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We study the forward investment performance process (FIPP) in an incomplete semimartingale market

model with closed and convex portfolio constraints, when the investor’s risk preferences are of the power

form. We provide necessary and sufficient conditions for the existence of such FIPP. In a semimartingale

factor model, we show that the FIPP can be recovered as a triplet of processes which admit an integral repre-

sentation with respect to semimartingales. Using an integrated stochastic factor model, we relate the factor

representation of the triplet of processes to the smooth solution of an ill-posed partial integro-differential

Hamilton-Jacobi-Bellman (HJB) equation. We develop explicit constructions for the class of time-monotone

FIPPs, generalizing existing results from Brownian to semimartingale market models.
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1. Introduction

The classical approach to expected utility maximization, pioneered by Merton (1969), is to fix a

planning horizon, and specify a utility function to measure the investment performance at the end

of the horizon. Despite Merton’s portfolio problems admitting analytically tractable solutions with

direct economic interpretations, they fail to capture several behavioral features of investor’s decision

making. Importantly, the chosen utility function is static, and the investor’s risk preferences are

specified once for all future times.

To overcome these limitations, a novel approach to portfolio selection was introduced by Musiela

and Zariphopoulou (2008). This approach does not require the investor to fix her risk preferences

beforehand, but rather gives her the flexibility to dynamically adapt them. Concretely, as opposed
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to fixing a market model and a terminal utility, the investor starts with an initial investment

performance measure, and then updates it over time as the factors driving the market dynamics

evolve. The evolution of this forward investment performance process, or FIPP, is driven by a

forward-in-time version of the dynamic programming principle, designed to guarantee time consis-

tency. In financial terms, this means that the investor updates her risk preferences so that her past

investment choices, viewed from the perspective of her current risk preferences, are still optimal.

Throughout the paper, we will also refer to this process as a forward performance process, or simply

as a forward process.

The forward utility framework allows capturing risk preferences which evolve over time and which

are sensitive to changes in investor’s wealth. The study of Strub and Zhou (2021) shows that the

curvature of the Arrow–Pratt risk-tolerance measure determines how risk preferences change with

passage of time. Their theoretical findings imply that investors become more risk-tolerant as they

grow older. Strub and Zhou (2021) additionally show that risk preferences are constant with respect

to time if and only if the initial utility function of a forward utility pair exhibits constant relative

risk aversion. It thus follows that the class of power forward preferences considered in this paper

possesses a risk-tolerance measure which is invariant over time. Nevertheless, these preferences are

still allowed to depend on the investor’s wealth.

The evolution of the forward performance process can in general be described by a stochastic

partial differential equation (SPDE) which, due to degeneracy and nonlinearity, presents several

technical challenges. In particular, the volatility of the forward performance process depends on the

process itself and its gradient. Hence, existing results on existence and uniqueness of solutions to

fully non-linear SPDEs are not applicable (see, for instance, Musiela and Zariphopoulou (2010b)).

Musiela and Zariphopoulou (2010b) and Musiela and Zariphopoulou (2010a) study the case of zero

volatility, and find that the solution to the corresponding SPDE can be characterized by a class

of so-called time-monotone processes. A time-monotone process is a composition of deterministic

and stochastic inputs, where the deterministic input is a space-time function satisfying an ill-posed

PDE, and the stochastic input is a finite variation process. Another widely studied setting is that

of homothetic forward performance processes, in which the dependence on the investor’s wealth

is either exponential or of the power form. Zitkovic (2009) provides a dual characterization of the

exponential forward performance processes in a general semimartingale market model, and devel-

ops an explicit parametrization for markets driven by Itô-processes. Choulli and Ma (2017) study

power forward performance processes in a locally bounded semimartingale market, but without

portfolio constraints. A few studies have considered forward performance processes in the factor

form (see Musiela and Zariphopoulou (2010b), Nadtochiy and Tehranchi (2017), Shkolnikov et al.
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(2016) and Avanesyan et al. (2020)), in which the SPDE simplifies to a so-called forward HJB equa-

tion. In a complete Black-Scholes (BS) market with stochastic factors, Nadtochiy and Tehranchi

(2017) characterize both the power forward performance process and the optimal strategy in terms

of a forward HJB equation defined on a semi-infinite time interval. For the case of incomplete BS

markets, the portfolio selection problem under the forward performance criterion has been inves-

tigated by Shkolnikov et al. (2016), who develop an expansion formula for the underlying ill-posed

HJB equation. Avanesyan et al. (2020) analyze forward performance processes of the factor form,

in which the randomness only enters through a stochastic factor process. They solve the associ-

ated ill-posed PDE, and generalize the Widder’s theorem of Nadtochiy and Tehranchi (2017) to

establish a local forward investment performance process (FIPP) of separable power factor form.

Our work is also related to recent studies on forward investment, consumption and entropic

risk measures by Liang and Zariphopoulou (2017), Chong et al. (2019) and Chong and Liang

(2019). All these studies focus on Brownian driven markets. Liang and Zariphopoulou (2017) and

Chong et al. (2019) apply the so-called discount BSDE method, previously used in the analysis

of ergodic BSDEs (see, e.g., Richou (2009), Cohen and Hu (2013) and Li and Zhao (2019)), to

establish existence and uniqueness of Markovian solutions for their infinite horizon BSDEs. They

introduce an arbitrary positive parameter in the BSDE to make the driver strictly monotone in the

first solution component, and then apply Theorem 3.3 in Briand and Confortola (2008) to obtain

existence and uniqueness of their BSDE solution.

In this paper, we study the power forward performance process in a semimartingale market with

portfolio constraints. We provide necessary and sufficient conditions for the existence of such a

process, exploiting the multiplicative decomposition of a strictly positive special semimartingale.

Because of portfolio constraints, the optimal trading strategy cannot be characterized via a first-

order condition as in Choulli and Ma (2017). Rather, the optimization problem yielding the optimal

trading strategy is a constrained extremum problem. Using results from convex analysis, we trans-

form the constrained problem to an unconstrained one, and explicitly characterize the recession

function and cone of the objective function of the transformed problem when the return process

is of the Lévy type. In a factor market model (R,Y ), where both the return process R and the

factor process Y are semimartingales, we use the Jacod’s decomposition to relate the construction

of a power FIPP to a triplet of processes, whose first component admits an integral representa-

tion w.r.t. the semimartingale Y . We then extend our analysis to time-monotone processes in the

semimartingale factor form, by allowing the forward performance criterion to depend on the inte-

gral of the semimartingale factor process, and hence on its sample path. We establish closed-form

representations of forward processes in this extended setup by characterizing the input function
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as the classical solution of a forward HJB equation. We construct such a solution using the factor

representation of the above discussed triplet of processes.

The paper proceeds as follows. In Section 2, we describe the semimartingale market model.

In Section 3, we provide necessary and sufficient conditions for the existence of power FIPPs in

this setting. In Section 4, we study the structure of power FIPPs in a market model enhanced

with an additional semimartingale factor process, and relate them to a triplet of processes which

admit an integral representation w.r.t. the semimartingale factor. In Section 5, we relate the factor

representation of the triplet to the smooth solution of a forward HJB equation. Some technical

proofs of supporting results are delegated to the Appendix. We collect mathematical symbolism in

the following table, and refer to it whenever needed in the main body.

List of symbols
B(Rn) Space of Borel sets on Rn

EQ[ · ] Expectation under a probability measure Q

[M,M ]Q Quadratic variation process ([M i,M j ]Q)i,j=1,...,n under Q

〈M,M〉Q Predictable compensator of [M,M ]Q under Q

O (P) σ-algebra on Ω× [0,∞), generated by càdlàg (continuous) adapted processes

(Ω̃, Õ, P̃) (Ω× [0,∞)×Rn, O⊗B(Rn), P ⊗B(Rn))

AQ,+
loc Set of locally Q-integrable increasing processes

MQ
loc (MQ,c

loc ) Set of (continuous) Q-local martingales vanishing at time 0

MQ,+
loc Set of scalar local martingales M ∈MQ

loc satisfying 1+∆M > 0

VQ Set of adapted processes with finite variation under Q

HQ,2 (HQ,2
loc ) Set of (locally) square-integrable martingales under Q

LQ,2(M) (LQ,2
loc (M)) Set of predictable processes H s.t. H⊤ · 〈Mc,Mc〉QH is (locally)

Q-integrable if M ∈HQ,2
loc

2. The Model

This section presents the modeling framework. In Section 2.1, we describe the market return

process. In Section 2.2, we define the set of admissible trading strategies, and the forward investment

performance criterion. In Section 2.3, we introduce the set of portfolio constraints. Throughout the

paper, let (Ω,F , P ) be the original probability space where the filtration F= (Ft)t≥0 satisfies the

usual conditions and F0 is P -trivial. All processes considered are assumed to be F-adapted.

2.1. Semimartingale market model

We consider an n-dimensional return process described by a càdlàg semimartingale R=(Rt)t≥0.

Let (B,C,ν) be the predictable characteristics of R relative to a truncation function h :Rn →Rn.

Then, the canonical representation of R is given by (cf. Theorem II.2.34 in Jacod and Shiryaev

(1987)), P -a.s.

R=B+Rc +h(u) ∗ (µ− ν)+ (u−h(u)) ∗µ, (2.1)
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where B ∈ P ∩VP is the predictable finite variation (FV) part of R, Rc ∈MP,c
loc is the continuous

local martingale part of R, and µ is the random measure for the jumps of R with predictable

compensator ν. We assume that the predictable characteristics (B,C,ν) admit the form:

B =

∫ ·

0

btdt, C =

∫ ·

0

ctdt, ν(dt, du) =Ft(du)dt, (2.2)

where F is a predictable kernel satisfying Ft({0}) = 0,
∫

(|u|2∧1)Ft(du)<∞, and b, c are predictable

processes. It follows from (2.2) that R is quasi-left-continuous (QLC), which implies that all jumps

of R are totally inaccessible stopping times. The price process of the n risky assets is given by

the Doléans-Dade exponential E(R). In addition to the risky assets, the investor has also access

to a money market account which accrues zero interest rate. An Rn-valued trading strategy π is a

predictable R-integrable process, where the i-th entry denotes the fraction of wealth invested in the

i-th risky asset. Using the self-financing condition, the wealth process satisfies Xπ,x = x+Xπ,x
− π ·R,

where x> 0 is the investor’s initial wealth and π ·R :=
∫ ·

0
πtdRt is the stochastic integral w.r.t. R.

Hence, we can write Xπ,x = xE(π ·R).

2.2. Admissible trading strategies and FIPP

We define the class of admissible trading strategies and the forward investment performance process

(FIPP) under an arbitrary probability measure equivalent to P with density process E(M), where

M ∈MP,+
loc . More precisely, for anyM ∈MP,+

loc , we define the following class of probability measures:

QM :=

{

Q∼P ;
dQ

dP

∣

∣

∣

Ft

= E(M)t, t≥ 0

}

. (2.3)

Obviously, P ∈QM withM ≡ 1. Let Q∈QM , Ct(ω) : [0,∞)×Ω→B(Rn) be a predictable set-valued

process and UQ
t (x,ω) : [0,∞)× (0,∞)× Ω → R be a progressively measurable random field. We

remark that any FIPP is necessarily of this form, i.e., a stochastic process of utilities that, at each

time t, depends on the investor’s current wealth amount x.

Definition 2.1 (Set of Admissible Trading Strategies) An Rn-valued predictable process π

is said to be C-constrained under Q if πt(ω) ∈ Ct(ω) for all (t,ω) ∈ [0,∞)× Ω. The class ΓQ
C of

admissible investment strategies associated with UQ includes all C-constrained, predictable and R-

integrable processes π that satisfy π⊤∆R ≥ −1, Q-a.s., and s.t. for any x > 0, UQ
t (xEt(π ·R))−,

t≥ 0, is of class (DL) under Q.

We next provide the definition of a FIPP with constraint set C under a probability measure

Q∈QM , whereM ∈MP,+
loc (see Musiela and Zariphopoulou (2010b) for the definition in the absence

of portfolio constraints):
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Definition 2.2 (FIPP) The random field UQ is a Q-FIPP with optimal trading strategy π∗ ∈ ΓQ
C

if it satisfies the following self-generating properties:

(i) Q-a.s., for any t≥ 0, x→UQ
t (x) is concave and increasing;

(ii) For any x > 0, and π ∈ ΓQ
C , the process UQ(Xπ,x) := (UQ

t (xEt(π · R)))t≥0 is a Q-

supermartingale;

(iii) For any x> 0, UQ(Xπ∗,x) is a Q-martingale.

2.3. Budget constraint

For any π ∈ ΓQ
C where Q ∈ QM and M ∈ MP,+

loc , the condition π⊤∆R ≥ −1 in Definition 2.1 is

related to the budget constraint of an admissible trading strategy, as specified by Karatzas and

Kardaras (2007). Let (BM ,CM , νM ) be the predictable characteristics of R under Q. It follows

from Theorem III.3.24 in Jacod and Shiryaev (1987) that

BM =B+

∫ ·

0

csαsds+h(u)(ξ(u)− 1) ∗ ν, CM =C, νM = ξ ∗ ν, (2.4)

where α = (α1, . . . , αn)⊤ is a predictable process and ξ is a P̃-measurable nonnegative process,

which are determined by

ξ = 1+MP
µ (∆M |P̃), 〈M c,Rc〉P =

∫ ·

0

csαsds. (2.5)

Here, denote by MP
µ (·) the positive measure such that MP

µ (W ) = EP [(W ∗ µ)∞] for all measur-

able nonnegative functions W , and MP
µ (W |P̃) the MP

µ -a.s. unique P̃-measurable function W ′ s.t.

MP
µ (WU) =MP

µ (W ′U) for all nonnegative P̃-measurable functions U (see Jacod and Shiryaev

(1987), page 170).

Remark 2.1 Theorem III.3.24 in Jacod and Shiryaev (1987) gives

ξ =
1

E(M)−
MP

µ (E(M)|P̃), 〈E(M)c,Rc〉P =

∫ ·

0

E(M)scsαsds. (2.6)

It follows from (2.6) that E(M)−(ξ− 1)=MP
µ (∆E(M)|P̃) = E(M)−M

P
µ (∆M |P̃). Because E(M)>

0, it then follows that ξ = 1+MP
µ (∆M |P̃). Moreover, using the relation 〈E(M)c,Rc〉P = E(M)− ·

〈M c,Rc〉P , it follows from (2.6) that 〈M c,Rc〉P =
∫ ·

0
csαsds. We then obtain the identities in (2.5).

In view of (2.4), the differential characteristics of R under Q is given by

bM = b+ cα+h(u)(ξ(u)− 1) ∗F, cM = c, FM (du) = ξ(u)F (du). (2.7)

Then, using (2.1) and (2.4), it follows that the continuous local martingale part of R under Q is

RM,c =Rc −

∫ ·

0

csαsds. (2.8)
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The budget constraint of an admissible strategy underQ can be formally specified via the set-valued

mapping

CM
0 := {π ∈Rn; FM({u∈Rn

0 ; π
⊤u+1< 0}) = 0}, (2.9)

where R0 := R \ {0}. Note that CM
0 depends on (t,ω), because FM does. To lighten notation, we

avoid to explicitly specify the dependence on (t,ω). The predictability of such a process follows

directly from Lemma 9.4 in Karatzas and Kardaras (2007). Moreover, CM
0 is closed, convex and

contains the origin. Thus, πt(ω)∈ Ct(ω)∩CM
0,t(ω), for any π ∈ ΓQ

C . Let C0 be the set-valued mapping

(2.9) with FM replaced by F , i.e., C0 is the budget constraint of an admissible strategy under P .

Then, it can be easily verified that C0 = CM
0 , P (dω)⊗ dt-a.s. We also introduce the predictable

set-valued process of null-investment given by

NQ :=
{

π ∈Rn; cMπ=0, FM({u∈Rn
0 ; π

⊤u 6=0}) = 0, π⊤bM = 0
}

. (2.10)

Under Q ∈ QM , the wealth process remains the same if one invests according to the strategy

specified by a vector in NQ. For any (t,ω)∈ [0,∞)×Ω, NQ
t (ω) is a linear subspace of Rn and hence

an affine set which contains the origin. This implies that it is closed (it is also relatively open).

We next list the technical assumptions under which the results in this paper will be derived:

(AC) For (t,ω) ∈ [0,∞)×Ω, the constraint set Ct(ω) in Definition 2.1 is compact, convex and

contains the origin.

Under Assumption (AC), the recession cone of the constraint set Ct(ω) is given by 0+Ct(ω) :=

∩λ>0λCt(ω) (see, e.g., Corollary 8.3.2 in Rockafellar (1970)).

(AF ) For p ∈ (0,1), under the probability measure Q ∈ QM , the predictable kernel of R given

in (2.7) satisfies

∫

|u|>1

|u|pFM(du)<+∞, Q(dω)⊗ dt-a.s. (2.11)

We also introduce a scalar exponentially special P -semimartingale D = (Dt)t≥0 which will be

used in Section 3 to define the power FIPP. Let (BD,CD, νD(dt, dv))= (
∫ ·

0
bDs ds,

∫ ·

0
cDs ds,F

D
t (dv)dt)

be the predictable characteristics of D under P . Then the canonical representation of D relative

to a truncation function hD(v), v ∈R, is given by, P -a.s., D=D0+B
D +Dc+hD(v)∗ (µD −νD)+

(v− hD(v)) ∗ µD. By Proposition 8.26 in Jacod and Shiryaev (1987), the exponential specialty of

D is equivalent to imposing one of the following conditions:

(AD) (i) (ev − 1−hD(v)) ∗ νD ∈ VP ; (ii) ev1v>1 ∗ ν
D ∈ VP .
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3. Power FIPP: Characterization and Optimal Strategy

This section characterizes a class of power P -FIPPs. Section 3.1 develops an explicit multiplicative

decomposition of a power random field. Section 3.2 then provides the exact conditions under which

the decomposed random field is a power P -FIPP. Section 3.3 studies the optimal trading strategy

associated with the FIPP.

3.1. Multiplicative decomposition of a power random field

Let p∈ (−∞,0)∪ (0,1) and D be the scalar P -semimartingale introduced at the end of Section 2.3.

Consider a random field U of the form

Ut(x) :=
eDt

p
xp, (t, x)∈ [0,∞)× (0,∞). (3.1)

We omit the dependence of Ut(x) on p to lighten notation. It follows from Assumption (AD)-(i) or

(ii) that L := eD is a special P -semimartingale that admits the decomposition L= eD0 +ML+V L,

P -a.s., where ML ∈MP
loc and V L ∈ VP ∩P. We provide more details about this decomposition in

the following Lemma 3.1.

Lemma 3.1 Let Assumption (AD)-(i) or (ii) hold. Then, it holds that, P -a.s.

L= eD0E(M)E(V ). (3.2)

The pair (M,V )∈MP
loc × (VP ∩P) admits the following representation:

M =Dc +(ev − 1) ∗ (µD − νD), V =BD +
CD

2
+ {ev − 1−hD(v)} ∗ νD, (3.3)

where the jump process ofM is given by ∆M = (e∆D−1)1∆D 6=0, and V is continuous, i.e., ∆V =0.

3.2. Characterization of U as a P -FIPP

In this section, we identify the conditions under which the random field U in (3.1) is a P -FIPP.

The multiplicative decomposition of U given in (3.2), under the conditions of Lemma 3.1, yields

the following representation: for (t, x)∈ [0,∞)× (0,∞),

Ut(x) =U0(x)Et(M)Et(V ) = Et(M)UV
t (x), with U0(x) =

1

p
xpeD0 , (3.4)

where the random field UV is defined by

UV
t (x) :=U0(x)Et(V ), (t, x)∈ [0,∞)× (0,∞). (3.5)

By Lemma 3.1, we have M ∈MP,+
loc , and hence E(M)> 0. Thus, E(M) may be viewed as a local

density process (see also Liptser and Shiryayev (1986), pp. 220-221). Next, we use the decompo-

sition (3.4) to develop a local change of measure that characterizes U as a P -FIPP. For t ≥ 0,

define

dQM

dP

∣

∣

∣

∣

Ft

= Et(M). (3.6)
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Lemma 3.2 Assume that the probability measure QM defined in (3.6) belongs to QM . Then, the

following statements hold:

(i) ΓP
C =ΓQM

C , i.e., the set of admissible strategies under P coincides with the corresponding set

under QM ;

(ii) the random field U given by (3.4) is a P -FIPP with optimal trading strategy π∗ ∈ ΓP
C if and

only if the random field UV given by (3.5) is a QM -FIPP with optimal trading strategy π∗ ∈ ΓQM

C .

Next, we characterize the P -semimartingale D that makes U given by (3.4) a P -FIPP with corre-

sponding optimal trading strategy π∗ ∈ ΓP
C . The main result of this section is stated as follows:

Theorem 3.3 Let Assumption (AC) and the conditions of Lemma 3.1-3.2 hold. The random field

U given by (3.4) is a P -FIPP with optimal trading strategy π∗ ∈ ΓP
C if and only if the following

conditions hold, P (dω)⊗ dt-a.s.

(i) E(βM ·RM,c+W
M
(u)∗(µ−νM))E(M) is a P -martingale, where RM,c and νM are respectively

given by (2.8) and (2.4).

(ii) there exists π∗ ∈ ΓP
C such that ΦM

p (π∗) = sup
π∈C∩C0

ΦM
p (π);

(iii) The predictable characteristics (BD,CD, νD(dt, dv)) = (
∫ ·

0
bDs ds,

∫ ·

0
cDs ds,F

D
t (dv)dt) of D sat-

isfy the equation

sup
π∈C∩C0

ΦM
p (π)+ p−1

{

bD +
cD

2
+ (ev − 1−hD(v)) ∗FD

}

= 0. (3.7)

For π ∈ C0, the random mapping

ΦM
p (π) := π⊤bM +

p− 1

2
π⊤cπ+ {p−1(1+π⊤u)p − p−1 −π⊤h(u)} ∗FM , (3.8)

where (bM , FM) is given by (2.7), βM
t := pπ∗

t , and W
M

t (u) := {1+ (π∗
t )

⊤u}p − 1.

Observe that the conditions (i)-(iii) in Theorem 3.3 do not depend on the choice of D0. That

is, the initial utility U0(x) = eD0 xp

p
is compatible with a FIPP of the form given in (3.4). Thanks

to Lemma 3.2, the proof of Theorem 3.3 is reduced to characterizing the exponentially special

semimartingale D that makes UV given by (3.5) a QM -FIPP with optimal trading strategy π∗ ∈

ΓQM

C . We next state two auxiliary lemmas. For π ∈ ΓQM

C , and (ω, t, u)∈Ω× [0,∞)×Rn, define

W π
t (ω,u) := p−1(1+πt(ω)

⊤u)p − p−1, (3.9)

and recall the space GQM

loc (µ), related to the jump measure µ of R under QM , and specified in Def.

II.1.27-(a) of Jacod and Shiryaev (1987), page 72.
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Lemma 3.4 Assume that the conditions of Theorem 3.3 hold and the process UV given by (3.5)

is a QM -FIPP. Then, for any π ∈ ΓQM

C , π ∈ LQM ,2
loc (RM,c), W π ∈ GQM

loc (µ), and |p−1(1 + π⊤u)p −

p−1 − π⊤h(u)| ∗ νM ∈ AQM ,+
loc . Moreover, the predictable characteristics (BD,CD, νD(dt, dv)) =

(
∫ ·

0
bDs ds,

∫ ·

0
cDs ds,F

D
t (dv)dt) of D satisfy (3.7), QM (dω)⊗ dt-a.s.

For π ∈ C0, the concave function ΦM
p (π) given by (3.8) is well defined and takes values in R∪

{sign(p)∞}, see, e.g., Lemma 5.3 in Nutz (2012b).

Proof of Theorem 3.3. By Lemma 3.2, it is enough to prove that UV given by (3.5) is a

QM -FIPP with the optimal trading strategy π∗ ∈ ΓQM

C if and only if (i)-(iii) hold.

=⇒ Suppose that UV given by (3.5) is a QM -FIPP with the optimal trading strategy π∗ ∈ ΓQM

C .

Then, by Definition 2.2, we have UV (Xπ∗,x) is a QM -martingale for any x> 0. On the other hand,

for any π ∈ ΓQM

C , it follows from (A.6) and (A.9) in Appendix that

UV (Xπ,x) =U0(x)E

(

V + p

∫ ·

0

ΦM
p (πs)ds+ pπ ·RM,c + pW π(u) ∗ (µ− νM )

)

, (3.10)

where W π have been defined in (3.9). Because UV is a QM -FIPP, Lemma 3.4 implies that pπ ∈

LQM ,2
loc (RM,c), pW π ∈GQM

loc (µ), and the condition (iii) holds. Moreover, using the equality (A.10) in

the proof of Lemma 3.4, we also have that

dV

dt
+ p sup

π∈C∩C0

ΦM
p (π) = 0. (3.11)

In view of (3.10), we have that

UV (Xπ∗,x) =U0(x)E

(

V + p

∫ ·

0

ΦM
p (π∗

s)ds+βM ·RM,c +W
M
(u) ∗ (µ− νM)

)

(3.12)

is a QM -martingale, it is a local QM -martingale (clearly, it is a σ-martingale under QM ). This

implies the drift rate (w.r.t. At = t) of UV (Xπ∗,x) is zero, i.e.,

dV

dt
+ pΦM

p (π∗) = 0. (3.13)

Taking the difference between (3.11) and (3.13), we deduce that

p

(

sup
π∈C∩C0

ΦM
p (π)−ΦM

p (π∗)

)

= 0,

which implies that the condition (ii) holds. Moreover, it follows from (3.12) and (3.13) that

UV (Xπ∗,x) =U0(x)E
(

βM ·RM,c +W
M
(u) ∗ (µ− νM )

)

, (3.14)

and hence that condition (i) holds.
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⇐= Suppose conditions (i)-(iii) hold. Lemma 3.1, together with (3.7), implies that

dV

dt
+ pΦM

p (π∗) = 0, sup
π∈C∩C0

ΦM
p (π) = ΦM

p (π∗). (3.15)

Using the equations above, along with (3.12), we obtain that

UV (Xπ∗,x) =U0(x)E
(

βM ·RM,c +W
M
(u) ∗ (µ− νM )

)

. (3.16)

Then, condition (i) implies that UV (Xπ∗,x) is a QM -martingale, where π∗ ∈ C ∩ C0 is determined

by (3.15).

We next prove that, for any π ∈ ΓQM

C , UV (Xπ,x) is a QM -supermartingale for all x> 0. We prove

this claim by considering the following two subcases:

(a) The power parameter p∈ (0,1). In this case, it follows from (3.15) that, for any π ∈ ΓQM

C ,

pΦM
p (π)≤ pΦM

p (π∗) =−
dV

dt
. (3.17)

We next show that UV (Xπ,x) given in (3.10) is a QM -supermartingale. First, observe that the drift

rate (w.r.t. At = t) of the semimartingale

V + p

∫ ·

0

ΦM
p (πs)ds+ pπ ·RM,c + pW π(u) ∗ (µ− νM)

is given by dV
dt

+ pΦM
p (π). It follows from (3.17) that the drift rate is negative. Recall that, for the

process N(π) defined in (A.4) of the Appendix, it holds that

V +N(π) = V + p

∫ ·

0

ΦM
p (πs)ds+ pπ ·RM,c + pW π(u) ∗ (µ− νM).

It can be seen from (A.4) that, for all π ∈ ΓQM

C , 1 +∆(V +N(π)) = 1+∆N(π)> 0 since ∆V = 0,

and hence, for all π ∈ ΓQM

C ,

E

(

V + p

∫ ·

0

ΦM
p (πs)ds+ pπ ·RM,c + pW π(u) ∗ (µ− νM )

)

(3.18)

is strictly positive. It thus follows from the inequality in (3.17) that the drift rate (w.r.t. At = t)

of the Doléans-Dade exponential (3.18) is also negative. Using Proposition 11.3 in Appendix 3

of Karatzas and Kardaras (2007), we conclude that the Doléans-Dade exponential (3.18) is a QM -

supermartingale, because this stochastic exponential is uniformly bounded from below. This, along

with the fact that U0(x)> 0, leads to the conclusion that UV (Xπ,x) is a QM -supermartingale for all

π ∈ ΓQM

C . Note that UV
t (x) itself is positive for all (t, x)∈ [0,∞)× (0,∞), and hence (UV (Xπ∗,x))−

is clearly of class (DL). Therefore, the vector π∗ ∈ C0 ∩C specified by (3.15) is the optimal trading

strategy.
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(b) The power parameter p < 0. In this case, we have that

pΦM
p (π)≥ pΦM

p (π∗) =−
dV

dt
. (3.19)

We then deduce from (3.19) that the drift rate (w.r.t. At = t) of

−E

(

V + p

∫ ·

0

ΦM
p (πs)ds+ pπ ·RM,c + pW π(u) ∗ (µ− νM)

)

is negative. Because U0(x) is negative for x > 0, it follows that, for any π ∈ ΓQM

C and x > 0,

UV (Xπ,x) =−UV (xE(π ·R))− is a QM -semimartingale with a negative drift rate. Because π belongs

to the class of admissible strategies ΓQM

C given in Definition 2.1, UV (xE(π ·R))− is of class (DL).

Then, for any T > 0, we have that UV
·∧T (X

π,x) is of class (D). Because a semimartingale of class

(D) with negative drift rate is a supermartingale, we conclude that, for all π ∈ ΓQM

C and x > 0,

UV
·∧T (X

π,x) is a QM -supermartingale, i.e., EQM

[UV
s∧T (X

π,x)|Ft] ≤ UV
t∧T (X

π,x) for 0 ≤ t≤ s <+∞.

Because (UV
T∧t(X

π,x))T≥0 is of class (D), it follows that UV (Xπ,x) is a QM -supermartingale by

letting T → ∞. This yields the condition (ii) in Definition 2.2. It remains to verify that π∗ ∈

C ∩ C0 determined by (3.15) is the optimal trading strategy. This is equivalent to proving that

(UV (Xπ∗,x))− is of class (DL). From (3.16), we then obtain that (UV (Xπ∗,x))− = −U0(x)E(β
M ·

RM,c+W
M
(u)∗(µ−νM)) is aQM -martingale using (i). It can then be easily seen that (UV (Xπ∗,x))−

is of class (DL). This completes the proof of the theorem. �

Remark 3.5 Similar to our study, Choulli and Ma (2017) employ a change of measure technique

to establish a power forward performance criterion. However, there exist major technical and con-

ceptual differences between our approach and theirs, originating from the different set of assump-

tions made in the two studies. Choulli and Ma (2017) assume the discounted risky asset price

process to be a locally bounded semimartingale S. The proofs of their Theorem 3.2-3.3 strongly rely

on the assumption of local boundedness of S. They use the minimal Hellinger martingale (MHM)

densities to mainly characterize sufficient and necessary conditions on a process D used in the con-

struction of the power random field (see their Theorem 3.2-3.3). In addition, their analysis ignores

portfolio constraints, and can thus directly use the first-order equation for optimality. It is worth

highlighting that the existence of the minimal Hellinger martingale density heavily depends on the

locally boundedness assumption of S (plus some other assumptions). The locally boundedness of S

(which, in particular, implies that
∫

|x|2F (dx)<∞ where F is the differential characteristics of the

jump compensator of S) helps proving fundamental properties such as convexity, and first-order dif-

ferentiability, of the function ΦR
p (λ). This in turn makes it possible to use the first-order condition

to pin down the optimal trading strategy (see Lemma 6.2 in Choulli and Ma (2017)). Unlike their

study, we do not impose that the multi-asset discount price process is locally bounded. As a result,
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the proof of our Theorem 3.3 uses a different argument because the MHM density argument is not

applicable in our semimartingale market model. In Definition 2.1, apart from the constraint set C,

a key condition is that “UQ
t (xEt(π ·R))−, t ∈ R+, is of class (DL) under Q”. This key condition

makes it challenging to prove the equivalent characterization of the forward utility under P and

Q, compared to the proof of Proposition 2.1 in Choulli and Ma (2017). We prove the equivalence

result in Lemma 3.2 by establishing an equivalent condition of the class of (DL) (see Lemma A.1

in the Appendix). Additionally, we provide the equivalent characterization of the optimal trading

strategies under P and Q in Lemma 3.2.

3.3. Optimal trading strategies

By Theorem 3.3, the optimal strategy π∗ under the original probability measure P can be recovered

as the solution of the constrained extremum problem, with objective function ΦM
p (π) defined by

(3.8), and subject to the constraint that π ∈ C∩C0. For π ∈ C0, the mapping ΦM
p (π) can be rewritten

as:

ΦM
p (π) = π⊤bM +

p− 1

2
π⊤cπ+ IM (π), (3.20)

where we choose the truncation function h(u) = u1|u|≤1, and the function

IM (π) := IM1 (π)+ IM2 (π) (3.21)

=

∫

|u|≤1

{p−1(1+π⊤u)p − p−1 −π⊤u}FM (du)+

∫

|u|>1

{p−1(1+π⊤u)p − p−1}FM (du).

Then, under (AF ) in Section 2.3, the optimal strategy π∗ can be completely characterized (see

Lemma A.2 in the Appendix).

If the return process R is a Lévy process and the constraint set satisfies Ct(ω) =C for all (t,ω)

(where C ⊂ Rn satisfies Assumption (AC)), the random mapping ΦM
p (π) becomes deterministic.

Note that the budget constraint C0 := C0 is also independent of (t,ω), and hence it is also a

(deterministic) closed subset of Rn. We study the constrained extremum problem with objective

function ΦM
p (π), and constraint set C0 ∩C. For π ∈Rn, define the convex function

ψ(π) :=







−π⊤bM − p−1
2
π⊤cπ−{p−1(1+π⊤u)p − p−1 −π⊤h(u)} ∗FM , π ∈C0;

+∞, π /∈C0.

(3.22)

We recall that (bM , FM ) is given by (2.7). Hence, the constrained extremum problem with objec-

tive function ΦM
p (π) and constraint set C0 ∩C is equivalent to solving the unconstrained convex

minimization problem

inf
π∈Rn

{ψ(π)+ δ(π|C)} , (3.23)
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where δ(·|C) denotes the indicator function of the convex set C, i.e., it equals 0 if π ∈C, and +∞

otherwise. The indicator function δ(·|C) is clearly convex. In view of (3.22), and noting that C∩C0

contains the origin, this implies that C ∩ dom(ψ) 6= ∅, where dom(ψ) := {π ∈ Rn; ψ(π) <+∞} is

the efficient domain of ψ. The condition (2.11) also implies that ψ(π) is a closed, proper and convex

function on Rn.

The following lemma provides explicit representations of the recession function ψ0+ of ψ, and of

the recession cone of ψ. First, we introduce the following sets:

Λ−(y) := {u ∈Rn
0 ; y

⊤u< 0}, Λ+(y) := {u ∈Rn
0 ; y

⊤u> 0}. (3.24)

Lemma 3.6 Under Assumption (AF ), it holds that

(i) If π ∈ {y ∈Rn; FM(Λ−(y)) = 0}, then

ψ0+(π) =

{

π⊤(h(u) ∗FM − bM ), cπ=0;

+∞, cπ 6=0.
(3.25)

If π ∈ {y ∈Rn; FM (Λ−(y))> 0}, then ψ0+(π) =+∞.

(ii) If π ∈ {y ∈Rn; FM(Λ+(y)) = 0}, then

ψ0+(−π) =

{

−π⊤(h(u) ∗FM − bM ), cπ= 0;

+∞, cπ 6= 0.
(3.26)

If π ∈ {y ∈Rn; FM (Λ+(y))> 0}, then ψ0+(−π) =+∞.

(iii) The recession cone of ψ is given by

{

π ∈Rn; FM(Λ−(π)) = 0, cπ= 0, π⊤(h(u) ∗FM − bM )≤ 0
}

. (3.27)

(iv) The constancy space of ψ is given by NQM

.

By the claim (iv) of Lemma 3.6, NQM

is the largest subspace contained in the recession cone of

ψ. The directions of the vectors in NQM

are the directions along which ψ is constant. Kardaras

(2009) refers to every element in the set {π ∈Rn; ψ0+(π)≤ 0} \NQM

as an Immediate Arbitrage

Opportunity under QM . Essentially, those are constant portfolios that result in increasing profits.

The following result is a consequence of Lemma 3.6.

Proposition 3.7 Let assumptions (AC) and (AF ) hold. If, it holds that

{

π ∈Rn; FM(Λ−(π)) = 0, cπ= 0, π⊤(h(u) ∗FM − bM )≤ 0
}

∩ 0+C = {0}, (3.28)

then ψ attains its infimum over C. In the case that C is additionally polyhedral, if for any nonzero

y ∈
{

π ∈Rn; FM(Λ−(π)) = 0, cπ= 0, π⊤(h(u) ∗FM − bM)≤ 0
}

∩ 0+C, (3.29)

it holds that y ∈NQM

, then ψ achieves its infimum over C.
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Proof. By Theorem 27.3 in Rockafellar (1970), if ψ and C have no direction of recession in

common, then ψ attains its infimum over C. Using (iii) of Lemma 3.6, this condition in our case is

equivalent to the condition (3.28). In the case where C is also polyhedral, the condition that for

any nonzero element in the set (3.29), we have that y ∈NQM

is equivalent to the statement that

every common direction of recession of ψ and C is also a direction in which ψ is constant, using

(iv) of Lemma 3.6. Hence, ψ achieves its infimum over C by applying the last conclusive statement

in Theorem 27.3 of Rockafellar (1970). �

4. Semimartingale Factor Model

Leveraging the multiplicative decomposition of a power random field given in Section 3.1, and

building upon the equivalent characterization of a power FIPP given by Theorem 3.3, we study a

class of random fields of the form

U(x) =U0(x)E(M)E(VM), with U0(x) =
1

p
xpeD0 , x > 0, (4.1)

where D0 ∈ R is an input which determines the initial utility, M ∈ MP,+
loc is determined by a

semimartingale factor process Y , and V M ∈ VP ∩P is jointly determined by the semimartingale

pair (R,Y ) (see (4.6) below). We first provide conditions for the existence of U as a P -FIPP using

Theorem 3.3. We then relate the performance process U to a triplet of processes (c.f. (4.5) below),

whose first component admits an integral representation w.r.t the semimartingale factor Y .

We begin by introducing the factor market model (R,Y ), where the stochastic factor Y is an

Rd-valued càdlàg semimartingale under P . Let (BY ,CY , νY (dt, dv)) = (
∫ ·

0
bYs ds,

∫ ·

0
cYs ds,F

Y
t (dv)dt)

be the predictable characteristics (and hence (bY , cY , F Y ) is the differential characteristics) of Y ,

relative to a truncation function hY :Rd →Rd, and µY be the jump measure of Y . Let (B,C,ν) be

the joint predictable characteristics of the Rn+d-valued semimartingale (R,Y ). Then, the canonical

representation of (R,Y ) is given by, P -a.s.

(

R

Y

)

=

(

0

Y0

)

+

(

B

BY

)

+

(

Rc

Y c

)

+

(

h(u)

hY (v)

)

∗ (µ− ν)+

(

u−h(u)

v−hY (v)

)

∗µ, (4.2)

where µ is the jump measure for (R,Y ), and it holds that

B =

(

B

BY

)

, C
ij
=

〈

(

Rc

Y c

)i

,

(

Rc

Y c

)j
〉

, µ(dt, du) = µ(dt, du×Rd
0), µ

Y (dt, dv) = µ(dt,Rn
0 × dv).

4.1. Existence of P -FIPP U in factor form

This section provides the necessary and sufficient condition for the existence of U as a P -FIPP in

the factor market (R,Y ). To start with, we apply the Jacod’s decomposition of M ∈MP,+
loc with

respect to the factor Y , recalled in the lemma below.
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Lemma 4.1 (Theorem 3.75 in Jacod (1979)) There exists a predictable Y c-integrable process

HM , NM ∈MP
loc satisfying [Y,NM ]P = 0, and UM ∈ P̃, GM ∈ Õ satisfying (|UM | ∗ νY )∞ < +∞,

√

∑

0<s≤·G
M (s,∆Ys)21∆Ys 6=0 ∈AP,+

loc and MP
µY (G

M |P̃) = 0 such that, P -a.s.

M =HM ·Y c +JM(v) ∗ (µY − νY )+GM(v) ∗µY +NM . (4.3)

Here JM := UM + ÛM

1−aY
with ÛM :=

∫

UM (v)νY ({·}, dv), and UM has a version such that {aY :=
∫

νY ({·}, dv) = 1}⊂ {ÛM = 0}. Moreover {∆NM 6= 0} ⊂ {∆Y =0}.

We refer to (HM ,UM ,GM ,NM ) as Jacod’s decomposition ofM with respect to the factor Y . Some

immediate implications of this decomposition are presented in the remark below:

Remark 4.2 Note that the factor semimartingale Y is QLC, and we have that UM ∈ GP
loc(µ

Y )

and ÛM = 0. This yields that JM =UM . Moreover, it holds that 1+∆M = 1+UM +GM , MP
µY -a.s.

Observe that 1+∆M > 0, and hence MP
µY -a.s.

1+∆M =1+UM +GM > 0. (4.4)

It follows from UM ∈ P̃ and MP
µY (G

M |P̃) = 0 that 1+UM > 0, MP
µY -a.s.

We next introduce processes that will be later used to construct the forward performance process:


















ΠM := ln(E(M)E(VM )), ZM :=HM ;

WM (v) :=MP
µY (ln(1+UM(v)+GM (v))|P̃);

KM(v) := ln(1+UM (v)+GM(v))−MP
µY (ln(1+UM (v)+GM(v))|P̃).

(4.5)

The process V M ∈ VP ∩P satisfies the following (stochastic) equation:

p−1dV
M

dt
+ΦM

p (π∗) = 0, ΦM
p (π∗) = sup

π∈C0∩C
ΦM

p (π). (4.6)

For π ∈ C0, we define the random mapping as

ΦM
p (π) := π⊤{b+ cH +h(u)MP

µ (∆M |P̃)(u) ∗F}+
p− 1

2
π⊤cπ

+ {p−1(1+π⊤u)p − p−1 −π⊤h(u)}(1+MP
µ (∆M |P̃)(u)) ∗F, (4.7)

where the process H ∈LP,2
loc (R

c) is determined by the equation

[M c,M c]P =

∫ ·

0

H⊤
s csHsds. (4.8)

Throughout the section, we consider a random field of the form (4.1), i.e.,

Ut(x) =U0(x)Et(M)Et(V
M ) =U0(x) exp(Π

M
t ), (t, x)∈ [0,∞)× (0,∞). (4.9)

It follows from (4.9) that ΠM
0 = 0. The subsequent lemma characterizes U as a P -FIPP, and its

proof invokes Theorem 3.3.
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Lemma 4.3 Fix M ∈MP,+
loc . Let QM ∈QM be defined by (3.6) and Assumption (AC) hold. Then,

the random field U given by (4.9) is a P -FIPP with the optimal trading strategy π∗ ∈ ΓP
C if and

only if the following conditions hold:

(i) there exists π∗ ∈ ΓP
C such that supπ∈C∩C0

ΦM
p (π) = ΦM

p (π∗), where ΦM
p (π) is defined by (4.7);

(ii) E(βM ·RM,c+W
M
(u)∗ (µ−νM))E(M) is a P -martingale, where RM,c =Rc−

∫ ·

0
csHsds, i.e.,

it is the continuous local martingale part of R under QM , and

βM
t := pπ∗

t , W
M

t (u) := {1+ (π∗
t )

⊤u}p − 1, νM := (1+MP
µ (∆M |P̃)(u)) ∗ ν.

The P -dynamics of the random field U given by (4.9) plays an important role in the analysis of

the so-called time-monotone processes. An explicit expression for this dynamics follows from (4.5)

and (4.9):

Lemma 4.4 For any x> 0, the P -dynamics of the random field U defined by (4.9) is given by

dUt(x) =Ut−(x)

{

dMt − p sup
π∈C0∩C

ΦM
p (π)dt

}

, U0−(x) =U0(x) =
xp

p
eD0 . (4.10)

Using Lemma 4.4, we revisit time-monotone processes, first introduced by Musiela and

Zariphopoulou (2010a) in Brownian markets, and discuss how existing results can be generalized

to semimartingale markets:

Example 4.1 (Time-Monotone Process with Semimartingale Factor Market) Consider

a semimartingale process Y satisfying Y c ≡ 0 and µY ≡ 0, i.e., Y ∈ P ∩ VP is of the form

Y = Y0 +BY = Y0 +
∫ ·

0
bY (Ys)ds, where b

Y is Lipschitz on Rd. Assume the P -predictable charac-

teristics of R is given by (B,C,ν(dt, du)) = (
∫ ·

0
b(Ys)ds,

∫ ·

0
c(Ys)ds,F (Yt, du)dt), and the constraint

Ct(ω) = C(Yt−(ω)) satisfies Assumption (AC). The triple (b, c,F ) satisfies conditions (i) and (ii)

of Theorem III.2.32 in Jacod and Shiryaev (1987). Taking the trivial P -local martingale M ≡ 0,

we obtain Π0 =Π0
0 −

∫ ·

0
f(Ys)ds. Hence, the dynamics (4.10) reduces to

dUt(x) =Ut−(x)dΠ
0
t =−Ut(x)f(Yt)dt, (4.11)

where, for y ∈Rd, the function

f(y) := p sup
π∈C0(y)∩C(y)

{

π⊤b(y)+
p− 1

2
π⊤c(y)π+

∫

{p−1(1+π⊤u)p − p−1 −π⊤h(u)}F (y, du)

}

,

with C0(y) := {π ∈ Rn; F (y,{u ∈ Rn
0 ; π

⊤u+ 1< 0}) = 0}. Since 0 ∈ C(y), sign(p)f(y)≥ 0 for all

y ∈Rd. Then, Eq. (4.11) may be further simplified to

dUt(x) =
1

2

2(1− p)

p
f(Yt)

|∂xUt(x)|
2

∂2
xxUt(x)

dt. (4.12)
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Note that 2(1−p)

p
f(y) ≥ 0 because 1 − p > 0 for all y ∈ Rd. Then (4.12) takes a similar form as

SPDE (28) with zero volatility in Musiela and Zariphopoulou (2010b), Section 6.1. It was shown in

Musiela and Zariphopoulou (2010a) that its solution is characterized by the so-called time-monotone

process given by

Ut(x) =G

(

x,

∫ t

0

2(1− p)

p
f(Ys)ds

)

=G

(

x,−
2(1− p)

p
Π0

t

)

, (4.13)

where, for (x, t) ∈ (0,∞) × [0,∞), G(x, t) solves the fully nonlinear equation ∂tG = |∂xG|2

2∂2
xxG

. The

solution of this equation has been studied by Musiela and Zariphopoulou (2010a). In Musiela and

Zariphopoulou (2010b), and Nadtochiy and Tehranchi (2017), the stock return process R is a drifted

Brownian motion in the factor form (i.e., jumps are not allowed). This is equivalent to assuming

that the stock price process is a geometric Brownian motion in the factor form. Therefore, Eq. (4.13)

suggests that the solution of SPDE (28) in Musiela and Zariphopoulou (2010b) corresponding to

the zero volatility case can also be characterized by a time-monotone process in a semimartingale

market (i.e., when the stock return process R is a semimartingale).

4.2. Integral representation of ΠM

This section shows that the processes defined in (4.5) admits an integral representation w.r.t. the

semimartingale factor Y . This, in turn, serves to construct the factor representation of the processes

defined in (4.5). To establish this representation, we restrict the class of martingales from MP,+
loc

to a subset M̄P,+
loc of MP,+

loc , defined as follows:

Definition 4.1 (Subset M̄P,+
loc of MP,+

loc ) For ǫ ∈ (0,1) and p≥ 1, define the positive increasing

process as follows:

Θp(ǫ) :=
∑

0<s≤·

|∆Ms|
p

(1+∆Ms)p
1∆Ms∈(−1,−ǫ), (4.14)

related to the jumps of M ∈MP,+
loc . The space M̄P,+

loc is the set of all scalar local martingales M ∈

MP,+
loc for which there exists a constant ǫ ∈ [0,1) such that (i) if M ∈AP

loc, then Θ1(ǫ) ∈AP,+
loc ; (ii)

if M ∈HP,2
loc , then Θ2(ǫ)∈AP,+

loc .

Obviously, any continuous scalar P -local martingale belongs to M̄P,+
loc . The following theorem

establishes an integral representation of the process ΠM , which will be used in the construction of

the P -FIPP:

Theorem 4.5 Let M ∈ M̄P,+
loc and (HM ,UM ,GM ,NM ) be Jacod’s decomposition of M w.r.t. the

semimartingale factor Y . Consider the process (ΠM ,ZM ,WM ,KM) defined by (4.5). We then have

that
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(i) the predictable process ZM ∈LP,2
loc (Y

c), WM ∈GP
loc(µ

Y ), KM ∈ Õ satisfy MP
µY (K

M |P̃) = 0 and
√

∑

0<s≤·K
M(s,∆Ys)21∆Ys 6=0 ∈AP,+

loc ;

(ii) the process NM ∈MP
loc satisfies [Y,NM ]P = 0 and {∆NM 6= 0} ⊂ {∆Y =0};

(iii) the scalar process ΠM is an exponentially special semimartingale admitting the decomposi-

tion eΠ
M

=MΠ +V Π, where MΠ ∈MP
loc and V Π ∈ VP ∩P is such that e−ΠM

− ∆V Π >−1, P -a.s.;

(iv) (ΠM ,ZM ,WM ,KM ,NM ) satisfies the following equation: for any 0≤ t≤ T <∞, P -a.s.

ΠM
t =ΠM

T +

∫ T

t

f(M,ZM
s ,W

M
s ,KM

s )ds−

∫ T

t

(ZM
s )⊤dY c

s (4.15)

−

∫ T

t

∫

WM
s (v)(µY − νY )(ds, dv)−

∫ T

t

∫

KM
s (v)µY (ds, dv)−

∫ T

t

dNM
s .

The random function f is given by

f(M,Z,W,K) :=
1

2
Z⊤cYZ + p sup

π∈C0∩C
ΦM

p (π)−
{

W (v)+ 1− eW (v)MP
µY

(

eK(v)
∣

∣P̃
)}

∗F Y . (4.16)

Before presenting the proof of Theorem 4.5, we collect few observations in the following remark:

Remark 4.6 Observe that (R,Y ) is QLC. We can then make the following claims:

(i) As a consequence of from (4.6), we have that the predictable process of finite variation V M

is continuous. Moreover, the dynamics of V M is given by

dV M
t =−p sup

π∈C0∩C
ΦM

p (πt)dt. (4.17)

(ii) Let M ∈ M̄P,+
loc , and (HM ,UM ,0,0) be the Jacod’s decomposition of M w.r.t. Y . A direct

implication from (iv) in Theorem 4.5 is that the process (ΠM ,ZM ,WM ) given in (4.5) satisfies the

followint integral equation: for 0≤ t≤ T <∞, P -a.s.

ΠM
t =ΠM

T +

∫ T

t

f(M,ZM
s ,W

M
s )ds−

∫ T

t

(ZM
s )⊤dY c

s −

∫ T

t

∫

WM
s (v)(µY − νY )(ds, dv). (4.18)

In the expression above, the function f is given by

f(M,Z,W ) =
1

2
Z⊤cYZ + p sup

π∈C0∩C

ΦM
p (π)−

{

W (v)+ 1− eW (v)
}

∗F Y . (4.19)

Proof of Theorem 4.5. Claim (ii) follows from Lemma 4.1. We next verify Claim (iv). Since

V M ∈ VP ∩P, and V M is continuous by (4.6), using Yor’s formula (see, e.g. Karatzas and Kardaras

(2007)) we obtain that E(M)E(VM ) = E(V M +M). An application of Itô’s formula yields

dΠM = dV M + dM −
1

2
d 〈M c,M c〉

P
+ d

∑

{ln(1+∆M)−∆M}. (4.20)
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It follows from (4.6) that dV M =−pΦM
p (π∗)dt=−p supπ∈C0∩C Φ

M
p (π)dt. Using (4.3), Eq. (4.20) can

be rewritten as:

dΠM =−

(

p sup
π∈C0∩C

ΦM
p (π)+

1

2
(HM )⊤cYHM

)

dt+HMdY c

+UM (v) ∗ d(µY − νY )+V G(v) ∗ dµY + dNM

+ {ln(1+UM (v)+GM(v))−UM(v)−GM(v)} ∗ dµY . (4.21)

Then, the predictable compensator of {ln(1+UM(v)+GM(v))−UM(v)−GM(v)}∗µY is given by

{WM (v)− UM (v)} ∗ νY , where we used the fact that MP
µY (G

M |P̃) = 0 and WM(v) is defined in

(4.5). It can be seen that WM ∈ P̃ . Using the above arguments, we can rewrite (4.21) as

dΠM =−

(

p sup
π∈C0∩C

ΦM
p (π)+

1

2
(HM )⊤cYHM −{WM (v)−UM(v)} ∗F Y

)

dt

+HMdY c +WM (v) ∗ d(µY − νY )+KM(v) ∗ dµY + dNM , (4.22)

where we recall the expression of KM(v) given in (4.5). Notice that WM (v) +KM(v) = ln(1 +

UM (v)+GM(v)), and hence UM (v) = eW
M (v)+KM (v)−1−GM(v). Observe that UM ∈ P̃ and WM ∈

P̃ . Applying the operator MP
µY (·|P̃) to both sides of the above equation, we obtain that

UM (v) = eW
M (v)MP

µY

(

eK
M (v)

∣

∣P̃
)

− 1. (4.23)

Hence, using (4.16) we deduce that

p sup
π∈C0∩C

ΦM
p (π)+

1

2
(HM )⊤cYHM −{WM (v)−UM(v)} ∗F Y

= p sup
π∈C0∩C

ΦM
p (π)+

1

2
(HM )⊤cYHM −

{

WM (v)− eW
M (v)MP

µY

(

eK
M (v)

∣

∣P̃
)

+1
}

∗F Y

= f(M,HM ,WM ,KM). (4.24)

Note that ZM =HM in (4.5). It then follows from (4.22) that

dΠM =−f(M,ZM ,WM ,KM)dt+ZMdY c +WM (v) ∗ d(µY − νY )+KM(v) ∗ dµY + dNM . (4.25)

This yields Claim (iv).

We next prove Claim (i). We first verify that WM ∈ P̃ also belongs to GP
loc(µ

Y ) (see also (4.5)).

Note that Y is QLC. It then follows from II.1.31 and II.1.32 in Jacod and Shiryaev (1987) that

C(WM) = |WM |2 ∗νY and C̄(WM) = |WM |∗νY . Observe thatM ∈ M̄P,+
loc and by Proposition I.4.17

in Jacod and Shiryaev (1987), up to a localization, it is enough to prove that WM ∈GP
loc(µ

Y ) both

for the case of M ∈MP
loc ∩HP,2 satisfying Θ2(ǫ) ∈ AP,+ for some ǫ ∈ [0,1), and for the case M ∈

MP
loc ∩AP satisfying Θ1(ǫ) ∈AP,+ for some ǫ ∈ [0,1). We first consider the case M ∈MP

loc ∩HP,2
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satisfying Θ2(ǫ)∈AP,+ for some ǫ∈ [0,1). It then follows from (4.4) and Jensen’s inequality applied

with the operator MP
µY (·|P̃) (see Problem 3.2.11 in Liptser and Shiryayev (1986)) that

EP
[

C(WM)∞
]

=EP
[

(|WM |2 ∗ ν)∞
]

=EP
[

(|WM |2 ∗µ)∞
]

=MP
µY

(

|WM |2
)

≤MP
µY

(

| ln(1+∆M)|2
)

=EP

[

∑

s>0

| ln(1+∆Ms)|
2
1∆Ms 6=0

]

(4.26)

=EP

[

∑

s>0

| ln(1+∆Ms)|
2
1∆Ms∈[−ǫ,∞)

]

+EP

[

∑

s>0

| ln(1+∆Ms)|
2
1∆Ms∈(−1,−ǫ)

]

.

Using the inequality x
1+x

≤ ln(1+x)≤ x for all x>−1, it holds that | ln(1+x)| ≤max{|x|, |x|

1+x
} for

all x>−1. Then, it holds that

EP

[

∑

s>0

| ln(1+∆Ms)|
2
1∆Ms∈[−ǫ,∞)

]

≤EP

[

∑

s>0

max

{

|∆Ms|
2,

|∆Ms|
2

(1+∆Ms)2

}

1∆Ms∈[−ǫ,∞)

]

≤EP

[

∑

s>0

|∆Ms|
2

]

+EP

[

∑

s>0

|∆Ms|
2

(1+∆Ms)2
1∆Ms∈[−ǫ,∞)

]

≤

(

1+
1

(1− ǫ)2

)

EP

[

∑

s>0

|∆Ms|
2

]

≤

(

1+
1

(1− ǫ)2

)

EP [[M,M ]P∞]<+∞.

Moreover, it holds that

EP

[

∑

s>0

| ln(1+∆Ms)|
2
1∆Ms∈(−1,−ǫ)

]

≤EP

[

∑

s>0

|∆Ms|
2

]

+EP

[

∑

s>0

|∆Ms|
2

(1+∆Ms)2
1∆Ms∈(−1,−ǫ)

]

≤EP [[M,M ]P∞] +EP [Θ2
∞(ǫ)]<+∞.

Using (4.26), the above estimates imply that EP [C(WM)∞]<+∞, i.e., C(WM)∈AP,+ and hence

WM ∈GP
loc(µ

Y ) using Theorem II.1.33-(a) in Jacod and Shiryaev (1987). We next consider the case

of M ∈MP
loc ∩AP satisfying Θ1(ǫ)∈AP,+ for some ǫ∈ [0,1). By (4.4), we have that

EP
[

C̄(WM)∞
]

=EP
[

(|WM | ∗ ν)∞
]

=EP
[

(|WM | ∗µ)∞
]

=MP
µY

(

|WM |
)

≤MP
µY (| ln(1+∆M)|) (4.27)

=EP

[

∑

s>0

| ln(1+∆Ms)|1∆Ms∈[−ǫ,∞)

]

+EP

[

∑

s>0

| ln(1+∆Ms)|1∆Ms∈(−1,−ǫ)

]

.

First, we obtain that

EP

[

∑

s>0

| ln(1+∆Ms)|1∆Ms∈[−ǫ,∞)

]

≤EP

[

∑

s>0

|∆Ms|

]

+EP

[

∑

s>0

|∆Ms|

1+∆Ms

1∆Ms∈[−ǫ,∞)

]

≤
2− ǫ

1− ǫ
EP

[

∑

s>0

|∆Ms|

]

<+∞,
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and the following inequality also holds

EP

[

∑

s>0

| ln(1+∆Ms)|1∆Ms∈(−1,−ǫ)

]

≤EP

[

∑

s>0

|∆Ms|

]

+EP
[

Θ1
∞(ǫ)

]

<+∞.

The above estimates imply that EP
[

C̄(WM)∞
]

< +∞, i.e., C̄(WM) ∈ AP,+, and hence WM ∈

GP
loc(µ

Y ) using Theorem II.1.33-(b) in Jacod and Shiryaev (1987).

Recall the expression of KM(v) given in (4.5). It can be easily seen that MP
µY (K

M(v)|P̃) =

0, and it satisfies Claim (i), using similar estimates to the ones derived above. Next, recall the

definition ZM :=HM given in (4.5). Because HM ∈P, we obtain that ZM ∈P. Moreover, because

HM ∈LP,2
loc (Y

c), we deduce that ZM ∈LP,2
loc (Y

c). Using (4.5), we conclude that eΠ
M

= E(M)E(VM ).

Since V M ∈ VP ∩P, we conclude that [M,V M ]P =∆M ·V M =∆V M ·M =0 using (4.17) and (3.6)

in Liptser and Shiryayev (1986), page 119. The Yor’s formula yields eΠ
M

= E(V M +M). This leads

to the equality V Π = eΠ
M
− · V M , and hence e−ΠM

− ∆V Π = ∆V M = 0 > −1, P -a.s., by (4.17). This

verifies Claim (iii). �

The integral representation (4.18) w.r.t. the semimartingale Y is also related to the solution of a

forward HJB equation in an integrated semimartingale factor model. We explore such a connection

in Section 5.

5. Forward HJB Equation with Integrated Factor

We incorporate time-monotone performance processes in our semimartingale factor form by allow-

ing the forward performance process to depend on the sample path of the factor process Y via its

integral functional. More specifically, we consider a random field of the form:

Ut(x) =G

(

t, x,Yt,

∫ t

0

g(s,Ys)ds

)

, (t, x)∈R2
+. (5.1)

The factor function G(t, x, y, z) : [0,∞)× (0,∞)×Rd ×R→ R belongs to C1,2,2,1 and g : [0,∞)×

Rd →R is a Borel function. If the input function G(t, x, y, z) =U0(x)Γ(t, y, z) with U0(x) =
1
p
xpeD0

(D0 is an input which determines the initial forward preference), then Γ(t, y, z) is the solution to

a forward (partial integro-differential) HJB equation (see (5.3) below).

Unlike the classical HJB equation, the forward HJB equation (5.3) specifies the initial rather

than the terminal value, and needs to be solved forward in time. Therefore, it is an ill-posed (time-

reversed) HJB equation, and the classical theory of HJB equations is not applicable. We bypass this

difficulty by connecting the solution of the forward HJB equation (5.3) to the triplet of processes

(ΠM ,ZM ,WM ) analyzed in the previous section. We prove that solving the forward equation is

equivalent to constructing the process ΠM with representation (4.18) and satisfying the factor form

(5.1). We establish a closed-form factor representation of (ΠM ,ZM ,WM ) when the factor Y is a

special semimartingale (see Lemma 5.4 below).
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Throughout the section, we consider the predictable characteristics of R and Y admitting the

factor representation:

(B(ω),C(ω), ν(ω,dt, du))=

(
∫ ·

0

b(s,Ys(ω))ds,

∫ ·

0

c(s,Ys(ω))ds,F (t, Yt(ω), du)dt

)

(5.2)

(BY (ω),CY (ω), νY (ω,dt, dv)) =

(
∫ ·

0

bY (s,Ys(ω))ds,

∫ ·

0

cY (s,Ys(ω))ds,F
Y (t, Yt(ω), dv)dt

)

.

Here b(t, y) (bY (t, y)), c(t, y) (cY (t, y)), and F (t, y, du) (F Y (t, y, dv)) satisfy conditions (i) and (ii)

of Theorem III.2.32 in Jacod and Shiryaev (1987). We also set the portfolio constraint to be in a

factor form as Ct(ω) :=Ct(Yt−(ω))⊆Rn, where C : [0,∞)×Rm →B(Rn).

5.1. Forward HJB equations and connection to factor form of BSDEs

Recall the wealth process given in Section 2.1. It follows from Definition 2.2 and (5.1) that, if

Ut(x) =U0(x)Γ(t, Yt,
∫ t

0
g(Ys)ds) is a P -FIPP, then the pair of functions (Γ, g) satisfies the following

equation: for (t, y, z)∈ [0,∞)×Rd×R,

0 = ∂tΓ(t, y, z)+ ∂zΓ(t, y, z)g(t, y)+∇yΓ(t, y, z)
⊤bY (t, y)+

1

2
tr
[

∇2
yyΓ(t, y, z)c

Y (t, y)
]

+ p sup
π∈C0,t(y)∩Ct(y)

{

Γ(t, y, z)π⊤b(t, y)+
p− 1

2
Γ(t, y, z)π⊤c(t, y)π

+π⊤cRY (t, y)∇yΓ(t, y, z)+

∫

{

p−1(1+π⊤u)pΓ(t, y+ v, z)− p−1Γ(t, y, z)

−Γ(t, y, z)π⊤h(u)− p−1∇yΓ(t, y, z)
⊤hY (v)

}

F (t, y, du, dv)

}

, (5.3)

with initial value Γ(0, Y0,0) = 1. Here
∫ ·

0
cRY
s ds= (〈Rc,i, Y c,j〉)j=1,...,d

i=1,...,n, and we have used the nota-

tions: ∂t :=
∂
∂t
, ∂z :=

∂
∂z
, ∇y := (∂y1 , . . . , ∂yd)

⊤ and ∇2
yy := (∂2

yiyj
)i,j=1,...,d.

Next, we connect the solution of the forward equation (5.3) to the factor representation of ΠM

specified by (5.1). To this purpose, let M ∈ M̄P,+
loc be such that the Jacod’s representation of M

w.r.t. R and Y is respectively given by

(H(t, Yt−(ω)),Ξ(t, Yt−(ω), u),0,0), and (Λ(t, Yt−(ω)), e
θ(t,Yt−(ω),v) − 1,0,0).

The deterministic functions H(t, y), Ξ(t, y, u), Λ(t, y) and θ(t, y, v) are all Borel measurable. Then,

P -a.s.

M =H ·Rc +Ξ(u) ∗ (µ− ν) =Λ ·Y c + {eθ(v) − 1} ∗ (µY − νY ). (5.4)

The decomposition (5.4) implies the existence of a relation between Jacod’s representations of M

w.r.t. R and w.r.t. Y . We state this relation in the following lemma.

Lemma 5.1 We have H⊤cRY Λ=Λ⊤cY RH =H⊤cH =Λ⊤cYΛ, and Ξ(∆R) = eθ(∆Y ) − 1, P (dω)⊗

dt-a.s.
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The following main result connects the solution of the forward equation (5.3) satisfied by (Γ, g)

to the factor form of ΠM specified by (5.1). The proof is reported in the Appendix.

Theorem 5.2 Let M ∈ M̄P,+
loc be given as in (5.4). If the component ΠM in the integral representa-

tion (4.18) with initial value ΠM
0 = 0 admits a factor representation (i.e., there exist Borel functions

Π ∈ C1,2,1 and g̃ such that ΠM
t = Π(t, Yt,

∫ t

0
g̃(s,Ys)ds) for t≥ 0), then the forward HJB equation

(5.3) admits a classical solution (Γ(t, y, z), g(t, y))= (eΠ(t,y,z), g̃(t, y)) on (t, y, z) ∈ [0,∞)×Rd×R.

5.2. Factor representation of (ΠM ,ZM ,WM)

In this section, we establish the factor representation (5.1) for the triplet of processes

(ΠM ,ZM ,WM ) admitting the integral representation (4.18) when the function g is nonzero. We

provide a closed-form expression for g when Y is a special semimartingale factor.

The following lemma provides an explicit form for the integral representation (4.18) w.r.t. the

semimartingale factor:

Lemma 5.3 Let M ∈ M̄P,+
loc admit the Jacod’s decomposition in (5.4). Then, the triplet of processs

(ΠM ,ZM ,WM ) defined in (4.5) admits the representation

ΠM
t =

∫ t

0

Ψ(s,Ys)ds+

∫ t

0

Λ(s,Ys−)dY
c
s +

∫ t

0

∫

θ(Ys−, v)(µ
Y − νY )(ds, dv),

ZM
t =Λ(t, Yt−), WM

t (v) = θ(t, Yt−, v). (5.5)

For (t, y)∈ [0,∞)×Rd, we have defined

Ψ(t, y) :=−pϕ(t, y)−
1

2
Λ(t, y)⊤cY (t, y)Λ(t, y)−

∫

{eθ(t,y,v)− 1− θ(t, y, v)}F Y (t, y, dv), (5.6)

where the function ϕ(t, y) is given by

ϕ(t, y) := sup
π∈Ct(y)∩C0,t(y)

{

π⊤ (b(t, y)+ c(t, y)H(t, y))+
p− 1

2
π⊤c(t, y)π

+

∫

{p−1(1+π⊤u)p − p−1 −π⊤h(u)}F (t, y, du) (5.7)

+

∫

{p−1(1+π⊤u)p − p−1}{eθ(t,y,v) − 1}F (t, y, du, dv)

}

.

If the factor process Y is a special semimartingale, the process ΠM in (4.5) admits an integrated

semimartingale factor representation:

Lemma 5.4 Let σ ∈Rd and consider the local martingale M in (5.4) with Λ≡ σ and θ(v) = σ⊤v.

If Y is special, then the process (ΠM ,ZM ,WM) given in (4.5) admits the representation:

ΠM
t =

∫ t

0

Ψσ(s,Ys)ds+σ⊤(Yt −Y0), ZM = σ, WM(v) = σ⊤v. (5.8)
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For (t, y)∈ [0,∞)×Rd, we define

Ψσ(t, y) :=−pϕ(t, y)−
1

2
σ⊤cY (t, y)σ−σ⊤bY (t, y)−

∫

{eσ
⊤v − 1−σ⊤v}F Y (t, y, dv). (5.9)

The function ϕ(t, y) is given by (5.7). In addition, the function θ(v) = σ⊤v, and H satisfies the

relation given in Lemma 5.1 with Λ= σ.

Remark 5.5 Lemma 5.3 suggests the existence of a solution of the form (Π(t, y, z), g(t, y)) =

(Π̃(t, y) + z,Ψ(t, y)), where the function Ψ is given by (5.6). Using this solution structure,

Lemma A.3 in the Appendix may be restated as follows: under the conditions of Lemma 5.3, the

component ΠM of (4.18), with the additional constraint ΠM
0 = 0, admits a factor representation

(Π,Ψ) if and only if Π(t, y, z) = Π̃(t, y) + z and Π̃ is a classical solution of the forward equation:

for (t, y)∈ [0,∞)×Rd,

−Ψ(t, y) = ∂tΠ̃(t, y)+AY Π̃(t, y)+ f(t, y,∇yΠ̃(t, y), Π̃(t, y+ v)− Π̃(t, y)) (5.10)

with the initial condition Π̃(0, Y0) = 0. Moreover, Lemma 5.4 indicates the existence of an explicit

solution of the forward equation (A.12) when the local martingale M is given by (5.4), and the

factor process Y is a special semimartingale. The explicit solution of (A.12) is given by

(Π(t, y, z), g(t, y)) = (σ⊤(y−Y0)+ z,Ψσ(t, y)), (5.11)

where Ψσ is given by (5.9). It may be easily verified that Π̃(t, y) = σ⊤(y−Y0) is a classical solution

of (5.10) if Ψ is replaced by Ψσ.

Building on Remark 5.5, we revisit a Black-Scholes market with Itô diffusion factors of the form

(5.1) and nonzero g.

Example 5.1 In a one-dimensional continuous diffusion model, Nadtochiy and Zariphopoulou

(2014) characterize the solution to the forward Cauchy problem when the coefficients in the Itô

representation of Y are sufficiently smooth. Liang and Zariphopoulou (2017) consider a multi-

dimensional continuous diffusion model and account for portfolio constraints. They assume that

the return-factor process pair (R,Y ) follows the dynamics dRt = bR(Yt)dt+ σR(Yt)dBt and dYt =

bY (Yt)dt+σY dBt, where B is a d-dimensional Brownian motion, and the factor process Y is also

d-dimensional. They additionally require the covariance matrix σY (σY )⊤ to be positive definite,

and hence invertible. They prove that the solution component Π of their infinite horizon BSDE

admits a factor representation of the form Πt =G(Yt), for some function G :Rd →R that exhibits

at most linear growth. We next analyze the model by Liang and Zariphopoulou (2017) under the

factor form (5.1) but with a nonzero g. We show that this yields a family of P -FIPPs. Let σ̃ be
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an arbitrary Rd-valued column vector. Take the scalar local martingale M = σ̃⊤B. Then M is a

continuous P -martingale and E(M) is a P -martingale. Hence, dQσ̃ = E(M)dP defines a probability

measure Qσ̃, and Bσ̃
t :=Bt − σ̃t, t≥ 0, is a d-dimensional Brownian motion under Qσ̃. In the Itô

diffusion model discussed above, (4.18) reduces to

dΠσ̃ =−f(Z σ̃)dt+Z σ̃ · dY c, Y c = σYB, (5.12)

where the driver f is given by f(Z) = 1
2
|Z⊤σY |2 + p supπ∈C Φp(π;Y,Z), and

Φp(π;y,Z) = π⊤{bR(y)+σR(y)(σY )⊤Z}+
p− 1

2
π⊤σR(y)σR(y)⊤π. (5.13)

Since Y c = σYB by (5.12), we obtain the martingale representation (5.4) with H̃ =

σY [(σY )⊤σY ]−1σ̃. Moreover, the factor Y is an Itô diffusion process, and hence it is a QLC special

semimartingale. It follows from Lemma 5.4 that Πσ̃
t =Πσ̃(t, Yt,

∫ t

0
gσ̃(s,Ys)ds) for t≥ 0, and Πσ̃

0 =0

admits a factor representation:

Πσ̃(t, y, z) := H̃⊤(y−Y0)+ z, (5.14)

gσ̃(t, y) :=−p sup
π∈C

{

π⊤(bR(y)+σR(y)(σY )⊤H̃)+
p− 1

2
π⊤σR(y)σR(y)⊤π

}

−
1

2
|H̃⊤σY |2 − H̃⊤bY (y).

Assume σR(y) has full rank. Then σR(y)⊤C is also closed. The market price of risk is then given

by λ(y) := σR(y)⊤[σR(y)σR(y)⊤]−1bR(y), i.e., σR(y)λ(y) = bR(y). The optimal strategy πσ̃,∗ thus

satisfies that

σR(y)⊤πσ̃,∗ ∈PσR(y)⊤C

{

(1− p)−1(λ(y)+ σ̃)
}

. (5.15)

Here, for any nonempty closed subset K of Rn, PK{x} is defined as the projection that maps a vector

x∈Rn to the points in K with minimal distance from x. Define Gσ̃(t, x, y, z) :=U0(x)e
Πσ̃(t,y,z). By

Lemma 4.3, if Qσ̃ := E(pσR(Y )⊤πσ̃,∗ ·Bσ̃) is a Qσ̃-martingale, then

U σ̃
t (x) :=U0(x)e

Πσ̃
t =Gσ̃

(

t, x,Yt,

∫ t

0

gσ̃(s,Ys)ds

)

, t≥ 0 (5.16)

is a P -FIPP. The above representation of U σ̃ in terms of Gσ̃ gives a solution of the forward HJB

equation (5.3); see Theorem 5.2. Moreover, it can also be seen that the FIPP U σ̃ depends on the

vector σ̃. Hence, we have established a family of power FIPPs given by (U σ̃)σ̃∈Rd, that results in a

family of optimal strategies given by (πσ̃,∗)σ̃∈Rd if (Qσ̃)σ̃∈Rd is a family of Qσ̃-martingales.
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Appendix: Proofs of Auxiliary Results

This section collects the technical proofs of some important auxiliary results that are used to establish

theorems, propositions, and lemmas in the main body of the paper.

Proof of Lemma 3.1. We provide the proof for a general increasing and predictable process A= (At)t≥0

used in the representation of predictable characteristics for semimartingales. Then, the desired result follows

by taking At = t. An application of Itô formula yields L=L0E(N), where the process N =BD +Dc + CD

2
+

hD(v) ∗ (µD − νD)+ (ev − 1−hD(v)) ∗µD. Note that D is exponentially special by the assumption (AD)-(i)

or (ii). Then, we have that

ML =L0E(N)− ·
{

Dc +(ev − 1) ∗ (µD − νD)
}

,

V L =L0E(N)− ·

{

BD +
CD

2
+ (ev − 1− hD(v)) ∗ νD

}

. (A.1)

Note that ∆BD =
∫

hD(v)νD({·}, dv), so it follows from (A.1) that

∆V L =L0E(N)−

∫

{ev − 1}νD({·}, dv) =L0E(N)−

(
∫

evνD({·}, dv)− aD
)

, (A.2)

where aD :=
∫

νD({·}, dv). By Theorem 2.5.1 in Liptser and Shiryayev (1986), page 127, we have

M = (L− +∆V L)−1 ·ML =

{
∫

evνD({·}, dv)+ 1− aD
}−1

·
{

Dc +(ev − 1) ∗ (µD − νD)
}

,

and hence V = L−1
− · V L =BD + CD

2
+ {ev − 1− hD(v)} ∗ νD. Using the expression for M derived above, we

obtain that

∆M =

{
∫

evνD({·}, dv)+ 1− aD
}−1

(ev − 1) ∗ (µD − νD)({·}, dv)

=
(e∆D − 1)1∆D 6=0+ aD −

∫

evνD({·}, dv)
∫

evνD({·}, dv)+ 1− aD
.

Using (A.2), we get ∆V =
∫

evνD({·}, dv) − aD. Note that, it follows from Proposition II.2.9 in Jacod

and Shiryaev (1987) that aDt = ∆AtF
D
t (Rn

0 ). This yields that aD ≡ 0 when At = t for t ≥ 0 and hence
∫

evνD({·}, dv)≡ 0 when At = t for t≥ 0. From these, we conclude the lemma. �

Proof of Lemma 3.2. To prove Lemma 3.2, we first need an auxiliary result. For any T ∈ (0,∞), let TT

be the set of F-stopping times τ ≤ T . Then, we have the following equivalent characterization:

Lemma A.1 An adapted process ζ = (ζt)t≥0 is of class of (DL) under a probability measure Q if and only

if for any T ∈ (0,∞),

(i) supτ∈TT
EQ[|ζτ |]<+∞;

(ii) for any ε > 0, there is δ > 0 s.t. whenever Q(A)≤ δ with A ∈FT , we have

sup
{τ∈TT ; A∈Fτ}

EQ[|ζτ |1A]≤ ε.

Proof. We first assume that ζ = (ζt)t≥0 is of class of (DL) under Q. Then (i) follows immediately. On the

other hand, for any ε> 0, there exists δ > 0 s.t. whenever Q(A)≤ δ with A∈FT , we have that

EQ[|ζτ |1A] =EQ[|ζτ |1A∩{|ζτ |>λ}] +EQ[|ζτ |1A∩{|ζτ |≤λ}], ∀ λ> 0.
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Since (ζτ )τ∈TT
is U.I., there exists a sufficiently large λ > 0 s.t. supτ∈TT

EQ[|ζτ |1|ζτ |>λ] ≤ ε/2. Take

δ = ε/(2λ). It then holds that supτ∈TT
EQ[|ζτ |1A] = ε/2 + λQ(A) ≤ ε. This yields the inequality

sup{τ∈TT ; A∈Fτ}E
Q[|ζτ |1A]≤ supτ∈TT

EQ[|ζτ |1A]≤ ε, i.e., (ii) holds.

We next assume that (i) and (ii) hold. Let α := supτ∈TT
EQ[|ζτ |], and hence α ∈ [0,∞) by (i). Then there

exists δ > 0 s.t. for all τ̂ ∈ TT , Q(Aλ
τ̂ ) ≤ δ for λ ≥ α/δ. Here, we have set Aλ

τ̂ := {|ζτ̂ | > λ}. In particular,

τ̂ ∈ {τ ∈ TT ; A
λ
τ̂ ∈Fτ}. Therefore, for sufficiently large λ≥α/δ, it holds from (ii) that

EQ

[

|ζτ̂ |1Aλ
τ̂

]

≤ sup
{τ∈TT ; Aλ

τ̂
∈Fτ}

EQ

[

|ζτ |1Aλ
τ̂

]

≤ ε. (A.3)

Since τ̂ ∈ TT and ε > 0 are arbitrary, it follows from (A.3) that (ζτ )τ∈TT
is U.I. under Q. This ends the proof.

�

We are now in a position to prove Lemma 3.2. For (i), by Definition 2.2, it is enough to verify that

π ∈ ΓQM

C if and only if π ∈ ΓP
C . By Definition 2.1, it is sufficient to show that Ut(xEt(π · R))−, t ≥ 0,

is of class (DL) under P if and only if UV
t (xEt(π · R))−, t ≥ 0, is of class (DL) under QM . For nota-

tional convenience, set ζt := UV
t (xEt(π ·R))− and hence Ut(xEt(π ·R))− = Et(M)ζt because Et(M)> 0. We

first assume that Et(M)ζt, t ≥ 0, is of class (DL) under P . Then, it follows from Lemma A.1 that (i)

supτ∈TT
EP [Eτ (M)ζτ ]<+∞, and (ii) for any ε > 0, there exists δ > 0 s.t. whenever P (A)≤ δ with A∈FT , it

holds that sup{τ∈TT ; A∈Fτ}
EP [Eτ (M)ζτ1A]≤ ε. By (3.6), we obtain supτ∈TT

EQM

[ζτ ]<+∞. Since QM ∼ P

and P (A) ≤ δ for A ∈ FT , there exists δ̂ > 0 s.t. QM(A) = EP [ET (M)1A] ≤ δ̂. By (ii) and (3.6), we also

have that sup{τ∈TT ; A∈Fτ}E
QM

[ζτ1A]≤ ε. This shows that ζ = (ζt)t≥0 is of class (DL) under QM using again

Lemma A.1. Similarly, we can verify that if ζt, t≥ 0, is of class (DL) under QM , then Et(M)ζt, t≥ 0, is of

class (DL) under P .

We next prove (ii). Let us assume that the random field UV defined by (3.5) is a QM -FIPP with optimal

trading strategy π∗ ∈ ΓQM

C . It can be easily seen that x→Ut(x) :=U0(x)Et(M)Et(V ) is concave and increas-

ing because U0(x) =
eD0

p
xp for x > 0. It follows from Definition 2.2 with Q = QM that, for any π ∈ ΓQM

C ,

UV (Xπ,x) = U0(X
π,x)E(V ) is a QM -supermartingale. This yields EQM

[UV
t (Xπ,x

t )|Fs] ≤ UV
s (Xπ,x

s ) for any

0≤ s < t <∞. In view of (3.6) and using Eq. (3.9) from Chapter III of Jacod and Shiryaev (1987), page 168,

it follows that EQM

[UV
t (Xπ,x

t )|Fs] =EP [Ut(X
π,x
t )|Fs]/Es(M) becauseM ∈MP,+

loc . Hence, EP [Ut(X
π,x
t )|Fs]≤

Es(M)UV
s (Xπ,x

s ) = Us(X
π,x
s ), P -a.s. by using (3.4). Together with (i), this implies that, for any π ∈ ΓP

C ,

U(Xπ,x) is a P -supermartingale. Moreover, it follows from (i) that π∗ is also admissible under P , i.e., π∗ ∈ ΓP
C ,

and UV (Xπ∗,x) is a QM -martingale. Therefore, EQM

[UV
t (Xπ∗,x

t )|Fs] =UV
s (Xπ∗,x

s ) for all 0≤ s < t <∞. More-

over, by (3.4) and (3.6), we have that U(Xπ∗,x) is a P -martingale. Hence, we have proven that U defined by

(3.4) is a P -FIPP with optimal trading strategy π∗ ∈ ΓP
C .

In the sequel, assume that the random field U defined by (3.4) is a P -FIPP with optimal trading strategy

π∗ ∈ ΓP
C . It follows from Definition 2.2 with Q=P that, for any π ∈ ΓQM

C , U(Xπ,x) = Et(M)UV (Xπ,x) is a P -

supermartingale. This yields the inequality EP [Et(M)UV
t (Xπ,x

t )|Fs]≤ Es(M)UV
s (Xπ,x

s ) for all 0≤ s < t <∞.

Using (3.6), we obtain EP [Et(M)UV
t (Xπ,x

t )|Fs]/Es(M) =EQM

[UV
t (Xπ,x

t )|Fs]. Together with (i), this implies

that UV (Xπ,x) is a QM -supermartingale for all π ∈ ΓQM

C . Similarly, we can verify from (i) that π∗ ∈ ΓQM

C ,
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and UV (Xπ∗,x) is a QM -martingale. This shows that the random field UV defined by (3.5) is a QM -FIPP

with optimal trading strategy π∗ ∈ ΓQM

C . This concludes the proof of Lemma 3.2. �

Proof of Lemma 3.4. We provide the proof for a general increasing and predictable process A= (At)t≥0

used in the representation of predictable characteristics for semimartingales. The desired result then fol-

lows by taking At = t. Observe that, for any π ∈ ΓQM

C , it holds that UV
t (Xπ,x

t ) = U0(x)Et(V )Et(π · R)p =

U0(x)Et(V )Et(N(π)), where the stochastic logarithm N(π) is given by

N(π) := pπ ·R+
p(p− 1)

2
π⊤Cπ+ {(1+ π⊤u)p − 1− pπ⊤u} ∗µ. (A.4)

Observe that V ∈VQM

∩P . Then, using (3.6) in Liptser and Shiryayev (1986), page 119, we have

[V,N(π)]Q
M

=∆N(π) ·V =∆V ·N(π). (A.5)

From the Yor’s formula, it follows that

UV (Xπ,x) =U0(x)E(V +N(π)+ [V,N(π)]Q
M

) =U0(x)E(V +(1+∆V ) ·N(π)). (A.6)

By Definition 2.2, for any π ∈ ΓQM

C and x ∈R+, U
V (Xπ,x) is aQM -supermartingale, and there exists π∗ ∈ ΓQM

C

such that UV (Xπ∗,x) is a QM -martingale. By (A.6), for any π ∈ ΓQM

C , p−1{V + (1 +∆V ) ·N(π)} is a local

QM -supermartingale and p−1{V +(1+∆V ) ·N(π∗)} is a local QM -martingale. As QM ∼ P , by Lemma 3.1,

QM(dω)⊗ dAt-a.s.

1+∆V =1− aD +

∫

evνD({·}, dv). (A.7)

For π ∈ ΓQM

C and (t, u,ω)∈ [0,∞)×Rn ×Ω, define

Hπ
t (ω) :=

(

1− aDt (ω)+

∫

evνD(ω,{t}, dv)

)

πt(ω);

W π
t (ω,u) :=

(

1− aDt (ω)+

∫

evνD(ω,{t}, dv)

)

{p−1(1+ πt(ω)
⊤u)p − p−1}. (A.8)

Using (A.4) together with (3.8), we deduce that, for any π ∈ ΓQM

C ,

p−1{V +(1+∆V ) ·N(π)}= p−1V0 + p−1 dV

dA
·A+ [(1+∆V )ΦM

p (π)] ·A

+Hπ ·RM,c +W π ∗ (µ− νM). (A.9)

It follows from (A.7) that, for all π ∈ ΓQM

C , Hπ ∈ LQM ,2
loc (RM,c), W π ∈GQM

loc (µ) and |p−1(1 + π⊤u)p − p−1 −

π⊤h(u)| ∗ νM ∈AQM ,+
loc . Moreover, it holds that, QM(dω)⊗ dAt-a.s.

p−1 dV

dA
+(1+∆V )ΦM

p (π∗) = 0, sup
π∈C

QM

0
∩C

ΦM
p (π) = ΦM

p (π∗). (A.10)

Note that, by (A.8), we have Hπ = π andW π = p−1(1+πt(ω)
⊤u)p−p−1 when At = t. Then, by taking At = t,

Eq. (3.7) follows from (A.10), (A.7) and (3.3). Thus, we complete the proof of the lemma. �

Proof of Lemma 3.6. (i) For π ∈ {y ∈Rn; FM(Λ−(y)) = 0}, note that {u∈Rn
0 ; π

⊤u+λ< 0} ↑Λ−(π) as

λ ↓ 0. This implies that FM({u ∈Rn
0 ; π

⊤u+λ< 0}) = 0 for all λ> 0. Thus λ−1π ∈C0 for all λ> 0. In view

of (3.22), we have

λψ(λ−1π) =−π⊤bM −
p− 1

2
λ−1π⊤cπ−{p−1λ1−p(λ+ π⊤u)p −λp−1− π⊤h(u)} ∗FM ,
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for all λ> 0. Then, from Corollary 8.5.2 in Rockafellar (1970), it follows that ψ0+(π) = limλ↓0 λψ(λ
−1π) and

this gives (3.25). For π ∈ {y ∈Rn; FM (Λ−(y))> 0}, because {u∈ Rn
0 ; π

⊤u+ λ < 0} ↑ Λ−(π) as λ ↓ 0, there

exists a constant λ0 > 0 such that for all positive λ≤ λ0, it holds that F
M({u∈Rn

0 ; π
⊤u+λ< 0})> 0. This

implies that λ−1π /∈C0 for all positive λ≤ λ0. By the definition of ψ(π) in (3.22), we have that λψ(λ−1π) =

+∞ for all positive λ≤ λ0. Hence ψ0
+(π) = limλ↓0 λψ(λ

−1π) =+∞. The proof of (ii) is similar to that of (i)

and hence we omit it. (iii) It follows in a straightforward manner from previous arguments that the recession

cone of ψ is given by {π ∈ Rn; ψ0+(π)≤ 0}. (iv) The direction of the vectors in the recession cone of ψ is

the direction of recession of ψ. The constancy space of ψ is given by {π ∈Rn; ψ0+(π)≤ 0, ψ0+(−π)≤ 0}.

It thus holds that {π ∈Rn; ψ0+(π)≤ 0, ψ0+(−π)≤ 0}=NQM

. �

Lemma A.2 (Nutz (2012a), Appendix A) Let Assumption (AF ) hold. Then, the following statements

hold:

(i) If p∈ (0,1), IM(π) defined by (3.21) is finite and continuous on C0;

(ii) If p < 0, IM1 (π) defined in (3.21) is finite and continuous on C0, and IM2 (π) defined in (3.21) is finite

on ∪λ∈[0,1)λC0;

(iii) Under (AC), any optimal strategy π∗ ∈ argmax
π∈C∩C0

ΦM
p (π) and is unique, modulo NQM

.

Proof of Lemma 5.1. We provide the proof for a general increasing and predictable process A= (At)t≥0

used in the representation of predictable characteristics for semimartingales. Then, the desired result follows

by taking At = t. It follows from (5.4) that

∆M =Ξ(∆R)−Ξ(u) ∗ ν({·}, du) = eθ(∆Y ) − 1−{eθ(v)− 1} ∗ νY ({·}, dv).

Hence, the second identity follows from the assumption that (R,Y ) is QLC (if At = t, then it is automatically

satisfied). We next prove the first identity. Applying (5.4) again, we obtain

M =
1

2
(H ·Rc +Λ ·Y c)+

1

2

(

Ξ(u) ∗ (µ− ν)+ {eθ(v)− 1} ∗ (µY − νY )
)

.

Consequently, we obtain that

〈M c,M c〉P =
1

4
〈H ·Rc +Λ ·Y c,H ·Rc +Λ ·Y c〉P =H⊤cH ·A=Λ⊤cY Λ ·A. (A.11)

Moreover, it holds that

1

4
〈H ·Rc +Λ ·Y c,H ·Rc +Λ ·Y c〉P =

1

4

(

H⊤cH +Λ⊤cY Λ+H⊤cRY Λ+Λ⊤cY RH
)

·A

=
1

2

(

H⊤cH +H⊤cRY Λ
)

·A,

where we use the fact that H⊤cRY Λ = Λ⊤cY RH . Then, (A.11) implies that 1
2
(H⊤cH + H⊤cRY Λ) · A =

H⊤cH ·A, and hence H⊤cRY Λ ·A=H⊤cH ·A. The proof then follows by taking At = t for t≥ 0. �

In order to prove Theorem 5.2, we need the following auxiliary result.

Lemma A.3 The following statements hold:
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(i) Let (ΠM , ZM ,WM) satisfy the integral representation (4.18) with initial value ΠM
0 = 0. If there exists

a pair of functions (Π, g) with Π∈C1,2,1 and g being a Borel function, such that ΠM
t =Π(t, Yt,

∫ t

0
g(s, Ys)ds),

then (Π, g) is a classical solution of the following forward equation: Π(0, Y0,0)= 0, and for (t, y, z)∈ [0,∞)×

Rd ×R,

0 = ∂tΠ(t, y, z)+AYΠ(t, y, z)+ g(t, y)∂zΠ(t, y, z)+ f(t, y,∇yΠ(t, y, z),Π(t, y+ v, z)−Π(t, y, z)). (A.12)

The function f in (4.18) is given by

f(t, y,Z,W )=
1

2
Z⊤cY (t, y)Z + pϕ(t, y;Z,W )−{W (v)+ 1− eW(v)} ∗F Y (t, y), (A.13)

where

ϕ(t, y;Z,W ) := sup
π∈Ct(y)∩C0,t(y)

{

π⊤
(

b(t, y)+ cRY (t, y)Z
)

+
p− 1

2
π⊤c(t, y)π (A.14)

+

∫

{p−1(1+ π⊤u)p − p−1− π⊤h(u)}F (t, y, du)+

∫

{p−1(1+ π⊤u)p − p−1}{eW(v)− 1}F (t, y, du, dv)

}

.

The integral-differential operator AY is defined as:

AY Π(t, y, z) :=∇yΠ(t, y, z)
⊤bY (t, y)+

1

2
tr[∇2

yyΠ(t, y, z)c
Y (t, y)]

+ {Π(t, y+ v, z)−Π(t, y, z)−∇yΠ(t, y, z)
⊤hY (v)} ∗F Y (t, y). (A.15)

(ii) Assume the pair of functions (Π, g), where Π ∈ C1,2,1 and g is a Borel function, satisfy the forward

equation (A.12) with initial condition Π(0, Y0,0) = 0. Then, (ΠM , ZM ,WM) with integral representation

(4.18) admits a factor representation with initial value ΠM
0 =0.

Proof. (i) Suppose first that ΠM
t =Π(t, Yt,

∫ t

0
g(s, Ys)ds) for t≥ 0, i.e., ΠM has a factor representation. Let

Yt :=
∫ t

0
g(s, Ys)ds for t≥ 0. Then, an application of Itô formula yields that

dΠM =
(

∂tΠ(Y−,Y−)+AY Π(Y−,Y−)+ g(Y−)∂zΠ(Y−,Y−)
)

dt+∇yΠ(Y−,Y−)dY
c

+ {Π(Y− + v,Y−)−Π(Y−,Y−)} ∗ d(µ
Y − νY ). (A.16)

Recall that (ΠM , ZM ,WM) satisfies the integral representation (4.18), i.e., dΠM =−f(Y−, Z
M ,WM)dt+ZM ·

dY c +WM ∗ d(µY − νY ). Then, it holds that ZM =∇yΠ(Y−,Y−), W
M(v) =Π(Y− + v,Y−)−Π(Y−,Y−), and

−f(Y−, Z
M ,WM) = ∂tΠ(Y−,Y−)+AY Π(Y−,Y−)+ g(Y−)∂zΠ(Y−,Y−). (A.17)

Recall that supπ∈C∩C0
ΦM (π) =ϕ(Y−), where the function ϕ(t, y) is given by (5.7). It follows from Lemma 5.1

that the function ϕ(t, y) can be rewritten as:

ϕ(t, y;Λ, θ) = sup
π∈Ct(y)∩C0,t(y)

{

π⊤
(

b(t, y)+ cRY (t, y)Λ(t, y)
)

+
p− 1

2
π⊤c(t, y)π

+

∫

{p−1(1+ π⊤u)p − p−1− π⊤h(u)}F (t, y, du)+

∫

{p−1(1+ π⊤u)p − p−1}{eθ(t,y,v)− 1}F(t, y, du, dv)

}

.

By Lemma 5.3, the component (ZM ,WM) in (4.18) is given by ZM = Λ and WM(v) = θ(v). Hence, ZM =

Λ=∇yΠ and WM(v) = θ(Y−, v) =Π(Y− + v,Y−)−Π(Y−,Y−). Recall that the driver f of (4.18) is given by
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(4.19). Then, f(Y−, Z
M ,WM) = 1

2
(ZM)⊤cYZM + pϕ(Y−, Z

M ,WM)−{WM(v) + 1− eW
M (v)} ∗F Y . Plugging

the above expression into (A.17), we obtain the forward PDE (A.12).

(ii) Suppose that (Π, g) is a classical solution of the forward equation (A.12). Then, Eq. (A.16) reduces to

dΠ(Y,Y) =−f(Y−,∇yΠ(Y−,Y−),Π(Y− + v,Y−)−Π(Y−,Y−))dt+∇yΠ(Y−,Y−)dY
c

+ {Π(Y− + v,Y−)−Π(Y−,Y−)} ∗ d(µ
Y − νY ).

Using the above representation, a solution of (4.18) is of the form: ΠM =Π(Y,Y), ZM =∇yΠ(Y−,Y−), and

WM(v) =Π(Y− + v,Y−)−Π(Y−,Y−). Hence, (Π
M , ZM ,WM) admits a factor representation. �

Proof of Theorem 5.2. By applying the Cole-Hopf transform to (5.3) given by Γ(t, y, z) = eL(t,y,z) and

we have that, for (t, y, z)∈ [0,∞)×Rd ×R,

0 = ∂tL(t, y, z)+ ∂zL(t, y, z)g(t, y)+∇yL(t, y, z)
⊤bY (t, y)+

1

2
tr[∇2

yyL(t, y, z)c
Y (t, y)]

+
1

2
∇yL(t, y, z)

⊤cY (t, y)∇yL(t, y, z)+ p sup
π∈Ct(y)∩C0,t(y)

{

π⊤
(

b(t, y)+ cRY (t, y)∇yL(t, y, z)
)

+
p− 1

2
π⊤c(t, y)π

+ {p−1(1+ π⊤u)peL(t,y+v,z)−L(t,y,z)− p−1− π⊤h(u)− p−1∇yL(t, y, z)
⊤hY (v)} ∗F (t, y)

}

. (A.18)

We rewrite the terms in the last line of (A.18) as:

{p−1(1+ π⊤u)peL(t,y+v,z)−L(t,y,z)− p−1− π⊤h(u)− p−1∇yL(t, y, z)
⊤hY (v)} ∗F (t, y)

= {(p−1(1+ π⊤u)p − p−1)(eL(t,y+v,z)−L(t,y,z)− 1)} ∗F(t, y)+ {p−1(1+ π⊤u)p − p−1− π⊤h(u)} ∗F (t, y)

+ p−1{eL(t,y+v,z)−L(t,y,z)− 1−∇yL(t, y, z)
⊤hY (v)} ∗F Y (t, y).

Then (A.18) is reduced to

0 = ∂tL(t, y, z)+ ∂zL(t, y, z)g(t, y)+AYL(t, y, z)+
1

2
∇yL(t, y, z)

⊤cY (t, y)∇yL(t, y, z)

+ {eL(t,y+v,z)−L(t,y,z)− 1− (L(t, y+ v, z)−L(t, y, z))} ∗F Y (t, y)

+ p sup
π∈Ct(y)∩C0,t(y)

{

π⊤(b(t, y)+ cRY (t, y)∇yL(t, y, z))+
p− 1

2
π⊤c(t, y)π (A.19)

+ {p−1(1+ π⊤u)p − p−1− π⊤h(u)} ∗F (t, y)+ {(p−1(1+ π⊤u)p − p−1)(eL(t,y+v,z)−L(t,y,z)− 1)} ∗F(t, y)

}

.

Recall the integral-differential operator AY defined by (A.15). Using the expression of the function f given

by (A.13) in Lemma A.3, it follows from (A.19) that

0 = ∂tL(t, y, z)+ ∂zL(t, y, z)g(t, y)+AYL(t, y, z)+ f(t, y,∇yL(t, y, z), L(t, y+ v, z)−L(t, y, z)).

Using Lemma A.3 again, (Π, g̃) satisfies the above equation. Then (Γ, g) = (eΠ, g̃) is a solution of the forward

HJB equation (5.3). This completes the proof of the theorem. �

Proof of Lemma 5.3. For the local martingale M given in (5.4), Theorem 4.5 guarantees that

(ΠM , ZM ,WM) with the integral representation (4.18) given by (4.5) admits the form:

ΠM =−p

∫ ·

0

sup
π∈Cs(y)∩C0,s(y)

ΦM
p (π)ds+M −

1

2
〈M c,M c〉P −{eθ(Y−

,v) − 1− θ(Y−, v)} ∗µ
Y ,

ZM =Λ(Y−), WM (v) = θ(Y−, v).
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We next compute
∫ ·

0
supπ∈Cs(y)∩C0,s(y)

ΦM
p (π)ds. Note that

∫ ·

0
supπ∈Cs(y)∩C0,s(y)

ΦM
p (π)ds=

∫ ·

0
ϕ̃(Ys)ds, where

ϕ̃(t, y) = sup
π∈Ct(y)∩C0,t(y)

{

π⊤ (b(t, y)+ c(t, y)H(t, y))+
p− 1

2
π⊤c(t, y)π (A.20)

+

∫

{p−1(1+ π⊤u)p − p−1− π⊤h(u)}F (t, y, du)+

∫

{p−1(1+ π⊤u)p − p−1}Ξ(t, y, u)F (t, y, du)

}

,

for (t, y)∈ [0,∞)×Rd. Using the first identity in Lemma 5.1, we obtain that

{p−1(1+ π⊤u)p − p−1}Ξ(u) ∗µ=
∑

{p−1(1+ π⊤∆R)p − p−1}Ξ(∆R)

=
∑

{p−1(1+ π⊤∆R)p − p−1}{eθ(∆Y ) − 1}

= {p−1(1+ π⊤u)p − p−1}{eθ(v)− 1} ∗µ.

By taking the dual predictable projection on both sides of the above equality, we conclude that

{p−1(1+ π⊤u)p − p−1}Ξ(u) ∗F = {p−1(1+ π⊤u)p − p−1}{eθ(v)− 1} ∗F.

By (A.20), we deduce that ϕ̃(t, y) = ϕ(t, y). Then, the relation (5.5) follows from (5.4). �

Proof of Lemma 5.4. Since the factor Y is a special semimartingale, it admits the canonical representation

Y = Y0 +BY + Y c + v ∗ (µY − νY ). (A.21)

If Λ≡ σ and θ(t, y, v) = σ⊤v, it follows from (A.21) that

Λ ·Y c + θ(v) ∗ (µY − νY ) = σ⊤{Y c + v ∗ (µY − νY )}= σ⊤

(

Y − Y0 −

∫ ·

0

bYs ds

)

.

Plugging the equality above into (5.5), we obtain (5.8). �
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Jacod J (1979) Calcul Stochastique et Problèmes de Martingales (Springer-Verlag, New York).

Jacod J, Shiryaev A (1987) Limit Theorems for Stochastic Processes (Springer-Verlag, New York).
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