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Abstract. This paper considers the problem of minimizing a convex expectation function
over a closed convex set, coupled with a set of inequality convex expectation constraints.
We present a new stochastic approximation type algorithm, namely the stochastic ap-
proximation proximal method of multipliers (PMMSopt) to solve this convex stochas-
tic optimization problem. We analyze regrets of a stochastic approximation proximal
method of multipliers for solving convex stochastic optimization problems. Under mild
conditions, we show that this algorithm exhibits O(T−1/2) regret for both objective re-
duction and constraint violation if parameters in the algorithm are properly chosen, when
the objective and constraint functions are generally convex, where T denotes the number

of iterations. Moreover, we show that, with at least 1− e−T 1/4

probability, the algorithm
has no more than O(T−1/4) objective regret and no more than O(T−1/8) constraint vi-
olation regret. To the best of our knowledge, this is the first time that such a proximal
point method for solving expectation constrained stochastic optimization is presented in
the literature.

Key words. stochastic approximation, proximal method of multipliers, objective regret,
constraint violation regret, high probability regret bound, convex stochastic optimization.
AMS Subject Classifications(2000): 90C30.

1 Introduction

In this paper, we consider the following stochastic optimization problem

min
x∈X0

f(x) = E[F (x, ξ)]

s.t. gi(x) = E[Gi(x, ξ)] ≤ 0, i = 1, . . . , p.
(1.1)

Here X0 ⊂ ℜn is a nonempty bounded closed convex set, ξ is a random vector whose
probability distribution P is supported on set Ξ ⊆ ℜq and F : O0×Ξ → ℜ, Gi : O0×Ξ → ℜ,

∗Supported by the National Natural Science Foundation of China under project No.11971089,
No.11731013 and No.11571059.

†Institute of Operations Research and Control Theory, School of Mathematical Sciences, Dalian Univer-
sity of Technology, Dalian 116024, China.(lwzhang@dlut.edu.cn)

‡Institute of Operations Research and Control Theory, School of Mathematical Sciences, Dalian Univer-
sity of Technology, Dalian 116024, China.(358768797@qq.com)

§Institute of Operations Research and Control Theory, School of Mathematical Sciences, Dalian Univer-
sity of Technology, Dalian 116024, China.(wujia@dlut.edu.cn)

1

http://arxiv.org/abs/1907.12226v3


i = 1, . . . , p, where O0 ⊂ ℜn is an open bounded convex set containing X0. Let Φ be the
feasible region of Problem (1.1):

Φ = {x ∈ X0 : gi(x) ≤ 0, i = 1, . . . , p} .

We assume that expectations

E[F (x, ξ)] =

∫

Ξ
F (x, ξ)dP (ξ), E[Gi(x, ξ)] =

∫

Ξ
Gi(x, ξ)dP (ξ), i = 1, . . . , p

are well defined and finite valued for every x ∈ O0. Moreover, we assume that the functions
F (·, ξ) and Gi(·, ξ), i = 1, . . . , p are continuous and convex on O0. Denote G(x, ξ) =
(G1(x, ξ), . . . , Gp(x, ξ))

T and g(x) = (g1(x), . . . , gp(x))
T , then

g(x) =

∫

Ξ
G(x, ξ)dP (ξ).

It is well-known that a computational difficulty of solving stochastic optimization prob-
lem (1.1) is that expectation is an multidimensional integral and it cannot be computed
with a high accuracy for large dimension q. The aim of this paper is to construct a stochas-
tic approximation proximal method of multipliers for solving Problem (1.1). To this end
we make the following assumptions.

(A1) It is possible to generate an i.i.d. sample ξ1, ξ2, . . . , of realizations of random vector
ξ.

(A2) There is an oracle, which, for any point (x, ξ) ∈ O0×Ξ returns stochastic subgradients
v0(x, ξ), v1(x, ξ), . . . , vp(x, ξ) of F (x, ξ),G1(x, ξ), . . . , Gp(x, ξ) such that

vi(x) = E[vi(x, ξ)], i = 0, 1, . . . , p

are well defined and are subgradients of f(·), g1(·), . . . , gp(·) at x, respectively, i.e.,
v0(x) ∈ ∂f(x), vi(x) ∈ ∂gi(x),i = 1, . . . , p.

(A3) Let D0 > 0, νf > 0 and νg > 0 such that

‖x′ − x′′‖ ≤ D0,∀x′, x′′ ∈ X0

and
F (x′, ξ)− F (x′′, ξ) ≤ νf , ‖G(x, ξ)‖ ≤ νg,∀x′, x′′ ∈ O0, ξ ∈ Ξ.

(A4) Let κf > 0 and κg > 0 such that

‖v0(x, ξ)‖ ≤ κf , ‖vi(x, ξ)‖ ≤ κg, i = 1, . . . , p,∀(x, ξ) ∈ O0 × Ξ,

where v0(x, ξ) is a stochastic subgradient of F (x, ξ) and vi(x, ξ) is a stochastic sub-
gradient of Gi(x, ξ),i = 1, . . . , p, (x, ξ) ∈ O0 × Ξ.

(A5) There exist ǫ0 > 0 and x̂ ∈ X0 such that

gi(x̂) ≤ −ǫ0, i = 1, . . . , p.

2



The stochastic approximation (SA) technique is going back to the pioneering paper by
Robbins and Monro [16]. Since then SA algorithms, due to low demand for computer
memory and cheap computation cost at every iteration, became widely used in stochastic
optimization and online optimization, see, e.g. [11], [19] and [18]. In the classical analysis
of the SA algorithm, initiated from the works [2] and [17], it is assumed that f(·) is twice
continuously differentiable and strongly convex and in the case when the minimizer of f
belongs to the interior of Φ, exhibits asymptotically optimal rate of convergence E[f(xt)−
f∗] = O(t−1), where xt is t-th iterate and f∗ is the minimal value of f(x) over x ∈ Φ. This
algorithm, however, is very sensitive to a choice of the respective stepsizes. For overcoming
this drawback, an important improvement of the SA method was developed by Polyak
[14] and Polyak and Juditsky [15], where longer stepsizes were suggested with consequent
averaging of the obtained iterates. Adopting the averaging technique to iterates generated
by (under our notations)

xj+1 = ΠΦ(x
j − γjv0(x

j , ξj)), (1.2)

Nemirovski, Juditsky, Lan, and Shapiro [10] shows that, without assuming smoothness and
strong convexity of the objective function, the convergence rate is O(t−1/2). This paper
also demonstrates that a properly modified SA approach can be competitive and even
significantly outperform the SAA method for a certain class of convex stochastic problems.
After the seminal work of [10], there are many significant results appeared, even for non-
convex stochastic optimization problems, see [8],[7],[3],[4], [5] and [6]. Among all mentioned
works, the feasible region set is an abstract closed convex set, none of these SA algorithms
are applicable to expectation constrained problems. The computation of projection ΠΦ is
quite easy only when Φ is of a simple structure. However, when Φ is defined by (1.1), the
computation of projection ΠΦ is prohibitive, this is a difficult work. Therefore, it is quite
important to obtain a numerical method with lower iteration complexity of both objective
and constraint violation.

For stochastic optimization problems with expectation constraints, Yu et. al [20] pro-
posed an algorithm that achieves O(T−1/2) expected regret and constraint violations and
O(T−1/2 log T ) high probability regret and constraint violations. Lan and Zhou [9] proposed
a cooperative stochastic approximation type algorithm inspired by Polayk’s subgradient
method, which exhibits O(T−1/2) convergences in terms of objective value and constraint
violation. In [1], the authors presented a novel Constraint Extrapolation method for solving
convex functional constrained problems which includes the stochastic optimization problem
(1.1) as a special case. The method is a single-loop primal-dual type method, which utilizes
linear approximations of the constraint functions to define the extrapolation step and also
exhibits O(T−1/2) convergence results.

A natural way to handle constraints for constrained optimization problems is to use
augmented Lagrangian, which results in proximal point methods. It is well-known that
Rockafellar [13] proposed three proximal point methods for convex programming, namely
the proximal point method developed in [12] applied to maximum monotone inclusions of
the primal optimality, the dual optimality and the saddle point optimality. The augmented
Lagrange method, just the proximal point method applied to the dual optimality, has been
studied deeply not only for convex optimization but also for non-convex optimization. And
the proximal point method for the primal optimality has been extensively implemented
for solving various structured convex optimization problems. However, the proximal point
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method for the saddle point optimality, the so-called proximal method of multipliers by
Rockafellar [13], has not been paid much attention.

In this paper, we study the proximal method of multipliers for stochastic convex problem,
and analyze its regret bounds as well as probability guarantee for both objective reduction
and constraint violation.

For i.i.d. sample ξ1, ξ2, . . . of realizations of random vector ξ. Consider the following
convex optimization problem

min F (x, ξt)

s.t. Gi(x, ξt) ≤ 0, i = 1, . . . , p.
(1.3)

The augmented Lagrangian function is defined by

Lt
σ(x, λ) := F (x, ξt) +

1

2σ

[
‖Πℜ

p
+
(λ+ σG(x, ξt))‖2 − ‖λ‖2

]
, ∀ (x, λ) ∈ ℜn ×ℜp. (1.4)

Then PMMSopt for Problem (1.1) may be described as follows.

PMMSopt: A proximal method of multipliers for solving Problem (1.1).

Step 0 Input λ0 = 0 ∈ ℜp and x0 ∈ ℜn. Set t := 0.

Step 1 Set

xt+1 = argmin
{
Lt
σ(x, λ

t) +
α

2
‖x− xt‖2, x ∈ X0

}

λt+1 = [λt + σG(xt+1, ξt)]+.

(1.5)

Step 2 Set t := t+ 1 and go to Step 1.

In the above algorithm, [y]+ = Πℜ
p
+
[y] denotes the projection of y on to ℜp

+ for any y ∈ ℜp.

Note that the iterations xt = xt(ξ[t−1]) and λt = λt(ξ[t−1]) are mappings of the history
ξ[t−1] = (ξ1, . . . , ξt−1) of the generated random process and hence are random.

As far as we are concerned, the main contributions of this paper can be summarized as
follows.

(1) When σ = T−1/2, α = T 1/2, under mild assumptions, it is proved that the regret of
objective function of T iterations is of order O(T−1/2), and the regret of constraint
violation of T iterations is of order O(T−1/2).

(2) When σ = T−1/2, α = T 1/2, under mild assumptions, it is proved that the following
probability guarantees hold:

Pr

[
1

T

T−1∑

t=0

Gi(x
t, ξt) ≤ ωc(T )

]
≥ 1− e−T 1/4

(1.6)

for all i ∈ {1, . . . , p}, with

ωc(T ) =

[
8
(
1 + 2

√
pκ2g

) ν2g
ǫ0

]
T−1/4 + o(T−1/4);
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and

Pr

[
1

T

T−1∑

t=0

F (xt, ξt) ≤
1

T

T−1∑

t=0

F (x̂, ξt) + ωo(T )

]
≥ 1− e−T 1/4

, (1.7)

with

ωo(T ) =
8
√
2ν3g
ǫ0

T−1/8 + o(T−1/8).

The remaining parts of this paper are organized as follows. In Section 2, we develop prop-
erties of PMMSopt, which play a key role in the analysis for objective regret, constraint
violation regret. In Section 3, we establish bounds of objective regret, constraint violation
regret of PMMSopt for Problem (1.1). In Section 4, we develop probability guarantees for
objective reduction and constraint violation of PMMSopt. We draw a conclusion and give
some discussions in Section 5.

2 Properties of PMMSopt

In this section, we develop properties of PMMSopt, which will be used in the analysis for
objective regret and constraint violation regret.

Lemma 2.1 Let (xt, λt) be generated by PMMSopt and Assumption A(1)–Assumption (A3)
be satisfied. Then

‖λt+1‖2 ≤ ‖λt‖2 + 2σ〈λt, G(xt+1, ξt)〉+ σ2ν2g , (2.1)

and
‖λt‖ − σνg ≤ ‖λt+1‖ ≤ ‖λt‖+ σνg. (2.2)

Proof. Noting that for any a ∈ ℜ, [a]2+ ≤ a2, we have

‖λt+1‖2 =

p∑

i=1

[λti + σGi(x
t+1, ξt)]

2
+

≤
p∑

i=1

[λti + σGi(x
t+1, ξt)]

2

=

p∑

i=1

(
[λti]

2 + 2λtiσGi(x
t+1, ξt) + σ2Gi(x

t+1, ξt)
2
)

≤ ‖λt‖2 + 2σ〈λt, G(xt+1, ξt)〉+ σ2ν2g .

It follows from the nonexpansion property of the projection Πℜ
p
+
(·), we have

‖λt+1 − λt‖ = ‖[λt + σG(xt+1, ξt)]+ − [λt]+‖ ≤ σ‖G(xt+1, ξt)‖,

which implies (2.2). The proof is completed. ✷

Lemma 2.2 Let (xt, λt) be generated by PMMSopt and Assumption (A1)–Assumption (A4)
be satisfied. Then, for any stochastic subgradient vi(x

t, ξt) of Gi(·, ξt) at xt, i = 1, . . . , p,

T−1∑

t=0

Gi(x
t, ξt) ≤ 1

σ
λTi +

T−1∑

t=0

‖vi(xt, ξt)‖‖xt+1 − xt‖ (2.3)
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and

E

[
T−1∑

t=0

Gi(x
t, ξt)

]
≤ 1

σ
E[λTi ] + κg

T−1∑

t=0

E[‖xt+1 − xt‖]. (2.4)

Proof. From the definition λt+1
i = [λti + σGi(x

t+1, ξt)]+, we have from the convexity of
Gi(·, ξt), for any stochastic subgradient vi(x

t, ξt) of Gi(·, ξt) at xt that

λt+1
i ≥ λti + σGi(x

t+1, ξt)

≥ λti + σ(Gi(x
t, ξt) + 〈vi(xt, ξt), xt+1 − xt〉)

≥ λti + σ(Gi(x
t, ξt)− ‖vi(xt, ξt)‖‖xt+1 − xt‖),

which, from λ0 = 0, implies that

T−1∑

t=0

Gi(x
t, ξt) ≤ 1

σ
λTi +

T−1∑

t=0

‖vi(xt, ξt)‖‖xt+1 − xt‖

≤ 1

σ
λTi + κg

T−1∑

t=0

‖xt+1 − xt‖.

Taking expectation operation in the both sides of the above inequality and using Assumption
(A4), we obtain (2.4). ✷

Lemma 2.3 Let (xt, λt) be generated by PMMSopt and Assumption (A1)–Assumption (A3)
be satisfied. Then for any x ∈ X0,

F (xt+1, ξt) +
1

2σ
‖λt+1‖2 + α

2
‖xt+1 − xt‖2

≤ F (x, ξt) +
1

2σ
‖[λt + σG(x, ξt)]+‖2 +

α

2
[‖x− xt‖2 − ‖x− xt+1‖2].

(2.5)

Proof. Since (2.5) is equivalent to the following inequality

Lt
σ(x

t+1, ξt) +
α

2
‖xt+1 − xt‖2 ≤ Lt

σ(x, ξt) +
α

2
[‖x− xt‖2 − ‖x− xt+1‖2], ∀x ∈ X0, (2.6)

we only need to prove (2.6). Define

ψt(x) = δX0
(x) + Lt

σ(x, ξt) +
α

2
‖x− xt‖2

and
qt(x) = Lt

σ(x, ξt)−Lt
σ(x

t+1, ξt)− 〈∇xLt
σ(x

t+1, ξt), x− xt+1〉.
Then

ψt(x) = [Lt
σ(x

t+1, ξt)− 〈∇xLt
σ(x

t+1, ξt), x− xt+1〉] + α

2
‖x− xt‖2 + qt(x) + δX0

(x).

Let

qt0(x) = δX0
(x) + qt(x) + 〈∇xLt

σ(x
t+1)(x− xt+1)〉+ 1

2
‖x− xt‖2 − 1

2
‖x− xt+1‖2.

6



Then qt0 is convex and

ψt(x) = Lt
σ(x

t+1, ξt) +
1

2
‖x− xt+1‖2 + qt0(x).

Since 0 ∈ ∂ψt(xt+1), we have 0 ∈ ∂qt0(x
t+1) and qt0 arrives its minimum value at xt+1. Then

for every x ∈ ℜn, qt0(x) ≥ qt0(x
t+1) = δX0

(xt+1) +
α

2
‖xt+1 − xt‖2, which is equivalent to

δX0
(x)+Lt

σ(x, ξt)+
α

2
‖x−xt‖2− α

2
‖x−xt+1‖2 ≥ δX0

(xt+1)+Lt
σ(x

t+1, ξt)+
α

2
‖xt+1−xt‖2.

The proof is completed. ✷

In order to give a bound for

T−1∑

t=0

Gi(x
t, ξt) in (2.3), we need to estimate an upper bound

of
T−1∑

t=0

‖xt+1 − xt‖, which is given in the following lemma.

Lemma 2.4 Let (xt, λt) be generated by PMMSopt and Assumption (A1)–Assumption (A4)
be satisfied. Then for 2α− pκ2gσ > 0,

‖xt+1 − xt‖ ≤ 1

2α− pκ2gσ
[2κf +

√
pκg‖λt‖+ νg

√
pκgσ] (2.7)

Proof. Let us denote

B = λt + σG(xt, ξt), A = B + σV (xt, ξt)
T (xt+1 − xt),

where V (xt, ξt) = (v1(x
t, ξt), . . . , vp(x

t, ξt)). Choosing x = xt in Lemma 2.3, we obtain

α‖xt+1 − xt‖2 ≤ F (xt, ξt)− F (xt+1, ξt) +
1

2σ
‖[λt + σG(xt, ξt)]+‖2

− 1

2σ
‖[λt + σG(xt+1, ξt)]+‖2.

(2.8)

Noting that
G(xt+1, ξt) ≥ G(xt, ξt) + V (xt, ξt)

T (xt+1 − xt),

we have

[λt + σG(xt+1, ξt)]+ ≥ [λt + σ[G(xt, ξt) + V (xt, ξt)
T (xt+1 − xt)]]+ = A+

and in turn,
‖[λt + σG(xt+1, ξt)]+‖2 ≥ ‖A+‖2. (2.9)

7



Therefore, we get from (2.8) that

α‖xt+1 − xt‖2 ≤ F (xt, ξt)− F (xt+1, ξt) +
1

2σ
‖[λt + σG(xt, ξt)]+‖2

− 1

2σ
‖[λt + σG(xt+1, ξt)]+‖2

≤ 〈v0(xt, ξt), xt − xt+1〉+ 1

2σ
‖B+‖2 −

1

2σ
‖A+‖2

= 〈v0(xt, ξt), xt − xt+1〉+ 1

2σ
[‖B+‖+ ‖A+‖][‖B+‖ − ‖A+‖]

≤ κf‖xt − xt+1‖+ 1

2σ
[‖B+‖+ ‖A+‖][‖B+ −A+‖]

≤ κf‖xt − xt+1‖+ 1

2σ
[‖B‖+ ‖A‖][‖B −A‖]

≤ κf‖xt − xt+1‖+ 1

2σ
[‖λt‖+ σ‖G(xt, ξt)‖+ ‖B −A‖][‖B −A‖]

≤ κf‖xt − xt+1‖+ 1

2σ
[‖λt‖+ σ‖G(xt, ξt)‖

+σ‖V (xt, ξt)
T (xt+1 − xt)‖][σ‖V (xt, ξt)

T (xt+1 − xt)‖]

≤ κf‖xt − xt+1‖+ 1

2
‖λt‖‖V (xt, ξt)

T (xt+1 − xt)‖

+[
1

2
‖G(xt, ξt)‖+ 1

2
‖V (xt, ξt)

T (xt+1 − xt)‖][σ‖V (xt, ξt)
T (xt+1 − xt)‖]

≤ κf‖xt − xt+1‖+ 1

2

√
pκg‖λt‖‖xt+1 − xt‖

+[
1

2
νg +

1

2

√
pκg‖xt+1 − xt‖][σ√pκg‖xt+1 − xt‖],

(2.10)
which implies

‖xt+1 − xt‖ ≤ 1

2α− pκ2gσ
[2κf +

√
pκg‖λt‖+ νg

√
pκgσ]

The proof is completed. ✷

Corollary 2.1 Let (xt, λt) be generated by PMMSopt and Assumption (A1)–Assumption
(A4) be satisfied. Then for 2α− pκ2gσ > 0,

T−1∑

t=0

Gi(x
t, ξt) ≤ 1

σ
λTi +

2κgκf
2α − pκ2gσ

T

+

√
pκ2g

2α− pκ2gσ

T−1∑

t=0

‖λt‖+
√
pνgκ

2
gσ

2α− pκ2gσ
T.

(2.11)

Lemma 2.5 Let (xt, λt) be generated by PMMSopt and Assumption (A1), Assumption
(A2) and Assumption (A5) be satisfied. Then for any t2 ≤ t1 − 1 where t1 and t2 are
positive integers,

E
[
〈λt1 , G(x̂, ξt1)〉 | ξ[t2]

]
≤ −ǫ0E

[
‖λt1‖ | ξ[t2]

]
. (2.12)
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Proof. To prove this lemma, we first show that

E
[
λt1i Gi(x̂, ξt1) | ξ[t2]

]
≤ −ǫ0E

[
λt1i | ξ[t2]

]
.

For i ∈ {1, . . . , p}, note that λt1i = λt1i (ξ[t1−1]) and Gi(x̂, ξt1) is independent of ξ[t1−1] and
ξ[t2] ⊆ ξ[t1−1] for t2 ≤ t1 − 1. We have

E
[
λt1i Gi(x̂, ξt1) | ξ[t2]

]
= E

{
E
[
λt1i Gi(x̂, ξt1) | ξ[t1−1]

]
| ξ[t2]

}

= E
{
λt1i E [Gi(x̂, ξt1)] | ξ[t2]

}

= E [Gi(x̂, ξt1)]
[
λt1i | ξ[t2]

]

≤ −ǫ0E
[
λt1i | ξ[t2]

]
.

Making a sum over i ∈ {1, . . . , p} yields

E
[
〈λt1 , G(x̂, ξt1)〉 | ξ[t2]

]
≤ −ǫ0E

[
p∑

i=1

λt1i | ξ[t2]
]
≤ −ǫ0E

[
‖λt1‖ | ξ[t2]

]
.

The proof is completed. ✷

Lemma 2.6 Let s > 0 be an arbitrary integer. Let Assumption (A1)–Assumption (A4) be
satisfied. At each round t ∈ {1, 2, . . .} in PMMSopt. For

ϑ(σ, α, s) =
ǫ0σs

2
+ νgσ(s− 1) +

αD2
0

ǫ0s
+

2νf
ǫ0

+
σν2g
ǫ0

, (2.13)

the following holds
|‖λt+1‖ − ‖λt‖| ≤ σνg (2.14)

and

E
[
‖λt+s‖ − ‖λt‖ | ξ[t−1]

]
≤





sσνg if ‖λt‖ < ϑ(σ, α, s),

−sσǫ0
2

if ‖λt‖ ≥ ϑ(σ, α, s).
(2.15)

Proof. Inequality (2.14) follows from Lemma 2.1. We only need to establish (2.15). Since
it is obvious that

E
[
‖λt+s‖ − ‖λt‖ | ξ[t−1]

]
≤ sσνg

when ‖λt‖ < ϑ(σ, α, s), it remains to prove

E
[
‖λt+s‖ − ‖λt‖ | ξ[t−1]

]
≤ −sσǫ0

2

when ‖λt‖ ≥ ϑ(σ, α, s).
For given positive integer s, suppose ‖λt‖ ≥ ϑ(σ, α, s). For any l ∈ {t, t+1, . . . , t+s−1},

one has

F (xl+1, ξl) +
1

2σ
‖λl+1‖2 + α

2
‖xl+1 − xl‖2

≤ F (x̂, ξl) +
1

2σ
‖[λl + σG(x̂, ξl)]+‖2 +

α

2

[
‖x̂− xl‖2 − ‖x̂− xl+1‖2

]
.
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Using Assumption (A3) and the following inequality

‖[λl + σG(x̂, ξl)]+‖2 ≤ ‖λl‖2 + 2σ〈λl, G(x̂, ξl)〉+ σ2‖G(x̂, ξl)‖2,

we obtain

1

2σ

[
‖λl+1‖2 − ‖λl‖2

]
≤

(
F (x̂, ξl)− F (xl+1, ξl)

)

+
1

2σ

[
‖[λl + σG(x̂, ξl)]+‖2 − ‖λl‖2

]

−α
2
‖xl+1 − xl‖2 + α

2

[
‖x̂− xl‖2 − ‖x̂− xl+1‖2

]

≤ νf + 〈λl, G(x̂, ξl)〉+
σ

2
‖G(x̂, ξl)‖2

−α
2
‖xl+1 − xl‖2 + α

2

[
‖x̂− xl‖2 − ‖x̂− xl+1‖2

]
.

(2.16)

Making a summation of (2.16) over {t, t+ 1, t+ s − 1} and taking conditional expectation
on ξ[t−1] , we obtain from Lemma 2.6 that

1

2σ
E
[
‖λt+s‖2 − ‖λt‖2 | ξ[t−1]

]

≤ νfs+
σ

2
ν2gs+

t+s−1∑

l=t

E

[
〈λl, G(x̂, ξl)〉 | ξ[t−1]

]

+
α

2
E
[(
‖x̂− xt‖2 − ‖x̂− xt+s‖2

)
| ξ[t−1]

]

≤ νfs+
σ

2
ν2gs− ǫ0

s−1∑

l=0

E

[
‖λt+l‖ | ξ[t−1]

]

+
α

2
E
[(
‖x̂− xt‖2 − ‖x̂− xt+s‖2

)
| ξ[t−1]

]

≤ νfs+
σ

2
ν2gs− ǫ0

s−1∑

l=0

E
[
‖λt‖ − σνgl | ξ[t−1]

]

+
α

2
E
[(
‖x̂− xt‖2 − ‖x̂− xt+s‖2

)
| ξ[t−1]

]

(from ‖λt+1‖ ≥ ‖λt‖ − σνg)

≤ νfs+
σ

2
ν2gs+

α

2
E
[(
‖x̂− xt‖2 − ‖x̂− xt+s‖2

)
| ξ[t−1]

]

+ǫ0σνg
s(s− 1)

2
− ǫ0

s−1∑

l=0

E
[
‖λt‖ | ξ[t−1]

]

(2.17)

10



From (2.17), we get from Assumption (A3) that

E
[
‖λt+s‖2 | ξ[t−1]

]
≤ E

[
‖λt‖2 | ξ[t−1]

]

+2σνfs+ σ2ν2gs+ ασD2
0 + ǫ0σ

2νgs(s− 1)− 2ǫ0σsE
[
‖λt‖ | ξ[t−1]

]

= E

[
(‖λt‖ − ǫ0σ

2
s)2 | ξ[t−1]

]
− ǫ20σ

2

4
s2 + ǫ0σ

2νgs(s− 1)

+ασD2
0 + 2σνfs+ σ2ν2gs− ǫ0σsE

[
‖λt‖ | ξ[t−1]

]

≤ E

[
(‖λt‖ − ǫ0σ

2
s)2 | ξ[t−1]

]
− 3ǫ20σ

2

4
s2

+

[
ǫ0σ

2νgs(s− 1) +
ǫ20σ

2

2
s2 + ασD2

0 + 2σνfs+ σ2ν2gs− ǫ0σsϑ(σ, α, s)

]

= E

[
(‖λt‖ − ǫ0σ

2
s)2 | ξ[t−1]

]
− 3ǫ20σ

2

4
s2

≤ E

[
(‖λt‖ − ǫ0σ

2
s)2 | ξ[t−1]

]
.

(2.18)

This implies that

E
[
‖λt+s‖ | ξ[t−1]

]
≤ E

[
‖λt‖ | ξ[t−1]

]
− ǫ0σ

2
s.

The proof is completed. ✷

The following lemmas come from Yu et.al [20], which can be used to deal with the random
process {‖λt‖} and probability analysis for objective regret and constraint violation regret,
respectively.

Lemma 2.7 Let {Z(t), t ≥ 0} be a discrete time stochastic process adapted to a filtration
{F(t), t ≥ 0} with Z(0) = 0 and F(0) = {∅,Ω}. Suppose there exists an integer t0 > 0, real
constants θ > 0, δmax > 0 and 0 < ζ ≤ δmax such that

|Z(t+ 1)− Z(t)| ≤ δmax and

E[Z(t+ t0)− Z(t) | F(t)] ≤
{
t0δmax if Z(t) < θ

−t0ζ if Z(t) ≥ θ

(2.19)

hold for all t ∈ {1, 2, . . .}. Then the following properties are satisfied.

1. The following inequality holds

E[Z(t)] ≤ θ + t0δmax + t0
4δ2max

ζ
log

[
8δ2max

ζ2

]
,∀t ∈ {1, 2, . . .}.

2. For any constant 0 < µ < 1, we have

Pr {Z(t) ≥ z} ≤ µ,∀t ∈ {1, 2, . . .},
where

z = θ + t0δmax + t0
4δ2max

ζ
log

[
8δ2max

ζ2

]
+ t0

4δ2max

ζ
log

(
1

µ

)
.
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Lemma 2.8 Let {Z(t), t ≥ 0} be a supermartingale adapted to a filtration {F(t), t ≥ 0}
with Z(0) = 0 and F(0) = {∅,Ω}, i.e. E[Z(t + 1) | F(t)] ≤ Z(t),∀t ≥ 0. Suppose there
exists a constant c > 0 such that {|Z(t+ 1)− Z(t)| > c} ⊆ {Y (t) > 0},∀t ≥ 0, where Y (t)
is process with Y (t) adapted to F(t) for all t ≥ 0. Then, for all z > 0, we have

Pr[Z(t) ≥ z] ≤ e−z2/(2tc2) +

t−1∑

j=0

Pr[Y (j) > 0],∀t ≥ 1.

3 Regret analysis of PMMSopt

In order to use Lemma 2.7 and Lemma 2.6 to analyze regrets of PMMSopt for Problem

(1.1), we introduce the following notations. For θ = ϑ(σ, α, s), δmax = σνg and ζ =
σ

2
ǫ0,

and t0 = s, define

ψ(σ, α, s) = θ + t0δmax + t0
4δ2max

ζ
log

[
8δ2max

ζ2

]

and

φ(σ, α, s, µ) = ψ(σ, α, s) + 8
ν2g
ǫ0

log

(
1

µ

)
σs.

Then ψ(σ, α, s) is expressed as

ψ(σ, α, s) = ϑ(σ, α, s) +

[
νg +

8ν2g
ǫ0

log
32ν2g
ǫ20

]
σs

= κ0 + κ1
α

s
+ κ2s+ κ3σ + κ4σs

and φ(σ, α, s, µ) is expressed as

φ(σ, α, s, µ) = κ0 + κ1
α

s
+ κ2s+ κ3σ + κ4σs+ 8

ν2g
ǫ0

log

(
1

µ

)
σs

where

κ0 =
2νf
ǫ0
, κ1 =

D2
0

ǫ0
, κ2 = 0,

κ3 =
ν2g
ǫ0

− νg, κ4 =

[
2νg +

ǫ0
2

+
8ν2g
ǫ0

log
32ν2g
ǫ20

]
.

(3.1)

Lemma 2.6 allows us to apply Lemma 2.7 to random process Z(t) = ‖λt‖ and obtain
E[‖λt‖] = O(1), ∀t by taking s = ⌈

√
T ⌉,α =

√
T , where ⌈

√
T ⌉ represents the smallest integer

no less than
√
T . By Corollary 2.1, this further implies the expected constraint violation

bound

E

[
T−1∑

t=0

Gi(x
t, ξt)

]
≤ O(

√
T ), i = 1, . . . , p

as summarized in the next theorem.
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Theorem 3.1 (Expected Constraint Violation Bound). If α =
√
T and σ = T−1/2 in

PMMSopt, then for all T ≥ 1, we have

E

[
T−1∑

t=0

Gi(x
t, ξt)

]
≤ κc

√
T , i = 1, . . . , p, (3.2)

where
κc = κ∗ + 4κgκf + 2

√
p(κ∗ + νg)κ

2
g,

with κ∗ = κ0 + κ1 + κ3 + κ4.

Proof. Define random process Z(t) with Z(0) = 0 and Z(t) = ‖λt‖,t ≥ 1 and filtration
F(t) with F(0) = {∅,Ω} and F(t) = ξ[t−1],t ≥ 1. Then we have Z(t) is adapted to F(t). It
follows from Lemma 2.6 that Z(t) = ‖λt‖ satisfies Lemma 2.7 with δmax = σνg, t0 = s and
ζ = σǫ0/2. We have from Lemma 2.7 that the following inequality holds for every t:

E‖λt‖ ≤ ψ(σ, α, s) = κ0 + κ1
α

s
+ κ3σ + κ4σs.

Taking s = ⌈
√
T⌉,α =

√
T , 2

√
T − pκ2gσ >

√
T/2 and σ = T−1/2, we have E‖λt‖ ≤ κ∗ for

t ∈ {1, 2, . . . , T}, where κ∗ = κ0 + κ1 + κ3 + κ4.
From Corollary 2.1, we have

E

[
T−1∑

t=0

Gi(x
t, ξt)

]
≤ 1

σ
EλTi +

2κgκf
2α− pκ2gσ

T +

√
pκ2g

2α− pκ2gσ

T−1∑

t=0

E‖λt‖+
√
pνgκ

2
gσ

2α− pκ2gσ
T

≤ κ∗
√
T + 4κgκf

√
T + 2

√
pκ∗κ

2
g

√
T + 2

√
pνgκ

2
g ≤ κc

√
T ,

which implies (3.2). The proof is completed. ✷

Lemma 3.1 Let (xt, λt) be generated by PMMSopt and Assumption (A1)–Assumption (A4)
be satisfied. Then for x ∈ X0,

T−1∑

t=0

F (xt, ξt) ≤
T−1∑

t=0

F (x, ξt) +
κ2f
2α
T +

α

2
D2

0 +
σ

2
ν2gT

+

T−1∑

t=0

[
〈λt, G(x, ξt)〉

]
.

(3.3)

Proof. In view of (2.5), we have for x ∈ X0,

F (xt, ξt) ≤ F (x, ξt) + [F (xt, ξt)− F (xt+1, ξt)]−
1

2σ

[
‖λt+1‖2 − ‖λt‖2

]

+
1

2σ

[
‖[λt + σG(x, ξt)]+‖2 − ‖λt‖2

]

+
α

2

[
‖x− xt‖2 − ‖x− xt+1‖2 − ‖xt+1 − xt‖2

]

= F (x, ξt) +
[
F (xt, ξt)− F (xt+1, ξt)−

α

2
‖xt+1 − xt‖2

]

− 1

2σ

[
‖λt+1‖2 − ‖λt‖2

]
+

1

2σ

[
‖[λt + σG(x, ξt)]+‖2 − ‖λt‖2

]

+
α

2

[
‖x− xt‖2 − ‖x− xt+1‖2

]
.

(3.4)

13



From the convexity of F (·, ξt), we obtain from Assumption (A4) that

[
F (xt, ξt)− F (xt+1, ξt)−

α

2
‖xt+1 − xt‖2

]

≤
[
〈v0(xt, ξt), xt − xt+1〉 − α

2
‖xt+1 − xt‖2

]

= −α
2

{
‖xt+1 − xt + v0(x

t, ξt)/α‖2 − ‖v0(xt, ξt)‖2/α2
}

≤
κ2f
2α
.

(3.5)

Since [a]2+ ≤ a2 for scalar a ∈ ℜ, we obtain

‖[λt + σG(x, ξt)]+‖2 − ‖λt‖2

≤ ‖λt + σG(x, ξt)‖2 − ‖λt‖2

= 2σ〈λt, G(x, ξt)〉+ σ2‖G(x, ξt)‖2.
(3.6)

Substituting (3.5) and (3.6) into (3.4), we get

F (xt, ξt) ≤ F (x, ξt) +
κ2f
2α

− 1

2σ

[
‖λt+1‖2 − ‖λt‖2

]

+
1

2

[
2〈λt, G(x, ξt)〉+ σ‖G(x, ξt)‖2

]

+
α

2

[
‖x− xt‖2 − ‖x− xt+1‖2

]
(3.7)

Making a summation, we obtain from Assumption (A3)

T−1∑

t=0

F (xt, ξt) ≤
T−1∑

t=0

F (x, ξt) +
κ2f
2α
T − 1

2σ

[
‖λT ‖2 − ‖λ0‖2

]

+
1

2

T−1∑

t=0

[
2〈λt, G(x, ξt)〉+ σ‖G(x, ξt)‖2

]

+
α

2

[
‖x− x0‖2 − ‖x− xT ‖2

]

≤
T−1∑

t=0

F (x, ξt) +
κ2f
2α
T +

α

2
D2

0 +
σ

2
ν2gT

+

T−1∑

t=0

[
〈λt, G(x, ξt)〉

]
,

(3.8)

which follows from λ0 = 0. ✷

Theorem 3.2 (Expected Regret Bound) Let x∗ ∈ Φ be any fixed solution that satisfies

x∗ = argminx∈Φ

T−1∑

t=0

ft(x).
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If α =
√
T ,σ = T−1/2 in PMMSopt and Assumption (A1)–Assumption (A4) are satisfied.

Then for all T ≥ 2,

E

[
T−1∑

t=0

F (xt, ξt)

]
≤ E

[
T−1∑

t=0

F (x∗, ξt)

]
+ κo

√
T , (3.9)

where

κo =
κ2f
2

+
1

2
D2

0 +
1

2
ν2g .

Proof. For fixed T ≥ 2, taking x = x∗ in (3.3), we get

T−1∑

t=0

EF (xt, ξt) ≤
T−1∑

t=0

EF (x∗, ξt) +
κ2f
2α
T +

α

2
D2

0 +
σ

2
ν2gT

+

T−1∑

t=0

E
[
〈λt, G(x∗, ξt)〉

]
.

(3.10)

Since G(x∗, ξt) is independent on λ
t, which is determined by ξ[t−1], we have

E
[
〈λt, G(x∗, ξt)〉

]
= E

[
〈λt,E[G(x∗, ξt)|ξ[t−1]]〉

]
≤ 0,

which follows from the fact that λt ≥ 0 and E[G(x∗, ξt)|ξ[t−1]] = EG(x∗, ξt) ≤ 0. Thus we

have from (3.10) and α =
√
T ,σ = T−1/2 that

T−1∑

t=0

EF (xt, ξt) ≤
T−1∑

t=0

EF (x∗, ξt) +

[
κ2f
2

+
1

2
D2

0 +
1

2
ν2g

]
√
T .

The proof is completed. ✷

4 High probability performance analysis

First of all, we will use (2.11) and part 2 of Lemma 2.6 to establish a high probability
constraint violation bound.

Theorem 4.1 Let η ∈ (0, 1). Let (xt, λt) be generated by PMMSopt, and Assumption
(A1)–Assumption (A4) be satisfied. If σ = T−1/2, α = T 1/2 in PMMSopt, then for all
i ∈ {1, . . . , p},

Pr

[
T−1∑

t=0

Gi(x
t, ξt) ≤ π(T, η)

]
≥ 1− η, (4.1)

where
π(T, η) = κ3

[
1 + 2

√
pκ2g

]
+ 2

√
pνgκ

2
g

+[
(
1 + 2

√
pκ2g

)
(κ0 + κ1 + κ4) + 4κgκf ]T

1/2

+8
(
1 + 2

√
pκ2g

) ν2g
ǫ0
T 1/2 log

(
T + 1

η

)
.

(4.2)
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Proof. Define Z(t) = ‖λt‖ for ∀t ∈ {0, 1, 2, . . .}. From Lemma 2.6, Z(t) satisfies the

conditions in Lemma 2.7 with δmax = σνg, t0 = s and ζ =
1

2
ǫ0σ and

ϑ =
ǫ0σs

2
+ νgσ(s − 1) +

αD2
0

ǫ0s
+

2νf
ǫ0

+
σν2g
ǫ0

.

Let T ≥ 1 and λ ∈ (0, 1). Taking µ =
η

T + 1
in part 2 of Lemma 2.7, we obtain

Pr
[
‖λt‖ ≥ γ(σ, α, s, η)

]
≤ η

T + 1
, ∀t ∈ {0, 1, 2, . . . , T}, (4.3)

where

γ(σ, α, s, η) = φ

(
σ, α, s,

η

T + 1

)

= κ0 + κ1
α

s
+ κ3σ + κ4σs+ 8

ν2g
ǫ0

log

(
T + 1

η

)
σs.

This implies
Pr

[
‖λt‖ ≥ γ(σ, α, s, η) for some t ∈ {0, 1, 2, . . . , T}

]
≤ η

or
Pr

[
‖λt‖ ≤ γ(σ, α, s, η) for ∀t ∈ {0, 1, 2, . . . , T}

]
≥ 1− η. (4.4)

It follows from (2.11) and Assumption (A4) that

T−1∑

t=0

Gi(x
t, ξt) ≤ 1

σ
λTi +

2κgκf
2α− pκ2gσ

T +

√
pκ2g

2α − pκ2gσ

T−1∑

t=0

‖λt‖+
√
pνgκ

2
gσ

2α− pκ2gσ
T. (4.5)

for i = 1, . . . , p. Thus, for σ = T−1/2, α = T 1/2, 2
√
T − pκ2gσ >

√
T/2 when T is very large,

we have from (4.5) that

T−1∑

t=0

Gi(x
t, ξt) ≤ T 1/2‖λT ‖+ 4κgκfT

1/2 + 2
√
pνgκ

2
g + 2

√
pκ2gT

−1/2
T−1∑

t=0

‖λt‖. (4.6)

Let s = ⌈T 1/2⌉. Noting, from (4.6), that

T−1∑

t=0

Gi(x
t, ξt) ≤

[
1 + 2

√
pκ2g

]
T 1/2γ(T−1/2, T 1/2, T 1/2, η) + 4κgκfT

1/2 + 2
√
pνgκ

2
g

= κ3
[
1 + 2

√
pκ2g

]
+ 2

√
pνgκ

2
g + [

(
1 + 2

√
pκ2g

)
(κ0 + κ1 + κ4) + 4κgκf ]T

1/2

+8
(
1 + 2

√
pκ2g

) ν2g
ǫ0
T 1/2 log

(
T + 1

η

)

= π(T, η),

when ‖λt‖ ≤ γ(T−1/2, T 1/2, T 1/2, η) for ∀t ∈ {0, 1, 2, . . . , T}, we obtain the probability
inequality (4.1) from (4.4). ✷

Define
ωc(T ) = π(T, e−T 1/4

)/T,
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then

ωc(T ) =

[
8
(
1 + 2

√
pκ2g

) ν2g
ǫ0

]
T−1/4 + o(T−1/4).

We can obtain the following result from Theorem 4.1 directly.

Corollary 4.1 Let (xt, λt) be generated by PMMSopt, and Assumptions (A1)–(A4) be sat-
isfied. If σ = T−1/2, α = T 1/2 in PMMSopt, then for all i ∈ {1, . . . , p},

Pr

[
1

T

T−1∑

t=0

Gi(x
t, ξt) ≤ ωc(T )

]
≥ 1− e−T 1/4

. (4.7)

For x̂ ∈ Φ, define Ẑ(0) = 0 and

Ẑ(t) =

t−1∑

l=0

〈λl, G(x̂, ξl)〉.

Recall ξ[0] = {∅,Ω} and ξ[t] = σ(ξ1, . . . , ξt). In the following lemma, we will show that for

any c > 0, Ẑ(t) satisfies conditions in Lemma 9 with F(t) = ξ[t] and Y (t) = ‖λt+1‖ − c/νg.

Lemma 4.1 Let x̂ ∈ Φ. Let c > 0 be arbitrary. Let (xt, λt) be generated by PMMSopt and

Assumption (A3) be satisfied. Define Ẑ(0) = 0 and Ẑ(t) =
t−1∑

l=0

〈λl, G(x̂, ξl)〉, ∀t ≥ 1, then

{Ẑ(t), t ≥ 0} is a supermartingale adapted to filtration {ξ[t], t ≥ 0} such that

{|Ẑ(t+ 1)− Ẑ(t)| > c} ⊆ {Y (t) > 0},∀t ≥ 0

where Y (t) = ‖λt+1‖ − c/νg is a random variable adapted to ξ[t].

Proof. It is very easy to check {Ẑ(t), t ≥ 0} is adapted to {ξ[t], t ≥ 0}. Now we prove that

{Ẑ(t), t ≥ 0} is a supermartingale. Since

Ẑ(t+ 1) = Ẑ(t) + 〈λt+1, G(x̂, ξt+1)〉,

we have
E[Ẑ(t+ 1) | ξ[t]] = E[Ẑ(t) + 〈λt+1, G(x̂, ξt+1)〉 | ξ[t]]

= Ẑ(t) + 〈λt+1,E[G(x̂, ξt+1)]〉

= Ẑ(t) + 〈λt+1, g(x̂)〉

≤ Ẑ(t),

which follows from Ẑ(t) ∈ ξ[t], λ
t+1 ∈ ξ[t], G(x̂, ξt+1) is independent of ξ[t] and g(x̂) ≤ 0.

Thus we obtain that {Ẑ(t), t ≥ 0} is a supermartingale.
From Assumption (A3), we get

|Ẑ(t+ 1)− Ẑ(t)| = |〈λt+1, G(x̂, ξt+1〉| ≤ νg‖λt+1‖.
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This implies that ‖λt+1‖ > c/νg if |Ẑ(t+ 1)− Ẑ(t)| > c and

{|Ẑ(t+ 1)− Ẑ(t)| > c} ⊆ {‖λt+1‖ > c/νg}.

Since λt+1 is adapted to ξ[t], we have that Y (t) = ‖λt+1‖−c/νg is a random variable adapted
to ξ[t]. ✷

Next, we will use (3.3) and Lemma 2.8 to establish a high probability objective regret
bound.

Theorem 4.2 Let η ∈ (0, 1) and x̂ ∈ Φ. Let (xt, λt) be generated by PMMSopt, and
Assumption (A1)–Assumption (A4) be satisfied. If σ = T−1/2, α = T 1/2 in PMMSopt, then

Pr

[
T−1∑

t=0

F (xt, ξt) ≤
T−1∑

t=0

F (x̂, ξt) + β(T, η)

]
≥ 1− η, (4.8)

where

β(T, η) =
κ2f + ν2g

2
T 1/2 +

D2
0

2
T 1/2

+
√
2νg log

1/2

(
2

η

)[
(κ0 + κ1 + κ4)T

1/2 + κ3

+
8ν2g
ǫ0
T 1/2 log

(
2T

η

)]
.

(4.9)

Proof. By Lemma 4.1, we know that Ẑ(t) satisfies conditions in Lemma 2.8. Fix T > 0,
we obtain from Lemma 2.8 for any c > 0 that

Pr

[
T−1∑

t=0

〈λt, G(x̂, ξt)〉 ≥ γ

]
≤ e−γ2/(2Tc2) +

T−1∑

t=0

Pr
[
‖λt+1‖ > c/νg

]
. (4.10)

For given η ∈ (0, 1), we shall show how to choose γ and c such that each term in (4.10) is
not larger than η/2.

Noting that by Lemma 2.6, random process Z(t) = ‖λt‖ satisfies conditions in Lemma

2.7 with δmax = νgσ, t0 = s, ζ =
ǫ0
2
σ and

ϑ =
ǫ0σs

2
+ νgσ(s − 1) +

αD2
0

ǫ0s
+

2νf
ǫ0

+
σν2g
ǫ0

.

For the second term being not larger than η/2, it suffices to choose c such that

Pr
[
‖λt‖ > c/νg

]
≤ η

2T
, ∀t ∈ {1, 2, . . . , T}.

The above inequality holds from part 2 of Lemma 2.7 when we choose

c = c(σ, α, s) =

[
κ0 + κ1

α

s
+ κ3σ + κ4σs+

8ν2g
ǫ0

log

(
2T

η

)
σs

]
νg, (4.11)
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where s is an arbitrary integer. Define

γ(σ, α, s, η) =
√
2T log1/2

(
2

η

)
c(σ, α, s). (4.12)

Then, for γ = γ(σ, α, s, η) in (4.10), the first term in this equation is equal to η/2. Thus we
have, for c = c(σ, α, s) and γ = γ(σ, α, s, η) defined by (4.11) and (4.12), respectively, that

Pr

[
T−1∑

t=0

〈λt, G(x̂, ξt)〉 ≥ γ(σ, α, s, η)

]
≤ η

or equivalently

Pr

[
T−1∑

t=0

〈λt, G(x̂, ξt)〉 ≤ γ(σ, α, s, η)

]
≥ 1− η (4.13)

It follows from (3.3) that

T−1∑

t=0

F (xt, ξt) ≤
T−1∑

t=0

F (x̂, ξt) +
1

2α
κ2fT +

σ

2
ν2gT +

T−1∑

t=0

〈λt, G(x̂, ξt)〉+
α

2
D2

0

=

T−1∑

t=0

F (x̂, ξt) +
1

2
(κ2f + ν2g )T

1

2 +

T−1∑

t=0

〈λt, G(x̂, ξt)〉+
D2

0

2
T

1

2 .

(4.14)

Taking s = ⌈T 1/2⌉, we obtain from (4.14) that if

T−1∑

t=0

〈λt, G(x̂, ξt)〉 ≤ γ(T−1/2, T 1/2, T 1/2, η),

then
T−1∑

t=0

F (xt, ξt) ≤
T−1∑

t=0

F (x̂, ξt) +
1

2
(κ2f + ν2g )T

1/2

+γ(T−1/2, T 1/2, T 1/2, η) +
D2

0

2
T 1/2

≤
T−1∑

t=0

F (x̂, ξt) +
1

2
(κ2f + ν2g )T

1/2 +
D2

0

2
T 1/2

+
√
2νg log

1/2

(
2

η

)[
(κ0 + κ1 + κ4)T

1/2 + κ3

+
8ν2g
ǫ0
T 1/2 log

(
2T

η

)]

=
T−1∑

t=0

F (x̂, ξt) + β(T, η).

We obtain the probability bound (4.8) from (4.13). ✷

Define
ωo(T ) = β(T, e−T 1/4

)/T, (4.15)
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then

ωo(T ) =
8
√
2ν3g
ǫ0

T−1/8 + o(T−1/8).

We can obtain the following result from Theorem 4.2 directly.

Corollary 4.2 Let η ∈ (0, 1) and x̂ ∈ Φ. Let (xt, λt) be generated by PMMSopt, and
Assumptions (A1)–(A4) be satisfied. If σ = T−1/2, α = T 1/2 in PMMSopt, then

Pr

[
1

T

T−1∑

t=0

F (xt, ξt) ≤
1

T

T−1∑

t=0

F (x̂, ξt) + ωo(T )

]
≥ 1− e−T 1/4

. (4.16)

5 Conclusion

In this paper, for the first time we present a stochastic approximation proximal method of
multipliers (PMMSopt) for solving convex stochastic programming with expectation con-
straints. We show that, when the objective and constraint functions are generally convex,
this algorithm exhibits O(T−1/2) objective regret and O(T−1/2) constraint violation regret if
parameters in the algorithm are properly chosen, where T denotes the number of iterations.
Moreover, we show that, with at least 1 − e−T 1/4

probability, the algorithm has no more
than O(T−1/4) objective regret and no more than O(T−1/8) constraint violation regret.

The research presented in this paper has provided a proximal point-type method for
solving convex stochastic programming with expectation constraints, which has the com-
plexity bound comparable to the currently best existing one in [9, 20]. However, there are
several questions to answer for the proposed stochastic approximation proximal method
of multipliers. One question that has not been answered here is how to obtain the same
complexity bound when X0 in the problem is unbounded. The complexity bound in this
paper requires that xt+1 in Step 1 of PMMSopt is an exact solution to the subproblem,
so the the second question is whether the same complexity bound can be derived when
xt+1 is inexactly solved. The algorithms in [9, 20] only require solving simple optimization
problems involving the stochastic gradients of f and gi’s, the third question is whether
we can construct a proximal point-type method in which subproblems for xt+1 are simple
optimization problems, or even have explicit solutions.
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