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Abstract

Motivated by bursty bandwidth allocation [38] and by the allocation of virtual machines to servers
in the cloud [33], we consider the online problem of packing items with random sizes into unit-capacity
bins. Items arrive sequentially, but upon arrival an item’s actual size is unknown; only its probabilistic
information is available to the decision maker. Without knowing this size, the decision maker must
irrevocably pack the item into an available bin or place it in a new bin. Once packed in a bin, the decision
maker observes the item’s actual size, and overflowing the bin is a possibility. An overflow incurs a large
penalty cost and the corresponding bin is unusable for the rest of the process. In practical terms, this
overflow models delayed services, failure of servers, and/or loss of end-user goodwill. The objective is to
minimize the total expected cost given by the sum of the number of opened bins and the overflow penalty
cost. We present an online algorithm with expected cost at most a constant factor times the cost incurred
by the optimal packing policy when item sizes are drawn from an i.i.d. sequence of unknown length. We
give a similar result when item size distributions are exponential with arbitrary rates. We also study the
offline model, where distributions are known in advance but must be packed sequentially. We construct a
soft-capacity PTAS for this problem, and show that the complexity of computing the optimal offline cost
is #P-hard. Finally, we provide an empirical study of our online algorithm’s performance.

1 Introduction

Bin Packing is one of the oldest problems in combinatorial optimization, and has been studied by multiple
communities in a variety of forms. In the classical online formulation, 𝑛 items with sizes in [0, 1] arrive
in an online fashion, and the objective is to pack the items into the fewest possible number of unit-capacity
bins. The model has wide applicability in areas including cargo shipping [59], assigning virtual machines
to servers [58], a variety of scheduling problems [12, 27, 57], and so on. In many of these applications, the
items’ sizes may be uncertain, with this uncertainty often modeled via probability distributions. In much
of the stochastic bin packing literature, an item’s size is observed before it must be packed, e.g. [33, 53].
Nevertheless, in many applications this assumption is unrealistic. For instance, in bandwidth allocation,
connection requests are often bursty and deviate from their typical utilization. If the utilization of the
request is higher than expected, it can jeopardize the stability of other connections sharing the same channel.
Moreover, the only way to observe the actual traffic required by the connection is to first allocate the request
and then observe the traffic pattern.
Motivated by these considerations, we introduce an online adaptive bin packing problem that takes into
account the following ingredients:
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1. Arrivals are adversarial distributions and the length of the item sequence is unknown to the decision
maker.

2. In contrast to existing work in the online and/or stochastic bin packing literature, when an item arrives,
the decision maker only observes a probability distribution of its size.

3. The decision maker observes the item’s actual size only after irrevocably placing it in a bin; therefore,
overflowing a bin is possible.

4. An overflowed bin incurs a penalty and renders the bin unusable from that point on. The objective is to
minimize the expected cost given by the sum of the number of open bins and overflow penalty.

1.1 Motivating Applications

The online adaptive bin packing problem captures the uncertainty introduced by the online nature of the
problem, and also the uncertainty introduced by learning the size of an item after it is packed in a bin. While
the variant of the bin packing problem we consider is general and widely applicable, the following examples
give some concrete applications:

Bandwidth Allocation An operator is in charge of assigning sequentially arriving independent connection
requests. The operator can open new fixed-capacity connections (bins) of unit cost or try to use one of the
available connections to pack the incoming request. Traffic on a connection may be bursty, requiring more
than the available bandwidth. In this case, the connection suffers from the overflow of the channel, which
could represent a monetary penalty or extra work involved in reassigning the request(s) to other connection(s).
See also [38].
Freight Shipping A dispatcher in a fulfillment center is in charge of packing items into trucks for delivery.
Truckloads must comply with a maximum weight limit, and our model applies when the dispatcher assigns
items into trucks before their final weighing. An overweight truck incurs a penalty representing additional
labor or possible fines. See also [39, 40, 45].
Cloud Computing A controller is in charge of assigning virtual machines (VM) to servers. The controller
has statistical knowledge of the amount of resource a VM will utilize (CPU, RAM, I/O bandwidth, energy,
etc.), learned via historical data. The actual resource usage is observed once the VM runs in a server.
Excessive consumption of a resource by the VM could compromise the stability of the server and negatively
affect other VM’s sharing the same infrastructure. See also [33].
Operation Room Scheduling In hospitals, an administrator is in charge of assigning incoming surgeries
to different operation rooms. There may be a statistical estimation of a procedure’s duration, but the real
time spent in the room is only learned once the operation has finished. Over-allocating a room could incur
economic penalties and loss of patients’ good will. See also [23, 25].

1.2 The Model

We consider the problem of sequentially packing items arriving in an online fashion into homogeneous bins
of unit capacity. The input consists of a sequence of 𝑛 nonnegative independent random variables 𝑋1, . . . , 𝑋𝑛,
observed sequentially one at a time. Similar to the bin packing literature, we refer to items interchangeably
either by their index 𝑖 or their corresponding random variable 𝑋𝑖 . At iteration 𝑖, random variable 𝑋𝑖 arrives
and we observe its distribution but not its outcome. We decide irrevocably to pack 𝑋𝑖 into an available bin
with nonnegative remaining capacity (if any), or to place 𝑋𝑖 in a new bin and pay a unit cost. Once packed,
we observe the outcome of the random variable 𝑋𝑖 = 𝑥𝑖 , and the chosen bin’s capacity is reduced by this
amount. A bin overflows when the sizes of items packed in it sum to more than one; when this happens, we
incur in an additional cost 𝐶 ≥ 1 and the overflowed bin becomes unavailable for future iterations.
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We measure the performance of an algorithm P based on the expected overall cost incurred and denote it
cost(P). Because of the online nature of the problem, we cannot expect to compute the optimal cost for an
arbitrary sequence of distributions. Even if we knew all distributions in advance, computing the minimum-
cost packing is still computationally challenging; the deterministic version reduces to the NP-hard offline
bin packing problem. To quantify the quality of an online algorithm, we compare the expected cost incurred
by the algorithm against the expected cost incurred by an optimal adaptive packing policy that knows all
distributions in advance. This benchmark knows all size distributions in advance but not their outcomes, and
must pack the items sequentially in the same order as the online algorithm1. This measure of quality differs
from the traditional online competitive ratio, cf. [2, 10]. In the latter, we would compare the performance of
an online algorithm against the performance of an extremely powerful optimal offline algorithm that knows
all item sizes in advance.

Example 1.1. Consider 𝑛 i.i.d. random variables, where 𝑋𝑖 = 1 with probability 1/𝐶, and 𝑋𝑖 = 1/𝑛 with
the remaining probability. We expect 𝑛/𝐶 random variables to realize to 1. Therefore, the expected cost of
an offline solution that observes the sizes is at most 𝑛/𝐶 + 1. In contrast, the cost incurred by any online
algorithm (or even an offline algorithm that observes distributions but not sizes) is at least 𝑛.

Therefore, when measured against the more powerful benchmark, no online algorithm can have a bounded
competitive ratio, which motivates us to use a more refined benchmark that knows distributions but not
outcomes before the items are packed. In terms of complexity, we show that computing the cost of the
optimal offline policy is #P-hard (Theorem 1.6).
It is worth mentioning that simple greedy strategies based only on a bin’s used capacity can perform poorly
compared to the optimal offline policy. One such strategy is the Greedy Algorithm that compares the
instantaneous expected cost of packing the incoming item in an available bin, 𝐶 ·P(𝑋𝑖 overflows bin), versus
the unit cost of opening a new bin, selecting the cheapest available choice. This strategy performs poorly in
general, even for i.i.d. input sequences.

Example 1.2. Consider 𝑛 i.i.d. items, with 𝑋𝑖 ∼ Bernoulli(1/𝐶). The optimal policy incurs an expected cost
of at most 𝑛/𝐶 + 1: This corresponds to the policy that stops utilizing a bin after observing an item of size 1.
On the other hand, Greedy incurs an expected cost of at least 𝑛/2, since it will keep trying to pack items in
a bin until breaking it. Intuitively, in a sequence of Bernoulli trials the expected time to observe two items
of size 1 is 2/𝐶; therefore, every 2/𝐶 items (in expectation), Greedy pays a penalty, incurring an expected
cost of roughly 𝑛/2.

Another simple choice for a heuristic packing policy is a Threshold Algorithm, which establishes a threshold
𝛼 ∈ (0, 1) such that a bin filled to more than 𝛼 of its capacity is not used again. Notice that for any
𝛼 ∈ (0, 1), the optimal policy and the threshold policy incur roughly the same cost for the i.i.d. input
𝑋𝑖 ∼ Bernoulli(1/𝐶). We now argue that these policies can perform poorly.

Example 1.3. Assume that 𝛼 ≤ 1/2 (the case 𝛼 > 1/2 is handled similarly) and consider the i.i.d. input

𝑋𝑖 =


0 w.p. 1 − 1/𝐶
𝛼 w.p. 1/2𝐶
1 − 𝛼/2 w.p. 1/2𝐶.

The optimal policy incurs an expected cost of at most 𝑛/𝐶 + 1, since the policy that stops using a bin upon
observing a positive outcome incurs at most this cost. On the other hand, the Threshold Algorithm incurs an
expected cost of at least 𝑛/24−𝐶; we sketch an argument here to obtain this bound, ignoring the −𝐶 term for

1See Section 3 for a more detailed description of policies.
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the sake of clarity: The expected number of positive outcomes is 𝑛/𝐶. A bin is overflowed by the Threshold
Algorithm when an item of size 𝛼 is followed by another of size 1 − 𝛼/2 (regardless of the number of items
of size 0 in between). Focusing solely on the positive outcomes, the number of expected disjoint triplets of
the form (1 − 𝛼/2, 𝛼, 1 − 𝛼/2) is at least a fraction (1/8) × (1/3) = 1/24 of these positive outcomes, from
which the bound follows.

We include a brief discussion of threshold policies for i.i.d. input sequences in Appendix C. If the common
distribution of the input sequence is finite, a threshold policy can be computed as a function of the distribution,
with expected cost a constant factor of the optimal expected cost.
Until now, we have presented examples in which the optimal policies do not break any bin. To not give the
false impression that optimal policies do not risk breaking bins, we present the following example.

Example 1.4. Consider 𝑛 i.i.d. items, where 𝑋𝑖 = 1 with probability 1/𝐶2 and 𝑋𝑖 = 1/𝑛 with the remaining
probability. The optimal policy has expected cost no more than 𝑛/𝐶 + 1, far less than the policy that does
not break any bins, which incurs an expected cost of 𝑛.

In deterministic bin packing problems, one of the most useful bounds for the number of used bins is the sum of
the item sizes. It is known that this value is at least half the number of bins used by any greedy algorithm [16].
In our stochastic setting, the expected sum of item sizes could be far from the number of bins used. Indeed, for
the random variables considered in Example 1.1, we have

∑𝑛
𝑖=1 E[𝑋𝑖] = 𝑛

(
1
𝑛

(
1 − 1

𝐶

)
+ 1

𝐶

)
= (𝑛−1)/𝐶 +1,

while the expected cost of any policy is at least 𝑛 for this input sequence.

1.3 Our Results and Contributions

We propose a heuristic algorithm called Budgeted Greedy and denoted Alg (Algorithm 1). Budgeted Greedy
uses a risk budget in each bin as a way to control the risk of overflowing the bins. If we consider packing item
𝑖 in bin 𝑗 , this action’s risk is equal to the probability of overflowing the bin; Budgeted Greedy maintains a
bin’s risk below its risk budget. At every step, similar to the bin’s capacity, when an item is packed in a bin,
the bin’s risk budget is reduced by the probability of the current item overflowing the bin. If no currently
opened bin has enough risk budget left, then a new bin is opened. Observe that the risk of packing item 𝑖

into any available bin depends on the realized sizes of items 1, . . . , 𝑖 − 1 and these items’ assignments.
The risk as defined above can be calculated for any policy. While there are instances where the optimal
policy incurs a large risk for certain bins it opens, our first structural result shows that any policy can be
converted to one with budgeted risk with at most a constant factor loss.

Theorem 1.1. Let 𝑋1, . . . , 𝑋𝑛 be an arbitrary sequence of independent nonnegative random variables (not
necessarily identically distributed). For any 𝛾 > 0 and for any policy P that sequentially packs 𝑋1, . . . , 𝑋𝑛,
there exists a risk-budgeted policy P ′ packing the same items, such that no bin surpasses the risk budget
𝛾/𝐶, and with expected cost

cost(P ′) ≤ (1 + 2/𝛾) cost(P).2

Theorem 1.1 is obtained by updating policy P’s decision tree whenever the risk budget is violated by opening
a new bin. The extra cost of the new opened bins is paid by a delicate charging argument. Notice that as
𝛾 → ∞, we recover the original cost of the policy.
While the cost of any policy involves two terms, the expected number of open bins and the expected penalty
for overflowed bins, we show (Lemma 3.4) that for a budgeted policy, the cost of overflowed bins is at most
the number of opened bins in expectation. This allows us to exclusively focus on the number of bins opened
by the budgeted policy. A consequence of these structural results is the following.

2If there are items 𝑋𝑖 with P(𝑋𝑖 > 1) > 𝛾/𝐶, these are packed individually. Bins not containing these items have risk bounded
by 𝛾/𝐶. See Section 4.

4



Theorem 1.2. If the input sequence 𝑋1, . . . , 𝑋𝑛 is i.i.d., Budgeted Greedy with 𝛾 =
√

2 minimizes the expected
number of opened bins among all budgeted policies. As a consequence, cost(Alg) ≤ (3 + 2

√
2) cost(Opt),

where Opt denotes the optimal policy that knows 𝑛 in advance.

This i.i.d. model can be interpreted in the following manner. Suppose there is a probability distribution over
the nonnegative real numbers. There are 𝑛 item sizes independently drawn from this distribution, 𝑥1, . . . , 𝑥𝑛.
For each 𝑖 = 1, . . . , 𝑛, we are asked to pack the 𝑖-th item without observing its size. This is indeed a model
for basic allocation systems where only a population distribution is known about the item’s size, which is a
typical occurrence in practical applications if more granular information is not available.
As a consequence of Theorem 1.2, we can also show the existence of instance-dependent threshold policies
with similar guarantees as Budgeted Greedy.

Corollary 1.3. If the input sequence 𝑋1, . . . , 𝑋𝑛 is i.i.d. with finite support, there is a threshold 𝛼 ∈ [0, 1]
that depends on the common distribution of the 𝑋𝑖 , such that the threshold policy P𝛼, which stops using bins
when their capacity exceeds 𝛼, satisfies cost(P𝛼) ≤ (3+ 2

√
2) cost(Opt) + 1, where Opt denotes the optimal

policy that knows 𝑛 in advance.

The proof is based on the theory of discounted Markov decision processes (see [47]). We need the finiteness
of the support of the distribution to show the existence of a fixed point, which is crucial for the Bellman
recursion in the discounted setting. The proof of this corollary appears in the Appendix C.
As a second contribution, we show that for arbitrary exponential distributions, i.e. a sequence of random
variables 𝑋1, . . . , 𝑋𝑛 with P(𝑋𝑖 > 𝑥) = 𝑒−_𝑖 𝑥 , Budgeted Greedy incurs a cost that is at most a factor O(log𝐶)
times the benchmark cost. Moreover, if the exponential random variables are sufficiently small, this factor
can be reduced to a constant.

Theorem 1.4. If each 𝑋𝑖 is exponentially distributed with rate _𝑖 > 0, Budgeted Greedy satisfies

cost(Alg) ≤ O(log𝐶) cost(Opt).

Furthermore, if _𝑖 ≥ 2 log𝐶 for all 𝑖 = 1, . . . , 𝑛, cost(Alg) ≤ O(1) cost(Opt).

We show that Budgeted Greedy opens bin 𝑖 + 1 if it either packs at least Ω(1/log𝐶) in bin 𝑖, or the risk in
bin 𝑖 is bounded by a small constant, which we obtain via an auxiliary non-convex maximization problem.
With this, Budgeted Greedy’s cost is bounded by O(log𝐶)∑𝑖 E[𝑋𝑖] ≤ O(log𝐶) cost(Opt). When the
exponential random variables are small enough, Budgeted Greedy opens bin 𝑖 + 1 if a constant amount of
mass in bin 𝑖 is packed, thereby reducing the log𝐶 factor to a constant. We also give a Ω

(√︁
log𝐶

)
lower

bound for Budgeted Greedy’s competitive ratio in the case of exponentially distributed sizes.

Offline Model Although our motivation for studying the bin packing model is an online application, the
offline sequential version of the problem is interesting in its own right, as it interpolates the online setting
and the completely offline setting, where items are packed in an arbitrary order. In the offline sequential
version of the problem, an ordered list of random variables is given to the decision maker, and the objective
is to design a sequential policy to minimize expected cost, in time polynomial in the number of items and
possibly log𝐶. As in the online model, right after the decision maker packs a random variable (item) into a
bin, the actual size is revealed to her. The optimal offline expected cost computed here corresponds to the
benchmark we consider in the online setting.
In this offline framework, we present two main contributions. Following the resource augmentation litera-
ture [26, 42], the first contribution states that there is a polynomial-time approximation scheme (PTAS) for
computing a policy when the capacity of the bins is extended by Y.
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Theorem 1.5. For any 0 < Y ≤
√

6(
√

15 − 3), there is an algorithm running in O
(
𝑛2(6/Y)5/Y10

)
time that

computes a polynomial-size policy P packing items into bins of size 1 + Y, and incurring an expected cost of
at most (1 + Y) cost(Opt), where Opt is the optimal policy packing items into bins with unit capacity.

The algorithm uses a discretization of possible item sizes similar to [42]. This allows us to find an optimal
policy for discretized outcomes via dynamic programming in polynomial time. The cost of this policy is
almost the original optimal cost. We recover a policy for the original items by a tracking argument simulating
the discretized policy in parallel. The policy follows the discretized policy’s decision to pack items in a bin
𝑗 as long as the error between the sizes in 𝑗 and its discrete version remains small. When this fails, the
policy opens a new copy of 𝑗 and keeps following the discretized policy as before. This tracking is enough
to guarantee similar cost between the two policies.
Our second result for the offline model relates the complexity of computing the optimal value to counting
problems. Specifically, we show that computing the optimal offline cost is #P-hard—hence, the optimal
online benchmark is also #P-hard to compute.

Theorem 1.6. It is #P-hard to minimize cost(P).

The proof of this result is divided into two parts. First, we show that counting solutions of symmetric logic
formulas in 4CNF3 is #P-hard (Theorem B.1). From a symmetric 4CNF formula we construct a stochastic
input of the stochastic bin packing problem, where minP cost(P) allows us to count the solutions of the
4CNF formula. The proof resembles the reduction from the Partition problem to the Bin Packing problem.
Intuitively, randomized items model outcomes of variables in the 4CNF formula, one item for each positive
and negative literal. The main step in the proof is to correlate the outcomes of the positive/negative literals
corresponding to the same variable. The proof of Theorem 1.6 is deferred to Appendix B.

1.4 Organization

The rest of the paper is organized as follows. We follow this introduction with a brief literature review. In
Section 3, we present the Budgeted Greedy algorithm and introduce the necessary notation for the rest of
the paper. Section 4 focuses on the i.i.d. case, including the proofs of Theorem 1.1 and Theorem 1.2. In
Section 5 we turn to exponentially distributed item sizes, with the proof of Theorem 1.4 and the construction
of the corresponding lower bound. Section 6 discusses the offline case, including the proof of Theorem 1.5.
In Section 7 we present a numerical study of our algorithms, comparing it with natural benchmarks.

2 Related Work

In the classic one-dimensional bin packing problem, 𝑛 items with sizes 𝑥1, . . . , 𝑥𝑛 in [0, 1] must be packed
in the fewest unit-capacity bins without splitting any item into two or more bins. This is a well-studied
NP-complete problem spanning more than sixty years of work [18, 27, 28, 35, 36, 37, 50]. For excellent
surveys see [11, 16]. In the online version, the list of items 𝐿 = (𝑥1, . . . , 𝑥𝑛) is revealed online one item at
a time. At round 𝑡, we observe item 𝑥𝑡 and we need to decide irrevocably and without knowledge of future
arrivals whether to pack the item in an open bin with enough remaining space, or to open a new unit-capacity
bin at unit cost. It is standard to measure an online algorithm’s performance via its (asymptotic) competitive
ratio [2, 10, 16] lim sup |𝐿 |→∞ costalg(𝐿)/costOPT(𝐿), where costalg(𝐿) is the cost incurred by the online
algorithm with input 𝐿, and costOPT(𝐿) is the cost incurred by the optimal offline solution that knows 𝐿 in
advance. The best known competitive ratio is 1.57829 [3], and the best current lower bound is 1.5403 [4],
see also [56, 60].

3Logic formula in conjunctive normal form with 4 literals in each clause.
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In several real-world applications, exact item sizes are unknown to the decision maker at the time of insertion
[21, 57]. This uncertainty is typically modeled via probability distributions on the items’ size. Several online
and offline bin packing models introducing stochastic components have been studied [13, 17, 29, 32, 34, 38,
42, 48, 53, 52]. These stochastic models have revealed connections with balls-into-bins problems [53], sums
of squares [17], queuing theory [15], Poisson approximation [42], etc. For the online case, common to all
these models is the assumption that the item size is observed before packing it. Nevertheless, observing the
item size is unrealistic in many scenarios. For instance, in cloud computing, before running a job in a cluster,
we may have some statistical knowledge of the amount of resource the job will utilize. However, the only
way to observe the real utilization is to start the job. In this work, we propose a new model variant where
items’ size distributions are revealed in an online fashion but each outcome is observed only after packing
the item. We therefore relax the strict capacity constraint by allowing each bin to overflow at most once, at
the expense of a penalty. Related to this kind of online input are the works [13, 17, 32, 48, 53, 52].
Our model also shares similarities with adaptive combinatorial optimization, particularly stochastic knapsack
models introduced in [24]. Recent treatments began with [20]; a large body of work has now studied this
model from several perspectives [5, 6, 7, 8, 9, 26, 31, 42, 43]. Most of these works assume complete
knowledge of the input distributions, and online treatments are scarcer in the literature, see [1, 30, 44].
A related area of work is the extensible bin packing problem [14, 22]. Roughly speaking, a fixed number of
bins are given and a set of items must be packed into them. The cost of bin 𝐵 corresponds to max {∑𝑖∈𝐵 𝑥𝑖 , 1},
a fixed unit cost and a linear excess cost. The objective is to design packings with small overall cost; even
though we do not allow bins to be utilized after overflow, we could interpret our model as a nonlinear version
of a stochastic extensible bin packing problem. For a generalization to different costs and bin capacities,
see [41]. For a stochastic approach similar to our posterior observability, see [51].

3 The Algorithm

3.1 Preliminaries

The problem’s input consists of 𝑛 independent nonnegative random variables 𝑋1, . . . , 𝑋𝑛. The (possible) bins
to utilize are denoted by 𝐵1, 𝐵2, . . . , 𝐵𝑛. A state s for round 𝑖 ∈ [𝑛 + 1] is a sequence (𝑥1, 1 → 𝑗1) (𝑥2, 2 →
𝑗2) · · · (𝑥𝑖−1, 𝑖−1 → 𝑗𝑖−1), where 𝑥𝑘 is an outcome of 𝑋𝑘 for all 𝑘 < 𝑖. The pair (𝑥𝑘 , 𝑘 → 𝑗) represents round
𝑘 , and refers to packing 𝑋𝑘 in bin 𝑗 and observing outcome 𝑋𝑘 = 𝑥𝑘 . A state for round 𝑖 represents the path
followed by a decision maker packing items 𝑋1, . . . , 𝑋𝑛 sequentially into bins and the outcomes for each of
these decisions until round 𝑖−1. States have a natural recursive structure: s = s′(𝑥𝑖−1, 𝑖−1 → 𝑗𝑖−1), where s′
is the state for round 𝑖−1. The initial state s0 is the empty state. Bin 𝐵 𝑗 is open by state s if some (𝑥𝑘 , 𝑘 → 𝑗)
appears in s. The items packed into bin 𝐵 𝑗 by state s are 𝐵 𝑗 (s) = {𝑘 : (𝑥𝑘 , 𝑘 → 𝑗) appears in s}. The
number of bins opened by state s is |{ 𝑗 : (𝑥𝑘 , 𝑘 → 𝑗) appears in s}|. The usage of bin 𝐵 𝑗 at the beginning
of round 𝑖 in state s is

𝑆𝑖−1
𝑗 (s) =

∑︁
𝑘≤𝑖−1

(𝑥𝑘 ,𝑘→ 𝑗) ∈s

𝑥𝑘 ,

the sum of sizes of items packed in bin 𝑗 . A bin 𝐵 𝑗 is broken or overflowed in s if 𝑆𝑖−1
𝑗

(s) > 1. In our model,
we stop using bins that overflow. A state s for round 𝑖 is feasible if any overflowed bin by round 𝑘 is never
used again after 𝑘 , for any 𝑘 < 𝑖. The state space is the set of all feasible states, denoted S. The set of all
feasible states for round 𝑖 ≤ 𝑛 is denoted by S𝑖 .
A policy P is a function P : S𝑛 → [𝑛] such that for a feasible state s ∈ S𝑛 for round 𝑖, P(s) = 𝑗 indicates that
item 𝑖 is packed into bin 𝑗 ; we write this as 𝑖 → 𝑗 when the policy and state are clear from the context. The
policy is feasible if s′ = s(𝑥𝑖 , 𝑖 → P(s)) is a feasible state for any feasible s ∈ S𝑛 for round 𝑖 and outcome 𝑥𝑖
of 𝑋𝑖 . From now on, we only consider feasible policies. A state s′ ∈ S is reachable by the policy if s′ = s0
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or s′ = s(𝑥𝑖 , 𝑖 → P(s)) with s reachable, s for round 𝑖 and 𝑥𝑖 an outcome of 𝑋𝑖 . For a reachable state s for
round 𝑖 ∈ [𝑛], we say that P opens bin 𝑗 if P(s) = 𝑗 and 𝐵 𝑗 is not open in s. We say that the policy overflows
bin 𝐵 𝑗 at state s if 𝐵 𝑗 overflows for s′ = s(𝑥𝑖 , 𝑖 → P(s)) but 𝐵 𝑗 is not overflowed in s. We set the cost of a
policy as

cost(P) = E[𝑁P] + 𝐶 E[𝑂P],

where 𝑁P is the number of bins opened and 𝑂P is the number of bins broken by reachable states for round
𝑛+1. The randomness is over the items’ outcomes. Notice that non-reachable states in S are unimportant for
cost(P), hence we can always assume P(s) = 𝑛 for non-reachable s ∈ S𝑛. A policy specifies the actions to
apply in any epoch of the sequential decision-making problem. Note that our states are typically considered
histories in the Markov decision processes literature [47]. We use our description of states to keep close
track of policies’ actions in the subsequent analysis.
Any policy P has a natural (𝑛 + 1)-level decision tree representation TP , which we call the policy tree. The
root, denoted 𝑟 , is at level 1 and represents item 𝑋1 and state s0. A node at level 𝑖 ∈ [𝑛] is labeled with
P(𝑖, s) where s is the state of the system obtained by following the path from the root to the current node.
There is a unique arc going out of the node for every possible outcome of 𝑋𝑖 directed to a unique node in
level 𝑖 + 1. Nodes at level 𝑛 + 1 are leaves denoting that the computation has ended. Nodes in levels 𝑖 ∈ [𝑛]
are called internal nodes. To compute the cost(P) using the policy-tree TP , we add two labels to the tree:

• For an internal node 𝑢, ℓ𝑢 = 1 if P opens a new bin in node 𝑢; 0 otherwise. For leaves we define ℓ𝑢 = 0.

• For arcs 𝑎 = (𝑢, 𝑣), we define 𝑐𝑎 = 𝐶 if the outcome of the random variable belonging to the level where
𝑢 is located overflows the bin chosen by the policy at node 𝑢; 0 otherwise.

We refer to this tree as cost-labeled tree TP with cost vectors (ℓ, 𝑐), or simply cost-labeled tree TP if the costs
are clear from the context. The tree structure gives us a recursive way of computing the cost of the policy.
Let TP (𝑢) be the cost-labeled sub-tree of TP rooted at node 𝑢; then

costℓ,𝑐 (TP (𝑢)) =
{
ℓ𝑢 + E𝑋𝑖

[𝑐 (𝑢,𝑢𝑋𝑖
) + costℓ,𝑐 (TP (𝑢𝑋𝑖

))] if 𝑢 is at level 𝑖 = 1, . . . , 𝑛
0 if 𝑢 is at level 𝑛 + 1

,

where 𝑢𝑋𝑖
is the node at level 𝑖 + 1 connected to 𝑢. Thus, cost(P) = costℓ,𝑐 (TP (𝑟)). We define Opt =

argminP cost(P) as the optimal policy for sequentially packing items 𝑋1, . . . , 𝑋𝑛. This policy might not
exist in cases where the number of states is uncountable, for example, when 𝑋1, . . . , 𝑋𝑛 have continuous
distributions. In this case, the policy tree has uncountably many edges emanating from nodes, corresponding
to all possible realizations of 𝑋𝑖 . Nevertheless, a Y-optimal policy is guaranteed to exist, i.e. a policy P that
ensures cost(P) ≤ infP cost(P) + Y. We abuse notation by calling Opt the optimal policy (or an arbitrarily
good approximation if it does not exist).
Note that we defined only deterministic policies, since the action P(s) is deterministic. If P(s) were a
probability distribution over [𝑛], then we would have a randomized policy. A standard result from Markov
decision processes theory ensures that any randomized policy has a deterministic counterpart incurring the
same cost; hence, we only focus on deterministic policies. For more details see [46, 47].
The following proposition characterizes the expected number of bins overflowed by a policy. The proof
appears in Appendix A.

Proposition 3.1. Let 𝑋1, . . . , 𝑋𝑛 be nonnegative independent random variables, and let P be any policy that
sequentially packs these items. The expected number of bins broken by the policy P is

E[𝑂P] =
𝑛∑︁
𝑗=1

E
𝑋1,...,𝑋𝑛

[
𝑛∑︁
𝑖=1

P𝑋𝑖
(𝑋𝑖 + 𝑆𝑖−1

𝑗 > 1)1P
{𝑖→ 𝑗 }

]
,
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where 𝑆𝑖−1
𝑗

is the usage of bin 𝑗 at the beginning of iteration 𝑖 and 1P
{𝑖→ 𝑗 } is the indicator random variable

of the event in which P packs item 𝑋𝑖 into bin 𝑗 .

If we interpret P𝑋𝑖
(𝑋𝑖 + 𝑆𝑖−1

𝑗
> 1) as the risk that 𝑋𝑖 overflows bin 𝑗 if packed there, the result says that

the number of overflowed bins is the expected aggregation of these risks. We define the risk of a bin 𝑗 as
Risk(𝐵 𝑗) =

∑𝑛
𝑖=1 P𝑋𝑖

(𝑋𝑖 +𝑆𝑖−1
𝑗

> 1)1{𝑖→ 𝑗 }. Then E[𝑂P] =
∑𝑛

𝑗=1 E[Risk(𝐵 𝑗)]. A policy P is risk-budgeted
or simply budgeted with risk budget 𝑟 > 0 if no bin incurs a risk larger than 𝑟 , Risk(𝐵 𝑗) ≤ 𝑟 for 𝑗 ∈ [𝑛].
A deterministic online algorithm induces a policy, with non-reachable states simply mapped to ∅. Since
online algorithms are not aware of the number of items 𝑛, we label the 𝑗-th bin opened by an online algorithm
as 𝐵 𝑗 in this case. The cost of an online algorithm is naturally defined as the cost of the corresponding
induced policy.
We use the notation 𝑧(𝐵) =

∑
𝑖∈𝐵 𝑧𝑖 for a vector 𝑧 = (𝑧1, . . . , 𝑧𝑛). If 𝑋 = (𝑋1, . . . , 𝑋𝑛) is the vector of

random variables and 𝐵 = 𝐵 𝑗 , then 𝑋 (𝐵) = 𝑆𝑛
𝑗

is the usage of bin 𝐵 𝑗 . The following propositions are
probabilistic analogues of the well-known size lower bound for deterministic bin packing. We use them in
Sections 5 and 6. The proofs are deferred to Appendix A.

Proposition 3.2. For any sequence of nonnegative i.i.d. random variables 𝑋1, . . . , 𝑋𝑛, for any bin 𝐵 = 𝐵 𝑗

and any policy P, we have

E
[∑︁
𝑖∈𝐵

E[𝑋𝑖 ∧ 1]
]
= E

[∑︁
𝑖∈𝐵

(𝑋𝑖 ∧ 1)
]
≤ 2 P(P opens bin 𝐵),

where 𝑋𝑖 ∧ 1 = min{𝑋𝑖 , 1}.

When all items sizes are aggregated, we can improve the factor of 2 as follows.

Proposition 3.3. For any sequence of nonnegative i.i.d. random variables 𝑋1, . . . , 𝑋𝑛, for any policy, we
have

E
[

𝑛∑︁
𝑖=1

(𝑋𝑖 ∧ 1)
]
≤ cost(P).

3.2 The Budgeted Algorithm

In the Budgeted Greedy algorithm, we keep a risk budget for each bin that is initialized as 𝛾/𝐶, where 𝛾 ≥ 1
is an algorithm parameter. We pack items in a bin as long as the usage of the bin is at most 1 and its risk
budget has not run out. More formally, when opening a bin, say bin 𝑗 at round 𝑖, we initialize its risk of
overflow at 𝑟 𝑖−1

𝑗
= 0. At round 𝑖, when item 𝑋𝑖 arrives, we find a bin 𝑗 such that 𝑟 𝑖−1

𝑗
+ 𝑝𝑖 (𝑆𝑖−1

𝑗
) ≤ 𝛾/𝐶,

where 𝑟 𝑖−1
𝑗

is the accumulated risk of overflowing the bin until 𝑖 − 1, 𝑆𝑖−1
𝑗

is the usage of the bin 𝑗 until
the previous round and 𝑝𝑖 (𝑆𝑖−1

𝑗
) = P𝑋𝑖

(𝑋𝑖 + 𝑆𝑖−1
𝑗

> 1) is the risk that 𝑋𝑖 overflows bin 𝑗 . If that bin 𝑗

exists, we pack the incoming item into bin 𝑗 , breaking ties arbitrarily, and we update the risk of overflow as
𝑟 𝑖
𝑗
= 𝑟 𝑖−1

𝑗
+ 𝑝𝑖 (𝑆𝑖−1

𝑗
) and 𝑟 𝑖

𝑗′ = 𝑟 𝑖−1
𝑗′ for any 𝑗 ′ ≠ 𝑗 . Such a bin may not exist, in which case we open a new

bin 𝑘 with 𝑟 𝑖
𝑘
= 𝑝𝑖 (0). Strictly speaking, Budgeted Greedy is not a budgeted policy with risk budget 𝛾/𝐶

unless all items satisfy P(𝑋𝑖 > 1) ≤ 𝛾/𝐶; items with P(𝑋𝑖 > 1) > 𝛾/𝐶 are packed into individual bins. In
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Algorithm 1, we formally present the description of Budgeted Greedy.
Algorithm 1: Budgeted-Greedy(𝛾, 𝑋1, . . . , 𝑋𝑛)
1 Initialize: 𝐼 = ∅.
2 for 𝑖 = 1 . . . , 𝑛 do
3 if ∃ 𝑗 ∈ 𝐼 such that 𝑟 𝑖−1

𝑗
+ 𝑝𝑖 (𝑆𝑖−1

𝑗
) ≤ 𝛾/𝐶 then

4 𝑆𝑖
𝑗
= 𝑆𝑖−1

𝑗
+ 𝑋𝑖 .

5 𝑟 𝑖
𝑗
= 𝑟 𝑖−1

𝑗
+ 𝑝𝑖 (𝑆𝑖−1

𝑗
).

6 else
7 Define 𝑟 𝑖

𝑗
= 𝑝𝑖 (0) for 𝑗 such that 𝑗 = inf{ 𝑗 ≥ 0 : 𝑗 ∉ 𝐼}.

8 𝑆𝑖
𝑗
= 𝑋𝑖 .

9 Update 𝐼 = 𝐼 ∪ { 𝑗}.
10 end
11 for 𝑗 ′ ≠ 𝑗 do
12 𝑆𝑖

𝑗′ = 𝑆𝑖−1
𝑗′ .

13 𝑟 𝑖
𝑗′ = 𝑟 𝑖−1

𝑗′ .
14 end
15 end

Lemma 3.4. Let 𝛾 ≥ 1 and assume that for all 𝑖, P(𝑋𝑖 > 1) ≤ 𝛾/𝐶. For any bin 𝑗 , Algorithm 1 guarantees

P(Alg breaks bin 𝑗) ≤ 𝛾

𝐶
P(Alg opens bin 𝑗).

Proof. Using Proposition 3.1,

P(Alg breaks bin 𝑗) = E
[(

𝑛∑︁
𝑖=1

P(𝑋𝑖 + 𝑆𝑖−1
𝑗 > 1)1Alg

{𝑡→ 𝑗 }

)
1{Alg opens bin 𝑗 }

]
= E

[
Risk(𝐵 𝑗)1{Alg opens bin 𝑗 }

]
≤ 𝛾

𝐶
P(Alg opens bin 𝑗),

since once the bin has been opened, its risk never goes beyond 𝛾/𝐶. �
As a result, we have the following corollary, which implies that we only need to bound the expected number
of bins opened by Budgeted Greedy in our analysis.

Corollary 3.5. Under the same assumptions as Lemma 3.4, cost(Alg) ≤ (1 + 𝛾) E[𝑁Alg].

4 A Policy-Tree Analysis for I.I.D. Random Variables

In this section we prove Theorem 1.1 for general input distributions in Theorem 4.1. We use this result to
prove Theorem 1.2, which gives the Budgeted Greedy guarantee for the i.i.d. case. Theorem 4.1 states that
any policy can be converted into a budgeted version, where a risk budget is never surpassed for any bin.
This transformation can be carried out while only incurring a small multiplicative loss. The proof relies on
a charging scheme in the cost paid by overflowing bins. Starting with the original policy tree, we increase
the cost paid by overflowing bins by an amount 𝛿 > 0. The overall cost of the tree increases multiplicatively
by at most (1 + 𝛿/𝐶). We show that this additional 𝛿 allows us to pay for new bins whenever the risk of the
bin goes beyond 𝛾/𝐶, for an appropriate choice of 𝛿 and 𝛾.

Theorem 4.1. Let 𝑋1, . . . , 𝑋𝑛 be an arbitrary sequence of independent, nonnegative random variables that
are not necessarily identical. Fix 𝛾 > 0. For any policy P that sequentially packs items 𝑋1, . . . , 𝑋𝑛, there
exists a policy P ′ for the same items such that:
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• P ′ packs items with P(𝑋𝑖 > 1) > 𝛾/𝐶 into individual bins, and bins not containing these items never
exceed the risk budget 𝛾/𝐶.

• P ′ satisfies cost(P ′) ≤ (1 + 2/𝛾) cost(P).

In particular, if all items satisfy P(𝑋𝑖 > 1) ≤ 𝛾/𝐶, P ′ is a risk-budgeted policy with risk budget 𝛾/𝐶.

Proof. The proof follows two phases. In the first and longest phase, we show that we can modify the policy
P in such a way that the risk of each bin exceeds 𝛾/𝐶 at most once. In the second phase, we show that the
item surpassing the risk budget in each bin can be packed into an individual bin. At the end, no item with
P(𝑋𝑖 > 1) ≤ 𝛾/𝐶 can exceed the risk 𝛾/𝐶.
In the rest of the proof we utilize the tree representation of the policy. Let 𝛿 = 𝐶/𝛾 > 0. We proceed as
follows:

1. In the cost labeled tree TP , increase the cost of overflowing the bins from 𝐶 to 𝐶 + 2𝛿. That is,
�̂� (𝑢,𝑣) = 𝐶 + 2𝛿 if 𝑐 (𝑢,𝑣) = 𝐶 and 0 otherwise for any arc (𝑢, 𝑣) in TP . Then,

costℓ,�̂� (TP (𝑟)) ≤
(
1 + 2

𝛿

𝐶

)
costℓ,𝑐 (TP (𝑟)) =

(
1 + 2

𝛿

𝐶

)
cost(P).

2. Starting at the root of this new cost-labeled tree, find a node 𝑢 at level 𝑖 = 1, . . . , 𝑛 where the policy P
decides to open a new bin, say bin 𝑗 . In each of the branches starting at node 𝑢 and directed to some
leaf, find the sequence of nodes 𝑢1 = 𝑢, 𝑢2, . . . , 𝑢𝑘 where the policy packs items into bin 𝑗 and node 𝑢𝑘
corresponds to the first node in the branch where the risk budget 𝛾/𝐶 is surpassed for bin 𝑗 . Define 𝑢𝑘 as
a leaf if in the branch the risk budget is not surpassed for bin 𝑗 . Let 𝑖1 = 𝑖, 𝑖2, . . . , 𝑖𝑘 be the items packed
into bin 𝑗 in this branch; that is, node 𝑢ℓ is at level 𝑖ℓ . Then, we have

𝑘−1∑︁
𝑚=1

P𝑋𝑖𝑚
(𝑋𝑖𝑚 + 𝑆

𝑖𝑚−1
𝑗

> 1) ≤ 𝛾

𝐶
, and

𝑘∑︁
𝑚=1

P𝑋𝑖𝑚
(𝑋𝑖𝑚 + 𝑆

𝑖𝑚−1
𝑗

> 1) > 𝛾

𝐶

if node 𝑢𝑘 is not a leaf. Here 𝑆
𝑖𝑚−1
𝑗

represents the usage of bin 𝑗 at node 𝑖𝑚.
Consider the following modifications to the cost-labeled tree TP : We start with the same tree as P but in
the subtree rooted at 𝑢, bin 𝑗 is utilized only in nodes 𝑢1, . . . , 𝑢𝑘 for the different branches. Any future
utilization of bin 𝑗 after passing through node 𝑢𝑘 is moved to a new bin 𝑗 ′. Now, we update the cost labels
as follows. For all the branches, we reduce the cost of 𝐶 + 2𝛿 appearing in the arcs going out from nodes
𝑢1, . . . , 𝑢𝑘 to 𝐶 + 𝛿. We label the first node appearing after node 𝑢𝑘 where the bin 𝑗 ′ is opened with a 1.
We reduce the labels of arcs going out of nodes using bin 𝑗 ′ if they do not overflow the bin 𝑗 ′ anymore
(bin 𝑗 ′ has smaller usage than bin 𝑗). Formally, for any branch and nodes 𝑢1, . . . , 𝑢𝑘 defined as before,

𝑐′(𝑎,𝑏) =

{
𝐶+𝛿
𝐶+2𝛿 �̂� (𝑎,𝑏) 𝑎 = 𝑢𝑚 for some branch starting at 𝑢
�̂�𝑎,𝑏 otherwise

,

and for nodes,

ℓ′𝑎 =

{
1 𝑎 is the first node packed into bin 𝑗 ′ in the subtree TP (𝑢𝑘)
ℓ𝑎 otherwise

.

We denote this new policy by P ′. Figure 1 displays the modification process.
We now argue that the changes applied to the cost-labeled tree TP to transform it into TP′ do not increase
the cost function costℓ,�̂� (TP). Since we only modified labels in the subtree TP (𝑢) it is enough to study
the cost change in this specific subtree for bins 𝑗 and bin 𝑗 ′.
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TP 𝑟

0 0

𝐶 + 2𝛿 0

𝐶 + 2𝛿 0
𝐶 + 2𝛿 0

𝑣

𝑢1

𝑢2

𝑢𝑘

𝑎

ℓ𝑢1=1
𝑖1→ 𝑗

ℓ𝑢2=0
𝑖2→ 𝑗

ℓ𝑢𝑘 =0
𝑖𝑘→ 𝑗

ℓ𝑎=0
𝑖→ 𝑗

𝐶 + 2𝛿 0
𝑣

TP′
𝑟

0 0

𝐶 + 𝛿 0

𝐶 + 𝛿 0
𝐶 + 2𝛿 0

𝑣

𝑢1

𝑢2

𝑢𝑘

𝑎

ℓ′𝑢1=1
𝑖1→ 𝑗

ℓ′𝑢2=0
𝑖2→ 𝑗

ℓ′𝑢𝑘 =0
𝑖𝑘→ 𝑗

ℓ′𝑎=1
𝑖→ 𝑗′

𝐶 + 2𝛿 0
𝑣

Figure 1: Policy tree modification. On the left, we display the original tree with augmented cost from 𝐶 to
𝐶 + 2𝛿. On the right, we show the modified labels after opening a new bin in node 𝑢𝑘 . Observe that we only
decrease the costs of arcs related to bin 𝑗 going out of nodes 𝑢1, . . . , 𝑢𝑘 in all branches starting at node 𝑢.

Lemma 4.2. costℓ,�̂� (TP (𝑢)) ≥ costℓ′,𝑐′ (TP′ (𝑢)).

The proof of this lemma appears in Appendix A. With this result we have

costℓ,�̂� (TP (𝑟)) − costℓ′,𝑐′ (TP′ (𝑟)) = E
[
E

[
costℓ,�̂� (TP (𝑢)) − costℓ′,𝑐′ (TP′ (𝑢)) | Reach node 𝑢

] ]
≥ 0

3. Now, starting from policy P ′ and cost-labeled tree TP′ with labels ℓ′ in the nodes and 𝑐′ in the arcs, repeat
step 2 until every bin exceeds the risk budget 𝛾/𝐶 at most once.

With the previous method, we construct a policy, which we still call P ′ for simplicity, in addition to its policy
tree TP′ and labels ℓ′ and 𝑐′. This policy exceeds each bin’s risk budget at most once. Note that labels 𝑐′

take values in {0, 𝐶 + 𝛿, 𝐶 + 2𝛿}; we modify the label of arc (𝑎, 𝑏) to min{𝑐′(𝑎,𝑏) , 𝐶 + 𝛿} thus labels take
values only in {0, 𝐶 + 𝛿}. This does not increases the cost of the policy tree.
For the second phase, we further modify P ′: If the policy tries to exceed some bin’s risk budget, we open
a new bin for that item, unless there is only one item packed in the bin, in which case we move to modify
another bin. Using the notation of the first phase, this means that whenever the policy reaches node 𝑢𝑘 in
some branch starting at 𝑢, instead of packing the item in node 𝑢𝑘 into bin 𝑗 , it opens a new bin 𝑗 ′′ for it. We
call this new policy P ′′. We modify the cost labels accordingly to accommodate this new cost. We label all
nodes 𝑢𝑘 in the subtree TP′ (𝑢) that are not leaves (i.e. the risk goes beyond 𝛾/𝐶 at 𝑢𝑘) with +1 (the cost to
open a new bin). All arcs going out of paths 𝑢1, . . . , 𝑢𝑘 are relabeled from 𝐶 + 𝛿 to 𝐶. Formally, we define
the new labels

𝑐′′(𝑎,𝑏) =

{
𝐶

𝐶+𝛿 𝑐
′
(𝑎,𝑏) 𝑎 = 𝑢𝑚 for some branch starting at 𝑢

𝑐′(𝑎,𝑏) otherwise

and for nodes

ℓ′′𝑎 =

{
1 𝑎 = 𝑢𝑘 and 𝑎 is not a leaf
ℓ′𝑎 otherwise

.
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Using the same argument as in Lemma 4.2, we can show that

costℓ′′,𝑐′′ (TP′′ (𝑢)) ≤ cost𝑐′,ℓ′ (TP′ (𝑢)).

We repeat this procedure as many times as necessary, and we obtain a policy P ′′ that satisfies

cost(P ′′) ≤ cost(P ′) ≤
(
1 + 2

𝛿

𝐶

)
cost(P).

For ease of reading, we present the proof in an iterative manner; the proof’s steps can be followed to obtain
the result for finite and countably infinite policy trees. We now sketch how to generalize the proof for
uncountable policy trees, focusing on the first phase of the proof. We note that the proof of Lemma 4.2 is
general and does not require any iterative argument. Recursively,

costℓ,𝑐 (TP (𝑟)) = E
𝑋1,...,𝑋𝑖−1

[
𝑖−1∑︁
𝑘=1

ℓ𝑈𝑘
+

𝑖−1∑︁
𝑘=1

𝑐 (𝑈𝑘 ,𝑈𝑘+1) + costℓ,𝑐 (TP (𝑈𝑖))
]

for any 𝑖 = 1, . . . , 𝑛, where 𝑈𝑖 is the (random) node at level 𝑖. Starting at the root, we apply Lemma 4.2 to
all nodes at level 𝑖 where a bin is opened. Therefore, we have

costℓ,�̂� (TP (𝑢)) ≥ costℓ′,𝑐′ (TP′ (𝑢))

for all nodes 𝑢 at level 𝑖. Using the previous equation,

costℓ,�̂� (TP (𝑟)) − costℓ′,𝑐′ (TP (𝑟)) = E
𝑋1,...,𝑋𝑖−1

[
costℓ,�̂� (TP (𝑈𝑖)) − costℓ′,𝑐′ (TP′ (𝑈𝑖))

]
≥ 0.

Doing this for all levels 𝑖 = 1, . . . , 𝑛, we conclude the first phase of the proof. The second phase is completely
analogous and omitted for brevity. �
Theorem 4.1 is a general result that does not depend on item size distributions. In the following, we use it
to analyze the performance of Budgeted Greedy.

I.I.D. Input When the input is an i.i.d. sequence of nonnegative random variables, Budgeted Greedy
induces a policy tree that packs one bin at a time: When a bin is opened, the policy never again uses
previously opened bins. This simple fact is crucial in the proof of our next result. The next lemma shows that
among all budgeted policies, Budgeted Greedy opens the minimum expected number of bins when the input
is an i.i.d. sequence of random variables. Intuitively, if we ignore the penalty paid by overflowing bins and
all items are i.i.d., the optimal way to minimize the expected number of opened bins is by packing as many
items as possible in each bin, as long as the risk budget is satisfied. This can of course be done sequentially,
one bin at a time, which is what Budgeted Greedy does.

Lemma 4.3. Suppose 𝑋1, . . . , 𝑋𝑛 are nonnegative i.i.d. random variables. Then,

E[𝑁Alg] = min
P budgeted with
risk budget 𝛾/𝐶

E[𝑁P] .

That is, among all risk-budgeted policies with budget 𝛾/𝐶, Budgeted Greedy (Algorithm 1) opens the
minimum expected number of bins.

Proof. Consider any policy P for packing items such that the risk budget of each bin 𝛾/𝐶 is never surpassed.
Consider its tree representation TP . We modify the policy tree so only one bin is utilized at a time. For
this, we exhibit a sequence of operations ensuring that, whenever bin 𝑗 is opened, bins 1, . . . , 𝑗 − 1 are never
utilized again. In the tree, this is equivalent to saying that any branch starting from the root directed to any
leaf has labels 1 → 𝑗1, 2 → 𝑗2, . . . , 𝑛 → 𝑗𝑛 where 1 = 𝑗1 ≤ 𝑗2 ≤ · · · ≤ 𝑗𝑛, where we recall that 𝑖 → 𝑗

means the policy packs item 𝑖 into bin 𝑗 .
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Claim 1. Let 𝑗 = 1, . . . , 𝑛 be any bin opened by the policy. Suppose that node 𝑢 in level 𝑘 is labeled 𝑘 → 𝑗 ′,
where 𝑗 ′ ≠ 𝑗 . Furthermore, suppose that at node 𝑢, bin 𝑗 is open, its usage does not exceed 1, and its risk
budget can accommodate 𝑘 . Then 𝑢 can be relabeled 𝑘 → 𝑗 without increasing the expected number of bins
opened by the policy.

Before proving this claim, we show how to use it to conclude the result. Starting at the root 𝑟 of the
policy tree TP , find the closest node 𝑢 to the root where we have the label 𝑘 → 𝑗 , 𝑗 ≠ 1, but the usage
of bin 1 is no more than 1 and its risk budget can accommodate 𝑘 . Use the claim to relabel this node
𝑘 → 1 without increasing the expected number of open bins. Repeat this process until there are no nodes
𝑢 in this category. After this process has been finished, all branches starting at the root have the form
1 → 1, 2 → 1, . . . , 𝑖 → 1, 𝑖 + 1 → 2, . . . and from 𝑖 + 1 onward, bin 1 is overflowed or does not have enough
risk budget to receive any additional item. We repeat this process with bin 2, 3, . . .. After this process has
been carried out, the resulting policy is the one induced by Budgeted Greedy.
We prove the claim by backward induction on the level of node 𝑢 in the policy tree. Fix an opened bin
𝑗 = 1, . . . , 𝑛 and pick any node 𝑢 at level 𝑛 with label 𝑛 → 𝑗 ′, 𝑗 ′ ≠ 𝑗 , and suppose bin 𝑗 is open and satisfies
the hypothesis – its usage is one or less, and it has enough risk budget to receive item 𝑋𝑛. Re-labeling this
node 𝑛 → 𝑗 does not worsen the number of bins opened since the cost of bin 𝑗 has already been paid at some
previous node. Recall that we are only taking into account the cost paid by opening bins and not the cost of
breaking bins.
Suppose the result holds for all levels 𝑘 + 1, 𝑘 + 2, . . . , 𝑛. Pick a node 𝑢 at level 𝑘 with label 𝑘 → 𝑗 ′, 𝑗 ′ ≠ 𝑗 ,
and such that bin 𝑗 is open and satisfies the hypothesis. If all its children are labeled 𝑘 +1 → 𝑗 then relabel all
its children with 𝑘 + 1 → 𝑗 ′ and relabel 𝑢 with 𝑘 → 𝑗 . The cost remains the same after this operation since
the distribution of 𝑋𝑘 is the same as 𝑋𝑘+1. Now, suppose that some child of 𝑢, say 𝑣, is labeled 𝑘 → 𝑚 with
𝑚 ≠ 𝑗 . Since at node 𝑢 bin 𝑗 still has usage not exceeding one and sufficient risk budget left, at node 𝑣 bin
𝑗 still satisfies this condition. Therefore, by induction, we can relabel 𝑣 with 𝑘 + 1 → 𝑗 without increasing
the cost. We can repeat this for any children of 𝑢 until all of its children have been labeled 𝑘 + 1 → 𝑗 . We
conclude by swapping the label of 𝑢 with the label of its children as in the previous case. �

Theorem 4.4. For 𝛾 =
√

2 and i.i.d. nonnegative random variables 𝑋1, . . . , 𝑋𝑛, we have

cost(Alg) ≤ (3 + 2
√

2) cost(Opt).

Proof. If P(𝑋1 > 1) >
√

2/𝐶, cost(Alg) = 𝑛(1+𝐶 P(𝑋1 > 1)). On the other hand, cost(Opt) ≥ 𝑛𝐶 P(𝑋1 >

1) since each item incurs at least this expected cost. Therefore, cost(Alg) ≤ 2 cost(Opt).
Now assume P(𝑋1 > 1) ≤

√
2/𝐶. Using Theorem 4.1 and Lemma 4.3, we have

cost(Alg) ≤ (1 + 𝛾) E[𝑁P] ≤ (1 + 𝛾) cost(Opt∗) ≤ (1 + 𝛾)
(
1 + 2

𝛾

)
cost(Opt),

where Opt∗ is the budgeted version of Opt. The expression (1 + 𝛾) (1 + 2/𝛾) is minimized at 𝛾 =
√

2, which
gives the desired result. �

5 Exponential Random Variables

In this section, we show that Budgeted Greedy incurs an expected cost at most O(log𝐶) times the optimal
expected cost when the item sizes are exponentially distributed. That is, for any 𝑋𝑖 in the input sequence,

P(𝑋𝑖 > 𝑥) = 𝑒−_𝑖 𝑥 , (1)

for any 𝑥 ≥ 0, where _𝑖 > 0 is the rate. Recall that E[𝑋𝑖] = 1/_𝑖 .
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The proof is divided into two parts: First, similarly to deterministic bin packing, we show that E
[∑𝑛

𝑖=1 min{𝑋𝑖 , 1}
]

is a lower bound for cost(P), for any policy P. In the next step, we show that the probability that Algorithm 1
opens bin 𝑘 ≥ 2 is related to the amount of mass packed into bin 𝑘 − 1. Roughly speaking, we show that the
probability that Algorithm 1 opens bin 𝑘 ≥ 2 is at most O(log𝐶) times the expected mass packed into bin
𝑘 − 1. Moreover, in Subsection 5.2 we show that, when the rates governing the item sizes are sufficiently
large, _𝑖 ≥ 2 log𝐶, the amount of mass packed into bin 𝑘 − 1 is at least a constant, thereby improving
the algorithm’s approximation factor to a constant. Finally, we show that our analysis of Algorithm 1 for
exponential random variables is almost tight by exhibiting an input sequence that forces Budgeted Greedy to
incur a cost Ω(

√︁
log𝐶) times the optimal cost.

5.1 Arbitrary Exponential Random Variables

Here we show that cost(Alg) ≤ O(log𝐶) cost(Opt) when the input is an arbitrary sequence of exponential
random variables. Using Proposition 3.1, we can assume P(𝑋𝑖 > 1) ≤ 1/𝐶 for all 𝑖 = 1, . . . , 𝑛 at the expense
of an extra multiplicative loss of 2 in the cost incurred. This assumption translates into _𝑖 ≥ log𝐶 for all 𝑖.
The next result shows that the probability that Algorithm 1 opens a bin, besides the first bin, is related to the
amount of mass packed in the previous bin.

Proposition 5.1. Suppose 𝛾 = 2. Then, for any 𝑘 ≥ 2, Budgeted Greedy guarantees

P(Alg opens bin 𝐵𝑘) ≤ 5 log𝐶 E
[ ∑︁
𝑖∈𝐵𝑘−1

𝑋𝑖 ∧ 1

]
+

(
1
3
+ 8

√
5
√︂

log𝐶
𝐶

)
P(Alg opens bin 𝐵𝑘−1).

Proof. Since the item sizes are continuous random variables, we have P(Alg opens bin 𝐵𝑘) = P(𝑋 (𝐵𝑘) >
0). Now, we have

P(Alg opens bin 𝐵𝑘) ≤ P
(
𝑋 (𝐵𝑘−1) >

1
5 log𝐶

)
+ P

(
𝑋 (𝐵𝑘−1) ≤

1
5 log𝐶

, 𝑋 (𝐵𝑘) > 0
)
.

We bound each term separately. To bound the first term we use Markov’s inequality:

P
(
𝑋 (𝐵𝑘−1) >

1
5 log𝐶

)
= P

(
𝑋 (𝐵𝑘−1) ∧ 1 >

1
5 log𝐶

)
≤ 5 log𝐶 E[𝑋 (𝐵𝑘−1) ∧ 1] .

For the second term, we proceed as follows. Let 𝐸 be the event “all items packed in 𝐵𝑘−1 have rate
_𝑖 ≥ 2 log𝐶.” Then

P
(
𝑋 (𝐵𝑘−1) ≤

1
5 log𝐶

, 𝑋 (𝐵𝑘) > 0
)
≤ P

(
𝑋 (𝐵𝑘−1) ≤

1
5 log𝐶

, 𝑋 (𝐵𝑘) > 0, 𝐸
)

+ P
(
𝑋 (𝐵𝑘−1) ≤

1
5 log𝐶

| 𝐸
)

P(𝑋 (𝐵𝑘−1) > 0),

since 𝐸 , the event that some item in 𝐵𝑘−1 has rate ≤ 2 log𝐶, is contained in the event “Algorithm 1 opens
bin 𝐵𝑘−1.”

Claim 2. P
(
𝑋 (𝐵𝑘−1) ≤ 1

5 log𝐶 | 𝐸
)
≤ 1 − 𝑒−2/5 ≤ 1/3.

Proof. If 𝑋𝑖1 , . . . , 𝑋𝑖𝑚 are all the large items with rates _𝑖𝑝 ≤ 2 log𝐶, then, the events

𝑀𝑝 = {𝑋𝑖𝑝 is the first large item packed into 𝐵𝑘−1}
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satisfy 𝐸 =
⋃𝑚

𝑝=1 𝑀𝑝. Then,

P
(
𝑋 (𝐵𝑘−1) ≤

1
5 log𝐶

| 𝐸
)
=

𝑚∑︁
𝑝=1

P
(
𝑋 (𝐵𝑘−1) ≤

1
5 log𝐶

| 𝐸, 𝑀𝑝

)
P(𝑀𝑝 | 𝐸)

≤
𝑚∑︁
𝑝=1

P
(
𝑋𝑖𝑝 ≤ 1

5 log𝐶

)
P(𝑀𝑝 | 𝐸)

=

𝑚∑︁
𝑝=1

(1 − 𝑒−_𝑖𝑝 /5 log𝐶) P(𝑀𝑝 | 𝐸) (Using (1))

≤ (1 − 𝑒−2/5)
𝑚∑︁
𝑝=1

P(𝑀𝑝 | 𝐸). (Using _𝑖𝑝 ≥ 2 log𝐶)

The proof follows because the events 𝑀𝑝 are disjoint and form 𝐸 . �

Claim 3. P
(
𝑋 (𝐵𝑘−1) ≤ 1

5 log𝐶 , 𝑋 (𝐵𝑘) > 0, 𝐸
)
≤ 20

√︃
log𝐶
𝐶

P(𝑋 (𝐵𝑘−1) > 0).

Proof. In this case, bin 𝐵𝑘 has been opened even though 𝐵𝑘−1 still has available space. That means that the
element that opens bin 𝐵𝑘 surpasses the budget of 𝐵𝑘−1. From here we obtain,

2
𝐶

< Risk(𝐵𝑘−1) + P(𝑋𝑡 > 1 − 𝑋 (𝐵𝑘−1)) ≤ Risk(𝐵𝑘−1) +
𝑒1/5

𝐶
,

where 𝑋𝑡 is the first item packed into 𝐵𝑘 and we use _𝑡 ≥ log𝐶 and (1), thus P(𝑋𝑡 > 1−𝑋 (𝐵𝑘−1)) ≤ 𝑒1/5/𝐶.
Let 𝐹𝛽 be the event {∑𝑖∈𝐵𝑘−1 E[𝑋𝑖] > 𝛽}; by Markov’s inequality,

P(𝐹𝛽) ≤
1
𝛽

E
[ ∑︁
𝑖∈𝐵𝑘−1

E[𝑋𝑖]
]

≤ 𝐶

𝐶 − 1
1
𝛽

E
[ ∑︁
𝑖∈𝐵𝑘−1

E[𝑋𝑖 ∧ 1]
]

(E[𝑋𝑖 ∧ 1] = (1 − 𝑒−_𝑖 ) E[𝑋𝑖])

≤ 2
𝐶

𝐶 − 1
1
𝛽

P(𝑋 (𝐵𝑘−1) > 0). (Proposition 3.2)

Thus,

P
(
𝑋 (𝐵𝑘−1) ≤

1
5 log𝐶

, 𝑋 (𝐵𝑘) > 0, 𝐸
)
≤ P

(
𝑋 (𝐵𝑘−1) ≤

1
5 log𝐶

,Risk(𝐵𝑘−1) >
2 − 𝑒1/5

𝐶
, 𝐸

)
≤ 2𝐶
𝛽(𝐶 − 1) P(𝑋 (𝐵𝑘−1) > 0)

+ P
(
𝑋 (𝐵𝑘−1) ≤

1
5 log𝐶

,Risk(𝐵𝑘−1) >
2 − 𝑒1/5

𝐶
, 𝐹𝛽 , 𝐸

)
≤ 2𝐶
𝛽(𝐶 − 1) P(𝑋 (𝐵𝑘−1) > 0)

+ 𝐶

2 − 𝑒1/5 E
[
Risk(𝐵𝑘−1) | 𝑋 (𝐵𝑘−1) ≤

1
5 log𝐶

, 𝐸, 𝐹𝛽

]
.

Claim 4. E
[
Risk(𝐵𝑘−1) | 𝑋 (𝐵𝑘−1) ≤ 1

5 log𝐶 , 𝐸, 𝐹𝛽

]
≤ 10𝛽 log𝐶

𝐶2 P(𝑋 (𝐵𝑘−1) > 0).
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Proof. Given 𝑋 (𝐵𝑘−1) ≤ 1
5 log𝐶 , the event 𝐸 , the event 𝐹𝛽 and the event 𝑋 (𝐵𝑘−1) > 0, the value

Risk(𝐵𝑘−1) =
∑𝑛

𝑖=1 P(𝑋𝑖 + 𝑆𝑖−1
𝑘−1 > 1)1Alg

{𝑖→𝑘−1} ≤
∑𝑛

𝑖=1 𝑒
−_𝑖 (1−1/5 log𝐶)1Alg

{𝑖→𝑘−1} can be upper bounded by the
non-convex problem:

max
𝑥1,...,𝑥𝑛

{
𝑛∑︁
𝑖=1

𝑒−𝑥𝑖 (1−1/5 log𝐶) :
𝑛∑︁
𝑖=1

1/𝑥𝑖 ≤ 𝛽, 𝑥𝑖 ≥ 2 log𝐶,∀𝑖 = 1, . . . , 𝑛

}
≤ 10𝛽

log𝐶
𝐶2 .

The inequality follows because the maximum of a convex function is attained in the boundary of the feasible
set. Indeed, the maximum is attained by setting the maximum variables to the bound 2 log𝐶—which are at
most 2𝛽 log𝐶—and the rest of the variables to +∞. �
Therefore, by upper bounding 10

2−𝑒1/5 by 20 and 𝐶
𝐶−1 ≤ 2, we obtain

P
(
𝑋 (𝐵𝑘−1) ≤

1
5 log𝐶

, 𝑋 (𝐵𝑘) > 0, 𝐸
)
≤

(
4
𝛽
+ 20𝛽

log𝐶
𝐶

)
P(𝑋 (𝐵𝑘−1) > 0).

The right-hand side is minimized at 𝛽 =

√︃
𝐶

5 log𝐶 . �

Putting Claims 2 and 3 together we obtain

P(𝑋 (𝐵𝑘) > 0) ≤ 5 log𝐶 E
[ ∑︁
𝑖∈𝐵𝑘−1

𝑋𝑖 ∧ 1

]
+

(
1
3
+ 8

√
5
√︂

log𝐶
𝐶

)
P(𝑋 (𝐵𝑘−1) > 0). �

Proposition 5.2. Let 𝑋1, . . . , 𝑋𝑛 be arbitrary exponential random variables with _𝑖 ≥ log𝐶. Algorithm 1
with 𝛾 = 2 guarantees

cost(Alg) ≤ 15 log𝐶
2
3 − 8

√
5
√︃

log𝐶
𝐶

cost(Opt) + 3
2
3 − 8

√
5
√︃

log𝐶
𝐶

,

where Opt is the optimal policy that knows 𝑛 and the rates of all the sizes 𝑋1, . . . , 𝑋𝑛 in advance.

Proof. Using Proposition 5.1 we obtain

E[𝑁Alg] = 1 +
∑︁
𝑘≥2

P(𝑋 (𝐵𝑘 > 0))

≤ 1 + 5 log𝐶
∑︁
𝑘≥2

E


∑︁
𝑖∈𝐵Alg

𝑘−1

𝑋𝑖 ∧ 1
 +

(
1
3
+ 8

√
5
√︂

log𝐶
𝐶

) ∑︁
𝑘≥2

P(𝑋 (𝐵𝑘−1) > 0)

≤ 1 + 5 log𝐶
∑︁
𝑘≥1

E


∑︁
𝑖∈𝐵Alg

𝑘

𝑋𝑖 ∧ 1
 +

(
1
3
+ 8

√
5
√︂

log𝐶
𝐶

)
E[𝑁Alg]

= 1 + 5 log𝐶 E
[∑︁

𝑖

𝑋𝑖 ∧ 1

]
+

(
1
3
+ 8

√
5
√︂

log𝐶
𝐶

)
E[𝑁Alg] .

For any policy P we have E
[∑𝑛

𝑖=1 𝑋𝑖 ∧ 1
]
≤ cost(P), using Proposition 3.3. Then,

E[𝑁Alg] ≤
5 log𝐶

2
3 − 8

√
5
√︃

log𝐶
𝐶

E[𝑁P] +
1

2
3 − 8

√
5
√︃

log𝐶
𝐶

The conclusion follows from here using cost(Alg) ≤ 3 E[𝑁Alg] (Corollary 3.5). �
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5.2 Small Exponential Random Variables

We next show that cost(Alg) ≤ O(1) cost(Opt) whenever the item sizes are independent exponential random
variables with rates satisfying _𝑖 ≥ 2 log𝐶. In this case, E [∑𝑖 𝑋𝑖 ∧ 1] is a better approximation for E[𝑁Alg]
than in the general case. The following results shows that we can improve Proposition 5.1 by a logarithmic
factor.

Proposition 5.3. Let 𝛾 = 1. For 𝑘 ≥ 2,

P(Alg opens bin 𝑘) ≤ 4 E
[ ∑︁
𝑖∈𝐵𝑘−1

𝑋𝑖 ∧ 1

]
+ 8

√︁
log𝐶
𝐶1/4 P(Alg opens bin 𝑘 − 1).

Proof. We have

P(Alg opens bin 𝐵𝑘+1) = P(𝑋 (𝐵𝑘+1) > 0)
≤ P(𝑋 (𝐵𝑘) > 1/4) + P(𝑋 (𝐵𝑘+1) > 0, 𝑋 (𝐵𝑘) ≤ 1/4)
≤ P(𝑋 (𝐵𝑘) ∧ 1 > 1/4) + P(𝑋 (𝐵𝑘+1) > 0, 𝑋 (𝐵𝑘) ≤ 1/4)
≤ 4 E [𝑋 (𝐵𝑘) ∧ 1] + P(𝑋 (𝐵𝑘+1) > 0, 𝑋 (𝐵𝑘) ≤ 1/4).

We only focus on bounding the second term in the rest of the proof. Algorithm 1 opens bin 𝐵𝑘+1 (𝑋 (𝐵𝑘+1) > 0)
if there are no available bins (∀𝑖 ≤ 𝑘 , 𝑋 (𝐵𝑖) ≥ 1) or there is an item that does not fit because of the budget.
The first case cannot happen when the event 𝑋 (𝐵𝑘) ≤ 1/4 happens so we are only left with the budget case.
In particular, for bin 𝑘 , we open bin 𝐵𝑘+1 because for some item 𝑋𝑡 we have

1
𝐶

< Risk(𝐵𝑘) + P(𝑋𝑡 + 𝑋 (𝐵𝑘) > 1) ≤ Risk(𝐵𝑘) + P(𝑋𝑡 > 3/4) ≤ Risk(𝐵𝑘) +
1

𝐶3/2

where we used the information from the event 𝑋 (𝐵𝑘+1) ≤ 1/4. Therefore,

P(𝑋 (𝐵𝑘+1) > 0, 𝑋 (𝐵𝑘) ≤ 1/4) ≤ P(Risk(𝐵𝑘) > 1/𝐶 − 1/𝐶3/2, 0 < 𝑋 (𝐵𝑘) < 1/4)

≤ 𝐶3/2

𝐶1/2 − 1
E[Risk(𝐵𝑘) | 𝑋 (𝐵𝑘) < 1/4, 𝑋 (𝐵𝑘) > 0] P(𝑋 (𝐵𝑘) > 0).

Now, as in the previous proof, let 𝐹𝛽 =
{∑

𝑖∈𝐵𝑘
E[𝑋𝑖] > 𝛽

}
; by Markov’s inequality and Proposition 3.2,

P
(
𝐹𝛽

)
≤ 2𝐶2

𝛽(𝐶2 − 1)
P(𝑋 (𝐵𝑘) > 0).

Claim 5. E[Risk(𝐵𝑘)1{𝑋 (𝐵𝑘 )<1/4} | 𝑋 (𝐵𝑘) < 1/4, 𝑋 (𝐵𝑘) > 0, 𝐹𝛽] ≤ 2𝛽 log𝐶
𝐶3/2 .

Proof. Given 𝑋 (𝐵𝑘) < 1/4, 𝑋 (𝐵𝑘) > 0, 𝐹𝛽 , the risk

Risk(𝐵𝑘) =
𝑛∑︁
𝑖=1

P(𝑋𝑖 + 𝑆𝑖−1
𝑘 > 1)1{𝑖→𝑘 } ≤

𝑛∑︁
𝑖=1

𝑒−_𝑖 ·
3
4 1{𝑖→𝑘 }

is bounded by the non-convex problem,

max
𝑥1,...,𝑥𝑛

{
𝑛∑︁
𝑖=1

𝑒−𝑥𝑖
3
4 :

𝑛∑︁
𝑖=1

1
𝑥𝑖

≤ 𝛽, 𝑥𝑖 ≥ 2 log𝐶,∀𝑖 = 1, . . . , 𝑛

}
≤ 2𝛽 log𝐶

𝐶3/2 ,

which we bound as before. �
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With this claim,

E[Risk(𝐵𝑘) | 𝑋 (𝐵𝑘) < 1/4, 𝑋 (𝐵𝑘) > 0] ≤ 1
𝐶

P(𝐹𝛽) +
2𝛽 log𝐶
𝐶3/2 P(𝐹𝛽)

≤ 2𝐶
𝛽(𝐶2 − 1)

+ 2𝛽 log𝐶
𝐶3/2 ,

since Risk(𝐵𝑘) ≤ 1/𝐶. Thus,

P(𝑋 (𝐵𝑘+1) > 0, 𝑋 (𝐵𝑘) ≤ 1/4) ≤ 𝐶3/2

𝐶1/2 − 1

(
2𝐶

𝛽(𝐶2 − 1)
+ 2𝛽 log𝐶

𝐶3/2

)
P(𝑋 (𝐵𝑘) > 0).

Now, optimizing over 𝛽 with 𝛽 = 𝐶5/4
√
𝐶2−1

√
log𝐶

we obtain

P(𝑋 (𝐵𝑘+1) > 0, 𝑋 (𝐵𝑘) ≤ 1/4) ≤ 8
√︁

log𝐶
𝐶1/4 P(𝑋 (𝐵𝑘) > 0). �

Proposition 5.4. Suppose _𝑖 ≥ 2 log𝐶 for all 𝑖 = 1, . . . , 𝑛. For 𝛾 = 1, Algorithm 1 guarantees

cost(Alg) ≤ 8

1 − 8
√

log𝐶
𝐶1/4

cost(Opt) + 2

1 − 8
√

log𝐶
𝐶1/4

,

where Opt is the optimal policy that knows 𝑛 and all item size rates in advance.

Proof. Using Proposition 5.3 we have

E[𝑁Alg] =
𝑛∑︁

𝑘=1
P(Alg opens bin 𝑘)

≤ 1 +
𝑛∑︁

𝑘=2
4 E

[ ∑︁
𝑖∈𝐵𝑘−1

𝑋𝑖 ∧ 1

]
+ 8

√︁
log𝐶
𝐶1/4 P(Alg opens bin 𝑘 − 1)

≤ 1 + 4 E
[

𝑛∑︁
𝑖=1

𝑋𝑖 ∧ 1

]
+ 8

√︁
log𝐶
𝐶1/4 E[𝑁Alg] .

Using Proposition 3.3,

E[𝑁Alg] ≤
4

1 − 8
√

log𝐶
𝐶1/4

cost(P) + 1

1 − 8
√

log𝐶
𝐶1/4

for any policy P. The result follows by using cost(Alg) ≤ 2 E[𝑁Alg] and optimizing over P. �

5.3 A Lower Bound for the Algorithm with Exponential Random Variables

In this subsection, we present a hard input of exponential random variables for Budgeted Greedy. The
sequence contains two kind of independent exponential random variables, those with rates ` = 𝛽 log𝐶,
𝛽 ≥ 2 and those with rates _ = (1 + Y) log𝐶, with Y ∈ (0, 1). This sequence has 𝑛1 items with rate _ and
𝑛2 = 𝑘𝑛1 items with rate `, presented to Algorithm 1 as,

𝑋
`

1,1 · · · 𝑋
`

1,𝑘𝑋
_
1 𝑋

`

1,1 · · · 𝑋
`

2,𝑘𝑋
_
2 · · · 𝑋

`

𝑛1,1
· · · 𝑋`

𝑛1,𝑘
𝑋_
𝑛1
,

where 𝑋
`

𝑖, 𝑗
∼ exp(`) and 𝑋_

𝑖
∼ exp(_) for all 𝑖, 𝑗 . With the choices of 𝛽 = 6𝑛1 log𝐶

Y
and 𝑘 = 3Y` =

18𝑛1(log𝐶)2, we show that Budgeted Greedy incurs an expected cost of at least 1
2𝑛1. For the same choices
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of 𝛽 and 𝑘 and optimizing over the choice of Y, we show that cost(Opt) ≤ O
(
1/

√︁
log𝐶

)
𝑛1. This choice of

Y is independent of 𝑛1, which allows us to scale the result for any input size.
We prove each bound separately; the main results are stated here.

Proposition 5.5. Let Y > 0 and set 𝛽 = 6𝑛1 log𝐶
Y

and 𝑘 = 3Y`. Then, running Budgeted Greedy with 𝛾 = 1
on the input described above yields

cost(Alg) ≥ 1
2
𝑛1.

Proposition 5.6. Using the same parameters as in the previous proposition, for any Y > 0 such that
Y log𝐶 ≥ 4, we have

cost(Opt) ≤ 48𝑛1

(
𝑘

𝛽 log𝐶
+ 1
Y log𝐶

)
= 48𝑛1

(
3Y + 1

Y log𝐶

)
.

The result now follows by taking Y =

√︃
1

3 log𝐶 . The proofs are in Appendix A.

6 Offline Sequential Adaptive Bin Packing

In this section, we move to the offline sequential model, where random variables are known in advance
and the packing occurs sequentially in the fixed order 1, . . . , 𝑛. We present the proof of Theorem 1.5 that
guarantees a soft-capacity polynomial time approximation scheme (PTAS) for the offline problem.

6.1 Approximation of a Sequential Policy

Consider 𝑋1, . . . , 𝑋𝑛 independent random variables with bounded support [0, 1 + Y]. We can reduce the
general case to this case by moving all the probability mass of the corresponding random variable in [1+Y,∞)
to the point 1 + Y. We aim to show a polynomial time approximation scheme with resource augmentation.
In particular, we consider a policy operating on bins with size or capacity 𝑐 ≥ 1; a bin overflows if the total
size of items packed into it exceeds 𝑐. We use the notation cost𝑐 (P, 𝑍) to denote the expected cost incurred
by a policy P packing items 𝑍 = (𝑍1, . . . , 𝑍𝑛) into bins of capacity 𝑐.

Theorem 6.1. There is a policy that can be computed in O
(

1
Y10 𝑛

2/Y5
)

time packing items 𝑋1, . . . , 𝑋𝑛

sequentially into bins of size 1 + 6Y, and incurring expected cost of at most (1 + 4Y) cost1(Opt, 𝑋), where
Opt is an optimal policy with respect to bins of unit size.

To prove Theorem 6.1, we proceed as follows in the remainder of the section:

1. First, we discretize the input random variables 𝑋1, . . . , 𝑋𝑛 into random variables 𝑋1, . . . , 𝑋𝑛 with support
in {0, Y5, . . . , d2/Y5eY5}. This allows us to compute an optimal policy in polynomial time via dynamic
programming.

2. We then show that for any policy P for 𝑋1, . . . , 𝑋𝑛, we can construct a policy P̂ for 𝑋1, . . . , 𝑋𝑛 such that

cost1+4Y

(
P̂, 𝑋

)
≤ (1 + Y) cost1(P, 𝑋).

3. Next, we show how to obtain a policy P for 𝑋1, . . . , 𝑋𝑛 from a policy P̂ for items 𝑋1, . . . , 𝑋𝑛, such that

cost1+6Y (P, 𝑋) ≤ (1 + Y) cost1+4Y

(
P̂, 𝑋

)
.

4. Finally, we show that we can compute the optimal policy P̂ for discretized items 𝑋1, . . . , 𝑋𝑛 inO
(

1
Y10 𝑛

2/Y
)

time. The policy P follows immediately from here.
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6.2 Discretization Process

We perform the discretization in two steps, similarly to the discretization in [42]. In the first step, we
discretize the small outcomes of 𝑋1, . . . , 𝑋𝑛, meaning that values not exceeding Y4 now behave as a scaled
Bernoulli random variable with scaling factor Y4, and the appropriate success probability such that this
discretization preserves the expectation of the original random variable. In the second step, we discretize
the large outcomes by rounding up all values to multiples of Y5.
This discretization allows us to construct a state space based on the number of bins at level 𝑘Y5, 𝑘 =

1, . . . , d2/Y5e. The number of states is roughly O(𝑛2/Y5), which is polynomial in 𝑛.

Step 1 of discretization Let 𝑞𝑖 = E[𝑋𝑖 | 𝑋𝑖 ≤ Y4]. Then, the first discretization is

𝑋 ′
𝑖 =


0 if 𝑋𝑖 ≤ Y4, w.p. 1 − 𝑞𝑖/Y4

Y4 if 𝑋𝑖 ≤ Y4, w.p. 𝑞𝑖/Y4

𝑋𝑖 if 𝑋𝑖 > Y4.

Note that we have |𝑋𝑖 − 𝑋 ′
𝑖
| ≤ Y4 almost surely, E[𝑋 ′

𝑖
| 𝑋 ′

𝑖
≤ Y4] = E[𝑋𝑖 | 𝑋𝑖 ≤ Y4] and E[𝑋𝑖] = E[𝑋 ′

𝑖
].

Step 2 of discretization Now consider

𝑋𝑖 = 1{𝑋 ′
𝑖
≤Y4 }𝑋

′
𝑖 + 1{𝑋 ′

𝑖
>Y4 } d𝑋 ′

𝑖 /Y5eY5.

Clearly, 𝑋 ′
𝑖
≤ 𝑋𝑖 , since the large outcomes are rounded up. Moreover, if 𝑏 > Y4, then d𝑏/Y5eY5 ≤(

𝑏/Y5 + 1
)
Y5 = 𝑏 + Y5 ≤ (1 + Y)𝑏. Hence, 𝑋 ′

𝑖
≤ 𝑋𝑖 ≤ (1 + Y)𝑋 ′

𝑖
.

6.3 From Regular Policy to Discretized Policy

In this subsection we show the following result:

Theorem 6.2. For any policy P that sequentially packs items 𝑋1, . . . , 𝑋𝑛 into bins of unit size, there exists
a policy P̂ packing items 𝑋1, . . . , 𝑋𝑛 into bins of size 1 + 4Y such that

cost1+4Y

(
P̂, 𝑋

)
≤ (1 + Y) cost1 (P, 𝑋) .

To prove the theorem, we first introduce an intermediate policy P ′ that packs items 𝑋 ′
1, . . . , 𝑋

′
𝑛 and satisfying

cost1+2Y (P ′, 𝑋 ′) ≤ (1 + Y) cost1(P, 𝑋).

Policy P̂ is obtained from policy P ′ by adding additional capacity to the bins.
We assume that P is a deterministic function of the capacity of the bins and the current element to be packed.
Let us construct a policy P ′ for items 𝑋 ′

1, . . . , 𝑋
′
𝑛 with bin capacity 1 + 2Y that simulates and follows policy

P in the following way. Upon arrival of item 𝑋 ′
𝑖
, policy P ′ does what P would have done at this point in

time to item 𝑋𝑖 . We couple 𝑋𝑖 and 𝑋 ′
𝑖
, so 𝑋𝑖 = 𝑋 ′

𝑖
if 𝑋𝑖 > Y4 and otherwise we have the Bernoulli behavior

in 𝑋 ′
𝑖
. We pass the outcome of 𝑋 ′

𝑖
to P ′ and the outcome of 𝑋𝑖 to P. (Strictly speaking, P ′ receives the

outcome of 𝑋 ′
𝑖

and from it, the policy samples 𝑋𝑖 coupled with 𝑋 ′
𝑖

and passes this outcome to P.) For each
bin 𝐵 𝑗 that policy P opens, policy P ′ opens a bin 𝐵′

𝑗 ,1 and packs items in 𝐵′
𝑗 ,1 as policy P would do in bin

𝐵 𝑗 as long as |𝑋 (𝐵′
𝑗 ,1) − 𝑋 ′(𝐵′

𝑗 ,1) | ≤ Y holds. If this difference is violated, policy P ′ opens a new bin 𝐵′
𝑗 ,2

and continues following P as long as |𝑋 (𝐵′
𝑗 ,2) − 𝑋 ′(𝐵′

𝑗 ,2) | ≤ Y holds, and so on.
Notice that P ′ is undefined if some 𝐵′

𝑗 ,𝑘
breaks but 𝐵 𝑗 is not broken by policy P. Fortunately, this event

cannot occur, as the following proposition guarantees.
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Proposition 6.3. If P overflows 𝐵′
𝑗 ,𝑘

for some 𝑘 , then P must have overflown 𝐵 𝑗 . In particular, at most one
of the 𝐵′

𝑗 ,𝑘
is overflowed by P ′.

Proof. Let 𝐵′
𝑗 ,𝑘,𝑡

be the items packed into bin 𝐵′
𝑗 ,𝑘

up to time 𝑡. Suppose that 𝑋 ′(𝐵′
𝑗 ,𝑘,𝑡

) > 1 + 2Y (𝐵′
𝑗 ,𝑘

is
overflowed at time 𝑡). Notice that 𝑋 ′

𝑡 ≤ 1 + Y, therefore 𝐵′
𝑗 ,𝑘

was opened before 𝑡 and

|𝑋 ′(𝐵′
𝑗 ,𝑘,𝑡−1) − 𝑋 (𝐵′

𝑗 ,𝑘,𝑡−1) | ≤ Y

otherwise P ′ would not have tried to pack 𝑋𝑡 into 𝐵′
𝑗 ,𝑘

. Now, since |𝑋 ′
𝑡 − 𝑋𝑡 | ≤ Y4 we have

𝑋 (𝐵 𝑗) ≥ 𝑋 (𝐵′
𝑗 ,𝑘,𝑡 )

= 𝑋 (𝐵′
𝑗 ,𝑘,𝑡−1) + 𝑋𝑡 ≥ 𝑋 ′(𝐵 𝑗 ,𝑘,𝑡−1) − Y + 𝑋 ′

𝑡 − Y4

= 𝑋 ′(𝐵′
𝑗 ,𝑘,𝑡 ) − Y − Y4

> 1 + Y − Y4 > 1.

For the second part, we notice that once 𝐵′
𝑗 ,𝑘

is overflowed, then 𝐵 𝑗 is overflowed as well and so P does not
pack any item in 𝐵 𝑗 . Then, after 𝐵′

𝑗 ,𝑘
no more bins 𝐵′

𝑗 ,𝑘+1, . . . are open. �

Let 𝑂P′, 𝑗 be the number of bins 𝐵′
𝑗 ,𝑘

that policy P ′ breaks; we just showed that 𝑂P′, 𝑗 ≤ 1P
{𝑋 (𝐵 𝑗 )>1}. Then,

𝑂P′ =
∑𝑛

𝑗=1 𝑂P′, 𝑗 , the number of bins overflowed by P ′, satisfies the following equality.

Proposition 6.4. E[𝑂P′] ≤ E[𝑂P] .

Proof. By the previous proposition, at most one of the 𝐵′
𝑗 ,1, . . . , 𝐵

′
𝑗 ,𝑛

breaks, and when it does then 𝐵 𝑗 must
have been broken as well. �
Next, we show that the number of bins opened by P ′ is not much larger than the number of bins opened by
P. Let 𝑁P′, 𝑗 be the number of bins 𝐵′

𝑗 ,1, 𝐵
′
𝑗 ,2, . . . that policy P ′ uses, i.e. the number of copies of bin 𝐵 𝑗

used by policy P. Let 𝑁P′ be the number of bins opened by policy P ′, 𝑁P′ =
∑𝑛

𝑗=1 𝑁P′, 𝑗 .
Consider the family of events E ′

𝑗 ,𝑘
= {|𝑋 (𝐵′

𝑗 ,𝑘
) − 𝑋 ′(𝐵′

𝑗 ,𝑘
) | > Y} for 𝑘 ≥ 1 and for 𝑘 = 0 define

E ′
𝑗 ,0 = {P ′ opens bin 𝐵′

𝑗 ,1} = {P opens 𝐵 𝑗}. Notice then, for ℓ ≥ 1,{
𝑁P′, 𝑗 ≥ ℓ

}
⊆ E ′

𝑗 ,0 ∩ E ′
𝑗 ,1 ∩ · · · ∩ E ′

𝑗 ,ℓ−1. (2)

Proposition 6.5. For any 𝑘 ≥ 1,

P(E ′
𝑗 ,𝑘 | E ′

𝑗 ,𝑘−1, . . . , E
′
𝑗 ,1, E

′
𝑗 ,0) ≤ 6Y2 P(P ′ opens 𝐵′

𝑗 ,𝑘 | E ′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0).

Proof. Using Chebychev’s inequality,

P(E ′
𝑗 ,𝑘 | E ′

𝑗 ,𝑘−1, . . . , E
′
𝑗 ,1, E

′
𝑗 ,0) ≤

1
Y2 E

[(
𝑋 (𝐵′

𝑗 ,𝑘) − 𝑋 ′(𝐵′
𝑗 ,𝑘)

)2
| E ′

𝑗 ,𝑘−1, . . . , E
′
𝑗 ,1, E

′
𝑗 ,0

]
=

1
Y2 E


(

𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝑋 ′
𝑖 )1P′

{𝑖→( 𝑗 ,𝑘) }

)2

| E ′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0


=

1
Y2

𝑛∑︁
𝑖=1

E
[
(𝑋𝑖 − 𝑋 ′

𝑖 )21P′

{𝑖→( 𝑗 ,𝑘) } | E
′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0

]
+ 2
Y2

∑︁
𝑖<ℓ

E
[
(𝑋𝑖 − 𝑋 ′

𝑖 ) (𝑋ℓ − 𝑋 ′
ℓ)1

P′

{𝑖→( 𝑗 ,𝑘) ,ℓ→( 𝑗 ,𝑘) } | E
′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0

]
.
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Claim 6. For 𝑖 < ℓ, E
[
(𝑋𝑖 − 𝑋 ′

𝑖
) (𝑋ℓ − 𝑋 ′

ℓ
)1P′

{𝑖→( 𝑗 ,𝑘) ,ℓ→( 𝑗 ,𝑘) } | E
′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1

]
= 0.

Proof. If P(𝑖 → ( 𝑗 , 𝑘), ℓ → ( 𝑗 , 𝑘) | E ′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0) = 0 the result is clearly true, while in the

opposite case

E
[
(𝑋𝑖 − 𝑋 ′

𝑖 ) (𝑋ℓ − 𝑋 ′
ℓ) 1P′

{𝑖→( 𝑗 ,𝑘) ,ℓ→( 𝑗 ,𝑘) } | E
′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0

]
= E

[
(𝑋𝑖 − 𝑋 ′

𝑖 ) (𝑋ℓ − 𝑋 ′
ℓ) | 𝑖 → ( 𝑗 , 𝑘), ℓ → ( 𝑗 , 𝑘), E ′

𝑗 ,𝑘−1, . . . , E
′
𝑗 ,1, E

′
𝑗 ,0

]
× P(𝑖 → ( 𝑗 , 𝑘), ℓ → ( 𝑗 , 𝑘) | E ′

𝑗 ,𝑘−1, . . . , E
′
𝑗 ,1, E

′
𝑗 ,0)

= E[𝑋ℓ − 𝑋 ′
ℓ] E

[
𝑋𝑖 − 𝑋 ′

𝑖 | 𝑖 → ( 𝑗 , 𝑘), ℓ → ( 𝑗 , 𝑘), E ′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0

]
× P(𝑖 → ( 𝑗 , 𝑘), ℓ → ( 𝑗 , 𝑘) | E ′

𝑗 ,𝑘−1, . . . , E
′
𝑗 ,1, E

′
𝑗 ,0)

= E
[
E[𝑋ℓ − 𝑋 ′

ℓ] (𝑋𝑖 − 𝑋 ′
𝑖 )1P′

{𝑖→( 𝑗 ,𝑘) ,ℓ→( 𝑗 ,𝑘) } | E
′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0

]
= 0,

the last result since E[𝑋ℓ] = E[𝑋 ′
ℓ
]. Note that from the second to the third equality, we utilized the fact that

given that ℓ is packed into 𝐵′
𝑗 ,𝑘

, the outcome of 𝑋ℓ − 𝑋 ′
ℓ

is independent of previous E ′
𝑗 ,ℓ

, ℓ < 𝑘 . �

Claim 7. For any 𝑖,

E
[
(𝑋𝑖 − 𝑋 ′

𝑖 )21P′

{𝑖→( 𝑗 ,𝑘) } | E
′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0

]
≤ 2Y4 E

[
E[𝑋𝑖]1P′

{𝑖→( 𝑗 ,𝑘) } | E
′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0

]
.

Proof. We have |𝑋𝑖 − 𝑋 ′
𝑖
| ≤ Y4, so

E
[
(𝑋𝑖 − 𝑋 ′

𝑖 )21P′

{𝑖→( 𝑗 ,𝑘) } | E ′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0

]
≤ Y4 E

[
|𝑋𝑖 − 𝑋 ′

𝑖 |1P′

{𝑖→( 𝑗 ,𝑘) } | E
′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0

]
≤ Y4 E

[
(𝑋𝑖 + 𝑋 ′

𝑖 )1P′

{𝑖→( 𝑗 ,𝑘) } | E
′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0

]
.

The sizes of 𝑋𝑖 and 𝑋 ′
𝑖

are independent of the policy P ′ packing 𝑖 into bin 𝐵′
𝑗 ,𝑘

. Furthermore, if 𝑋 ′
𝑖

is packed
into bin 𝐵′

𝑗 ,𝑘
, its size does not depend on previous events E ′

𝑗 ,ℓ
, ℓ < 𝑘 . Therefore,

E
[
𝑋 ′
𝑖 1

P′

{𝑖→( 𝑗 ,𝑘) } | E
′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0

]
= E[𝑋 ′

𝑖 ] P(P ′ packs 𝑖 into ( 𝑗 , 𝑘) | E ′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0)

= E
[
E[𝑋𝑖]1P′

{𝑖→( 𝑗 ,𝑘) } | E
′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0

]
since E[𝑋 ′

𝑖
] = E[𝑋𝑖]. Similarly,

E
[
𝑋𝑖1P′

{𝑖→( 𝑗 ,𝑘) } | E
′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0

]
= E

[
E[𝑋𝑖]1P′

{𝑖→( 𝑗 ,𝑘) } | E
′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0

]
. �

Putting these two claims together in the previous inequality gives us

P(E ′
𝑗 ,𝑘 | E ′

𝑗 ,𝑘−1, . . . , E
′
𝑗 ,1, E

′
𝑗 ,0) ≤

1
Y2

𝑛∑︁
𝑖=1

2Y4 E
[
E[𝑋𝑖]1P′

{𝑖→( 𝑗 ,𝑘) } | E
′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0

]
≤ 2Y2 E


∑︁

𝑖∈𝐵′
𝑗,𝑘

E[𝑋𝑖] | E ′
𝑗 ,𝑘−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0
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≤ 6Y2 P(P ′ opens 𝐵′
𝑗 ,𝑘 | E ′

𝑗 ,𝑘−1, . . . , E
′
𝑗 ,1, E

′
𝑗 ,0).

In the last inequality, we used Proposition 3.2, 𝑋𝑖 ≤ 1 + Y for all 𝑖, and the bins 𝐵′
𝑗 ,𝑘

having capacity
1 + 2Y. �
Recall that 𝑁P′, 𝑗 is the number of bins 𝐵′

𝑗 ,1, . . . that policy P ′ uses. We have,

Proposition 6.6. For any 𝑗 = 1, . . . , 𝑛,

E[𝑁P′, 𝑗] ≤ (1 + Y) P(P opens 𝐵 𝑗).

Proof. Using the inclusion (2) and the previous proposition,

P(𝑁P′, 𝑗 ≥ ℓ) ≤ P(E ′
𝑗 ,ℓ−1, . . . , E

′
𝑗 ,1, E

′
𝑗 ,0)

= P(E ′
𝑗 ,ℓ−1 | E ′

𝑗 ,ℓ−2, . . . , E
′
𝑗 ,1, E

′
𝑗 ,0) · · ·P(E

′
𝑗 ,1 | E ′

𝑗 ,0) P(E ′
𝑗 ,0)

≤ (6Y2)ℓ−1 P(P opens 𝐵 𝑗).

Thus,

E[𝑁P′, 𝑗] =
∑︁
ℓ≥1

P(𝑁P′, 𝑗 ≥ ℓ)

≤
∑︁
ℓ≥1

(6Y2)ℓ−1 P(P opens 𝐵 𝑗)

=
1

(1 − 6Y2)
P(P opens 𝐵 𝑗)

≤ (1 + Y) P(P opens 𝐵 𝑗).

For the last inequality we require Y ≤ 1√
6
(
√

15 − 3) ≈ 0.1454. �

Corollary 6.7. E[𝑁P′] ≤ (1 + Y) E[𝑁P].

Lemma 6.8. cost1+2Y (P ′, 𝑋 ′) ≤ (1 + Y) cost1(P, 𝑋).

Proof. This follows from cost1+2Y (P ′, 𝑋 ′) = E[𝑁P′] + 𝐶 E[𝑂P′] and the previous results. �
Proof of Theorem 6.2. Let P̂ be the policy constructed from P ′ in the following manner. We simulate
policy P ′ in parallel. To pack item 𝑋𝑖 , P̂ imitates what P ′ does to item 𝑋 ′

𝑖
. Random variables 𝑋𝑖 and 𝑋 ′

𝑖

(and also 𝑋𝑖) are assumed to be coupled in the standard manner. The outcome of 𝑋𝑖 goes to P̂ and the
outcome of 𝑋 ′

𝑖
goes to P ′.

We denote by 𝐵 𝑗 ,𝑘 the bins opened by P̂. Since 𝑋𝑖 ≤ (1 + Y)𝑋 ′
𝑖
,

𝑋 (𝐵) ≤ (1 + Y)𝑋 ′(𝐵)

for any set of items 𝐵. Therefore, if 𝑋 (𝐵 𝑗 ,𝑘) > 1 + 4Y, then 𝑋 ′(𝐵′
𝑗 ,𝑘

) > 1 + 2Y and so bin 𝐵′
𝑗 ,𝑘

must have
been broken by P ′. Then,

cost1+4Y

(
P̂, 𝑋

)
≤ cost1+2Y (P ′, 𝑋 ′)

and we obtain the desired result. �
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6.4 From Discretized Policy to Regular Policy with Resource Augmentation

The main result of this section is the following.

Theorem 6.9. For any policy P̂ that sequentially packs items 𝑋1, . . . , 𝑋𝑛 into bins of size 1+ 4Y, there exists
a policy P that sequentially packs items 𝑋1, . . . , 𝑋𝑛 into bins of size 1 + 6Y such that

cost1+6Y (P, 𝑋) ≤ (1 + Y) cost1+4Y

(
P̂, 𝑋

)
.

Given a policy P̂ for the discretized items 𝑋1, . . . , 𝑋𝑛, we recover a policy P for items 𝑋1, . . . , 𝑋𝑛 with an
extra 2Y in the bins’ capacities. We couple the variables 𝑋𝑖 with 𝑋 ′

𝑖
and 𝑋𝑖 . Policy P simulates policy P̂

in the following manner. For each bin 𝐵 𝑗 that policy P̂ opens, P opens a bin 𝐵 𝑗 ,1 and packs items in 𝐵 𝑗 ,1

as policy P̂ would do in bin 𝐵 𝑗 , as long as |𝑋 (𝐵 𝑗 ,1) − 𝑋 ′(𝐵 𝑗 ,1) | ≤ Y holds. (Note that the comparison is
between random variables 𝑋 and 𝑋 ′.) If this difference is violated, policy P opens a new bin 𝐵 𝑗 ,2, and
continues following P̂ as long as |𝑋 (𝐵 𝑗 ,2) − 𝑋 ′(𝐵 𝑗 ,2) | ≤ Y holds, and so on.
As before, we need to show that policy 𝑃 is well defined, in the sense that bin 𝐵 𝑗 ,𝑘 is not broken if 𝐵 𝑗 has
not been broken.

Proposition 6.10. If P overflows bin 𝐵 𝑗 ,𝑘 for some 𝑘 , then P̂ must have overflowed bin 𝐵 𝑗 . Moreover, at
most one of the bins 𝐵 𝑗 ,1, 𝐵 𝑗 ,2, . . . can be overflowed.

Proof. Let 𝐵 𝑗 ,𝑘,𝑡 be the items packed into bin 𝐵 𝑗 ,𝑘 by policy P up to time 𝑡. Suppose that at time 𝑡 policy
P breaks bin 𝐵 𝑗 ,𝑘 ; then 𝑋 (𝐵 𝑗 ,𝑘,𝑡 ) > 1 + 6Y. Now,

𝑋 (𝐵 𝑗) ≥ 𝑋 (𝐵 𝑗 ,𝑘,𝑡 )
≥ 𝑋 ′(𝐵 𝑗 ,𝑘,𝑡 )
= 𝑋 ′(𝐵 𝑗 ,𝑘,𝑡−1) + 𝑋 ′

𝑡

≥
(
𝑋 (𝐵 𝑗 ,𝑘,𝑡−1) − Y

)
+

(
𝑋𝑡 − Y4

)
> 1 + 5Y − Y4 > 1 + 4Y.

Therefore, P̂ must have overflowed bin 𝐵 𝑗 . �
As a consequence we have the following result.

Proposition 6.11. E [𝑂P] ≤ E
[
𝑂 P̂

]
.

For 𝑘 ≥ 1, consider the family of events E 𝑗 ,𝑘 = {|𝑋 (𝐵 𝑗 ,𝑘) − 𝑋 ′(𝐵 𝑗 ,𝑘) | > Y} and for 𝑘 = 0 define
E 𝑗 ,0 = {P opens bin 𝐵 𝑗 ,1} = {P̂ opens bin 𝐵 𝑗}. Then,

Proposition 6.12. For any 𝑘 ≥ 1,

P(E 𝑗 ,𝑘 | E 𝑗 ,𝑘−1, . . . , E 𝑗 ,1, E 𝑗 ,0) ≤ (6Y2) P(P opens 𝐵 𝑗 ,𝑘 | E 𝑗 ,𝑘−1, . . . , E 𝑗 ,1, E 𝑗 ,0).

Proof. The proof is identical to Proposition 6.5. �
Let 𝑁P, 𝑗 be the number of bins 𝐵 𝑗 ,1, 𝐵 𝑗 ,2, . . . that policy P opens. Then, 𝑁P =

∑𝑛
𝑗=1 𝑁P, 𝑗 is the number

of bins used by policy P. Following the proof strategy used for Proposition 6.6, we obtain the following
proposition.

Proposition 6.13. E
[
𝑁P, 𝑗

]
≤ (1 + Y) P(P̂ opens 𝐵 𝑗).

Corollary 6.14. E[𝑁P] ≤ (1 + Y) E[𝑁 P̂].

Proof of Theorem 6.9. The proof is direct from the previous results. �
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6.5 Computing an Optimal Discretized Policy via Dynamic Programming

We can write a dynamic program (DP) that computes min
𝑃

cost1+4Y

(
P̂, 𝑋

)
, solved by backward induction

in O
(

1
Y10 𝑛

2/Y5
)

time. The states are pairs (𝑡, 𝑆), where 𝑡 = 1, . . . , 𝑛 + 1 and 𝑆 = (𝑘0, 𝑘1, . . . , 𝑘𝑟 ) is a vector
of non-negative integers such that 𝑘0 + 𝑘1 + · · · + 𝑘𝑟 ≤ 𝑡 − 1. Here 𝑘 𝑗 represents the number of bins currently
at capacity 𝑗 · Y5, 𝑗 = 1, . . . , d2/Y5e. The number of states (𝑡, 𝑆) is at most O(𝑛2/Y). Then, the DP recursion
becomes

𝑣(𝑡, 𝑆) = min
{
1 + E

𝑋𝑡

[
𝑣(𝑡 + 1, 𝑆 + 𝑒

𝑋𝑡/Y5)
]
,

𝐶 P(𝑘 𝑗 + 𝑋𝑡 > 1 + 4Y) + E
𝑋𝑡

[
𝑣(𝑡 + 1, 𝑆 + 𝑒

𝑗+𝑋𝑡/Y5 − 𝑒 𝑗)
]

: 0 < 𝑗Y5 ≤ 1 + 4Y, 𝑘 𝑗 ≥ 1
}
,

with the boundary condition 𝑣(𝑛+1, 𝑆) = 0 for any 𝑆. Here, 𝑒 𝑗 is the canonical vector in R𝑟+1 with a 1 in the
𝑗-th coordinate and 0 elsewhere. The recursion for 𝑣(𝑡, 𝑆) includes the two possible choices for a decision
maker: Pack the item into a new bin and incur a cost of 1 or use one of the previously opened and available
bins.
Given access to 𝑣(𝑡 + 1, 𝑆′) for any valid 𝑆′, we can compute 𝑣(𝑡, 𝑆) in O(1/Y10) time, since we need to
compute the corresponding expectations in time O(1/Y5). There are O(1/Y5) of these terms inside the
minimum operator, so we can compute 𝑣(𝑡 + 1, 𝑆′) in O(1/Y10) time. Finally, given that there are O(𝑛2/Y5)
states, we obtain the stated running time.

7 Numerical Experiments

In this section, we empirically validate the Budgeted Greedy (BG) algorithm. We quantify an algorithm’s
performance via the ratio of its cost to the cost incurred by some reference algorithm. When computationally
possible, the reference algorithm is the optimal offline sequential policy. Otherwise, the reference is BG itself.
We compare BG against the online benchmarks Full Greedy (FG), Fixed-Threshold (FT) and Fixed-Threshold
Greedy (FTG).

• Full Greedy (FG) is the myopic policy that for each item 𝑖 compares the instantaneous cost of opening
a new bin (unit cost) and the expected cost of packing the item in one of the previously opened bins,
𝐶 P(overflow). The policy selects the cheapest option.

• Fixed-Threshold (FT(𝛼)) is the policy that has a threshold 𝛼 ∈ (0, 1], and packs items into a bin as long
as its usage does not exceed 𝛼. Note that this policy uses one bin at a time.

• Fixed-Threshold-Greedy (TG(𝛼)) combines the myopic policy FG with a capacity threshold 𝛼. The
policy behaves as FG, but bins with usage greater than 𝛼 are discarded. Note that FG corresponds to
TG(1).

We test BG on four kinds of instances, one i.i.d. sequence of random variables, and three arbitrary exponential
random variable input sequences. In all the instances we set the penalty to𝐶 = 50 and input length to 𝑛 = 105.
We simulate each instance 1, 000 times and report the sample mean.

• I.I.D. Sequence. In this experiment, we consider an i.i.d. input sequence with three-point support given
by

𝑋𝑖 =


0 w.p. 1 − 1/𝐶
0.4 w.p. 1/2𝐶
0.61 w.p. 1/2𝐶.
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With this input, we aim to compare BG against TG(𝛼) with threshold 𝛼 ≥ 0.4. For 𝛼 < 0.4, TG(𝛼) is
near-optimal, therefore we do not study this case because we already include the optimal offline policy as
a reference. Furthermore, it suffices to consider the case 𝛼 = 0.4, since TG(𝛼) for 𝛼 ∈ (0.4, 1) is exactly
the same. For TG(1), we recover FG. In addition, we test different values of 𝛾 for BG, denoted BG(𝛾).
We test 𝛾 = 1, 2 and the theoretically optimal 𝛾 =

√
2 given by Theorem 1.2. In this experiment we do not

test FT, since it behaves exactly as TG for thresholds 𝛼 < 1, and FT(1) has an expected cost of at least 𝑛.

• Exponential Distributions. We consider input random variables 𝑋1, . . . , 𝑋𝑛 that follow exponential
distributions, P(𝑋𝑖 > 𝑥) = 𝑒−_𝑖 𝑥 . We perform three different experiments:

1. First, we consider an input sequence of exponential random variables with increasing rates. The smallest
rate starts at _1 = log𝐶 and the largest rate is _𝑛 = 3 log𝐶. In general, we set _𝑖 =

(
1 + 2 𝑖−1

𝑛−1

)
log𝐶

for 𝑖 = 1, . . . , 𝑛.
2. Second, we consider an input sequence with decreasing rates. The largest rate is _1 = 3 log𝐶 and the

smallest rate is _𝑛 = log𝐶. In this case, we have _𝑖 =
(
3 − 2 𝑖−1

𝑛−1

)
log𝐶 for 𝑖 = 1, . . . , 𝑛.

3. Finally, we consider an input sequence divided into three sections, each section with an i.i.d. sequence.
The first section, for 𝑖 = 1, . . . , b𝑛/3c, considers the fixed rate _𝑖 = log𝐶. The second section, for 𝑖 =
b𝑛/3c +1, . . . , b2𝑛/3c, considers the fixed rate _𝑖 = 2 log𝐶. The final section, for 𝑖 = b2𝑛/3c +1, . . . , 𝑛
considers the fixed rate _𝑖 = log𝐶.

Theorem 1.4 guarantees that BG has a constant multiplicative factor loss if the rates are 2 log𝐶 or
greater. In these experiments, we empirically test the expected cost incurred by BG when the rates are in
[log𝐶, 3 log𝐶], where Theorem 1.4 can only guarantee a multiplicative loss of O(log𝐶). Moreover, this
guarantee theoretically applies to large 𝐶 (see Section 5); here we test the algorithm on the relatively small
penalty 𝐶 = 50.

7.1 Results

I.I.D. Random Variables Figure 2 presents the ratio of the sample mean of the cost incurred by the
algorithms and the sample mean of the optimal offline sequential cost; this latter quantity is roughly 𝑛/𝐶. We
empirically confirm that the expected cost of TG policies is at least 𝑛/8; BG(𝛾) with 𝛾 = 1,

√
2, 2 exhibits

better performance. As 𝑛 grows, BG(1) has a ratio of roughly 1.8, BG(2) one of roughly 2.75, and BG(
√

2)
a ratio of roughly 1.9; theoretically we can guarantee a ratio of

√
3 + 2

√
2 ≈ 4.5604.

Exponential Random Variables Figures 3, 4 and 5 present the empirical results of our experiments in the
case of increasing rates, decreasing rates and block-input rates, respectively. In these experiments, we used
BG(2) as a reference, because computing the offline benchmark was too computationally expensive. We
used 𝛾 = 2 because it has a O(log𝐶) approximation guarantee compared to the optimal offline expected cost
(see Proposition 5.1.) Smaller values of 𝛾 do not improve the performance of BG in a significant manner; as
the results show, being greedy seems suited to exponential distributions. On the other hand, larger values of
𝛾 make BG’s performance resemble FG.
Figure 3 displays the ratio of cost sample means between the benchmark algorithms and BG(2) for increasing
rates. We empirically observe that BG performs significantly better against all FT policies. Similarly, BG
performs better that most of TG policies, with the exception of TG(0.5) and TG(1). Until approximately
the 5, 000-th item, the ratio TG(1)/BG(2) is the best among all greedy strategies, and afterwards the ratio
TG(0.5)/BG(2) becomes the best. Moreover, by the end of the sequence, FT(0.5) becomes better than
TG(1). During the whole input sequence, we empirically observe that BG(2) is able to balance the behavior
of TG(0.5) and TG(1), surpassing the performance of TG(1) in the second half of the input sequence. For
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Figure 2: Ratio to optimal expected cost incurred by the algorithms BG, FG and TG. Note that BG(
√

2)
overlaps with BG(1); the difference is roughly 0.1 units.

the entire sequence, the best performing algorithm’s expected cost ratio is above 0.8, which means BG(2) is
within 25% of the best algorithm for all input sizes. Furthermore, around the 5, 000-th item BG performs
the best among all tested strategies.

Figure 3: Ratio of cost incurred in the exponential case for increasing rates.

Figure 4 displays the ratios of the tested algorithms and BG(2) for the decreasing rates experiment. In this
case, most of the TG/BG-curves and FT/BG-curves overlap, with the exception of TG(1)/BG and FT(1)/BG.
For almost the entire sequence, all plots lie above 0.4, indicating that BG’s expected cost is at most 2.5
times the best performing algorithm’s cost for all input sizes. BG’s performance decreases until around the
5, 000-th item and improves thereafter. As in the previous experiment, BG performs better for larger rates,
which coincides with our theoretical findings.
Figure 5 displays the ratios between the tested algorithms and BG(2) for the partitioned input sequence.
The best performing algorithm over the entire sequence is TG(1); this algorithm’s plot and all others lie
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Figure 4: Ratio of cost incurred in the exponential case for decreasing rates.

above 0.6, indicating BG is within 67% of the best performing algorithm for any input size. During the first
interval of the sequence, the ratios are roughly constant; the main differentiation occurs with the transition to
the second interval, where TG(1) and TG(0.5) outperform BG. In the last interval, BG’s performance again
improves.

Figure 5: Ratio of cost incurred in the exponential case block input.

8 Concluding Remarks

In this paper, we introduced the adaptive bin packing problem with overflow. We introduced the notion of
risk as a proxy for a capacity threshold, as typically used in deterministic settings. We showed that Budgeted
Greedy incurs an expected cost at most a constant factor times the optimal expected cost of an offline policy
when the input is an i.i.d. sequence of random variables. In the more general setting, we give similar results
for arbitrary exponential random variables.
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We extended the discussion by studying the offline sequential adaptive bin packing problem, in which the
decision maker knows the sequence of random variables in advance and must pack them in this order. We
devised a soft-capacity PTAS by utilizing a policy tracking argument, and showed that computing the cost of
the optimal policy is #P-hard by relating it to counting problems. This offline cost corresponds to the online
benchmark.
Unfortunately, Budgeted Greedy does not guarantee a constant approximation factor for general input se-
quences. Consider the input sequence 𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑛 defined as 𝑋1 = 1/𝑛, 𝑋2𝑖 ∼ Bernoulli(1/𝐶)
and

𝑋2𝑖+1 =

{
1/𝑛 w.p. 1 − 1/𝐶2

1 w.p. 1/𝐶2.

Budgeted Greedy incurs an expected cost of Θ(𝑛), while the optimal offline policy incurs an expected cost
of at most 𝑛/𝐶 + 1.
This example motivates either seeking a general algorithm exhibiting a bounded competitive ratio, or showing
an impossibility result. In [1], the authors study the online generalized assignment problem with a similar
stochastic component as in our model. They are able to show a 1 − 1√

𝑘
competitive ratio for general arriving

distributions. However, they assume large capacity, in the sense that no item takes up more than 1/𝑘 fraction
from any bin. It is not clear how to utilize their techniques in a bin packing setting, as they are able to discard
distributions that they deem unimportant. Moreover, in the bin packing problem a large capacity assumption
would immediately imply a policy with constant approximation factor, by simply filling up the bins until
some desired fraction of capacity.
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A Missing Proofs
A.1 Missing Proofs From Section 3
Proposition 3.1. Let 𝑋1, . . . , 𝑋𝑛 be nonnegative independent random variables and any (deterministic) policy P for
packing these items sequentially. Then, the expected number of broken bins by the policy P is given by

E[𝐵P] =
𝑛∑︁
𝑗=1

E
𝑋1 ,...,𝑋𝑛

[
𝑛∑︁
𝑖=1

P𝑋𝑖
(𝑋𝑖 + 𝑆𝑖−1

𝑗 > 1)1P
{𝑖→ 𝑗 }

]
where 𝑆𝑖−1

𝑗
is the level of bin 𝑗 at the beginning of iteration 𝑖 and 1P

{𝑖→ 𝑗 } is the 0/1 indicator random variable of the
event: Policy P packs item 𝑋𝑖 into bin 𝑗 .

Proof. We write 1{𝑖→ 𝑗 } to denote 1P
{𝑖→ 𝑗 }. We show that P(P breaks bin 𝑗) = E

[∑𝑛
𝑖=1 P𝑋𝑖

(𝑋𝑖 + 𝑆𝑖−1
𝑗

> 1)1{𝑖→ 𝑗 }
]
.

We have,

E
[

𝑛∑︁
𝑖=1

P𝑋𝑖
(𝑋𝑖 + 𝑆𝑖−1

𝑗 > 1)1{𝑖→ 𝑗 }

]
=

𝑛∑︁
𝑖=1

E
[
P𝑋𝑖

(𝑋𝑖 + 𝑆𝑖−1
𝑗 > 1)1{𝑖→ 𝑗 }

]
Observe that 𝑆𝑖−1

𝑗
=

∑
𝑘≤𝑖−1 𝑋𝑘1{𝑘→ 𝑗 } and 1{𝑖→ 𝑗 } only depend on the outcomes of 𝑋1, . . . , 𝑋𝑖−1. Therefore,

E
[
P𝑋𝑖

(𝑋𝑖 + 𝑆𝑖−1
𝑗 > 1)1{𝑖→ 𝑗 }

]
= E

𝑋1 ,...,𝑋𝑖−1

[
P𝑋𝑖

(𝑋𝑖 + 𝑆𝑖−1
𝑗 > 1)1{𝑖→ 𝑗 }

]
= E

𝑋1 ,...,𝑋𝑖−1

[
E
𝑋𝑖

[
1{𝑋𝑖+𝑆𝑖−1

𝑗
>1}

]
1{𝑖→ 𝑗 }

]
= E

𝑋1 ,...,𝑋𝑖

[
1{𝑋𝑖+𝑆𝑖−1

𝑗
>1}1{𝑖→ 𝑗 }

]
.

Clearly, {𝑋𝑖 + 𝑆𝑖−1
𝑗

> 1, 𝑖 → 𝑗} = {𝑋𝑖 breaks bin 𝑗}. Thus,

E
[
P𝑋𝑖

(𝑋𝑖 + 𝑆𝑖−1
𝑗 > 1)1{𝑖→ 𝑗 }

]
= P(𝑋𝑖 breaks bin 𝑗),

hence,

E
[

𝑛∑︁
𝑖=1

P𝑋𝑖
(𝑋𝑖 + 𝑆𝑖−1

𝑗 > 1)1{𝑖→ 𝑗 }

]
=

𝑛∑︁
𝑖=1

P(𝑋𝑖 breaks bin 𝑗) = P(P breaks bin 𝑗)

since the last sum uses the fact that bins are overflowed at most once; hence the events {𝑋𝑖 breaks bin 𝑗}𝑖 are disjoint. �

Proposition 3.2. For any sequence of nonnegative i.i.d. random variables 𝑋1, . . . , 𝑋𝑛, for any bin 𝐵 = 𝐵 𝑗 and any
policy P, we have

E
[∑︁
𝑖∈𝐵

E[𝑋𝑖 ∧ 1]
]
= E

[∑︁
𝑖∈𝐵

𝑋𝑖 ∧ 1

]
≤ 2 P(P opens bin 𝐵),

where 𝑋𝑖 ∧ 1 = min{𝑋𝑖 , 1}.

Proof. The proof follows from a result in [20], which we replicate here for completeness. Let `𝑖 = E[𝑋𝑖 ∧ 1] be the
normalized expected size of an item. Let 𝐵𝑡 be the (random) items that the policy packs into bin 𝐵 by time 𝑡. We are
interested in the expectation of `(𝐵) = ∑

𝑖∈𝐵 `𝑖 = `(𝐵𝑛). The random variables `(𝐵𝑡 ) are nondecreasing in 𝑡; by the
monotone convergence theorem,

E [`(𝐵)] = sup
𝑡≥0

E[`(𝐵𝑡 )] .

Now, the random variables 𝑍 𝑡 =
∑

𝑖∈𝐵𝑡 (𝑋𝑖 ∧ 1) − `𝑖 form a martingale. Indeed,

E[𝑍 𝑡 | 𝑍 𝑡−1, 𝑡 → 𝑗] = 𝑍 𝑡−1 + E[𝑋𝑡 ∧ 1] − `𝑡 = 𝑍 𝑡−1;
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then, for all 𝑡, E[𝑍 𝑡 ] = 𝑍0 = 0 and so E[`(𝐵𝑡 )] = E [∑𝑖∈𝐵𝑡 𝑋𝑖 ∧ 1] ≤ 2 P(P opens bin 𝐵); this last inequality holds
because we break the bin at most once and we must have opened the bin. Therefore

E [`(𝐵)] = sup
𝑡≥0

E[`(𝐵𝑡 )] ≤ 2 P(P opens bin 𝐵).

�

Proposition 3.3. For any sequence of nonnegative i.i.d. random variables 𝑋1, . . . , 𝑋𝑛, for any policy, we have

E
[

𝑛∑︁
𝑖=1

(𝑋𝑖 ∧ 1)
]
≤ cost(P).

Proof. Note that by Proposition 3.2 we have

E
[

𝑛∑︁
𝑖=1

(𝑋𝑖 ∧ 1)
]
=

𝑛∑︁
𝑗=1

E


∑︁
𝑖∈𝐵P

𝑗

(𝑋𝑖 ∧ 1)
 =

𝑛∑︁
𝑗=1

E


∑︁
𝑖∈𝐵P

𝑗

E[𝑋𝑖 ∧ 1]
 = E

[
𝑛∑︁
𝑖=1

E[𝑋𝑖 ∧ 1]
]
.

We only need to show that
∑𝑛

𝑖=1 E[𝑋𝑖 ∧ 1] is a lower bound for cost(Opt). We can compute cost(Opt) recursively via
dynamic programming as follows. We define the states as vectors 𝑆 ∈ (R ∪ {∅})𝑛 where 𝑆 𝑗 ∈ R is the usage of 𝑗-th
bin and 𝑆 𝑗 = ∅ means that bin 𝑗 is closed. We consider ∅ as an special symbol such that 𝑎 + ∅ = 𝑎 for any 𝑎 ∈ R. With
this, the optimal cost can be computed via the following recursions:

𝑣𝑡 (𝑆) = inf
{
E
𝑋𝑡

[
𝑣𝑡+1 (𝑆 + 𝑋𝑡𝑒 𝑗 )

]
: 𝑗 = 1, . . . , 𝑛, 𝑆 𝑗 ∈ [0, 1] ∪ {∅}

}
, ∀𝑡 = 1, . . . , 𝑛,∀𝑆

𝑣𝑛+1 (𝑆) =
𝑛∑︁
𝑗=1

1{𝑆 𝑗=∅} + 𝐶

𝑛∑︁
𝑗=1

1{𝑆 𝑗>1}, ∀𝑆.

The second equation measures the overall cost accumulated at the end of processing the sequence 𝑋1, . . . , 𝑋𝑛. The first
equation takes actions that minimizes the mean cost of sample paths. Note that items can only be packed into bins not
opened (∅) or bins with usage ≤ 1. Using MDP theory, we can show 𝑣1 (∅, . . . , ∅) = cost(Opt), which we skip here for
brevity.
Now, consider the functions 𝑢𝑡 (𝑆) =

∑𝑛
𝜏=𝑡 E[𝑋𝜏 ∧1] +∑𝑛

𝑗=1 (𝑆 𝑗 ∧1)1{𝑆 𝑗>0} for any 𝑆. We show by backward induction
in 𝑡 = 𝑛 + 1, . . . , 1 that 𝑢𝑡 (𝑆) ≤ 𝑣𝑡 (𝑆). For 𝑡 = 𝑛 + 1 we have

𝑢𝑛+1 (𝑆) =
𝑛∑︁
𝑗=1

(𝑆 𝑗 ∧ 1)1{𝑆 𝑗>0} ≤
𝑛∑︁
𝑗=1

1{𝑆 𝑗>0} ≤ 𝑣𝑛+1 (𝑆).

Now, assume the result is true for 𝑡 + 1 and let us show it for 𝑡. Let 𝑗 = 1, . . . , 𝑛 with 𝑆 𝑗 ∈ [0, 1] ∪ {∅}, then

E
𝑋𝑡

[
𝑣𝑡+1 (𝑆 + 𝑋𝑡𝑒 𝑗 )

]
≥ E

𝑋𝑡


𝑛∑︁

𝜏=𝑡+1
E[𝑋𝜏 ∧ 1] +

𝑛∑︁
𝑘=1
𝑘≠ 𝑗

(𝑆𝑘 ∧ 1)1{𝑆 𝑗>0} + (𝑆 𝑗 + 𝑋𝑡 ) ∧ 1


≥

𝑛∑︁
𝜏=𝑡+1

E[𝑋𝜏 ∧ 1] + E
𝑋𝑡

[𝑋𝑡 ∧ 1] = 𝑢𝑡 (𝑆).

Taking minimum in 𝑗 , we conclude 𝑣𝑡 (𝑆) ≥ 𝑢𝑡 (𝑆) for any 𝑆.
Now, for 𝑡 = 1 we have cost(Opt) = 𝑣1 (∅, . . . , ∅) ≥ 𝑢1 (∅, . . . , ∅) =

∑𝑛
𝑡=1 E[𝑋𝑡 ∧ 1] which finishes the proof. �

A.2 Missing Proofs From Section 4
Lemma 4.2. costℓ,�̂� (TP (𝑢)) ≥ costℓ′,𝑐′ (TP′ (𝑢)).
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Proof. We define

costℓ,�̂� (TP (𝑢)) 𝑗 = 1 + E
[
(𝐶 + 2𝛿)

𝑛∑︁
𝑖=1

1P
{𝑖→ 𝑗 }1

P
{𝑋𝑖+𝑆𝑖−1

𝑗
>1} | Reach node 𝑢

]
which is the original cost paid in TP when packing items into bin 𝑗 after reaching node 𝑢 in the tree. We also define

costℓ′,𝑐′ (TP′ (𝑢)) 𝑗 =1 + E
[
(𝐶 + 𝛿)

𝑛∑︁
𝑖=1

1P′

{𝑖→ 𝑗 }1
P′

{𝑋𝑖+𝑆𝑖−1
𝑗

>1}

+(𝐶 + 2𝛿)
(

𝑛∑︁
𝑖=1

1P′

{𝑖→ 𝑗′ }1
P′

{𝑋𝑖+𝑆𝑖−1
𝑗′ >1}

)
+ 1P′

{Open bin 𝑗′ } | Reach node 𝑢

]
which is the new cost paid by TP′ when packing items into bin 𝑗 after reaching node 𝑢 and the new cost incurred by
packing items into bin 𝑗 ′.
Therefore, the variation of the cost costℓ,�̂� (TP (𝑢)) − costℓ′,𝑐′ (TP′ (𝑢)) is given by

costℓ,�̂� (TP (𝑢)) − costℓ′,𝑐′ (TP′ (𝑢)) = (costℓ,�̂� (TP (𝑢)) 𝑗 − costℓ′,𝑐′ (TP′ (𝑢)) 𝑗 ).

Now, we always have
1P
{𝑖→ 𝑗 } = 1P′

{𝑖→ 𝑗 } + 1P′

{𝑖→ 𝑗′ },

for all 𝑖 = 1, . . . , 𝑛. Indeed, if we are in a branch not containing 𝑢, then P and P ′ behave the same and there is no bin
𝑗 ′. If we are in a branch containing 𝑢, and if we pack 𝑖 into 𝑗 , we either pack 𝑖 into 𝑗 before surpassing the risk budget
in which case P and P ′ behave the same or we do it after surpassing the risk budget in which case 𝑖 goes to 𝑗 ′. With
this fact we have,

costℓ,�̂� (TP (𝑢))) − costℓ′,𝑐′ (TP′ (𝑢)) = (costℓ,�̂� (TP (𝑢)) 𝑗 − costℓ′,𝑐′ (TP′ (𝑢)) 𝑗 )

≥ E
[
𝛿

(
𝑛∑︁
𝑖=1

1P′

{𝑖→ 𝑗 }1
P′

{𝑋𝑖+𝑆𝑖−1
𝑗

>1}

)
− 1P′

{Open bin 𝑗′ } | Reach node 𝑢

]
,

in the last inequality we used the fact that the cost of breaking the bin 𝑗 ′ is smaller than the cost of breaking 𝑗 at
that point of the computation. This is true since the usage of bin 𝑗 ′ is at most the usage of 𝑗 at the same point of
computation. Now, for 𝑖 ≥ 𝑗 ,

E
[
1P′

{𝑖→ 𝑗 }1{𝑋𝑖+𝑆𝑖−1
𝑗

>1} | Reach node 𝑢
]
= E

𝑋1 ,...,𝑋𝑖−1

[
E
𝑋𝑖

[
1P′

{𝑖→ 𝑗 }1
P′

{𝑋𝑖+𝑆𝑖−1
𝑗

>1}

]
| Reach node 𝑢

]
= E

𝑋1 ,...,𝑋𝑖−1

[
1P′

{𝑖→ 𝑗 } E
𝑋𝑖

[
1{𝑋𝑖+𝑆𝑖−1

𝑗
>1}

]
| Reach node 𝑢

]
= E

𝑋1 ,...,𝑋𝑖−1

[
1P′

{𝑖→ 𝑗 } P𝑋𝑖
(𝑋𝑖 + 𝑆𝑖−1

𝑗 > 1) | Reach node 𝑢
]
.

This is because the event {Reach node 𝑢} is determined by the outcomes of 𝑋1, . . . , 𝑋 𝑗−1. While for 𝑖 ≤ 𝑗 − 1 we have

E
[
1P′

{𝑖→ 𝑗 }1{𝑋𝑖+𝑆𝑖−1
𝑗

>1} | Reach node 𝑢
]
= 0

since bin 𝑗 is opened at node 𝑢 at level 𝑗 . Thus,

costℓ,�̂� (TP (𝑢)) − costℓ′,𝑐′ (TP′ (𝑢)) = E
[
𝛿

𝑛∑︁
𝑖= 𝑗

1P′

{𝑖→ 𝑗 } P(𝑋𝑖 + 𝑆𝑖−1
𝑗 > 1) − 1{Open bin 𝑗′ } | Reach node 𝑢

]
= E

[
Risk(𝐵 𝑗 ) − 1P′

{Open bin 𝑗′ } | Reach node 𝑢
]

≥
(
𝛿
𝛾

𝐶
− 1

)
= 0. (Using 𝛾 = 𝐶

𝛿
.)

�
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A.3 Missing Proofs From Section 5
Proposition 5.5. Let Y > 0 and set 𝛽 = 6 𝑛1 log𝐶

Y
and 𝑘 = 3Y`. Then, running Budgeted Greedy with 𝛾 = 1 in the input

described in Subsection 5.3 we have
cost(Alg) ≥ 1

2
𝑛1.

Proof. We show that (w.h.p.) Algorithm 1 packs each item 𝑋_
𝑖

individually. This is achieved by showing that in
between two 𝑋_

𝑖
and 𝑋_

𝑖+1, there is enough mass introduced by the elements 𝑋
`

𝑖, 𝑗
, therefore not allowing the items 𝑋_

𝑖

to be packed together.
Now, let 𝑘 = 3Y` = 3Y𝛽 log𝐶. Then,

E
[

𝑘∑︁
𝑖=1

𝑋
`

𝑖

]
=

𝑘

𝛽 log𝐶
= 3Y,

thus

P
(

𝑘∑︁
𝑖=1

𝑋
`

𝑖
≤ 2Y

)
≤ P

(����� 𝑘∑︁
𝑖=1

𝑋
`

𝑖
− 3Y

����� ≥ Y

)
≤ 1

Y2
𝑘

(𝛽 log𝐶)2 =
3

Y𝛽 log𝐶
. (Chebyshev inequality)

Pick 𝛽 = 3 2𝑛1 log𝐶
Y

and so,

P
(
∃ 𝑗 = 1, . . . , 𝑛1 :

𝑘∑︁
𝑖=1

𝑋
`

𝑗,𝑖
≤ 2Y

)
≤ 𝑛1 ·

3
Y𝛽 log𝐶

=
1
2
.

That is, with probability at least 1
2 , all blocks 𝑋`

𝑗,1, . . . , 𝑋
`

𝑗,𝑘
add at least 2Y mass. Consider the event

𝐸 =

{
∀ 𝑗 = 1, . . . , 𝑛1 :

𝑘∑︁
𝑖=1

𝑋
`

𝑗,𝑖
> 2Y

}
.

then, we just proved that P(𝐸) ≥ 1
2 .

Claim 8. Given event 𝐸 , Algorithm 1 with 𝛾 = 1 never packs 𝑋_
𝑖

and 𝑋_
𝑖+1 together for any 𝑖.

Proof. Suppose that Algorithm 1 packs 𝑋_
𝑖

and 𝑋_
𝑖+1 together for some 𝑖. This means that the algorithm had enough

budget and space to allocate 𝑋_
𝑖+1. Since P(𝑋_

𝑖+1 > 1 − 𝑥) = 𝑒−_(1−𝑥) > 𝑒−` (1−𝑥) = P(𝑋`

𝑖 𝑗
> 1 − 𝑥) for any 𝑥 > 0, then

Budgeted Greedy must have packed all the 𝑋
`

𝑖 𝑗
in between 𝑋_

𝑖
and 𝑋_

𝑖+1. However, under event 𝐸 , these items increase
the usage of the bin by at least 2Y. Then, the budget utilized by 𝑋_

𝑖+1 is at least

P(𝑋_
𝑖+1 > 1 − 2Y) = 𝑒−_(1−2Y) > 𝑒−(1−Y

2) log𝐶 >
1
𝐶

which is a contradiction to the risk budget of Budgeted Greedy. �

Claim 9. Using the same choices of 𝛽 and 𝑘 as before, we have cost(Alg) ≥ 1
2𝑛1.

Proof. By the previous result, under event 𝐸 , no 𝑋_
𝑖

and 𝑋_
𝑖+1 are packed together. Therefore, at least 𝑛1 open bins are

needed. Since 𝐸 occurs w.p. ≥ 1
2 we conclude the desired result. � �

Proposition 5.6. Using the same parameters and the same input as in the previous result, for any Y > 0 such that
Y log𝐶 ≥ 4, we have

cost(Opt) ≤ 48𝑛1

(
𝑘

𝛽 log𝐶
+ 1
Y log𝐶

)
= 48𝑛1

(
3Y + 1

Y log𝐶

)
.
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Proof. In order to show an upper bound for cost(Opt) it is enough to exhibit a policy with cost bounded by the desired
value. We consider the following budgeted policy P with risk budget 2

𝐶
: Pack items with rate _ separately of items

with rate `. We are going to show that P opens at most

𝑛2

𝛽 log𝐶
+ 𝑛1

Y log𝐶
= 𝑛1

(
𝑘

𝛽 log𝐶
+ 1
Y log𝐶

)
bins in expectation (up to a constant). Since P is budgeted with budget 2

𝐶
we have cost(Opt) ≤ cost(P) ≤ 3 E[𝑁P]

from which the result follows. In what follows we prove the bound over the number of bins.
Let us analyze the policy P. Policy P opens two kind of bins; the first kind of bins only contain items following
exponentials distribution of rate _; the second kind of bins only contain items following exponential distribution of
rate `. We have 𝑁P = 𝑁1

P + 𝑁2
P where 𝑁1

P is the number of bins of type 1 and 𝑁2
P is the number of bins of type 2. An

equivalent way to see this process is that policy P runs two copies of Algorithm 1, one for the rate _ and one for the
rate `. Then, 𝑁1

P equals 𝑁Alg over the sequence 𝑋_
1 , . . . , 𝑋

_
𝑛1

and 𝑁2
P equals 𝑁Alg over the sequence 𝑋

`

1,1, . . . , 𝑋
`

𝑛1 ,𝑘
.

The following lemma is a general result that allows us to bound the number of bins used in a nonnegative i.i.d. sequence
of items under Algorithm 1. For the sake of clarity, the proof has been moved to the end of this subsection.

Lemma A.1. Suppose 𝑋1, . . . , 𝑋𝑛 are i.i.d. sequence of items, then E[𝑁Alg] ≤ 2𝑛−1
E[ |𝐵1 | ] where |𝐵1 | is the number of

items packed in the first bin.

Claim 10. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent exponential r.v.’s with rate _ = (1 + Y) log𝐶, with Y log𝐶 ≥ 4, then

E[|𝐵1 |] ≥
1
8
Y log𝐶,

where |𝐵1 | is the number of items 𝑋1, . . . , 𝑋𝑛 packed in the first bin by Algorithm 1 with risk budget = 2/𝐶.

Proof. Let ℓ = Y
4 log𝐶 ≥ 1. Then,

P( |𝐵1 | ≤ ℓ) = P
(
|𝐵1 | ≤ ℓ, 𝑋 (𝐵1) >

Y

2(1 + Y)

)
+ P

(
|𝐵1 | ≤ ℓ, 𝑋 (𝐵1) ≤

Y

2(1 + Y)

)
≤ P

(
ℓ∑︁
𝑖=1

𝑋𝑖 >
Y

2(1 + Y)

)
+ P

(
|𝐵1 | ≤ ℓ, 𝑋 (𝐵1) ≤

Y

2(1 + Y)

)
.

We bound each term separately. First, we have

P
(

ℓ∑︁
𝑖=1

𝑋𝑖 >
Y

2(1 + Y)

)
≤ 2(1 + Y)

Y
E

[
ℓ∑︁
𝑖=1

𝑋𝑖

]
=

2(1 + Y)
Y

ℓ
1

(1 + Y) log𝐶
=

1
2
.

For the other term we have that |𝐵1 | ≤ ℓ, given 𝑋 (𝐵1) ≤ Y
2(1+Y) , only if 𝐵1 runs out of budget. That is,

2
𝐶

≤
ℓ+1∑︁
𝑖=1

P(𝑋𝑖 > 1 − 𝛼𝑖) ≤ (ℓ + 1) P
(
𝑋𝑖 > 1 − Y

2(1 + Y)

)
≤

( Y
4

log𝐶 + 1
) 1
𝐶1+Y/2 <

2
𝐶

using the assumption Y log𝐶 ≥ 2. From here we obtain that P( |𝐵1 | ≤ ℓ, 𝑋 (𝐵1) ≤ Y
2(1+Y) ) = 0. Therefore,

P( |𝐵1 | ≤ ℓ) ≤ 1
2
.

Then,
E[|𝐵1 |] ≥

1
2
ℓ =

1
8
Y log𝐶.

�

Claim 11. Let 𝑋1, . . . , 𝑋𝑚 be 𝑚 independent exponential r.v.’s with rate ` = 𝛽 log𝐶, 𝛽 ≥ 4, then

E[|𝐵1 |] ≥
1
8
𝛽 log𝐶

where |𝐵1 | is the number of items 𝑋1, . . . , 𝑋𝑚 packed in the first in by Algorithm 1 with risk budget = 2/𝐶.
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Proof. Let ℓ = 𝛽

4 log𝐶. Then,

P (|𝐵1 | ≤ ℓ) = P( |𝐵1 | ≤ ℓ, 𝑋 (𝐵1) > 1/2) + P( |𝐵1 | ≤ ℓ, 𝑋 (𝐵1) ≤ 1/2)

≤ P
(

ℓ∑︁
𝑖=1

𝑋𝑖 >
1
2

)
+ P ( |𝐵1 | ≤ ℓ, 𝑋 (𝐵1) ≤ 1/2)

Now, given the event 𝑋 (𝐵1) ≤ 1
2 , the only way that |𝐵1 | ≤ ℓ is by running out of budget. We have then

2
𝐶

≤
ℓ+1∑︁
𝑖=1

P(𝑋𝑖 > 1 − 𝛼𝑖) ≤ (ℓ + 1) P(𝑋𝑖 > 1/2) ≤
(
𝛽

4
log𝐶 + 1

)
1

𝐶𝛽/2 <
1
𝐶

(𝛽 ≥ 4)

which cannot happen. Therefore, P( |𝐵1 | ≤ ℓ, 𝑋 (𝐵1) ≤ 1/2) = 0 and then

P( |𝐵1 | ≤ ℓ) ≤ 2 E
[

ℓ∑︁
𝑖=1

𝑋𝑖

]
= 2ℓ

1
𝛽 log𝐶

=
1
2
.

Therefore,
E[|𝐵1 |] ≥

1
2
ℓ =

𝛽

8
log𝐶.

�
�

Claim 12. The cost of P is cost(P) ≤ 3 E[𝑁P] ≤ 48𝑛1

(
𝑘

𝛽 log𝐶 + 1
Y log𝐶

)
Proof. Putting all the results together we obtain

E[𝑁P] = E[𝑁1
P] + E[𝑁2

P]

≤ 2𝑛1

E[|𝐵_
1 |]

+ 2𝑛2

E[|𝐵`

1 |]
(Proposition A.1)

≤ 16
𝑛1

Y log𝐶
+ 16

𝑛2

𝛽 log𝐶

= 16𝑛1

(
1

Y log𝐶
+ 𝑘

𝛽 log𝐶

)
.

�
Here we present the proof of Lemma A.1.
Proof of Lemma A.1. We use the following fictitious experiment. Consider 𝑛 independent copies of the random
variables 𝑋1, . . . , 𝑋𝑛 and run Algorithm 1 until its first bin is closed or the sequence fits entirely on the first bin. We
denote by 𝐵𝑖 the items packed in the first bin in the 𝑖-th trial of this experiment. The process |𝐵1 |, . . . , |𝐵𝑛 | is i.i.d..
We have the following identities:

|𝐵1 | = |𝐵1 |
|𝐵2 | = min{𝑛 − |𝐵1 |, 𝐵2}

...

|𝐵𝑛 | = min{𝑛 − |𝐵1 | − · · · − |𝐵𝑛−1 |, 𝐵𝑛}.

Observe that 𝑁Alg = min
{
𝑘 :

∑𝑘
𝑖=1 |𝐵𝑖 | = 𝑛

}
is a stopping time for |𝐵1 |, . . . , |𝐵𝑛 | so also is a stopping time for

|𝐵1 |, . . . , |𝐵𝑛 |. By Wald’s equation (see Theorem A.2 below) we have

E[𝑁Alg] E[|𝐵1 |] = E
[
𝑁Alg∑︁
𝑖=1

|𝐵𝑖 |
]
.
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Additionally, we have E[|𝐵1 |] = E[|𝐵1 |] by construction. Now, until time 𝑁Alg − 1 we must have |𝐵1 | =

|𝐵1 |, . . . , |𝐵𝑁Alg−1 | = |𝐵𝑁Alg−1 |, all of these values at least 1. Then,

𝑁Alg−1∑︁
𝑖=1

|𝐵𝑖 | =
𝑁Alg−1∑︁
𝑖=1

|𝐵𝑖 | ≤ 𝑛 − 1.

Therefore,

E[𝑁Alg] E[|𝐵1 |] = E
[
𝑁Alg−1∑︁
𝑖=1

|𝐵𝑖 | + |𝐵𝑁Alg |
]
≤ 2𝑛 − 1,

which concludes the proof. �

A.3.1 Wald’s Equation

Theorem A.2 (Wald’s equation). If 𝑋1, 𝑋2, . . . are i.i.d. random variables with finite mean and 𝑁 is a stopping time
with E[𝑁] < ∞, then

E
[

𝑁∑︁
𝑛=1

𝑋𝑛

]
= E[𝑁] E[𝑋1] .

Proof can be found in [49].

B #P-Hardness of Computing Minimum Cost of the Optimal Policy
In this section, we provide the proof of Theorem 1.6, i.e., it is #P-hard to compute minP cost(P). We proceed
as follows. We consider symmetric logic formulas, that is, 𝜙(x) = 𝜙(x) for any x, and we show that the problem
#Sym-4Sat—the problem of counting satisfying assignment of symmetric formulas in 4CNF—is #P-hard. Recall that
a formula is in conjunctive normal form (CNF) if it is a conjunction of one or more clauses. When the clauses have 𝑘

literals, we say that the formula is in 𝑘CNF.
Then, we provide a polynomial time reduction from symmetric formulas 𝜙 in 4CNF into instances of the stochastic bin
packing problem such that

min
P

cost(P) = 5
2
− 2

2𝑛
−

𝑠𝜙

22𝑛 ,

where 𝑠𝜙 denotes the satisfying assignments of 𝜙, i.e., 𝑠𝜙 = |{x = (𝑥1, . . . , 𝑥𝑛) : 𝜙(x) = 1}|.
We now proceed to show the hardness of #Sym-4Sat.

Theorem B.1. #Sym-4Sat is #P-hard.

Proof. We show a reduction from the #P-hard problem #2Sat [55]. We symmetrize a formula 𝜙 by extending the
assignments x = (𝑥1, . . . , 𝑥𝑛) in one variable, namely 𝑥0. Let 𝜙 =

∧𝑚
𝑗=1 𝐶 𝑗 be a formula in 2CNF, i.e., each clause has

the form 𝐶 𝑗 = (ℓ1, 𝑗 ∨ ℓ2, 𝑗 ) where ℓ𝑖, 𝑗 ∈ {𝑥1, . . . , 𝑥𝑛, 𝑥1, . . . , 𝑥𝑛} for 𝑖 = 1, 2. Consider the formula

𝜙(𝑥0, x) = (𝑥0 ∧ 𝜙(x)) ∨ (𝑥0 ∧ 𝜙(x)).

Note that 𝜙 is symmetric but not yet in CNF. Also, note that 𝑠𝜙 = |{(𝑥0, x) : 𝜙(𝑥0, x) = 1}| = 2𝑠𝜙 . It remains to show
that we can transform 𝜙 into a symmetric 4CNF without altering the number of solutions. Using De Morgan’s law, we
rewrite the formula 𝜙 as

𝜙(𝑥0, x) = (𝑥0 ∨ 𝜙(x)) ∧ (𝑥0 ∨ 𝜙(x)) ∧ (𝜙(x) ∨ 𝜙(x))

=
©«𝑥0 ∨

𝑚∧
𝑗=1

𝐶 𝑗 (x)
ª®¬ ∧ ©«𝑥0 ∨

𝑚∧
𝑗=1

𝐶 𝑗 (x)
ª®¬ ∧ ©«

𝑚∧
𝑗=1

𝐶 𝑗 (x) ∨
𝑚∧
𝑗=1

𝐶 𝑗 (x)
ª®¬

=
©«

𝑚∧
𝑗=1

(𝑥0 ∨ 𝐶 𝑗 (x))
ª®¬︸                 ︷︷                 ︸

(I)

∧ ©«
𝑚∧
𝑗=1

(𝑥0 ∨ 𝐶 𝑗 (x))
ª®¬︸                 ︷︷                 ︸

(II)

∧ ©«
𝑚∧

𝑗 ,𝑘=1
𝐶 𝑗 (x) ∨ 𝐶𝑘 (x)

ª®¬︸                      ︷︷                      ︸
(III)

.
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The first two terms (I) and (II) are clearly 3CNF. We extend them into 4CNF by repeating the variable 𝑥0 or 𝑥0
accordingly. The last term (III) is already in 4CNF. We remove clauses that contain pairs ℓ ∨ ℓ since they are trivially
satisfied. �
Note that in the formula 𝜙, each variable appears at most twice in each clause, either as 𝑥 ∨ 𝑥 or 𝑥 ∨ 𝑥. This is going to
be utilized in the next proof.
Before going to the proof, and for the sake of explanation, we change the capacity of the bins to a capacity 𝐵 > 1, to
be defined later. This can be easily adjusted to our setting with capacity 1 by scaling down items sizes by the amount
𝐵. As we are going to see, it is clearer to introduce items > 1 than their fractional rescaled version.

B.1 Reduction #Sym-4Sat to Stochastic Bin Packing
The reduction is similar to the reduction from Partition-Problem to Bin-Packing. See [54] for an example. A similar
reduction is used in [19] in the context of multidimensional stochastic knapsack. Given a symmetric 4CNF 𝜙 with
variables 𝑥1, . . . , 𝑥𝑛 and clauses 𝐶1, . . . , 𝐶𝑚, we are going to construct a list of nonnegative random variables, that will
correspond to the input of the stochastic bin packing problem, that can be packed into two bins whenever the outcomes
of these random variable satisfy the 4CNF formula while in the opposite case, the number of bins requires is at least
three.
We are going to utilize numbers with at most 4𝑛 + 𝑚 digits in base 10. For convenience we assume that all number
have exactly 4𝑛 + 𝑚 digits by filling the unused corresponding significant digits with 0. Given a number with 4𝑛 + 𝑚

digits in base 10, we split its representation into four blocks. The first block corresponds to the digits it positions
10𝑖 · 10𝑛 · 102𝑛 · 10𝑚 for 𝑖 = 0, . . . , 𝑛 − 1. We refer to the first block as the variable block and their intra significant
digits as the variables digits. For instance, by variable digit 𝑥𝑖 we refer to the digit in location 10𝑛−𝑖 · 10𝑛 · 102𝑛 · 10𝑚.
The second block corresponds to digits at positions 10𝑖 · 102𝑛 · 10𝑚 for 𝑖 = 0, . . . , 𝑛 − 1. We refer to the second block
as the mirror variable block and its intra digits as mirror variable digits. By mirror digit 𝑥𝑖 we refer to the digit in
location 10𝑛−𝑖 · 102𝑛 · 10𝑚.
The third block corresponds to digits in positions 10𝑘 · 10𝑚 for 𝑘 = 0, . . . , 2𝑛 − 1. We refer to this block as the
equivalence block and we split its digits into pairs of digits that we refer as equivalence digits. The positive equivalent
digit 𝑥𝑖 refers to the digit in position 102𝑛−2𝑖+1 ·10𝑚 while the negative equivalence digit 𝑥𝑖 refers to the digit in position
102𝑛−2𝑖 · 10𝑚.
The last block corresponds to the digits at position 10 𝑗 for 𝑗 = 0, . . . , 𝑚 − 1. We refer to the this block as the clauses
block and its intra digits as clauses digits. By clause digit 𝐶 𝑗 we refer to the digit located at position 10𝑚− 𝑗 .
We set the capacity of the bins to be the number in base 10

𝐵 = 11 · · · 11︸    ︷︷    ︸
𝑛 1’s

| 11 · · · 11︸    ︷︷    ︸
𝑛 1’s

| 11 · · · 11︸    ︷︷    ︸
2𝑛 1’s

| 44 · · · 44︸    ︷︷    ︸
𝑚 4’s

.

We purposely separated the significant digits using the vertical bars “ | ” into the four aforementioned blocks.
For a formula 𝜙 in 4CNF we now present the reduction. For each variable 𝑖 = 1, . . . , 𝑛 we construct the following four
numbers 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 and 𝑑𝑖 in base 10. The first two number are

𝑎𝑖 = 1 0 · · · 0︸︷︷︸
𝑛−𝑖

| 00 · · · 00︸    ︷︷    ︸
𝑛

| 00 · · · 00︸    ︷︷    ︸
2𝑖−2

01 00 · · · 00︸    ︷︷    ︸
2𝑛−2𝑖

| 00 · · · 00︸    ︷︷    ︸
𝑚

𝑏𝑖 = 1 0 · · · 0︸︷︷︸
𝑛−𝑖

| 00 · · · 00︸    ︷︷    ︸
𝑛

| 00 · · · 00︸    ︷︷    ︸
2𝑖−2

10 00 · · · 00︸    ︷︷    ︸
2𝑛−2𝑖

| 00 · · · 00︸    ︷︷    ︸
𝑚

.

Number 𝑎𝑖 and 𝑏𝑖 have 4𝑛 − 𝑖 + 𝑚 + 1 digits. Both of them have a common digit 1 in variable digit 𝑥𝑖 . Moreover, 𝑎𝑖
has another digit 1 in negative equivalent digit 𝑥𝑖; and 𝑏𝑖 has a digit 1 in positive equivalence digit 𝑥𝑖 .
The following two numbers are

𝑐𝑖 = · · ·︸︷︷︸
no digits

| · · ·︸︷︷︸
no digits

1 0 · · · 0︸︷︷︸
𝑛−𝑖

| 00 · · · 00︸    ︷︷    ︸
2𝑖−2

10 00 · · · 00︸    ︷︷    ︸
2𝑛−2𝑖

| 00 · · · 0𝑐𝑘𝑖
𝑖

00 · · · 00︸                  ︷︷                  ︸
𝑚

𝑑𝑖 = · · ·︸︷︷︸
no digits

| · · ·︸︷︷︸
no digits

1 0 · · · 0︸︷︷︸
𝑛−𝑖

| 00 · · · 00︸    ︷︷    ︸
2𝑖−2

01 00 · · · 00︸    ︷︷    ︸
2𝑛−2𝑖

| 00 · · · 000𝑑𝑘𝑖
𝑖
· · · 00︸                  ︷︷                  ︸

𝑚

.
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Number 𝑐𝑖 and 𝑑𝑖 have 3𝑛− 𝑖+𝑚+1 digits, and note that we keep the separation between the blocks to emphasize where
the nonzero digits appear. In other words, the variable block is completely missing from 𝑐𝑖 and 𝑑𝑖 . Now, both number
𝑐𝑖 and 𝑑𝑖 have a common digit 1 in mirror variable digit 𝑥𝑖 (mirror numbers 𝑥𝑖′ with 𝑖′ < 𝑖 are also missing). The
number 𝑐𝑖 has digit 𝑐𝑘𝑖

𝑖
∈ {1, 2} in all clauses digits 𝐶𝑘𝑖 where literal 𝑥𝑖 appears; the number 𝑑𝑖 has digit 𝑑𝑘𝑖

𝑖
∈ {1, 2}

in all clauses digits where literal 𝑥𝑖 appears. The number 𝑐𝑖 has a digit 1 in positive equivalence digit 𝑥𝑖; and 𝑑𝑖 has a
digit 1 in negative equivalence digit 𝑥𝑖 .
For each clause 𝐶 𝑗 , 𝑗 = 1, . . . , 𝑚, we introduce three numbers 𝑓 𝑗 , 𝑔 𝑗 and ℎ 𝑗 that are going to serve as slacks:

𝑓 𝑗 = 𝑔 𝑗 = ℎ 𝑗 = · · ·︸︷︷︸
no digits

| · · ·︸︷︷︸
no digits

| · · ·︸︷︷︸
no digits

| · · ·︸︷︷︸
no digits

1 0 · · · 0︸︷︷︸
𝑚− 𝑗

.

The three numbers have a unique digit 1 at clause digit 𝐶 𝑗 and they completely miss the variable, mirror variable and
equivalence blocks.
Finally, we introduce a number needed for technical reasons:

ℎ = · · ·︸︷︷︸
no digits

| · · ·︸︷︷︸
no digits

| 11 · · · 11︸    ︷︷    ︸
𝑚

| 00 · · · 00︸    ︷︷    ︸
2𝑛

.

A pictorial construction of the numbers appears in Figure 6.

𝑥1 𝑥2 𝑥3 · · · 𝑥𝑛 𝑦1 𝑦2 𝑦3 · · · 𝑦𝑛 𝑥+1 𝑥−1 𝑥+2 𝑥−2 · · · 𝑥+𝑛 𝑥−𝑛 𝐶1 𝐶2 𝐶3 · · · 𝐶𝑚

𝑎1 1 0 0 · · · 0 0 0 0 · · · 0 0 1 0 0 · · · 0 0 0 0 0 · · · 0
𝑏1 1 0 0 · · · 0 0 0 0 · · · 0 1 0 0 0 · · · 0 0 0 0 0 · · · 0
𝑎2 1 0 · · · 0 0 0 0 · · · 0 0 0 0 1 · · · 0 0 0 0 0 · · · 0
𝑏2 1 0 · · · 0 0 0 0 · · · 0 0 0 1 0 · · · 0 0 0 0 0 · · · 0
𝑎3 1 · · · 0 0 0 0 · · · 0 0 0 0 0 · · · 0 0 0 0 0 · · · 0
𝑏3 1 · · · 0 0 0 0 · · · 0 0 0 0 0 · · · 0 0 0 0 0 · · · 0
.
.
.

. . .
.
.
.

.

.

.
.
.
.

𝑎𝑛 1 0 0 0 · · · 0 0 0 0 0 · · · 0 1 0 0 0 · · · 0
𝑏𝑛 1 0 0 0 · · · 0 0 0 0 0 · · · 1 0 0 0 0 · · · 0
𝑐1 1 0 0 · · · 0 1 0 0 0 · · · 0 0 2 0 0 · · · 0
𝑑1 1 0 0 · · · 0 0 1 0 0 · · · 0 0 0 1 1 · · · 0
𝑐2 1 0 · · · 0 0 0 1 0 · · · 0 0 1 1 0 · · · 0
𝑑2 1 0 · · · 0 0 0 0 1 · · · 0 0 0 0 0 · · · 0
𝑐3 1 · · · 0 0 0 0 0 · · · 0 0 0 0 1 · · · 0
𝑑3 1 · · · 0 0 0 0 0 · · · 0 0 1 2 0 · · · 0
.
.
.

. . .
.
.
.

.

.

.

𝑐𝑛 1 0 0 0 0 · · · 1 0 0 0 1 · · · 0
𝑑𝑛 1 0 0 0 0 · · · 0 1 0 0 0 · · · 2
𝑓1 1 0 0 · · · 0
𝑔1 1 0 0 · · · 0
ℎ1 1 0 0 · · · 0
𝑓2 1 0 · · · 0
𝑔2 1 0 · · · 0
ℎ2 1 0 · · · 0
.
.
.

. . .

𝑓𝑚 1
𝑔𝑚 1
ℎ𝑚 1
ℎ 1 1 1 · · · 1
𝐵 1 1 1 · · · 1 1 1 1 · · · 1 1 1 1 1 · · · 1 1 4 4 4 · · · 4

Figure 6: Construction of numbers via 𝜙 4CNF. The table is purposely divided into four blocks representing
the digit blocks defined at the beginning of the subsection. The instance showed corresponds partially to the
4CNF 𝜙(𝑥1, . . . , 𝑥𝑛) = (𝑥1∨𝑥1∨𝑥2∨𝑥3)∧(𝑥1∨𝑥2∨𝑥3∨𝑥3)∧(𝑥1∨∨𝑥3∨𝑥4∨𝑥𝑛)∧· · ·∧(𝑥𝑛−2∨𝑥𝑛−1∨𝑥𝑛∨𝑥𝑛),
where clauses are 𝐶1, 𝐶2, 𝐶3, . . . , 𝐶𝑚 in the order they are displayed.

Given these number, we construct an instance of the stochastic bin packing problem as follows. We define the following
independent random variables

𝑋𝑖 =

{
𝑎𝑖 w.p. 1/2
𝑏𝑖 w.p. 1/2

and 𝑋 ′
𝑖 =

{
𝑎𝑖 w.p. 1/2
𝑏𝑖 w.p. 1/2

.
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Now the instance is given by the sequence

L𝜙 = (𝑋1, 𝑋
′
1, 𝑋2, 𝑋

′
2, 𝑋3, 𝑋

′
3, . . . , 𝑋𝑛, 𝑋

′
𝑛, 𝑐1, 𝑑1, 𝑐2, 𝑑2, . . . , 𝑐𝑛, 𝑑𝑛, ℎ1, 𝑔1, . . . , ℎ𝑚, 𝑔𝑚, ℎ).

Intuitively, we aim to simulate the random evaluation of 𝜙 when the values of 𝑥1, . . . , 𝑥𝑛 are chosen uniformly and
independently of each other. Note that in this case,

Px∈𝑅 {0,1}𝑛 (𝜙(x) = 1) =
𝑠𝜙

2𝑛
.

Note that in instance L𝜙 , any policy incurs in a cost of at least 2 since 𝑋1 and 𝑋 ′
1 if packed together incur in an expected

cost of at least 2. This is because 𝐶 > 2. As we did in the main body of the article, we can assume that the policies
are deterministic. Moreover, we can assume that policies never break a bin since the expected cost of breaking a bin is
always greater than 1. This is because the probability of overflow always is either 0, 1/2 or 1 by construction of L𝜙 .

Theorem B.2. For the instance L𝜙 we have

min
P

cost(P) = 5
2
− 2

2𝑛
− 1

2𝑛
Px∈{0,1}𝑛 (𝜙(x) = 1).

Proposition B.3. For the instance L𝜙 there is a policy with cost(P) ≤ 3. Moreover, for any of such policies, there is
a policy with same cost or better that packs items 𝑋1, . . . , 𝑋𝑛 into bin 1 and items 𝑋 ′

1, . . . , 𝑋
′
𝑛 into bin 2.

Proof. Consider the policy that packs item 𝑋1 into bin 1; item 𝑋 ′
1 into bin 2; the rest of the items into bin 3. This

policy is valid since
𝑛∑︁
𝑖=2

(𝑋𝑖 + 𝑋 ′
𝑖 ) +

𝑛∑︁
𝑖=1

(𝑐𝑖 + 𝑑𝑖) +
𝑚∑︁
𝑗=1

(ℎ 𝑗 + 𝑔 𝑗 ) + ℎ ≤ 𝐵.

This proves the first part of the proposition.
For the second part, consider any policy P with cost at most 3 that does not break any bin. We can assume, without
loss of generality, that 𝑋1 is packed into bin 1 and 𝑋 ′

1 is packed into bin 2. Now, starting at the root of the policy tree,
find the first node 𝑢 where 𝑋𝑖 is not packed in bin 1, say bin 𝑗 ≥ 2. Note that up to that point, items 𝑋 ′

𝑘
must have

been packed in a different bin than bin 1. If both children of 𝑢 are packed into bin 1, that is, 𝑋 ′
𝑖

is packed into bin 1,
then exchange the packing rule in node 𝑢 by packing 𝑋𝑖 into bin 1 and in its children to pack item 𝑋 ′

𝑖
into bin 𝑗 . This

does not change the cost since 𝑋𝑖 and 𝑋 ′
𝑖

are identically distributed. Suppose now that some of the children of node
𝑢 packs item 𝑋 ′

𝑖
into bin 𝑗 ′ ≠ 1, say children 𝑣. At this point, there is enough space in bin 1 to receive 𝑋 ′

𝑖
since 𝑋𝑖

was packed into bin 𝑗 ≥ 2. In the subtree rooted at 𝑣, mark all nodes that pack their corresponding item into bin 1.
Exchange the packing rule from these node to pack their items into bin 𝑗 ′ and change the policy to pack item 𝑋 ′

𝑖
in

node 𝑣 from bin 𝑗 ′ to bin 1. This does not increase the cost of the policy. With this, we can modify the policy to pack
𝑋 ′
𝑖

in both children of node 𝑢 into bin 1 without increasing the expected cost. Now, like in the previous case, we can
pack item 𝑋𝑖 into bin 1 and item 𝑋 ′

𝑖
into bin 𝑗 ≥ 2. We can repeat this procedure for all 𝑖 and at the end of this, we can

ensure that all 𝑋1, . . . , 𝑋𝑛 are packed into bin 1 and the cost of the policy does not increase. With a similar argument,
we show that items 𝑋 ′

1, . . . , 𝑋
′
𝑛 can be packed into bin 2 without increasing the cost of the policy. From the root, find

the first node 𝑢′ where 𝑋 ′
𝑖

is not packed into bin 2, say bin 𝑗 . Note that 𝑗 cannot be 1 since we already have that 𝑋𝑖 has
been packed into bin 1 and both random variables share the same variable digit 𝑥𝑖 . Then, 𝑗 ≥ 3. In the subtree rooted
at 𝑢′ mark all items that are packed into bin 2. Repack those items into bin 𝑗 and pack 𝑋 ′

𝑖
into bin 2. This does not

increase the cost of the policy since we have enough space in bin 𝑗 to receive any item in there if needed. Repeating
this procedures for all 𝑖 gives us the desired result. �
Consider the following three events: Let

E = {∀𝑖 = 1, . . . , 𝑛 : 𝑋𝑖 ≠ 𝑋 ′
𝑖 },

then P(E) = 1
2𝑛 . Let

E𝑎 = {∃𝑖 = 1, . . . , 𝑛 : ∀𝑘 < 𝑖, 𝑋𝑘 ≠ 𝑋 ′
𝑘 , 𝑋𝑖 = 𝑋 ′

𝑖 = 𝑎𝑖} and E𝑏 = {∃𝑖 = 1, . . . , 𝑛 : ∀𝑘 < 𝑖, 𝑋𝑘 ≠ 𝑋 ′
𝑘 , 𝑋𝑖 = 𝑋 ′

𝑖 = 𝑏𝑖}.

Note that E𝑎 and E𝑏 are disjoint and E𝑎 ∪ E𝑏 = E. Intuitively, E is the good event where the variables 𝑋𝑖 and 𝑋 ′
𝑖

model opposite values in {𝑎𝑖 , 𝑏𝑖}.
We denote by cost(P | A) the conditional expected cost of the policy P on the event A.
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Proposition B.4. For any policy P we have cost(P | E𝑏) ≥ 3.

Proof. Note that given E𝑏 we have (assuming the collision occurs at 𝑖, 𝑋𝑖 = 𝑋 ′
𝑖
= 𝑏𝑖) we have

𝑛∑︁
𝑖=1

(𝑋𝑖 + 𝑋 ′
𝑖 + 𝑐𝑖 + 𝑑𝑖) +

𝑚∑︁
𝑗=1

(ℎ 𝑗 + 𝑔 𝑗 ) + ℎ ≥ 22 · · · 22 | 22 · · · 22 | 22 · · · 22︸    ︷︷    ︸
2𝑖−2

311 · · · 11 | 88 · · · 88 > 2𝐵

where 𝐵 is the bin’s capacity. Therefore, since we are assuming that P does not break bins, then the policy must have
packed all the items into at least 3 bins which concludes the proof. �

Proposition B.5. For any policy P that packs items 𝑋1, . . . , 𝑋𝑛 into bin 1 and items 𝑋 ′
1, . . . , 𝑋

′
𝑛 into bin 2 and does

not break any bin, we have cost(P | E) ≥ 3 − Px∈𝑅 {0,1}𝑛 (𝜙(x) = 1).

Proof. Consider the following random assignment X = (𝑥1, . . . , 𝑥𝑛):

𝑥𝑖 =

{
1 if 𝑋𝑖 = 𝑎𝑖

0 if 𝑋𝑖 = 𝑏𝑖
.

Note that X is uniformly distributed over {0, 1}𝑛. Then, cost(P | E, 𝜙(X) = 0) ≥ 3. Indeed, if only 2 bins have
been used after all items have been packed, this forces item 𝑐𝑖 to be placed in bin 1 if 𝑋𝑖 = 𝑎𝑖 and in bin 2 otherwise,
while 𝑑𝑖 is packed in the opposite bin to 𝑐𝑖 . Since 𝜙(X) = 0 = 𝜙(X) by symmetry of 𝜙, then, after packing items
𝑐1, 𝑑1, . . . , 𝑐𝑛, 𝑑𝑛 but before packing items 𝑓1, 𝑔1, ℎ1, . . . , 𝑓𝑚, 𝑔𝑚, ℎ𝑚, there must be a 𝐶 𝑗 digit in the utilization of bin
1 that is 0 and a 𝐶 𝑗′ digit in the utilization of bin 2 that is also 0, 𝑗 ≠ 𝑗 ′. In particular, this implies that the usage of
bin 2 at this point has a 𝐶 𝑗 -digit of 4. After packing items 𝑓1, 𝑔1, ℎ1, . . . , 𝑓𝑚, 𝑔𝑚, ℎ𝑚, one of the bins must have a 4 in
its 𝐶1-digit of usage, say bin 1. Therefore, bin 2 has a usage with 𝐶1-digit 3 and item ℎ cannot be packed into bin 1.
Since E is given, we have

∑𝑛
𝑖=1 (𝑋𝑖 + 𝑋 ′

𝑖
) + ∑𝑛

𝑖=1 (𝑐𝑖 + 𝑑𝑖) +
∑𝑚

𝑗=1 ( 𝑓 𝑗 + 𝑔 𝑗 + ℎ 𝑗 ) + ℎ = 2𝐵, then ℎ can be packed into
bin 2 only if all 𝐶1, . . . , 𝐶𝑚-digits are 3. However, this contradicts the fact that 𝐶 𝑗 -digit in bin 2 is 4. Similarly, if the
bin 2 has usage with 𝐶1-digit of 4 after packing items 𝑓1, 𝑔1, ℎ1, . . . , 𝑓𝑚, 𝑔𝑚, ℎ𝑚, we can obtain the same contradiction.
Therefore, cost(P | E, 𝜙(X) = 0) ≥ 3.
Now,

cost(P | E) ≥ 3 P(𝜙(X) = 0 | E) + 2 P(𝜙(X) = 1 | E) = 3 − P(𝜙(X) = 1 | E) = 3 − Px∈𝑅 {0,1}𝑛 (𝜙(x) = 1).

�

Lemma B.6. For any policy P, cost(P) ≥ 5
2 − 3

2𝑛 − 1
2𝑛 Px∈𝑅 {0,1}𝑛 (𝜙(x) = 1).

Proof. We can assume that the policy P packs items 𝑋1, . . . , 𝑋𝑛 into bin 1 while items 𝑋 ′
1, . . . , 𝑋

′
𝑛 into bin 2 (see

Proposition B.3). Then, utilizing Propositions B.4 and B.5 we obtain

cost(P) ≥
(
3 − Px∈𝑅 {0,1}𝑛 (𝜙(x) = 1)

)
P(E) + 3 P(E𝑏) + 2 P(E𝑎)

=
5
2

(
1 − 1

2𝑛

)
+ 1

2𝑛
(
3 − Px∈𝑅 {0,1}𝑛 (𝜙(x) = 1)

)
=

5
2
− 2

2𝑛
− 1

2𝑛
Px∈𝑅 {0,1}𝑛 (𝜙(x) = 1).

�

Lemma B.7. There is a policy P such that cost(P) ≤ 5
2 − 2

2𝑛 − 1
2𝑛 Px∈𝑅 {0,1}𝑛 (𝜙(x) = 1).

Proof. Consider the following policy. Start packing items 𝑋1, . . . , 𝑋𝑛 into bin 1 and items 𝑋 ′
1, . . . , 𝑋

′
𝑛 into bin 2. If

there is a collision 𝑋𝑖 = 𝑋 ′
𝑖

and the first of these is 𝑋𝑖 = 𝑋 ′
𝑖
= 𝑏𝑖 , then pack the rest of the items into bin 3; While if the

first of these collisions is 𝑋𝑖 = 𝑋 ′
𝑖
= 𝑎𝑖 , then continue packing as follows. Pack 𝑐𝑖′ where 𝑎𝑖′ is packed and 𝑑𝑖′ where

𝑏𝑖′ is packed for 𝑖′ < 𝑖. Pack 𝑐𝑖 into bin 1 and 𝑑𝑖 into bin 2. Pack the remaining 𝑐𝑖′ into bin 1 and 𝑑𝑖′ into bin 2. Since 𝑖
is the first time there is a collision, bin 2 has a 0 in its positive equivalent digit 𝑥𝑖 and a 2 in its negative equivalent digit
𝑥𝑖 . Therefore it has enough space to receive the items packed after 𝑑𝑖′ has been packed. Then only 2 bins are utilized.
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If no collision happens, then pack 𝑐𝑖 where outcome 𝑎𝑖 is packed (bin 1 if 𝑋𝑖 = 𝑎𝑖 or bin 2 if 𝑋 ′
𝑖
= 𝑎𝑖) and pack 𝑑𝑖 in

the opposite bin (bin 2 if 𝑐𝑖 is in bin 1 bin 1 otherwise). Now, utilize the slack items 𝑓 𝑗 , 𝑔 𝑗 , ℎ 𝑗 to complete bin 1 and
then bin 2. Now, for ℎ there are two cases based on the value of 𝜙 on the satisfying assignment x given by

𝑥𝑖 =

{
1 if 𝑋𝑖 = 𝑎𝑖

0 if 𝑋𝑖 = 𝑏𝑖
.

• If 𝜙(x) = 1, then in bin 2, each 𝐶 𝑗 digit of the capacity used is at most 3. This is because the 𝐶 𝑗 digit of the capacity
used bin 1 is 4 by construction. Now, pack ℎ into bin 2 and finish the packing into 2 bins.

• If 𝜙(x) = 0, we can retrace the proof of Proposition B.5 to show that in this case, ℎ cannot fit nor in bin 1 nor in 2,
therefore forcing a bin 3.

Putting all these case together, we obtain

cost(P) = cost(P | E) P(E) + cost(P | E𝑎) P(E𝑎) + cost(P | E𝑏) P(E𝑏)

=
(
3 − Px∈𝑅 {0,1}𝑛 (𝜙(x) = 1)

) 1
2𝑛

+ 5
2

(
1 − 1

2𝑛

)
=

5
2
− 2

2𝑛
− 1

2𝑛
Px∈{0,1}𝑛 (𝜙(x) = 1).

�
Putting together Lemma B.6 and B.7 we obtain the proof of Theorem B.2.

C Threshold Policies for I.I.D. Random Variables with Finite Support
In this section we discuss the problem of designing a threshold algorithm that incurs in a constant factor loss whenever
the input sequence is i.i.d. (with common distribution D) with unknown time horizon 𝑛. A threshold algorithm
observes the common random distribution of the incoming streams and computes a number 𝛼 ∈ [0, 1] such that bins
are utilized as long as their usage is at most 𝛼. If there are no such bins, then a new bin is opened upon an arrival. Note
that in the i.i.d. setting, for threshold policies of this kind, at most one bin is kept active at a time.
We show that among all policies that keep at most one bin active at a time, threshold policies are optimal up to an
additive loss of one. This is under the assumption that the common distribution D has finite support.

Theorem C.1. Let D be any distribution with finite support in [0,∞). There exists 𝛼 ∈ [0, 1] such that the threshold
policy P𝛼 with threshold 𝛼 satisfies

cost(P𝛼) ≤ min
P has at most
one active bin

cost(P) + 1,

for any input sequence of i.i.d. random variables 𝑋1, . . . , 𝑋𝑛 with common distribution D.

Note that policy P𝛼 is computed only with the information given by the distribution D. An online algorithm that has
access to D computes the threshold 𝛼 given in Theorem C.1 and implements the threshold policy. In the main body
of the paper we show that Budgeted Greedy keeps at most one bin active at a time in the i.i.d. setting (Lemma 4.3).
Therefore, policies that keep at most one bin active at a time are within a constant factor of the optimal offline sequential
cost. Using these facts, we conclude that an algorithm implementing a threshold policy incurs an expected cost that is
a constant factor of the optimum. This factor is at most (3 + 2

√
2), since we utilized the guarantee given by Budgeted

Greedy (Theorem 1.2).
A major downside of Theorem C.1 is that it does not give an efficient algorithm to compute the threshold 𝛼. Indeed,
for the proof of Theorem C.1, we utilize the framework of discounted reward Markov processes (see [47]), which can
compute optimal stationary policies in time depending on the size of the state space. For us, the state space is the
usage of the active bin, which can be exponentially large in the description of D. Intuitively, since we aim to compute
a policy that does not depend on the time horizon 𝑛 and we only have one bin to use, the best we can do is to repeat the
same process over and over.
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C.1 Proof of Theorem C.1
The proof is divided in a sequence of propositions. We briefly introduce the definitions used in infinite-time horizon
discounted Markov decision processes. We later show that the optimal discounted cost induces a monotonic cost vector.
From here, a threshold policy can be deduced which is later used to design a finite-time threshold policy.
We assume that the distribution D has finite support in [0, 1] ∪ {1+} where the element 1+ denotes a fixed upper bound
over the values in [0, 1] and any value that D could have taken above 1 with positive probability is mapped to 1+. The
state space, denoted S corresponds to all possible values ≤ 1 that the bin can take as combinations of number in the
support of D in addition to the special state 1+. Note that S is a finite set.
Fix a discount factor 𝛾 ∈ (0, 1). In the infinite time-horizon discounted factor framework, a policy corresponds to a
sequence of functions (or distributions if randomized) Π = (𝜋1, 𝜋2, . . .) that dictates the behavior of the process. That
is, 𝜋𝑡 : S → {0, 1} is the decision made by the policy at round 𝑡, where 0 indicates keep using the current bin while 1
indicates open a new bin, all this as a function of the state of the system. If 𝜋𝑡 is random, then 𝜋𝑡 : S → Δ({0, 1}),
whereΔ({0, 1}) is the probability simplex over {0, 1}. We define the discounted cost of the policyΠ at time 𝑡 = 1, 2, . . .
by

𝑉Π
𝑡 (𝑠) =

{
1 + 𝐶 P(𝑋 > 1) + 𝛾 E[𝑉Π

𝑡+1 (𝑋 ∧ 1+)] 𝜋𝑡 (𝑠) = 0
𝐶 P(𝑋 + 𝑠 > 1) + 𝛾 E[𝑉Π

𝑡+1 ((𝑋 + 𝑠) ∧ 1+)] 𝜋𝑡 (𝑠) = 1
.

Let

𝑐(𝑠, 𝑎) =
{
𝐶 · P(𝑋 + 𝑠 > 1) 𝑎 = 0
1 + 𝐶 · P(𝑋 > 1) 𝑎 = 1

and 𝑇 (𝑠, 0) = (𝑋 + 𝑠) ∧ 1+; 𝑇 (𝑠, 1) = 𝑋 ∧ 1+. We can write 𝑉Π
𝑡 (𝑠) = 𝑐(𝑠, 𝜋(𝑠)) + 𝛾 E[𝑉Π

𝑡+1 (𝑇 (𝑠, 𝜋(𝑠)))].
If 𝜋𝑡 are randomized then the previous values are replaced by expectations. The goal is to find minΠ𝑉Π

1 (0). Markov
Decision processes theory guarantees that this minimum is also a minimum over the history dependent randomized
policies—policies that record previous outcomes. Moreover, the optimal policy for minΠ𝑉Π

1 (0) is also the optimal
policy for minΠ𝑉Π

1 (𝑠) for any 𝑠 ∈ S. The theory also guarantees that deterministic stationary policies are optimal. That
is, minΠ𝑉Π

1 (𝑠) = min𝜋 𝑉
(𝜋,𝜋,...)
1 (𝑠). From now on, we only consider deterministic policies. By 𝑉 𝜋

𝑡 we refer to 𝑉Π
𝑡

where Π = (𝜋, 𝜋, . . .). Note that 𝑉 𝜋
1 (𝑠) = 𝑉 𝜋

2 (𝑠) = · · · and so we can identify the temporal cost vector (𝑉 𝜋
𝑡 (𝑠)) 𝑠∈S

𝑡=1,2,...
by just the vector 𝑉 𝜋 = (𝑉 𝜋 (𝑠))𝑠∈S. The optimal vector 𝑉 𝜋 satisfies the Bellman equation 𝑉 = T 𝛾𝑉 , where

(T 𝛾𝑉) (𝑠) = min{1 + 𝐶 P(𝑋 > 1) + 𝛾 E[𝑉 (𝑋 ∧ 1+)], 𝐶 P(𝑋 + 𝑠 > 1) + 𝛾 E[𝑉 ((𝑋 + 𝑠) ∧ 1+)]}
= min

𝑎=0,1
{𝑐(𝑠, 𝑎) + 𝛾 E[𝑉 (𝑇 (𝑠, 𝑎))]}.

Therefore, 𝑉 𝜋 is the fixed point of the Bellman operator T 𝛾 . For a detailed presentation of these results, see Chapter
6 in [47].

Proposition C.2. Consider the optimal solution 𝑉 𝜋 of the discounted cost problem. Then 𝑉 𝜋 is a monotone function
of 𝑠. That is, 𝑉 𝜋 (𝑠′) ≤ 𝑉 𝜋 (𝑠′′) for any 0 ≤ 𝑠′ ≤ 𝑠′′ ≤ 1+ .

Proof. By contradiction, suppose that for some 𝑠′ < 𝑠′′ we have 𝑉 𝜋 (𝑠′) > 𝑉 𝜋 (𝑠′′). Among all such possible pairs
𝑠′ < 𝑠′′ choose the largest 𝑠′ ≤ 1, which exists because S is finite. Define the new function �̂�1 as �̂�1 (𝑠) = 𝜋(𝑠) if 𝑠 ≠ 𝑠′

and �̂�1 (𝑠′) = 𝜋(𝑠′′). For 𝑡 ≥ 2 we define �̂�𝑡 = 𝜋. Now consider the policy Π̂ = (�̂�1, �̂�2, . . .). Then, using the definition
of 𝑉 Π̂

1 we can show that 𝑉 Π̂ (𝑠) = 𝑉 𝜋 (𝑠) for 𝑠 ≠ 𝑠′. Now, let’s analyze the case 𝑠 = 𝑠′. Observe that

𝑐(𝑠′, 𝜋(𝑠′′)) ≤ 𝑐(𝑠′′, 𝜋(𝑠′′))

since 𝑠′ < 𝑠′′ and the function 𝑐(·, 𝑎) is nondecreasing for any fixed 𝑎. Then, we have two cases:

• If 𝜋(𝑠′′) = 0, then as 𝑠′ is the largest state where monotonicity does not hold, we have

𝑉 Π̂
1 (𝑠′) = 𝑐(𝑠′, 𝜋1 (𝑠′)) + 𝛾 E[𝑉 Π̂

2 (𝑇 (𝑠′, 𝜋1 (𝑠′)))]

= 𝑐(𝑠′, 0) + 𝛾 E[𝑉 (𝜋,...)
2 ((𝑋 + 𝑠′) ∧ 1+))] (𝜋1 (𝑠′) = 𝜋(𝑠′′) = 0)

≤ 𝑐(𝑠′′, 0) + 𝛾 E[𝑉 𝜋 ((𝑋 + 𝑠′) ∧ 1+)] (𝑉 (𝜋,...)
2 = 𝑉 𝜋 and monotonicity of 𝑐(·, 0))
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= 𝑐(𝑠′′, 0) + 𝛾 P(𝑋 = 0)𝑉 𝜋 (𝑠′) + 𝛾 E[𝑉 ((𝑋 + 𝑠′) ∧ 1+) | 𝑋 > 0] P(𝑋 > 0)
≤ 𝑐(𝑠′′, 0) + 𝛾 P(𝑋 = 0)𝑉 𝜋 (𝑠′) + 𝛾 E[𝑉 ((𝑋 + 𝑠′′) ∧ 1+) | 𝑋 > 0] P(𝑋 > 0)

(As 𝑠′ is the largest value where monotonicity does not hold)
≤ 𝑐(𝑠′′, 0) + 𝛾 P(𝑋 = 0) (𝑉 𝜋 (𝑠′) −𝑉 𝜋 (𝑠′′)) + 𝛾 E[𝑉 𝜋 ((𝑋 + 𝑠′′) ∧ 1+)]
= 𝑉 𝜋 (𝑠′′) + 𝛾 P(𝑋 = 0) (𝑉 𝜋 (𝑠′) −𝑉 𝜋 (𝑠′′))
= 𝛾 P(𝑋 = 0)𝑉 𝜋 (𝑠′) + (1 − 𝛾 P(𝑋 = 0))𝑉 𝜋 (𝑠′′)
< 𝛾 P(𝑋 = 0)𝑉 𝜋 (𝑠′) + (1 − 𝛾 P(𝑋 = 0))𝑉 𝜋 (𝑠′) (Since 𝑉 𝜋 (𝑠′) > 𝑉 𝜋 (𝑠′′))
= 𝑉 𝜋 (𝑠′).

• Similarly, if 𝜋(𝑠′′) = 1, then,

𝑉 Π̂
1 (𝑠′) = 𝑐(𝑠′, 𝜋1 (𝑠′)) + 𝛾 E[𝑉 Π̂

2 (𝑇 (𝑠′, 𝜋1 (𝑠′)))]
= 𝑐(𝑠′, 1) + 𝛾 E[𝑉 𝜋 (𝑋 ∧ 1+)]
≤ 𝑐(𝑠′′, 1) + 𝛾 E[𝑉 𝜋 (𝑋 ∧ 1+)]
= 𝑉 𝜋 (𝑠′′)
< 𝑉 𝜋 (𝑠′).

In any case, 𝑉 Π̂ (𝑠′) < 𝑉 𝜋 (𝑠′), which contradicts the optimality of 𝜋. �
The following result states that the optimal policy of the discounted cost problem is a threshold policy.

Proposition C.3. For the optimal𝑉 𝜋 , there exists 𝛼 ∈ [0, 1] such that the stationary policy �̃�(𝑠) = 0 if 𝑠 ≤ 𝛼; �̃�(𝑠) = 1
if 𝑠 > 𝛼, holds 𝜋 = �̃�.

Proof. Let 𝐸 = {𝑠 ∈ S : 𝑉 𝜋 (𝑠) < 1 + 𝐶 P(𝑋 > 1) + 𝛾 E[𝑉 𝜋 (𝑋 ∧ 1+)]} be the states where the policy 𝜋 decides to
utilize the current bin. Note that 0 ∈ 𝐸 , hence 𝛼 = sup 𝐸 is well-defined. Also, note that for 𝑠 = 1+ we have

1 + 𝐶 P(𝑋 > 1) + 𝛾 E[𝑉 𝜋 (𝑋 ∧ 1+)] ≤ 𝐶 P(𝑋 + 1+ > 1) + 𝛾 E[𝑉 𝜋 ((𝑋 + 1+) ∧ 1+)],

thus 𝛼 < 1+. Using the monotonicity of 𝑉 𝜋 , we have 𝐸 = [0, 𝛼].
By definition of 𝛼 we have that for any 𝑠 > 𝛼, 𝑉 𝜋 (𝑠) ≥ 1 +𝐶 P(𝑋 > 1) + 𝛾 E[𝑉 𝜋 (𝑋 ∧ 1+)]. This immediately implies
that for any 𝑠 > 𝛼, 𝑉 𝜋 (𝑠) = 1 +𝐶 P(𝑋 > 1) + 𝛾 E[𝑉 𝜋 (𝑋 ∧ 1+)]. Since 𝑉 𝜋 (·) is monotone, then for any 𝑠 ≤ 𝛼 we have
𝑉 𝜋 (𝑠) = 𝐶 P(𝑋 + 𝑠 > 1) + 𝛾 E[𝑉 𝜋 ((𝑋 + 𝑠) ∧ 1+)]. This shows that 𝜋 is indeed �̃�. �
Note that in this discounted cost model we did not restrict the possible actions when the usage of the bin goes beyond
1, i.e, in state 1+. The optimality and monotonicity of the optimal value 𝑉 𝜋 shows that the optimal policy never tries
to utilize the overflowed bin again and it will always choose to open a new bin.
We now return, to our model without discounted cost. We prove Theorem C.1. We show that, up to an additive factor
of +1, the optimal policy that uses one bin at a time is a threshold policy. We refer to policies in our model by letters
P while policies in the discounted model by Greek letters 𝜋 and so on.
Proof of Theorem C.1. Note that policies in our model are always defined to open a new bin at time 1. We modify
this by assuming that at time 1 the bin is already given and we will charge this additional cost of +1 separately.
For 𝛾 ∈ (0, 1) we denote by 𝜋𝛾 the optimal threshold policy of the discounted cost problem with discount factor 𝛾.
Note that 𝜋 : S → {0, 1} and the set of function from S to {0, 1} is finite. As 𝛾 → 1, there is an optimal policy 𝜋 that
repeats infinitely often in the sequence (𝜋𝛾)𝛾 . We take a subsequence of 𝛾𝑘 ∈ (0, 1), 𝛾𝑘 → 1 as 𝑘 → ∞, such that
𝜋𝑘 � 𝜋𝛾𝑘 = 𝜋. By the previous proposition, we can assume that 𝜋𝑘 is a threshold policy with threshold 𝛼 ∈ [0, 1].
Now, we recursively expand 𝑉 𝜋 (𝑠0) to obtain

𝑉 𝜋 (𝑠0) = E
[
𝑐(𝑠0, 𝜋(𝑠0)) + 𝛾𝑘𝑐(𝑠1, 𝜋(𝑠1)) + · · · + 𝛾𝑛−1

𝑘 𝑐(𝑠𝑛−1, 𝜋(𝑠𝑛)) + 𝛾𝑛𝑘𝑉
𝜋 (𝑠𝑛)

]
where 𝑠𝑖 = 𝑇 (𝑠𝑖−1, 𝜋(𝑠𝑖−1)) is the 𝑖-th state obtained by the policy. By setting 𝑠0 = 0 and using the monotonicity of
𝑉 𝜋 , we obtain

𝑛−1∑︁
𝑖=0

𝛾𝑖𝑘 E[𝑐(𝑠𝑖 , 𝜋(𝑠𝑖))] ≤
(
1 − 𝛾𝑛𝑘

)
𝑉 𝜋 (0). (3)
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Let us define the policy P𝛼 that only uses one bin at a time and follows the actions of 𝜋 at every time step. Then it is
easy to see that

cost(P𝛼) = 1 +
𝑛−1∑︁
𝑖=0

E[𝑐(𝑠1, 𝜋(𝑠𝑖))] = 1 + lim
𝑘→∞

𝑛∑︁
𝑖=0

𝛾𝑖𝑘 E[𝑐(𝑠𝑖 , 𝜋(𝑠𝑖))] ≤ 1 + lim
𝑘→∞

(1 − 𝛾𝑛𝑘 )𝑉
𝜋 (0). (4)

Where in the last inequality we utilized inequality (3).
Next, by optimality of 𝜋, we have 𝑉 𝜋 (0) ≤ 𝑉Π

1 (0) for any Π = (𝜋1, 𝜋2, . . .). Let P̂ be the optimal sequential
packing policy of 𝑋1, 𝑋2, . . . , 𝑋𝑛 that always keeps at most one bin active at a time. For 𝑡 = 1, . . . , 𝑛, consider
the functions �̂�𝑡 (𝑠) = 0 if P(𝑠) uses the current bin and �̂�𝑡 (𝑠) = 1 otherwise. Now, consider the policy Π̂ =

(�̂�1, . . . , �̂�𝑛, �̂�1, . . . , �̂�𝑛, . . .) that repeats cyclically the actions of P̂. Then, as before we can expand the recursion and
write

𝑉 Π̂
1 (0) =

𝑛−1∑︁
𝑖=1

𝛾𝑖𝑘 E[𝑐(𝑠𝑖 , �̂�𝑖+1 (𝑠𝑖))] + 𝛾𝑛𝑘 E[𝑉 Π̂
𝑛+1 (𝑠𝑛−1, �̂�𝑛 (𝑠𝑛−1))]

=

𝑛−1∑︁
𝑖=0

𝛾𝑖𝑘 E[𝑐(𝑠𝑖 , �̂�𝑖+1 (𝑠𝑖))] + 𝛾𝑛𝑘 E[𝑉 Π̂
1 (𝑠𝑛)]

≤
𝑛−1∑︁
𝑖=0

𝛾𝑖𝑘 E[𝑐(𝑠𝑖 , �̂�𝑖+1 (𝑠𝑖))] + 𝛾𝑛𝑘 (𝑉
Π̂
1 (0) + 1)

where the last inequality can be shown by optimality of P. Then

(1 − 𝛾𝑛𝑘 )𝑉
Π̂
1 (0) ≤ 𝛾𝑛𝑘 +

𝑛−1∑︁
𝑖=0

𝛾𝑖𝑘 E[𝑐(𝑠𝑖 , �̂�𝑖+1 (𝑠𝑖))] . (5)

Moreover,

cost(P̂) = 1 +
𝑛−1∑︁
𝑖=0

E[𝑐(𝑠𝑖 , �̂�𝑖+1 (𝑠𝑖))], (6)

and then we obtain

cost(P𝛼) ≤ lim
𝑘→∞

(1 − 𝛾𝑛𝑘 )𝑉
𝜋 (0) (By (4))

≤ lim
𝑘→∞

(1 − 𝛾𝑛𝑘 )𝑉
Π̂
1 (0) (Optimality of 𝜋)

≤ 1 + lim
𝑘→∞

𝑛−1∑︁
𝑖=0

𝛾𝑖𝑘 E[𝑐(𝑠𝑖 , 𝜋𝑖+1 (𝑠𝑖))] + 𝛾𝑛𝑘 (By (5))

= 1 +
𝑛−1∑︁
𝑖=0

E[𝑐(𝑠𝑖 , 𝜋𝑖+1 (𝑠𝑖))] + 1

= cost(P) + 1. (By (6))

�
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