), yet one might expect this intuition to
(roughly) hold broadly over the entire time horizon.
In summary, we find that PolicyMAR substantially outperforms PolicyIND for these settings,

further demonstrating the utility of our model and the importance of taking dependencies into
consideration when modeling robustness. Our experiments also suggest many interesting and subtle
phenomena, whose full exploration we leave as an interesting direction for future research.

6. Conclusion
In this paper, we formulated and solved a dynamic distributionally robust multi-stage newsvendor
model which naturally unifies the analysis of several inventory models with demand forecasting,
and enables the optimizer to incorporate past realizations of demand into the structure of the
uncertainty set going forwards. We explicitly computed the minimax optimal policy (and associated
worst-case distribution) in closed form. Our main proof technique involved a non-trivial induction,
combining ideas from convex analysis, probability, and DP. By analyzing in-depth the interplay
between the minimax optimal policy and associated worst-case distribution, we proved that at
optimality the worst-case demand distribution corresponds to the setting in which inventory may
become obsolete at a random time, a scenario of practical interest. To gain further insight into our
explicit solution, we computed the limiting dynamics as the time horizon grows large, by proving
weak convergence to an appropriate limiting stochastic process, for which many quantities have
a simple and intuitive closed form. We also compared to the analogous setting in which demand
is independent across periods, and made several comparisons between these two models. Finally,
we complemented our results by providing a targeted and concise numerical experiment further
demonstrating the benefits of our model.
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Our work leaves many interesting directions for future research. First, to make the model more
practically applicable, it would be interesting to extend our results to more complicated dependency
structures which robustify a larger class of forecasting models, e.g. that for which E[Dt+1|D[t]] =
atDt + bt (i.e. general time-dependent linear conditional expectations). One could also incorpo-
rate higher order dependencies, non-linearities, as well as higher-dimensional covariate and feature
spaces such as those arising in factor models. Similarly, one could consider inventory models with
more realistic features, e.g. various notions of ordering costs, settings in which demand is lost,
positive lead times, etc. Of course, our general approach could also be applied to many models
used by the Operations Research community where forecasting and model uncertainty non-trivially
interact. In all of these cases, it would be interesting to develop a more general theory of when the
associated DP have a special structure which allows for a closed-form (or at least computationally
tractable) solution. We note that such questions may also shed further light on the search for
optimal probability inequalities in a variety of settings, e.g. bounds for functionals of martingale
sequences and their generalizations. As suggested by our examples in Section 7.12, these general-
izations will likely require several fundamentally new ideas and insights.
Taking a broader view, perhaps the most interesting directions for future research involve explor-

ing the relationship between different ways to model uncertainty in multi-stage optimization prob-
lems. What is the precise relationship between static and dynamic models of uncertainty, and how
should we think about comparing and selecting between different models? This question involves
notions of computational efficiency, model appropriateness in any given application, as well as
questions related to the so-called price of correlations. Of course, such issues are intimately related
to various relevant questions of a statistical nature. How precisely should our ability to fit and
tune a model relate to our choice of uncertainty set? How does the notion of model over-fitting
come into play here? Such questions become especially interesting in the context of multi-stage
problems. Another intriguing line of questioning involves the relation between classical probability
and (distributionally) robust optimization. For example, the obsolescence feature of the worst-case
martingale in our setting can be interpreted as a “robust” manifestation of the celebrated mar-
tingale convergence theorem. A deeper understanding of the precise connection between the limit
laws of classical probability and the solutions to distributionally robust optimization problems
remains an intriguing open question, where we note that closely related questions have been the
subject of several recent investigations (cf. Abernethy et al. [1], Bandi et al. [8, 9]). Formalizing
and analyzing these and related questions will likely require a combination of ideas and techniques
from optimization, statistics, and probability, all of which bring to bear different perspectives with
which to understand uncertainty.
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7. Technical Appendix
7.1. Proof of Lemma 1
Proof of Lemma 1: We first prove that one can w.l.o.g. restrict to policies always ordering up

to at least 0. For s ∈ [1, T ], let Π̂s,0 denote that subset of Π̂ consisting of those policies π̂ with
the following property: for all t ∈ [T − s+1, T ] and d= (d1, . . . , dT ) ∈ [0,U ]TQ, x

π̂
t (d[t−1])≥ 0. Also,

let Π̂0,0 ∆
= Π̂. We now prove that for all s ∈ [0, T − 1], and any policy π̂ ∈ Π̂s,0, there exists a

policy π̂′ ∈ Π̂s+1,0 s.t. for all vectors d = (d1, . . . , dT ) ∈ [0,U ]TQ and t ∈ [1, T ], C π̂′

t (d[t]) ≤ C π̂
t (d[t]),

proving the desired result. Let us fix any s ∈ [0, T − 1], and let π̂ be any policy belonging to Π̂s,0.
We now define a sequence of functions {x′

t, t ∈ [1, T ]}, where x′
1 is a real constant, and x′

t is a
map from [0,U ]t−1

Q to Q for t≥ 2. We will then prove that these functions correspond to a policy

belonging to Π̂s+1,0, which incurs cost no greater than π̂ in every time period for every sample
path of demand. Let x′

t = xπ̂
t for all t ∈ [1, T ] \ {T − s}, and x′

T−s =max(0, xπ̂
T−s). We now verify

that {x′
t, t ∈ [1, T ]} corresponds to some policy belonging to Π̂s+1,0, and begin by demonstrating

that for all t∈ [0, T − 1] and d= (d1, . . . , dt)∈ [0,U ]tQ, x
′
t+1(d)≥ x′

t(d[t−1])− dt, where x
′
1(d[0])

∆
= x′

1,

x′
0(d[−1])

∆
= x0, and d0

∆
= 0. The assertion is immediate for t∈ [1, T ] \ {T − s}, as in these cases the

property is inherited from {xπ̂
t , t∈ [1, T ]}, and the monotonicty of our construction. We now verify

the assertion for t= T − s, by demonstrating that x′
T−s+1(d)≥ x′

T−s(d[T−s−1])− dT−s, and proceed
by a case analysis. First, suppose xπ̂

T−s(d[T−s−1])≥ 0. In this case, the desired property is trivially
inherited from xπ̂

T−s. If not, by construction x′
T−s(d[T−s−1]) = 0, and thus x′

T−s(d[T−s−1])−dT−s ≤ 0.

However, π̂ ∈ Π̂s,0 implies that xπ̂
T−s+1(d)≥ 0, demonstrating the desired property. Combining the

above with the fact that x′
t ≥ 0 for all t∈ [T −s+1, T ] by virtue of x′

t equaling xπ̂
t for all t≥ T −s+1

and π̂ belonging to Π̂s,0, and the fact that x′
T−s ≥ 0 by construction, completes the proof that

for all s ∈ [0, T − 1], and any policy π̂ ∈ Π̂s,0, there exists a policy π̂′ ∈ Π̂s+1,0 s.t. xπ̂′

t = xπ̂
t for all

t ∈ [1, T ] \ {T − s}, and xπ̂′

T−s =max(0, xπ̂
T−s). Combining with the fact that for all d ∈ [0,U ] and

x< 0,
C(x,d) = b(d+ |x|)> b[d− 0]+ + [0− d]+ = bd,

further demonstrates that for all vectors d= (d1, . . . , dT )∈ [0,U ]TQ and t∈ [1, T ], C π̂′

t (d[t])≤C π̂
t (d[t]),

completing the proof of the desired statement. Applying the statement inductively, we conclude
that for any π̂ ∈ Π̂, there exists a policy π̂′ ∈ Π̂T,0 (i.e. a policy ordering up to at least 0 in every
period for all sample paths) which incurs cost at most that incurred by π̂.

We next prove that one can restrict to policies always ordering up to at most U . For s ∈ [1, T ],
let Π̂s,U denote that subset of Π̂T,0 consisting of those π̂ with the following property: for all
t ∈ [T − s+ 1, T ] and d = (d1, . . . , dT ) ∈ [0,U ]TQ, x

π̂
t (d[t−1]) ≤ U whenever yπ̂

t (d[t−1]) ≤ U . Also, let

Π̂0,U ∆
= Π̂T,0. We now prove that for all s∈ [0, T − 1], and any policy π̂ ∈ Π̂s,U , there exists a policy

π̂′ ∈ Π̂s+1,U s.t. for all vectors d= (d1, . . . , dT ) ∈ [0,U ]TQ and t ∈ [1, T ], C π̂′

t (d[t])≤ C π̂
t (d[t]). Let us

fix any s ∈ [0, T − 1], and let π̂ be any policy belonging to Π̂s,U . We now define a sequence of
functions {x′

t, t∈ [1, T ]}, where x′
1 is a real constant, and x′

t is a map from [0,U ]t−1
Q to Q for t≥ 2.

We will then prove that these functions correspond to a policy belonging to Π̂s+1,U , which incurs
cost no greater than π̂ in every time period for every sample path of demand. Let x′

t = xπ̂
t for all

t∈ [1, T ] \ {T − s}; and for d∈ [0,U ]T−s−1
Q let

x′
T−s(d)

∆
=

{

min
(

U,xπ̂
T−s(d)

)

if yπ̂
T−s(d)≤U,

xπ̂
T−s(d) else.

We now verify that {x′
t, t ∈ [1, T ]} corresponds to some policy belonging to Π̂s+1,U , and begin by

demonstrating that for all t ∈ [0, T − 1] and d = (d1, . . . , dt) ∈ [0,U ]tQ, x
′
t+1(d) ≥ x′

t(d[t−1]) − dt.
The assertion is immediate for t ∈ [1, T ] \ {T − s− 1}, as in these cases the property is inherited
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from {xπ̂
t , t ∈ [1, T ]}, and the monotonicty of our construction. We now verify the assertion for

t= T − s− 1, by demonstrating that x′
T−s(d)≥ x′

T−s−1(d[T−s−1])− dT−s−1, and proceed by a case
analysis. First, suppose that either yπ̂

T−s(d[T−s−1])> U , or yπ̂
T−s(d[T−s−1])<U and xπ̂

T−s(d[T−s])≤
U . In this case, the desired property is either trivially true, or inherited from xπ̂

T−s. If not, it
must hold that yπ̂

T−s(d[T−s]) ≤ U , and xπ̂
T−s(d[T−s]) > U . However, by construction this implies

that x′
T−s−1(dT−s−2)− dT−s−1 ≤U , while x′

T−s(d[T−s−1]) =U , demonstrating the desired property.
Combining the above with the fact that x′

t(d)≤ U whenever x′
t−1(d[t−2]) for all d ∈ [0,U ]t−1

Q and

t∈ [T − s+1, T ] by virtue of x′
t equaling xπ̂

t for all t≥ T − s+1 and π̂ belonging to Π̂s,U , and the
fact that x′

T−s ≤ U by construction, completes the proof that for all s ∈ [0, T − 1], and any policy

π̂ ∈ Π̂s,U , there exists a policy π̂′ ∈ Π̂s+1,Y s.t. xπ̂′

t = xπ̂
t for all t ∈ [1, T ] \ {T − s}, and xπ̂′

T−s is as
defined above. Combining with the fact that for all d∈ [0,U ] and x>U ,

C(x,d) = x− d> b[d−U ]+ + [U − d]+ =U − d,

further demonstrates that for all vectors d= (d1, . . . , dT )∈ [0,U ]TQ and t∈ [1, T ], C π̂′

t (d[t])≤C π̂
t (d[t]),

completing the proof of the desired statement. Applying the statement inductively, we conclude
that for any π̂ ∈ Π̂, so long as x0 ≤U , there exists a policy π̂′ ∈ Π̂T,U (i.e. a policy ordering up to a
level in [0,U ] in every period for all sample paths) which incurs cost at most that incurred by π̂,
completing the proof. �.

7.2. Proof of Theorem 2
Our proof is quite similar, conceptually, to the proof in Iyengar [80] that a robust MDP satisfying
the so-called rectangularity property can be solved by dynamic programming. However, as our
problem does not seem to fit precisely into that framework (e.g. since the conditional distribution
of demand in a given time period can in principle depend on the entire history of demand up to that
time), and as it is well-known that the rectangularity property and related notions can be quite
subtle (cf. Xin, Goldberg and Shapiro [136]), we include a self-contained proof for completeness.
We will proceed by a backwards induction, reasoning inductively that w.l.o.g. in period T the
conditional distribution of demand can be chosen to be consistent with Q̂∗, and thus the policy in
period T can be chosen to be consistent with π̂∗, and thus the conditional distribution of demand
in period T − 1 can be chosen to be consistent with Q̂∗, etc. It is worth noting that one could also
proceed by using e.g. minimax theorems, strong duality, saddle-point theory, and/or general results
from the theory of stochastic games, and we refer the interested reader to Nilim and El Ghaoui [99]
for closely related results proved using such alternative approaches. We begin by making several
definitions. For π ∈ Π, let MARπ

0 = MART . For t ∈ [1, T − 1], let us define MARπ
t as follows.

Q ∈ MARπ
t iff Q ∈ MARπ

t−1, and for all q ∈ supp(Q[T−t]),QT−t+1|q = Q
t

xπ
T−t+1

(q),qT−t
. Also, let

MARπ
T denote the singleton {Q̂∗}. Similarly, let Π0 = Π, and for t ∈ [1, T − 1], let us define Πt

as follows. π ∈ Πt iff π ∈ Πt−1, and for all q ∈ [0,U ]T−t
Q , xπ

T−t+1(q) = Φ
t

yπ
T−t+1

(q),qT−t
. Also, let ΠT

denote the singleton {π̂∗}.
We now state a lemma which follows immediately from our definitions, and formalizes the notion

that for any probability measure Q ∈ MAR, and time t, there is a unique probability measure
belonging to MARπ

t which agrees with Q in periods [1, t− 1], and can be constructed naturally
through an appropriate composition of marginal distributions; as well as the analogous statement
for constructing policies belonging to Πt which agree with a given policy in periods [1, t− 1]. The
associated measures (and policies) can in all cases be constructed through the natural composition
of marginals (measurable functions).

Lemma 17. Given π ∈Π, Q∈MART , and t∈ [1, T − 1], there exists a unique probability mea-
sure Qπ,t ∈MAR

π
t satisfying Qπ,t

[T−t] =Q[T−t]. Similarly, given π ∈Π and t∈ [1, T − 1], there exists

a unique policy πt ∈Πt satisfying xπ
[T−t] = xπt

[T−t].
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We now prove (by induction) a theorem which formalizes the intuitive backwards induction
described above, and which will directly imply Theorem 2.

Theorem 8. For all s ∈ [0, T − 1], π ∈Πs, and Q∈MAR
π
s ,

EQ[
T
∑

t=T−s

Cπ
t ] =

∑

q∈supp(Q[T−s−1])

(

∑

z∈[0,U ]Q

f̂ s+1
(

xπ
T−s(q), z

)

QT−s|q(z)

)

Q[T−s−1](q). (7.32)

For all s ∈ [0, T − 1], π ∈Πs, and Q∈MAR
π
s+1,

EQ[
T
∑

t=T−s

Cπ
t ] =

∑

q∈supp(Q[T−s−1])

ĝs+1
(

xπ
T−s(q), qT−s−1

)

Q[T−s−1](q). (7.33)

For all s ∈ [0, T − 1] and π ∈Πs,

sup
Q∈MAR

EQ[
T
∑

t=1

Cπ
t ] = sup

Q∈MARπ
s+1

EQ[
T
∑

t=1

Cπ
t ]. (7.34)

For all s ∈ [0, T − 1], π ∈Πs+1, and Q∈MAR
π
s+1,

EQ[
T
∑

t=T−s

Cπ
t ] =

∑

q∈supp(Q[T−s−1])

V̂ s+1
(

yπ
T−s(q), qT−s−1

)

Q[T−s−1](q). (7.35)

For all s ∈ [0, T − 1],

inf
π∈Π

sup
Q∈MAR

EQ[
T
∑

t=1

Cπ
t ] = inf

π∈Πs+1

sup
Q∈MAR

EQ[
T
∑

t=1

Cπ
t ]. (7.36)

Proof: We begin with the base case s= 0. (7.32) follows immediately from the fact that f̂ 1(x,d) =
C(x,d). (7.33) then follows from the fact that for all π ∈Π0, Q ∈MARπ

1 , and q ∈ supp(Q[T−1]),

QT |q =Q
1

xπ
T
(q),qT−1

∈ Q̂1(xπ
T (q), qT−1), combined with the definition of ĝ1 and Q̂1.

We now prove (7.34). Let us fix any π ∈ Π0. Note that for any ǫ > 0, there exists Q̃ǫ ∈MAR

s.t. E[
∑T

t=1C
π
t

(

DQ̃ǫ

[t] )]> supQ∈MAREQ[
∑T

t=1C
π
t ]− ǫ. Let us fix any such ǫ > 0 and corresponding

Q̃ǫ ∈MAR, where we denote Q̃ǫ by Q̃ for clarity of exposition. We now prove that

E[
T
∑

t=1

Cπ
t

(

DQ̃π,1

[t] )]≥E[
T
∑

t=1

Cπ
t

(

DQ̃

[t])]. (7.37)

As Q̃π,1
[T−1] = Q̃[T−1], it suffices by (7.32) to demonstrate that for every q∈ supp(Q̃[T−1]),

∑

z∈[0,U ]Q

f̂ 1
(

xπ
T (q), z

)

Q̃π,1
T |q(z)≥

∑

z∈[0,U ]Q

f̂ 1
(

xπ
T (q), z

)

Q̃T |q(z). (7.38)

By construction, Q̃π,1 ∈ MARπ
1 , and thus for all q ∈ supp(Q̃[T−1]), Q̃π,1

T |q = Q
1

xπ
T
(q),qT−1

∈
Q̂1(xπ

T (q), qT−1). Thus by definition, the left-hand side of (7.38) equals

sup
Q∈M(qT−1)

∑

z∈[0,U ]Q

f̂ 1
(

xπ
T (q), z

)

Q(z) = ĝ1
(

xπ
T (q), qT−1

)

. (7.39)
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Noting that the martingale property ensures Q̃T |q ∈M(qT−1) then completes the proof of (7.38),
and (7.37). Letting ǫ ↓ 0 completes the proof of (7.34).
We now prove (7.35). As Π1 ⊆ Π0, it follows from (7.33), combined with the fact that π ∈ Π1

implies xπ
T (q) =Φ

1

yπ
T
(q),qT−1

, that

EQ[C
π
T ] =

∑

q∈supp(Q[T−1])

ĝ1
(

Φ
1

yπ
T
(q),qT−1

, qT−1

)

Q[T−1](q).

As Φ
1

yπ
T
(q),qT−1

∈ Φ̂1
(

yπ
T (q), qT−1

)

, (7.35) then follows from definitions.

We now prove (7.36). For any ǫ > 0, there exists π̃ǫ ∈ Π0 s.t. infπ∈Π supQ∈MAREQ[
∑T

t=1C
π
t ] >

supQ∈MAREQ[
∑T

t=1C
π̃ǫ
t ]− ǫ. Let us fix any such ǫ > 0 and corresponding π̃ǫ ∈Π0, where we denote

π̃ǫ by π̃ for clarity of exposition. We now prove that

sup
Q∈MAR

EQ[
T
∑

t=1

C π̃
t ]≥ sup

Q∈MAR

EQ[
T
∑

t=1

C π̃1

t ]. (7.40)

As Π1 ⊆Π0, by (7.34) it suffices to demonstrate that

sup
Q∈MARπ̃

1

EQ[
T
∑

t=1

C π̃
t ]≥ sup

Q∈MARπ̃1
1

EQ[
T
∑

t=1

C π̃1

t ]. (7.41)

Note that Q∈MARπ̃
1 , combined with (7.33), implies that

EQ[
T
∑

t=1

C π̃
t ] =EQ[

T−1
∑

t=1

C π̃
t ] +

∑

q∈supp(Q[T−1])

ĝ1
(

xπ̃
T (q), qT−1

)

Q[T−1](q).

π̃ ∈Π0 implies that for all Q ∈MARπ̃
1 and q ∈ [0,U ]T−1

Q , xπ̃
T (q)≥ yπ̃

T (q) and xπ̃
T (q) ∈ [0,U ]Q. By

combining the above, we conclude from definitions that Q∈MARπ̃
1 implies

EQ[
T
∑

t=1

C π̃
t ] ≥ EQ[

T−1
∑

t=1

C π̃
t ] +

∑

q∈supp(Q[T−1])

V̂ 1
(

yπ̃
T (q), qT−1

)

Q[T−1](q)

=
∑

q∈supp(Q[T−1])

( T−1
∑

t=1

C
(

xπ̃
t (q[t−1]), qt

)

+ V̂ 1
(

yπ̃
T (q), qT−1

)

)

Q[T−1](q). (7.42)

Alternatively, if Q ∈ MARπ̃1

1 , it follows from (7.35), and the fact that xπ̃
[T−1] = xπ̃1

[T−1] and thus

yπ̃1

T = yπ̃
T , that

EQ[
T
∑

t=1

C π̃1

t ] =
∑

q∈supp(Q[T−1])

( T−1
∑

t=1

C
(

xπ̃
t (q[t−1]), qt

)

+ V̂ 1
(

yπ̃
T (q), qT−1

)

)

Q[T−1](q). (7.43)

For any ǫ2 > 0, there exists Q̃ǫ2 ∈MARπ̃1

1 (which we denote simply as Q̃) s.t.

EQ̃[
T
∑

t=1

C π̃1

t ]> sup
Q∈MARπ̃1

1

EQ[
T
∑

t=1

C π̃1

t ]− ǫ2. (7.44)
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Lemma 17 implies the existence of Q̃π̃,1 ∈ MARπ̃
1 s.t. Q̃π̃,1

[T−1] = Q̃[T−1]. Trivially,

supQ∈MARπ̃
1
EQ[
∑T

t=1C
π̃
t ]≥EQ̃π̃,1[

∑T

t=1C
π̃
t ], and it follows from (7.42), (7.43), and (7.44) that

EQ̃π̃,1 [
T
∑

t=1

C π̃
t ] ≥

∑

q∈supp(Q̃[T−1])

( T−1
∑

t=1

C
(

xπ̃
t (q[t−1]), qt

)

+ V̂ 1
(

yπ̃
T (q), qT−1

)

)

Q̃[T−1](q)

= EQ̃[
T
∑

t=1

C π̃1

t ] > sup
Q∈MARπ̃1

1

EQ[
T
∑

t=1

C π̃1

t ]− ǫ2.

Letting ǫ2 ↓ 0 completes the proof of (7.41) and (7.40). Letting ǫ ↓ 0 completes the proof of (7.36).

We now proceed by induction. Suppose that (7.32) - (7.36) hold for all s′ ∈ [0, s] for some s≤
T − 2. We now prove that (7.32) - (7.36) also hold for s+1, and begin by verifying (7.32). Note
that for all π ∈Πs+1 and Q∈MARπ

s+1,

EQ[C
π
T−s−1] =

∑

q∈supp(Q[T−s−2])

(

∑

z∈[0,U ]Q

C(xπ
T−s−1(q), z)QT−s−1|q(z)

)

Q[T−s−2](q). (7.45)

Combining with (7.35), applied to s, and the fact that yπ
T−s(q : z) = xπ

T−s−1(q)− z, we conclude

EQ[
T
∑

t=T−s

Cπ
t ] =

∑

q∈supp(Q[T−s−2])

(

∑

z∈[0,U ]Q

V̂ s+1
(

xπ
T−s−1(q)− z, z

)

QT−s−1|q(z)

)

Q[T−s−2](q). (7.46)

Combining (7.45) - (7.46) with the definition of f̂ s+2 completes the proof of (7.32).
We now prove (7.33). It follows from (7.32), applied to s + 1, and the fact that MARπ

s+2 ⊆
MARπ

s+1, that for all π ∈Πs+1 and Q∈MARπ
s+2,

EQ[
T
∑

t=T−s−1

Cπ
t ] =

∑

q∈supp(Q[T−s−2])

(

∑

z∈[0,U ]Q

f̂ s+2
(

xπ
T−s−1(q), z

)

QT−s−1|q(z)

)

Q[T−s−2](q).

AsQ∈MARπ
s+2, q∈ supp(Q[T−s−2]) impliesQT−s−1|q =Q

s+2

xπ
T−s−1

(q),qT−s−2
∈ Q̂s+2(xπ

T−s−1(q), qT−s−2),

(7.33) then follows from the definitions of ĝs+2 and Q̂s+2.
We now prove (7.34). As Πs+1 ⊆ Πs, it follows from (7.34), applied to s, that it suffices to

demonstrate that for all π ∈Πs+1,

sup
Q∈MARπ

s+1

EQ[
T
∑

t=1

Cπ
t ] = sup

Q∈MARπ
s+2

EQ[
T
∑

t=1

Cπ
t ]. (7.47)

Let us fix any π ∈ Πs+1. For any ǫ > 0, there exists Q̃ǫ ∈ MARπ
s+1 s.t. E[

∑T

t=1C
π
t

(

DQ̃ǫ

[t] )] >

supQ∈MARπ
s+1

EQ[
∑T

t=1C
π
t ]− ǫ. Let us fix any such ǫ > 0 and corresponding Q̃ǫ ∈MARπ

s+1, where

we denote Q̃ǫ by Q̃ for clarity of exposition. We now prove that

E[
T
∑

t=1

Cπ
t

(

DQ̃π,s+2

[t] )]≥E[
T
∑

t=1

Cπ
t

(

DQ̃

[t])]. (7.48)

As Q̃π,s+2
[T−s−2] = Q̃[T−s−2], by (7.32), applied to s+ 1, it suffices to demonstrate that for every q ∈

supp(Q̃[T−s−2]),
∑

z∈[0,U ]Q

f̂ s+2
(

xπ
T−s−1(q), z

)

Q̃π,s+2
T−s−1|q(z)≥

∑

z∈[0,U ]Q

f̂ s+2
(

xπ
T−s−1(q), z

)

Q̃T−s−1|q(z). (7.49)
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By construction, Q̃π,s+2 ∈ MARπ
s+2, and thus for all q ∈ supp(Q̃[T−s−2]), Q̃π,s+2

T−s−1|q =

Q
s+2

xπ
T−s−1

(q),qT−s−2
∈ Q̂s+2(xπ

T−s−1(q), qT−s−2). Thus by definition, the left-hand side of (7.49) equals

sup
Q∈M(qT−s−2)

∑

z∈[0,U ]Q

f̂ s+2
(

xπ
T−s−1(q), z

)

Q(z) = ĝs+2
(

xπ
T−s−1(q), qT−1

)

. (7.50)

Noting that the martingale property ensures Q̃T−s−1|q ∈M(qT−s−2) then completes the proof of
(7.49), and (7.48). Letting ǫ ↓ 0 further completes the proof of (7.34).
We now prove (7.35). As Πs+2 ⊆Πs+1, it follows from (7.33), applied to s+1, and the fact that

π ∈Πs+2 implies xπ
T−s−1(q) =Φ

s+2

yπ
T−s−1

(q),qT−s−2
, that

EQ[
T
∑

t=T−s−1

Cπ
t ] =

∑

q∈supp(Q[T−s−2])

ĝs+2
(

Φ
s+2

yπ
T−s−1

(q),qT−s−2

)

Q[T−s−2](q).

As Φ
s+2

yπ
T−s−1

(q),qT−s−1
∈ Φ̂s+2

(

yπ
T−s−1(q), qT−s−1

)

, (7.35) then follows from definitions.

We now prove (7.36). First, observe that by (7.36), applied to s, it suffices to prove that

inf
π∈Πs+1

sup
Q∈MAR

EQ[
T
∑

t=1

Cπ
t ] = inf

π∈Πs+2

sup
Q∈MAR

EQ[
T
∑

t=1

Cπ
t ]. (7.51)

For any ǫ > 0, there exists π̃ǫ ∈Πs+1 s.t. infπ∈Πs+1
supQ∈MAREQ[

∑T

t=1C
π
t ]> supQ∈MAREQ[

∑T

t=1C
π̃ǫ
t ]−

ǫ. Let us fix any such ǫ > 0 and corresponding π̃ǫ ∈Πs+1, where we denote π̃ǫ by π̃ for clarity of
exposition. We now prove that

sup
Q∈MAR

EQ[
T
∑

t=1

C π̃
t ]≥ sup

Q∈MAR

EQ[
T
∑

t=1

C π̃s+2

t ].

As Πs+2 ⊆Πs+1, by (7.34), applied to s+1, it suffices to demonstrate that

sup
Q∈MARπ̃

s+2

EQ[
T
∑

t=1

C π̃
t ]≥ sup

Q∈MARπ̃s+2
s+2

EQ[
T
∑

t=1

C π̃s+2

t ]. (7.52)

Note that Q∈MARπ̃
s+2, combined with (7.33), applied to s+1, implies that

EQ[
T
∑

t=1

C π̃
t ] =EQ[

T−s−2
∑

t=1

C π̃
t ] +

∑

q∈supp(Q[T−s−2])

ĝs+2
(

xπ̃
T−s−1(q), qT−s−2

)

Q[T−s−2](q).

π̃ ∈ Πs+1 implies that for all Q ∈ MARπ̃
s+2 and q ∈ [0,U ]T−s−2

Q , xπ̃
T−s−1(q) ≥ yπ̃

T−s−1(q) and
xπ̃
T−s−1(q) ∈ [0,U ]Q. By combining the above, we conclude from definitions that Q ∈ MARπ̃

s+2

implies EQ[
∑T

t=1C
π̃
t ] is at least

EQ[
T−s−2
∑

t=1

C π̃
t ] +

∑

q∈supp(Q[T−s−2])

V̂ s+2
(

yπ̃
T−s−1(q), qT−s−2

)

Q[T−s−2](q),

which is itself equal to

∑

q∈supp(Q[T−s−2])

( T−s−2
∑

t=1

C
(

xπ̃
t (q[t−1]), qt

)

+ V̂ s+2
(

yπ
T−s−1(q), qT−s−2

)

)

Q[T−s−2](q). (7.53)
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Alternatively, if Q∈MARπ̃s+2

s+2 , it follows from (7.35), applied to s+1, and the fact that xπ̃
[T−s−2] =

xπ̃s+2

[T−s−2], that EQ[
∑T

t=1C
π̃s+2

t ] equals

EQ[
T−s−2
∑

t=1

C π̃
t ] +

∑

q∈supp(Q[T−s−2])

V̂ s+2
(

yπ
T−s−1(q), qT−s−2

)

Q[T−s−2](q),

which is itself equal to

∑

q∈supp(Q[T−s−2])

( T−s−2
∑

t=1

C
(

xπ̃
t (q[t−1]), qt

)

+ V̂ s+2
(

yπ
T−s−1(q), qT−s−2

)

)

Q[T−s−2](q). (7.54)

For any ǫ2 > 0, there exists Q̃ǫ2 ∈MARπ̃s+2

s+2 (which we denote simply as Q̃) s.t.

EQ̃[
T
∑

t=1

C π̃s+2

t ]> sup
Q∈MARπ̃s+2

s+2

EQ[
T
∑

t=1

C π̃s+2

t ]− ǫ2. (7.55)

Lemma 17 implies the existence of Q̃π̃,s+2 ∈ MARπ̃
s+2 s.t. Q̃π̃,s+2

[T−s−2] = Q̃[T−s−2]. Trivially,

supQ∈MARπ̃
s+2

EQ[
∑T

t=1C
π̃
t ]≥ EQ̃π̃,s+2[

∑T

t=1C
π̃
t ], which by (7.53), (7.54), and (7.55) is itself at least

∑

q∈supp(Q̃
π̃,s+2
[T−s−2]

)

( T−s−2
∑

t=1

C
(

xπ̃
t (q[t−1]), qt

)

+ V̂ s+2
(

yπ
T−s−1(q), qT−s−2

)

)

Q̃π̃,s+2
[T−s−2](q)

=
∑

q∈supp(Q̃[T−s−2])

( T−s−2
∑

t=1

C
(

xπ̃
t (q[t−1]), qt

)

+ V̂ s+2
(

yπ
T−s−1(q), qT−s−2

)

)

Q̃[T−s−2](q)

= EQ̃[
T
∑

t=1

C π̃s+2

t ] > sup
Q∈MARπ̃s+2

s+2

EQ[
T
∑

t=1

C π̃s+2

t ]− ǫ2.

Letting ǫ2 ↓ 0 completes the proof of (7.52) and (7.51). Letting ǫ ↓ 0 completes the proof of (7.36).
Combining all of the above completes the desired induction and proof of the theorem. �.

7.3. Proof of Observation 1
Proof of Observation 1 : For a general T ≥ 1, µ ∈ (0,U), x ∈

[

χT
MAR(µ,U, b),U

)

, let j′ be the
unique index s.t. µ ∈ (AT

j′ ,A
T
j′+1], and k′ to be the unique index s.t. x ∈ [BT

k′ ,B
T
k′+1), where exis-

tence and uniqueness follow from definitions and our assumptions. From definitions (especially
of qTx,µ) and our assumptions (especially time-homogeneity of the relevant parameters and the
accompanying self-reducibility of the DP equations, as well as the martingale property), to prove
the desired result it suffices to prove (for such general T,µ,x) that x≥ χT

MAR(µ,U, b) imples : 1.
k′ ≥ j′+1 (i.e. that the first case in the definition of qTx,µ cannot occur); and 2. AT

k′ ≥ x. Thus sup-
pose x≥ χT

MAR(µ,U, b). Recall from definitions that χT
MAR(µ,U, b) =BT

ΓT
µ
, and µ∈

(

AT+1
ΓT
µ−1

,AT+1
ΓT
µ

]

.

It follows that µ≤AT+1

ΓT
µ

≤AT
ΓT
µ
by the monotonicity (in T) of AT

j . Combining with the fact that

µ∈ (AT
j′ ,A

T
j′+1], and the monotonicity (in j) of AT

j , it follows that

ΓT
µ ≥ j′ +1. (7.56)

Since by definition χT
MAR(µ,U, b) = BT

ΓT
µ
, the fact that x ≥ χT

MAR(µ,U, b) and x ∈ [BT
k′ ,B

T
k′+1),

combined with the monotonicity (in k) of BT
k , together imply that

k′ ≥ ΓT
µ . (7.57)
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Combining (7.56) and (7.57) we conclude that k′ ≥ j′ +1, showing the first desired statement. To
complete the proof, it thus suffices to prove that (under the same assumptions) AT

k′ ≥ x. Since
by construction x∈ [BT

k′ ,B
T
k′+1), and it follows from (3.10) that AT

k′ ≥BT
k′+1, combining the above

completes the proof. Q.E.D.

7.4. Proof of Lemma 4
Proof: [Proof of Lemma 4] We first prove continuity. That gT (x,d) is a continuous function

of x on (0,U) \⋃T−1

i=ΓT−1
d

{BT
i }, and a right-continuous function of x on [0,U ] \ {U}, follows from

definitions, and the fact that F T
i (x,d) and GT

i (x,d) are continuous functions of x on [0,U ] for
all i. It similarly follows that limx↑BT

i
gT (x,d) exists for all i ∈ [ΓT−1

d , T ] \ {0}. It thus suffices to

demonstrate that limx↑BT
i
gT (x,d) equals gT (BT

i , d) for all i ∈ [ΓT−1
d , T ] \ {0}. We treat two cases:

i=ΓT−1
d , and i ∈ [ΓT−1

d +1, T ], and begin with the case i=ΓT−1
d . By assumption we preclude the

case i= 0. Thus suppose i=ΓT−1
d ∈ [1, T ]. In this case,

lim
x↑BT

i

gT (x,d) = F T
i−1(B

T
i , d)

= −bBT
i +(b+T )BT

i +
(

Tb− (b+1)i
)

d.
= TBT

i +
(

Tb− (b+1)i
)

d.

Alternatively,

gT (BT
i , d) = GT

i (B
T
i , d)

= (T − b+T

AT
i

d)BT
i +(T − i)bd

= TBT
i +

(

Tb− (b+1)i
)

d.

Combining the above completes the proof for this case. Next, suppose i∈ [ΓT−1
d +1, T ]. In this case,

lim
x↑BT

i

gT (x,d) = GT
i−1(B

T
i , d)

= (T − b+T

AT
i−1

d)BT
i +

(

T − (i− 1)
)

bd

= TBT
i +

(

Tb− (b+1)i
)

d.

Alternatively,

gT (BT
i , d) = GT

i (B
T
i , d)

= (T − b+T

AT
i

d)BT
i +(T − i)bd = TBT

i +
(

Tb− (b+1)i
)

d,

completing the proof.
We now prove convexity. As in our proof of continuity, that gT (x,d) is a right-differentiable

function of x on (0,U)\⋃T

i=ΓT−1
d

{BT
i }, with non-decreasing right-derivative on the same set, follows

from definitions and the fact that F T
i (x,d) and GT

i (x,d) are linear functions of x on [0,U ] for
all i. It similarly follows that gT (x,d) is a right-differentiable function of x on [0,U ] \ {U}, and
that limx↑BT

i
∂+
x g

T (x,d) exists for all i ∈ [ΓT−1
d , T − 1] \ {0}. It thus suffices to demonstrate that

limx↑BT
i
∂+
x g

T (x,d)≤ ∂+
x g

T (BT
i , d) for all i ∈ [ΓT−1

d , T − 1] \ {0}. We treat two cases: i=ΓT−1
d , and

i∈ [ΓT−1
d +1, T −1], and begin with the case i=ΓT−1

d . By assumption we preclude the cases i= 0, T .
Thus suppose i=ΓT−1

d ∈ [1, T − 1]. Then

lim
x↑BT

i

∂+
x g

T (x,d) = lim
x↑BT

i

∂+
x F

T
i−1(x,d)

= −b.
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Alternatively,

∂+
x g

T (BT
i , d) = ∂+

x G
T
i (B

T
i , d)

= T − b+T

AT
i

d.

≥ T − b+T

AT
i

AT
i = −b.

Combining the above completes the proof for this case. Next, suppose i ∈ [ΓT−1
d +1, T − 1]. Then

lim
x↑BT

i

∂+
x g

T (x,d) = lim
x↑BT

i

∂+
x G

T
i−1(x,d)

= T − b+T

AT
i−1

d.

Alternatively,

∂+
x g

T (BT
i , d) = ∂+

x G
T
i (B

T
i , d)

= T − b+T

AT
i

d.

The desired result then follows from the fact that AT
i is increasing in i and d is non-negative.

Combining the above completes the proof. �

7.5. Proofs of Lemmas 5 and 6
Proof: [Proof of Lemma 5] The desired result follows directly from the observation that AT+1

j+1 is

trivially strictly less than AT
j+1 for all j ∈ [0, T − 2], and

AT
j

A
T+1
j+1

=
j+1

b+j+1
T

b+T

< 1 for all j ∈ [0, T − 2]. �

Proof: [Proof of Lemma 6] Let i = ΓT
d , j = ΓT−1

d . From Lemma 4, it suffices to prove that
∂+
x g

T (x,d) ≤ 0 for all x < BT
i , and ∂+

x g
T
(

BT
i , d
)

≥ 0; or that ∂+
x g

T (x,d) ≤ 0 for all x < U and
BT

i = U . It follows from Lemma 5 that i ∈ {j, j + 1}. We now proceed by a case analysis. First,
suppose i= j. In that case, BT

i =BT
j , j ≤ T − 1, and BT

i <U . We conclude that for all x<BT
i ,

∂+
x g

T (x,d) = ∂+
x F

T
j−1(x,µ) = −b.

Noting that

∂+
x g

T
(

BT
i , d
)

= ∂+
x G

T
i (B

T
i , d)

= T − b+T

AT
i

d ≥ T − b+T

AT
i

AT+1
i = 0

completes the proof in this setting.
Alternatively, suppose that i= j+1. In this case, BT

i >BT
j , and

lim
x↑BT

i

∂+
x g

T
(

x,d
)

= lim
x↑BT

i

∂+
x G

T
i−1(x,d)

= T − b+T

AT
i−1

d ≤ T − b+T

AT
i−1

AT+1
i−1 = 0.

If BT
i =U , the result follows from Lemma 4. Otherwise,

∂+
x g

T
(

BT
i , d
)

= ∂+
x G

T
i (B

T
i , d)

= T − b+T

AT
i

d ≥ T − b+T

AT
i

AT+1
i = 0.

Combining the above completes the proof. �
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7.6. Proof of Lemma 7
Proof: [Proof of Lemma 7] Let us proceed by showing that for each fixed x ∈ [0,U ], gT (x,d) =

gT
(

max
(

βT
d , x− d

)

, d

)

for all d∈ [0,U ]. As the equivalence is easily verified for the case d= 0, in

which case gT (x,d) = gT
(

max
(

βT
d , x− d

)

, d

)

= Tx, suppose d > 0. We proceed by a case analysis,

beginning with the setting d∈ (0, zTx ). In this case, max
(

βT
d , x− d

)

= x− d, and

x > d+BT

ΓT
d

≥ d+BT

ΓT−1
d

,

where the second inequality follows from Lemma 5 and the monotonicity (in i) of BT
i . Combining

with the easily verified fact that F
T

j (x,d) =GT
j (x− d, d) for all j completes the proof in this case.

Alternatively, suppose d∈ [zTx ,U ], which implies that max
(

βT
d , x− d

)

= βT
d , and d≥ x−βT

d . We
proceed by a case analysis. First, suppose d ∈ (AT

j ,A
T+1
j+1 ] for some j ∈ [−1, T − 2]. In this case,

Lemma 5 implies that d∈ (AT
j ,A

T
j+1]

⋂

(AT+1
j ,AT+1

j+1 ], and

gT (x,d) = G
T

j (d).
= GT

j+1(B
T
j+1, d) = gT (βT

d , d).

Alternatively, suppose d∈ (AT+1
j+1 ,A

T
j+1] for some j ∈ [−1, T −2]. In this case, Lemma 5 implies that

d∈ (AT
j ,A

T
j+1]

⋂

(AT+1
j+1 ,A

T+1
j+2 ], and

gT (x,d) = G
T

j+1(d).
= GT

j+2(B
T
j+2, d) = gT (βT

d , d).

Lemma 5 implies that this treats all cases. Combining the above completes the proof. �

7.7. Proof of Lemma 8
Proof: [Proof of Lemma 8] First, let us treat the case d∈ [0, zTx ), and begin by proving continuity.

Right-continuity at 0 when x 6= 0 follows from the fact that limd↓0F
T

j (x,d) = Tx for all j, and

right-continuity at 0 when x = 0 follows from definitions. That gT (x,d) is a continuous function
of d on (0, zTx ) \

⋃T−1

j=1 {x−BT
j }, and a left-continuous function of d on (0, zTx ), follows from the

continuity (in d) of F
T

j (x,d) for all j. It similarly follows that limd↓x−BT
j
gT (x,d) exists for all j s.t.

x−BT
j ∈ (0, zTx ), and it thus suffices to demonstrate that limd↓x−BT

j
gT (x,d) equals gT (x,x−BT

j )

for all j ∈ [1, T − 1] s.t. x−BT
j ∈ (0, zTx ). Note that for all such j,

lim
d↓x−BT

j

gT (x,d) = F
T

j−1(x,x−BT
j )

= Tx+
(

(b− 1)T − b(j− 1)− b+T

AT
j−1

x
)

(x−BT
j )+

b+T

AT
j−1

(x−BT
j )

2.

Alternatively,

gT (x,x−BT
j ) = F

T

j (x,x−BT
j )

= Tx+
(

(b− 1)T − bj− b+T

AT
j

x
)

(x−BT
j )+

b+T

AT
j

(x−BT
j )

2.

It follows that gT (x,x−BT
j )− limd↓x−BT

j
gT (x,d) equals

(

− b+(
b+T

AT
j−1

− b+T

AT
j

)x
)

(x−BT
j )− (

b+T

AT
j−1

− b+T

AT
j

)(x−BT
j )

2
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= (x−BT
j )
(

− b+(
b+T

AT
j−1

− b+T

AT
j

)x− (
b+T

AT
j−1

− b+T

AT
j

)(x−BT
j )
)

= (x−BT
j )
(

− b+(b+T )BT
j (

1

AT
j−1

− 1

AT
j

)
)

= 0,

completing the proof of continuity.
We now prove convexity. Again applying Lemma 3, it suffices to demonstrate that ∂+

d g
T (x,d)

exists and is non-decreasing on (0, zTx
)

. Since F
T

j (x,d) is a convex quadratic function of d for all j,

we conclude that: ∂+
d g

T (x,d) exists on (0, zTx ); ∂
+
d g

T (x,d) is non-decreasing on (0, zTx ) \
⋃T−1

j=1 {x−
BT

j }; and limd↑x−BT
j
∂+
d g

T (x,d) exists for all j ∈ [1, T − 1] s.t. x−BT
j ∈ (0, zTx ). It thus suffices to

demonstrate that limd↑x−BT
j
∂+
d g

T (x,d)≤ ∂+
d g

T (x,x−BT
j ) for all j ∈ [1, T − 1] s.t. x−BT

j ∈ (0, zTx ).

Note that for any such j,

lim
d↑x−BT

j

∂+
d g

T (x,d) = ∂+
d F

T

j (x,x−BT
j )

= (b− 1)T − bj− b+T

AT
j

x+2
b+T

AT
j

(x−BT
j )

= (b− 1)T − (b+2)j+x
b+T

AT
j

.

Alternatively, it follows from continuity that

∂+
d g

T (x,x−BT
j ) = ∂+

d F
T

j−1(x,x−BT
j )

= (b− 1)T − b(j− 1)− b+T

AT
j−1

x+2
b+T

AT
j−1

(x−BT
j )

= (b− 1)T − (b+2)j− b+x
b+T

AT
j−1

.

It follows that
∂+
d g

T (x,x−BT
j )− lim

d↑x−BT
j

∂+
d g

T (x,d) (7.58)

equals

−b+x
b+T

AT
j−1

−x
b+T

AT
j

,

which will be the same sign as

− bAT
j−1 +x(b+T )−x(b+T )

j

b+ j
= −bAT

j−1 +x(b+T )
b

b+ j
. (7.59)

Noting that b+j

b+T
AT

j−1 = BT
j , and multiplying through the right-hand side of (7.59) by b+j

b(b+T )
, we

further conclude that (7.58) will be the same sign as x−BT
j . Since by assumption x−BT

j ∈ (0, zTx ),
we conclude that x−BT

j ≥ 0, completing the proof of continuity and convexity for d ∈ (0, zTx ) and
right-continuity at 0.
Next, let us treat the case d ∈ (zTx ,U ], and begin by proving continuity. That gT (x,d) is a

continuous function of d on (zTx ,U) \⋃T−1

j=0 {AT+1
j }, and a left-continuous function of d on (zTx ,U ],

follows from the continuity (in d) of G
T

j (d) for all j. It similarly follows that lim
d↓AT+1

j
gT (x,d)

exist for all j ∈ [0, T − 1] s.t. AT+1
j > zTx . It thus suffices to demonstrate that lim

d↓AT+1
j

gT (x,d) =

gT (x,AT+1
j ) for all j ∈ [0, T − 1] s.t. AT+1

j > zTx . Note that for any such j,

lim
d↓AT+1

j

gT (x,d) = G
T

j (A
T+1
j )

= TBT
j+1 +

(

Tb− (b+1)(j+1)
)

AT+1
j .
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Alternatively,

gT (x,AT+1
j ) = G

T

j−1(A
T+1
j )

= TBT
j +

(

Tb− (b+1)j
)

AT+1
j .

Thus

gT (x,AT+1
j )− lim

d↓AT+1
j

gT (x,d) = T (BT
j −BT

j+1)+ (b+1)AT+1
j

=
T

b+T
(jAT

j − (j+1)AT
j+1

)

+(b+1)
T

b+T
AT

j

=
T

b+T

(

(b+ j+1)AT
j − (j+1)AT

j+1

)

= 0,

completing the proof of continuity.
We now prove concavity. Again applying Lemma 3, it suffices to demonstrate that ∂+

d g
T (x,d)

exists and is non-increasing on (zTx ,U). Since G
T

j (d) is a linear function of d for all j, it follows

from the piece-wise definition of gT (x,d) that demonstrating the desired concavity is equivalent to

showing that ∂+
d G

T

j (0) is non-increasing in j. Noting that ∂+
d G

T

j (0) = Tb− (b+1)(j+1), which is
trivially decreasing in j, completes the proof.

Finally, let us prove continuity at zTx . We consider two cases, depending on how ηd
∆
= x−d comes

to go from lying above βT
d to lying below βT

d . This “crossing” can occur in two ways. In particular,
either βT

d and ηd actually intersect, or zTx occurs at a jump discontinuity of βT
d and the two functions

never truly intersect. We proceed by a case analysis. Let i=ΓT
zTx
.

First, suppose that βT
d and ηd actually intersect at zTx , namely BT

i = x−zTx . If z
T
x ∈⋃T

j=−1{AT+1
j },

the proof of right-continuity follows identically to our previous proof of right-continuity at AT+1
j

for all j ∈ [0, T − 1] s.t. AT+1
j > zTx , and we omit the details. Otherwise, right-continuity at zTx

follows from definitions. Either way, we need only demonstrate left-continuity. Note that zTx ∈
(x−BT

i+1, x−BT
i ], and

lim
d↑zTx

gT (x,d) = F
T

i (x, z
T
x )

= Tx+
(

(b− 1)T − bi− b+T

AT
i

x
)

(x−BT
i )+

b+T

AT
i

(x−BT
i )

2

= TBT
i +

(

Tb− (b+1)i
)

(x−BT
i ).

Alternatively,

gT (x, zTx ) = G
T

i−1(x−BT
i )

= TBT
i +

(

Tb− (b+1)i
)

(x−BT
i ),

completing the proof of continuity in this case.
Alternatively, suppose that βT

d and ηd do not truly intersect at zTx . In this case, zTx = AT+1
i ∈

(x−BT
i+1, x−BT

i ], and

lim
d↑zTx

gT (x,d) = F
T

i (x,A
T+1
i )

= Tx+
(

(b− 1)T − bi− b+T

AT
i

x
)

AT+1
i +

b+T

AT
i

(AT+1
i )2

= b(T − i)AT+1
i ,
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where the final equality follows from straightforward algebraic manipulations, the details of which
we omit. Alternatively,

gT
(

x, zTx ) = G
T

i−1(A
T+1
i )

= TBT
i +

(

Tb− (b+1)i
)

AT+1
i

= b(T − i)AT+1
i ,

where the final equality again follows from straightforward algebraic manipulations. This completes
the proof of left-continuity at zTx . The proof of right-continuity in this case follows identically to
our previous proof of right-continuity at AT+1

j for all j ∈ [0, T − 1] s.t. AT+1
j > zTx , and we omit the

details. Combining the above completes the proof of the lemma. �

7.8. Proof of Lemmas 9 and 10
Proof: [Proof of Lemma 9] The statements regarding continuity follow from Lemma 8. Noting

that d > αT
x implies d > x, concavity on (αT

x ,U) follows from (3.9) and Lemma 8. Let i = ζT−1
x .

Convexity on (0, zT−1
x ) follows from (3.9) and Lemma 8. Supposing zT−1

x /∈ {0,U}, it follows from

definitions that zT−1
x ∈ (AT

i−1,A
T
i ], where AT

x = AT
i . Combining with the convexity of F

T−1

j (x,d)

and G
T−1

j (d) for all j, to prove the lemma, it suffices to demonstrate that: 1. zT−1
x /∈⋃T−1

j=−1{AT
j }

implies that
lim

d↑zT−1
x

∂+
d f

T (x,d)≤ ∂+
d f

T (x, zT−1
x ); (7.60)

and 2. x /∈⋃T−1

j=−1{AT
j } implies

lim
d↑x

∂+
d f

T (x,d)≤ ∂+
d f

T (x,x). (7.61)

We treat several cases, and assume throughout that zT−1
x , x /∈⋃T−1

j=−1{AT
j }. First, suppose zT−1

x = x.
In this case, it follows from a straightforward contradiction argument that ΓT

x = i= 0, x∈ (0,AT
0 ),

and

lim
d↑zT−1

x

∂+
d f

T (x,d) = −1+ lim
d↑zT−1

x

∂+
d F

T−1

0 (x,d)

= −1+ (b− 1)(T − 1)− b+T − 1

AT−1
0

x+2
b+T − 1

AT−1
0

zT−1
x

= −1+ (b− 1)(T − 1)+
b+T − 1

AT−1
0

x

≤ −1+ (b− 1)(T − 1)+
b+T − 1

AT−1
0

AT
0 = bT − (b+1).

Alternatively,

∂+
d f

T (x, zT−1
x ) = b+ ∂+

d G
T−1

−1 (x)
= b+(T − 1)b = bT.

Combining the above completes the proof of both (7.60) and (7.61) in this case.

Next, suppose zT−1
x <x. We again consider two cases, depending on how ηd

∆
= x− d comes to go

from lying above βT−1
d to lying below βT−1

d . In the case that the two actually intersect, it may be
easily verified that zT−1

x = x−BT−1
i , and

lim
d↑zT−1

x

∂+
d f

T (x,d) = −1+ lim
d↑zT−1

x

∂+
d F

T−1

i (x,d)

= −1+ (b− 1)(T − 1)− bi− b+T − 1

AT−1
i

(zT−1
x +BT−1

i )+ 2
b+T − 1

AT−1
i

zT−1
x

= −1+ (b− 1)(T − 1)− (b+1)i+
b+T − 1

AT−1
i

zT−1
x .
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Alternatively,

∂+
d f

T
(

x, zT−1
x

)

= −1+ ∂+
d G

T−1

i−1 (z
T−1
x )

= −1+ (T − 1)b− (b+1)i.

It follows that

∂+
d f

T (x, zT−1
x )− lim

d↑zT−1
x

∂+
d f

T (x,d) = T − 1− b+T − 1

AT−1
i

zT−1
x ,

which will be the same sign as

AT
i − zT−1

x ≥ AT
i −AT

i = 0.

Combining the above completes the proof of (7.60) in this case. Furthermore, the proof of (7.61)
follows from the fact that x /∈⋃T−1

j=−1{AT
j }, from which it follows that

∂+
d f

T (x,x)− lim
d↑x

∂+
d f

T (x,d) = b+1.

Finally, suppose that zT−1
x < x and zT−1

x /∈⋃T−2

j=1 {x−BT−1
j }. As x /∈⋃T−1

j=−1{AT
j }, this final case

follows nearly identically to the proof of (7.61) in the previous case, and we omit the details.
Combining all of the above cases completes the proof of the lemma. �

Proof: [Proof of Lemma 10] Note that for any measure Q∈M(µ), it is true that

EQ[f(D)]≤ EQ[η(D)] =
f(R)− f(L)

R−L
µ+

Rf(L)−Lf(R)

R−L
.

But since q has support only on points d ∈ [0,U ] s.t. f(d)= η(d), it follows that

Eq[f(D)] =Eq[η(D)] =
f(R)− f(L)

R−L
µ+

Rf(L)−Lf(R)

R−L
.

Combining the above completes the proof. �

7.9. Proof of Lemma 11
Proof: [Proof of Lemma 11] We first prove that KT (x,d) ≥ fT (x,d) for all d ∈ [0,U ]. Let i =

ζT−1
x , j =ΓT−1

x , and k=ΥT−1
x . That KT (x,0)≥ fT (x,0) follows from definitions. We now prove that

KT (x,AT
l )≥ fT (x,AT

l ) for all l ∈ [i, j− 1]. First, it will be useful to rewrite K in a more convenient
form. Noting that ℵT

x =AT
k ,

fT (x,AT
k ) = b(AT

k −x)+G
T−1

k−1 (A
T
k )

= b(AT
k −x)+ (T − 1)BT−1

k +
(

(T − 1)b− (b+1)k
)

AT
k ,

and

KT (x,d) =
fT (x,AT

k )−Tx

AT
k

d+Tx

=
(

Tb− (b+1)k+
(T − 1)BT−1

k − (b+T )x

AT
k

)

d+Tx

=
(

b(T − k)− (b+T )x

AT
k

)

d+Tx. (7.62)
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Combining with the fact that for all l ∈ [i, j − 1] one has AT
l ∈ [zT−1

x , x], proving the desired state-
ment is equivalent to proving that

(

b(T − k)− (b+T )x

AT
k

)

AT
l +Tx≥ x−AT

l +(T − 1)BT−1
l +

(

(T − 1)b− (b+1)l
)

AT
l ,

which is itself equivalent to demonstrating that

(

b(l+1− k)+ 1− (b+T )x

AT
k

)

AT
l +(T − 1)x≥ 0. (7.63)

First, it will be useful to prove that the left-hand side of (7.63),

η(l)
∆
=
(

b(l+1− k)+ 1− (b+T )x

AT
k

)

AT
l +(T − 1)x,

is decreasing in l, for l ∈ [0, j− 1]. Indeed, after simplifying, we find that

η(l+1)− η(l) =

(

b+
b

b+ l+1

(

b(l+1− k)+ 1− (b+T )x

AT
k

)

)

AT
l+1,

which will be the same sign as

(

b(l+2− k)+ l+2
)

AT
k − (b+T )x

≤
(

b(l+2− k)+ l+2
)

AT
k − (b+T )BT

k

= (b+1)(l+2− k)AT
k .

Noting that ℓ+1≤ j − 1 and (3.11) implies j ≤ k completes the proof of monotonicity, which we
now use to complete the proof of (7.63). In particular, the above monotonicity implies that to prove
(7.63), it suffices to prove that η(k− 1)≥ 0. Note that

η(k− 1)=AT
k−1 +

b(T − 1− k)− k

b+ k
x.

If b(T − 1− k)− k≥ 0, then trivially η(k− 1)≥ 0. Thus suppose b(T − 1− k)− k < 0. In this case,
η(k− 1)≥ 0 iff

x≤ (b+ k)AT
k−1

k− b(T − 1− k)
.

As x≤BT
k+1, it thus suffices to prove that

BT
k+1 ≤

b+ k

k− b(T − 1− k)
AT

k−1,

which, dividing both sides by AT
k−1(b+ k) and simplifying, is itself equivalent to proving that

(b+T )k≥
(

k− b(T − 1− k)
)

(b+ k+1).

Noting that k ≤ T − 1, and thus k − b(T − 1 − k) ≤ k, thus completes the desired proof that
KT (x,AT

l )≥ fT (x,AT
l ) for all l ∈ [i, j − 1].

We now prove that KT (x,AT
l )≥ fT (x,AT

l ) for all l ∈ [j, k]. By construction,

KT (x,AT
k ) = fT (x,AT

k ),

and thus it suffices to prove the desired claim for l ∈ [j, k − 1]. Note that the degenerate case for
which x=AT

k can be ignored, as in that case j = k. Thus suppose x<AT
k . In this case, Lemma 9
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implies that fT (x,d) is a continuous, concave, piecewise linear function of d on [AT
j ,A

T
k ]. As KT (x,d)

is a linear function of d, it follows from the basic properties of concave functions that to prove the
desired claim, it suffices to demonstrate that

∂+
d K(x,AT

k )≤ lim
d↑AT

k

∂+
d f

T (x,d), (7.64)

which is equivalent to proving that

b(T − k)− (b+T )x

AT
k

≥ b+ lim
d↑AT

k

∂+
d G

T−1

k−1 (d). (7.65)

It follows from definitions that

AT
k =

b+T

k
BT

k ≤ b+T

k
x.

Combining with (7.65), we find that to prove the desired claim, it suffices to demonstrate that

b(T − k)− k≥ b+(T − 1)b− (b+1)k. (7.66)

Noting that both sides of (7.66) are equivalent completes the proof.
Finally, let us prove that KT (x,AT

l )≥ fT (x,AT
l ) for all l ∈ [k+1, T − 1], which will complete the

proof. It again follows from Lemma 9 and the basic properties of concave functions that in this case
it suffices to demonstrate that ∂+

d KT (x,AT
k )≥ ∂+

d f
T (x,AT

k ), which is equivalent to proving that

b(T − k)− (b+T )x

AT
k

≥ b+ ∂+
d G

T−1

k (AT
k ). (7.67)

It follows from definitions that

AT
k =

k+1

b+ k+1
AT

k+1

=
b+T

b+ k+1
BT

k+1 ≥ b+T

b+ k+1
x.

Combining with (7.67), we find that in this case it suffices to demonstrate that

b(T − k)− (b+ k+1)≥ b+(T − 1)b− (b+1)(k+1). (7.68)

Noting that both sides of (7.68) are equivalent completes the proof. Combining all of the above
with the piece-wise convexity guaranteed by Lemma 9 completes the proof that KT (x,d)≥ fT (x,d)
for all d∈ [0,U ].
We now prove that for all l ∈ [k,T − 2], LT

l (x,d)≥ fT (x,d) for all d∈ [0,U ]. Note that fT (x,d) is
a concave function on [AT

k ,U ], and by construction LT
l (x,d) is a line tangent to fT (x,d) at AT

l . It
follows from the basic properties of concave functions that

LT
l (x,d)≥ fT (x,d) for all d ∈ [AT

k ,U ].

Combining those same properties with (7.64) and the basic properties of linear functions, it follows
that LT

l (x,d)≥KT (x,d) for all d ∈ [0,AT
k ]. Combining all of the above completes the proof. �
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7.10. Proof of Theorems 5 and 6, and Observation 4
Proof: [Proof of Theorem 5] Let π1 denote the base-stock policy which always orders up to

0, and π2 the base-stock policy which always orders up to U . Note that if x0 = 0, then for any
Q ∈MGEN, w.p.1 Cπ1

t = bdt, and Cπ2
t = U − dt, t ∈ [1, T ], which implies that OptTGEN(µ,U, b) ≤

min{Tbµ, T (U −µ)}=OptTIND(µ,U, b). �

Proof: [Proof of Theorem 6] From Theorems 1 and 3,

OptTMAR(µ,U, b)

OptTIND(µ,U, b)
=

GT
ΓT
µ
(βT

µ , µ)

min{Tbµ, T (U −µ)} =
ΓT
µA

T+1
ΓT
µ

+
(

Tb− (b+1)ΓT
µ

)

µ

min{Tbµ, T (U −µ)} .

Combining the above with Lemma 12 completes the proof. �

Proof: [Proof of Observation 4] The results of [119] (i.e. Theorem 1) imply that if x0 = U and
µ

U
≤ 1

b+1
, then the dynamics of Problem 2.1 at optimality are as follows. The initial inventory level

equals U . In each period, with probability µ

U
, the demand equals U , and with probability 1− µ

U

equals 0. Up until the first time that the demand equals U , the inventory level will equal U , and
at the end of each period a holding cost equal to U is incurred. The first time the demand equals
U , the inventory level drops to 0, and in that period no cost is incurred. In all later periods, the
inventory level is raised to 0, and if in that period the demand equals U , a cost of bµ is incurred -
otherwise no cost is incurred. It follows that the value of Problem 2.1 equals

T
∑

k=1

(1− µ

U
)k−1 µ

U

(

(k− 1)U +(T − k)bµ
)

+(1− µ

U
)TUT,

which is itself equal to

bµT +
U2

µ
− (b+1)U +(1− µ

U
)T (1+ b− U

µ
)U.

Alternatively, it follows from Theorems 2 and 3, combined with the fact that qTU,µ(U) = µ

U
,qTU,µ(0) =

1− µ

U
, and the martingale property, that the dynamics of Problem 2.4 at optimality are as follows.

The initial inventory level equals U . With probability µ

U
, the demand in every period is U , and

the inventory level is raised to U at the start of each period, so no cost is incurred over the entire
time horizon. With probability 1− µ

U
, the demand in every period is 0, and the inventory level in

every period is U , implying that a cost of TU is incurred over the time horizon. It follows that the
value of Problem 2.4 equals (1− µ

U
)TU = (U − µ)T . Combining the above with a straightforward

limiting argument, and the fact that µ

U
< 1

b+1
implies U−µ

bµ
> 1, completes the proof. �

7.11. Further interpretation of Observation 3
To further help interpret Observation 3 and the explicit forms for the various quantities, we now
show how (for the case T = 2) one may derive the same quantities from a certain “heuristic
relaxation” of our original problem. In doing so, we will be able to see precisely where and why
certain quantities arise. In light of Observation 1, let us consider the following simplified version of
Problem 2.4. To set up this simplified problem, we reason as follows. Observation 1 suggests that
at optimality a worst-case distribution always has support on 2 points, one on 0 and one on some
value which clears the inventory. Thus we create a simplified problem by “enforcing” that in the
first period, the adversary selects such a distribution. Namely, if the post-ordering inventory level
(in the first period) equals x, then in the first period the adversary must select (as a function of x)
some value d∈

[

max(x,µ),U
]

and set the demand (in the first period) equal to d w.p. µ

d
, and equal

to 0 w.p. 1− µ

d
. Note that if the adversary acts in this manner in the first period then the dynamics

in the second period will (since the policy-maker can order up to any level as their inventory will
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have been cleared in the first period) be equivalent to the dynamics of a single-period problem in
which the policy-maker may select any starting level in [0,U] and the demand must have mean D1

(either d or 0 depending on the random realized demand in the first period), a minimax problem
whose explicit solution is given in Theorem 1. Combining the above, we are led to the following
simplified version of Problem 2.4 :

inf
x∈[0,U ]

sup
d∈

[

max(x,µ),U

]

(

(1− µ

d
)× (2x)+

µ

d
×
(

b× (d−x)+min(bd,U − d)
)

)

.

Further relaxing the problem to allow d to take any value in [0,U] (i.e. relaxing the constraint that
d ≥max(x,µ), which will yield the same insights through a simpler analysis), we are led to the
following further-simplified problem :

inf
x∈[0,U ]

sup
d∈[0,U ]

(

(1− µ

d
)× (2x)+

µ

d
×
(

b× (d−x)+min(bd,U − d)
)

)

. (7.69)

For a fixed x∈ [0,U ], let us consider the inner maximization problem. Noting that min(bd,U−d) =
bd exactly when d≤ U

b+1
, we find (after some simple algebra) that the inner problem has optimal

value

max

(

sup
d∈[0, U

b+1 ]

(

2x+2µb− (b+2)µx

d

)

, sup
d∈[ U

b+1 ,U ]

(

2x+(b− 1)µ+µ× U − (b+2)x

d

)

)

. (7.70)

Noting that supd∈[0, U
b+1 ]

(

2x+2µb− (b+2)µx

d

)

attains its maximum at d= U
b+1

, which is equivalent to

2x+(b− 1)µ+µU−(b+2)x
U

b+1

, we find that the first term within the maximum is superfluous in (7.70),

and that (7.70) equals

sup
d∈[ U

b+1 ,U ]

(

2x+(b− 1)µ+µ× U − (b+2)x

d

)

. (7.71)

Now, we find that the optimal value for d in (7.71) is determined by the sign of U − (b+2)x, i.e.
whether x ≤ U

b+2
or not. We have thus so far identified two critical values : U

b+1
as determining

the value and behavior in the final period (in line with the single-period problem), and U
b+2

as
determining the sign of a critical coefficient which drives whether a worst-case distribution selects
the non-zero value for demand to be “small” or “large”. Combining the above with some simple
algebra, we conclude the following. For x ∈ [0, U

b+2
), the inner maximization has a maximizer at

d= U
b+1

, and has value (at this maximizer) 2µb+
(

2− (b+1)(b+2)µ
U

)

x. For x∈ [ U
b+2

,U ], the inner

maximization has a maximizer at d= U , and has value (at this maximizer) µb+
(

2− (b+2) µ

U

)

x.
Thus the optimal choice of x is driven by the sign of 2− (b+1)(b+ 2) µ

U
and 2− (b+ 2) µ

U
, which

coincides exactly with whether µ∈ [0, 2U
(b+1)(b+2)

], µ∈ ( 2U
(b+1)(b+2)

, 2U
b+2

], or µ∈ ( 2U
b+2

,U ].

Indeed, first suppose µ ∈ [0, 2U
(b+1)(b+2)

]. Then infx∈[0, U
b+2

]

(

2µb+
(

2 − (b+ 1)(b+ 2) µ

U

)

x

)

= 2µb

(attained at x= 0), while infx∈[ U
b+2

,U ]

(

µb+
(

2− (b+2) µ

U

)

x

)

= µb+
(

2− (b+2) µ

U

)

× U
b+2

(attained

at x= U
b+2

). As it follows from some straightforward algebra (the details of which we omit) that

µb+
(

2− (b+2) µ

U

)

× U
b+2

≥ 2µb for all µ∈ [0, 2U
(b+1)(b+2)

], in this case we conclude that the optimal

x equals 0, the optimal d (for that choice of x) equals U
b+1

, and the optimal value equals 2µb.

Next, suppose µ∈ ( 2U
(b+1)(b+2)

, 2U
b+2

]. Then infx∈[0, U
b+2 ]

(

2µb+
(

2− (b+1)(b+2) µ

U

)

x

)

= 2µb+
(

2−

(b+1)(b+2) µ

U

)

× U
b+2

(attained at x= U
b+2

), while infx∈[ U
b+2 ,U ]

(

µb+
(

2− (b+2) µ

U

)

x

)

= µb+
(

2−
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(b+2) µ

U

)

× U
b+2

(attained at x= U
b+2

). In this case we conclude that the optimal x equals U
b+2

, the
optimal d (for that choice of x) equals U , and the optimal value equals µ(b− 1)+ 2U

b+2
.

Finally, suppose µ ∈ ( 2U
b+2

,U ]. Then infx∈[0, U
b+2 ]

(

2µb+
(

2− (b+1)(b+2) µ

U

)

x

)

= 2µb+
(

2− (b+

1)(b+2) µ

U

)

× U
b+2

(attained at x= U
b+2

), while infx∈[ U
b+2 ,U ]

(

µb+
(

2− (b+2) µ

U

)

x

)

= µb+
(

2− (b+

2) µ

U

)

×U (attained at x=U). In this case, it again follows from some straightforward algebra (the
details of which we omit) that the optimal x equals U, the optimal d (for that choice of x) equals
U , and the optimal value equals 2(U −µ).
We note that the above cases and values are perfectly consistent with the cases and values for

all quantities appearing in Observation 3, including χ2
MAR,Opt2MAR,D

2
1, and X2

1 . In summary, the
break-point U

b+1
comes from the two possible behaviors in the single-period problem (corresponding

to the final period), the break-point U
b+2

(for x) determines whether a critical coefficient in nature’s
inner maximization is positive or negative, hence dictating whether nature selects a “small” or
“large” value for its non-zero support point. Finally, the break-points 2U

(b+1)(b+2)
and 2U

b+2
(for µ)

determine which coefficients in the policy-maker’s outer minimization are positive, also acting as
important determinants for the optimal policy.
We leave as an interesting direction for future research understanding more formally and gener-

ally the connection between such a simplified problem and our true problem.

7.12. Different behaviors when our assumptions do not hold
As noted in Section 2.3, the “obsolescence phenomena”, i.e. the property that conditional on the
past demand realizations and the current inventory level (under an optimal policy), there always
exists a worst-case distribution that assigns a strictly positive probability to zero (and otherwise
clears the inventory), is a feature of our particular modeling assumptions, and may not hold under
different assumptions. Here we provide several examples showing that this feature need not hold
if one relaxes our modeling assumptions. The first three examples collectively demonstrate that:
1. if one allows for time-dependent costs, then a worst-case distribution may not put positive
probability at zero (first example); 2. if one removes the upper bound on the support, then a worst-
case distribution may not even exist (second example); and 3. if one imposes a lower bound on the
support, then a worst-case distribution may not put positive probability on this lower bound, and
furthermore may not clear the inventory (third example). Collectively, these findings suggest that
extending our framework to more complex models will require several fundamentally new ideas,
as much of the structure which allowed for our explicit analysis may no longer hold. However, our
fourth example shows there is indeed hope of extending our results to more general settings, by
showing that the obsolescence phenomena again manifests even if holding costs can vary arbitrarily
over time, if one enforces (the admittedly strong assumption) that all backlogging costs are 0.

Example 1. Non-stationary and possibly zero cost parameters. Here we show that if
one relaxes the constraint that the cost parameters are stationary and strictly positive, different
behavior arises. Indeed, let us consider the modification of Problem 2.4 in which x0 = 0, T = 2, h1 =
1, b1 =0, h2 =1. We let b2 > 0,U > 0 be general, and set µ= U

b2+1
. Namely, the problem is identical

to Problem 2.4, except that we allow for non-stationary and possibly zero costs. First, we claim
that in this setting, there exists a minimax optimal policy π∗ = (x∗

1, x
∗
2) satisfying x∗

1 = 0, and
x∗
2(d1) = χIND(d1,U, b2). Indeed, to see this, note that we can derive a lower bound on the value

of the associated minimax problem by relaxing the problem s.t. at the start of the second period,
the policy-maker may (at zero cost) select any inventory level in [0,U ], i.e. the policy-maker may
order or dispose of inventory at that time (in the actual problem inventory disposal is infeasible).
It follows from Theorem 1, non-negativity of all costs, and the fact that the dynamics in the
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final period coincide with those of a corresponding single-period problem (with µ equal to the
realized value of D1), that π

∗ is actually optimal for this modified problem. As π∗ is also feasible
for the original problem, optimality for the original problem immediately follows. Again applying
Theorem 1, it follows that there exists a worst-case measure Q̂∗ (against π∗) s.t. for all d1 ∈ [0,U ],
Q̂∗

2|d1
(0) = 1− d1

U
, Q̂∗

2|d1
(U) = d1

U
. Furthermore, again applying Theorem 1, we find that Q̂∗

1 can be
taken to be any measure belonging to

argmax
Q∈M(µ)

EQ

[

min(b2 ×D1,U −D1)
]

.

A simple application of Jensen’s inequality shows that the measure Q which assigns probability
1 to the d maximizing min(b2 × d,U − d) is feasible and optimal, i.e. one can take Q̂∗

1 to be the
measure s.t. Q̂∗

1(
U

b2+1
) = 1. Namely, here Q̂∗

1 does not put strictly positive probability at 0, i.e.
such an obsolescence phenomena does not occur (at least not in the first period). Note that non-
stationarity was critical to this conclusion, since if b2 also equalled zero then the problem would
become degenerate with the policy which never orders optimal, and every feasible martingale
inducing zero cost.

Example 2. No upper bound on support. Here we show that if one relaxes the constraint
that the demand must be at most U, different behavior arises. Let us consider the modification of
Problem 2.4 in which x0 = 1, T = 1, h1 = 1, b1 = 1, µ= 1, but there is no upper bound on the support
(equivalently U = ∞). Let M∞(µ) denote the set of all probability measures with non-negative
support and mean µ. In this case, for any fixed choice of x1 ≥ x0, the inner maximization (over
measures) is equivalent to

sup
Q∈M∞(1)

EQ [[D1 −x1]+ + [x1 −D1]+] . (7.72)

Note that for any strictly positive real number y and non-negative r.v. Z s.t. P (Z = 0)< 1, it is
easily verified that P

(

[Z − y]+ + [y−Z]+ <Z + y
)

> 0. Since trivially [Z − y]+ + [y−Z]+ ≤Z + y
w.p.1, it follows that for any fixed x1 ≥ x0 and Q ∈M∞(1), EQ [[D1 −x1]+ + [x1 −D1]+]< 1+ x1.
However, note that if (for M ≥ x1+2) we let QM denote the measure s.t. QM ( 1

M
) = 1− 1

M
,QM (M−

1+ 1
M
) = 1

M
, we find that QM ∈M∞(1), and EQM [[D1 −x1]+ + [x1 −D1]+] = (1− 1

M
)× (x1− 1

M
)+

1
M

× (M − 1+ 1
M

−x1)≥ 1+x1− 2(x1+1)

M
, and thus limM→∞EQM [[D1 −x1]+ + [x1 −D1]+] = 1+x1.

Combining the above, we conclude that for any feasible policy, there does not exist any worst-
case distribution. Furthermore, the unique optimal policy is that which orders nothing in the first
period, and there exists a sequence of probability measures which (in the limit) yield a minimax
value of 2, such that no distribution in the sequence puts strictly positive probability at 0.

Example 3. Positive lower bound on support. Here we show that if one imposes an addi-
tional lower bound constraint on the support of the demand, different behavior arises. Let us
consider the modification of Problem 2.4 in which x0 = U,T = 2, h1 = b1 = h2 = b2 = 1. We let
U > 0,L∈ (0,U), be general so long as they satisfy the constraints U < 2×L, and set µ= U+L

2
. Let

ML(µ) denote the set of all probability measures with support a subset of [L,U ] and mean µ, and
MARL denote the collection of all probability measures corresponding to discrete-time martingale
sequences (D1,D2) s.t. for all t, the marginal distribution of Dt belongs to ML(µ). Let ΠL denote
the family of (appropriately adapted) policies that both : 1. never order up to more than U, and
2. always order up to at least L. Restricting to policies in ΠL is without loss of generality, where
the proof is analogous to that of Lemma 1, and we omit the details. Then we consider the problem
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infπ∈ΠL supQ∈MARL EQ[
∑T

t=1C
π
t ]. We begin by defining some auxiliary functions, which correspond

to the solution to the corresponding 1-period problem. It follows from a straightforward convexity
argument (analogous to that used in the proof of Theorem 1) and some algebra that

g1,L(x, µ̂)
∆
= sup

Q∈ML(µ̂)

EQ [|x−D1|] =
(U −x)× (µ̂−L)+ (x−L)× (U − µ̂)

U −L
,

where one can always take as a worst-case distribution the measure Q s.t. Q(U) = µ̂−L

U−L
,Q(L) =

1− µ̂−L

U−L
. Furthermore, infx∈[L,U ] g

1,L(x, µ̂) =min(µ̂−L,U − µ̂), and

x∗,L(µ̂)
∆
=argmin

x∈[L,U ]

g1(x, µ̂) =











U if µ̂ > U+L
2

;

L if µ̂ < U+L
2

;

[L,U ] if µ̂= U+L
2

.

Furthermore, using the facts that: 1. x0 = U , 2. U < 2×L implies x1 −D1 ≤ L w.p.1, and 3. the
dynamics in the final period coincide with those of a corresponding single-period problem (whose
solution is given by g1,L), we find that infπ∈ΠL supQ∈MARL EQ[

∑T

t=1C
π
t ] equals

U −µ+ sup
Q∈ML(µ)

EQ [min(D1 −L,U −D1)] , (7.73)

where the policy π∗ that orders nothing in period 1, and orders up to x∗,L(D1) in period 2 (where
any consistent choice may be selected from [L,U ] if D1 =

U+L

2
) will be optimal. A simple application

of Jensen’s inequality shows that the measure Q which assigns probability 1 to the d maximizing
min(d−L,U − d) is feasible and optimal, i.e. one can take Q to be the measure s.t. Q(U+L

2
) = 1.

Summarizing the above, we conclude that a worst-case measure (for π∗) is the martingale Q̂∗ s.t.
Q̂∗

1(
U+L
2

) = 1, while Q̂∗
2(L) = Q̂∗

2(U) = 1
2
. Hence the worst-case measure not only puts no probability

at 0 (which would be impossible due to the lower bound), but actually puts no probability even
at the lower bound itself (at least in the first round). The intuition here is that due to the lower
bound, it is less appealing for the adversary to leave the policy-maker stuck holding inventory, as
some of this inventory is always reduced in later rounds (due to the lower bound). Interestingly,
we note that here, D1 is not large enough to clear the initial inventory, instead only bringing the
inventory below the lower bound (in contrast to the behavior when no such lower bound is imposed,
e.g. in Observation 1).

Example 4. Non-stationary cost parameters revisited: a setting where the obsoles-
cence phenomena again manifests. Here we show that there is a simple (albeit not completely
trivial) setting in which costs can be non-stationary, yet our results (and general insights) regarding
obsolescence continue to hold. Let us consider the modification of Problem 2.4 in which x0 ∈ (0,U ]
is strictly positive (but otherwise general), T is general, {hi, i= 1, . . . , T} are strictly positive (but
otherwise general), µ ∈ (0,U) is general, and the major restriction is that bi = 0 for all i. Namely,
there is no back-logging cost whatsoever, and the only incurred costs are holding costs, which again
may vary in a general manner over time. It follows from a straightforward contradiction argument
(similar in spirit to the proof of Lemma 1, the details of which we omit) that in this setting the
policy π∗ which never orders is optimal. The associated inner maximization (over measures) is thus
equivalent to

sup
Q∈MAR

T
∑

t=1

htEQ[max(0, x0 −
t
∑

i=1

Di)].
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For t∈ [1, T ], let MtU (tµ) denote the set of all probability measures Q with support on [0, tU ] such
that E[DQ] = tµ. As for all t ∈ [1, T ],

∑t

i=1Di has mean tµ and support a subset of [0, tU ], we
conclude (after applying convexity and Theorem 1) that for all Q∈MAR and t∈ [1, T ],

EQ[max(0, x0−
t
∑

i=1

Di)]≤ sup
Q∈MtU (tµ)

EQ

[

max(0, x0 −D1)
]

= (1− µ

U
)×x0,

where the measure Q∗ such that Q∗(0) = 1 − µt

Ut
= 1 − µ

U
,Q∗(tU) = µ

U
belongs to

argmaxQ∈MtU (tµ)EQ

[

max(0, x0−D1)
]

. Noting that under the martingale measure Q̂∗ ∈MAR such

that P
(

DQ̂∗

i = U for all i ∈ [1, T ]
)

= µ

U
, P
(

DQ̂∗

i = 0 for all i ∈ [1, T ]
)

= 1 − µ

U
it holds (for all t)

that P (
∑t

i=1Di = 0) = 1− µ

U
, P (

∑t

i=1Di = tU) = µ

U
, we conclude that (under optimal policy π∗)

Q̂∗ ∈ argmaxQ∈MAR

∑T

t=1EQ[max(0, x0 −
∑t

i=1Di)]. We note that the measure Q̂∗ corresponds to
a strong manifestation of the obsolescence phenomena, as even in the first period the demand is
either 0 or U (with the demand stuck at its initial value in all subsequent periods). The intuition
here is that when the only costs possible are holding costs, all costs are derived from being “stuck
with inventory”, and the obsolescence setting (and the correlations over time in demand it induces)
are (in an appropriate sense) worst-case along these lines.
We note that in the symmetric setting in which all holding costs are 0 while the back-logging

costs may be general, the inner maximization becomes degenerate, as the policy which always
orders up to U will be optimal, and no cost will be incurred under any distribution for demand
(under this policy).
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