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Abstract

Much of the recent literature on bandit learning focuses on algorithms that aim to converge on
an optimal action. One shortcoming is that this orientation does not account for time sensitivity,
which can play a crucial role when learning an optimal action requires much more information
than near-optimal ones. Indeed, popular approaches such as upper-confidence-bound methods
and Thompson sampling can fare poorly in such situations. We consider instead learning a
satisficing action, which is near-optimal while requiring less information, and propose satisficing
Thompson sampling, an algorithm that serves this purpose. We establish a general bound on
expected discounted regret and study the application of satisficing Thompson sampling to linear
and infinite-armed bandits, demonstrating arbitrarily large benefits over Thompson sampling.
We also discuss the relation between the notion of satisficing and the theory of rate distortion,
which offers guidance on the selection of satisficing actions.

1 Introduction
As noted by Herbert Simon when receiving his Nobel Prize, “decision makers can satisfice either
by finding optimum solutions for a simplified world, or by finding satisfactory solutions for a more
realistic world.” Oriented around the former, much of the bandit learning literature has focused on
algorithms that aim to converge on an optimal action. As this area progresses, researchers study
increasingly complex models, often with very large or infinite action sets. For some such models,
convergence to optimality can be a very slow process. It is natural to ask whether a satisficing
action can be identified much more quickly. If so, that may be preferable, especially considering
that the model itself is a simplified approximation to reality and thus even an exact optimal action
is not truly optimal. The following example illustrates the issue.

Example 1. (Many-Armed Deterministic Bandit) Consider an action set A = {1, . . . ,K}.
Each action a ∈ A results in reward θa. We refer to this as a deterministic bandit because the
realized reward is determined by the action and not distorted by noise. The agent begins with a
prior over each θa that is independent and uniform over [0, 1] and sequentially applies actions
A0, A1, A2, . . ., selected by an algorithm that adapts decisions as rewards are observed. As K grows,
it takes longer to identify the optimal action A∗ = argmaxa∈A θa. Indeed, for any algorithm,
P(A∗ ∈ {A0, . . . At−1}) ≤ t/K. Therefore, no algorithm can expect to select A∗ within time t� K.
On the other hand, by simply selecting actions in order, with A0 = 1, A1 = 2, A2 = 3, . . ., the agent
can expect to identify an ε-optimal action within t = 1/ε time periods, independent of K.
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It is disconcerting that popular algorithms perform poorly when specialized to this simple
problem. Thompson sampling (TS) [25], for example, is likely to sample a new action in each
time period so long as t� K. The underlying issue is most pronounced in the asymptotic regime
of K → ∞, for which TS never repeats any action because, at any point in time, there will be
actions better than those previously selected. A surprisingly simple modification offers dramatic
improvement: settle for the first action a for which θa ≥ 1− ε. This alternative can be thought of
as a variation of TS that aims to learn a satisficing action Ã = min{a : θa ≥ 1− ε}. We will refer
to an algorithm that samples from the posterior distribution of a satisficing action instead of the
optimal action, as satisficing Thompson sampling (STS).

While stylized, the above example captures the essence of a basic dilemma faced in all decision
problems and not adequately addressed by popular algorithms. The underlying issue is time pref-
erence. In particular, if an agent is only concerned about performance over an asymptotically long
time horizon, it is reasonable to aim at learning A∗, while this can be a bad idea if shorter term per-
formance matters and a satisficing action Ã can be learned more quickly. To model time preference
and formalize benefits of STS, we will assess performance in terms of expected discounted regret,
which for the many-armed deterministic bandit can be written as E

[∑∞
t=0 α

t(θA∗ − θAt)
]
. The

constant α ∈ [0, 1] is a discount factor that conveys time preference. It is easy to show, as is done
through Theorem 11 in the appendix, that in the asymptotic regime of K → ∞, TS experiences
expected discounted regret of 1/2(1−α), whereas that of STS is bounded above by 1/

√
1− α. For

α close to 1, we have 1/
√

1− α � 1/(1 − α), and therefore STS vastly outperforms TS. In fact,
as α approaches 1, the ratio between expected discounted regret of TS and that of STS goes to
infinity. This stylized example demonstrates potential advantages of STS.

Of course, satisficing can also play a critical role in more complicated decision problems. The
following example provides one simple illustration by adding a structured correlation pattern to
the infinite-armed deterministic bandit treated in Example 1.

Example 2. (Infinite-Armed Deterministic Bandit With Hierarchical Structure) A web-
site seeks the best advertisement to display out of an enormous number of alternatives. Each par-
ticular ad a ∈ A is associated with a known binary feature vector φ(a) ∈ {0, 1}d, where individual
features may indicate whether an ad pertains to a particular category of product, contains an image
of a particular celebrity, includes bright colors, etc. When displayed, advertisement a generates
revenue governed by the linear mixed model

Ra =
d∑
j=1

φ(a)jθ0j + θ1a

where (θ01, · · · , θ0d) encodes the effect of each feature, while θ1a encodes an ad-specific effect. Any
given feature vector φ(a) for a ∈ A is shared by an infinite number of other ads, i.e. |{a′ ∈
A | φ(a′) = φ(a)}| = ∞. This serves to model settings in which there are many ads with
common features relative to the problem’s time horizon. The agent begins with a prior over
θ = ((θ0j)j=1,···d, (θ1a)a∈A) under which each variable is independent with marginal distributions
θ0j ∼ N

(
0, σ2

0
)
and θ1a ∼ Uniform(0, 1).

Similar to the infinite armed bandit with independent arms, identifying an exactly optimal arm
is hopeless, though it may be possible to quickly identify a satisficing arm. The search for a satis-
ficing arm can be further accelerated because the linear mixed model enables some generalization
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across arms. In particular, data gathered from trying some arms inform estimates for other arms,
helping to guide the search.

In order to avoid trying each individual arm, one might be tempted to approximate this model
via a linear bandit, ignoring the ad specific effect θ1a altogether. In particular, one could assume
that rewards are generated according to

∑d
j=1 φ(a)jθ0j + Wt, where Wt is iid zero-mean noise.

But ignoring consistent ad-specific effects in this way can lead popular algorithms like Thompson
sampling and linear upper-confidence bound approaches to converge on poorly performing arms.
We will revisit this example in Section 8, where we demonstrate how our approach can efficiently
identify satisficing actions while modeling ad-specific effects.

1.1 Our Contributions.

This paper develops a general framework for studying satisficing in sequential learning. Satisficing
algorithms aim to learn a satisficing action Ã. Building on the work of Russo and Van Roy [21], we
will establish a general information-theoretic regret bound, showing that any algorithm’s expected
discounted regret relative to a satisficing action is bounded in terms of the mutual information
I(θ; Ã) between the model parameters θ and the satisficing action and a newly-defined notion of
information ratio, which measures the cost of information acquired about the satisficing action.
The mutual information I(θ; Ã) can be thought of as the number of bits of information about θ
required to identify Ã, and the fact that the bound depends on this quantity instead of the entropy
of A∗, as does the bound of [21], allows it to capture the reduction of discounted regret made
possible by settling for the satisficing action.

A natural and deep question concerns the the choice of satisficing action Ã and the limits of
performance attainable via satisficing. An exploration of this question yields novel connections
between sequential learning and rate-distortion theory. In Section, 5 we define a natural rate-
distortion function for Bayesian decision making, which captures the minimal information about
θ a decision-maker must acquire in order to reach an ε-optimal decision. Combining this rate-
distortion function with our general regret bound leads to new results and insights. As an example,
while previous information-theoretic regret bounds for the linear bandit problem become vacuous
in contexts with infinite action spaces, our rate-distortion function leads to a strong bound on
expected discounted regret.

We will also study the infinite-armed bandit problem with noisy rewards. Here, we will consider
a satisficing action Ã = min{a : θa ≥ 1−ε}. Simple numerical experiments demonstrate the benefits
of STS over TS. We instantiate our general regret analysis in the infinite-armed bandit problem
by bounding the mutual information and information ratio in that problem. This yields a bound
on expected discounted regret that formalized the benefits of STS over TS. We complement this
upper bound by establishing a matching lower bound on the regret of any algorithm for infinite
armed bandit.

1.2 Alternative approaches.

Many papers [6, 14, 19] have studied bandit problems with continuous action spaces, where it
is also necessary to learn only approximately optimal actions. However, because these papers
focus on the asymptotic growth rate of regret they implicitly emphasize later stages of learning,
where the algorithm has already identified extremely high performing actions but exploration is
needed to identify even better actions. Our discounted framework instead focuses on the initial
cost of learning to attain good, but not perfect, performance. Recent papers [11, 12] study several
heuristics for a discounted objective, though without an orientation toward formal regret analysis.
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The knowledge gradient algorithm of Ryzhov et al. [23] also takes time horizon into account and can
learn suboptimal actions when its not worthwhile to identify the optimal action. This algorithm
tries to directly approximate the optimal Bayesian policy using a one-step lookahead heuristic,
but there are no performance guarantees for this method. Deshpande and Montanari [10] consider
a linear bandit problem with dimension that is too large relative to the desired horizon. They
propose an algorithm specifically for that problem that limits exploration and learns something
useful within this short time frame.

Berry et al. [2], Wang et al. [28] and Bonald and Proutiere [3] study an infinite-armed bandit
problem in which it is impossible to identify an optimal action and propose algorithms to minimizes
the asymptotic growth rate of regret. Their strategies are carefully designed, but appear to be
difficult to adapt to more complex problems. For example, one algorithm in Berry et al. [2] discards
an arm as soon as it produces a reward of zero in some period, which is sensible only for infinite
armed bandits with uniform prior and binary rewards. A brief section describes extensions to non-
uniform priors, but still these cannot extend beyond binary feedback. Bonald and Proutiere [3]
design a procedure specifically for the infinite-armed bandit with uniform prior and binary rewards
under which the first-order term in an asymptotic expansion of regret is minimized. The algorithm
of Wang et al. [28] discards all but k arms at the start of the problem then applies a standard
algorithm for k–armed bandits. The main contribution of that work is to carefully analyze regret
as a function of the prior, allowing them to choose k to minimize regret upper bounds. While we
will instantiate our general regret bound for STS on the infinite-armed bandit problem, we view this
example as a very simple and stylized special case that we provide to illustrate basic concepts. The
flexibility of STS and our analysis framework allow this work to be applied to more complicated
time-sensitive learning problems.

Our approach is built on Thompson sampling. One simple reason is that Thompson sampling is
enjoying wide practical use due to its ease of use, ability to incorporate complex prior information,
and resilience to delayed feedback [8, 22, 24]. Given this, we see value in broadening the class of
problem to which Thompson sampling approaches may be applied. It is also worth emphasizing
that formulations of problems like the infinite armed-bandit in Example 1 are inherently Bayesian.
Arms are modeled as independent and yet the decision-maker is required to make inferences about
the quality of arms for which no data is available. By contrast, frequentist algorithms like KL-UCB
[7] usually require an initial phase in which all arms are tested at least once. Beyond simple infinite-
armed bandits, developing satisficing variants of Thompson sampling appears to be a natural way
to approach more complex problems like the hierarchical bandit in Example 2 – which require both
satisficing and generalizing across arms. A separate motivation for us is to improve the information
theoretic analysis of complex Bayesian bandit problems. This analysis is centered on Thompson
sampling, but beyond any interest in the algorithm it has been an effective tool for establishing
regret upper bounds, including for bandit convex optimization [5], for partial monitoring [16], for
bandits with graph-structured feedback [26], and for reinforcement learning [18].

2 Problem Formulation.
An agent sequentially chooses actions (At)t∈N0 from the action set A and observes the corresponding
outcomes (Yt)t∈N0

⊂ Y. The agent associates a reward R(y) with each outcome y ∈ Y. Let
Rt ≡ R(Yt) denote the reward corresponding to outcome Yt. The outcome Yt in period t depends
on the chosen action At, idiosyncratic randomness associated with that time step, and a random
variable θ that is fixed over time. Formally, there is a known system function g, and an iid sequence
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of disturbances (Wt)t∈N0 such that
Yt = g(At, θ,Wt).

The disturbances Wt are independent of θ, and have a known distribution. This is without loss of
generality, as uncertainty about g and the distribution of Wt could be included in the definition of
θ. From this, we can define

µ(a, θ) = E[R (g(a, θ,Wt)) |θ]

to be the expected reward of an action a under parameter θ. Ours can be thought of as a Bayesian
formulation, in which the distribution of θ represents the agent’s prior uncertainty about the true
characteristics of the system, and conditioned on θ, the remaining randomness in Yt represents
idiosyncratic noise in observed outcomes.

The history available when selecting action At is Ht−1 = (A0, Y0, . . . , At−1, Yt−1). The agent
selects actions according to a policy, which is a sequence of functions ψ = (ψt)t∈N0 , each mapping
a history and an exogenous random variable ξ to an action, with At = ψt(Ht−1, ξ) for each t.
Throughout the paper, we use ξ to denote some random variable that is independent of θ and the
disturbances (Wt)t∈N0 .

Let R∗ = supa∈A µ(a, θ) denote the supremal reward, and let A∗ ∈ argmaxa∈A µ(a, θ) denote
the true optimal action, when this maximum exists. As a performance metric, we consider expected
discounted regret of a policy ψ is defined by

Regret(α,ψ) = Eψ
[ ∞∑
t=0

αt(R∗ −Rt)
]
,

which measures a discounted sum of the expected performance gap between an omniscient policy
which always chooses the optimal action A∗ and the policy ψ which selects the actions (At)t∈N0 .
This deviates from the typical notion of expected regret in its dependence on a discount factor
α ∈ [0, 1]. Regular expected regret corresponds to the case of α = 1. Smaller values of α convey
time preference by weighting gaps in nearer-term performance higher than gaps in longer-term
performance.

The definition above compares regret relative to the optimal action A∗ and corresponding reward
R∗. It is useful to also consider performance loss relative to a less stringent benchmark. We define
the satisficing regret at level D ≥ 0 to be

SRegret(α,ψ,D) = Eψ
[ ∞∑
t=0

αt(R∗ −D −Rt)
]
.

This measures regret relative to an action that is near-optimal, in the sense that it yields expected
reward R∗ −D, which is within D of optimal. This notation was chosen due to the connection we
develop with rate-distortion theory, where D typically denotes a tolerable level of “distortion” in a
lossy compression scheme. Of course, for all D ≥ 0,

Regret(α,ψ) = SRegret(α,ψ,D) + D

1− α (1)

and so one can easily translate between bounds on regret and bounds on satisficing regret. How-
ever, directly studying satisficing regret helps focus our attention on the design of algorithms that
purposefully avoid the search for exactly optimal behavior in order to limit exploration costs.
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Additional Notation.

Before beginning, let us first introduce some additional notation. We denote the entropy of a
random variable X by H(X), the Kullback-Leibler divergence between probability distributions
P and Q by D(P ||Q), and the mutual information between two random variables X and Y by
I(X;Y ). We will frequently be interested in the conditional mutual information I(X;Y |Ht−1).

We sometimes denote by Et[·] = E[·|Ht−1] the expectation operator conditioned on the history
up to time t and similarly define Pt(·) = P(·|Ht−1). The definitions of entropy and mutual informa-
tion depend on a base measure. We use Ht(·) and It(· , ·) to denote entropy and mutual-information
when the base-measure is the posterior distribution Pt. For example, if X is and Z are discrete
random variables taking values in a sets X and Z,

It(X;Z) =
∑
x∈X

∑
z∈Z

Pt(X = x, Z = z) log
( Pt(X = x, Z = z)
Pt(X = x)Pt(Z = z)

)
.

Due to its dependence on the realized history Ht−1, It(X;Z) is a random variable. The standard
definition of conditional mutual information integrates over this randomness, and in particular,
E[It(X;Z)] = I(X;Z|Ht−1).

3 Satisficing Actions.
We will consider learning a satisficing action Ã instead of an optimal action A∗. The idea is to target
a satisficing action that is near-optimal yet easy to learn. The information about θ required to learn
an action Ã is captured by I(θ; Ã), while the performance loss is E[R∗−R̃], where R̃ = µ(Ã, θ). For
Ã to be easy to learn relative to A∗, we want I(θ; Ã) � I(θ;A∗). We will motivate this abstract
notion through several examples.

Our first example addresses the infinite-armed deterministic bandit, as discussed in Section 1..

Example 3 (first satisfactory arm). Consider the infinite-armed deterministic bandit of Section
1. For this problem, the prior of A∗ is uniformly distributed across a large number K of actions,
and I(θ;A∗) = H(A∗) = logK. Consider a satisficing action Ã = min{k|θk ≥ R∗ − ε}, which
represents the first action that attains reward within ε of the optimum R∗ = maxk θk. As K →∞,
I(θ;A∗) → ∞. But I(θ; Ã) remains finite, as in this limit Ã converges weakly to a geometric
random variable, with I(θ; Ã) = H(Ã) = −((1− ε) log(1− ε) + ε log(ε))/ε.

The next example addresses the infinite-armed bandit with hierarchical structure from Section
1. Naturally, the satisficing action is itself defined in a hierarchical way, first defining a subset
of arms with the most attractive features and then selecting the first arm among those with a
satisfactory arm-specific effect.

Example 4 (hierarchical satisficing). Consider a hierarchical infinite-armed deterministic bandit
of Section 1. The set of arms is A = {1, 2, 3, . . .}. The reward generated by an arm a ∈ A can
be written as µ(a, θ) = 〈φ(a) , θ0〉 + θ1a, where φ(a) ∈ {0, 1}d is a known feature vector associated
with the arm, θ0 ∈ Rd is drawn from some prior and the arm-specific effects θ1,a ∼ Unif[0, 1]
are drawn independently across arms a ∈ A. For each action a, we assume there are is infinite
collection of other actions {a′ | φ(a′) = φ(a)} that share the same feature vector. (One should have
in mind problems where the features encode relatively coarse categories.) We take A(θ0) = {a ∈ A |
〈φ(a), θ0〉 ≥ 〈φ(a′) , θ0〉 ∀a′ ∈ A} to be the subset of actions that have optimal features. We take
a satisficing action to be the first such action that has a sufficiently large ad-specific effect.

Ã = argmin
a∈A(θ0)

{a|θ′a ≥ 1− ε}. (2)
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In this case, although there are an infinite number of arms, the entropy of the satisficing action is
bounded as:

I(Ã; θ) = I(Ã; θ0) + I(Ã; θ1 | θ0) ≤ d log(2)− ((1− ε) log(1− ε) + ε log(ε))/ε.

where we have used that θ0 is supported on 2d possible values and that, conditioned on θ0, Ã follows
a geometric distribution with survival probability 1− ε.

The next example involves reducing the granularity of a discretized action space.

Example 5 (discretization). Consider a linear bandit with A ⊂ Rp and µ(a, θ) = a>θ for an
unknown vector θ. Suppose that θ ∼ N(0, I) and A consists of K vectors spread out uniformly
along boundary of the d-dimensional unit sphere {a ∈ Rp : ‖a‖2 = 1}. The optimal action A∗ =
argmaxa∈A a>θ is then uniformly distributed over A, and therefore I(θ;A∗) = H(A∗) = logK. As
K → ∞, it takes an enormous amount of information to exactly identify A∗. The results of [20]
become vacuous in this limit. Consider a satisficing action Ã that represents a coarser version of
A∗. In particular, for M � K, let Ã consist of M vectors spread out uniformly along boundary
of the d-dimensional unit sphere, with M chosen such that for each element of A there is a close
approximation in Ã. Let Ã = argmaxa∈Ã θ>a. This can be viewed as a form of lossy-compression,
for which H(Ã)� H(A∗) while E[R∗ − R̃] remains small.

In the previous examples, θ determined Ã, and therefore I(θ; Ã) = H(Ã). We now consider an
example in which I(θ; Ã) is controlled by randomly perturbing the satisficing action. Here, I(θ; Ã)
can be small even though H(Ã) is large.

Example 6 (random perturbation). Consider again the linear bandit from the previous example.
An alternative satistficing action Ã results from optimizing a perturbed objective Ã ∈ argmaxa∈A aT (θ+
Z) where Z ∼ N(0, (ε/p)2I). Since Z is not observable, it is not possible in this case to literally learn
Ã. Instead, we consider learning to behave in a manner indistinguishable from Ã. The variance
of Z is chosen such that E[R∗ − R̃] = ε. Moreover, it can be shown that I(Ã; θ) ≤ I(θ + Z; θ) =
p log(1 + p2/ε2) and therefore, the information required about θ is bounded independently of the
number of actions.

4 A General Regret Bound.
This section provides a general discounted regret bound and a new information-theoretic analysis
technique. The first subsection introduces an alternative to the information ratio of Russo and
Van Roy [21], which is more appropriate for time-sensitive online learning problems. The following
subsection establishes a general discounted regret bound in terms of this information ratio.

4.1 A New Information Ratio.

First, we make a simplification to the information ratio (Et[R∗ − Rt])2/It(A∗; (At, Yt)) defined by
Russo and Van Roy [21]. That expression depends on the history Ht−1 and hence is a random
variable. In this paper, we observe that this can be avoided, and instead take as a starting point a
simplified form of the information ratio that integrates out all randomness. In particular, we study

(E[R∗ −Rt])2

I(A∗; (At, Yt) | Ht−1) . (3)
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Uniform bounds on the information ratio of the type established in past work [5, 17, 21] imply
those on (3). Precisely, if (Et[R∗−Rt])2/It(A∗; (At, Yt)) is bounded by λ ∈ R almost surely (i.e for
any history Ht−1), then (3) is bounded by λ since

(E[R∗ −Rt])2 ≤ E[(Et[R∗ −Rt])2] ≤ E[λIt(A∗; (At, Yt))] = λI(A∗; (At, Yt)|Ht−1).

A more important change comes from measuring information about a benchmark action Ã, which
could be defined as in the examples in the previous section, rather than with respect to the optimal
action A∗. For a benchmark action Ã we consider the single period information ratio

(E[R̃−Rt])2

I(Ã; (At, Yt) | Ht−1)

where R̃ = µ(Ã, θ). This ratio relates the current shortfall in performance relative to the benchmark
action Ã to the amount of information acquired about the benchmark action. We study the
discounted average of these single period information ratios, defined for any policy ψ as

Γ
(
Ã, ψ

)
= (1− α2)

∞∑
t=0

α2t
(

(E[R̃−Rt])2

I(Ã; (At, Yt)|Ht−1)

)
, (4)

where the actions (At)t∈N0 are chosen under ψ. The square in the discount factor α is consistent
with the problem’s original discount rate, since (E[αt(R̃−Rt)])2 = α2t(E[R̃−Rt])2.

4.2 General Regret Bound.

The following theorem bounds the expected discounted regret of any algorithm, or policy, ψ in
terms of the information ratio (4).

Theorem 1. For any policy ψ, any D ≥ 0 and any Ã = f(θ, ξ) where ξ is independent of the
disturbances (Wt)t∈N0, if E[µ(Ã, θ)] ≥ R∗ −D, then

SRegret(α,ψ,D) ≤

√√√√Γ
(
Ã, ψ

)
I(Ã; θ)

1− α2 .

Proof. We first show that the mutual information between Ã and θ bounds the expected accumula-
tion of mutual-information between Ã and observations (At, Yt)t∈N0 . By the chain rule for mutual
information, for any T ,

T∑
t=0

I(Ã; (At, Yt) | Ht−1) =
T∑
t=0

I(Ã; (At, Yt) | A0, Y0, . . . , At−1, Yt−1)

= I(Ã;HT )
≤ I(Ã; (θ,HT ))
= I(Ã; θ) + I(Ã;FT |θ)
= I(Ã; θ)

where the final inequality uses that, conditioned on θ, Ã is independent of HT . Taking the limit as
T →∞ implies

∞∑
t=0

I(Ã; (At, Yt) | Ht−1) ≤ I(Ã; θ),
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where, the infinite series is assured to converge by the non-negativity of mutual information. Now,
let

Γt ≡
(E[R̃−Rt])2

I(Ã; (At, Yt)|Ht−1)

denote the information ratio at time t under the benchmark action Ã and actions {At : t ∈ N0}
chosen according to ψ. Then

SRegret(α,ψ,D) = E
[ ∞∑
t=0

αt(R∗ −D −Rt)
]

=
∞∑
t=0

αtE
[
R̃−Rt,At

]
=

∞∑
t=0

√
α2tΓt

√
I(Ã; (At, Yt)|Ht−1)

≤

√√√√ ∞∑
t=0

α2tΓt

√√√√ ∞∑
t=0

I(Ã; (At, Yt)|Ht−1)

≤

√√√√[ ∞∑
t=0

α2tΓt

]√
I(Ã; θ)

=

√√√√Γ
(
Ã, ψ

)
I(Ã; θ)

1− α2 ,

where the first inequality follows from the Cauchy-Schwarz inequality and the second was estab-
lished earlier in this proof.

An immediate consequence of this bound on satisficing regret is the discounted regret bound

Regret(α,ψ) ≤ E[R∗ − R̃]
1− α +

√√√√Γ
(
Ã, ψ

)
I(Ã; θ)

1− α2 . (5)

This bound decomposes regret into the sum of two terms; one which captures the discounted
performance shortfall of the benchmark action Ã relative toA∗, and one which bounds the additional
regret incurred while learning to identify Ã. Breaking things down further, the mutual information
I(θ; Ã) measures how much information the decision-maker must acquire in order to implement
the action Ã, and the information ratio measures the regret incurred in gathering this information.
It is worth highlighting that for any given action process, this bound holds simultaneously for all
possible choices of Ã, and in particular, it holds for the Ã minimizing the right hand side of (5).

5 Connections With Rate Distortion Theory.
This section considers the optimal choice of satisfactory action Ã and develops connections with
the theory of rate-distortion in information theory. We construct a natural rate-distortion function
for Bayesian decision making in the next subsection. Subsection 5.2 then develops a general regret
bound that depends on this rate-distortion function.

5.1 A Rate Distortion Function for Bayesian Decision Making.

In information-theory, the entropy of a source characterizes the length of an optimal lossless encod-
ing. The celebrated rate-distortion theory [9, Chapter 10] characterizes the number of bits required
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for an encoding to be close in some loss metric. This theory resolves when it is possible to to derive
a satisfactory lossy compression scheme while transmitting far less information than required for
a lossless compression. The rate-distortion function for a random variable X with domain X with
respect to a loss function ` : X̂ × X → R is

R(D) = min I(X̂;X) (6)
s.t. E[`(X̂,X)] ≤ D

where the minimum is taken the choice of random variables X̂ with domain X̂ , and I(X; X̂) denotes
the mutual information between X and X̂. One can view this optimization problem as specifying
a conditional distribution P (X̂ ∈ ·|X) that minimizes the information X̂ uses about X among all
choices incurring average loss less than D.

We will explore a powerful link with sequential Bayesian decision-making, where the rate-
distortion function characterizes the minimal amount of new information the decision–maker must
gather in order make a satisfactory decision. Typically (6) is applied in the context of representing
X as closely as possible by X̂, and the loss function is taken to be something like the squared
distance or total variation distance between the two. For our purposes, we replace X with θ,
and X̂ with a benchmark action Ã. The interpretation is that Ã = f(θ; ξ) is a function of the
unknown parameter θ and some exogenous randomness ξ that offers a similar reward to playing
A∗ but hopefully can be identified using much less information about θ. We specify a loss function
` : A×Θ→ R measuring the single period regret from playing a under θ:

`(a, θ) = max
a′∈A

µ(a′, θ)− µ(a, θ).

As a result
E[`(Ã, θ)] = E[R∗ − µ(Ã, θ)].

We come to the rate-distortion function

R(D) := min I(Ã; θ) (7)
s.t. E[R∗ − µ(Ã, θ)] ≤ D.

As before, the minimum above is taken over the choice of random variable Ã taking values in A.
That is, the minimum is taken over all conditional probability distributions P(Ã ∈ ·|θ) specifying
a distribution over actions as a function of θ. Since the choice Ã = A∗ is always feasible, for all
D > 0

R(D) ≤ I(A∗; θ) = H(A∗)

whereH(A∗) denotes the entropy of the optimal action. Rate distortion is never larger than entropy,
but it may be small even if the entropy of A∗ is infinite.

The following, somewhat artificial, example explicitly links communication with decision-making
and may help clarify the role of the rate-distortion function R(D).

Example 7. A military command center waits to hear from an outpost before issuing orders.
The outpost, stationed close to the conflict, determines its message based on a wealth of nuanced
information – at the level of readouts from weather sensors and full transcripts of intercepted enemy
communication. The command post could make very complicated decisions as a function of the
detailed information it receives, with the possibility of specifying commands at the level of individual
troops and equipment. How much must decision quality degrade if decisions are based only on coarser
information? At an intuitive level, the outpost only needs to communicate surprising revelations
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that are important to reaching a satisfactory decision. As a result, our answer can depend in a
complicated way on the extent to which the outpost’s observations are predictable apriori and the
extent to which decision quality is reliant on this information. The rate-distortion function precisely
quantifies these effects.

To map this problem onto our formulation of the rate-distortion function, take θ to consist
of all information observed by the outpost, Ã to be the order issued by the command center, and
the rewards to indicate whether the orders led to a successful outcome. The mutual information
I(Ã; θ) captures the average amount of information the outpost must send in order for Ã to be
implemented. The goal is to develop a plan for placing orders that requires minimal communication
from the outpost among all plans that degrade the chance of success by no more than D.

5.2 Uniformly Bounded Information Ratios.

The general regret bound in Theorem 1 has a superficial relationship to the rate-distortion function
R(D) through its dependence on the mutual information I(Ã; θ) between the benchmark action
and the true parameter θ. Indeed, for a benchmark action Ã attaining the rate-distortion limit,
I(Ã; θ) = R(D) and we attain a regret bound that depends explicitly on the rate-distortion level.
However, the information ratio Γ

(
Ã, ψ

)
also depends on the choice of benchmark action, and may

be infinite for a poor choice.
This second dependence on Ã does not appear in rate-distortion theory, and reflects a funda-

mental distinction between communication problems and sequential learning problems. Indeed, a
key feature enabling the sharp results of rate distortion theory is that no bit of information is more
costly to send and receive than others; the question is to what extent useful communication is pos-
sible while many fewer bits of information on average. By contrast, sequential learning agents must
explore to uncover information and the cost per unit of information uncovered may vary widely
depending on which pieces of information are sought. This is accounted for by the information
ratio Γ

(
Ã, ψ

)
, which roughly captures the expected cost, in terms of regret incurred, per bit of

information acquired about the benchmark action.
Despite this, regret bounds in terms of rate-distortion apply in many important cases. Theorem

1, which is an immediate consequence of Theorem 1, provides a general bound of this form. Roughly,
the uniform information ratio ΓU in the theorem reflects something about quality of the feedback
the agent receives when exploring; it means that for any choice of benchmark action Ã there is
a sequential learning strategy that learns about Ã with cost per bit of information less than ΓU .
The next section applies this result to online linear optimization, where several possible uniform
information ratio bounds are possible depending on the problems precise feedback structure.

Theorem 2. Suppose there is a uniform bound on the information ratio

ΓU := sup
Ã

inf
ψ

Γ
(
Ã, ψ

)
<∞.

Then, for any D ≥ 0 there exists a policy ψ under which

SRegret(α,ψ,D) ≤

√
ΓUR(D)
1− α2 .

6 Application to Online Linear Optimization.
Consider a special case of our formulation: the problem of learning to solve a linear optimization
problem. Precisely, suppose expected rewards follow the linear model E[Rt|θ,At] = θ>At where

11



At ∈ A ⊂ Rp, θ ∈ Rp, and Rt ∈
[
−1

2 ,
1
2

]
almost surely. We will consider several natural forms a

feedback Yt the decision-maker may receive.
In each case, uniform bounds on the information ratio hold for satisficing Thompson sampling.

More precisely, for any Ã let ψSTS
Ã

denote the strategy that randomly samples an action at each
time t by probability matching with respect to Ã, i.e. P(At ∈ ·|Ht−1) = P(Ã ∈ ·|Ht−1). Applying
the same proofs as in [21] yields bounds of the form Γ(Ã;ψSTS

Ã
) ≤ λ, where λ depends on the

problem’s feedback structure but not the choice of benchmark action. Now, let us choose Ã to
attain the rate distortion limit (7), so I(Ã; θ) = R(D) and E[R∗ − µ(Ã; θ)] ≤ D. We denote by
ψSTS
D satisficing Thompson sampling with respect to this choice of satisfactory action.

Full Information. Suppose Rt = A>t Zt for a random vector Zt with E[Zt|θ,Ht−1] = θ. This is
an extreme point of our formulation, where all information is revealed without active exploration.
For all Ã, the information ratio is bounded as Γ(ψSTS

Ã
; Ã) ≤ 1/2 and hence

SRegret(α,ψSTS
D , D) ≤

√
R(D)

2(1− α2) .

Bandit Feedback. Suppose the agent only observes the reward the action she chooses (Yt =
Rt). This is the so-called linear bandit problem. For all Ã, the information ratio is bounded as
Γ(ψSTS

Ã
; Ã) ≤ p/2. This gives the regret bound

SRegret(α,ψSTS
D , D) ≤

√
R(D)p

2(1− α2) .

Semi-Bandit Feedback. Assume again that Rt = A>t Zt for all a. Take the action set A ⊂ {0, 1}p
to consist of binary vectors where

∑p
i=1 ai ≤ m for all a ∈ A. Upon playing action At = a, the

agent observes Zt,i for every component {i ∈ {1, ...,m} : ai = 1} that was active in a. We make the
additional assumption that the components of Zt are independent conditioned on Ht−1. Then, for
all Ã, the information ratio is bounded as Γ(ψSTS

Ã
; Ã) ≤ p/2m and hence

SRegret(α,ψSTS
D , D) ≤

√
R(D)(p/m)
2(1− α2) .

By following the appendix of [21], each of these result can be extended gracefully to settings where
noise distributions are sub-Gaussian. For example, suppose θ follows a multivariate Gaussian
distribution, and the reward at time t is Rt = θ>At + Wt where Wt is a zero mean Gaussian
random variable. Then, if the variance of rewards E[(θ>a + W − E[θ]>a)2] ≤ σ2 is bounded by
some σ2 for all a, the previous bounds on the information ratio scale by a factor of σ.

It is worth noting that these results immediately reduce to bounds on (non-satisficing) regret
when the action space is finite. As mentioned in Subsection 5.1, for problems with a finite action
set R(D) ≤ H(A∗) ≤ log |A| for all D ≥ 0. For example, with a linear bandit with finite action
set, (1) gives the bound

Regret(α,ψSTS
D ) ≤

√
H(A∗)p

2(1− α2) + D

1− α,

so STS with a small satisficing level attains desirable regret bounds when the action set is not too
large. A special case of this problem is the classical k armed bandit problem, in which case p = k.
We can reach similar conclusions in other cases by arguing R(D) grows slowly as D → 0. We
illustrate this idea for a Gaussian linear bandit below.
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The next theorem considers an explicit choice of satisfactory action Ã. This yields a computa-
tionally efficient version of STS as well as explicit upper bounds on the rate-distortion function. As
above, consider the case where θ ∼ N(µ,Σ) follows a multivariate Gaussian prior and reward noise
is Gaussian. We study the optimizer Ã = argmaxa∈A〈a, θ + ξ〉 of a randomly perturbed objective.
The small perturbation controls the mutual information between Ã and θ without substantially
degrading decision quality. It is easy to implement probability matching with respect to Ã when-
ever linear optimization problems over Ã are efficiently solvable. In particular, if µt = E[θ | Ht−1]
and Σt = E[(θ − µt)(θ − µt)> | Ht−1] denote the posterior mean and covariance matrix, which are
efficiently computable using Kalman filtering, then by sampling θ̂t ∼ N(µt,Σt) and ξ̂t ∼ N(0,Σξ)
and setting At = argmaxa∈A〈a, θ̂t + ξ̂t〉 one has P(At ∈ · | Ht−1) = P(Ã ∈ · | Ht−1).

The result in the next theorem assumes the action set is contained within an ellipsoid {x ∈
Rp : x>Q−1x ≤ 1} and the resulting bound displays a logarithmic dependence on the eigenvalues
of Q. Precisely, note that the trace of the matrix Q, or sum of its eigenvalues, provides one natural
measure of the size of the ellipsoid. Our result also depends on the covariance matrix Σ through
the Trace(QΣ). To understand this, consider applying similarity transforms to the parameter and
action vectors so that θ′ = Σ−1/2θ is isotropic and the set of action vectors is A′ = {Σ1/2a : a ∈ A}.
This transformed action space is contained in the ellipsoid {x : x>Q′−1x ≤ 1}, where Q′ = Σ1/2QΣ.
Then Trace(Q′) = Trace(QΣ) provides a measure of the size of this ellipsoid.

Theorem 3. Suppose A is a compact subset of the ellipsoid A ⊂ {x ∈ Rp : x>Q−1x ≤ 1} for some
real symmetric matrix Q and suppose θ ∼ N(µ,Σ) follows a p–dimensional multivariate Gaussian
distribution. Set

Ã = argmax
a∈A

〈a , θ + ξ〉

where ξ is independent of θ and ξ ∼ N(0, β2Σ). For β = D/
√

Trace(QΣ),

E
[
〈θ , Ã〉

]
≥ E [〈θ , A∗〉]−D

and
R(D) ≤ I(Ã; θ) ≤ p

2 log
(

1 + Trace(QΣ)
D2

)
.

Proof. By Jensen’s inequality

E[〈Ã , θ + ξ〉] = E
[
max
a∈A
〈a , θ + ξ〉

]
≥ E

[
max
a∈A
〈a , θ〉

]
= E 〈A∗ , θ〉] .

This implies

E [〈A∗ , θ〉]− E
[
〈Ã , θ〉

]
≤ E[〈Ã , ξ〉] ≤ E

[
max
a∈A
〈a , ξ〉

]
≤ E

[
max

x :‖x‖Q−1≤1
〈a , ξ〉

]
= E [‖ξ‖Q]

where the final equality uses the explicit formula for the maximum of a linear function over an
ellipsoid. Now,

E [‖ξ‖Q] ≤
√
E[ξ>Qξ] =

√
E[Trace(ξ>Qξ)] =

√
Trace(QE[ξξ>]) =

√
β2Trace(QΣ) = D.
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Next we derive the bound on mutual information. We have

I(Ã; θ) ≤ I(θ +W ; θ) = H(θ +W )−H(θ +W |θ)
= H(θ +W )−H(W )

= 1
2 log

(
det(Σ + β2Σ)

det(β2Σ)

)

= 1
2 log

(
det((1 + β2)Σ)

det(β2Σ)

)

= p

2 log
(

1 + 1
β2

)
= p

2 log
(

1 + Trace(QΣ)
D2

)
where det(·) denotes the determinant of a matrix. Here the first inequality uses the data processing
inequality, the third equality uses the explicit form the entropy of a multivariate Gaussian (H(θ) =
1
2 log (2πedet(Σ))) and the penultimate equality uses that det(cΣ) = cp det(Σ) for any scalar c.

7 Application to the Infinite-Armed bandit.
This section considers a generalization of the deterministic infinite-armed bandit problem in the
introduction that allows for noisy observations and non-uniform priors. The action space is A =
{1, 2, . . .}. We assume Rt ∈ [0, 1] almost surely and Yt = Rt, meaning the agent only observes
rewards. The mean reward of action a is µ(θ, a) = θa ∈ [0, 1] where the prior distribution of θa
is independent. Let R∗ denote the sepremal value in the support of θa, so supa∈A θa = R∗ almost
surely.

7.1 STS for the Infinite-Armed Bandit Problem.

We consider the simple satisficing action defined in the introduction: Ã = min{a ∈ A : θa ≥
R∗ − D}. Rather than continue to explore until identifying the optimal action A∗, we will settle
for the first1 action known to yield reward within D of optimal.

We study satisficing Thompson sampling where actions are selected by probability matching
with respect to Ã. Note that an algorithm for this problem must decide whether to sample a
previously tested action – and if so which one to sample – or whether to try out an entirely new
action. Let At = {A0, . . . , At−1} denote the set of previously sampled actions. STS may sample an
untested action At /∈ A, and does so with probability

P(At /∈ At|Ht−1) = P(Ã /∈ At|Ht−1).

equal to the posterior probability no satisfactory action has yet been sampled. The remainder of
the action probabilities are allocated among previously tested actions, with

P(At = a|Ht−1) = P(Ã = a|Ht−1) ∀a ∈ At.
1 Of course, there is nothing crucial about this ordering on actions. We can equivalently construct a randomized

order in which actions are sampled; for each realization of the random variable ξ, let πξ : N0 → N0 be a permutation,
and take Ã = min{πξ(a) : θa ≥ 1−D}.
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There is a simple algorithmic implementation of STS that mirrors computationally efficient
implementations of Thompson sampling (TS). At time t, TS selects a random action At via proba-
bility matching with respect to A∗. Algorithmically, this is usually accomplished by first sampling
θ̂t ∼ P(θ ∈ ·|Ht−1) and solving for At ∈ argmaxa∈A µ(a, θ̂t). Similarly, we can implement STS by
sampling and approximately optimizing a posterior sample. Over each tth period, STS selects an
action At as follows:

1. For each a ∈ At, sample θ̂a ∼ P(θa ∈ ·|Ht−1)

2. Let τ̂ = min
{
τ ∈ {1, . . . , t− 1} : µ(Aτ , θ̂t) ≥ R∗ −D

}
3. If τ̂ is not null set At = Aτ̂ . Otherwise, play an untested action At /∈ At.

Note that D ≥ 0 is supplied to the algorithm as a tolerance parameter. When D = 0, STS is
equivalent to TS. Otherwise, STS attributes preference to selecting previously selected actions,
which can yield substantial benefit in the face of time preference.

This definition can be generalized to treat problems with a large, but finite, number of indepen-
dent arms. Define the satisficing action Ã = min{a ∈ A | θa ≥ supa′∈A µ(θ, a′)−D}. For the infinite
armed bandit, supa′∈A µ(θ, a′) = R∗ with probability 1, but for problems with a finite number of
arms maxa′∈A µ(θ, a′) is not known apriori. One can efficiently sample from this satisficing action by
modifying step 2 above with the alternative definition τ̂ = min

{
τ ∈ {1, . . . , t− 1} : µ(At, θ̂t) ≥ supa∈A µ(a, θ̂t)−D

}
.

7.2 Computational Comparison of STS and TS.

We close with a simple computational illustration of the potential benefits afforded by STS. We con-
sider two many-armed bandit problems, and demonstrate that per-period regret of STS diminishes
much more rapidly than that of TS over early time periods.

We consider problems with 250 actions, where the mean reward θa associated with each action
a ∈ {1, . . . , 250} is independently sampled uniformly from [0, 1]. We first consider the many-
armed deterministic bandit, for which there is no observation noise. Figure 1(a) presents per-
period regret of TS and STS over 500 time periods, averaged over 5000 simulations, each with an
independently sampled problem instance. STS is applied with tolerance parameter 0.05. We next
consider incorporating observation noise. In particular, instead of observing θa, after selecting an
action a, we observe a binary reward that is one with probability θa. Figure 1(b) displays the
results of this experiment.

7.3 Information Ratio Analysis of the Infinite-Armed Bandit.

The following theorem provides a discounted regret bound for STS in the infinite armed bandit.The
result follows from bounding the problems information ratio and the mutual information I(Ã; θ)
and applying the general regret bound of Theorem 1. This requires substantial additional analysis,
the details of which are delayed until Subsection 9.1.

Theorem 4. Consider the the infinite-armed bandit with noisy observations, and let Ã = min{a ∈
A : θa ≥ R∗ −D}. Denote the STS policy with respect to Ã by ψSTS

D . Then,

I(Ã; θ) ≤ 1 + log(1/δ) and Γ
(
Ã, ψSTS

D

)
≤ 6 + 4/δ + (2/δ) log

( 1
1− α2

)
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Figure 1: TS versus STS for the (a) many-armed deterministic bandit and (b) many-armed bandit
with observation noise.

where δ = P(θa ≥ R∗ −D). Together with Theorem 1 this implies

SRegret(α,ψSTS
D , D) ≤ min


√√√√(6 + 4/δ + (2/δ) log

(
1

1−α2

))
(1 + log(1/δ))

1− α2 ,
1

1− α


= Õ

min


√

1/δ
1− α ,

1
1− α


 . (8)

The final expression (8) uses that 1 − α ≤ 1 − α2 ≤ 2(1 − α). The upper bound of 1/(1 − α)
is naive and applies to all algorithms. The bound of order

√
1/δ
1−α requires an intelligent balance of

exploration and exploitation; it is much stronger when the prior probability δ an arm is a satisficing
arm is not too small.

7.4 A Lower Bound for the Infinite-Armed Bandit

This section establishes a lower bound on regret that matches the scaling of the upper bound in
Theorem 4. In this problem, ε is the fraction of arms that are exactly optimal. For our purposes,
the interesting regime is where ε� 1− α but δ � 1− α, in which case identifying an optimal arm
is hopeless but it is worthwhile to search for a satisficing arm. In that regime, Theorem 4 shows
a bound on satisficing regret of Õ

(√
1/δ
1−α

)
and Theorem 5 shows this is unimprovable in general.

The specific threshold on ε in the theorem statement was chosen for analytical convenience and
could likely be tightened.

Theorem 5. Fix any α ∈ (0, 1), δ ∈ (0, 1/2) and D ∈ (0, 1/4). Consider an instance of the infinite
armed bandit problem in which, for all a ∈ A,

P
(
θa = 1

2 −∆
)

= 1− δ P
(
θa = 1

2

)
= δ − ε P

(
θa = 1

2 +D

)
= ε, (9)

for ∆ = min
{

1
4 ,

1
4
√

2 ·
√

1−α
δ

}
and ε ≤ 1

36 · min
{

(1− α)2 , (1−α)3

2δ

}
. Suppose Rt ∈ {0, 1} with
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P(Rt = 1 | θ,At,Ht−1) = θAt. Then,

inf
ψ

SRegret(α,ψ,D) ≥ 1
32 ·min

 1
1− α ,

√
1/2δ
1− α


where the infimum is over all adaptive policies.

7.5 Open Question: Gap Dependent Analysis of STS.

It should be noted that Theorem 5 is a worst-case construction. It shows that, for a given discount
factor α, satisficing level D and fraction of satisficing arms δ, there exists a hard instance of an
infinite armed bandit problem in which the scaling of (8) is unavoidable. Stronger performance
guarantees are likely possible for more benign problems, however. Here, we highlight one open
problem in this direction.

As shown in [2] and [28], when the agent begins with a uniform prior over each θa, it is possible
to attain undscounted regret that scales as E

[∑T
t=1(R∗ −Rt)

]
= O

(√
T
)
. While the worst-case

construction in Theorem 5 shows that Theorem 4 is tight without additional assumptions, it seems
to yield an overly conservative regret bound of O

(
T 2/3

)
for this specific problem. To understand

this, note that if the agent begins with a uniform prior over each θa, we find δ = D. Choosing
D ≈ (1−α)2/3 to minimize the regret upper bound from combining Theorem 4 with Equation (5),
we find Regret(α,ψD) ≤ Õ

(
1

(1−α)2/3

)
, where ψD is denotes satisficing Thompson sampling applied

with parameter D. Since 1
1−α is the effective time horizon in the problem, this roughly corresponds

to a regret bound of Õ(T 2/3).
Simulations suggest that such a bound is conservative, and STS actually attains the optimal

Θ(
√
T ) regret scaling in this problem. To test this, we applied STS over a range of horizons T ∈

{e5, e5.5, · · · , e10.5}. For each choice of horizon, we used the satisficing parameterD = 3/
√
T and ran

500 independent trials. The numerical constant 3 was selected in a somewhat ad-hoc manner and
may be further optimized by tuning it in simulation. Figure 2 seems to suggest E

[∑T
t=1(R∗ −Rt)

]
=

Θ
(√

T
)
, since the logarithm of regret scales linearly as log(T )/2. An analogous experiment in the

discounted setting suggests Regret(α,ψD) = Θ
(

1√
1−α

)
as α→ 1.

To understand the two different scalings of regret, it may be helpful to draw an analogy to
the standard k armed bandit problem. When there is a fixed gap of ∆ > 0 between the best and
second best arm, it is possible to provide regret bounds of O(log(T )/∆) which scale very slowly
with the time horizon but degrade as ∆ shrinks. In worst-case instances, ∆ ≈ 1/

√
T is small

relative to the horizon and regret bounds of O(
√
T ), which are completely independent of the gap,

are the best possible. Our analysis in Theorem 1 was effectively gap-independent, as it did not
make assumptions about the separation between satisficing actions a non-satisficing actions. By
imposing the additional assumption that each θa is drawn from a uniform prior, we ensure that
most arms are easily distinguished from the satisficing arms–especially as the satisficing threshold
D tends to zero— which is what makes the O(

√
T ) bound possible. One may be able to leverage

finite time gap-dependent analyses of Thompson sampling [1] to show an O(
√
T ) regret bound for

STS under a restricted class of priors, but we leave this as an open question that is beyond the
scope of this work.
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Figure 2: Scaling of regret in an infinite armed bandit with uniform prior for (a) a discounted
infinite horizon and (b) an undiscounted finite horizon problem.

8 Application of STS to the Hierarchical Infinite-Armed bandit.
This section offers a preliminary study of satisficing in the hierarchical infinite armed bandit as
described in Example 2 of Section 1. Algorithms that succeed on this example must simultaneously
leverage prior beliefs, generalize across arms, and satisfice.

Example 4 of Section 3 describes a satisficing action Ã for this problem. Precisely, according to
Equation (2), Ã = min{a ∈ A(θ0) | θa ≥ 1−D} where A(θ0) = argmaxa′∈A〈φ(a′) , θ0〉}. Satisficing
Thompson sampling performs probability matching with respect to Ã, setting P(At = a | Ht−1) =
P(Ã = a | Ht−1) for each a ∈ A.

Let us describe how to implement probability matching in a manner that mirrors the description
of STS for the infinite armed bandit. Let At = {A0, . . . At−1} denote the set of previously sampled
actions and At(θ0) = At ∩ A(θ0) denote previously sampled actions whose feature vectors are
optimal under parameter θ0 ∈ Rd. Let θ1At(θ0) = {θ1a : a ∈ At(θ0)} denote the corresponding
components of θ1. Over each tth period, STS selects an action At as follows:

1. Sample θ̂0 ∼ P(θ0 ∈ · | Ht−1)

2. Sample θ̂1At(θ̂0) ∼ P
(
θ1At(θ0) ∈ · | θ0 = θ̂0,Ht−1

)
3. Let τ̂ = min

{
τ ∈ {1, . . . , t− 1} : θ̂1Aτ ≥ 1−D

}
4. If τ̂ is not null set At = Aτ̂ . Otherwise, play an untested action At ∈ A(θ̂0) \ At.

Steps 2-4 correspond to satisficing Thompson sampling for the infinite armed bandit as described
in Section 7, but applied conditioned on θ0 = θ̂0. Using the ideas described in Subsection 7.1, a
simple modification of this applies to problems with a large but finite number of arms and a prior
that is not necessarily uniform. We run STS with the satisficing action

Ã = argmin
a′∈A(θ0)

{
a′ | θ1a′ ≥ max

a∈A(θ0)
θ1a −D

}
(10)

As in Subsection 7.1, we can sample from this action by applying the steps above with a modified
definition of τ̂ .
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Figure 3: Average reward earned in early periods of the hierarchical bandit problem.

We run a simple numerical experiment to demonstrate the importance of satisficing and gen-
eralization to this problem. To simplify the implementation, we focus on the case where there is
a normally distributed prior over θ0 and each θ1a, allowing the posterior distribution to be ex-
pressed in closed form. The experiment treats a problem with a large but finite number of arms,
highlighting that satisficing is just as important in such settings.

Results are displayed in Figure 3. The simulation focuses on performance over the first T = 50
periods. The dimension of the linear model is d = 2. There is no observation noise, so the
reward at time t is 〈φ(At), θ0〉 + θAt . There are k = 400 of actions each of which has a feature
vector φ(a) ∈ {0, 1}2 that is drawn randomly. Parameters are drawn randomly under a prior with
θ0 ∼ N(0, d−1/2Id) and θ1,a ∼ N(0, 1) independently across arms a and from θ0. We run STS with
the satisficing action in (10).

We compare the performance of STS against Thompson sampling (TS) and an incorrect version
of STS that does not model the linear component of the model, instead treating the problem as an
infinite armed bandit independent arms and normally distributed prior. We choose D = 1 for both
variants of STS. Figure 3 shows the average reward earned by each algorithm in each of the first
50 periods. Results are averaged across 2000 trials2. We see that STS earns much higher rewards
in early periods, earning an average reward across the 50 time periods of 1.21, compared with
.79 for incorrect STS and .67 for standard Thompson sampling. In this case Thompson sampling
generalizes across arms but does not satisfice, preventing it from settling on arms with large arm-
specific effect. The incorrect variant of STS satisfices, but does not generalize across arms. STS
can simultaneously generalize and satisfice, leading to large improvement in performance.

9 Information Theoretic Proofs of the Infinite Armed Bandit Re-
sults

9.1 Proof of the upper bound: Theorem 4.

Our proof will use the following fact, which is a consequence of Pinsker’s inequality and is stated
as Fact 9 in [21].

2Standard errors are smaller than .01 for each algorithm and time period, so confidence intervals are omitted.
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Fact 1. For any distributions P and Q such that that P is absolutely continuous with respect to
Q, any random variable X : Ω→ X and any g : X → R such that sup g − inf g ≤ 1,

EP [g(X)]− EQ [g(X)] ≤
√

1
2D (P ||Q),

where EP and EQ denote the expectation operators under P and Q.

We begin by showing the mutual information bound stated as part of Theorem 4.

Lemma 6 (Mutual Information Bound). Let δ = P(θa ≥ 1−D). Then

I(Ã; θ) ≤ 1 + log (1/δ) .

Proof. Since Ã = min{a ∈ A : θa ≥ 1 − D} is a deterministic function of θ, we have I(Ã; θ) =
H(Ã) = H(N) where N ∼ Geom(δ) is a geometric random variable. This implies

I(Ã; θ) = H (N)

= −
∞∑
k=1

δ(1− δ)k−1 log(δ(1− δ)k−1)

= −
∞∑
k=1

δ(1− δ)k−1 log(δ)−
∞∑
k=1

δ(1− δ)k−1 log((1− δ)k−1)

=
∞∑
k=1

P(N = k) log(1/δ)− log(1− δ)
∞∑
k=1

δ(1− δ)k−1(k − 1)

= log(1/δ) + log
( 1

1− δ

)
(E[N ]− 1)

= log(1/δ) + log
(

1 + δ

1− δ

)(1− δ
δ

)
≤ log(1/δ) +

(
δ

1− δ

)(1− δ
δ

)
= 1 + log(1/δ).

Throughout the remainder of the proof we use the notation

Γt = (Et[θÃ − θAt ])2

It(Ã; (At, Yt))
.

This represents the expected one-step information ratio in period t under the posterior measure
P(·|Ht−1). The next lemma shows that the cumulative information ratio can be bounded by the
expected discounted average of these one-step information ratios.

Lemma 7 (Relating the information ratio to the one-step-information-ratio).

Γ
(
Ã, ψSTS

D

)
≤ (1− α2)

∞∑
t=0

α2tE[Γt]
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Proof. We have

E[R̃−Rt] = E
[
θÃ − θAt

]
= E

[
Et
[
θÃ − θAt

]]
= E

[√
Γt
√
It
(
Ã; (At, Yt)

)]

≤
√
E[Γt]E

[
It
(
Ã; (At, Yt)

)]
=

√
E[Γt] I

(
Ã; (At, Yt) | Ht−1

)
.

Then, by the definition of the information ratio

Γ
(
Ã, ψ

)
= (1− α2)

∞∑
t=0

α2t
(

(E[R̃−Rt])2

I(Ã; (At, Yt)|Ht−1)

)
≤ (1− α2)

∞∑
t=0

α2tE[Γt].

The next lemma provides a bound on the one-step information ratio.

Lemma 8.
Γt ≤ 2|At|+ 2/δ

where At = ∪t−1
s=1{As} is the set of actions that were sampled before period t, and δ ≡ P(θi ≥ R∗−D)

is the prior probability an arm is D–optimal.

Proof. Define
L ≡ E[θi|θi ≥ R∗ −D]− E[θi]

and
δ ≡ P(θi ≥ R∗ −D).

Here δ is the probability an unsampled arm is D–optimal, and L is the difference between the
expected reward of a D–optimal arm and that of an arm sampled uniformly at random. In the
case where θi ∼ Unif(0, 1), δ = D and L = (1−D)/2.

We can write expected regret as

Et[θÃ − θAt ] =
∑
a∈A

Pt(Ã = a)Et[θa|Ã = a]−
∑
a∈A

Pt(At = a)Et[θa]

=
∑
a∈At

Pt(Ã = a)
(
Et[θa|Ã = a]− Et[θa]

)
+
∑
a/∈At

Pt(Ã = a)Et[θa|Ã = a]−
∑
a/∈At

Pt(At = a)Et[θa]

=
∑
a∈At

Pt(Ã = a)
(
Et[θa|Ã = a]− Et[θa]

)
+ Pt(Ã /∈ At)(E[θa|θa ≥ 1−D]− E[θa])

=
∑
a∈At

Pt(Ã = a)
(
Et[θa|Ã = a]− Et[θa]

)
︸ ︷︷ ︸

∆t,1

+Pt(Ã /∈ At)L︸ ︷︷ ︸
∆t,2

.

This decomposes regret into the sum of two terms: one which captures the regret due to suboptimal
selection within the set of previously sampled actions At, and one due to the remaining possibility
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that none of the sampled actions are D–optimal. The proof develops a similar decomposition for
mutual information, and then lower bounds both terms.

Let Yt,a = g(a, θ,Wt) denote the outcome that would have been realized from a choice of action
a at time t. We can express mutual information as follows:

It(Ã; (At, Yt)) =
∑
a∈A

Pt(At = a)It(Ã;Yt|At = a)

=
∑
a∈At

Pt(Ã = a)It(Ã;Yt,a) +
∑
a/∈At

Pt(Ã = a)It(Ã;Yt,a|At = a)

Let us focus on the second sum, which captures the information acquired due to sampling previously
untested actions a /∈ At. Such an action provides information about Ã, since if Ã /∈ At and
θa ≥ 1−D, then a is the first sampled action to be sufficiently close to optimal and Ã = a. Using
the shorthand Pt(X) = Pt(X ∈ ·) to denote the posterior distribution of a random variable X, we
have that for an untested action a /∈ At

It(Ã;Yt,a|At = a) =
∑
ã∈A

Pt
(
Ã = ã | At = a

)
D
(
Pt(Yt,a | Ã = ã) ||Pt(Yt,a)

)
≥ Pt

(
Ã = a | At = a

)
D
(
Pt(Yt,a | Ã = a) ||Pt(Yt,a)

)
= Pt

(
Ã = a | At = a

)
D (Pt(Yt,a | θa ≥ 1−D) ||Pt(Yt,a))

≥ 2Pt
(
Ã = a | At = a

)
(Et [θa | θa ≥ 1−D]− Et [θa])2

= 2Pt
(
Ã = a | At = a

)
L2

= 2Pt
(
Ã /∈ At

)
Pt
(
Ã = a | At = a, Ã /∈ At

)
L2

= 2Pt
(
Ã /∈ At

)
δL2.

The second inequality uses Fact 1. This implies∑
a/∈At

Pt(Ã = a)It(Ã;Yt,a|At = a) ≥ 2Pt
(
Ã /∈ At

)2
δL2.

Next, following the proof of Proposition 3 of Russo and Van Roy [21] shows∑
a∈At

Pt(Ã = a)It(Ã;Yt,a) =
∑
a∈At

Pt(Ã = a)
∑
ã∈A

D
(
Pt(Yt,a | Ã = ã) ||Pt(Yt,a)

)
≥

∑
a∈At

Pt(Ã = a)2D
(
Pt(Yt,a | Ã = a) ||Pt(Yt,a)

)
≥ 2

∑
a∈At

Pt(Ã = a)2
(
Et[θa|Ã = a]− Et[θa]

)2

≥ 2
|At|

∑
a∈At

Pt(Ã = a)
(
Et[θa|Ã = a]− Et[θa]

)2

where the second inequality uses Fact 1. Therefore

It(Ã; (At, Yt)) ≥
2
|At|

∑
a∈At

Pt(Ã = a)
(
Et[θa|Ã = a]− Et[θa]

)2

︸ ︷︷ ︸
Gt,1

+ 2Pt(Ã /∈ At)2δL2︸ ︷︷ ︸
Gt,2

,
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is lower bounded by the sum of two terms: one which captures the information gain due to refin-
ing knowledge about previously sampled actions, and one that captures the expected information
gathered about previously unexplored actions.

To bound the information ratio we’ll separately consider two cases. If ∆t,1 ≥ ∆t,2, then

(Et[θÃ − θAt ])2

It(Ã; (At, Yt))
≤ (2∆t,1)2

Gt,1 +Gt,2
≤ 4(∆t,1)2

Gt,1
= 2|At|.

If instead ∆t,1 < ∆t,2, then

(Et[θÃ − θAt ])2

It(Ã; (At, Yt))
≤ (2∆t,2)2

Gt,1 +Gt,2
≤ 4(∆t,2)2

Gt,2
= 2
δ
.

This shows
(Et[θÃ − θAt ])2

It(Ã; (At, Yt))
≤ 2|At|+ 2/δ.

Combining this result with Lemma 7 gives the bound

Γ
(
Ã, ψSTS

D

)
≤ (1− α2)

∞∑
t=0

α2tE [Γt]

≤ 2/δ + 2(1− α2)
∞∑
t=0

α2tE[|At|].

To use this result, we begin by bounding E[|At|].

Lemma 9. |A0| = 0 and for each T ∈ {1, 2, . . .}, E[|AT |] ≤ 2 + log(T )/δ.

Proof. Let τk = min{t ≤ T ||At| ≥ k} denote the first period before T in which k actions have been
sampled. Then

E[|AT |] = E[|Aτk |] + E[|AT | − |Aτk |]
≤ E[|Aτk |] + E[|Aτk+T | − |Aτk |]

≤ k + E
τk+T−1∑
t=τk

1(At /∈ At)

= k + E
T−1∑
s=0

P(Aτk+s /∈ Aτk+s|Hτk+s)

= k + E
T−1∑
s=0

P(Ã /∈ Aτk+s|Hτk+s)

= k +
T−1∑
s=0

P(Ã /∈ Aτk+s)

≤ k + TP(Ã /∈ Aτk)
= k + TP(Geom(δ) > k)
= k + T (1− δ)k

≤ k + Te−δk.
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Choosing k = dlog(T )/δe ≤ 1 + log(T )/δ, implies

E[|AT |] ≤ 2 + log(T )/δ.

The next technical lemma shows
∑∞
t=1 γ

−t log(t) = O((1/γ) log(1/γ)). The proof is given in
Appendix B.

Lemma 10. For any γ ∈ (0, 1),

∞∑
t=1

γ−t log(t) ≤ 1
1− γ

[
1 + log

( 1
1− γ

)]
.

Finally we can conclude with the proof of Theorem 4. As shown before,

Γ
(
Ã, ψSTS

D

)
≤ (1− α2)

∞∑
t=0

α2tE [Γt]

≤ 2/δ + 2(1− α2)
∞∑
t=0

α2tE[|At|].

By Lemma 9 and Lemma 10 we find

(1− α2)
∞∑
t=0

α2tE[|At|] ≤ (1− α2)
∞∑
t=1

α2t (2 + log(t)/δ)

≤ 3 + (1/δ)(1− α2)
∞∑
t=1

α2t log(t)

≤ 3 + (1/δ)
[
1 + log

( 1
1− α2

)]
.

This implies

Γ
(
Ã, ψSTS

D

)
≤ 6 + 4/δ + (2/δ) log

( 1
1− α2

)
= O

(
(1/δ) log

( 1
1− α2

))
and concludes the proof of Theorem 4.

9.2 Proof of the Lower Bound: Theorem 5

The lower bound analysis leverages many of the standard information theoretic techniques for
estalbishing minimax lower bounds [See e.g. 27]. We first give a reduction to a hypothesis testing
problem in which the goal is simply to identify a satisficing action. We show identifying a satisficing
action is hard by upper bounding a certain KL divegence, through the data-processing inequality
and the chain rule. These techniques are based on a classical change of measure argument by [15]
as well as other bandit lower bounds [4, 13]. Our proof resembles most closely a proof in Bubeck
and Cesa-Bianchi [4] that the minimax regret for k-armed un-discounted stochastic bandits is lower
bounded by 1

20
√
kT , where T is the number of time periods. There is some novelty to our lower

bound analysis, however. The most significant change is that our problem involves an infinite
number of arms and an independent prior, so there are many satisficing arms and we need to argue
it is difficult to consistently play any arm from that set. The construction in [4] involves a problem
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instance with a dependent prior, under which it is difficult to identify the single arm that differs
from the other k − 1 arms. We also show how to carry out lower bound analyses of discounted
problems by analyzing the distribution of Aτ , the action chosen at some randomly selected time
τ ∼ Geom(1− α).

Proof. Step 1: Expressing discounted sums in terms of random times.
Let τ ∼ Geom(1−α) be distributed independently of all other random variables. In several places,
we use that, by the explicit form of the PMF P(τ = t) = αt(1− α),

E
∞∑
t=0

αtf(At) = (1− α)−1E[f(Aτ )]

for an arbitrary function f : N → R. The allows us to compactly compress functions of the entire
sequence of interactions into expectations with respect to Aτ alone.

Step 2: Regret lower bound in terms of the probability of satisficing.
In this problem, the optimal expected reward is R∗ = 1

2 + D. We put Sθ = {i ∈ N : θi ≥ 1
2} to

be the set of satisficing actions and OPTθ = {i ∈ N : θi = R∗} to be the set of optimal actions.
These sets are random due to their dependence on θ. We have

SRegret(α,ψ,D) = E
[ ∞∑
t=0

αt(R∗ −Rt −D)
]

= E
[ ∞∑
t=0

αt(E [R∗ −Rt −D | Ht−1]
]

= E
[ ∞∑
t=0

αt(E [R∗ − θAt −D | Ht−1]
]

= (1− α)−1 E [R∗ − θAτ −D]

= (1− α)−1
[
∆P

(
θAτ = 1

2 −D
)
−DP

(
θAτ = 1

2 +D

)]
= (1− α)−1 [∆P(Aτ ∈ Sθ)−DP(θAτ ∈ OPTθ)]

We now upper bound P(Aτ ∈ OPTθ) in terms of ε. Recall the definition At := {A0, . . . , At−1}.
Proceeding recursively, we have P(θA1 < R∗) = 1− ε, since A1 is chosen independently of θ. Next,
we have

P(θA1 < R∗ ∧ θA2 < R∗) = (1− ε)P(θA2 < R∗ | θA1 < R∗) ≥ (1− ε)2.

To understand the final inequality, note that P(θA2 < R∗ | θA1 < R∗, A1, A2) is equal to one if
A1 = A2 and is equal to 1 − ε otherwise. Hence P(θA2 < R∗ | θA1 < R∗, A1, A2) ≥ 1 − ε almost
surely. Repeating this process inductively gives

P(θA1 < R∗ ∧ · · · ∧ θAt < R∗) ≥ (1− ε)t.

This gives the bound

P(Aτ /∈ OPTθ) ≥ P(θAτ < R∗ ∧ · · · ∧ θAτ < R∗)
= E [P(θAτ < R∗ ∧ · · · ∧ θAτ < R∗ | τ)]
≥ E [(1− ε)τ ]

=
∞∑
t=0

αt(1− α)(1− 2ε)t

= 1− α
1− α(1− ε) .
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We find
P(Aτ ∈ OPTθ) ≤ 1− 1− α

1− α(1− ε) = αε

1− α(1− ε) ≤
ε

1− α.

We’ve reached our desired result, which lower bounds satisficing regret in terms of the probability
of playing a satisficing arm at the random time τ :

SRegret(α,ψ,D) ≥ ∆ ·
(1− P(Aτ ∈ Sθ)

1− α

)
−D ·

(
ε

(1− α)2

)
. (11)

Step 3: Identifying a satisficing action is hard.
Our goal is to lower bound P(Aτ ∈ Sθ). To do this, we consider two alternative infinite armed
bandit models. Each induces an a probability measure as follows:

1. The probability measure P(·) corresponds to the infinite armed bandit model as described in
the theorem statement. The collection θ ≡ (θa)a∈N is drawn randomly according to the prior
probabilities in (9). The random seed ξ is drawn uniformly from [0, 1]. For each period t, the
action At = ψ(Ht−1, ξ) is prescribed by the policy ψ. Then P(Rt = 1 | At, θ,Ht−1, ξ) = θAt .

2. We consider an alternative model, which is identical except that rewards are always drawn
from a Bernoulli distribution with mean 1/2 − ∆. Precisely, we let Q be an alternative
probability measure with the following properties: As before, the random seed ξ is drawn
uniformly from [0, 1], At = ψ(Ht−1, ξ) for each period t, and θ is drawn from accord-
ing to the prior probabilities in (9). However, rewards are now independent from θ, with
Q(Rt = 1 | At, θ,Ht−1, ξ) = 1/2−∆.

The idea of this construction is that DKL (Q(Ht−1 = ·) ||P(Ht−1 = ·)) will reduce to considering
the divergence in reward distributions, since this is the only source of discrepancy between the
probability distributions. We continue to let τ ∼ Geom(1−α) denote a geometric random variable
that is mutually independent from θ and (Ht)t∈N under both P and Q. We take EQ[·] to denote
the expectation under the probability measure Q.

Under Q, the algorithm’s observations are independent of θ, so

Q(At ∈ Sθ) = EQ [Q(At ∈ Sθ | θ)] = EQ[δ] = δ.

Applying this gives,
Q(Aτ ∈ Sθ) = EQ [Q(Aτ ∈ Sθ | τ)] = δ.

Then, by Pinsker’s inequality

P(Aτ ∈ Sθ) ≤ Q(Aτ ∈ Sθ) +
√

1
2DKL (Q(Aτ ∈ Sθ) ||P(Aτ ∈ Sθ))

= δ +
√

1
2DKL (Q(Aτ ∈ Sθ) ||P(Aτ ∈ Sθ)). (12)

We upper bound and expand the KL divergence through repeated use of the data-processing in-
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equality and the chain rule. We have

DKL (Q(Aτ = ·) ||P(Aτ = ·) ≤ DKL (Q(Aτ = ·) ||P(Aτ = ·)
≤ DKL (Q((τ, θ,Hτ , ξ) = ·) ||P((τ, θ,Hτ , ξ) = ·)
= DKL (Q((τ, θ, ξ) = ·) ||P((τ, θ, ξ) = ·)) +DKL (Q(Hτ = · | τ, θ, ξ) ||P(Hτ = · | τ, θ, ξ))
= DKL (Q(Hτ = · | τ, θ, ξ) ||P(Hτ = · | τ, θ, ξ))

=
∞∑
t=0

Q(τ = t)DKL (Q(Hτ = · | τ = t, θ, ξ) ||P(Hτ = · | τ = t, θ, ξ))

=
∞∑
t=0

Q(τ = t)DKL (Q(Ht = · | θ, ξ) ||P(Ht = · | θ, ξ))

where the final equality uses the independence of τ and (θ, (Ht)t∈N, ξ). Define the binary KL
divergence function d : [0, 1]× [0, 1]→ R by d(p||q) = p log(p/q) + (1− p) log((1− p)/(1− q)). Now,
by the chain rule and the relation Ht = (Ht−1, At, Rt), we have

DKL (Q(Ht = · | θ, ξ) ||P(Ht = · | θ, ξ)) =DKL (Q(Ht−1 = · | θ, ξ) ||P(Ht−1 = · | θ, ξ))
+DKL (Q(At = · | θ,Ht−1, ξ) || P(At = · | θ,Ht−1, ξ))
+DKL (Q(Rt = · | θ,Ht−1, At, ξ) || P(Rt = · | θ,Ht−1, At, ξ))

=DKL (Q(Ht−1 = · | θ) || P(Ht−1 = · | θ)) + EQ [d (1/2−D || θAt)]
= · · ·

=EQ

[
t∑

`=0
d (1/2−∆ || θA`)

]

≤EQ

[
t∑

`=0
(1(At ∈ Sθ)d (1/2−∆ || 1/2) + 1(At ∈ Optθ) d (1/4 || 3/4)

]

=
t∑

`=0
Q(At ∈ Sθ)d (1/2−∆ || 1/2) +

t∑
`=0

Q(At ∈ OPtθ)d (1/2−∆ || 3/4) .

Here we used that DKL (Q(At = · | θ,Ht−1, ξ) || P(At = · | θ,Ht−1, ξ)) = 0 since, conditioned on
(Ht−1, ξ), At is almost surely equal to ψt(Ht−1, ξ) under Q(·) or P(·). The inequality uses that
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1/2−∆ ≥ 1/4 and θa ≤ 3/4 by hypothesis. Plugging this in above, we find

DKL (Q(Aτ = ·) ||P(Aτ = ·))

≤
∞∑
t=0

Q(τ = t)
t∑

`=0
[Q(A` ∈ Sθ)d (1/2−∆ || 1/2) + Q(A` ∈ OPtθ)d (1/4 || 3/4)]

=
∞∑
t=0

Q(τ ≥ t) [Q(At ∈ Sθ)d (1/2−∆ || 1/2) + Q(At ∈ OPtθ)d (1/4 || 3/4)]

=
∞∑
t=0

αtδd (1/2−∆ || 1/2) +
∞∑
t=0

αtεd (1/4 || 3/4)

=
δ ·∆ log(1+∆

1−∆)
1− α +

ε · (1/4) log(5/4
3/4)

1− α

=
δ ·∆ log(1 + 2∆

1−∆)
1− α +

ε · (1/4) log(5
3)

1− α

≤4δ ·∆2

1− α + ε/4
1− α

where the last step uses the requirement that 1
1−∆ < 2. To conclude, plugging the above into (12)

and using the concavity of the square root, we have shown

P(Aτ ∈ Sθ) ≤ δ + ∆

√
2δ

1− α +

√
ε/4

1− α (13)

Step 4: Conclusion by plugging in for D and ε.
Combining (11) and (13), we have

SRegret(α,ψ,D) ≥

∆ · (1− δ)−∆2 ·
√

2δ
1−α

1− α

−√ε · ∆/2
(1− α)3/2 − ε ·

(
D

(1− α)2

)

≥

∆/2−∆2 ·
√

2δ
1−α

1− α

−√ε · 1/8
(1− α)3/2 − ε ·

( 1/4
(1− α)2

)

≥

∆/2−∆2 ·
√

2δ
1−α

1− α

− ·√ε · (3/8)
(1− α)2

:= f(∆)− g(ε)

where in the final step we will require ε ≤ 1.
We now focus on the first term, and will eventually pick ε so the remaining term is sufficiently

small. Set

f(∆) = 1
1− α ·

∆
2 −∆2 ·

√
2δ

1− α


This is a quadratic function with global minimum at

∆∗ = argmin
∆∈R

f(∆) = 1
4
√

2
·
√

1− α
δ
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For
∆0 ≡ min

{1
4 ,∆

∗
}

=
{ 1/4 for 2δ ≥ 1− α

∆∗ for 2δ ≤ 1− α (14)

we have

f(∆0) =


1
16 ·

1
1−α for δ ≥ 2(1− α)

1
16
√

2 ·
√

1/δ
1−α for δ ≤ 2(1− α)

 ≥ 1
16 ·min

 1
1− α ,

√
1/2δ
1− α


Now, we pick ε0 ≤ 1 so that

g(ε0) ≤ f(∆)/2.

We need √
ε0 · (3/8)

(1− α)2 ≤ 1
16 ·min

 1
1− α ,

√
1/2δ
1− α

 .
This is satisfied with equality for

ε0 = 1
36 ·min

{
(1− α)2 ,

(1− α)3

2δ

}
(15)

This shows that for a choice of ∆ = ∆0 and ε ≤ ε0, as in the theorem statement, we have

SRegret(α,ψ,D) ≥ 1
32 ·min

 1
1− α ,

√
1/2δ
1− α

 .

10 Closing Remarks
We have put forth a way of thinking about satisficing in bandit learning. The per-period regret of
an algorithm that learns a satisficing action Ã does not converge to zero, but the time required can
often be far less than what it would be to learn an optimal action A∗. Intuitively, this advantage
stems from the fact that the mutual information I(θ; Ã), which can be thought of as the number
of bits of information about the model required to learn Ã, can be far less than I(θ;A∗).

Satisficing plays a particularly important role when there is a satisficing action Ã for which
I(θ; Ã) � I(θ;A∗) and the agent exhibits time preference, valuing near-term over long-term re-
wards. To express this in terms of a formal objective, we considered expected discounted regret.
We also introduced satisficing Thompson sampling, and established results pertaining to infinite-
armed and linear bandits demonstrating that this variant of Thompson sampling captures benefits
of targeting a satisficing action.

We believe this paper puts forth a useful conceptual framework and that satisficing Thompson
sampling could serve as a useful design principle for time-sensitive learning problems. But, we also
feel this paper takes only a very preliminary step toward understanding satisficing in modern bandit
learning. Future work might try to analyze the rate distortion function and information ratio for
broader classes of problems than addressed in this paper. We suspect models like the hierarchical
bandit in Example 2 may be quite useful in practice, and warrant more complete study. Satisficing
is even more important in reinforcement learning than in bandit problems. Most ideas in this paper
extend gracefully to contextual bandits, but extensions to reinforcement seem difficult and are a
fascinating direction for future work.

29



Acknowledgments.
The second author was generously supported by a research grant from Boeing and a Marketing
Research Award from Adobe. A special thanks is owed to David Tse, who played an important
role in the early stages of this work. It was David who first emphasized that bounds based on
entropy can be vacuous and pointed us to references on rate-distortion theory. We also thank Tor
Lattimore for thoughtful comments on an early draft of this work.

A Analysis of the Infinite-Armed Deterministic Bandit.
Theorem 11. For all α ∈ [0, 1], under Thompson sampling in the infinite-armed deterministic
bandit,

E
[ ∞∑
t=0

αt(R∗ − θAt)
]

= 1
2(1− α) .

Under satisficing Thompson sampling with tolerance ε =
√

1− α in the infinite-armed deterministic
bandit,

E
[ ∞∑
t=0

αt(R∗ − θAt)
]
≤ 1√

1− α
.

Proof. In every period t, TS samples a new action At /∈ {A1, ..., At−1}, which generates expected
reward E[θAt ] = E[θ1] = 1/2. The optimal expected reward is 1, and therefore the expected
discounted-regret of TS is

∞∑
t=0

αt(1− 1/2) = 1
2(1− α) .

Now, let us analyze satisficing Thompson sampling. Let τ = min{t : θAt ≥ 1 − ε} denote the fist
time it sampled a ε–optimal action. Then,

E
[ ∞∑
t=0

αt(R∗ − θAt)
]

= E
[ ∞∑
t=0

αt(1− θAt)
]

= E
[
E
[
τ−1∑
t=0

αt(1− θAt) +
∞∑
t=τ

αt(1− θAt)
∣∣∣τ]]

= E
[
E
[
τ−1∑
t=0

αtE[1− θa|θa ≤ 1− ε] +
∞∑
t=τ

αtE[1− θa|θa ≥ 1− ε]
∣∣∣τ]]

= E
[
E
[
τ−1∑
t=0

αt(1/2 + ε/2) +
∞∑
t=τ

αt(ε/2)
∣∣∣τ]]

= E
[
E
[
τ−1∑
t=0

αt(1/2) +
∞∑
t=0

αt(ε/2)
∣∣∣τ]]

= E
[ (1− ατ )

2(1− α) + ε

2(1− α)

]
≤

( 1
2ε + ε

2(1− α)

)
. (16)

The inequality above follows from the calculation

E[1− ατ ] = 1−
∞∑
t=0

ε(1− ε)tαt = 1− ε

1− α(1− ε) = 1− α(1− ε)− ε
1− α(1− ε) ≤ 1− α

ε
.
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The final bound of
√

1/(1− α) follows by choosing the minimizer ε∗ =
√

1− α of equation (16).

B Proof of Lemma 10.
Proof.

∞∑
t=1

γ−t log(t) ≤
∞∑
t=1

e−(1−γ)t log(t)

=
∞∑
t=2

e−(1−γ)t log(t)

∗
≤
ˆ ∞

1
e−(1−γ)x log(x+ 1)dx

= 1
1− γ

ˆ ∞
1

e−u log
(

u

1− γ + 1
)
du

≤ 1
1− γ

([
1 + log

( 1
1− γ

)]ˆ ∞
1

e−udu+
ˆ ∞

1
e−u log(u)du

)
= 1

1− γ

([
1 + log

( 1
1− γ

)]
(1/e) +

ˆ ∞
1

e−u log(u)du
)

≤ 1
1− γ

[
1 + log

( 1
1− γ

)]
where the last step uses a numerical approximation to the indefinite integral

ˆ ∞
1

e−u log(u)du ≈ .22

along with the fact that 1/e+ .22 ≈ .57 < 1.
The inequality (*) uses that for any t ≥ 2

e−(1−γ)t log(t) ≤
tˆ

t−1

e−(1−γ)x log(x+ 1)

since e−(1−γ)x is decreasing in x and log(x) is increasing in x.
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