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Abstract
We study the existence of approximate pure Nash equilibria (α-PNE) in weighted atomic conges-
tion games with polynomial cost functions of maximum degree d. Previously it was known that
d-approximate equilibria always exist, while nonexistence was established only for small constants,
namely for 1.153-PNE. We improve significantly upon this gap, proving that such games in general
do not have Θ̃(

√
d)-approximate PNE, which provides the first super-constant lower bound.

Furthermore, we provide a black-box gap-introducing method of combining such nonexistence
results with a specific circuit gadget, in order to derive NP-completeness of the decision version
of the problem. In particular, deploying this technique we are able to show that deciding whether
a weighted congestion game has an Õ(

√
d)-PNE is NP-complete. Previous hardness results were

known only for the special case of exact equilibria and arbitrary cost functions.
The circuit gadget is of independent interest and it allows us to also prove hardness for a variety

of problems related to the complexity of PNE in congestion games. For example, we demonstrate
that the question of existence of α-PNE in which a certain set of players plays a specific strategy
profile is NP-hard for any α < 3d/2, even for unweighted congestion games.

Finally, we study the existence of approximate equilibria in weighted congestion games with
general (nondecreasing) costs, as a function of the number of players n. We show that n-PNE always
exist, matched by an almost tight nonexistence bound of Θ̃(n) which we can again transform into
an NP-completeness proof for the decision problem.
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1 Introduction

Congestion games constitute the standard framework to study settings where selfish players
compete over common resources. They are one of the most well-studied classes of games
within the field of algorithmic game theory [32, 27], covering a wide range of applications,
including, e.g., traffic routing and load balancing. In their most general form, each player
has her own weight and the latency on each resource is a nondecreasing function of the total
weight of players that occupy it. The cost of a player on a given outcome is just the total
latency that she is experiencing, summed over all the resources she is using.

The canonical approach to analysing such systems and predicting the behaviour of the
participants is the ubiquitous game-theoretic tool of equilibrium analysis. More specifically, we
are interested in the pure Nash equilibria (PNE) of those games; these are stable configurations
from which no player would benefit from unilaterally deviating. However, it is a well-known
fact that such desirable outcomes might not always exist, even in very simple weighted
congestion games. A natural response, especially from a computer science perspective, is to
relax the solution notion itself by considering approximate pure Nash equilibria (α-PNE);
these are states from which, even if a player could improve her cost by deviating, this
improvement could not be by more than a (multiplicative) factor of α ≥ 1. Allowing the
parameter α to grow sufficiently large, existence of α-PNE is restored. But how large does α
really need to be? And, perhaps more importantly from a computational perspective, how
hard is it to check whether a specific game has indeed an α-PNE?

1.1 Related Work
The origins of the systematic study of (atomic) congestion games can be traced back to the
influential work of Rosenthal [30, 31]. Although Rosenthal showed the existence of congestion
games without PNE, he also proved that unweighted congestion games always possess such
equilibria. His proof is based on a simple but ingenious potential function argument, which
up to this day is essentially still the only general tool for establishing existence of pure
equilibria.

In follow-up work [20, 26, 17], the nonexistence of PNE was demonstrated even for special
simple classes of (weighted) games, including network congestion games with quadratic cost
functions and games where the player weights are either 1 or 2. On the other hand, we know
that equilibria do exist for affine or exponential latencies [17, 28, 22], as well as for the class
of singleton1 games [16, 23]. Dunkel and Schulz [13] were able to extend the nonexistence
instance of Fotakis et al. [17] to a gadget in order to show that deciding whether a congestion
game with step cost functions has a PNE is a (strongly) NP-hard problem, via a reduction
from 3-Partition.

Regarding approximate equilibria, Hansknecht et al. [21] gave instances of very simple,
two-player polynomial congestion games that do not have α-PNE, for α ≈ 1.153. This
lower bound is achieved by numerically solving an optimization program, using polynomial

1 These are congestion games where the players can only occupy single resources.
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latencies of maximum degree d = 4. On the positive side, Caragiannis et al. [4] proved that
d!-PNE always exist; this upper bound on the existence of α-PNE was later improved to
α = d+ 1 [21, 9] and α = d [3].

1.2 Our Results and Techniques
After formalizing our model in Section 2, in Section 3 we show the nonexistence of Θ(

√
d

ln d )-
approximate equilibria for polynomial congestion games of degree d. This is the first
super-constant lower bound on the nonexistence of α-PNE, significantly improving upon the
previous constant of α ≈ 1.153 and reducing the gap with the currently best upper bound
of d. More specifically (Theorem 1), for any integer d we construct congestion games with
polynomial cost functions of maximum degree d (and nonnegative coefficients) that do not
have α-PNE, for any α < α(d) where α(d) is a function that grows as α(d) = Ω

(√
d

ln d

)
. To

derive this bound, we had to use a novel construction with a number of players growing
unboundedly as a function of d.

Next, in Section 4 we turn our attention to computational hardness constructions.
Starting from a Boolean circuit, we create a gadget that transfers hard instances of the
classic Circuit Satisfiability problem to (even unweighted) polynomial congestion games.
Our construction is inspired by the work of Skopalik and Vöcking [34], who used a similar
family of lockable circuit games in their PLS-hardness result. Using this gadget we can
immediately establish computational hardness for various computational questions of interest
involving congestion games (Theorem 3). For example, we show that deciding whether a
d-degree polynomial congestion game has an α-PNE in which a specific set of players play a
specific strategy profile is NP-hard, even up to exponentially-approximate equilibria; more
specifically, the hardness holds for any α < 3d/2. Our investigation of the hardness questions
presented in Theorem 3 (and later on in Corollary 7 as well) was inspired by some similar
results presented before by Conitzer and Sandholm [11] (and even earlier in [19]) for mixed
Nash equilibria in general (normal-form) games. To the best of our knowledge, our paper is
the first to study these questions for pure equilibria in the context of congestion games. It is
of interest to also note here that our hardness gadget is gap-introducing, in the sense that
the α-PNE and exact PNE of the game coincide.

In Section 5 we demonstrate how one can combine the hardness gadget of Section 4, in a
black-box way, with any nonexistence instance for α-PNE, in order to derive hardness for the
decision version of the existence of α-PNE (Lemma 4, Theorem 5). As a consequence, using the
previous Ω

(√
d

ln d

)
lower bound construction of Section 3, we can show that deciding whether

a (weighted) polynomial congestion has an α-PNE is NP-hard, for any α < α(d), where
α(d) = Ω

(√
d

ln d

)
(Corollary 6). Since our hardness is established via a rather transparent,

“master” reduction from Circuit Satisfiability, which in particular is parsimonious, one
can derive hardness for a family of related computation problems; for example, we show
that computing the number of α-approximate equilibria of a weighted polynomial congestion
game is #P-hard (Corollary 7).

In Section 6 we drop the assumption on polynomial cost functions, and study the existence
of approximate equilibria under arbitrary (nondecreasing) latencies as a function of the
number of players n. We prove that n-player congestion games always have n-approximate
PNE (Theorem 8). As a consequence, one cannot hope to derive super-constant nonexistence
lower bounds by using just simple instances with a fixed number of players (similar to, e.g.,
Hansknecht et al. [21]). In particular, this shows that the super-constant number of players
in our construction in Theorem 1 is necessary. Furthermore, we pair this positive result

ICALP 2020
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with an almost matching lower bound (Theorem 9): we give examples of n-player congestion
games (where latencies are simple step functions with a single breakpoint) that do not have
α-PNE for all α < α(n), where α(n) grows according to α(n) = Ω

(
n

lnn
)
. Finally, inspired

by our hardness construction for the polynomial case, we also give a new reduction that
establishes NP-hardness for deciding whether an α-PNE exists, for any α < α(n) = Ω

(
n

lnn
)
.

Notice that now the number of players n is part of the description of the game (i.e., part of
the input) as opposed to the maximum degree d for the polynomial case (which was assumed
to be fixed). On the other hand though, we have more flexibility on designing our gadget
latencies, since they can be arbitrary functions.

Concluding, we would like to elaborate on a couple of points. First, the reader would
have already noticed that in all our hardness results the (in)approximability parameter α
ranges freely within an entire interval of the form [1, α̃), where α̃ is a function of the degree d
(for polynomial congestion games) or of the number of players n; and that α, α̃ are not part
of the problem’s input. It is easy to see that these features only make our results stronger,
with respect to computational hardness, but also more robust. Secondly, although in this
introductory section all our hardness results were presented in terms of NP-hardness, they
immediately translate to NP-completeness under standard assumptions on the parameter α;
e.g., if α is rational (for a more detailed discussion of this, see also the end of Section 2).

Due to space constraints we had to either fully omit, or just give very short sketches of,
the proofs of our results. All proofs can be found in the full version of this paper [8].

2 Model and Notation

A (weighted, atomic) congestion game is defined by: a finite (nonempty) set of resources
E, each e ∈ E having a nondecreasing cost (or latency) function ce : R>0 −→ R≥0; and a
finite (nonempty) set of players N , |N | = n, each i ∈ N having a weight wi > 0 and a set
of strategies Si ⊆ 2E . If all players have the same weight, wi = 1 for all i ∈ N , the game is
called unweighted. A polynomial congestion game of degree d, for d a nonnegative integer, is
a congestion game such that all its cost functions are polynomials of degree at most d with
nonnegative coefficients.

A strategy profile (or outcome) s = (s1, s2, . . . , sn) is a collection of strategies, one for
each player, i.e. s ∈ S = S1 × S2 × · · · × Sn. Each strategy profile s induces a cost of
Ci(s) =

∑
e∈si

ce(xe(s)) to every player i ∈ N , where xe(s) =
∑
i:e∈si

wi is the induced load
on resource e. An outcome s will be called α-approximate (pure Nash) equilibrium (α-PNE),
where α ≥ 1, if no player can unilaterally improve her cost by more than a factor of α.
Formally:

Ci(s) ≤ α · Ci(s′i, s−i) for all i ∈ N and all s′i ∈ Si. (1)

Here we have used the standard game-theoretic notation of s−i to denote the vector of
strategies resulting from s if we remove its i-th coordinate; in that way, one can write
s = (si, s−i). Notice that for the special case of α = 1, (1) is equivalent to the classical
definition of pure Nash equilibria; for emphasis, we will sometimes refer to such 1-PNE as
exact equilibria.

If (1) does not hold, it means that player i could improve her cost by more than α by
moving from si to some other strategy s′i. We call such a move α-improving. Finally, strategy
si is said to be α-dominating for player i (with respect to a fixed profile s−i) if

Ci(s′i, s−i) > α · Ci(s) for all s′i 6= si. (2)
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In other words, if a strategy si is α-dominating, every move from some other strategy s′i to
si is α-improving. Notice that each player i can have at most one α-dominating strategy
(for s−i fixed). In our proofs, we will employ a gap-introducing technique by constructing
games with the property that, for any player i and any strategy profile s−i, there is always a
(unique) α-dominating strategy for player i. As a consequence, the sets of α-PNE and exact
PNE coincide.

Finally, for a positive integer n, we will use Φn to denote the unique positive solution
of equation (x + 1)n = xn+1. Then, Φn is strictly increasing with respect to n, with
Φ1 = φ ≈ 1.618 (golden ratio) and asymptotically Φn ∼ n

lnn (see [9, Lemma A.3]).

Computational Complexity

Most of the results in this paper involve complexity questions, regarding the existence
of (approximate) equilibria. Whenever we deal with such statements, we will implicitly
assume that the congestion game instances given as inputs to our problems can be succinctly
represented in the following way:

all player have rational weights;
the resource cost functions are “efficiently computable”; for polynomial latencies in
particular, we will assume that the coefficients are rationals; and for step functions we
assume that their values and breakpoints are rationals;
the strategy sets are given explicitly.2

There are also computational considerations to be made about the number α appearing
in the definition of α-PNE. For simplicity, throughout this paper we will assume that α is a
rational number. However, all our hardness results are still valid for any real α, while for our
completeness results one needs to assume that α is actually a polynomial-time computable
real. For more details we refer to the full version of our paper [8].

3 The Nonexistence Gadget

In this section we give examples of polynomial congestion games of degree d, that do not have
α(d)-approximate equilibria; α(d) grows as Ω

(√
d

ln d

)
. Fixing a degree d ≥ 2, we construct

a family of games Gd(n,k,w,β), specified by parameters n ∈ N, k ∈ {1, . . . , d}, w ∈ [0, 1], and
β ∈ [0, 1]. In Gd(n,k,w,β) there are n+ 1 players: a heavy player of weight 1 and n light players
1, . . . , n of equal weights w. There are 2(n+ 1) resources a0, a1, . . . , an, b0, b1, . . . , bn where
a0 and b0 have the same cost function c0 and all other resources a1, . . . , an, b1, . . . , bn have
the same cost function c1 given by

c0(x) = xk and c1(x) = βxd.

Each player has exactly two strategies, and the strategy sets are given by

S0 = {{a0, . . . , an}, {b0, . . . , bn}} and Si = {{a0, bi}, {b0, ai}} for i = 1, . . . , n.

The structure of the strategies is visualized in Figure 1.

2 Alternatively, we could have simply assumed succinct representability of the strategies. A prominent
such case is that of network congestion games, where each player’s strategies are all feasible paths
between two specific nodes of an underlying graph. Notice however that, since in this paper we are
proving hardness results, insisting on explicit representation only makes our results even stronger.

ICALP 2020



32:6 Existence and Complexity of Approximate Equilibria in Weighted Congestion Games

a0 a1 · · · ai · · · an

bn · · · bi · · · b1 b0

Figure 1 Strategies of the game Gd(n,k,w,β). Resources contained in the two ellipses of the same
colour correspond to the two strategies of a player. The strategies of the heavy player and light
players n and i are depicted in black, grey and light grey, respectively.

20 40 60 80 100

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

1.05

d

α
(d

)

Figure 2 Nonexistence of α(d)-PNE for weighted polynomial congestion games of degree d, as
given by (3) in Theorem 1, for d = 2, 3, . . . , 100. In particular, for small values of d, α(2) ≈ 1.054,
α(3) ≈ 1.107 and α(4) ≈ 1.153.

In the following theorem we give a lower bound on α, depending on parameters (n, k, w, β),
such that games Gd(n,k,w,β) do not admit an α-PNE. Maximizing this lower bound over all
games in the family, we obtain a general lower bound α(d) on the inapproximability for
polynomial congestion games of degree d (see (3) and its plot in Figure 2). Finally, choosing
specific values for the parameters (n, k, w, β), we prove that α(d) is asymptotically lower
bounded by Ω(

√
d

ln d ).

I Theorem 1. For any integer d ≥ 2, there exist (weighted) polynomial congestion games of
degree d that do not have α-approximate PNE for any α < α(d), where

α(d) = sup
n,k,w,β

min
{

1 + nβ(1 + w)d

(1 + nw)k + nβ
,

(1 + w)k + βwd

(nw)k + β(1 + w)d

}
(3)

s.t. n ∈ N, k ∈ {1, . . . , d}, w ∈ [0, 1], β ∈ [0, 1].

In particular, we have the asymptotics α(d) = Ω
(√

d
ln d

)
and the bound α(d) ≥

√
d

2 ln d , valid for
large enough d. A plot of the exact values of α(d) (given by (3)) for small degrees can be
found in Figure 2.

Interestingly, for the special case of d = 2, 3, 4, the values of α(d) (see Figure 2) yield
exactly the same lower bounds with Hansknecht et al. [21]. This is a direct consequence of
the fact that n = 1 turns out to be an optimal choice in (3) for d ≤ 4, corresponding to an



G. Christodoulou, M. Gairing, Y. Giannakopoulos, D. Poças, and C. Waldmann 32:7

g5
x1

g4
x2

g3 g2

g1

inputs C output

(a) valid circuit C.

g5
x1

1

g4
x2

1

g3 g2

1 g1

(b) canonical form of C.

1

x1

x2

g5

g4

g3 g2
g1

(c) directed acyclic graph.

Figure 3 Example of a valid circuit C (having both NOT and NAND gates), its canonical form
(having only NAND gates), and the directed acyclic graph corresponding to C.

instance with only n+1 = 2 players (which is the regime of the construction in [21]); however,
this is not the case for larger values of d, where more players are now needed in order to
derive the best possible value in (3). Furthermore, as we discussed also in Section 1.2, no
construction with only 2 players can result in bounds larger than 2 (Theorem 8).

4 The Hardness Gadget

In this section we construct an unweighted polynomial congestion game from a Boolean
circuit. In the α-PNE of this game the players emulate the computation of the circuit. This
gadget will be used in reductions from Circuit Satisfiability to show NP-hardness of
several problems related to the existence of approximate equilibria with some additional
properties. For example, deciding whether a congestion game has an α-PNE where a certain
set of players choose a specific strategy profile (Theorem 3).

Circuit Model

We consider Boolean circuits consisting of NOT gates and 2-input NAND gates only. We
assume that the two inputs to every NAND gate are different. Otherwise we replace the
NAND gate by a NOT gate, without changing the semantics of the circuit. We further
assume that every input bit is connected to exactly one gate and this gate is a NOT gate. See
Figure 3a for a valid circuit. In a valid circuit we replace every NOT gate by an equivalent
NAND gate, where one of the inputs is fixed to 1. See the replacement of gates g5, g4 and g2
in the example in Figure 3b. Thus, we look at circuits of 2-input NAND gates where both
inputs to a NAND gate are different and every input bit of the circuit is connected to exactly
one NAND gate where the other input is fixed to 1. A circuit of this form is said to be in
canonical form. For a circuit C and a vector x ∈ {0, 1}n we denote by C(x) the output of
the circuit on input x.

We model a circuit C in canonical form as a directed acyclic graph. The nodes of this
graph correspond to the input bits x1, . . . , xn, the gates g1, . . . , gK and a node 1 for all
fixed inputs. There is an arc from a gate g to a gate g′ if the output of g is input to
gate g′ and there are arcs from the fixed input and all input bits to the connected gates.
We index the gates in reverse topological order, so that all successors of a gate gk have a
smaller index and the output of gate g1 is the output of the circuit. Denote by δ+(v) the
set of the direct successors of node v. Then we have |δ+(xi)| = 1 for all input bits xi and
δ+(gk) ⊆ {gk′ | k′ < k} for every gate gk. See Figure 3 for an example of a valid circuit, its
canonical form and the corresponding directed acyclic graph.

ICALP 2020
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Translation to Congestion Game

Fix some integer d ≥ 1 and a parameter µ ≥ 1 + 2 · 3d+d/2. From a valid circuit in canonical
form with input bits x1, . . . , xn, gates g1, . . . , gK and the extra input fixed to 1, we construct
a polynomial congestion game Gdµ of degree d. There are n input players X1, . . . , Xn for
every input bit, a static player P for the input fixed to 1, and K gate players G1, . . . , GK
for the output bit of every gate. G1 is sometimes called output player as g1 corresponds to
the output C(x).

The idea is that every input and every gate player has a zero and a one strategy,
corresponding to the respective bit being 0 or 1. In every α-PNE we want the players to
emulate the computation of the circuit, i.e. the NAND semantics of the gates should be
respected. For every gate gk, we introduce two resources 0k and 1k. The zero (one) strategy
of a player consists of the 0k′ (1k′) resources of the direct successors in the directed acyclic
graph corresponding to the circuit and its own 0k (1k) resource (for gate players). The static
player has only one strategy playing all 1k resources of the gates where one input is fixed to
1: sP = {1k | gk ∈ δ+(1)}. Formally, we have

s0
Xi

=
{

0k | gk ∈ δ+(xi)
}
and s1

Xi
=
{

1k | gk ∈ δ+(xi)
}

for the zero and one strategy of an input player Xi. Recall that δ+(xi) is the set of direct
successors of xi, thus every strategy of an input player consists of exactly one resource. For
a gate player Gk we have the two strategies

s0
Gk

= {0k} ∪
{

0k′ | gk′ ∈ δ+(gk)
}
and s1

Gk
= {1k} ∪

{
1k′ | gk′ ∈ δ+(gk)

}
consisting of at most k resources each. Notice that all 3 players related to a gate gk (gate
player Gk and the two players corresponding to the input bits) are different and observe that
every resource 0k and 1k can be played by exactly those 3 players.

We define the cost functions of the resources using parameter µ. The cost functions for
resources 1k are given by c1k

and for resources 0k by c0k
, where

c1k
(x) = µkxd and c0k

(x) = λµkxd, with λ = 3d/2. (4)

Our construction here is inspired by the lockable circuit games of Skopalik and Vöcking [34].
The key technical differences are that our gadgets use polynomial cost functions (instead of
general cost functions) and only 2 resources per gate (instead of 3). Moreover, while in [34]
these games are used as part of a PLS-reduction from Circuit/FLIP, we are also interested
in constructing a gadget to be studied on its own, since this can give rise to additional results
of independent interest (see Theorem 3).

Properties of the Gadget

For a valid circuit C in canonical form consider the game Gdµ as defined above. We interpret
any strategy profile s of the input players as a bit vector x ∈ {0, 1}n by setting xi = 0 if
sXi

= s0
Xi

and xi = 1 otherwise. The gate players are said to follow the NAND semantics in
a strategy profile, if for every gate gk the following holds:

if both players corresponding to the input bits of gk play their one strategy, then the gate
player Gk plays her zero strategy;
if at least one of the players corresponding to the input bits of gk plays her zero strategy,
then the gate player Gk plays her one strategy.

We show that for the right choice of α, the set of α-PNE in Gdµ is the same as the set of all
strategy profiles where the gate players follow the NAND semantics.
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Define

ε(µ) = 3d+d/2

µ− 1 . (5)

From our choice of µ, we obtain 3d/2 − ε(µ) ≥ 3d/2 − 1
2 > 1. For any valid circuit C in

canonical form and a valid choice of µ the following lemma holds for Gdµ.

I Lemma 2. Let sX be any strategy profile for the input players X1, . . . , Xn and let x ∈
{0, 1}n be the bit vector represented by sX . For any µ ≥ 1 + 2 · 3d+d/2 and any 1 ≤ α <

3d/2−ε(µ), there is a unique α-approximate PNE3 in Gdµ where the input players play according
to sX . In particular, in this α-PNE the gate players follow the NAND semantics, and the
output player G1 plays according to C(x).

Proof sketch. We first fix the input players to the strategies given by sX and show that
then all gate players follow the NAND semantics (switching to the strategy corresponding to
the NAND of their input bits is an α-improving move). Secondly, we argue that the input
players have no incentive to change their strategy in any α-PNE where all gate players follow
the NAND semantics. Hence, every strategy profile for the input players can be extended to
an α-PNE in Gdµ that is uniquely defined by the NAND semantics. J

We are now ready to show our main result of this section; using the circuit game described
above, we show NP-hardness of deciding whether approximate equilibria with additional
properties exist.

I Theorem 3. The following problems are NP-hard, even for unweighted polynomial con-
gestion games of degree d ≥ 1, for all α ∈ [1, 3d/2) and all z > 0:

“Does there exist an α-approximate PNE in which a certain subset of players are playing
a specific strategy profile?”
“Does there exist an α-approximate PNE in which a certain resource is used by at least
one player?”
“Does there exist an α-approximate PNE in which a certain player has cost at most z?”

Proof sketch. We use reductions from the NP-hard problem Circuit Satisfiability. For
a circuit C we consider the game Gdµ as described above and focus on the output player G1.
Using Lemma 2 we get a one-to-one correspondence between satisfying assignments for C
and α-PNE in Gdµ where G1 plays her one strategy. J

5 Hardness of Existence

In this section we show that it is NP-hard to decide whether a polynomial congestion game
has an α-PNE. For this we use a black-box reduction: our hard instance is obtained by
combining any (weighted) polynomial congestion game G without α-PNE (i.e., the game
from Section 3) with the circuit gadget of the previous section. To achieve this, it would be
convenient to make some assumptions on the game G, which however do not influence the
existence or nonexistence of approximate equilibria.

3 Which, as a matter of fact, is actually also an exact PNE.
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Structural Properties of G

Without loss of generality, we assume that a weighted polynomial congestion game of degree
d has the following structural properties.

No player has an empty strategy. If, for some player i, ∅ ∈ Si, then this strategy would
be α-dominating for i. Removing i from the game description would not affect the
(non)existence of (approximate) equilibria4.
No player has zero weight. If a player i had zero weight, her strategy would not influence
the costs of the strategies of the other players. Again, removing i from the game description
would not affect the (non)existence of equilibria.
Each resource e has a monomial cost function with a strictly positive coefficient, i.e.
ce(x) = aex

ke where ae > 0 and ke ∈ {0, . . . , d}. If a resource had a more general cost
function ce(x) = ae,0 + ae,1x+ . . .+ ae,dx

d, we could split it into at most d+ 1 resources
with (positive) monomial costs, ce,0(x) = ae,0, ce,1(x) = ae,1x, . . . , ce,d(x) = ae,dx

d.
These monomial cost resources replace the original resource, appearing on every strategy
that included e.
No resource e has a constant cost function. If a resource e had a constant cost function
ce(x) = ae,0, we could replace it by new resources having monomial cost. For each player
i of weight wi, replace resource e by a resource ei with monomial cost cei

(x) = ae,0
wi
x, that

is used exclusively by player i on her strategies that originally had resource e. Note that
cei(wi) = ae,0, so that this modification does not change the player’s costs, neither has
an effect on the (non)existence of approximate equilibria. If a resource has cost function
constantly equal to zero, we can simply remove it from the description of the game.

For a game having the above properties, we define the (strictly positive) quantities

amin = min
e∈E

ae, W =
∑
i∈N

wi, cmax =
∑
e∈E

ce(W ). (6)

Note that cmax is an upper bound on the cost of any player on any strategy profile.

Rescaling of G

In our construction of the combined game we have to make sure that the weights of the
players in G are smaller than the weights of the players in the circuit gadget. We introduce
the following rescaling argument.

For any γ ∈ (0, 1] define the game G̃γ , where we rescale the player weights and resource
cost coefficients in G as

ãe = γd+1−keae, w̃i = γwi, c̃e(x) = ãex
ke . (7)

This changes the quantities in (6) for G̃γ to (recall that ke ≥ 1)

ãmin = min
e∈E

ãe = min
e∈E

γd+1−keae ≥ γd min
e∈E

ae = γdamin,

W̃ =
∑
i∈N

w̃i =
∑
i∈N

γwi = γW,

c̃max =
∑
e∈E

c̃e(W̃ ) =
∑
e∈E

ãe(γW )ke =
∑
e∈E

γd+1aeW
ke = γd+1

∑
e∈E

ce(W ) = γd+1cmax.

In G̃γ the player costs are all uniformly scaled as C̃i(s) = γd+1Ci(s), so that the Nash
dynamics and the (non)existence of equilibria are preserved.

4 By this we mean, if G has (resp. does not have) α-PNE, then G̃, obtained by removing player i from the
game, still has (resp. still does not have) α-PNE.
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i j

dummy

Figure 4 Combination of a circuit game (on the left) and a game without approximate equilibria
(on the right). Changes to the subgames are indicated by solid arrows. The new one strategy of G1

consists of 11 and all resources in G̃γ , while the zero strategy stays unchanged. The players of G̃γ
get a new strategy (the dummy resource), and keep their old strategies playing in G̃γ .

The next lemma formalizes the combination of both game gadgets and, furthermore,
establishes the gap-introduction in the equilibrium factor. Using it, we will derive our key
hardness tool of Theorem 5.

I Lemma 4. Fix any integer d ≥ 2 and rational α ≥ 1. Suppose there exists a weighted
polynomial congestion game G of degree d that does not have an α-approximate PNE. Then,
for any circuit C there exists a game G̃C with the following property: the sets of α-approximate
PNE and exact PNE of G̃C coincide and are in one-to-one correspondence with the set of
satisfying assignments of C. In particular, one of the following holds: either
1. C has a satisfying assignment, in which case G̃C has an exact PNE (and thus, also an

α-approximate PNE); or
2. C has no satisfying assignments, in which case G̃C has no α-approximate PNE (and thus,

also no exact PNE).

Proof. Let G be a congestion game as in the statement of the theorem having the above
mentioned structural properties. Recalling that weighted polynomial congestion games of
degree d have d-PNE [3], this implies that α < d < 3d/2. Fix some 0 < ε < 3d/2 − α and take
µ ≥ 1 + 3d+d/2

min{ε,1} ; in this way α < 3d/2 − ε ≤ 3d/2 − ε(µ).
Given a circuit C we construct the game G̃C as follows. We combine the game Gdµ whose

Nash dynamics model the NAND semantics of C, as described in Section 4, with the game
G̃γ obtained from G via the aforementioned rescaling. We choose γ ∈ (0, 1] sufficiently small
such that the following three inequalities hold for the quantities in (6) for G:

γW < 1, γ
∑
e∈E

ae <
µ

µ− 1

(
3
2

)d
, γα2 <

amin

cmax
. (8)

Thus, the set of players in G̃C corresponds to the (disjoint) union of the static, input and
gate players in Gdµ (which all have weights 1) and the players in G̃γ (with weights w̃i). We
also consider a new dummy resource with constant cost cdummy(x) = ãmin

α . Thus, the set of
resources corresponds to the (disjoint) union of the gate resources 0k, 1k in Gdµ, the resources
in G̃γ , and the dummy resource. We augment the strategy space of the players as follows:
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each input player or gate player of Gdµ that is not the output player G1 has the same
strategies as in Gdµ (i.e. either the zero or the one strategy);
the zero strategy of the output player G1 is the same as in Gdµ, but her one strategy is
augmented with every resource in G̃γ ; that is, s1

G1
= {11} ∪ E(G̃γ);

each player i in G̃γ keeps her original strategies as in G̃γ , and gets a new dummy strategy
si,dummy = {dummy}.

A graphical representation of the game G̃C can be seen in Figure 4.
To finish the proof, we need to show that every α-PNE of G̃C is an exact PNE and

corresponds to a satisfying assignment of C; and, conversely, that every satisfying assignment
of C gives rise to an exact PNE of G̃C (and thus, an α-PNE as well).

Suppose that s is an α-PNE of G̃C , and let sX denote the strategy profile restricted to
the input players of Gdµ. Then, as in the proof of Lemma 2, every gate player that is not the
output player must respect the NAND semantics, and this is an α-dominating strategy. For
the output player, either sX is a non-satisfying assignment, in which case the zero strategy
of G1 was α-dominating, and this remains α-dominating in the game G̃C (since only the cost
of the one strategy increased for the output player); or sX is a satisfying assignment. In the
second case, we now argue that the one strategy of G1 remains α-dominating. The cost of
the output player on the zero strategy is at least c01(2) = λµ2d, and the cost on the one
strategy is at most

c11(2)+
∑
e∈E

c̃e(1+γW ) = µ2d+
∑
e∈E

γd+1−keae(1+γW )ke < µ2d+γ
∑
e∈E

ae2d < µ2d+ µ

µ− 13d,

where we used the first and second bounds from (8). Thus, the ratio between the costs is at
least

λµ2d

µ2d + µ
µ−13d = λ

 1
1 + 1

µ−1
( 3

2
)d
 > 3d/2

(
1

1 + 1
µ−13d

)
> 3d/2 − ε(µ) > α.

Given that the gate players must follow the NAND semantics, the input players are also
locked to their strategies (i.e. they have no incentive to change) due to the proof of Lemma 2.
The only players left to consider are the players from G̃γ . First we show that, since s is an
α-PNE, the output player must be playing her one strategy. If this was not the case, then
each dummy strategy of a player in G̃γ is α-dominated by any other strategy: the dummy
strategy incurs a cost of ãmin

α ≥ γd amin
α , whereas any other strategy would give a cost of at

most c̃max = γd+1cmax (this is because the output player is not playing any of the resources
in G̃γ). The ratio between the costs is thus at least

γdamin

γd+1cmaxα
= amin

γcmaxα
> α.

Since the dummy strategies are α-dominated, the players in G̃γ must be playing on their
original sets of strategies. The only way for s to be an α-PNE would be if G had an α-PNE
to begin with, which yields a contradiction. Thus, the output player is playing the one
strategy (and hence, is present in every resource in G̃γ). In such a case, we can conclude
that each dummy strategy is now α-dominating. If a player i in G̃γ is not playing a dummy
strategy, she is playing at least one resource in G̃γ , say resource e. Her cost is at least
c̃e(1 + w̃i) = ãe(1 + w̃i)ke > ãe ≥ ãmin (the strict inequality holds since, by the structural
properties of our game, all of ãe, w̃i and ke are strictly positive quantities). On the other
hand, the cost of playing the dummy strategy is ãmin

α . Thus, the ratio between the costs is
greater than α.
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We have concluded that, if s is an α-PNE of G̃C , then sX corresponds to a satisfying
assignment of C, all the gate players are playing according to the NAND semantics, the output
player is playing the one strategy, and all players of G̃γ are playing the dummy strategies. In
this case, we also have observed that each player’s current strategy is α-dominating, so the
strategy profile is an exact PNE. To finish the proof, we need to argue that every satisfying
assignment gives rise to a unique α-PNE. Let sX be the strategy profile corresponding to this
assignment for the input players in Gdµ. Then, as before, there is one and exactly one α-PNE
s in G̃C that agrees with sX ; namely, each gate player follows the NAND semantics, the
output player plays the one strategy, and the players in G̃γ play the dummy strategies. J

By approximating all numbers occurring in the construction of Lemma 4 (weights,
coefficients, approximation factor) by rationals, we obtain a polynomial-time reduction from
Circuit Satisfiability, and thus the following theorem.

I Theorem 5. For any integer d ≥ 2 and rational α ≥ 1, suppose there exists a weighted
polynomial congestion game which does not have an α-approximate PNE. Then it is NP-
complete to decide whether (weighted) polynomial congestion games of degree d have an
α-approximate PNE.

Proof. Let d ≥ 2 and α ≥ 1. Let G be a weighted polynomial congestion game of degree
d that has no α-PNE; this means that for every strategy profile s there exists a player i
and a strategy s′i 6= si such that Ci(si, s−i) > α · Ci(s′i, s−i). Note that the functions Ci are
polynomials of degree d and hence they are continuous on the weights wi and the coefficients
ae appearing on the cost functions. Hence, any arbitrarily small perturbation of the wi, ae
does not change the sign of the above inequality. Thus, without loss of generality, we can
assume that all wi, ae are rational numbers.

Next, we consider the game G̃γ obtained from G by rescaling, as in the proof of Lemma 4.
Notice that the rescaling is done via the choice of a sufficiently small γ, according to (8),
and hence in particular we can take γ to be a sufficiently small rational. In this way, all
the player weights and coefficients in the cost of resources are rational numbers scaled by a
rational number and hence rationals.

Finally, we are able to provide the desired NP reduction from Circuit Satisfiability.
Given a Boolean circuit C ′ built with 2-input NAND gates, transform it into a valid circuit
C in canonical form. From C we can construct in polynomial time the game G̃C as described
in the proof of Lemma 4. The “circuit part”, i.e. the game Gdµ, is obtained in polynomial
time from C, as in the proof of Theorem 3; the description of the game G̃γ involves only
rational numbers, and hence the game can be represented by a constant number of bits (i.e.
independent of the circuit C). Similarly, the additional dummy strategy has a constant delay
of ãmin/α, and can be represented with a single rational number. Merging both Gdµ and G̃γ
into a single game G̃C can be done in linear time. Since C has a satisfying assignment iff G̃C
has an α-PNE (or α-PNE), this concludes that the problem described is NP-hard.

The problem is clearly in NP: given a weighted polynomial congestion game of degree d
and a strategy profile s, one can check if s is an α-PNE by computing the ratios between the
cost of each player in s and their cost for each possible deviation, and comparing these ratios
with α. J

Combining the hardness result of Theorem 5 together with the nonexistence result of
Theorem 1 we get the following corollary, which is the main result of this section.
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I Corollary 6. For any integer d ≥ 2 and rational α ∈ [1, α(d)), it is NP-complete to decide
whether (weighted) polynomial congestion games of degree d have an α-approximate PNE,
where α(d) = Ω̃(

√
d) is the same as in Theorem 1.

Notice that, in the proof of Lemma 4 and Theorem 5, we constructed a polynomial-time
reduction from Circuit Satisfiability to the problem of determining whether a given
congestion game has an α-PNE. Not only does this reduction map YES-instances of one
problem to YES-instances of the other, but it also induces a bijection between the sets of
satisfying assignments of a circuit C and α-PNE of the corresponding game G̃C . That is,
this reduction is parsimonious. As a consequence, we can directly lift hardness of problems
associated with counting satisfying assignments to Circuit Satisfiability into problems
associated with counting equilibria in congestion games:

I Corollary 7. Let k ≥ 1 and d ≥ 2 be integers and α ∈ [1, α(d)) where α(d) = Ω̃(
√
d) is the

same as in Theorem 1. Then
it is #P-hard to count the number of α-approximate PNE of (weighted) polynomial
congestion games of degree d;
it is NP-hard to decide whether a (weighted) polynomial congestion game of degree d has
at least k distinct α-approximate PNE.

Proof. The hardness of the first problem comes from the #P-hardness of the counting version
of Circuit Satisfiability (see, e.g., [29, Ch. 18]). For the hardness of the second problem,
it is immediate to see that the following problem is NP-complete, for any fixed integer k ≥ 1:
given a circuit C, decide whether there are at least k distinct satisfying assignments for C
(simply add “dummy” variables to the description of the circuit). J

6 General Cost Functions

In this final section we leave the domain of polynomial latencies and study the existence of
approximate equilibria in general congestion games having arbitrary (nondecreasing) cost
functions. Our parameter of interest, with respect to which both our positive and negative
results are going to be stated, is the number of players n. We start by showing that n-PNE
always exist:

I Theorem 8. Every weighted congestion game with n players and arbitrary (nondecreasing)
cost functions has an n-approximate PNE.

Proof. Fix a weighted congestion game with n ≥ 2 players, some strategy profile s, and a
possible deviation s′i of player i. First notice that we can write the change in the cost of any
other player j 6= i as

Cj(s′i, s−i)− Cj(s) =
∑
e∈sj

ce(xe(s′i, s−i))−
∑
e∈sj

ce(xe(s))

=
∑

e∈sj∩(s′
i
\si)

[ce(xe(s′i, s−i))− ce(xe(s))]

+
∑

e∈sj∩(si\s′i)

[ce(xe(s′i, s−i))− ce(xe(s))] (9)
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Furthermore, we can upper bound this by

Cj(s′i, s−i)− Cj(s) ≤
∑

e∈sj∩(s′
i
\si)

[ce(xe(s′i, s−i))− ce(xe(s))]

≤
∑
e∈s′

i

ce(xe(s′i, s−i))

= Ci(s′i, s−i), (10)

the first inequality holding due to the fact that the second sum in (9) contains only nonpositive
terms (since the latency functions are nondecreasing).

Next, define the social cost C(s) =
∑
i∈N Ci(s). Adding the above inequality over all

players j 6= i (of which there are n− 1) and rearranging, we successively derive:∑
j 6=i

Cj(s′i, s−i)−
∑
j 6=i

Cj(s) ≤ (n− 1)Ci(s′i, s−i)

(C(s′i, s−i)− Ci(s′i, s−i))− (C(s)− Ci(s)) ≤ (n− 1)Ci(s′i, s−i)
C(s′i, s−i)− C(s) ≤ nCi(s′i, s−i)− Ci(s). (11)

We conclude that, if s′i is an n-improving deviation for player i (i.e., nCi(s′i, s−i) < Ci(s)), then
the social cost must strictly decrease after this move. Thus, any (global or local) minimizer
of the social cost must be an n-PNE (the existence of such a minimizer is guaranteed by the
fact that the strategy spaces are finite). J

The proof not only establishes the existence of n-approximate equilibria in general
congestion games, but also highlights a few additional interesting features. First, due
to the key inequality (11), n-PNE are reachable via sequences of n-improving moves, in
addition to arising also as minimizers of the social cost function. These attributes give a
nice “constructive” flavour to Theorem 8. Secondly, exactly because social cost optima are
n-PNE, the Price of Stability5 of n-PNE is optimal (i.e., equal to 1) as well. Another, more
succinct way, to interpret these observations is within the context of approximate potentials
(see, e.g., [6, 10, 9]); (11) establishes that the social cost itself is always an n-approximate
potential of any congestion game.

Next, we design a family of games Gn that do not admit Θ
(
n

lnn
)
-PNE, thus nearly

matching the upper bound Theorem 8. In the game Gn there are n = m + 1 play-
ers 0, 1, . . . ,m, where player i has weight wi = 1/2i. In particular, this means that for
any i ∈ {1, . . . ,m}:

∑m
k=i wk < wi−1 ≤ w0. Furthermore, there are 2(m + 1) resources

a0, a1, . . . , am, b0, b1, . . . , bm, where resources ai and bi have the same cost function ci given by

ca0(x) = cb0(x) = c0(x) =
{

1, if x ≥ w0,

0, otherwise;

and for all i ∈ {1, . . . ,m},

cai
(x) = cbi

(x) = ci(x) =

 1
ξ

(
1 + 1

ξ

)i−1
, if x ≥ w0 + wi,

0, otherwise.

Where ξ = Φn−1 is the positive solution of (x+ 1)n−1 = xn.

5 The Price of Stability (PoS) is a well-established and extensively studied notion in algorithmic game
theory, originally studied in [2, 12]. It captures the minimum approximation ratio of the social cost
between equilibria and the optimal solution (see, e.g., [7, 9]); in other words, it is the best-case analogue
of the the Price of Anarchy (PoA) notion of Koutsoupias and Papadimitriou [25].
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The strategy set of player 0 and of all players i ∈ {1, . . . ,m} are, respectively,

S0 = {{a0, . . . , am}, {b0, . . . , bm}}, and Si = {{a0, . . . , ai−1, bi}, {b0, . . . , bi−1, ai}}.

Analysing the costs of strategy profiles in Gn (see [8]) we get the following theorem.

I Theorem 9. For any integer n ≥ 2, there exist weighted congestion games with n players
and general cost functions that do not have α-approximate PNE for any α < Φn−1, where
Φm ∼ m

lnm is the unique positive solution of (x+ 1)m = xm+1.

Similar to the spirit of the rest of our paper so far, we’d like to show an NP-hardness
result for deciding existence of α-PNE for general games as well. We do exactly that in
the following theorem, where now α grows as Θ̃(n). Again, we use the circuit gadget and
combine it with the game from the previous nonexistence Theorem 9. The main difference
to the previous reductions is that now n is part of the input. On the other hand we are not
restricted to polynomial latencies, so we use step functions having a single breakpoint.

I Theorem 10. Let ε > 0, and let α̃ : N≥2 −→ Q be any (polynomial-time computable)
sequence such that 1 ≤ α̃(n) < Φn−1

1+ε = Θ̃(n), where Φm ∼ m
lnm is the unique positive solution

of (x + 1)m = xm+1. Then, it is NP-complete to decide whether a (weighted) congestion
game with n players has an α̃(n)-approximate PNE.

7 Discussion and Future Directions

In this paper we showed that weighted congestion games with polynomial latencies of degree
d do not have α-PNE for α < α(d) = Ω

(√
d

ln d

)
. For general cost functions, we proved that

n-PNE always exist whereas α-PNE in general do not, where n is the number of players and
α < Φn−1 = Θ

(
n

lnn
)
. We also transformed the nonexistence results into complexity-theoretic

results, establishing that deciding whether such α-PNE exist is itself an NP-hard problem.
We now identify two possible directions for follow-up work. A first obvious question would

be to reduce the nonexistence gap between Ω
(√

d
ln d

)
(derived in Theorem 1 of this paper)

and d (shown in [3]) for polynomials of degree d; similarly for the gap between Θ
(
n

lnn
)

(Theorem 9) and n (Theorem 8) for general cost functions and n players. Notice that all
current methods for proving upper bounds (i.e., existence) are essentially based on potential
function arguments; thus it might be necessary to come up with novel ideas and techniques
to overcome the current gaps.

A second direction would be to study the complexity of finding α-PNE, when they are
guaranteed to exist. For example, for polynomials of degree d, we know that d-improving
dynamics eventually reach a d-PNE [3], and so finding such an approximate equilibrium lies
in the complexity class PLS of local search problems (see, e.g., [24, 33]). However, from
a complexity theory perspective the only known lower bound is the PLS-completeness of
finding an exact equilibrium for unweighted congestion games [14] (and this is true even for
d = 1, i.e., affine cost functions; see [1]). On the other hand, we know that dO(d)-PNE can
be computed in polynomial time (see, e.g., [5, 18, 15]). It would be then very interesting to
establish a “gradation” in complexity (e.g., from NP-hardness to PLS-hardness to P) as the
parameter α increases from 1 to dO(d).
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