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1. Introduction.

Models of dynamic routing (also known as flows over time) find diverse applications in traffic
flows and Internet data flows etc. They are recently drawing increasing research attention (see e.g.,
[6, 8, 12, 14, 19, 28, 29, 30, 33]). Dynamic routing models are usually classified into two types:
atomic and non-atomic, with the former typically being more realistic (especially when steady
states are hard to reach), and at the same time even more challenging to investigate. The difficulty
stems from the fact that interactions among atomic agents could be formidably complicated due
to their dynamic nature and hard-to-predict chain effects. In both atomic and non-atomic models,
congestions are usually modeled by the deterministic queuing (DQ) rule [32], which roughly states
that agents who cannot move forward due to edge capacity constraints have to queue and wait at
the places where congestions happen. The DQ rule well simulates real traffic congestions and rests
at the core of various agent-based simulation softwares, such as MATSim [16]. We use queue length
to denote the number of waiting agents (resp. the amount of cumulated flows) at a place where
congestion happens for atomic models (resp. nonatomic models). Queue lengths along with edge
capacities determine agents’ waiting times and at the same time are a measure of congestion level.

In dynamic routing games, selfish agents enter the network over time from their origins, and try to
reach their destinations as soon as possible. An equilibrium is a state where no agent is incentivized
to deviate unilaterally. A central task in studying these games is to understand the equilibria, most
importantly their efficiencies. One of the questions is: when agents enter the network inexhaustibly
for an infinite period of time, are the equilibrium queue lengths bounded by a finite number that is
independent of the total amount of inflow? When all agents share the same origin and destination,
by the well-known max-flow-min-cut theorem, it is natural to impose an additional assumption
that the inflow rate, namely, the number of incoming atomic agents (in atomic routing) or the
incoming rate of non-atomic agents (in non-atomic routing) at each time point does not exceed the
network capacity. We refer to this question (with the additional assumption on inflow rate) as the
equilibrium queue length problem (EQLP). The problem actually asks whether congestions can be
arbitrarily bad at equilibrium. As an interesting open problem in the literature [6, 28], answering
EQLP turns out to be a first step toward quantifying equilibrium efficiency of the corresponding
dynamic routing games. It is easy to construct instances in which the queue lengths at equilibrium
are network dependent (e.g., they can be as long as the longest paths in the network). So the finite
upper bound in a possible affirmative answer to EQLP necessarily depends on network parameters
in general. To the best of our knowledge, for most known models, EQLP can be equivalently
rephrased as whether agents’ residence times in the network at equilibrium are upper bounded.

In this paper, we study a broad class of atomic dynamic routings, which includes the models
studied in [3, 12, 28] as special cases. This class is in essence the same as the packet routing model
studied in [24]. In our model, the residence time an agent spends in the network is defined as in a
usual DQ model: it is the sum of a free-flow transit time determined by the length of the agent’s
chosen origin-destination (OD) path and a total waiting (queuing) time caused by other agents. In
contrast to usual DQ models, our model has no specific traffic regulations except that each edge
should dispatch as many agents as possible and agents are not allowed to pause when they are able
to move (a.k.a. greedy scheduling in [5, 24]). In particular, no specific tie-breaking rule is imposed
when more agents than an edge can accommodate intend to move along it simultaneously (see
Section 2 for a precise description).

1.1. Contributions. Our paper consists of two parts. Before studying the routing games in
the second part, we analyze in the first part a more basic scenario of DQ-based atomic dynamic
routing where no additional restriction is imposed on agents’ behavior, whether strategic or not.

In the first part, we are concerned with bounding residence times of atomic agents. This problem
is of interest in its own right and, at the same time, is the basis for analyzing other related
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problems including EQLP. Theorem 1 (see Section 3.1) provides a series of upper bounds for
agents’ residence times in unit-capacity networks. One particular result of Theorem 1 asserts that,
under mild conditions, the residence time of any agent is upper bounded by the free-flow transit
time spent on any one of the longest possible OD paths plus the number of agents that are inside
the network when this agent enters. Theorem 2 (see Section 4) extends Theorem 1 to cases where
networks have uniform capacities under an additional constraint that all agents enter the network
at the very beginning. The above results are valid for a wide range of network structures: all acyclic
networks with possibly multiple origins and multiple destinations. Our results also generalize the
main result in [24] on shortest-path networks.

To establish these results, we develop two token-based techniques to circumvent direct analysis
of complicated chain effects, which could contribute to future studies on atomic dynamic routing
problems. The basic idea behind our techniques is that we switch our attention from agents to
some imaginary objects called tokens. These tokens do not affect the dynamics of agents and they
move more regularly than agents. Compared with agents, tokens are largely free of chain effects.
On the other hand, the tokens’ residence times are in some sense equivalent to the agents’ residence
times. We investigate both multi-token and single-token settings. In the multi-token setting, more
than one token are applied and their movements are determined by the movements of the agents
involved, such that there is a one-to-one mapping between the tokens and those agents involved.
Whereas in the single-token setting, only one token is applied, but its movement is more flexible
in that we can “control” it more freely to facilitate our analysis. It turns out that both techniques
have their respective merits, the multi-token one being powerful for constantly incoming agents
and the single-token one being more effective for uniform edge capacities.

It is well known that, compared with their non-atomic counterparts, very few (if any) general
mathematical tools have been available to deal with atomic dynamic routing problems. Due to the
generality of our model and the flexibility of token movements, we believe that our token technique
and its variations have potential applications to more problems. While our multi-token technique
is brand new, our single-token technique bears some resemblance to a method in [24], where the
so-called train conductor could be regarded as the counterpart of our single token. Nevertheless,
even for the single-token analysis, we have explored substantially new ideas, e.g., a critical partial
order that not only provides new results on general networks but also greatly simplifies the proof
of [24] on shortest-path networks (see Appendix B for more discussions).

In the second part of this paper, we focus on the EQLP for three classes of atomic dynamic
routing games, studied in [3], [12] and [28], respectively, where competing agents queue according
to agent priority list [12], or first-in-first-out principle with tie-breaking by agent priorities [28]
or by edge priorities [3]. First, we show in Theorem 3 (see Section 5.2) that equilibria in the
three game models possess two nice properties: agents entering the network earlier will not exit it
later, and agents exiting the network later are unable to overtake those earlier at any intermediary
vertex. These two properties, being of interest in their own, also imply that the condition in
Theorem 1 is not restrictive. Second, based on Theorems 1 and 3, we provide an affirmative answer
to EQLP in Theorem 4 (see Section 6.2) for the case where the network is series-parallel. To
the best of our knowledge, this is the strongest result so far for the EQLP on atomic dynamic
routing games. In particular, it improves upon a related result in [28] on chain-of-parallel networks,
which are special cases of series-parallel networks. Since series-parallel networks can be recursively
constructed, most problems in the literature related to this class of networks are studied through
an inductive argument. However, substantial obstacles for a direct induction on the EQLP occur,
because when a larger network satisfies the hypothesis of the EQLP, i.e., its inflow rate does not
exceed its capacity, smaller sub-networks (from which the larger network is constructed) may well
not satisfy this hypothesis. To overcome this difficulty, we explore a novel induction that utilizes a
stronger inductive basis to establish a statement stronger than an affirmative answer to the EQLP
on series-parallel networks.
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1.2. Related literature. Our model follows the DQ rule, which is introduced in [32], devel-
oped in [13], and recently revivified in [18, 6, 28].

A line of research concerning the residence times of nonstrategic atomic agents investigates
the store-and-forward packet routing problem for finding fast delivery of the packets in a unit-
capacity network [22]. A fair amount of research in this area focuses on constructing a schedule
for delivering the packets whose OD paths have been fixed, where the schedule specifies which
packets move and which wait at each time step. In these studies, the most related routing rule to
our work is the aforementioned greedy scheduling (that packets are forwarded whenever possible).
Mansour and Patt-Shamir [24] study the greedy scheduling where packets take shortest paths.
They prove that every packet i reaches its destination after at most li + |∆| − 1 steps, where li
is the length of the shortest path that packet i takes and |∆| is the number of packets in the
network. When the used paths are not necessarily shortest, Cidon et al. [5] prove that for some
very special networks, the residence time of packet i is at most the length of the route taken by
packet i plus |∆| − 1. However, greedy scheduling might behave badly in general networks. The
greedy scheduling studied in [24, 5] and in this paper is essentially a non-algorithmic rule, which
does not require algorithmic coordinations among packets (agents). This stands in sharp contrast
to other related work on packet routing, where centralized or distributed algorithms are needed
to produce global or distributed arrangements for storing and forwarding packets collaboratively
[1, 20, 21, 25, 27]. Leighton et al. [21, 20] prove that there exists a polynomial-time computable
schedule under which the residence time of every packet is O(l+ b), where l is the length of the
longest given path and b the largest number of packets that traverse a single edge during the entire
course of the routing. When restricted to directed trees, Peis et al. [26] construct a schedule that
guarantees the residence times to be bounded above by l+ b− 1. For general networks, they show
that if all packets take shortest paths and the lengths of these paths are pairwise different, then a
schedule with residence times at most l can be found efficiently. Srinivasan and Teo [31] and Koch
et al. [17] present algorithms that find OD paths of bounded l and b in general networks, leading
to constant-factor approximations for the packet routing problem. Busch et al. [2] obtain better
approximations for special network topologies: tree, mesh, butterfly, and hypercube. We refer the
reader to [26] for more related literature, including study on the flow-over-time problem for finding
fast non-atomic dynamic routings [9, 11, 15].

Graf and Harks [10] recently prove an upper bound on non-atomic agents’ residence times for
dynamic routing in an acyclic network with a single destination. Assuming all non-atomic agents
enter the network during time interval [0, θ] and travel under greedy scheduling, the authors show
that the routing terminates before time θ+ l+ δ, where l is the length of a longest OD path and δ
is the total amount of flow during the routing.

For the EQLP on atomic dynamic routing games (with a single OD pair), the most related result
to ours is given by Scarsini et al. [28], who show that (i) when agents queue under first-in-first-out
principle and agent-priority tie-breaking rule, a special class of Nash equilibria (which they call
uniformly-fastest-route equilibria and will also be investigated in this paper) exist, and (ii) queue
lengths at these equilibria are indeed bounded, provided the underlying network is chain-of-parallel
and the inflow (with rates no larger than the network capacity) is seasonal. The existence of a
uniformly-fastest-route equilibrium when agents queue under agent-priority list [12] and that of a
Nash equilibrium (NE) when agents queue under first-in-first-out principle and edge-priority tie-
breaking rule [3] serve as bases of our study on the EQLP for the two classes of atomic dynamic
routing games. The affirmative answer to the EQLP on series-parallel networks for the latter game
was announced in [3] without a formal proof.

For non-atomic games with a single OD pair and a uniform inflow rate, the existence and
uniqueness of the NE are proved by Cominetti et al. [6]. A recent breakthrough on the EQLP is
obtained by Cominetti et al. [7]: Using a potential-function method, they show that given uniform
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inflow rate not exceeding the network capacity, the NE always reaches a steady state in finite time,
after which queue lengths remain unchanged.

An affirmative answer to EQLP usually implies a bounded price of anarchy (PoA) and/or a
bounded price of stability (PoS) for the game concerned, where the PoA (resp. PoS) is the ratio of
the system objective value at a worst (resp. best) NE to that at an optimal solution. For atomic
dynamic routing games where agents queue according to a given (global) agent-priority list, Harks
et al. [12] analyze the efficiency of NEs for minimizing the total delay of all k agents who are ready
to start their travels right from the beginning. They show that the asymmetric game (with multiple
OD pairs) has a PoS of Ω(

√
k) and a PoA upper bounded by 1 + k3/2, while the symmetric game

(with a single OD pair) has a PoS and a PoA equal to 1 and (k+ 1)/2, respectively.
For non-atomic dynamic routing games with a single OD pair and uniform inflow rate, Macko

et al. [23] show that the PoA w.r.t. the min-max delay can be as large as n− 1 in networks with n
vertices. Correa et al. [8] study the PoA of these games under the system objective of minimizing
the time required to route a given amount of flow from the origin to the destination. They show
that, if some natural monotonicity conjecture holds (i.e., decreasing the inflow rate will increase
the equilibrium makespan), then the PoA is exactly e/(e− 1).

The rest of the paper is organized as follows. Section 2 introduces our general routing model.
Section 3 bounds agents’ residence times for the general model on unit-capacity networks. Section 4
moves on to uniform-capacity networks. Section 5 introduces three game models under the general
routing scheme as well as some basic concepts and properties on the equilibria. Section 6 studies
the EQLP on series-parallel networks. Section 7 concludes this paper with some further discussions.

2. General routing model.

In this section, we introduce our general model of atomic dynamic routing (abbreviated as ADR).

2.1. Input network. We are given a finite directed multi-graph, henceforth called a network,
G= (V,E), where V is the vertex set and E the edge set. The network is assumed to be acyclic,
unless otherwise stated. The network G may have multiple origin vertices and multiple destination
vertices. For every vertex v ∈ V , we use E+

v and E−v to denote the set of outgoing edges from v and
the set of incoming edges to v in G, respectively. All the paths discussed are directed and simple.
Given a path P in G, the sub-path of P from vertex u to vertex v is written as P [u, v]. For vertex
v with E+

v (resp. E−v ) intersecting P , we use ε+v (P ) (resp. ε−v (P )) to denote the unique edge in the
intersection, i.e., the edge of P outgoing from (resp. incoming to) v.

2.2. Atomic agents. The dynamic routing is represented by atomic agents moving through
G, entering via the origins and exiting via the destinations. Time starts from 0. At each nonnegative
integer time point, a (possibly empty) set of finitely many agents enter G from their origins. We
use ∆ to denote the set of all agents. Each agent i∈∆ moves along a path (called his route or OD
path) from his origin oi to his destination di. The routes of all agents, one for each agent, form a
path profile of the ADR instance. We often identify a path profile of all agents with the routing
determined by it, and also refer to it as an ADR profile.

2.3. Unit assumption. We assume that each edge of the input network G has a unit length
and a unit capacity (more detailed discussion on general integer lengths and capacities can be
found in Section 4). The unit-length assumption implies that the length of a path is the number of
edges in the path, and enables us to normalize to 1 the transit time of each agent along an edge.
The unit-capacity assumption says that at most one agent can leave the buffer (defined below) of
an edge at each integer time point.
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2.4. Buffer regulations. Throughout this paper (with the exception of Section 4), we make
the following two weak assumptions (also referred to as buffer regulations), which are satisfied by
most related models in the literature:

(A1) The tail part of each edge has an imaginary buffer with an infinite capacity and no physical
size. It is the entrance of the edge through which agents get into the edge at integer time points.
As soon as an agent reaches a vertex that is not his destination, he enters the buffer of the next
edge in his route immediately without any delay.

(A2) At each integer time point, whenever a buffer is nonempty, exactly one agent leaves from
the buffer and starts to move along the edge (that contains the buffer) and other agents (if any)
wait in the buffer for one more unit of time.

Our ADR model is very similar to the packet routing model in [24]. Assumption (A1) states that
waiting agents are located at the tail parts of edges, while in [24] they are located on vertices. The
difference is inessential. Assumption (A2), a property called greedy in [24], implies in particular
that at any integer time point an agent has to leave the buffer if he is the only one in it. Note that
(A2) implies that waiting times imposed by any agent on other agents in one buffer are one unit
of time. Note also that there is no specific rule in (A2) for determining the leaving agent from a
buffer when there are multiple agents in it.

2.5. ADR dynamics. It takes two types of time for an agent to use an edge: a unit transit
time from the tail vertex (buffer) to the head vertex, and a variable amount of waiting time in the
buffer, which is determined by the above buffer regulations along with certain rule for selecting
the agent to leave the buffer. Since agents spend no time on vertices, the residence times, the
differences between the times they enter and exit network G, can be defined as follows.

Definition 1. The residence time of an agent in network G is defined as the total transit time
plus the total waiting time spent on all the edges (their buffers) in his OD path.

By the unit-transit-time assumption on single edges, the total transit time of an agent equals the
number of edges (i.e., length) of his OD path. Although time is continuous when considering edge
traverses, only integer time points matter as far as entering and leaving buffers as well as reaching
vertices are concerned (due to integer entry times into the network, buffer regulations (A1), (A2)
and unit transit time on single edges). The following ADR dynamics makes this more precise.

- When an agent enters network G at (integer) time r, we say that he reaches his origin at time
r. As (A1) specifies, the agent enters the buffer on the starting edge of his OD path at the same
time r.

- If an agent leaves a buffer on edge e (which is located at e’s tail part) at (integer) time r, then
it follows from (A2) and unit transit time on e that the agent moves along e during time interval
(r, r+ 1) until he reaches the head vertex of e at time r+ 1.

- When an agent reaches a vertex that is not his destination at (integer) time r, by (A1), he
enters the buffer of the next edge in his route immediately at the same time r.

- When an agent reaches his destination at time r, we assume that he exits G immediately at
the same time r.

Having presented the dynamics of our ADR model, we conclude this section by introducing some
terms we will use to describe agents’ status under ADR. Consider an arbitrary agent i ∈∆, who
enters G from origin oi at time s and exits G from destination di at time t. We say that agent i is
inside G during time period [s, t). Since the action of leaving a buffer is instantaneous, there is no
confusion to assume that when i leaves a buffer at time r, he is also in the buffer at time r. Hence
for each integer point r ∈ [s, t), agent i is in a unique buffer on his OD path. We say that agent i
delays agent j on edge e (at time r) if at that time i leaves and j stays in e’s buffer. By (A2), an
agent starts waiting for one more unit of time whenever he is delayed by someone else. Therefore,
the total waiting time of each agent is also the number of times he is delayed in all buffers he uses.
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If two agents stay in the buffer of the same edge e at the same time, then one of them delays the
other exactly once on e but not vise versa (recall that the network is acyclic).

3. Bounding residence times in unit-capacity networks.

In this section, we are given a routing (an ADR profile) p on the unit-capacity network G. We
focus on an arbitrarily fixed agent ζ ∈∆ and reserve the symbol r for ζ’s entry time into G. Let
Gζ be the subnetwork of G that is composed of all oζ-dζ paths in G.

3.1. Main results. Let r0 (≥ r) denote any fixed integer time point at which agent ζ is still
inside the network G. Two sets of agents, Aζ,p and Bζ,p(r0) defined below, are crucial in bounding
ζ’s residence time:

• Aζ,p is the set of agents who, under p, (i) enter G later than agent ζ (i.e., after time r) and
(ii) use at least one edge of Gζ .

• Bζ,p(r0) is the set of agents other than ζ who, under p, (i) enter G no later than agent ζ, (ii)
are still inside G at time r0, and (iii) use at least one edge of Gζ .
Note that Aζ,p and Bζ,p(r0) are disjoint, agent ζ belongs to neither Aζ,p nor Bζ,p(r0), and there
may be agents in ∆\{ζ} who are neither in Aζ,p nor in Bζ,p(r0).

For any agent i ∈Aζ,p ∪Bζ,p(r0)∪ {ζ}, since G is acyclic, the intersection of i’s route and Gζ

must be a nontrivial path (i.e., a path of at least one edge). When i reaches the last vertex (i.e.,
sink vertex) of that path (the acyclic property implies that he has finished his journey on the path
and therefore that in Gζ), we say that he exits Gζ . For any vertices v,w ∈ V , let Lvw denote the
length of a longest v-w path in G. In particular, Loζdζ is the length of a longest path that ζ may
traverse in the network.

Theorem 1. Given an ADR profile p on a unit-capacity network G, for any integer time point
r0 ≥ r, if no agent in Aζ,p exits Gζ before agent ζ, then ζ exits the network no later than time
r0 +Loζdζ + |Bζ,p(r0)|.

The proof of Theorem 1 will be presented later in this section. Theorem 1 provides a series of
possible upper bounds of ζ’s residence time parameterized by r0, some of which will be used in
Section 6 to handle the EQLP. It is easy to see the condition that “no agent in Aζ,p exits Gζ before
ζ” is not redundant, because otherwise the focal agent ζ may be delayed by an infinite number
of later coming agents (e.g., the buffers always give priorities to other agents for leaving), which
makes no upper bound possible. This condition is easily met in many situations (e.g., those to be
introduced in Section 5). In particular, the condition is always valid when Aζ,p = ∅. We state the
corresponding result as a formal corollary as follows.

Corollary 1. Given an ADR profile p on a unit-capacity network G, if Aζ,p = ∅, then the
total residence time of agent ζ in the network is at most Loζdζ + |Bζ,p(r)|.

A case even more special than Aζ,p = ∅ is that all agents are in the network at the very beginning,
for which we additionally have r= 0 and |Bζ,p(0)|= |∆|−1. We explain in the following that even
for this special case, Corollary 1 is nontrivial.

An immediate intuition is that agent ζ can be delayed by any other specific agent at most once.
Since Loζdζ is the longest possible transit time that ζ spends and ζ could be delayed by at most
|∆| − 1 other agents, the upper bound Loζdζ + |∆| − 1 seems trivial. However, this intuition is
incorrect even for the simplest case of |∆|= 2. In fact, ζ may be delayed by other agents, even one
particular agent, for more than |∆| times. This indicates that the upper bound is an integrated
one that cannot be easily decomposed. The example below shows that this upper bound is tight
even if the network has only one OD pair.
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Example 1 (Tightness). The network G with a single OD pair (o, d) is as depicted in Figure
1, with the length L≡ Lod of the longest o-d paths being 9. All |∆|= 3 agents, indexed 1, 2 and
3, enter G at the same time from their common origin o. Agent i∈ {1,2,3} follows the unique o-d
path that uses edges e, ei, e

′
i. The routing obeys the agent-priority rule that an agent can only be

delayed by lower indexed agents. It can be verified that the residence time of agent 3 is 11, which
is precisely L+ |∆| − 1. Note also that this upper bound is tight in the following stronger sense:
even if agent 3 knows the choices of agents 1 and 2 and best responds to them, his residence time
will still reach the same upper bound.

Figure 1. An example for the tightness of the upper bound L+ |∆| − 1

Remark 1. The agent-priority rule adopted in Example 1 is the one investigated in [12]
(referred to as (R1) in Section 5 of this paper). Example 1 can also be easily modified to show the
tightness for buffer selection rules studied in [28] and [3] (referred to as (R2) and (R3), respectively,
in Section 5 of this paper).
Remark 2. The acyclicness of the input network is necessary for the upper bound to be L+

|∆| − 1: If the underlying network contains a cycle, Cidon et al. [5] construct an example with a
lower bound of Ω(

√
|∆|Loζdζ + |∆|) on the residence time of agent ζ.

3.2. Technical details. In the remainder of this section, we explore a multi-token technique
to prove Theorem 1.

Token production and movement. For any agent i and integer time point s≥ r0 such that
i is inside G during time interval [s, s+1), let Ui,s denote the buffer where i stays at time s. Clearly
Ui,s is well defined. Agent ζ will produce tokens over time with indices 1,2, . . . inside the buffers
he stays in, at most one token being produced at a time and each production taking no time. The
tokens will move along with the agents who hold them currently. The precise procedure of token
productions (which happen inside buffers Uζ,r0 , . . .) and token movements (which happen along
with agents’ movements) is as follows:

• Initially (at time r0), agent ζ produces a token with index 1 inside buffer Uζ,r0 ; no other tokens
are inside G.

• Iteratively, for each time point s= r0, r0 + 1, . . .,

(s1) If the buffer Uζ,s contains no token at time s, then ζ produces, at time s, a new token
inside Uζ,s with an index being the largest existing token index plus one;

(s2) For every agent i who leaves a buffer Ui,s at time s, if Ui,s contains token(s), then the one
with the smallest index among them is held by and moves along with agent i during time interval
(s, s+ 1); as a result of the movement, at time s+ 1, the token and agent i either are in the same
buffer Ui,s+1 or exit G from di together.
Note that the productions and movements of tokens do not affect the original dynamics in ADR.
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Properties. The following observations are helpful for our later discussions.

(p1) At any time point, each agent holds at most one token, and the number of tokens inside a
buffer is no more than that of the agents in the same buffer;

(p2) At any time point s for which Uζ,s is well defined, the agent who leaves Uζ,s holds exactly
one token; in particular, agent ζ holds a token whenever he moves;

(p3) At any time point s > r0, agent ζ produces a new token (with index at least 2) in buffer
Uζ,s only if he stays in the same buffer during [s− 1, s].

Apparently, the trajectory along which each token moves is a path in G that starts from the
edge where the token is produced and ends at some destination di. More precisely, the motion trail
of each token (with index) k, denoted by Tk, is an oζ-di path or a proper sub-path of an oζ-di path
for some i ∈∆. For any token k, since G is acyclic, the intersection of Tk and Gζ is a nontrivial
path, which we write as Tk ∩Gζ . Let v be a vertex on Tk ∩Gζ . We say that token k departs from
v if one of the following conditions is satisfied: (i) v is not the sink vertex of path Tk ∩Gζ and k
starts to move along ε+v (Tk ∩Gζ), i.e., the edge on Tk ∩Gζ outgoing from v; (ii) v is the sink vertex
of Tk ∩Gζ and k reaches v. In the case (ii), we also say that token k exits Gζ , because at that time
the agent holding k exits Gζ (recall the definition above Theorem 1).

The following lemma implies directly that each token k exits Gζ no later than time r0 +(Loζdζ +
k− 1).

Lemma 1. For every vertex v ∈ Tk ∩Gζ, token k departs from v no later than r0 + (Loζdζ −
Lvdζ + k− 1).

Proof. Our proof is by induction on token index k. For the base case of k= 1, we need to show
that token 1 departs from vertex v no later than r0 + (Loζdζ −Lvdζ ). Observe that token 1 is the
“smallest” and never waits during the whole moving process. Therefore, the total time token 1
spends in Gζ before departing from v is the length of a subpath of an oζ-v path (recall that the
first vertex token 1 departs from is the tail vertex of the edge where ζ stays at time r0), which is
at most Loζv ≤Loζdζ −Lvdζ , where the inequality is guaranteed by the fact that G is acyclic.

Suppose now k ≥ 2 and Lemma 1 holds for tokens 1, . . . , k − 1. For token k, consider first the
easier cases that k departs from v right after some token h (<k) through edge ε+v (Tk ∩Gζ). Let Vk
denote the set of these vertices v.

Claim 1. For every v ∈ Vk, token k departs from v no later than r0 + (Loζdζ −Lvdζ + k− 1).

By the induction hypothesis, token h departs from vertex v no later than r0 + (Loζdζ −Lvdζ +
h− 1). It follows that token k departs from v no later than r0 + (Loζdζ −Lvdζ +h)≤ r0 + (Loζdζ −
Lvdζ + k− 1), proving the claim.

We are left to consider the remaining case of vertex v ∈ (Tk ∩Gζ)\Vk, which particularly implies
that token k does not wait on edge ε+v (Tk ∩Gζ). Note that just one time unit before token k (≥ 2)
is produced, agent ζ is waiting on the starting edge of Tk for some other agent to leave the buffer
(according to (p3)), and the agent holds a token (according to (p2)) whose index is smaller than k
(according to (s1)). It follows that the starting vertex of Tk belongs to Vk. Let v′ ∈ Tk ∩Vk be the
vertex nearest to v such that
• Token k departs from vertex v′ before it departs from v;

• Vertex v′ is the unique vertex in the path Tk[v
′, v] that belongs to Vk.

The choice of v′ and (s2) enforce that token k never waits from the time it departs from v′ to the time
it departs from v. According to Claim 1, token k departs from v′ no later than r0 +(Loζdζ −Lv′dζ +
k−1). Since the total time token k spends on the non-stop movement from v′ to v is at most Lv′v,
token k departs from v no later than r0 + (Loζdζ −Lv′dζ +k−1) +Lv′v ≤ r0 + (Loζdζ −Lvdζ +k−1),
where Lv′dζ ≥Lv′v +Lvdζ is implied by the fact that Gζ is acyclic. This proves Lemma 1. �

Now we are ready to prove the main result of this section.
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Proof of Theorem 1. If agent ζ holds a token no larger than |Bζ,p(r0)|+ 1 when he reaches dζ ,
then by Lemma 1 we have already obtained the desired result.

Suppose the index of the token that ζ holds when reaching the destination dζ is at least
|Bζ,p(r0)| + 2. By Lemma 1, every token k with 1 ≤ k ≤ |Bζ,p(r0)| + 1 exits Gζ no later than
r0 + (Loζdζ + k− 1)≤ r0 + (Loζdζ + |Bζ,p(r0)|), along with some agent i(k) (6= ζ) whose OD path
under p uses at least one edge of Gζ . Recall from (p1) that each agent can hold at most one token
when exiting Gζ . We claim that there is at least one k ∈ [1, |Bζ,p(r0)|+ 1] with i(k) /∈ Bζ,p(r0).
The claim is true because none of the |Bζ,p(r0)|+ 1 agents i(1), . . . , i(|Bζ,p(r0)|+ 1) is ζ, and they
cannot all belong to Bζ,p(r0). It follows from i(k) 6∈Bζ,p(r0) that i(k) enters G later than agent ζ,
and thus belongs to Aζ,p. Now we are done, because the hypothesis of the theorem says that no
agent in Aζ,p exits Gζ before agent ζ, from which we deduce that ζ reaches dζ no later than the
time agent i(k) exits Gζ and hence no later than r0 + (Loζdζ + |Bζ,p(r0)|). �

4. Bounding residence times in uniform-capacity networks.

A natural question is whether Theorem 1 can be generalized to any network with arbitrary integer
edge-capacities and arbitrary integer edge-lengths. The answer is yes, because subdividing and
splitting the edges into the ones with unit capacity and unit length and letting agents move in a
corresponding way does not change agents’ residence times. However, this answer is not completely
satisfactory because when roads are wider, one may expect shorter residence times. In this section,
we consider a clean scenario where all roads have the same integer capacity of c. So a more
meaningful question is, for this scenario, do we have results parameterized with c that reduce to
Theorem 1 when c= 1?

Let us first elaborate on this more general model. Given any positive integer c, let Gc be the
network with the same vertex and edge sets as G in which each edge has a capacity of c, meaning
that at most c agents can move along an edge at the same time. The buffer regulations, when applied
to Gc, keep condition (A1) unchanged, and relax (A2) by allowing exactly ns(U) := min{c,n}
agents in a buffer U on edge e to leave U at the same time point s, where n denotes the number
of agents in U at time s; these ns(U) agents reach e’s head vertex at the next time point s+ 1
simultaneously.

It turns out that obtaining a generalized result mentioned in the above question is nontrivial. In
this section, we explore a single-token technique to provide a satisfactory answer. As a trade-off,
we have to make an additional assumption: all (finitely many) agents enter the network at the very
beginning. As in the preceding section, we focus on an arbitrarily fixed agent ζ ∈∆ throughout
this section.

Besides the difference in the numbers of tokens (as their names indicate), the single and multi-
token techniques differ from each other mainly in two aspects. First, while the set of tokens is not
fixed but produced dynamically in the multi-token analysis, the unique token is available at the
beginning of our single-token analysis. Second, while the moving of tokens is completely determined
by the buffer regulations in the multi-token analysis, the moving of the unique token is relatively
free in the single-token analysis, as detailed in the following.

(c0) Initially (at time 0), the token is produced inside the buffer where agent ζ stays.
The token will move along edges together with some agent, and finally reach the destination dζ

at the same time as agent ζ. During the process, the token may wait for some time in buffers.
Specifically, the token’s moving and waiting must be accompanied by some agent, for which the
following conditions must be satisfied:

(c1) When the token moves along an edge e to the next buffer during time period (s, s+ 1),
there must be an agent moving along e to the same buffer during (s, s+ 1); we may think of the
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token as being held by the agent during (s, s+ 1) and when restricted to e, the movements of the
token and the agent are identical. When the token waits in a buffer during time period (s, s+ 1),
there must be an agent staying in the same buffer during (s, s+ 1).

(c2) The token reaches its destination dζ (and exits G) at the same time as agent ζ. (At that
time the agent holding the token might not be ζ.)

Under the above conditions, we may assume that at any time point, the token is held by exactly
one agent. Conditions (c1) and (c2) are obviously satisfied if the token is always held by agent ζ.

Definition 2. We call every moving dynamic of the single token that satisfies conditions (c0)–
(c2) a legal dynamic.
Let f denote the starting edge of agent ζ’s route. Given any legal dynamic, since G is acyclic, it is
clear that the token’s motion trail under the dynamic is an oζ-dζ path P with starting edge f . We
write the path as the concatenation of its edges in sequence P = e1e2 · · ·ek with edge e1 = f and the
head of edge ek being dζ . The legal dynamic is then represented by D= (P ; t(e1), t(e2), . . . , t(ek)),
where for each i= 1, . . . , k, t(ei) is the time when the token leaves ei’s buffer under the dynamic.
Clearly, t(e1)< t(e2)< · · ·< t(ek). Suppose that ζ reaches dζ at time τζ . Then (c2) along with the
unit transit time on ek implies t(ek) = τζ − 1.

Let D be the set of all legal dynamics, which is nonempty because the special dynamic in which
the token is always held by ζ is legal. In the following, we define a partial order among all legal
dynamics in D.
Definition 3 (Order on token dynamics). Dynamic (P ; t(e1), t(e2), . . . , t(ek)) ∈D is said

to be (strictly) smaller than dynamic (P ′; t′(e′1), t′(e′2), . . . , t′(e′k′)) ∈ D if t(e1) < t′(e′1) (note e1 =
e′1 = f), or there exists i≥ 2 such that eh = e′h and t(eh) = t′(e′h) for all h= 1, . . . , i− 1, ei = e′i and
t(ei)< t(e

′
i).

Claim 2. The binary relation on D defined in Definition 3 gives rise to a partial order on D,
i.e., it is anti-symmetric and transitive.

The proof is a simple exercise, which is relegated to Appendix A. It follows from Claim 2 that
a minimal legal dynamic exists. Intuitively, a minimal legal dynamic is such that the token leaves
every buffer as soon as possible, so long as it can exit the network at the same time as ζ.

In the token’s moving (and waiting) process, we say that the token is delayed by an agent i on
edge e, if there exists integer s≥ 0 such that during (s, s+ 1) the token waits (stays) in the buffer
on e and agent i moves along e.

Theorem 2. Given any ADR profile on Gc, suppose all the |∆| agents enter Gc at the same
time. Then the residence time of agent ζ is at most Loζdζ + b(|∆| − 1)/cc.

Proof. Since by (c2) the residence time of the token in any legal dynamic is the same as that of
ζ, it suffices to show that there exists one legal dynamic under which the token’s residence time
is at most Loζdζ + b(|∆| − 1)/cc. As it takes one unit of time for the token to move (transit) along
any edge and the length of the longest oζ-dζ path is Loζdζ , the token’s total transit time under any
legal dynamic is upper bounded by Loζdζ . Therefore, it suffices to show that there exists one legal
dynamic under which the token’s total waiting time is at most b(|∆| − 1)/cc. We prove that any
minimal legal dynamic D∗ = (P ∗; t(e∗1), t(e∗2), . . . , t(e∗k)), whose existence is guaranteed by Claim 2,
meets the requirement. Observe that the buffer regulations on Gc imply that whenever the token
is delayed by an agent, it (together with the agent holding it) is delayed by precisely c agents
simultaneously. Therefore, it suffices to show that under D∗, the token is never delayed by ζ and
is delayed by any other specific agent at most once.

First, the token is never delayed by ζ. Otherwise, we can modify the dynamic in such a way
that, ever since the first time ζ is about to delay the token, he holds the token all the remaining
way to the destination dζ . The new dynamic is still legal but smaller than D∗, a contradiction.
Now suppose the token is delayed by an agent η twice on edge e∗i and e∗j , respectively, where
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1≤ i < j ≤ k. This means that when agent η leaves e∗i ’s (resp. e∗j ’s) buffer, the token under D∗ is
over there; the token will leave the buffer at a later time. Let e∗i e

′
1 · · ·e′`e∗j be the sub-path of η’s

route from e∗i to e∗j and t̃(e∗i ), t̃(e
′
1), . . . , t̃(e′`), t̃(e

∗
j ) be the time points when η leaves the buffers of

e∗i , e
′
1, . . . , e

′
`, e
∗
j , respectively. Then we have t̃(e∗i )< t(e

∗
i ).

Let P ′ := e∗1 · · ·e∗i e′1 · · ·e′`e∗j · · ·e∗k be obtained from P ∗ by replacing its sub-path from e∗i to
e∗j with e∗i e

′
1 · · ·e′`e∗j . Since G is acyclic, P ′ is an oζ-dζ path. We modify dynamic D∗ to D′ =

(P ′; t(e∗1), . . . , t(e∗i−1), t̃(e∗i ), t̃(e
′
1), . . . , t̃(e′`), t(e

∗
j ), . . . , t(e

∗
k)) by letting agent η hold the token when

he moves along the sub-path e∗i e
′
1 · · ·e′`. Since under D∗ the token is in e∗i ’s (resp. e∗j ’s) buffer at

time t̃(e∗i ) (resp. t̃(e∗j )), we see that D′ ∈ D is a legal dynamic. However, t̃(e∗i )< t(e∗i ) shows that
D′ is smaller than D∗, contradicting the choice of D∗. �

As a byproduct, this new technique also enables us to obtain a simpler proof of the main result
by Mansour and Pattshamir on shortest path routing [24]. See Proposition 1 in Appendix B for
details. In fact, Theorem 2 can be considered as a generalization of the result from shortest path
networks to more general ones, which is listed in [24] as an open problem.

5. Games of atomic dynamic routing.

By providing preliminaries for three ADR games, this section serves as a bridge between the
preceding sections and the next one. We focus on the ADR games in acyclic directed network
G = (V,E) with a single OD pair (o, d). If not otherwise specified, we always assume G is unit-
capacitated. For each integer r≥ 0, the set of agents who enter G at time r is denoted ∆r, which
is assumed to be of a finite size.

Theorem 1 tells us that the residence time of an arbitrary agent ζ entering network G at time
r is upper bounded by Lod plus some number β(r), provided that later coming agents do not
exit G earlier than ζ. This bound is not completely satisfactory, because while Lod is a constant
determined by the input network G, the number β(r) may grow with time r and hence is generally
not a constant. A natural question arises: is it possible to bound all β(r) with a constant that is
determined by the input network? The answer is obviously “No”, because continuously incoming
agents may be congested gradually on some edge and thus β(r) may grow to infinity.

When we consider selfish and rational agents (for which the routing model is often considered
a noncooperative game), however, the above question becomes more interesting, because when an
edge is very congested, intuitively later coming agents will avoid using it, making it less congested.
In order to obtain a constant bound on β(r), an additional necessary requirement is clear: the
(average) inflow size should not exceed the network capacity. The question on the boundedness of
β(r) is closely related to the EQLP introduced in Section 1: are the lengths of queues at equilibrium
bounded? The answer to the EQLP is “Yes” if and only if all β(r) under the equilibrium routing
are bounded. It turns out that the results we obtain in Section 3 for bounding residence times in
ADR are useful to our resolution of the EQLP on series-parallel networks.

5.1. Three game models. Building on the general ADR model introduced in Section 2,
we specify below three additional buffer regulation rules for selecting the leaving agent from a
buffer. The addition of each of the rules makes the arrival time of an agent at a vertex under any
given path profile uniquely determined, which leads to a well-defined (deterministic) ADR game
Γi, i∈ {1,2,3}.

Buffer selection rules. In defining the agent selection rules for games Γ1 and Γ2, we are
given a global agent-priority list, i.e., a complete ordering among all agents, which assumes that
an agent entering G earlier always has a higher priority over any agent entering G later. It follows
from this assumption that agent priority is a refinement of the relative order of their entry times.
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(R1) In ADR game Γ1, among all agents concurrently staying in a buffer, the agent with the
highest priority leaves the buffer first.

On the other hand, the selection rules of games Γ2 and Γ3 both follow the first-in-first-out (FIFO)
principle — the agent who enters a buffer earlier has a higher FIFO rank and leaves the buffer
earlier. (Note that game Γ1 does not necessarily satisfy this property.) However, games Γ2 and Γ3

use different priority rules to break a tie when multiple agents enter the buffer at the same time.
A readily made tie-breaking rule resorts to the given global agent-priority list:

(R2) In ADR game Γ2, in determining which agent to leave a buffer first in the case of a tie in
following the FIFO principle, the agent with the highest priority is selected.

Another method for breaking a FIFO tie is to use edge priority, where each vertex v ∈ V \{o} is
associated with a fixed priority ordering among all incoming edges to v. Besides, for each set ∆r of
agents who enter G at the same time r, we are given an original agent-priority list of these agents
(i.e., a complete ordering among them), to break ties only in the first buffers they enter.

(R3) In ADR game Γ3, in determining which agent to leave a buffer first in the case of a tie
in following the FIFO principle, it is resolved by the following rules applicable to two different
scenarios:
• Edge priorities: if two agents enter the buffer simultaneously from different incoming edges,

then the agent coming from the edge with a higher priority is selected earlier.
• Original agent-priority lists: if two agents enter the buffer simultaneously when they enter G,

then the agent with a higher original priority is selected earlier.
When restricted to acyclic networks and non-zero edge lengths (as is assumed in our paper),

the store-and-forward packet routing studied in [12] is actually a special case of game Γ1, where
all (finitely many) agents are in the network at the very beginning. Games Γ2 and Γ3 have been
studied in [28] and [3], respectively. (An edge-priority rule similar to Γ3 has been discussed in [33].)
In contrast to the global agent-priority list in Γ1 and Γ2, which orders all agents and works for all
buffers, the original agent-priority lists in Γ3 are local in that each of them orders only a subset of
the agents and works only at the origin for their first buffers.

Equilibria. Recall that ∆ =∪r≥0∆r denotes the agent set. Let P denote the set of OD paths
in network G. For any path profile p = (Pi)i∈∆ (with Pi ∈P for all i∈∆) of the game, any agent
j ∈∆, and any vertex v ∈ V , we use tvj (p) to denote the arrival time of agent j at v under routing
p (in particular, tvj (p) =∞ if v 6∈ Pj). All agents j ∈∆ are selfish, trying to choose a path Pj to
minimize tdj (p).

All selfish agents make their routing decisions only at the very start of the game (i.e., at time 0)
as to which OD path to take, no matter what times they enter the network G. In game-theoretic
terminology, this is a game of normal form (or a simultaneous-move game), whose standard solution
concept is the Nash equilibrium (NE).
Definition 4 (NE). A path profile p of ∆ is an NE of the ADR game if no agent can gain

by a uniliteral deviation, i.e., tdi (p)≤ tdi (P ′i ,p−i) for all i∈∆ and P ′i ∈P, where p−i is the partial
path profile of p for agents in ∆\{i}.

The following concept of uniformly fastest route (UFR) equilibrium plays a central role in [28].
In ADR games Γ1 and Γ2, UFR equilibria form a nonempty proper subset of the NE set.
Definition 5 (UFR equilibrium). A path profile p is a UFR equilibrium if for every agent

i∈∆ and every vertex v on i’s OD path under p, there is no P ′i ∈P such that tvi (P
′
i ,p−i)< t

v
i (p).

For game Γ3, we shall study general NEs, under which agents are well-behaved [3] (see Theorem 3
below). For games Γ1 and Γ2, however, we shall focus on UFR equilibria, because agents under a
general NE in these two models are not so well-behaved, and no effective method has been found
to analyze their general NEs.
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5.2. Properties of equilibria. We show in this subsection that the equilibria in the three
ADR game models Γ1, Γ2 and Γ3 are quite regular, paving the way for our later analysis. To make
our exposition more precise, we make the following definition.
Definition 6 (Preemption). Given a routing for one of the three ADR games Γ1, Γ2 and

Γ3, we say that agent i preempts agent j at vertex v if (i) they both pass v, and agent i reaches v
earlier than agent j, or (ii) i and j reach v at the same time but the following holds:

• For Γ1 and Γ2, agent i has a higher priority than agent j;
• For Γ3, agent i comes from an edge in E−v with a higher priority than agent j when v 6= o, and

i has a higher (original) priority than j when v= o.
Note that when agent i preempts agent j, they may not meet on any edge at all, and hence it is

possible that no one delays the other. However, when i delays j, it must be true that i preempts j
at the head vertex of the corresponding edge.

In the cases of Γ1 and Γ2, suppose that agent i preempts agent j at origin o. This is equivalent
to that i has a higher priority than j (recalling from the assumption on the global agent-priority
list that lower-priority agents enter G no earlier than higher-priority ones). The following property
that j can never preempt i admits an algorithmic proof, which is deferred to Appendix C (see
Lemma 8(i) over there).

Lemma 2. Under every UFR equilibrium of Γ1 or Γ2, no agent with a lower priority can pre-
empt an agent with a higher priority.

Given a routing, agents who reach the common destination d (and exit G) at the same time
form a batch. As seen from the following theorem, at equilibrium of the three game models, agents
of different batches move through the network in an hieratically independent way.

Theorem 3. Consider any of the ADR games, Γ1, Γ2 or Γ3, on unit-capacity network G with
a single OD pair (o, d). Let p be a UFR equilibrium if the game is Γ1 or Γ2, and an NE if the game
is Γ3. The following properties are satisfied.

(i) Global FIFO: Under equilibrium p, if agent i preempts agent j at some vertex (including the
origin o), then i reaches the destination d no later than j.

(ii) No Overtaking: If agents of a batch and those in all earlier batches follow their routes as
in equilibrium p, then no matter which routes the later-batch agents choose, the former agents
preempt all latter agents at every common vertex of their routes (i.e., the former agents cannot be
overtaken by the latter ones). Therefore, the arrival times of the former agents at all vertices of
their routes cannot be influenced by the latter agents.

In the cases of Γ1 and Γ2, Theorem 3 follows from Lemma 8 in Appendix C. In the case of Γ3,
Theorem 3(i) is from Theorem EC.6 in [4], and Theorem 3(ii) is a direct consequence of Theorem 2
in [4].

Theorem 3 is essential for us to deal with the EQLP in the next section. It also implies that the
condition in Theorem 1 – agents entering the network later than agent ζ do not exit the network
earlier than him – is not too restrictive. Furthermore, since the three relevant models are very
representative in the recent literature on ADR games and the properties are natural and intuitive,
Theorem 3 is also of interest in its own right, rather than merely technical.

6. Bounding equilibrium queue lengths.

This section gives an affirmative answer to the EQLP on series-parallel networks for the three ADR
games introduced in the preceding section. Below is one of the most popular definitions of this
class of networks, expressed by iterative construction.
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Definition 7 (Series-parallel network). A network G with origin o and destination d is
o-d series-parallel or simply series-parallel if one of the following is true:

(i) G consists of a single edge od.
(ii) G is obtained by connecting two smaller oi-di series-parallel networks Gi, i= 1,2, in series

— merge d1 and o2, and rename o1 as o and d2 as d.
(iii) G is obtained by connecting two smaller oi-di series-parallel networks Gi, i= 1,2, in parallel

— merge o1 and o2 into o and merge d1 and d2 into d.
Let G= (V,E) be a series-parallel network. In view of Definition 7, network G is obtained from

|E| edges by performing a sequence of |E|−1 series or parallel connection operations. Each of these
operations connects two series-parallel subnetworks G1 and G2 of G into a bigger series-parallel
subnetwork G3 of G. Fix any such sequence of |E|−1 operations that leads to G, and let S be the
set of all the subnetworks G1, G2 and G3 that appear during the whole process of the sequence of
|E| − 1 connection operations. Then clearly,

G∈S and |S|= 2|E| − 1.

Equilibrium. In the remainder of this section, we use p= (Pi)i∈∆ to denote an arbitrary UFR
equilibrium if the underlying game is Γ1 or Γ2 and an arbitrary NE in the case of Γ3. For brevity,
we simply call p an equilibrium of the game on G.

EQLP. By an o-d cut, or simply a cut, of G, we mean a set of edges whose removal from
G leaves the graph unconnected from o to d. Let the capacity of G be defined as the minimum
number of edges in an o-d cut in G. The EQLP on the ADR game can be rephrased as: Can the
number of agents inside G under p be bounded by a constant, assuming that the inflow size |∆r|
is at most the capacity of G for all time points r?

To tackle the EQLP on G, the above inductive graphic structure might suggest a very natural
approach — assuming the EQLP has an affirmative answer on both smaller series-parallel networks
whose series or parallel combination is G, one tries to prove that the queue lengths under p are
bounded. Unfortunately, this natural idea does not work in the case of parallel combination, because
the inflow size of one of the smaller networks could exceed its capacity (although the inflow size
under p is at most the capacity of G). To get around the difficulty caused by the unfavorable
flow divisions between smaller networks in parallel, we come up with a novel induction base (see
Definition 8 in Section 6.2), which is stronger than an affirmative answer to the EQLP. The success
of our inductive method with this stronger base relies on an upper bound on the ratio between the
populations in any pair of sub-networks in S connected in parallel (as detailed in Section 6.1). A
key to deriving such an upper bound is Theorem 1.

6.1. Population ratio. Lemma 3 below states that the numbers of agents in the two sub-
networks that are connected in parallel are in some sense balanced: it is impossible that one
subnetwork is much more populated than the other. This is intuitive, because parallel subnetworks
are substitutes for agents: they use at most one of them. The more populated a subnetwork is,
the more congested it is. As one subnetwork becomes more congested compared with the other,
its attractiveness decreases, and later (selfish) agents will have more incentives to use the other
subnetwork, which will eventually make the two subnetworks relatively balanced in population.
However, quantifying this simple intuition rigorously is nontrivial.

Let D= maxv∈V |E−v | denote the maximum in-degree of vertices in G, and L denote the length
of a longest o-d path in G. At any integer time point, we say that a network accommodates an
agent if the agent is inside some buffer in the network. Recall that p denotes an equilibrium of Γi
with i∈ {1,2,3} on G.

Lemma 3. Suppose that G1,G2 ∈S are connected in parallel to form a series-parallel network
in S, and they accommodate n1 and n2 agents, respectively, at some time under p. Then n1 ≤
D(L+n2 + 1).
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To prove the above lemma, an intuitive approach seems reasonable: if a drastic imbalance of
populations in the two subnetworks emerges, some agent in the much more populated subnetwork
would benefit by switching his path to the less populated one, contradicting the definition of the
equilibrium. However, there are two major obstacles.

• First, the two subnetworks typically do not form the whole network; the common sink vertex
(destination) of the two subnetworks may not be the final destination d of the agents. Hence they
may not have incentives to reach this intermediary vertex at an earlier time by switching paths.
Recall that while the (global) property of earliest-arrival is satisfied by equilibrium routings in Γ1

and Γ2, it is generally not the case in Γ3. This makes a direct derivation of a contradiction (to the
definition of the equilibrium) unable to work.

• Second, it is not easy to evaluate what would happen if one agent had switched from a
subnetwork to the other. The difficulty lies in two aspects: (i) The switching typically leads to
a non-equilibrium routing. While agents behave relatively predictably at equilibrium, it is not
the case for a non-equilibrium routing in general. In particular, in contrast to many other game-
theoretical models, agents’ latencies are not explicitly expressed as functions of closed form but
determined by complicated dynamic processes in our models. (ii) Switching should have occurred
before the time we investigate (the “some time” in Lemma 3), and thus unavoidable backtracking
makes the counter-factual analysis even more complicated.

Fortunately, Theorems 1 and 3 established in Sections 3 and 5 can help us overcome these two
obstacles. While the above intuitive approach intends to make a comparison for the single devi-
ator, we accomplish our task by comparing the deviator with some earlier-batch agent. Roughly,
though agents may not reach every intermediary vertex as early as possible at equilibrium, they
(as Theorem 3(ii) implies) cannot be overtaken by any later-batch agent. This provides a different
way of deriving a contradiction: finding a later-batch agent who can preempt an earlier-batch agent
by switching his path to the other subnetwork. Technically, this is to evaluate the performance
of a later-batch agent after his deviation. Theorem 1 can relate his exiting time from the subnet-
work with population sizes and the longest-path length for the routing that is not necessarily an
equilibrium, even when backtracking is involved.

Proof sketch. The remainder of this subsection is devoted to the proof of Lemma 3, which
goes roughly as follows. We use a contradiction argument and suppose from now on that n1 >
D(L+n2 + 1). Instead of directly using the definition of an equilibrium and showing the existence
of an agent who has a better choice than that in p, we shall show the existence of an agent ζ in
G1 who, by switching his path, can overtake some agent of an earlier batch in p, contradicting
Theorem 3(ii).

Let o′ and d′ denote the common origin and destination of G1 and G2, respectively. Suppose that
the time stated in Lemma 3 is r0. Let S1 and S2 denote the sets of agents G1 and G2 accommodate
at time r0, respectively. Hence |S1|= n1 and |S2|= n2. We define ζ as an agent who enters G1 (via
o′) under p the latest among all agents in S1. Let r denote his entry time into G1. Apparently
r ≤ r0. If there are more than one such agents, we take ζ to be the one who is preempted by all
other such agents at o′. It follows from the global FIFO property in Theorem 3(i) that ζ is one of
the latest agents among those in S1 to reach the final destination d.

We consider a unilateral deviation of ζ from G1 to G2. The most innovative part of our proof
is to show that there is a special path in G2 which makes his arrival time at d′ upper bounded
by r0 + L+ |S2| (see Claim 7 below). Meanwhile, Theorem 3(ii) guarantees that this unilateral
deviation does not affect any of the arrival times, particularly the arrival times at d′, of agents in
earlier batches under p. Since the indegree of d′ in G1 is bounded by D− 1, at most D− 1 agents
in S1 can reach d′ simultaneously. This enables us to easily derive a lower bound of r0 + |S1|−(D+1)

D−1

on the latest arrival time at d′ among agents in S1 who are in earlier batches than ζ (Claim 3).
Using our contradiction assumption n1 > D(L+ n2 + 1), the above upper bound (Claim 7) and
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lower bound (Claim 3) help us find an agent (denoted as η) in S1 who can be overtaken by ζ at
d′, contradicting the hypothesis that p is an equilibrium.

Technical details. We rigorously define the agent η and show that he would be overtaken by
ζ. Let S′1 be a subset of S1 with D+ 1 agents who reach d′ under p as late as possible. Suppose
that η is one of the agents who reaches the final destination d (of the whole network) the earliest
among those in S′1. The claim below provides a lower bound on η’s arrival time at the destination
d′ of the subnetwork under the equilibrium routing p.

Claim 3. td
′
η (p)≥ r0 + |S1|−(D+1)

D−1
.

Proof. Since the in-degree of a vertex in G is at most D, and d′ has at least one incoming edge
from G2, we know that the number of incoming edges of d′ from G1 is at most D−1. Hence at most
D−1 agents in S1 can reach the destination d′ of G1 at the same time. It follows from the definition
of S′1 that the earliest time an agent in S′1 can reach d′ is not earlier than r0 + |S1 \S′1|/(D− 1) =
r0 + |S1|−(D+1)

D−1
by definition of S′1. As η ∈ S′1, we have the claim. �

The following claim states that, as desired, agent η is indeed in an earlier batch under p than
the batch agent ζ is in.

Claim 4. tdη(p)< tdζ(p).

Proof. By the global FIFO property of p stated in Theorem 3(i), the choice of ζ ∈ S1 enforces
that ζ reaches the final destination d no earlier than any agent in S1. Hence, agent ζ reaches d no
earlier than any one of the D+ 1 agents in S′1 chosen from S1.

Observe (by the definition of D) that the D+ 1 agents in S′1 cannot reach d at the same time.
So the earliest one, agent η as per our selection, reaches d earlier than the latest one, and thus
earlier than ζ. �

Next, we consider the scenario that when agent ζ arrives at o′, he switches his subroute in G1

to a best possible o′-d′ path in G2 to reach d′, with all other agents still following their paths as
in p, for which we can upper bound ζ’s arrival time at d′ by r0 +L+ |S2|. So we will focus on G2.
To facilitate analysis, we construct an auxiliary ADR game Γ′ on G2 as follows: The agent set ∆′

consists of ζ and all the agents who pass through G2 under p. Each agent of ∆′ enters G2 from
o′ at the same time as he reaches o′ under p, and chooses an o′-d′ path in G2 as his route in Γ′.
Game Γ′ follows the same ADR model as game Γ1, Γ2, or Γ3 in which p is considered. We define
agent priorities in Γ′ as follows.

- For Γ1 and Γ2, the global agent-priority ordering on ∆′ is the restriction of the global agent-
priority list of ∆ to ∆′.

- For Γ3, the original agent-priority ordering among agents of ∆′ who reach o′ simultaneously is
the restrictions of that in Γ3 when o′ = o; it is determined by the edge priority on E−o′ (i.e., an
agent who comes from an edge in E−o′ with a higher priority has a higher original priority) when
o′ 6= o.

Recalling Section 5.1, in the cases of Γ1 and Γ2 the ADR model requires that agents entering
the network earlier have higher priorities than later ones. Since p is a UFR equilibrium in these
cases, Lemma 2 guarantees that the global agent-priority ordering defined above for Γ′ satisfies the
modelling requirement. It is clear that the restriction of p to G2, denoted as p|G2

, is a partial path
profile of agents in ∆′\{ζ}. In any case, we show in Appendix D that ζ has a best response to p|G2

,
an o′-d′ path denoted as P ∗ζ , such that under the routing q := (P ∗ζ ,p|G2

) of game Γ′, agent ζ can
reach d′ no later than any later-coming agents.

Claim 5. Let Aζ,q denote the set of agents who enter G2 later than ζ (i.e., after time r)
under q. Then no agent in Aζ,q can reach d′ (i.e., exit G2) earlier than agent ζ under q.
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To bound ζ’s arrival time at d′ under q by r0 +L+ |S2|, we only need to consider the case where
agent ζ is still inside G2 at time r0. We will apply Theorem 1, whose condition has been satisfied
as Claim 5 states, to bound the time when agent ζ exits G2 under q. To this end, in addition to
Aζ,q defined in Claim 5, we define Bζ,q(r0) as the set of agents other than ζ who enter G2 no later
than agent ζ and are still inside G2 at time r0 under q. The following claim relates the set Bζ,q(r0)
of agents in Γ′ to the set S2 of agents in the original game Γ1, Γ2, or Γ3.

Claim 6. Bζ,q(r0)⊆ S2.

Proof. It suffices to show that: all agents exiting G2 by time r0 under p (if any) also exit G2

by time r0 under q, namely, td
′
h (q)≤ r0 holds for all h ∈∆′\{ζ} with td

′
h (p)≤ r0. Recall from the

no-overtaking property (Theorem 3(ii)) that ζ cannot affect the arrival times of any agent in an
earlier batch by switching his own path. Suppose on the contrary that there is an agent h such
that td

′
h (p)≤ r0 and td

′
h (q)> r0. Since q, when restricted to ∆′\{ζ}, is a restriction of p to G2, the

different arrival times of h at d′ under p and q imply that agent h’s arrival time at d′ is affected
by ζ’s unilateral change. So it must be the case that under p, agent h reaches the final destination
d no earlier than ζ, and hence later than agent η (by Claim 4). However, recalling Claim 3, under
p agent η reaches d′ later than r0 ≥ td

′
h (p), i.e., later than h, showing a contradiction to the global

FIFO property of p (Theorem 3 (i)). �
We are now able to bound agent ζ’s arrival time at d′ under routing q of Γ′.

Claim 7. td
′
ζ (q)≤ r0 +L+ |S2|.

Proof. Combining Claims 5 and 6, we apply Theorem 1 directly to deduce that under q, agent
ζ exits G2 no later than r0 +Lo′d′ + |Bζ,q(r0)| ≤ r0 +L+ |S2|. �

Now turning back to the game in G, let us think of the routing that results from p = (Pi)i∈∆

by an unilateral deviation of agent ζ to o-d path P̂ζ = Pζ [o, o
′]∪P ∗ζ ∪Pζ [d′, d], under which he first

follows Pζ [o, o
′] to o′, then switches to G2 at o′ and follows P ∗ζ to d′, and finally follows Pζ [d

′, d] to

d. The resulting path profile (P̂ζ ,p−ζ) is denoted as p̂. Now we are ready to wrap up the proof of
Lemma 3.

Proof of Lemma 3. Recall from Claim 4 that under p, agent η is in an earlier batch and agent ζ
is in a later batch. Thus by the no-overtaking property stated in Theorem 3(ii), we have td

′
η (p̂) =

td
′
η (p), as ζ cannot affect η’s arrival times, and td

′
η (p̂)≤ td′ζ (p̂), as η preempts ζ no matter how the

latter chooses his route through d′.
On the other hand, under the contradiction assumption n1 > D(L+ n2 + 1), Claims 3 and 7

combine into td
′
η (p) ≥ r0 + |S1|−(D+1)

D−1
> r0 + L+ |S2| ≥ td

′
ζ (q). Note that q is the restriction of p̂

on G2, giving td
′
ζ (p̂) = td

′
ζ (q). In turn td

′
η (p̂) = td

′
η (p)> td

′
ζ (q) = td

′
ζ (p̂) shows a contradiction to the

no-overtaking property that td
′
η (p̂)≤ td′ζ (p̂). �

Remark 3. Consider extending the game to uniform-capacity networks in which every edge
has an integer capacity c. The buffer selection rules in Γ1 and Γ2 work directly for the capacitated
case, while the tie-breaking rule in Γ3 needs to be refined by splitting edges and specifying priorities
among the splitted edges (see [4]). For the capacitated setting, the inequality in Lemma 3 is
generalized to n1 ≤ cD(L+n2 + 1).
A quick explanation of the generalization is obtained by reducing the problem to a unit-capacity
network G′ via splitting edges of the capacitated network G and mapping equilibrium p to a routing
p′ for the game on G′ in the straightforward manner, which does not affect the agents’ arrival times
at any vertex. It is not hard to see that p′ is an equilibrium of the game in G′ (whose maximum in-
degree is cD). The above remark becomes a corollary of Lemma 3. Alternatively, without resorting
to edge splitting, one can derive the same result by slightly generalizing the definition of S′1 in the
proof of Lemma 3 (see Appendix E).
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6.2. Queue lengths. In this subsection, we employ a novel inductive argument to resolve the
EQLP of ADR games Γ1, Γ2 and Γ3 on series-parallel network G. We say that a cut of G is full at
time r if the buffer of each edge in the cut is nonempty at time r. Let C and C ′ be two minimum
(in terms of number of edges) o-d cuts in G. We say that C is on the left of C ′ if we can order the
edges in the two cuts as C = {e1, . . . , ek} and C ′ = {e′1, . . . , e′k} such that for each i∈ {1, . . . , k} with
ei 6= e′i there exists an o-d path in G which contains {ei, e′i} and visits ei before e′i.

For any o′-d′ series-parallel network H, let Ξ(H) denote the leftmost minimum o′-d′ cut of H.
In particular, |Ξ(H)| is the minimum cut size (i.e., capacity) of H. Removing cut Ξ(H) from H
leaves two connected components: the left one that contains o′, and the right one that contains d′.
Let H l denote the graph obtained from the left component by attaching all edges in Ξ(H), and let
Hr denote the right component. So H is the edge-disjoint union of H l and Hr. For any subgraphs
H1 and H2 of G, we use H1 ∪H2 to denote the subgraph of G whose vertex (resp. edge) set is the
union of the vertex (resp. edge) sets of H1 and H2. Recall that p denotes an arbitrary equilibrium
of Γi, i∈ {1,2,3}, on G. In this subsection, we additionally assume that

under p at most |Ξ(G)| agents enter G at each integer time point. (6.1)

Since |Ξ(G)| is bounded above by the in-degree of destination d and thus by the maximum in-
degree D of G, it is instant that, for any Gi ∈S, under p at most D agents enter Gi at every time
point. In the following, we use m := |E| to denote the total number of edges in G.
Definition 8. Let F denote the set of series-parallel subnetworks Gi ∈S such that under p

there exist finite integers F l
i and F r

i satisfying the following two conditions:
• Ξ(Gi) is full as long as Gl

i accommodates more than F l
i agents.

• Gr
i can accommodate at most F r

i agents at any time.
We call vector (F l

i ,F
r
i ) a certificate for Gi ∈ F. In the following, we use (F l

i ,F
r
i ) to denote the

certificate for Gi ∈ F such that F l
i and F r

i are as small as possible.
First, we can see that set F is nonempty since every single edge of G apparently belongs to F,

a certificate of which is (0,0). Second, given the certificate (F l
i ,F

r
i ) for Gi ∈ F, we note that every

vector (F̃ l
i , F̃

r
i ) with (F̃ l

i , F̃
r
i ) ≥ (F l

i ,F
r
i ) is a certificate for Gi ∈ F. In the following two lemmas,

we are given G1,G2 ∈ F with certificates (F l
i ,F

r
i ), i= 1,2, such that Gi is an oi-di series-parallel

network for i= 1,2.

Lemma 4. If Gs ∈S is the combination of G1 and G2 in series, then Gs ∈ F with certificate
(F l

s,F
r
s ) satisfying max{F l

s,F
r
s } ≤m(F l

1 +F r
1 +F l

2 +F r
2 + 1).

Proof. The series combination Gs ∈S implies that D ≤m− 1. By symmetry, suppose w.l.o.g.
that Gs is obtained from G1 and G2 by merging d1 with o2. We distinguish between two cases.

In the case of |Ξ(G1)| ≤ |Ξ(G2)|, clearly Ξ(Gs) is just Ξ(G1), Gl
s =Gl

1 and Gr
s =Gr

1∪Gl
2∪Gr

2. To
see Gs ∈ F, we prove it has (F l

1,F
r
1 +F l

2 + |Ξ(G1)|+F r
2 ) as a certificate. Since G1,G2 ∈ F, it suffices

to show that the number of agents Gr
1∪Gl

2 can accommodate is upper bounded by F r
1 +F l

2 + |Ξ(G1)|
at any time. Since Gr

1 can accommodate at most F r
1 agents, and Ξ(G2) is full as long as Gl

2

accommodates more than F l
2 agents, we deduce that Ξ(G2) is full as long as Gr

1∪Gl
2 accommodates

more than F r
1 + F l

2 agents. Consider any time point t such that Gr
1 ∪Gl

2 accommodates at most
F r

1 +F l
2 agents at time t, and more than F r

1 +F l
2 agents at time t+ 1. Then at time t+ 1, Gr

1 ∪Gl
2

accommodates at most F r
1 +F l

2 + |Ξ(G1)| agents and Ξ(G2) is full. So |Ξ(G2)| agents exit Gr
1 ∪Gl

2

at time t+2, while at most |Ξ(G1)| agents enter Gr
1∪Gl

2. It follows from |Ξ(G1)| ≤ |Ξ(G2)| that the
number of agents inside Gr

1 ∪Gl
2 is non-increasing unless the number decreases below F r

1 +F l
2 + 1.

Therefore, at any time Gr
1 ∪Gl

2 can accommodate at most F r
1 +F l

2 + |Ξ(G1)| agents.
In the case of |Ξ(G1)|> |Ξ(G2)|, we see that Ξ(Gs) is just Ξ(G2). We only need to show that

Ξ(G2) is full as long as Gl
s (=G1 ∪Gl

2) accommodates more than F l
1 +m(F r

1 +F l
2) agents, which

gives a certificate (F l
1 +m(F r

1 + F l
2),F r

2 ) for Gs ∈ F. Suppose that t is a time point when Ξ(G2)
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is not full and G1 ∪Gl
2 accommodates F agents. Next, we prove that F ≤ F l

1 + (1 +D)(F r
1 + F l

2)
holds, which implies the desired conclusion because D≤m− 1. We only need to consider the case
F > F l

1 +F r
1 +F l

2. Since G2 ∈ F, that Ξ(G2) is not full implies that Gl
2 accommodates at most F l

2

agents at time t. It follows from G1 ∈ F that at time t, Gr
1 ∪Gl

2 accommodates at most F r
1 + F l

2

agents, and thus Gl
1 accommodates at least F − (F r

1 + F l
2)> F l

1 agents. Let t′ be the latest time
before t when Gl

1 accommodates at most F l
1 agents. Recall that under p at most D agents enter

Gs at every time point. So from t′+ 1 to t at most D(t− t′) agents can enter Gl
1, and we have

F − (F r
1 +F l

2)−F l
1 ≤ (t− t′)D.

Since, by the choice of t′, at times t′ + 1, t′ + 2, . . . , t, there are more than F l
1 agents in Gl

1, cut
Ξ(G1) is full at all these consecutive t− t′ time points. Therefore, at time t, the number of agents
inside Gr

1 ∪Gl
2 is at least

(t− t′)(|Ξ(G1)| − |Ξ(G2)|)≥ t− t′ ≥ (F −F l
1−F r

1 −F l
2)/D.

On the other hand, recall that there are at most F r
1 + F l

2 agents inside Gr
1 ∪Gl

2 at time t. Now
(F −F l

1−F r
1 −F l

2)/D≤ F r
1 +F l

2 gives F ≤ F l
1 + (1 +D)(F r

1 +F l
2). The lemma is proved. �

Lemma 5. If Gp ∈S is the combination of G1 and G2 in parallel, then Gp ∈ F with certificate
(F l

p,F
r
p ) satisfying max{F l

p,F
r
p } ≤ (m+ 1)(m+F l

1 +F r
1 +F l

2 +F r
2 ).

The parallel combination Gp ∈S implies that L≤m− 1. It is clear that Ξ(Gp) = Ξ(G1)∪Ξ(G2),
Gl
p = Gl

1 ∪Gl
2, and Gr

p = Gr
1 ∪Gr

2. Therefore, Gr
p accommodates at most F r

p ≡ F r
1 + F r

2 agents at
any time. To prove Gp ∈ F, we only need to show that Ξ(G1) ∪ Ξ(G2) is full as long as Gl

1 ∪Gl
2

accommodates more than a certain finite number of agents. Since G1,G2 ∈ F, it suffices to consider
the time when one of Gl

1 and Gl
2, say Gl

1, accommodates at most F l
1 agents. Suppose that Gl

2

accommodates F agents at that time. It follows from Lemma 3 that G1 accommodates at least
F/D− (L+1) agents. Since G1 ∈ F, there are at least F/D−L−1−F r

1 agents inside Gl
1. It follows

from F/D − L− 1− F r
1 ≤ F l

1 that F ≤D(L+ 1 + F l
1 + F r

1 ), and Gl
1 ∪Gl

2 accommodates at most
F l

1 +F ≤ F l
1 +m(m+F l

1 +F r
1 ) agents. Thus, if Ξ(G1)∪Ξ(G2) is not full, it must be the case that

Gl
p accommodates at most F r

p ≡ (m+ 1)(m+F l
1 +F r

1 +F l
2 +F r

2 ) agents. �
Set F ≡ max{F l

1,F
r
1 ,F

l
2,F

r
2 }. Then G1 and G2 have (F,F ) as a common certificate for their

membership in F. It follows from Lemmas 4 and 5 that the series or parallel combination of G1

and G2 whichever belongs to S has (8m(m+F ),8m(m+F )) as a certificate for its membership
in F. Recall that all m edges in G belong to F with certificates (0,0), and G is obtained from the
edges by performing m− 1 series or parallel combinations. We deduce that ((8m)m, (8m)m) is a
certificate for G∈ F since 8m(m+8m(m+8m(· · ·+8m(m+8m ·m) · · · ) =m

∑m−1

h=1 (8m)h ≤ (8m)m.
Now we are ready to present and prove the main result of this section.

Theorem 4. Let G be a series-parallel network with m edges. If |∆t| ≤ |Ξ(G)| for all t ≥ 1,
then, for any UFR equilibrium of Γ1 or Γ2, or any NE of Γ3, the number of agents in G at any
time is upper bounded by a constant at most (12m)m.

Proof. We may assume m≥ 2. Notice from |∆t| ≤ |Ξ(G)| that the equilibrium, which we write
as p, satisfies (6.1). Therefore, we may define F w.r.t. this p, and obtain G ∈ F with certificate
((8m)m, (8m)m) as argued above. So, under the equilibrium Ξ(G) is full as long as Gl accommodates
more than (8m)m agents, and Gr can accommodate at most (8m)m agents at any time. Similar to
the argument used in the proof of Lemma 4, we consider any time t such that Gl accommodates at
most (8m)m agents at time t, and more than (8m)m agents at time t+ 1. Then Gl accommodates
at most (8m)m+ |∆t+1| ≤ (8m)m+ |Ξ(G)| agents and Ξ(G) is full at time t+ 1. Thus |Ξ(G)| agents
exit Gl at time t+ 2 while |∆t+2| (≤ |Ξ(G)|) agents enter Gl. It follows that the number of agents
inside Gl is non-increasing unless the number decreases below (8m)m+1. Therefore, at any time Gl

can accommodate at most (8m)m + |Ξ(G)| agents, and G can accommodate at most 2(8m)m +m
agents. Since m≥ 2, the result follows. �
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If we take the average residence time of all agents as a measure of the social cost as in [28], then

the boundedness of the queue lengths implies that the PoA of NEs in Γ3 and the PoA for the UFR

equilibria in Γ1 and Γ2 are also bounded.

Remark 4. Further to Remark 3, the boundedness result in Theorem 4 can be generalized to

uniform-capacity series-parallel networks with population being bounded by (12cm)cm, where c is

the uniform edge capacity.

7. Concluding remarks.

In this paper, we have studied the problems of bounding agents’ residence times for a broad class

of atomic dynamic routings, where the buffer regulation rules are flexible and the network may

contain multiple origins and multiple destinations. As an application of the obtained results, we

have established that for three classes of atomic dynamic routing games that appear in the recent

literature, the residence times of selfish agents (or equivalently queue lengths) at equilibrium are all

upper bounded by a constant depending only on the network, provided the network is series-parallel

and the number of incoming agents at each time point does not exceed the network capacity. Our

results generalize those in [24] and [28] on bounding residence times and answering the EQLP. The

token techniques explored in this paper have exhibited capabilities to circumvent direct analysis

of complicated chain effects in atomic dynamic routings and may have the potential to serve as a

universal tool for a large class of similar problems.

Two interesting directions deserve future research efforts. (i) Theorem 2 is more general than

Theorem 1 in that it allows for uniform capacities instead of unit ones. However, while agents

may enter the network over time in Theorem 1, they are inside the network at the very beginning

in Theorem 2. Are we able to extend Theorem 2 further to the more general scenario in which

agents enter the network over time, edges have uniform or nonuniform capacities, and there may be

multiple origins and multiple destinations? To accomplish these tasks, we may need to design more

advanced token techniques by combining the advantages of both the multi-token and single-token

techniques. The advantage of the multi-token technique comes from the large number of tokens

(which may do a better job in “simulating” simultaneous movements of multiple agents), while its

disadvantage lies in the fact that the movements of the tokens are relatively rigid. In contrast, the

advantage of the single-token technique comes from the fact that the token’s movement is more

flexible (which contributes to more concise analysis), and its weakness lies in the limited capability

of a single token in keeping an eye on the whole picture. Designing a more systematic token

technique may also help tackle other complicated problems. (ii) Concerning the EQLP, are we able

to extend Theorem 4 from series-parallel networks to more general ones or from UFR equilibria

to general NEs for games Γ1 and Γ2? In attempts to tackle more general network topologies, the

following difficulties make our key ideas hard to generalize. First, severe population imbalance

between two “parallel” subnetworks may happen in general topology. For example, consider two

internally vertex-disjoint subpaths P1[o, v] and P2[o, v] from origin o to a non-destination vertex v.

In a general network, it is possible that P1[o,w] is very congested but P2[o,w] is empty, since the

agents using some edges in P1[o,w] do not necessarily pass through v. In contrast, such a situation

is prohibited by the series-parallel structure. Second, in a general network, there may not be any

well-defined “leftmost” minimum cut. It is unclear which minimum cut must be full of passing

agents once there are too many agents in the network, and which part of the network will always

accommodate a limited number of agents. Thus tackling the EQLP for more general networks asks

for new game theoretical and graphic insights and techniques.
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APPENDICES

Appendix A: The partial order on single-token dynamics. In this section, we provide
more details on the partial order defined in Definition 3.

Proof of Claim 2. First it is evident that the binary relation is anti-symmetric. Suppose dynamic
(P ; t(e1), t(e2), . . . , t(ek)) is smaller than (P ′; t′(e′1), t′(e′2), . . . , t′(e′k′)), and the latter is smaller than
(P ′′; t′′(e′′1), t′′(e′′2), . . . , t′′(e′′k′′)). Then there exist i and i′ such that the following two conditions are
satisfied: (i) t(ei)< t

′(e′i), the first i−1 edges (if any) on P are identical to the corresponding ones
on P ′, and the leaving times from the buffer on each of these edges are identical for both dynamics.
(ii) t′(e′j)< t′′(e′′j ), the first j − 1 edges (if any) on P ′ are identical to the corresponding ones on
P ′′, and the leaving times from the buffer on each of these edges are identical for both dynamics. If
i≤ j, then t(ei)< t′(e′i)≤ t′′(e′′i ), and for all k < i (if any), ek = e′k = e′′k and t(ek) = t′(e′k) = t′′(e′′k).
If i > j, then t(ej) = t′(e′j) < t′′(e′′j ), and for all k < j (if any), t(ek) = t′(e′k) = t′′(e′′k). This shows
that the binary relation is transitive. �

This partial order is very similar to a lexicographic order, which is linear, i.e., a partial order
such that all pairs of elements are comparable. In fact, we show in the following that this order
is linear when c= 1. It is not the case, however, when c≥ 2, because multiple agents may leave a
buffer simultaneously, making it impossible to compare the corresponding legal dynamics.
Remark 5. The partial order defined in Definition 3 is linear if c= 1.
Proof. We prove that any two different legal dynamics are comparable. Let D =

(P ; t(e1), . . . , t(ek)) and D′ = (P ′; t′(e′1), . . . , t′(e′k′)) be two different legal dynamics. According to
our definition of legal dynamic (Definition 2), we know e1 = e′1 = f and t(ek) = t′(e′k′) = τζ−1 (note
that k is not necessarily equal to k′). Suppose that t(e1) = t′(e′1). It must be the case that the
token is held by the same agent when passing the starting edge f under D and D′. It follows that
e2 = e′2. An iterative argument shows that there must exist an i≥ 2 such that e1 = e′1, . . . , ei = e′i,
t(e1) = t′(e′1), . . . , t(ei−1) = t′(e′i−1), and t(ei) 6= t(e′i), as otherwise t(ek) = τζ − 1 = t′(e′k′) would
imply D=D′, a contradiction. �

Appendix B: A simpler proof for short path routing.

Proposition 1 ([24]). Given an ADR profile on Gc, suppose all the |∆| agents enter Gc at
the same time and each agent follows a shortest origin-destination path. Then the residence time
of any agent ζ is at most lζ + b(|∆| − 1)/cc, where lζ is the length of a shortest oζ-dζ path in G.

Proof. To prove the proposition, we still use the single-token technique and its analysis developed
in Section 4 under the additional condition that the token can only move along shortest oζ-dζ
paths. That is to say, in each legal dynamic D= (P ; t(e1), t(e2), . . . , t(ek)), the path P = e1e2 . . . ek
can only be a shortest oζ-dζ path (with length k ≡ lζ). Similarly, there still exists a minimal legal
dynamic D∗ = (P ∗; t(e∗1), t(e∗2), . . . , t(e∗k)). Since P ∗ is a shortest oζ-dζ path with length lζ , we are
left to prove that under D∗, the token is never delayed by ζ and can be delayed by another agent
for at most once. The proof is almost the same as that of Theorem 2, except for a small but critical
part concerning shortest paths.

Suppose on the contrary that the token is delayed twice by an agent η on edges e∗i and e∗j ,
where 1 ≤ i < j ≤ k, and ui, uj are tail vertices of e∗i , e

∗
j , respectively. Let Pη be η’s route in the

given ADR profile. Since all agents follow their shortest origin-destination paths, the sub-path
P ∗[ui, uj] of P ∗ and sub-path Pη[ui, uj] of Pη are both shortest ui-uj paths in G. It follows that
path P ′ := P ∗[oζ , ui]∪Pη[ui, uj]∪P ∗[uj, dζ ] is a shortest oζ-dζ path. This allows us to modify D∗ to
obtain a smaller legal dynamic by letting agent η hold the token when he moves along the sub-path
Pη[ui, uj], which contradicts the minimality of D∗. �
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Note that the basic intuitions behind our proof and that of Mansour and Pattshamir [24] are
similar: trying to upper bound the waiting time of the token (or their “train conductor”) by
b(|∆| − 1)/cc. However, our proof relies on the concept of legal dynamics (see Definition 2) and
the partial order among them (see Definition 3 and Claim 2), while their proof is mainly based on
the concept of “time path” (different from our legal dynamic) on shortest paths and the process
of iteratively “switching” the time path. In fact, Theorem 2 can be considered as a generalization
of Proposition 1 from shortest path networks to more general ones. It seems unlikely to derive
Theorem 2 by using their “time path” analysis. Particularly, Mansour and Pattshamir [24] listed
generalizing their result as an open problem.
Remark 6. Due to the shortest-path restrictions, the underlying network of the ADR inves-

tigated in Proposition 1 needs not be acyclic for validating the bound of lζ + b(|∆| − 1)/cc even in
the case of c= 1.

Appendix C: UFR equilibria. Given any path profile q = (Qi)i∈∆ and any agent subset
S ⊆ ∆, we use qS = (Qi)i∈S to denote the partial path profile of agents in S. In particular, q∅
represents a null path profile.

It turns out that UFR equilibria in Γ1 and Γ2 are the outcomes of the following algorithmic
construction. Given an instance of game Γ1 or Γ2, we assume without loss of generality that the
agents 1,2, . . . in ∆ are ordered in their decreasing priorities. A path profile p = (Pi)i∈∆ can be
constructed by the following iterative adapted-shortest-path (IASP) algorithm [28]. Initially, P1 is
a shortest o-d path in G. Iteratively, for each i= 2,3, . . ., considering routing of the first i agents,
and assuming that agents 1, . . . , i− 1 choose routes P1, . . . , Pi−1, respectively, the algorithm finds
(e.g., using a slight modification of Dijkstra’s algorithm) an o-d path Pi along which agent i is able
to reach each vertex of the path as early as possible. For convenience, we call such a path as an
earliest-arrival o-d path based on (P1, . . . , Pi−1).

For every nonnegative integer i, let [i] denote the set of positive integers no larger than i, As has
been argued in [28], for each i≥ 1, as long as all agents in [i] follow their routes in p[i] = (P1, . . . , Pi)
computed by the IASP algorithm, no agent j ∈∆\ [i] can preempt any agent in [i]. (Their arguments
work for both Γ1 and Γ2 because the FIFO principle has never played any role in proving the
non-overtaking.) Formally, for any agent indices i, j and agent subset S with j ∈ S ⊆∆\[i−1], any
vertex v ∈ Pi, and any partial path profile (Qh)h∈S, it holds that

tvi (p[i], (Qh)h∈S\{i}) = tvi (p[i])≤ tvj (p[i−1], (Qh)h∈S), (C.1)

where p[0] denotes the null path profile. In particular, we have tvi (p[i]) = minRi∈P tvi (p[i−1],Ri) =
min(Rj)j∈∆\[i−1]

tvi (p[i−1], (Rj)j∈∆\[i−1]).

Lemma 6 ([28]). Let p= (Ph)h∈∆ be computed by IASP algorithm.
(i) For every agent i, if all agents in [i− 1] follow their routes in p[i−1], and i follows Pi, then no

matter how other agents choose their routes, none of them can preempt i.
(ii) Under p, no agent with a lower priority can preempt any agent with a higher priority.

Now for each i≥ 1, considering the situation where all agents in [i−1] follow p[i−1] and agent i takes
route Qi ∈P, for an arbitrary vertex v ∈Qi, we compare i’s arrival time at v under partial routing
(p[i−1],Qi) and that under a routing (p[i−1],Qi, (Rj)j∈S) when more agents in any set S ⊆∆\[i]
with any routes Rj, j ∈ S, are added. Since no agent in S can preempt any agent in [i− 1], the
arrival time of every agent in [i− 1] at every vertex is the same under the two routings. It follows
that the addition of routes Rj, j ∈ S, cannot speed up i’s travel, i.e.,

tvi (p[i−1],Qi)≤ tvi (p[i−1],Qi, (Rj)j∈S). (C.2)



Cao, Chen, Chen, Wang: Bounding Residence Times for Atomic Dynamic Routings
24 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Lemma 7. For Γ1 and Γ2, the set E of UFR equilibria is identical to the set A of path profiles
computed by all possible implementations of the IASP algorithm.

Proof. The inclusion of A ⊆ E has been argued in [28] (see the proof of Lemma 1 over there),
where the FIFO principle does not play any role. To see the reverse inclusion, suppose for a
contradiction that there is a UFR equilibrium q = (Qh)h∈∆ 6∈A . Let i be the smallest agent index
such that q[i−1] is a partial path profile found by some implementation of the IASP algorithm and
Qi is not an earliest-arrival o-d path based on q[i−1]. Let v ∈Qi be the closest vertex to d such that
tvi (q[i])>minRi∈P tvi [q[i−1],Ri]. Using a modification of Dijkstra’s algorithm, one can compute an
o-v path R such that if agents in [i− 1] follow q[i−1], the earliest arrival time of i at every vertex
of R, among all partial routings (q[i−1],Ri), is realized by i following R. The choice of v implies
that Q′i :=R∪Qi[v, d] is an earliest-arrival o-d path based on q[i−1], and partial routing (q[i−1],Q

′
i)

could be produced by some implementation of the IASP algorithm. It is evident from (C.1) that
tvi (Q

′
i,q−i) = tvi (Q

′
i,q[i−1]) = minRi∈P tvi [q[i−1],Ri]< tvi (q[i]). On the other hand, by the choice of i,

inequality (C.2) implies tvi (q[i])≤ tvi (q). The contradiction tvi (Q
′
i,q−i)< t

v
i (q) to the UFR property

(see Definition 5) proves the lemma. �
The following no-overtaking property is an immediate corollary of Lemmas 6 and 7.

Lemma 8. Let p be a UFR equilibrium of Γ1 or Γ2, and λ∈∆ be an arbitrary agent.
(i) Under p, no agent with a lower priority can preempt an agent with a higher priority.
(ii) There is an o-d path P ∗λ ∈P such that, if all agents with higher priorities than λ follow their

routes in p, and λ follow P ∗λ , then no matter how other agents choose their routes, none of
them can preempt λ (at any vertex of P ∗λ ). Q.E.D.

Appendix D: The earliest-arrival best response. First, we study agents’ special best
responses in game Γ3, in which we are given a fixed agent ζ and a fixed partial path profile
p−ζ = (Pj)j∈∆\{ζ} of all agents other than ζ. For each vertex v ∈ V and agent i∈∆, define

τ vi := min
Pζ∈P

{tvi (Pζ ,p−ζ)}

as the earliest time at which agent i can reach v when only agent ζ can change his path (noting
that p−ζ has been fixed). It has been shown in Section 4.3 of [3] that the best response of agent ζ
defined below exists, and can be computed efficiently.
Definition 9 (Best response). An o-d path P ∗ζ ∈P is called agent ζ’s earliest-arrival best

response (w.r.t. p−ζ) if under routing (P ∗ζ ,p−ζ), agent ζ reaches each vertex v of P ∗ζ the earliest
(i.e., at time τ vζ ) among all o-d paths, and when there are more than one way for ζ to reach a
vertex v of P ∗ζ at time τ vζ , path P ∗ζ always uses an entering edge with the highest edge priority.

The following definition and lemma concerning “domination” can be found in Section 4.2 of [3].
Definition 10 (Domination). For every agent j ∈∆\{ζ} and vertex v ∈ Pj, we say agent ζ

dominates agent j at vertex v if either (a) τ vζ < τ vj , or (b) τ vζ = τ vj and there exists Pζ ∈P such
that v ∈ Pζ , tvζ(Pζ ,p−ζ) = τ vζ and, either ε−v (Pζ) has a priority higher than ε−v (Pj) (if v 6= o) or ζ has
a higher original priority than j (if v= o).

Lemma 9 ([3]). If ζ dominates agent j ∈∆\{ζ} at vertex v ∈ Pj, then ζ dominates j at all the
vertices on the path Pj[v, d].

Lemma 10. In game Γ3, suppose that ζ ∈∆ is an arbitrary agent, and p−ζ is a partial path
profile of all agents other than ζ. Then there exists P ∗ζ ∈P such that, under (P ∗ζ ,p−ζ), agent ζ
reaches d no later than any agent who enter G later than ζ.
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Proof. Let p∗ := (P ∗ζ ,p−ζ) denote the routing in which agent ζ follows his earliest-arrival best
response w.r.t. p−ζ as defined in Definition 9. Let j be an arbitrary agent who enters the network
G later than ζ. It suffices to show that under p∗, agent ζ reaches d no later than agent j. By
Definition 10, it is apparent that agent ζ dominates agent j at the origin o. By Lemma 9, agent ζ
dominates agent j at destination d. Since under p∗, agent ζ makes his earliest-arrival best response
w.r.t. p−ζ = p∗−ζ , he reaches d at time τdζ , which is no later than τdj ≤ tdj (p∗). �

We now prove Claim 5 concerning earliest-arrival best responses in games Γ1, Γ2 and Γ3.
Proof of Claim 5. In the case of Γ3, the claim is straightforward from Lemma 10. It remains

to consider Γ1 and Γ2. Since p is a UFR equilibrium of the game on G, we note again from
Lemma 8(i) that all agents in Aζ,q, who are preempted by ζ at vertex o′, have priorities lower
than ζ in both games Γi (i ∈ {1,2}) and Γ′. Let Ω (resp. Ω′) consist of agents in ∆ (resp. ∆′)
whose priorities are higher than ζ. Then Aζ,q ⊆∆′ \ (Ω′ ∪ {ζ}). Notice from Lemma 7 that pΩ is
a partial path profile of the agents with the first |Ω| highest priorities computed by an implemen-
tation of the IASP algorithm for game Γi. It is easy to see that the restriction of pΩ to G2, i.e.,
(p|G2

)
Ω′ , is a partial path profile of the agents with the first |Ω′| highest priorities computed by an

implementation of the IASP algorithm for game Γ′. Therefore, the IASP algorithm can compute a
path profile q with qΩ′ = (p|G2

)
Ω′ for the game Γ′. By Lemma 7, we see that q is a UFR equilib-

rium of Γ′. In turn, Lemma 8(ii) provides ζ with an o′-d′ path P ∗ζ in G2 such that under routing
(qΩ′ , P

∗
ζ , (p|G2

)∆′\(Ω′∪{ζ})) = (P ∗ζ ,p|G2
), no agent in ∆′ \ (Ω′ ∪{ζ})⊇Aζ,q can reach d′ earlier than

ζ. �

Appendix E: An alternative proof of Remark 3. We first note that all results in Section
5.2 and Appendices C and D remain valid for the game on the capacitated network. To prove
Remark 3, similar to the proof of Lemma 3, we assume by contradiction that n1 > cD(L+n2 + 1).
For the generalized setting, we change the definition of S′1 to be a set of cD+ 1 agents in S1 who
reach d′ as late as possible. The inequality in Claim 3 changes to td

′
η (p)≥ r0 + |S1|−(cD+1)

c(D−1)
since at

most c(D − 1) agents in S1 can reach d′ at the same time. Claim 4 remains to hold becuase no
cD+ 1 agents can reach d at the same time. By the validity of statements in Appendices C and
D, we still have Claim 5. As remarked at the beginning of Section 4, the unit-capacity assumption
in Theorem 1 could be dropped without any effect on the claimed bound r0 + Lo′d′ + |Bζ,q(r0)|
of ζ’s exiting time from G2. Again, the no-overtaking property implies Claim 6 and therefore
the same inequality td

′
ζ (q)≤ r0 +L+ |S2| as in Claim 7. Now combining td

′
η (p)≥ r0 + |S1|−(cD+1)

c(D−1)
,

td
′
ζ (q)≤ r0 +L+ |S2| and n1 > cD(L+n2 +1), we reach the same contradiction to the no-overtaking

property as in the proof of Lemma 3.
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