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Abstract
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1 Introduction

Over the past decade, there has been considerable interest in contingent convertible debt

as an instrument for making the global banking system more resilient towards crisis. The

idea behind such contingent convertible bonds (CoCos) is simple. Banks issue bonds,

i.e., borrow money, that is equipped with a conversion feature. Whenever the bank is in

distress and there is sufficient danger that it cannot pay back this debt, the conversion

occurs. After the conversion, the bank’s former creditors own part of the bank – but they

do not receive their money back. The purpose of CoCos is thus to provide liquidity to

banks in a way that does not endanger the stability of the banking system and reduces

systemic risk. Yet once a new product type is introduced and traded between financial

institutions, crossholdings in this product become a source of additional interconnected-

ness in the financial market. In this paper, we study how this interconnectedness may

affect the valuation of banks and create complex interdependencies between the potential

conversions of different CoCos. Once banks hold each others’ CoCos, conversion events

of one bank may trigger or prevent conversions and defaults of other banks.

In the design of CoCos, the definition of the conversion event is critical. If conversion

happens only when the borrowing bank is close to bankrupt, the conversion event can be

expected to affect the banking system almost like a default: Instead of getting its money

back, the lending institution becomes partial owner of an almost bankrupt company. In

contrast, if conversion happens to a borrowing bank which is in excellent shape, the lenders

may actually be better off being compensated in stocks than receiving their money. In

this case, the conversion event corresponds to a wealth transfer from the existing owners

to the lenders which goes together with partially losing control of the company. The

threshold level for conversions should thus neither be chosen too high nor too low.

In addition to choosing the level of the conversion event, the designer of a CoCo bond

needs to specify which performance indicators of the borrowing institution are used as

trigger quantities. For instance, conversion could be based on accounting figures found
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in the bank’s balance sheet. While this approach is relatively transparent, it may be too

slow and prone to creative accounting. Alternatively, the conversion decision could be put

into the hands of a regulating authority. In this case, the timing of conversions becomes

more flexible but also rather intransparent. Moreover, a conversion that is triggered by

a regulator will be viewed by the market as a sign of distress and may lead to further

disruptions.

We focus on a third possibility: stock prices as conversion triggers. Conversion thus

occurs as soon as the stock price hits a prespecified lower bound. Compared to accounting-

based or regulatory triggers, stock price triggers are more transparent and react much more

quickly. Their potential drawback is that they may introduce a circularity in the definition

of the stock price. The stock price reflects what it is worth to own part of the bank. Yet

what that is worth depends on whether conversion happens or not – which depends itself

on the stock price. This observation has been the starting point of Sundaresan and Wang

(2015) who argue that neither existence nor uniqueness of equilibrium stock prices is

guaranteed after the introduction of contingent convertible debt with a stock price trigger.

Flannery (2014) argues that this potential danger has been the main reason why stock

price triggers have not been implemented in practice.1 This is despite the fact that later

research (Glasserman and Nouri, 2016; Pennacchi and Tchistyi, 2019a,b) has identified

weak and transparent sufficient conditions that guarantee existence and uniqueness of

equilibrium stock prices. However, this literature has studied single CoCos in isolation,

abstracting from the fact that whenever a product is sold there is someone who buys it.

We ask what happens if banks do not only issue CoCos with stock price triggers

but also trade them among each other. In particular, we study how previous results on

existence and uniqueness of equilibrium prices generalize to the multi-bank case. We

aim at understanding whether network effects can amplify the circularity problems that

1In practice, most CoCos have a combination of accounting-based and regulatory trigger mechanisms,
see Avdjiev et al. (2015). Even in the absence of stock price triggers, CoCos are still viewed with some
suspicion by many, see, e.g., the press reports about a recent incident involving CoCos issued by Santander
such as “When Investing Is About the CEO’s Goodwill” in the Wall Street Journal of 17 February 2019.
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threaten existence of equilibrium even in the single-bank setting. Given that CoCos were

proposed with the goal of stabilizing the global banking system, this question is relevant

both from an academic and from a regulatory perspective.2

Our theoretical framework generalizes the static baseline model of Sundaresan and

Wang (2015) and Glasserman and Nouri (2016) to multiple, interconnected banks. Let

us summarize our main results on existence and uniqueness of equilibrium. We say that

a bank has set a fair conversion threshold if both a bank’s creditors and its stock-holders

are indifferent between conversion and non-conversion when the stock is exactly at the

conversion threshold. With a fair conversion threshold, marginal conversions do not lead

to wealth transfers. If all CoCos in the market have fair conversion thresholds, a unique

vector of equilibrium stock prices exists. If all conversion thresholds are super-fair in

the sense of being at or above the fair threshold, existence of a possibly non-unique

equilibrium is guaranteed. Yet as soon as one bank sells CoCos with lower, sub-fair

conversion thresholds, existence of equilibrium stock prices is in danger not only for this

bank but potentially for the entire banking system. In the single bank case, these results

simplify, of course, to those of Glasserman and Nouri (2016) where a fair threshold implies

existence of a unique equilibrium, a sub-fair threshold implies non-existence and a super-

fair threshold implies non-uniqueness.

We thus find that existence and uniqueness of equilibria does not depend on the net-

work structure. It only depends on the conversion thresholds that banks have set. A

regulator who is solely interested in whether stock prices are well-defined could evaluate

the situation of one bank after the other in isolation. Yet, of course, this does not imply

that crossholdings in contingent capital cannot create interdependencies between conver-

sions of different banks. Indeed, under fair conversion thresholds, there may be domino

2Empirically, there is conflicting evidence how prevalent crossholdings of CoCos are. Comparing the
different sources discussed in Avdjiev et al. (2013, 2015) and Boermans and van Wijnbergen (2018), it
seems fair to conclude that, in the large European market, the fraction of CoCos owned by other banks
is between 5% and 50% depending on the precise context and data that are considered. These are fairly
high numbers given that the current Basel regulation tends to discourage such crossholdings, possibly
out of systemic risk concerns (Avdjiev et al., 2013).
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effects where the conversion of one CoCo bond weakens the position of the holders of that

bond. Consequently, the holders’ own CoCos may have to convert in equilibrium, poten-

tially triggering further conversions. In the super-fair case, the situation is similar but

more complex. Depending on the exact constellation of asset values and CoCo holdings,

the conversion of one bank’s CoCo may either help or harm other banks, thus triggering

or preventing additional conversions.3 There may thus be situations where exactly one

bank has to convert in equilibrium to save all others – but it is not uniquely determined

which bank that is.

One main conclusion from these findings is that the structure of the crossholdings

network matters when it comes to CoCos. Thus, a regulator who considers loosening the

capital requirements for interbank crossholdings should at the same time gather sufficient

information about CoCo ownership. As noted in Avdjiev et al. (2015) and Boermans

and van Wijnbergen (2018), information about CoCo investment is not systematically

collected by regulators so far. Without this information, an interconnected CoCo market

will be not be transparent and potential spillovers will be hard to predict.

Our ultimate interest is in the (potentially ill-defined) mapping that computes equi-

librium stock prices from asset values. A main technical insight is that the mapping in

the opposite direction, from stock prices to the underlying asset values, is much easier to

understand and analyze. From realized stock prices, we can easily read off which banks

are healthy, converting or bankrupt. Given this information, the relation between asset

values and stock prices is explicit and linear. Much of our analysis is thus based on deriv-

ing properties of this mapping from stock prices to asset values which we call Φ. When Φ

is surjective, every vector of asset values has an associated equilibrium stock price. When

Φ is injective, this stock price is unique. When Φ fails to be surjective, there exist vectors

of asset values without a corresponding vector of stock prices.

3This dichotomy we find in our model is in contrast to the earlier literature which focused on negative
externalities that banks exert on each other through their conversions (Chan and van Wijnbergen, 2014;
Boermans and van Wijnbergen, 2018). To understand why conversions can prevent other conversions,
recall that, in the super-fair case, marginal cases of conversions are beneficial to the holders of a CoCo
compared to receiving the original debt.
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In the fair case, the mapping Φ is continuous and the problem of identifying the unique

equilibrium is reminiscent of the problem of finding equilibria in financial networks under

interbank lending and default as discussed, e.g., in Acemoglu et al. (2015), Glasserman and

Young (2016) and the references therein. The main difference is that our model has three

states as each bank can be healthy, bankrupt or converting. Nevertheless, existence and

uniqueness of equilibrium follow from classical results for continuous functions, namely,

from the Poincaré-Miranda theorem, a useful but comparatively little known equivalent

formulation of Brouwer’s fixed point theorem.4

The connection between our model and models of interbank default networks such as

Eisenberg and Noe (2001) is, of course, not merely a formal, mathematical one. Depend-

ing on the choice of the fair conversion threshold, our model interpolates between two

credit market models without CoCos. As conversion thresholds go to zero, the model

converges to the Eisenberg-Noe model in which banks are forced out of the market in case

of illiquidity. Conversely, as conversion thresholds go to infinity, the model converges to

a situation in which default cycles are avoided by canceling all debt. CoCos may thus

strike an interesting middle ground between these two extremes.

Our main technical contribution is developing techniques for proving existence of equi-

librium in the super-fair case. Here, the mapping from equilibrium stock prices to under-

lying asset values is piece-wise linear but discontinuous. Our basic strategy is to view the

super-fair case as a distortion of a fair case with adjusted credit amounts. We provide

an explicit fixed-point iteration that recovers an equilibrium of the super-fair case from

equilibria of the fair case for different vectors of asset values, thus proving existence.

Related Literature

While this paper appears to be the first that studies CoCos with stock price triggers in a

network setting, a number of papers have studied interaction effects in models with other

4See, e.g., Browder (1983) for background.
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types of trigger mechanisms. In these models, ensuring well-definedness of equilibrium is

simpler as there is no dependence of the stock price on itself, i.e., there are no circularity

problems in the single bank case.

Chan and van Wijnbergen (2014) consider CoCos with a regulatory trigger. In their

setting only one of the banks issues CoCos and the focus is on the signaling value of

conversions in an incomplete information model.5 In contrast, we consider complete

information and study the market’s ability to reflect all available information in prices

and conversion events.

A number of very recent papers study network effects of CoCos with accounting-based

triggers, building on the single-bank model of Glasserman and Nouri (2012) (rather than

Glasserman and Nouri, 2016). Of these recent contributions, Feinstein and Hurd (2020) is

closest in spirit to our paper, proving existence of equilibrium in a model with accounting-

based triggers but allowing, e.g., for CoCos with different maturities. Gupta et al. (2020)

show both in simulations and empirically that CoCos are an effective instrument for

mitigating systemic risk. Beyond simple accounting-based triggers, they also consider

extensions where conversion mechanisms take into account the balance sheets of the entire

banking system.

From a broader perspective, our clear-cut existence and uniqueness results stand in

interesting contrast to recent results on default in interbank networks with credit default

swaps by Schuldenzucker et al. (2017, 2020) where even the problem of deciding whether

an equilibrium exists may be computationally intractable.6

5Chan and van Wijnbergen (2014) are interested in whether CoCo conversions can trigger bank runs in
a model as in Diamond and Dybvig (1983). As they regulatory triggers, conversion events reveal some of
the regulator’s inside information to the market. Interconnectedness in their model works only indirectly
through an information externality that the CoCo issuer exerts on other banks. If all banks’ returns are
positively correlated, the conversion of one bank carries bad news about the returns of all banks in the
market.

6Algebraically, the problems studied in these works are quite different from ours. Our equilibrium
conditions are piecewise linear and, in the super-fair case, discontinuous. The equations in Schuldenzucker
et al. (2017, 2020) are quadratic and thus “more non-linear” but continuous.
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2 The Setting

The Model

We consider a multi-bank generalization of the static baseline model in Sundaresan and

Wang (2015) and Glasserman and Nouri (2016). Denote by [n] = {1, . . . , n} the set of n

banks. For each bank i ∈ [n], we denote by ai its assets net of liabilities. We assume that,

in addition, banks have issued convertible debt. We denote by ci the total convertible

debt that bank i has to pay back. If bank i’s stock price si turns out to be less than the

conversion threshold li, the debt is converted (i.e. not paid back) and compensated by

the issuing of mi > 0 new stocks. The original number of stocks is normalized to 1. Upon

conversion, the former owners thus keep a fraction 1/(1 +mi) of bank i, while the former

creditors receive a fraction mi/(1 +mi).

We depart from the previous literature by assuming that banks may have traded some

of their convertible debt between each other. By wij, we denote the fraction of bank j’s

convertible debt that is due to bank i. Depending on whether bank j converts or not,

bank i thus either receives wijmj stocks or a cash amount of wijcj. Consequently, the

numbers (wij) can be interpreted as the adjacency matrix of a directed, weighted graph,

the conversion network. The wij satisfy wij ∈ [0, 1], wii = 0 and
∑

i∈[n] wij ≤ 1. The case∑
i∈[n] wij < 1 corresponds to a setting where some of the convertible debt was issued

to parties outside the banking system. In the degenerate case wij = 0 for all i and j,

our model essentially collapses to n independent copies of Glasserman and Nouri (2016)’s

model.

We consider a static model where all debt is settled simultaneously. What makes

analyzing this setting challenging is the following dependence of the equilibrium prices

s = (s1, . . . , sn) on themselves: Whether a bank i converts, depends on whether its stock

price si is above or below li. Yet, whether the stock price is above or below li depends

on what it is worth to own the stock – which depends itself on whether bank i converts.
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This issue arises already in the previously studied single-bank setting. In our multi-bank

setting, there is an additional layer of complexity as banks’ conversions and stock prices

are interrelated. The value of each bank depends on whether that bank receives stocks or

cash from the other banks.

Equilibrium Concept

Given a partition (B,C,H) of the set [n] of banks into bankrupt (B), converting (C)

and healthy (H) banks, we say that the price vector s = (s1, . . . , sn) and asset vector

a = (a1, . . . , an) form a (B,C,H)-equilibrium candidate if they solve the following system

of equations:

(1 +mi)si = ai +
∑
j∈C

wijmjsj +
∑
j∈H

wijcj for all i ∈ B ∪ C (1)

si = ai − ci +
∑
j∈C

wijmjsj +
∑
j∈H

wijcj for all i ∈ H (2)

Equation (1) states that the total value of a converting bank’s issued stocks (1 + mi)si

is equal to the assets ai plus the stocks the bank receives from converting banks plus the

cash the bank receives from healthy banks. For a healthy bank as described in (2), two

things are different: The total number of stocks on the left hand side is smaller and the

debt ci is paid back on the right hand side. Bankrupt banks are also covered by equation

(1). In their case, si should not be interpreted strictly as the stock price but rather as a

candidate for what the stock price would be if the bank was not bankrupt.7 For simplicity,

we nevertheless call s a vector of stock prices in the following.

A (B,C,H)-equilibrium candidate (a, s) is a (B,C,H)-equilibrium if the partition

(B,C,H) is consistent with how the prices si relate to the thresholds li: In equilibrium,

we must have B = {i|si < 0}, C = {i|0 ≤ si ≤ li} and H = {i|si > li}.
7The true stock price of a bankrupt bank is, of course, zero. Note that for a bank j ∈ B, the value

of sj does not appear on the right hand side of (1) or (2) for any other bank i 6= j. Moreover, if si
computed from (1) is negative for a bank i ∈ B then so is si computed from (2). Thus, a negative si
from (1) implies that neither converting nor being healthy are viable alternatives to bankruptcy.
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As a first result, we show that for every stock price vector s ∈ Rn there exist a unique

associated vector of asset values and a partition into bankrupt, converting and healthy

banks.

Lemma 1 For every s ∈ Rn, there exist a unique partition (B,C,H) of [n] and an

asset price vector a such that (a, s) is a (B,C,H)-equilibrium. Specifically, the partition

(B,C,H) is given by B = {i|si < 0}, C = {i|0 ≤ si ≤ li} and H = {i|si > li} and

the asset price vector is given by the unique solution a to the linear system (1–2) for this

partition (B,C,H).

Unless otherwise noted, all proofs are in the appendix. The idea of the lemma is

simply that the location of si in relation to 0 and li determines whether bank i should go

bankrupt, convert or stay healthy. Yet once this information is available for all banks, we

know the partition and computing a from s is reduced to solving the linear system (1–2).

The lemma thus shows that there exists a mapping Φ : Rn → Rn which maps stock price

vectors to the unique asset value vectors that rationalize them in equilibrium.

The mapping Φ from stock prices to asset values is thus easy to understand and

compute. Unfortunately, what matters in practice is the inverse of this mapping – from

asset values to stock prices. Given a realized vector of asset values, does there exist

a unique stock price vector s such that Φ(s) = a? If this is not the case, there may

be multiple candidates for equilibrium stock prices or there may be non-existence of

equilibrium. The rationale behind this question is as follows: We consider a one period

market model. In the first step, asset values (or asset minus liability values) of all banks

realize to some a ∈ Rn. In the next step, the market wishes to arrive at equilibrium stock

prices for the banks. If a unique equilibrium exists, this is what the market will find

eventually. If multiple equilibria exist, the market is confused. If no equilibrium exists,

the market is unpredictable.

Inspecting only (1–2), it may seem at first sight that the relation between a and s is

linear. Yet in fact, it is piece-wise linear due to the partitions (B,C,H). The equilibrium
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partition can easily be read-off from s but not from a. This makes the mapping from

a to s more difficult to analyze than the mapping from s to a. The intuition for this

asymmetry is straightforward. Whether bank i is healthy, converting or bankrupt only

depends on the stock price si. Yet, due to interconnectedness, the stock price si may

depend on the asset values of many banks.

Rewriting the problem

So far, we have seen that questions of existence and uniqueness of equilibrium can be

reduced to structural properties of the mapping Φ. Existence of equilibrium holds if

the mapping Φ is a surjection from Rn to Rn, i.e., if for every asset value a ∈ Rn there

exists a stock price vector s ∈ Rn such that a = Φ(s). Surjectivity by itself does not imply

uniqueness of equilibrium, i.e., under surjectivity a could be the unique rationalizing asset

value vector for more than one stock price vector. We have existence and uniqueness of

equilibrium if the mapping Φ is a bijection from Rn to Rn, i.e., if for every a there exists

a unique s such that a = Φ(s).

In order to understand the mapping Φ better, we need to introduce some additional

notation. Given a vector v = (v1, . . . , vn) and a set F ⊂ [n] we denote by vF ∈ Rn the

vector defined by (vF )i = vi for all i ∈ F and vi = 0 for all i /∈ F . For any vector v ∈ Rn

we denote by Diag(v) the diagonal matrix in Rn×n with diagonal entries v. We denote

by e = (1, . . . , 1) ∈ Rn the all ones vector and by ei = e{i} the vector that is all zeros

except for a 1 in position i. For a given partition (B,C,H), conditions (1) and (2) can

be summarized as

a = s+ Diag(mB)s+ (I −W ) Diag(mC)s+ (I −W )cH . (3)

Thus, for a given partition (B,C,H), a is an affine function of s and we have a =

LB,Cs+ bH where LB,C = I + Diag(mB) + (I −W ) Diag(mC) and bH = (I −W )cH . Due

to the fact that
∑

i∈[n] wij ≤ 1 and mj > 0, the matrices LB,C are strictly diagonally
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dominant and thus of full rank and invertible. This shows that for a given partition and

a given s the vector a is uniquely determined.

3 Equilibrium Analysis

3.1 Overview

One main observation so far is that any vector of stock prices determines a unique as-

sociated partition of bankrupt, converting and healthy banks. For a given partition

(B,C,H), denote by SB,C,H the set of stock price vectors s which lead to this parti-

tion, i.e., SB,C,H = {s|si < 0 for i ∈ B, 0 ≤ si ≤ li for i ∈ C and si > li for i ∈ H}.

Clearly, the sets SB,C,H form a partition of Rn into 3n disjoint sets. We denote by AB,C,H

the image of SB,C,H under Φ, i.e.,

AB,C,H = Φ(SB,C,H) = {LB,Cs+ bH |s ∈ SB,C,H} (4)

since, by the previous discussion, Φ is defined as Φ(s) = LB,Cs + bH for s ∈ SB,C,H . To

understand whether the mapping Φ is surjective or even bijective, we need to understand

conditions under which the union of the sets AB,C,H over all possible partitions covers

the entire space Rn and under which this covering is disjoint. As a starting point, notice

that the sets SB,C,H are polyhedra and that the sets AB,C,H are affine transformations of

polyhedra – and thus also polyhedra. The reason is that the restriction of Φ to SB,C,H is

an affine function as shown in (4).

For the case n = 2, Figure 1 shows the sets SB,C,H (left panel) and the associated

sets AB,C,H = Φ(AB,C,H) (right panel) in the respective spaces of stock prices and asset

values. Highlighted are the sets where both banks convert (CC) in the middle, and the

set where bank 1 is bankrupt and bank 2 is healthy in the upper left corner (BH). In

terms of partitions, the two sets correspond to, respectively, (B,C,H) = (∅, {1, 2}, ∅) and
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Figure 1: The mapping Φ.

The parameters are m1 = m2 = 1, c1 = c2 = 4, w12 = w21 = 0.75 and l1 = l2 = 8. The stock price space
is shown on the left and the asset value space is shown on the right.

(B,C,H) = ({1}, ∅, {2}). We see that the two highlighted sets AB,C,H are overlapping,

indicating that for this parameter constellation the mapping Φ is (surjective but) not

bijective. There thus exist combinations of asset values that may give rise to more than

one equilibrium partition and thus more than one vector of equilibrium stock prices.

One main contribution of our paper is to formulate precise conditions for existence

and uniqueness of equilibrium in this model in terms of the conversion thresholds chosen

by different banks. For instance, the situation depicted in Figure 1 is one of existence

and non-uniqueness. In the remainder of this section, we illustrate these conditions for

the two bank case and introduce the necessary terminology. The formal existence and

uniqueness results follow in later sections.

As a first step, compare the two candidates sci and shi for the stock price of bank i in

case of conversion and non-conversion implied by (1–2),

sci = ai −mis
c
i +
∑
j∈C

wijmjsj +
∑
j∈H

wijcj,

shi = ai − ci +
∑
j∈C

wijmjsj +
∑
j∈H

wijcj.

The two candidate stock prices differ only in the transfer ci vs. mis
c
i that is made to
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the creditors of bank i. We say that the threshold set by bank i is fair if creditors are

indifferent between conversion and non-conversion for marginal cases, i.e., for conversions

at the threshold si = li. The fair threshold for bank i is thus given by ci = mili, i.e.,

li = ci/mi. We say that the threshold set by bank i is super-fair if li > ci/mi, i.e.,

if conversions at the threshold correspond to a wealth transfer from the bank’s original

stock holders to the creditors. Conversely, we call thresholds li with li < ci/mi sub-fair.

In the numerical example above, fair thresholds are given by li = ci/mi = 8 so that the

situation of equilibrium existence and non-uniqueness depicted in Figure 1 corresponds to

an example of the super-fair case. A first illustration of the more general picture is given

in Figure 2 which shows the partition in asset value space for different choices of issued

debt. The left panel, corresponding to fair thresholds, shows a non-overlapping partition

(a) Fair (b) Sub-fair (c) Super-fair

Figure 2: Non-existence, uniqueness and multiplicity of equilibria.

The parameters are m1 = m2 = 1, w12 = w21 = 0.75 and l1 = l2 = 8. Credit amounts are (c1, c2) = (8, 8)
in (a), (c1, c2) = (12, 12) in (b) and (c1, c2) = (4, 4) in (c).

of the asset value space and thus a situation of existence and uniqueness of equilibrium.

The middle panel, corresponding to sub-fair thresholds by both banks, shows a non-

overlapping partition with gaps. Thus, whenever equilibrium exists it is unique. However,

there exist combinations of asset values which do not lie in any of the sets AB,C,H . For

these asset values, no equilibrium stock prices exist. The right panel, corresponding to

super-fair thresholds by both banks, shows an overlapping partition. In this case, every
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constellation of asset values leads to at least one vector of equilibrium stock prices, but

in some cases, we see an overlap corresponding to multiple equilibria. For example, we

see areas where (only) the sets HC and CH overlap. Here, one bank has to convert in

equilibrium to save the other – but it is not determined which bank that is.

We close this section with a preview of our main results for the n bank case and a

classification into fair, super-fair and sub-fair markets.

• If all banks set fair thresholds, there exists a unique equilibrium for any vector of

asset values. We call this the fair case.

• If all banks set fair or super-fair thresholds, there exists an equilibrium stock price

for any vector of asset values. We call this the super-fair case.

• If some bank sets a sub-fair threshold, there exists a vector of asset values for which

no equilibrium stock price exists. We call this the sub-fair case.

Note that the sub-fair case is defined a bit more broadly: Suppose some banks set fair

thresholds, some set super-fair thresholds while others set (strictly) sub-fair thresholds.

Then we say we are in the sub-fair case because we have non-existence of equilibrium

which is more severe than the non-uniqueness implied by the super-fair thresholds. This

is our first main result.

Proposition 1 Suppose we are in the sub-fair case, i.e., there exists a bank i with li <

ci/mi. Then there exists a vector a ∈ Rn such that Φ(s) 6= a for all s ∈ Rn.

The intuition behind the proof is straightforward. When the asset values of all banks

except for i are sufficiently high above the conversion thresholds, then the possible con-

version of bank i can be studied in isolation as all other banks can only be healthy in

equilibrium. Non-existence then follows by the same argument as in the single bank model

of Sundaresan and Wang (2015) and Glasserman and Nouri (2016).
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Figure 3 shows the partition in asset value space for asymmetric choices of issued debt.

In the left two panels, bank 1 is in a fair case while bank 2 is, respectively, super-fair and

sub-fair. In the right panel, bank 1 is super-fair while bank 2 is sub-fair. We see that,

essentially, the choices of one bank cannot cure the problems that may arise due to the

choices of the other bank. There are also immediate spillovers even if only one bank

has a non-fair threshold. For instance, in the left panel we observe an overlap between

the sets denoted CC and BH, corresponding to a situation with two possible equilibria.

Either both banks convert or bank 1 goes bankrupt while bank 2 is healthy. Thus, in one

equilibrium, the second bank converts to save the first bank. In the other equilibrium this

is not the case.

(a) Fair / super-fair (b) Fair / sub-fair (c) Super-fair / sub-fair

Figure 3: Asymmetric examples of non-existence and multiplicity of equilibria.

The parameters are m1 = m2 = 1, w12 = w21 = 0.75 and l1 = l2 = 8. Credit amounts are (c1, c2) = (8, 4)
in (a), (c1, c2) = (8, 12) in (b) and (c1, c2) = (4, 12) in (c).

3.2 Existence and uniqueness of equilibrium in the fair case

In the next step, we show that in the fair case, i.e., when the thresholds are given by

li = ci/mi for all i, the mapping Φ from stock prices to asset values is surjective. This

implies that for every vector of asset values a we can find a vector of stock prices s such

that a is the unique vector of asset values which rationalizes s. Our existence proof relies

on a multivariate version of the intermediate value theorem which is given next. The result
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is a corollary of the Poincaré-Miranda theorem which is itself an equivalent formulation

of Brouwer’s fixed point theorem.

Proposition 2 Let f : Rn → Rn, f(x) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)), be a con-

tinuous function with the following properties:

(i) For all i ∈ [n], fi(x) is weakly increasing in xi and weakly decreasing in xj, j 6= i.

(ii) For all i ∈ [n], we have limt→∞ fi(te) =∞ and limt→∞ fi(−te) = −∞.

Then f is surjective, i.e., for every y ∈ Rn there exists x ∈ Rn such that f(x) = y.

The proposition is a multivariate version of the observation that a continuous, univari-

ate function f(x) that goes to ±∞ as x goes to ±∞ must pass through every point. To

guarantee that a continuous, multivariate function passes through every vector, we need

to assume some more structure however. In (i), we assume monotonicity in all compo-

nents. In (ii), we assume that, essentially, when all components of x go to ±∞ then so

do all components of f .8 In our setting of convertible debt, this condition holds because

the asset values of other banks become irrelevant for the status of bank i if its own assets

are sufficiently positive or negative. The reason is simply that borrowed amounts cj are

finite and that conversions only happen at intermediate stock price values.

We apply Proposition 2 in our setting by verifying that in the fair case the function

Φ satisfies all of its requirements. Most of the work here comes from verifying that Φ is

continuous. Once this is shown, the monotonicity properties (i) and (ii) follow easily as

Φ is a locally linear function.

Proposition 3 In the fair case with li = ci/mi for all i ∈ [n], the mapping Φ is surjec-

tive and continuous. Thus, for every asset value vector a ∈ Rn there exists a partition

(B,C,H) of [n] and a stock price vector s such that (a, s) is a (B,C,H)-equilibrium.

8The formulation of the proposition assumes that fi increases in xi and decreases in xj , j 6= i which
is what we need here. Condition (i) can easily be relaxed to functions whose components are either
increasing or decreasing in all components when condition (ii) is suitably adapted.
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To conclude our analysis of the fair case, we show that the mapping Φ is not only

surjective but also injective. The main difficulty here is that the components of Φ are

increasing in one coordinate but decreasing in the others. Thus, one might be worried

that movements in different directions could cancel each other out. We rely on the strict

diagonal dominance of the matrices LB,C to argue that this cannot be the case.

Proposition 4 In the fair case with li = ci/mi for all i ∈ [n], the mapping Φ is injective,

and thus also bijective. Thus, for every asset value vector a there exists a unique partition

(B,C,H) of [n] and a stock price vector s such that (a, s) is a (B,C,H)-equilibrium.

This bijectivity result proves existence and uniqueness of equilibrium: For any vector

of asset values a there exists a unique matching vector of equilibrium stock prices.

3.3 Existence of equilibrium in the super-fair case

In this section, we show that there always exists an equilibrium when all banks have set

fair or super-fair thresholds, li ≥ ci/mi for all i ∈ [n]. Throughout this section, we impose

one further technical condition, assuming invertibility of the matrix I −W .

Assumption 1 The matrix I −W is invertible.

Intuitively, Assumption 1 means that at least a tiny fraction of CoCos has been sold to

parties outside the banking system.9 The main difficulty in the proof is that the mapping

from stock prices to asset values is no longer continuous as in the fair case. Thus, there is

little hope for proving surjectivity based on variations of Brouwer’s fixed point theorem.

Instead, our basic strategy is to view the super-fair case as a distortion of the fair case.

We argue that, unlike continuity and injectivity, surjectivity of the mapping from stock

prices to asset values is preserved under this distortion. This implies that for every vector

of asset value there is at least one associated vector of stock prices.

9We conjecture that this assumption can be removed at the expense of more technical proofs.
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In the fair case, the mapping Φ is given by Φ(s) = LB,Cs + bH where LB,C = I +

Diag(mB) + (I − W ) Diag(mC) and bH = (I − W )cH for s ∈ SB,C,H . Fairness means

that lj = cj/mj for all j ∈ [n]. In the fair case, Φ is a bijection. Thus we can define

H(a) = {i : Φ−1(a)i > `i}, the set of banks which are healthy in a in the fair case.

Now we introduce the super-fair case Φ̂ which has the same values of m, W and l but

smaller credit amounts, ĉj = cj − dj, dj ≥ 0 for all j ∈ [n]. We keep the vector d ∈ Rn+

fixed throughout this section. Since any super-fair case can be written as a distorted fair

case with decreased credit amounts, it suffices to show that Φ̂ is surjective.

For s ∈ SB,C,H , we know that Φ̂(s) = LB,Cs + (I −W )ĉH which implies that the two

mappings Φ and Φ̂ are related via

Φ̂(s) = Φ(s)− (I −W )dH(Φ(s))

for all s. Thus, the difference between Φ and Φ̂ only depends on the set of healthy banks

H(a). Moreover, by the relationship

(I −W )dH(a) =
∑
j∈H(a)

(I −W )d{j} =
∑
j∈H(a)

dj(I −W )ej,

we see that effectively, every bank j has a shift vector (I −W )d{j} that it contributes to

the distortion from the fair to the super-fair case whenever it is healthy in a. Thus, in the

two bank case, an asset value at which only bank 1 is healthy is shifted by (I −W )d{1}

while an asset value at which both banks are healthy is shifted by both (I −W )d{1} and

(I −W )d{2}. It is critical to understand where such combinations of shifts can lead us.

Figure 4 illustrates the central ideas of our surjectivity proof for two points â. For

convenience, we only plot the positive quadrant. The two right panels show an instance

of the super-fair case while the left panels show the corresponding fair case with adjusted

credit amounts. In the upper panels we have a situation where the possible equilibria in

â in the super-fair case are either both banks converting or bank 1 converting while bank
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Figure 4: Strategy of proof.

In all four panels, we have m1 = m2 = 1, l1 = l2 = 8 and w12 = w21 = 0.3. In the left panels, we have
fair credit amounts, c1 = c2 = 8, while in the right panels, we have ĉ1 = ĉ2 = 2. The shift vectors are
given by (I −W )d{1} = (I −W )(c− ĉ){1} = (6,−1.8) and (I −W )d{2} = (−1.8, 6).

2 is healthy. In the lower panels, the two equilibria are either both being healthy or bank

1 being healthy while bank 2 converts. We can easily see this by studying the overlaps

in the right panels. The key observation is that we can also see this by studying the

trapezoid spanned by the arrows in the left panel. Here, we have drawn the four points

that can be reached by applying the shift vectors to â. hh is the point we reach when we

apply both vectors, hx is the point we reach when we apply the first shift vector and so

on. Here “x” stands for “b” or “c”, bankrupt or converting, and thus no shift.

Our claim is that we can find the equilibria of the super-fair case by studying which of

the corners of the trapezoid lie in matching sets of the partition. In the upper panels, the

point xx lies in CC and the point xh lies in CH. These we count as matches because the

same banks are healthy. The points hx and hh lie in CC and CH so these are not matches.

Indeed, CC and CH correspond to the two equilibria at â in the super-fair case. Similarly,
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in the lower panels we count matches for the points hx and hh which corresponds to the

equilibria in HC and HH.

Thus, in this two-bank example, proving surjectivity boils down to showing that no

matter where we place the trapezoid in the picture, one corner will always be in the

matching set. The general version of this claim is formalized as a fixed point problem in

Lemma 2, the main technical result of this section. For every point a there exists a set

X of banks with the following property. The set of banks which are healthy in the point

a + (I −W )dX is X itself. Here, the point a + (I −W )dX is the point we reach when

applying the shift vectors associated with X to the starting point a.

Lemma 2 Under Assumption 1, for all a ∈ Rn there is X ⊂ [n] such that H(a + (I −

W )dX) = X.

Once we have established Lemma 2, the surjectivity of Φ̂ is easy to show. This is the

content of the following theorem. Intuitively, its short proof establishes our claim about

the connection between the left and right panels in Figure 4.

Theorem 1 Under Assumption 1, the mapping Φ̂ associated with the super-fair case is

surjective. Thus, for all vectors of asset values a ∈ Rn there exists an associated vector

of equilibrium stock prices s with Φ̂(s) = a.

Proof of Theorem 1: Let a ∈ Rn be given. From Lemma 2 there is X ⊆ [n] such that

H(a + (I −W )dX) = X. From the definition of Φ̂ we obtain Φ̂(Φ−1(a + (I −W )dX)) =

a+ (I −W )dX − (I −W )dH(a+(I−W )dX) = a. �

As a first step towards the proof of Lemma 2, we prove two qualitative results about

the interaction between shifts and sets of healthy banks. The first lemma considers banks

that are healthy after shifting the banks in a set X. The claim is that all these banks lie

in the union of the shifted banks, X, and the banks that were originally healthy, H(a).

In the second lemma, we consider shifting some banks which are healthy in a. The claim
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is that after this shift some of the shifted banks must still be healthy.

Lemma 3 Let a ∈ Rn be given. For any X ⊆ [n], H(a+ (I −W )dX) ⊆ H(a) ∪X.

Lemma 4 Let a ∈ Rn be given. Then, under Assumption 1, for any X ⊆ [n], ∅ 6= X ⊆

H(a) implies X ∩H(a+ (I −W )dX) 6= ∅.

Essentially, our proof of Lemma 2 is now based on constructing a suitable sequence

of subsets of [n] and to show that is it contracting around a fixed point. To this end,

for the remainder of this section, we fix some â ∈ Rn and define the mapping h(X) =

H(â + (I −W )dX), X ⊂ [n]. Thus, h maps subsets of [n] to subsets of [n]. What we

need to show is that there exists a fixed point, i.e., an X such that h(X) = X. We will

construct such a fixed point by iterating the mapping h. As customary, given X ⊂ [n]

we define h0(X) = X and hm+1(X) = h(hm(X)) for all m ≥ 0. In Corollary 1, we collect

some facts about the monotonicity behavior of h. We see that h is far from monotonic

but rather exhibits some type of cyclical behavior when it is applied multiple times.

Corollary 1 Under Assumption 1, let X ⊆ [n].

(i) If X ⊆ Y ⊆ h(X) then h(Y ) ⊆ h(X).

(ii) If h(X) ⊆ Y ⊆ X then h(X) ⊆ h(Y ).

(iii) If X ⊆ h2(X)  h(X) then h2(X) ⊆ h3(X)  h(X).

(iv) If h(X)  h2(X) ⊆ X then h(X)  h3(X) ⊆ h2(X).

Our strategy of proof for Lemma 2 is based on the sequence of sets given by X0 = H(â)

and Xm+1 = h(Xm) for m ≥ 0. From the corollary, we can deduce that X1 is a subset

of X0, that X2 lies between X1 and X0, X3 between X1 and X2 and so on. The fact

that some of the claims in Corollary 1 are strict inclusions,  , then implies that this

sequence of sets cannot cycle on forever but must become constant after finitely many

steps, h(Xm) = Xm+1 = Xm. This is the desired fixed point.
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Figure 5 illustrates this construction. We start with a point â in which both banks are

healthy, X0 = H(â) = {1, 2}. The next step is thus to consider the healthy banks in the

point â+ (I −W )dX0 , shifting both banks. As can be seen from the point “1”, this leads

us into the set where only bank 2 is healthy, X1 = h(X0) = H(â + (I −W )dX0) = {2}.

Next, we consider X2 = h(X1), the healthy banks in the point â+ (I −W )dX1 . From the

point “2” in the figure, we see that X2 = {2} = X1, the desired fixed point.

Figure 5: Construction of fixed points.

Equilibria for the fair case with m1 = m2 = 1, l1 = l2 = 6, w12 = w21 = 0.6, c1 = c2 = 6. The shift
vectors correspond to the super-fair case with ĉ1 = 3.5, ĉ2 = 0.1 and thus (I −W )d{1} = (2.5,−1.5) and
(I −W )d{2} = (−3.54, 5.9).

4 Conversions vs. Bankruptcies

In this section, we discuss how our model with CoCos can be seen as interpolating between

two rather different scenarios without CoCos: As one extremal case, we obtain a model

in the spirit of Eisenberg and Noe (2001) where a bank’s assets are fully used to settle

outstanding debt in case of insolvency. At the other extreme, we find a model where

effectively all debt is canceled.

As a first step, we rewrite our original model which is based on banks’ stock prices si

into a model which is based on their total equity values vi. The relation between stock

prices and equity values is as follows. When bank i is healthy, i ∈ H, we have vi = si as

all equity belongs to the original stockholders. When bank i is not healthy, i ∈ B ∪ C,
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mi additional stocks are issued in the conversion process and we have vi = (1 +mi)si.

When we rewrite our previous equilibrium conditions in terms of total equity values,

we obtain the following. Given a partition (B,C,H) of the set [n] of banks into bankrupt

(B), converting (C) and healthy (H) banks, we say that the vector of equity values

v = (v1, . . . , vn) and asset vector a = (a1, . . . , an) form a (B,C,H)-equilibrium candidate

if they solve the following system of equations:

vi = ai +
∑
j∈C

wij
mj

1 +mj

vj +
∑
j∈H

wijcj for all i ∈ B ∪ C (5)

vi = ai − ci +
∑
j∈C

wij
mj

1 +mj

vj +
∑
j∈H

wijcj for all i ∈ H (6)

A (B,C,H)-equilibrium candidate (a, v) is a (B,C,H)-equilibrium if vi < 0 for all i ∈ B,

if 0 ≤ vi ≤ (1 + mi)li for all i ∈ C and if vi > li for all i ∈ H.10 Comparing (5) and

(6), we see that, around the conversion thresholds, total equity value is higher in the

converting than in the healthy case. The reason is that in the conversion process some

debt is canceled in exchange for a shift in the ownership structure which is not reflected

in the total equity value.

Some properties of the system become clearer in this formulation than in our previous

one based on s. First, the way the weights mi/(1+mi) appear in (5) and (6) suggests that

by decreasing mi we reduce the strength of interactions between banks. We discuss this

in more detail below. Second, unlike our previous comparison of si with li, we now have

two different thresholds for healthy and converting banks. Thus, at the conversion point

there are two potential sources of discontinuity, the shift in the threshold and the shift in

the total equity value. We have continuity when the two effects cancel out, i.e., when the

difference between the conversion and non-conversion equity values equals the difference of

the thresholds. This boils down to vCi − vHi = limi, that is ci = limi, the characterization

of the fair case. Another way to write this condition is as ci = vCi mi/(mi + 1). At the

10As before, negative equity values in case of a bankruptcy should be read as theoretical candidate
equity values. The actual equity values are, of course, zero.
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threshold, owning a fraction mi/(mi + 1) of the post-conversion equity vCi is worth the

same as receiving ci.

In the remainder of this section, we investigate the comparative statics of the system

(5–6). We keep the debt amounts ci and the weights wij fixed and restrict attention to

the fair case. Moreover, for simplicity, we assume that mi = m is the same for all banks

i. Thresholds are thus given by li = ci/m. By our previous analysis, there exists a unique

equilibrium equity value for all m ∈ (0,∞) and all a ∈ Rn.

We now consider the limit m → ∞ of the system of equations (5–6). In this limit,

the fraction of the equity value that is handed over to creditors in case of a conversion

approaches 100%. The limit would not have been well-defined for the original system

(1–2). This is the main motivation for switching to the perspective of total equity values.

In this limit, we have li = 0 for all banks and a combination of asset and equity value

vectors a and v together with a partition (B,C,H) form an equilbrium if

vi = ai +
∑
j∈C

wijvj +
∑
j∈H

wijcj for all i ∈ B ∪ C (7)

vi = ai − ci +
∑
j∈C

wijvj +
∑
j∈H

wijcj for all i ∈ H (8)

and if vi < 0 for all i ∈ B, 0 ≤ vi ≤ ci for all i ∈ C and vi > 0 for all i ∈ H.

Comparing the system of equations (7–8) to the model of bankruptcies in an interbank

credit model due to Eisenberg and Noe (2001), we find that the two models coincide up

to a potentially important terminological difference. What is called a conversion in our

model is called a bankruptcy in theirs.11

An optimistic reading of this result is as follows: In a world where ordinary debt is re-

placed by CoCos, bankruptcies are replaced by conversions as long as total asset values are

11In Eisenberg and Noe (2001) and the subsequent literature such as Rogers and Veraart (2013), it is
often assumed that ai ≥ 0 for all i. Then, complete bankruptcies without even partial repayment of debt
in the sense of our set B are ruled out. Here, we allow for negative ai to obtain the complete picture. A
bank with negative ai may well be healthy (or converting) if it receives a sufficient amount of outstanding
debt back from its competitors.
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non-negative. Indeed, one might argue that replacing bankruptcies by conversions is more

than just a change of terminology. With CoCos, a potentially unpredictable bankruptcy

process is replaced by the orderly fulfillment of contractual obligations. Nevertheless, in

the limit m → ∞, complete control of the bank is transferred to new owners which will

certainly lead to frictions in practice – even if the word “bankruptcy” is avoided.

In light of these considerations, it seems worthwhile to consider CoCos with other

values of m. Intuitively, the character of a conversion changes gradually with m. The

smaller m is, the less disruptive is a conversion event. In particular, as long as m ≤ 1, the

original owners keep a majority of the stocks so that control of the bank does not change

in case of a conversion.12

An additional benefit of choosing a smaller m is that this weakens potential interac-

tion and spillover effects between banks. Formally, when we compare the Eisenberg-Noe

equations (7–8) to the fair case of (5–6), we observe two effects. First, the threshold for

a bank being healthy is moved upwards from 0 to li = ci/mi. Similarly, the bound for

conversion is moved from ci to (1 +mi)li = ci + ci/mi. Yet, second, what this buys us is a

decrease in the interconnectedness of the banking system as the weights wij are decreased

to wijmi/(1 +mi).

Visually, when we compare Figures 6a, 6b and 6c for the case of two banks, we see

indeed that regions become more rectangular as m decreases. This means that when the

assets of one bank decrease this typically only affects the status of that bank but usually

not that of the others. In the most connected extreme case, w12 = w21 = 1 and m =∞,

the region where both banks convert degenerates to a decreasing straight line as seen in

Figure 6d. Intuitively, simultaneous conversions imply that the ownership of each bank

is transferred fully to the other bank and then on and on in an infinite cycle. This is not

possible. Thus the region where both banks are bankrupt touches the region where both

are healthy.

12This reasoning assumes, of course, that the bank’s pre-conversion ownership structure is not too
fragmented.
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(a) m = 1 (b) m→∞

(c) m→ 0 (d) m→∞, w12 = w21 = 1

Figure 6: Limiting behavior.

Equilibria in the fair case for varying m with c1 = c2 = 8 and, unless otherwise noted, w12 = w21 = 0.75.

To understand the downside of choosing m too small, it is instructive to study the

limit m → 0 depicted in Figure 6c. In this limit we have li = ∞ for all banks and a

combination of asset and equity value vectors a and v together with a partition (B,C,H)

form an equilibrium if

vi = ai +
∑
j∈H

wijcj for all i ∈ B ∪ C (9)

vi = ai − ci +
∑
j∈H

wijcj for all i ∈ H (10)

and if vi < 0 for i ∈ B and 0 ≤ vi ≤ ∞ for i ∈ C. Formally, the condition associated

with i ∈ H becomes vi >∞ which implies that we must have H = ∅ in equilibrium. The

system thus simplifies to vi = ai for all i. Bank i converts whenever ai ≥ 0. Otherwise,
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bank i is bankrupt. There are no healthy banks.

Thus, in the limit m → 0, replacing debt by CoCos boils down to canceling all debt.

No payments are made or received and a bank survives if and only if its assets net of

debt ai are sufficient. In particular, there are no longer any spillovers between banks.

To understand how this situation can go together with our implementation of a “fair”

conversion threshold, recall that fairness only holds for conversions that occur at the

threshold. As m approaches 0, the fair conversion threshold goes to infinity and, in

the boundary case of a fair conversion, a bank’s creditors receive ci in the form of an

infinitesimally small fraction of an infinitely valuable bank. Realistically, as soon as m is

sufficiently small, the bank will almost always convert, and it will do so at a value that

lies far below the fair threshold.

While we have not explicitly modeled the earlier stage at which CoCos are initiated,

priced and sold, it seems clear that it will not be possible to raise significant amounts of

capital with CoCos whose fair thresholds are too high (m→ 0). Conversely, CoCos whose

thresholds are too low will behave more and more similarly to ordinary debt (m → ∞).

In between those extremes, there is a potential scope for CoCos that have at least two

advantages over ordinary debt. First, network effects can be expected to be weaker.

Second, conversion events will be sufficiently distinct from bankruptcies to be perceived

differently by the market. The latter point is in line with results by Chen et al. (2017)

who study CoCos with accounting-based triggers in a dynamic, single-bank model. They

argue that conversion thresholds should be sufficiently high to preclude what they call

debt-induced collapse, a regime in which CoCos are effectively reduced to straight debt.

5 Conclusion

In this paper, we have studied how trading in contingent convertible debt influences

equilibrium stock prices of banks. Our starting point was an ongoing debate about the
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benefits but also the dangers of such contingent debt. A major concern that has been

raised in the previous literature is that equilibrium stock prices may no longer exist or be

unique when conversion depends on current values of stock prices. We provide clear-cut

conditions that guarantee existence and uniqueness of equilibrium.

Our results are the first to address the role of contingent convertible debt with stock

price triggers in interbank networks. Accordingly, many things remain to be done. First,

a natural extension of our setting considers banks that have issued multiple CoCos with

different thresholds or different maturities. Second, in order to extend the discussion of

Section 4 into a full welfare analysis, it would be worthwhile to explicitly model an initial

stage where CoCos are issued, priced and sold. This would give more insight into the

possibilities for raising capital with different CoCo designs. Third, relatedly, it is possible

to study dynamic versions of our model along the lines of Glasserman and Nouri (2016)

and Pennacchi and Tchistyi (2019a) for the single-bank case. Fourth, one could try to

characterize the full set of equilibria of the super-fair case. Finally, it would be interesting

to investigate the computation of equilibria similar to the analysis in Schuldenzucker et al.

(2017) for the case of credit default swaps.13

A Proofs

A.1 Proofs of Section 2

Proof of Lemma 1: The consistency condition in the definition of an equilibrium

implies that the stock price vector immediately determines a unique candidate for an

equilibrium partition as stated in the lemma. It remains to show that for a given stock

13While we have largely ignored computational aspects in our presentation, our results do have some
computational implications. The fixed point construction for the super-fair case implies an explicit
algorithm for computing one equilibrium of the super-fair case from equilibria of the fair case. Moreover,
the formal resemblance between the fair case and the Eisenberg-Noe model implies that tools can be
transferred between these settings. For instance, their “fictitious default” algorithm can be translated
into a “fictitious conversion” algorithm for finding equilibria in the positive quadrant, a ≥ 0.

29



price vector s and partition (B,C,H) the linear system (1–2) possesses a unique solution

a. This follows from the discussion following (3). �

A.2 Proofs of Section 3.1

Proof of Proposition 1: Suppose bank i has set a sub-fair threshold, limi < ci. To

construct a vector of asset values a ∈ Rn for which no equilibrium exists, we assume that

the asset values of the remaining banks are sufficiently high such that if an equilibrium

exists their stock prices must lie above the threshold and we have j ∈ H for all j 6= i.

A sufficient condition is that aj satisfies aj − cj > lj(1 + mj) for all j 6= i. Defining

Ci =
∑

j 6=iwijcj, the two candidates for the stock price of bank i are then si = 1
mi

(ai + Ci)

if si ≤ li and si = ai − ci + Ci if si > li. Plugging the candidate stock prices into the

constraints and solving for ai yields the inequalities ai > li+ci−Ci and ai ≤ li(1+mi)−Ci.

Existence of equilibrium means that at least one of the two inequalities is satisfied for

every ai ∈ R. Yet, ci > limi implies li + ci − Ci > li(1 + mi)− Ci. Thus, there exists an

ai ∈ R such that li + ci−Ci > ai > li(1 +mi)−Ci. For this ai, no equilibrium stock price

exists. �

A.3 Proofs of Section 3.2

Our existence proof is based on the Poincaré-Miranda Theorem, a classical result from

real analysis, see e.g. the Corollary to Proposition 3 in Browder (1983). It is repeated

here for the reader’s convenience.

Theorem 2 (Poincaré-Miranda) Define Ui = {u ∈ [−1, 1]n|ui = 1} and U−i = {u ∈

[−1, 1]n|ui = −1}. Let F : [−1, 1]n → Rn be a continuous function with the property that

for all i ∈ [n] u ∈ Ui implies Fi(u) ≥ 0 and u ∈ U−i implies Fi(u) ≤ 0. Then there exists

w ∈ [−1, 1]n such that Fi(w) = 0 for all i ∈ [n].
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Proof of Proposition 2: The proof relies on Theorem 2. We mainly need to show how

to apply this theorem in our context. Notice first that it suffices to prove that there exists

x ∈ Rn such that f(x) = 0. The reason is that if f satisfies continuity and properties (i)

and (ii) then so does any translation f̃(x) = f(x)− y for fixed y ∈ Rn. Thus, our results

apply equally to f and f̃ . Proving existence of x ∈ Rn with f̃(x) = 0 implies existence of

x with f(x) = y.

Next, we have to prove that we can rescale our function to a function on the unit cube

which has the boundary conditions required by Theorem 2. By property (ii), there exists

a constant t > 0 such that for all i ∈ [n] we have fi(te) ≥ 0 and fi(−te) ≤ 0. Defining

Ui and U−i as in Theorem 2, we conclude from property (i) that fi(tu) ≥ fi(te) ≥ 0

for all u ∈ Ui and fi(tu) ≤ fi(te) ≤ 0 for all u ∈ U−i. It follows that the function

F : [−1, 1]n → Rn defined by F (u) = f(tu), u ∈ [−1, 1]n satisfies the requirements of

Theorem 2. In particular, F is continuous with Fi(u) ≥ 0 for u ∈ Ui and Fi(u) ≤ 0 for

u ∈ U−i. Thus, by the theorem, there exists a w ∈ [−1, 1]n with F (w) = 0. Observing

that f(x) = F (w) = 0 for x = tw concludes the proof. �

Proof of Proposition 3: We show that Proposition 2 is applicable with f ≡ Φ. To

this end, we need to verify that Φ is continuous and satisfies properties (i) and (ii). Note

first that for any given partition (B,C,H) and associated set of stock prices SB,C,H we

have

Φ(s) = LB,Cs+ bH for all s ∈ SB,C,H

where the matrix LB,C has positive diagonal elements and non-positive off-diagonal ele-

ments. This shows that within each of the sets SB,C,H the function Φ is continuous and

has the monotonicity property required in (i). The global continuity of Φ which is shown

below implies that Φ also implies (i) globally. We next turn to (ii). We show a slightly

stronger claim which covers both cases. Fix some u ∈ {−1, 1}n. For t > maxi∈[n] li, we

have that tu ∈ SB,C,H with B = {i ∈ [n] ∈ ui = −1}, C = ∅ and H = {i ∈ [n] ∈ ui = 1}.
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The associated matrix LB,C is a diagonal matrix with positive diagonal entries. Thus,

Φi(tu) converges to +∞ for ui = 1 and to −∞ for ui = −1.

It remains to verify continuity of Φ. To this end, it suffices to consider the behavior of

Φ at the boundaries between different partition elements. Specifically, we show that if s ∈

SB1,C1,H1 ∩ SB2,C2,H2 for two partitions B1, C1, H1 and B2, C2, H2 then the corresponding

local definitions of Φ coincide,

LB1,C1s+ bH1 = LB2,C2s+ bH2 . (11)

The condition s ∈ SB1,C1,H1 ∩ SB2,C2,H2 means that at least one bank i satisfies si = 0

or si = li so that the status of that bank is at the boundary between bankruptcy and

conversion or between conversion and being healthy. As these conditions are independent

between banks, it suffices to show (11) for pairs of partitions which differ in exactly one

bank.14 We need to consider two cases. In the first one si = 0, B2 = B1\{i}, C2 = C1∪{i}

and H2 = H1. Let Ii = eie
T
i be the matrix with zeros in all entries except for a 1 in (i, i).

We have LB2,C2 = LB1,C1 −miIi +mi(I−W )Ii = LB1,C1 −miWIi and bH2 = bH1 and thus

(LB2,C2s+ bH2)− (LB1,C1s+ bH1)

= miWIis = simiWei = 0.

In the second case si = li, B2 = B1, C2 = C1 \ {i} and H2 = H1 ∪ {i}. Then LB2,C2 =

LB1,C1 −mi(I −W )Ii and bH2 = bH1 + ci(I −W )ei. We thus find that in this case

(LB2,C2s+ bH2)− (LB1,C1s+ bH1)

= −mi(I −W )Iis+ ci(I −W )ei

= (ci − limi)(I −W )ei = 0,

14This is seen easily by inspecting, e.g., the left panel of Figure 1. To check the condition for the point
which lies at the intersection of the (completions of the) sets BH and CC, it suffices to check the condition
for the intersections of BH and CH and of CH and CC.
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where the final conclusion uses the fairness assumption li = ci/mi. �

Proof of Proposition 4: Surjectivity has already been shown in Proposition 3. Thus,

to prove bijectivity we only to show injectivity. Our proof works in two steps. First, we

prove the following claim: Consider two vectors s and t in Rn such that s ≥ t and that

the set I = {i|si > ti} is non-empty. Then there exists an i ∈ I such that Φi(s) > Φi(t).

Moreover, Φj(s) ≤ Φj(t) for all j /∈ I. Second, we use the claim to complete the proof.

To prove the claim, consider first the case j /∈ I and thus sj = tj. By Proposition 3, the

function Φ is continuous. Moreover, within each partition element SB,C,H it is an affine

function of the form LB,Cs + bH where LB,C has strictly positive diagonal entries and

non-positive off-diagonal entries. Thus, Φj(s) is weakly decreasing in si for all i 6= j and

we have Φj(s) ≤ Φj(t) because sj = tj. To complete the proof of the claim, we show that

e>Φ(s) > e>Φ(t), i.e., the sum of the elements of Φ(s) is strictly larger than the sum of

the elements of Φ(t). To see this, it suffices to recall the continuity of Φ and the local

definitions of Φ and to note that the vectors e>LB,C are non-negative with some strictly

positive entries because e>(I −W ) ≥ 0. Thus, there must exist an i with Φi(s) > Φj(t)

and, by the other part of the claim, this i must lie in the set I.

It remains to show that the claim implies injectivity. Consider two vectors s and u in

Rn with s 6= u. We need to show that Φ(s) 6= Φ(u). To this end, define t = min(s, u) ∈ Rn

where the minimum is taken entrywise. Define Is = {i|si > ti} and Iu = {i|ui > ti}. Note

that Is and Iu are disjoint and that at least one of them is non-empty. Without loss of

generality, assume Is 6= ∅. Applying the claim to s and t shows that there exists an i∗ ∈ Is

such that Φi∗(s) > Φi∗(t). Moreover, we know that i∗ /∈ Iu, i.e., ui∗ = ti∗ . Thus, applying

the claim to u and t implies Φi∗(u) ≤ Φi∗(t) and thus Φi∗(u) 6= Φi∗(s). This completes

the proof. �
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A.4 Proofs of Section 3.3

We begin this section with a technical lemma. Lemma 2 is proved at the end. The

remaining results are proved in the order in which they are stated in the main text.

Lemma 5 If I −W is invertible, the matrix (I −W )−1 has only non-negative entries.

Moreover, for any B,C ⊆ [n] the matrix L−1
B,C(I −W ) has non-negative entries on the

diagonal and non-positive entries otherwise.

Proof of Lemma 5: For any α ∈ (0, 1), the matrix I−αW is strictly column-diagonally

dominant with positive diagonal entries and non-positive off-diagonal entries. It is thus

an M -matrix which implies that its inverse (I − αW )−1 has only non-negative entries,

see Chapter 2.5 of Horn and Johnson (1991). As a limit α→ 1 of non-negative matrices,

(I −W )−1 is then also non-negative. For the second claim, notice that L−1
B,C(I −W ) is

the limit α→ 1 of the matrices

Mα = (I + Diag(mB) + (I − αW ) Diag(mC))−1 (I − αW )

so it suffices to show that Mα has the required sign-pattern. To this end, we write

Mα =
(
(I − αW )−1(I + Diag(mB)) + Diag(mC)

)−1
.

As argued before, for α ∈ (0, 1), (I − αW )−1 is the inverse of an M -matrix. By Theorem

1 and 3 of Johnson (1982), the family of inverse M -matrices is closed under multiplication

by diagonal matrices with positive diagonal and under addition by diagonal matrices with

non-negative diagonal. Thus, M−1
α is an inverse M -matrix. Consequently Mα itself is an

M -matrix which means that it has the required sign pattern. �

Proof of Lemma 3: Consider the segment a(t) = a+ t(I −W )dX where t ∈ [0, 1]. As

Φ is a continuous piece-wise linear bijection we have that s(t) = Φ−1(a(t)) is a piece-wise
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linear path in Rn. Moreover, there are 0 = t0 < t1 < · · · < tN = 1 such that the partition

(B(t), C(t), H(t)) of [n] corresponding to the equilibrium (s(t), a(t)) is constant in the

interval (tk−1, tk) for each k = 1, . . . , N . We denote this partition (Bk, Ck, Hk).

Let 1 ≤ k ≤ N . For any t ∈ (tk−1, tk), there are sk, uk ∈ Rn such that s(t) = sk + tuk.

The identity a(t) = Φ(s(t)) then becomes a+t(I−W )dX = LBk,Ck
(sk+tuk)+(I−W )cHk

.

This implies (I−W )dX = LBk,Ck
uk, and therefore uk = L−1

Bk,Ck
(I−W )dX . From Lemma 5,

the row vector eTi L
−1
Bk,Ck

(I −W ) has non-positive entries, except for a non-negative entry

in position i. On the other hand, if i /∈ X, (dX)i = 0. Thus (uk)i = eTi uk = eTi L
−1
Bk,Ck

(I −

W )dX ≤ 0 for all i /∈ X. This implies that Hk+1 ⊆ Hk ∪ X and, using H1 = H(a), we

obtain by induction that H(a(t)) ⊆ H(a)∪X for all t ∈ [0, 1]. By taking t = 1, the claim

of the lemma follows. �

Proof of Lemma 4: First notice that without loss of generality we can assume dj > 0

for all j ∈ X. Otherwise we can replace X by {j ∈ X : dj > 0}. We prove the

statement by induction over the size of X. To this end, we will construct f ∈ Rn such that

0 ≤ f ≤ dX , fj = dj for some j ∈ X and X ⊆ H(a+ (I−W )f). Given such an f , we can

define X ′ = {j ∈ X : dj > fj} ( X. If X ′ = ∅ then we must have f = dX and therefore

X ⊆ H(a+(I−W )dX). Otherwise, applying the induction hypothesis to a′ = a+(I−W )f ,

d′ = d−f , and X ′, we obtain ∅ 6= X ′∩H(a′+(I−W )d′X′). Since d′X′ = (d−f)X′ = dX−f ,

we can thus write a′ + (I −W )d′X′ = a+ (I −W )f + (I −W )(dX − f) = a+ (I −W )dX .

It follows that X ∪H(a+ (I −W )dX) ⊇ X ′ ∩H(a′ + (I −W )d′X′) 6= ∅. Notice that this

argument also covers the induction basis where X is a singleton so that X ′ = ∅.

To complete the proof we need to show that such an f exists. Let u = (I −W )−1dX .

We know that u ≥ 0, as (I −W )−1 is a non-negative matrix by Lemma 5. Moreover,

for any j ∈ X we have 0 < dj = eTj dX = eTj (I −W )u. Yet eTj (I −W ) is non-positive,

except for the j-entry. Thus uj > 0. Let t = minj∈X
dj
uj

and let f = tuX . Then, we have

0 ≤ f ≤ dX and fj = dj for some j ∈ X. It remains to show that X ⊆ H(a+ (I −W )f).

First, we argue that H(a+ t(I−W )u) = H(a). To prove this let (B,C,H) be a partition
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of [n] such that (a,Φ−1(a)) is a (B,C,H)-equilibrium. As X ⊆ H(a) = H, we have

LB,C(Φ−1(a) + tdX) + cH = a + tdX so that (a + tdX ,Φ
−1(a) + tdX) is also a (B,C,H)-

equilibrium. This implies H(a+t(I−W )u) = H(a+tdX) = H = H(a). From Lemma 3, it

then follows that X ⊆ H(a) = H(a+t(I−W )u) = H(a+t(I−W )uX +t(I−W )u[n]\X) ⊆

H(a+ (I −W )f) ∪ ([n] \X). Thus X ⊆ H(a+ (I −W )f).

�

Proof of Corollary 1:

(i) Assume X ⊆ Y ⊆ h(X). Then h(Y ) = H(â + (I − W )dX + (I − W )dY \X) ⊆

h(X) ∪ (Y \X) = h(X), from Lemma 3.

(ii) Assume h(X) ⊆ Y ⊆ X. Then h(X) = H(â + (I −W )dX) ⊆ H(â + (I −W )dX −

(I−W )dX\Y )∪ (X \Y ) = h(Y )∪ (X \Y ), from Lemma 3. But, h(X)∩ (X \Y ) = ∅

and thus h(X) ⊆ h(Y ).

(iii) Assume X ⊆ h2(X)  h(X). Taking Y = h2(X) in (i) we obtain h3(X) ⊆ h(X).

Applying (ii) to h2(X) ⊆ h2(X) ⊆ h(X), we obtain h2(X) ⊆ h3(X). Now we

need to show h3(X) 6= h(X). For the sake of contradiction, assume h3(X) = h(X).

Then ∅ 6= h(X) \ h2(X) ⊆ h3(X) = H(â + (I − W )dh2(X)). From Lemma 4, we

have then that ∅ 6= (h(X) \ h2(X)) ∩H(â+ (I −W )dh2(X) + (I −W )dh(X)\h2(X)) =

(h(X) \ h2(X)) ∩ h2(X) = ∅.

(iv) Assume h(X)  h2(X) ⊆ X. Taking Y = h2(X) in (ii) we obtain h(X) ⊆ h3(X).

Applying (i) to h(X) ⊆ h2(X) ⊆ h2(X) we obtain h3(X) ⊆ h2(X). Now we need to

show h3(X) 6= h(X). Notice that ∅ 6= h2(X)\h(X) ⊆ h2(X) = H(â+(I−W )dh(X)).

From Lemma 4, we have then that ∅ 6= (h2(X) \ h(X)) ∩ H(â + (I −W )dh(X) +

dh2(X)\h(X)) = (h2(X) \ h(X)) ∩ h3(X) = (h2(X) ∩ h3(X)) \ h(X) = h3(X) \ h(X).

�
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Proof of Lemma 2: Let Xm = hm(H(â)), for all m ≥ 0 where â ∈ Rn is arbitrary and

fixed and h is defined in the main text. We claim that for some m we have Xm+1 = Xm.

Xm is then the desired fixed point as Xm = H(â + (I −W )dXm) by the definition of h.

First notice that X1 ⊆ X0 as X1 = H(â+ (I −W )dX0) ⊆ H(â) ∪X0 = X0 by Lemma 3.

Similarly, it follows that X1 ⊆ X2 ⊆ X0: As h(X0) = X1 ⊆ X0, from Corollary 1.(ii), we

have X1 ⊆ X2. Moreover, X2 = H(â+ (I −W )dX1) ⊆ H(â) ∪X1 = X0.

Now inductively by applying interactively items (iii) and (iv) from Corollary 1, we

obtain that Xm ⊆ Xm+2 ⊆ Xm+1 and, either Xm = Xm+1 or |Xm+1\Xm+2| < |Xm+1\Xm|,

for all odd m. And for all even m > 0, Xm+1 ⊆ Xm+2 ⊆ Xm and, either Xm = Xm+1 or

|Xm+2\Xm+1| < |Xm\Xm+1|. This implies that Xm+1 = Xm for some m as |X0\X1| ≤ n.

�
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